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ABSTRACT 

 

This research developed a dynamic activated sludge model (ASM) to better describe 

the overall removal of organic substrate, quantified as chemical oxygen demand (COD), from 

A-stage high rate activated sludge (HRAS) systems.  This dynamic computer model is based 

on a modified ASM1 (Henze et al., 2000) model.   It was determined early in the project that 

influent soluble COD, which is normally represented by a single state variable in ASM1, had 

to be subdivided into two state variables (SBs and SBf, or slow and fast fractions) to simulate 

the performance of A-stage systems.  Also, the addition of state variables differentiating 

colloidal COD from suspended COD was necessary due to short hydraulic residence times in 

A-stage systems which do not allow for complete enmeshment and bioflocculation of these 

particles as occurs in conventional activated sludge systems (which have longer solid 

retention times and hydraulic retention times).  It was necessary to add several processes 

(both stoichiometry and kinetic equations) to the original ASM1 model including 

heterotrophic growth on both soluble substrate fractions and bioflocculation of colloidal 

solids.  How to properly quantify heterotrophic growth on SBs and SBf resulted in two 

separate approaches with respect to process kinetic equations.  In one approach the SBf was 

metabolized preferentially over SBs which was only utilized when SBf was not available.  This 

is referred to as the Diauxic Model.  In the other approach SBf and SBs were metabolized 

simultaneously, and this is referred to as the Dual Substrate Model.  The Dual Substrate 

Model calibrated slightly better than the Diauxic Model for one of the two available pilot 

studies data sets (the other set was used for model verification).   
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The Dual Substrate A-stage model was used to describe the effects of varying specific 

operating parameters including solids retention time (SRT), dissolved oxygen (DO), influent 

COD and temperature on the effluent COD:N ratio. The effluent COD:N ratio target was 

based on its suitability for a downstream nitrite shunt (i.e. nitritation/denitritation) process.  

In the downstream process the goal is to eliminate nitrite oxidizing bacteria (NOB) from the 

reactor while selecting for ammonia oxidizing bacteria (AOB).  The results showed that a 

low SRT (<0.25 d) can produce high effluent substrates (SB and CB), and elevated COD:N 

ratios consistent with NOB out-selection downstream, the HRAS model was able to predict 

the measured higher fraction of CB in the A-stage effluent at lower SRTs and DO 

concentrations, and to achieve the benefits of operating an A-stage process, while 

maintaining an effluent COD:N ratio suitable for a downstream nitritation/denitritation 

process, an A-stage SRT in the range of 0.1 to 0.25 d should be maintained. 

This research also included an analysis of A-stage pilot data using stoichiometry to 

determine the bio-products formed from soluble substrate removed in an A-stage reactor.  

The results were used to further refine the process components and stoichiometric parameters 

to be used in the A-stage dynamic computer model, which includes process mechanisms for 

flocculation and enmeshment of particulate and colloidal substrate, hydrolysis, production of 

extracellular polymeric substances (EPS) and storage of soluble biodegradable substrate.  

Analysis of pilot data and simulations with the dynamic computer model implied (indirectly) 

that storage products were probably significant in A-stage COD removal.       

   



v 
 

 

 

 

 

 

 

 

 

 

 

To my wife Laura, my children Adam, Allyson, Kelsey, and Taylor, and my parents, for your 

love and unwavering support over the years. 

  



vi 
 

ACKNOWLEDGMENTS 

I would like to thank Hampton Roads Sanitation District and Dr. Charles Bott for 

funding and providing the resources required to complete this doctoral research.  I would also 

like to thank Mark Miller for his diligence in operating the HRSD A-stage pilot plant which 

provide essential data to support this doctoral research effort.   

I would like to express my deep appreciation and gratitude to my primary advisor Dr. 

Andrew Randall for accepting the challenge associated with supporting an “older” graduate 

student.  His flexibility and faith in me during the dissertation process enabled me to attend 

to life while also earning my Ph.D. He’s been motivating, encouraging, and enlightening.   

His patience and commitment to our weekly meetings proved to be an invaluable learning 

experience. 

I would sincerely like to thank Dr. Jose Jimenez for initiating the contact with Dr. 

Bott which led to my involvement in developing the A-stage model.  In addition, Dr. Jimenez 

made available supporting data which was vital to this doctoral research effort.  I am grateful 

to Dr. Jimenez for his contribution, participation and dedication in support of this effort. 

I would like to thank my committee members Drs. Steven Duranceau and Manoj 

Chopra for their guidance and thought-provoking suggestions. 

I would also like to thank Drs. Sudhir Murthy, Imre Takacs, and Bernhard Wett for 

their guidance and support in developing the model.   I would especially like to thank Dr. 

Inmre Takacs for providing the dynamic solver used to analyze my model framework. 

I would like to thank. Dr. David Cooper who saw enough in me to give me this 

opportunity.  Thank you Dr. Cooper. 



vii 
 

I am deeply indebted to my family, my wife, my children and my parents, their love 

and support provided me with the energy to complete this journey. 

Finally, I would like to acknowledge the innumerable sacrifices made by my wife 

Laura, who shoulder the day-to-day burden while allowing me to dedicate myself to pursue 

this doctoral degree.  To you Laura I will always be grateful. 

 

 

 

 

  



viii 
 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................... xiv 

LIST OF TABLES ............................................................................................................... xviii 

NOMENCLATURE .............................................................................................................. xxi 

CHAPTER 1  INTRODUCTION ............................................................................................. 1 

1.1 General ............................................................................................................................ 1 

1.2 Research Objectives ........................................................................................................ 2 

1.2.1 Problem Statement.................................................................................................... 2 

1.2.2 Statement of Research Objectives ............................................................................ 3 

CHAPTER 2  LITERATURE REVIEW .................................................................................. 5 

2.1 ASM Modelling ............................................................................................................... 5 

2.2 High Rate System for Carbon Removal ................................................................... 12 

2.2.1 Wastewater Characterization .................................................................................. 14 

2.2.3 Storage Polymers .................................................................................................... 17 

2.3 Stoichiometry ................................................................................................................ 21 

2.4 Mainstream Nitrogen Removal ................................................................................ 22 

2.4.1 Nitritation/Denitritation .......................................................................................... 24 

2.4.2 Deammonification .................................................................................................. 26 



ix 
 

2.4.3 Importance of C:N Ratio for B-stage nitrite shunt and/or anammox ..................... 28 

2.5 Diauxic Growth ............................................................................................................. 30 

CHAPTER 3   MATERIALS AND METHODS ................................................................... 32 

3.1 Data for Model Calibration and Validation ................................................................... 32 

3.1.1 Pilot Scale Data Used for Model Calibration ......................................................... 32 

3.1.2 Hampton Roads Sanitation District (HRSD) Pilot Data (used for A-stage Model 

Validation and Stoichiometric Analysis)......................................................................... 36 

3.1.3 Sample Collection and Monitoring ........................................................................ 37 

3.2 Model Development ...................................................................................................... 41 

3.3 Mathematical Model IDE and Calibration/Validation Procedure ................................. 44 

3.3.1 A-stage Model Calibration using NO Dataset ........................................................ 45 

3.3.2 A-stage Model Validation using HRSD Dataset .................................................... 47 

CHAPTER 4  MATHEMATICAL MODELING OF CARBON REMOVAL IN THE HIGH-

RATE ACTIVATED SLUDGE SYSTEM: MODEL PRESENTATION AND 

APPLICATION ...................................................................................................................... 49 

4.1 Introduction ................................................................................................................... 49 

4.2 Materials and Methods .................................................................................................. 51 

4.2.1 Sample Collection and Monitoring ........................................................................ 53 

4.3 Results and Discussion .................................................................................................. 53 



x 
 

4.3.1 High-Rate Activated Sludge (HRAS) System for Carbon Removal ...................... 53 

4.3.2 HRAS Model Matrix .............................................................................................. 60 

4.3.3 Fate of the Influent Substrate (SBf & SBs) ............................................................... 65 

4.3.4 Flocculation ............................................................................................................ 69 

4.3.5 Mathematical Model Calibration ............................................................................ 70 

4.4 Conclusions ................................................................................................................... 76 

CHAPTER 5  MODELLING OF ORGANIC SUBSTRATE TRANSFORMATION IN THE 

HIGH-RATE ACTIVATED SLUDGE PROCESS ................................................................ 77 

5.1 Introduction ................................................................................................................... 77 

5.1.1 ASM1 Model .......................................................................................................... 79 

5.2 Materials and Methods .................................................................................................. 80 

5.3 Modified Model Description ......................................................................................... 83 

5.3.1 Fate of Soluble Substrate ........................................................................................ 83 

5.3.2 Adsorption of Colloidal COD ................................................................................ 85 

5.3.3 EPS Production ....................................................................................................... 87 

5.3.4 Production of Storage Products .............................................................................. 88 

5.4 Results and Discussion .................................................................................................. 90 

5.4.1 Model Calibration ................................................................................................... 90 

5.4.2 Modified Model Validation .................................................................................... 91 



xi 
 

5.4.3 Effect of Influent Biomass...................................................................................... 93 

5.5 Conclusions ................................................................................................................... 94 

CHAPTER 6  MATHEMATICAL MODELING OF THE HIGH RATE ACTIVATED 

SLUDGE SYSTEM: OPTIMIZING THE COD:N RATIO IN THE PROCESS EFFLUENT

................................................................................................................................................. 96 

6.1 Introduction ................................................................................................................... 96 

6.2 Materials and Methods .................................................................................................. 98 

6.3 Results and Discussion ................................................................................................ 100 

6.3.1 Variable SRT ........................................................................................................ 102 

6.3.2 Variable Dissolved Oxygen .................................................................................. 104 

6.3.3 Effect of Storage ................................................................................................... 106 

6.3.4 Temperature Effect on the COD:N Ratio ............................................................. 108 

6.3.5 Optimal HRAS Operating Parameters.................................................................. 108 

6.4 Conclusion ................................................................................................................... 114 

CHAPTER 7 USING A STOICHIOMETRIC MASS BALANCE APPROACH TO 

IDENTIFY SOLUBLE SUBSTRATE REMOVAL PATHWAYS IN THE HIGH RATE 

ACTIVATED SLUDGE PROCESS .................................................................................... 115 

7.1 Introduction ................................................................................................................. 115 

7.2 Objective ..................................................................................................................... 117 



xii 
 

7.3 Materials and Methods ................................................................................................ 117 

7.4 COD Mass Balance ..................................................................................................... 123 

7.5 Stoichiometry .............................................................................................................. 125 

7.5.1 Half Reaction Approach ....................................................................................... 127 

7.5.2 Substrate Partitioning Approach ........................................................................... 130 

7.6 Results and Discussion: ............................................................................................... 137 

7.6.1 Dataset Analysis ................................................................................................... 137 

7.7 Aggregate Stoichiometric Results ............................................................................... 140 

7.8 Conclusions ................................................................................................................. 141 

CHAPTER 8   CONCLUSIONS AND FUTURE RESEARCH .......................................... 142 

8.1 Conclusions ................................................................................................................. 142 

8.2 Recommendations for Future Research ...................................................................... 145 

APPENDIX A: STOICHIOMETRY SAMPLE CALCULATIONS .................................... 146 

APPENDIX B:  HRAS MODEL FRAMEWORK – DUAL SUBSTRATE ........................ 151 

APPENDIX C: NO DATASET CALIBRATION RESULTS.............................................. 163 

Effect of Variable SRT ...................................................................................................... 164 

Readily Biodegradable COD ......................................................................................... 164 

EPS Production .............................................................................................................. 165 

Colloidal COD Removal Efficiency .............................................................................. 166 



xiii 
 

Effect of Variable DO ....................................................................................................... 167 

Readily Biodegradable COD ......................................................................................... 167 

EPS Production .............................................................................................................. 168 

Colloidal COD Removal Efficiency .............................................................................. 169 

Modified Parameter Values ............................................................................................... 170 

APPENDIX D: HRSD STATE VARIABLE DATASET .................................................... 171 

APPENDIX E:  HYDROLYSIS ........................................................................................... 186 

Hydrolysis ......................................................................................................................... 187 

Lysis Regrowth ................................................................................................................. 187 

APPENDIX F: PARTIAL PETERSON MATRIX............................................................... 189 

APPENDIX G: STOICHIOMETRY TABLES .................................................................... 192 

APPENDIX H: HRSD PILOT OFF-GAS DATA ................................................................ 197 

REFERENCES ..................................................................................................................... 202 

 

  



xiv 
 

LIST OF FIGURES 

Figure 1: Non steady state material balance equations for each state variable in Table 1 ....... 9 

Figure 2: Stoichiometric development of Equation 2 ............................................................. 10 

Figure 3: Typical plot of the relationship between the specific growth rate coefficient and the 

concentration of a non-inhibitory substrate (Grady et al., 2011) ............................................ 11 

Figure 4: COD Fractionation for particulate (pCOD), colloidal (cCOD) and soluble (readily 

biodegradable) COD (ffCOD) adopted for this work (Jimenez, 2002) .................................. 15 

Figure 5: Stoichiometry of PHB formation (Van Aalst-Van Leeuwen et al., 1997) .............. 18 

Figure 6: Conventional Nitrogen Removal ............................................................................. 23 

Figure 7: Nitrite Shunt ............................................................................................................ 24 

Figure 8: Nitritation/Anammox process ................................................................................. 27 

Figure 9: Diauxic growth of Escherichia coli on a mixture of glucose and lactose (Clark, 

2012). ...................................................................................................................................... 30 

Figure 10:  University of New Orleans pilot plant configuration ........................................... 32 

Figure 11: HRAS model Calibration data (Jimenez, 2002) .................................................... 35 

Figure 12: Process flow diagram of the HRSD A-stage process pilot plant ........................... 36 

Figure 13:  SUMO Integrated Development Environment – HRSD A-stage Pilot 

Configuration (Takacs, 2013) ................................................................................................. 44 

Figure 14: A-stage Model Calibration Results – NO Dataset ................................................. 47 

Figure 15: A-stage Model Validation Results – HRSD Dataset ............................................. 48 

Figure 16: Process flow diagram of the HRSD A/B process pilot plant ................................ 52 



xv 
 

Figure 17: COD Fractionation for particulate (pCOD), colloidal (cCOD) and soluble COD 

(ffCOD) adopted for this work ............................................................................................... 56 

Figure 18: Proposed mathematical model modifications for the HRAS carbon removal model

................................................................................................................................................. 61 

Figure 19: SBs electron flow schematic for HRAS model ...................................................... 66 

Figure 20: SBf electron flow schematic for HRAS model ....................................................... 67 

Figure 21: HRAS model calibration results. ........................................................................... 75 

Figure 22: ASM1 Prediction for the HRAS System [Aerobic SRT = 0.25 d, DO = 0.2 mg/L, 

HRT = 30 min, 𝜇max = 6.0 d-1 ; Ks = 20 mg/L; KO,H = 0.2 mg/L; bH = 0.62 d-1; YH = 0.67] 79 

Figure 23: HRSD A-stage pilot plant configuration ............................................................... 80 

Figure 24:  University of New Orleans pilot plant configuration ........................................... 81 

Figure 25: Dual Substrate Model calibration results .............................................................. 91 

Figure 26: Validation Results for the Diauxic and Dual Substrate models ............................ 93 

Figure 27: Effect of Influent Biomass Concentration ............................................................. 94 

Figure 28: Conventional Nitrogen Removal ........................................................................... 96 

Figure 29:  Nitrite Shunt ......................................................................................................... 98 

Figure 30:  HRAS Process Configuration in SUMO .............................................................. 99 

Figure 31: Effect of variable SRT on A-stage effluent COD:N ratios (a),  TCOD fractions 

(b), EPS production (c) and active biomass concentration (d) (HRAS model), ST = SU + SBf + 

SBs where SU is the inert fraction. ......................................................................................... 103 



xvi 
 

Figure 32:  Effect of variable DO on A –stage effluent COD:N ratios (a),  TCOD fractions 

(b), EPS production (c) and active biomass concentration (d) at SRT = 1.5 days (HRAS 

Model),  ST = SU + SBf + SBs where SU is the inert fraction. ................................................. 105 

Figure 33:  Effect of variable DO on effluent COD:N ratios (a),  TCOD fractions (b), EPS 

production (c) and active biomass concentration (d) at SRT = 0.13 days (HRAS Model),  ST 

= SU + SBf + SBs where SU is the inert fraction. .................................................................... 106 

Figure 34:  Comparison of the effect of variable SRT and DO on COD removal in the HRAS 

model (a) variable SRT DO >1.0, (b) variable DO at SRT =  1.5 d. Influent TCOD= 301 

mg/L ...................................................................................................................................... 107 

Figure 35:  Effect of Temperature on COD:N ratio at (a) variable SRT, (b) SRT = 1.5 d and 

variable DO ........................................................................................................................... 108 

Figure 36: Comparison of COD:N ratios at constant SRT and variable DO, TCOD = 361 

mg/L(), Influent COD:N ratio = 8.5:1 (HRAS model) ......................................................... 110 

Figure 37:  Comparison of COD:N ratios at constant SRT and variable DO, TCOD = 600 

mg/L, influent COD:N = 15:1 (HRAS model) ..................................................................... 111 

Figure 38:  Comparison of A-stage effluent COD:N ratio ................................................... 113 

Figure 39:  Comparison of TCOD fractions between the pilot data and the HRAS model .. 113 

Figure 40:  HRAS Model substrate partitioning pathways (for electron and carbon flow) .. 119 

Figure 41: Calculated COD mass balances based on off-gas data ........................................ 124 

Figure 42: Rate of change in the CO2:O2 ratio as electrons are shunted away from fe and 

towards fs. Using domeastic wastewater (SBs) as the electron donor (Table 19). ................ 129 



xvii 
 

Figure 43: Procedure for determining stoichiometric coefficients for SBf at varying CO2:O2 

ratios using the stoichiometry shown in Table 20. ............................................................... 135 

Figure 44: Procedure for determining stoichiometric coefficients for SBs using the 

stoichiometry shown in Table 19 .......................................................................................... 136 

Figure 45:  Comparison of off-gas CO2:O2 ratio to stoichiometric substrate partition fractions 

based on single substrate using stoichiometry defined in Table 19 and Table 20. ............... 137 

Figure 46: Composite substrate partition fractions based on combined SBf (acetic acid) and 

SBs (domestic wastewater) stoichiometry ............................................................................. 138 

Figure 47:  Substrate Partitioning coefficients kEPS.PC (fEPS) and kSTO,PC (fSTO) generated from 

the A-stage model at variable SRT and DO (SRT=1.5 days). .............................................. 140 

Figure 48: Schematic representation of the lysis: regrowth approach to modeling biomass 

decay ..................................................................................................................................... 188 

 

  



xviii 
 

LIST OF TABLES 

 

Table 1   Process kinetics and stoichiometry for aerobic growth of heterotrophs (Henze et al., 

2000) ......................................................................................................................................... 8 

Table 2 Typical HRAS model calibration, process operating parameters used to generate 

model output to compare to data in Figure 11. ....................................................................... 34 

Table 3 A-stage model influent wastewater constituent concentrations ................................. 34 

Table 4 HRSD A-stage HRAS sampling plan (Miller, 2013) ................................................ 39 

Table 5  SUMO Peterson Matrix for ASM1 (Takacs, 2013) .................................................. 42 

Table 6  ASM1 kinetic and stoichiometric parameters used in the Peterson matrix (Takacs, 

2013) ....................................................................................................................................... 43 

Table 7 Partial list of parameter values for the mass balance equations ................................ 45 

Table 8  HRSD A-stage HRAS experimental data ................................................................. 55 

Table 9  Partial list of state variables ...................................................................................... 61 

Table 10 Partial Peterson matrix for the HRAS model ........................................................... 63 

Table 11 Partial Peterson matrix process rate equations for the HRAS model ...................... 64 

Table 12  HRAS model calibration, process operating parameters ........................................ 71 

Table 13  HRAS model influent wastewater constituent concentrations ............................... 72 

Table 14 Partial list of parameter values for the mass-balance equations .............................. 73 

Table 15  Partial list of state variables (gCOD.m-3)................................................................ 85 

Table 16 Influent state variables for model validation ........................................................... 92 



xix 
 

Table 17 Partial Peterson matrix processes and stoichiometric coefficients for the HRAS 

model..................................................................................................................................... 121 

Table 18 Partial Peterson matrix process rate equations for the HRAS model .................... 122 

Table 19 Stoichiometry for the slow fraction (SBs) of the readily biodegradable soluble 

substrate (i.e. equivalent to F-rbCOD from ASM2d) ........................................................... 131 

Table 20 Stoichiometry for the fast fraction (SBf) of the readily biodegradable soluble 

substrate ................................................................................................................................ 132 

Table 21 Summary of equations used in the Substrate Partitioning Approach (NCEES, 2011)

............................................................................................................................................... 133 

Table 22 Average aggregate COD based stoichiometric yield coefficients based on combined 

stoichiometry......................................................................................................................... 139 

Table 23  HRAS model framework ...................................................................................... 152 

Table 24  HRAS model framework rate expressions............................................................ 154 

Table 25  HRAS model state variables ................................................................................. 156 

Table 26  HRAS model kinetic parameters for Hydrolysis .................................................. 158 

Table 27 HRAS model kinetic parameters for Heterotrophic growth and decay ................. 158 

Table 28 HRAS model kinetic parameters for Autotrophic growth and decay .................... 159 

Table 29 HRAS model kinetic parameters for other conversion reactions .......................... 159 

Table 30 HRAS model kinetic parameters for temperature dependency ............................. 159 

Table 31 HRAS model kinetic parameters for operational inputs ........................................ 159 

Table 32 HRAS model stoichiometric parameters for growth yields ................................... 159 

Table 33 HRAS model stoichiometric parameters for nitrogen fractions ............................ 160 



xx 
 

Table 34 HRAS model stoichiometric parameters for charge and electron equivalence ..... 160 

Table 35 HRAS model stoichiometric parameters for calculated variable conversions ...... 160 

Table 36 HRAS model stoichiometric parameters for EPS and Storage Products (STO).... 160 

Table 37 Calculated stoichiometric parameter values for oxygen demands ......................... 161 

Table 38 Calculated stoichiometric parameter values for suspended solids ......................... 161 

Table 39 Calculated stoichiometric parameter values for other variables ............................ 161 

Table 40 Calculated kinetic parameter values for OUR and Temperature dependency ....... 162 

Table 41 Calculated kinetic parameter values for Growth Rate and Proportionality 

Coefficients ........................................................................................................................... 162 

Table 42 Calculated kinetic parameter values for saturation concentrations ....................... 162 

Table 43 NO calibration modified parameter list ................................................................. 170 

Table 44 HRSD pilot influent state variables ....................................................................... 172 

Table 45 HRSD pilot reactor state variables......................................................................... 176 

Table 46 HRSD pilot effluent state variables ....................................................................... 181 

Table 47 Partial Peterson matrix processes and stoichiometric coefficients for the HRAS 

model..................................................................................................................................... 190 

Table 48 Partial Peterson matrix process rate equations for the HRAS model .................... 190 

Table 49 Partial list of default parameter values for the mass-balance equations ................ 191 

Table 50  Stoichiometry dataset ............................................................................................ 193 

Table 51 SBf substrate partition fractions .............................................................................. 195 

Table 52 HRSD pilot off-gas data ........................................................................................ 198 

  



xxi 
 

 

NOMENCLATURE 

AOB Ammonia Oxidizing Bacteria 

ASM Activated Sludge Model 

ATP Adenosine Triphosphate 

BOD Biochemical Oxygen Demand 

CO2_PR Carbon Dioxide Production Rate 

COD Chemical Oxygen Demand 

DO Dissolved Oxygen 

F/M Food-to-Microorganism  

HRAS High Rate Activated Sludge 

HRT Hydraulic Retention Time 

MLSS Mixed Liquor Suspended Solids 

N Nitrogen 

NAD Nicotinamide Adenine Dinucleotide 

NADH Reduced Nicotinamide Adenine Dinucleotide 

NOB Nitrite Oxidizing Bacteria 

OHO Ordinary Heterotrophic Bacteria 

OUR Oxygen Utilization Rate 

PC Proportionality Coefficient 

PHA Polyhydroxyalkanoate 



xxii 
 

PHB Poly - β - hydroxybutyrate 

RAS Return Activated Sludge 

rbCOD Readily Biodegradable COD 

SBR Sequential Batch Reactor 

SRT Solids Retention Time 

sbCOD Slowly Biodegradable COD 

SLPM Standard Liters per Minute 

SOP Soluble Orthophosphorus 

TKN Total Kjeldahl Nitrogen 

TN Total Nitrogen 

TP Total Phosphorus 

TVSS Total Volatile Suspended Solids 

WAS Waste Activated Sludge 

VFA Volatile Fatty Acid 

VSS Volatile Suspended Solids 

KB,HYD Saturation coefficient for XB/XOHO 

bANO Decay rate for XANO 

bOHO Decay rate for XOHO 

fe Fraction of electrons shunted to Energy 

fs Fraction of electrons shunted to biomass synthesis 

fEPS Fraction of electrons shunted to EPS production 

fSTO Fraction of electrons shunted to the formation of storage products 



xxiii 
 

fU Fraction of XU generated in biomass decay 

iCB Biomass COD to VSS ratio 

iCharge_SNHx Conversion factor for NHx in charge 

iCharge_SNOx Conversion factor for NO3 in charge 

iCOD_N2 NH3 to N2 oxidation electron equivalence 

iCOD_NO3 NH3 to NO3 oxidation electron equivalence 

iCV Particulate COD to VSS ratio 

iN,EPS N content EPS 

iN,XB N content of biomass (XOHO, XPAO, XANO) 

iN,XU N content of products from biomass 

iNO3,N2 NO3 reduction to N2 electron equivalence 

KB,STO Half-saturation coefficient for storage of SB 

KBf Half-saturation coefficient for SB 

KBs Half-saturation coefficient for SBs 

KEPS  Half-saturation coefficient for EPS 

kEPS,MAX EPS formation coefficient 

KNHx Substrate Half-saturation coefficient for ANOs 

KNHx,nut Nutrient half-saturation coefficient 

KNOx Half-saturation coefficient for SNOx 

KO,ANO Half-saturation coefficient for SO2 

KO,EPS EPS Half-saturation coefficient for SO2 

KO,OHO Half-saturation coefficient for SO2 



xxiv 
 

KO,STO Half-Saturation Coefficient STO for SO2 

KSL Half-saturation coefficient for surface limitation 

KSTO,HYD Hydrolysis Half-saturation coefficient for STO 

qADS Rate constant for adsorption 

qAMM Rate constant for ammonification 

qEPS,HYD EPS hydrolysis 

qSTO Rate constant for growth on XSTO 

qSTO,HYD Storage Hydrolysis Rate Constant 

qXB,HYD Rate Constant 

T Temperature 

Tbase Arrhenius base temperature 

YANO Yield of XANO growth per SNO3 

YOHO,AER Yield for aerobic XOHO growth 

YOHO,ANOX Yield for anoxic XOHO growth 

YSTO Yield for SB storage and enmeshment 

ηGRO,ANOX Reduction factor for anoxic growth of XOHO 

ηHYD Correction factor for hydrolysis under anoxic conditions 

θµ,OHO Arrhenius coefficient 

θb,O2,OHO Arrhenius coefficient 

μANO Maximum growth rate of XANO 

μOHO Maximum growth rate of XOHO 

 



1 
 

CHAPTER 1  

INTRODUCTION 

1.1 General 

Mathematical modeling of the activated sludge process has become an essential part 

of the design and operation of wastewater treatment plants. These models were developed to 

analyze the biochemical transformations that occur in wastewater treatment facilities.  These 

biochemical operations modify or destroy materials that microorganisms can act upon via 

mineralization or biotransformation (Grady et al., 2011).  Biochemical operations in activated 

sludge employ two major cycles: carbon and nitrogen.  The microorganisms involved in each 

cycle derive their energy and reducing power from oxidation reactions, involving the transfer 

of electrons.  Organisms that use organic compounds as their electron donor and source of 

carbon for cell synthesis are heterotrophic bacteria.  Those organisms that used inorganic 

compounds (e.g. NH3) as their electron donor and carbon dioxide as the carbon source are 

referred to as autotrophic bacteria.  

In this dissertation activated sludge systems are defined as follows: 

 A conventional activated sludge system is defined by an SRT of 3-15 days, an 

HRT of 4-8 hours, and a DO of 2 mg/L. 

 A typical HRAS system is defined by an SRT of 1-3 days, an HRT of 1.5 to 3 

hours, and a DO of 2 mg/L. 

 An A-stage HRAS system is defined by an SRT of 4-12 hours, an HRT of 30 

minutes, and a DO of <1 mg/L. 
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This research will develop mathematical models which evaluate the carbon cycle as it 

pertains to an A-stage HRAS system.  This research will develop a carbon removal model 

using ASM1 as the initial framework.   The framework will be modified adding the required 

removal mechanisms to accurately predict the performance of a HRAS system.     

1.2 Research Objectives 

1.2.1 Problem Statement 

Hampton Roads Sanitation District (HRSD) is implementing a pilot plant program to 

develop recommendations to improve the performance of seven wastewater treatment plants 

that discharge to the James River Basin, Virginia.  This effort is in response to the Total 

Maximum Daily Load (TMDL) limits imposed by  the U.S. Environmental Protection 

Agency (EPA) to restore clean water in the Chesapeake Bay and the region’s streams, creeks 

and rivers (December 2010). In response, the State of Virginia established a Watershed 

Improvement Plan (WIP) to comply with these limits.  Under the WIP, HRSD is required to 

do the following (Hingley, 2012): 

 Reduce total nitrogen discharged by 1.6 million pounds annually by 12/31/2016. 

 Reduce total nitrogen discharged by an additional 1 million pounds annually by 

12/31/2021. 

As part of the pilot program, HRSD is conducting pilot testing of several nitrogen 

removal processes including a novel deammonification process.  The study was initiated in 

March 2011, and the pilot testing work is ongoing.  HRSD has contracted with UCF to 

develop a mathematical model of the HRAS (A-stage, activated sludge system operated to 
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remove organic carbon from influent wastewater at low SRTs, typically less than 1 day and 

no measurable dissolved oxygen) pilot plant to accurately predict carbon and nitrogen 

removal.  The challenge is that HRSD is evaluating processes, e.g. HRAS, simultaneous 

nitrification/denitrification (SND), and mainstream deammonification, which could be 

considered non-conventional.  

1.2.2 Statement of Research Objectives  

This research will develop a modified ASM1 model to better describe the overall 

removal of organic substrate from the high rate activated sludge process. Organic substrate 

removal in the A-stage HRAS process can be primarily attributed to microbial storage of 

readily biodegradable soluble substrate and removal of colloidal and particulate substrate 

through the production of extracellular polymeric substances (EPS) and bioflocculation.  

Biomass is wasted before significant hydrolysis and mineralization can occur.  This modified 

model will incorporate those substrate removal mechanisms that best simulate the 

performance of the A-stage.  The modified model will be calibrated using the HRAS data 

collected byJimenez (2002); Jimenez et al. (2005) including EPS production at varying 

SRT’s and DO concentrations.  The HRSD pilot plant will evaluate the performance of the 

A/B process which, for this research, will include an initial “A-stage” high rate activated 

sludge process followed by either a “B-stage” Nitritation/Denitritation or a Mainstream 

Deammonification process without bioaugmentation from a sidestream process.   Model 

validation will be conducted using data from the existing HRSD A-stage pilot plant.  The 

research objectives are summarized below: 
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1. Develop a mathematical model that accurately predicts the removal of carbon 

substrate for HRAS, i.e. valid at low HRT and SRT’s from 2 days to washout.   

2. The model will simulate the removal of both particulate and colloidal material 

separately.  The mechanisms developed should simulate effluent quality and EPS 

production in accordance with existing data from Jimenez (2002), and Jimenez 

(personal communication). 

The HRAS (A-stage) system is operated to remove organic carbon from influent 

wastewater with as little oxidation as possible and yield a waste activated sludge (WAS) 

with high methane (CH4) production potential i.e. to reduce energy requirements.   

3. This research will evaluate, using experimental data from a typical HRAS pilot and 

A-stage HRAS pilot, the removal mechanisms which affect the removal efficiency of 

organic carbon from an A-stage system to determine which mechanisms should be 

included in the A-stage model. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 ASM Modelling 

The IWA task group on mathematical modeling for design and operation of biological 

wastewater treatment processes has introduced activated-sludge models ASM  No. 1, 2, 2D, 

and 3 (Henze et al., 2000).   ASM1 simulates the removal of organic matter (carbon) and 

nitrogen.  Carbon removal occurs through the biological oxidation of organic matter and 

assimilation via biosynthesis.  Nitrogen removal occurs through biological nitrification and 

denitrification, plus assimilation.  The ASM2 models (2, 2d) are an extension of ASM1 

incorporating biological nutrient (nitrogen and phosphorus) removal.  ASM3 was developed 

as a possible replacement for ASM1 with the significant difference being the importance of 

storage polymers in the heterotrophic conversion of organics in activated sludge systems 

(Krishna & Van Loosdrecht, 1999). 

The ASM1 and ASM3 models were developed to simulate the aerobic and anoxic 

treatment of domestic wastewater based on typical operating conditions, e.g. Solids Retention 

Time (SRT) greater than 3 days.  These models were not developed to model activated 

sludge systems with low SRTs (less than 1 day) where bioflocculation/adsorption of 

particulate and colloidal (slowly biodegradable) substrate and storage may become limiting 

(Henze et al., 2000).   

The ASM1 and ASM3 models implicitly assume that the removal of slowly 

biodegradable substrate (primarily particulate substrate and colloidal substrate) is from 

instantaneous enmeshment and hydrolysis of particulate and colloidal substrate followed by 
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oxidation of soluble biodegradable substrate. However, researchers have overlooked the 

effect of the kinetics of bioflocculation on the overall particulate and colloidal substrate 

removal process and have concentrated their attention on the kinetics of hydrolysis and 

oxidation when modeling carbon removal in activated-sludge systems. 

Jimenez et al. (2005, 2007) revealed that flocculation plays a major role in the 

removal of particulate and colloidal COD and many operational parameters such as solids 

retention time (SRT), dissolved oxygen (DO) and hydraulic retention times (HRT) can affect 

their removal in the activated sludge process. At low SRT (less than 2 days) and low HRT 

(less than 1 hour) some of the particulate and (especially) colloidal COD may not be 

removed since the kinetic rate of flocculation may not result in complete enmeshment and 

hydrolysis.  Hence, flocculation should be considered as an important mechanism when 

modeling activated sludge systems, especially high-rate activated sludge (HRAS) processes 

(i.e. systems with low SRT and HRT). 

Developing a mathematical model to simulate the behavior of activated sludge 

systems; integrates biological phenomena for carbon oxidation, nitrification and 

denitrification that results in multiple complex reactions (Henze et al., 2000).  These 

equations are mass balance equations developed for each component of interest in the 

reactor.  Each component is referred to as a state variable, e.g. SS is the state variable for 

soluble substrate.  The reactions involved are referred to as processes and may affect multiple 

state variables (Henze et al., 2000).  At a minimum, the deterministic models for activated 

sludge consist of the following elements (Henze et al., 2000): 

 A list of components (state  variables)  
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 The transformation processes involved including a stoichiometric matrix (vi,j) 

and process rate constants(ρj). 

 Wastewater treatment facility process schematic. 

 Internal transport and mixing, including settling, return and waste flow rates. 

The models implement a fundamental approach by first identifying specific processes 

involved in accomplishing a certain level of biochemical treatment, carbon and nitrogen 

removal in ASM1 to nutrient removal (N and P removal) in ASM2d.  Each process in the 

biokinetic matrix is defined by the specific stoichiometry of the reaction involved in the 

biochemical operation.  Typically these stoichiometric reactions are developed based on 

molar units; however, these units do not facilitate comparison of, through mass balances, the 

fate of the participating constituents.   Thus, evaluating the biochemical operations would be 

better accomplished by converting to mass based stoichiometry using COD for organics, and 

“as N” and “as P” units for nutrients (Grady et al., 2011).   

The ASM models use matrix notation for the presentation of biokinetic models.  This 

approach for heterotrophic growth in an aerobic environment is shown in Table 1.  Henze et 

al. (1999)  summarized the matrix approach, the components (state variables) which are to be 

considered in the model and the transformation processes are defined by the indices i and j 

respectively.  The stoichiometric coefficients are presented in the form of a matrix defined by 

vij.  The process rate constants form a vector pj.  The matrix is often referred to as the 

Peterson matrix (Peterson, 1965) and will be referred to as such throughout this research. 
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Table 1   Process kinetics and stoichiometry for aerobic growth of heterotrophs (Henze et al., 2000) 
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The stoichiometric matrix relates to a material balance in the vertical direction.  A 

material balance can be written for each component i (state variable) which may be affected 

by one or all of the processes j. The observed transfer rate is the sum of the transformation 

rates from each process (Gujer & Henze, 1991): The rate of production of each component 

(state variable) i, ri, can be computed by 𝒓𝒊 = ∑ 𝒗𝒋𝒊𝝆𝒋     for all processes j ( 1 ) 

  

 

For state variables shown in Table 1 the material balance equations are shown in Figure 1. 
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Figure 1: Non steady state material balance equations for each state variable in Table 1 

 

The material balance equations shown in Figure 1 are used as input to a numerical 

solver which generates either static (based on a snapshot of the system) or dynamic (time 

dependent variation) results. 

In the development of the ASM models substrate utilization and biomass growth have 

been coupled (Process 1, Table 1) such that the generalized equation can be written as 

Carbon source + energy source + electron acceptor + nutrients  biomass + CO2+ reduced acceptor 

+ end products.   ( 2 ) 
  

Figure 2 shows the stoichiometric development of Equation 2 starting with a  mole 

based equation (1) converted to a mass based equation (1  2)  then to a COD based 

equation (2  3 4) normalized to the carbon source and finally to a COD based equation 

normalized to biomass (4 5).  
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Figure 2: Stoichiometric development of Equation 2 

 

As part of the COD based transformation (Figure 2(Equation 2)), since HCO3
-, CO2, 

and H2O do not change their oxidation state these constituents drop out of the equation.  This 

is also the case with NH4
+, there is no change in the oxidation state of N (-III) in ammonia 

and biomass N (-III).  The biomass (XOHO) coefficient is considered the true yield (YH).  The 

stoichiometric coefficient for oxygen (SO) is negative, indicating that oxygen is consumed in 

the reaction (Grady et al., 2011). 

Continuity is maintained by applying conservation equations based on the principal 

that in chemical reactions, elements, electrons, and COD are neither created nor destroyed 

(i.e. for the mass based and COD based stoichiometric coefficients, Σ products = Σ reactants) 

.   
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The stoichiometric coefficients in Figure 2 (Equation 5) are the same as those in Table 1 for 

Process 1.  The process rate equations rely on a hyperbolic inhibition (switching) function 

(KO/(KO + SO) to determine when a particular process would become active based on specific 

environmental conditions.  Aerobic growth, defined by process 1 in Table 1 has a kinetic rate 

affected by the concentration of readily biodegradable substrate and DO (SS, SO respectively) 

according to the Monod expressions (SS/(KS + SS)) and (SO)(SO/(KO + SO)),  where KS and KO 

are the half-rate saturation coefficients. The half-rate saturation coefficient determines how 

rapidly μ (biomass specific growth rate d-1) approaches �̂� (maximum specific growth rate d-1) 

and is defined as the concentration at which μ is equal to half of �̂�, as shown in Figure 3.  

 

 

 

Figure 3: Typical plot of the relationship between the specific growth rate coefficient and the 

concentration of a non-inhibitory substrate (Grady et al., 2011) 
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2.2 High Rate System for Carbon Removal 

The need to develop a treatment technology that reduced energy consumption in 

treating influent wastewater, along with the need for nutrient removal, led to the development 

of the high rate activated sludge (HRAS) process.  A typical HRAS process can be defined 

by an SRT of 1-3 days, an HRT of 1.5 to 3 hours, and a DO of 2 mg/L.   

The Adsorption/Bio-oxidation process or A/B process, is an HRAS process which can 

be categorized as a two-stage, dual activated sludge process.  The first stage (A-stage, high 

F:M ratio)  is design to reduce the influent total COD upstream of the B-stage (bio-oxidation) 

for nitrification and denitrification (Boehnke et al., 1997).  The A-stage is a HRAS process 

which can be defined by an SRT of 4-12 hours, an HRT of 30 minutes, and a DO of <1 

mg/L. 

Boehnke et al. (1997) suggested that experiments using municipal wastewater showed 

a 40 percent removal of the influent organic load within the first minute and 70 percent 

removal within 10 minutes.  This removal is attributed to physical/chemical causes as 

opposed to biological removal mechanisms, suggesting that adsorption, flocculation and 

coagulation play a significant role.  This observation was true for both high and low F:M 

ratios.   

Boehnke et al. (1997)  also determined that a critical operating aspect of the A-stage 

is that it builds on the microbial population that exists in the sewer system.  This is 

significant in modeling this type of system since the influent active biomass concentration is 

a key parameter in accurately predicting the performance on the A-stage. In addition, 

although anaerobic conditions need to be avoided, the oxygen content in the A-stage reactor 
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is non-measurable.  The lower SRT in the A-stage promotes the growth of bacteria in the 

reactor which have the highest metabolism per unit weight, and as a result, are more efficient 

at reducing soluble organic substrate.   The A-stage has also been shown to modify hard to 

decompose (refractory) organics, passing more easily biodegradable organics to the B-stage, 

which significantly reduces the treatment burden on the downstream B-stage, especially if 

denitrification is required.     

The soluble organic substrate (COD) removal efficiency of the A-stage is a critical 

design parameter in achieving the target nitrogen removal efficiency in the B-stage.  The 

theoretical BOD:N ratio required for denitrification is >3.0 (COD:N >4.8). Higher ratios 

would improve the stability of the denitrification process.  To accommodate B-stage nitrogen 

removal the COD removal efficiency in the A-stage should be low, however, higher COD 

removal  are preferred due to the low cost per gram of COD removed.  The target COD 

removal efficiency for the A-stage would be determined based on treatment objectives 

established in order to comply with regulatory requirements. 

The objective of a HRAS is to remove organic carbon from influent wastewater at 

low SRTs, typically less than 1 day.  In the A-stage, the primary removal mechanisms for 

removal of colloidal and readily biodegradable COD include biomass synthesis, adsorption, 

and storage.    In addition, energy production and the production of extracellular polymeric 

substances (EPS) can be significant (Laspidou & Rittmann, 2002a; Ni, Zeng, et al., 2009).  

EPS aids in the adsorption mechanism.  Formation of storage products (Beun et al., 2002; 

Krishna & Van Loosdrecht, 1999; Ni & Yu, 2008; Third et al., 2003) occurs under high 

food/microorganism (F/M) ratios and low DO environments.   
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2.2.1 Wastewater Characterization 

Typical characteristics for any municipal wastewater include both soluble and 

particulate organics.  Total chemical oxygen demand (TCOD) can be defined as the sum of 

particulate COD (pCOD) and soluble COD (sCOD) present in the wastewater.  Jimenez et al. 

(2005) stated that the pCOD consists of organic suspended solids (ssCOD) and organic 

colloids (cCOD) in the wastewater (pCOD = ssCOD + cCOD).    The ssCOD is quantified 

with a 934AH glass fiber filter.  Soluble COD was quantified by floc filtered COD 

(ffCOD,(Mamais et al., 1993)).  Colloidal COD was the difference between ssCOD filtrate 

(TCOD – ssCOD) and ffCOD filtrate. 

Figure 4 shows the COD breakdown of Jimenez (2002) adopted for this study.  The 

most important aspect is the differentiation of particulate and colloidal COD, which have not 

traditionally been considered separately in most studies or in the ASM derived models.  The 

reason for this is that in higher HRT and SRT systems there is plenty of time for both 

colloidal and particulate COD to flocculate completely and to be degraded (Jimenez, 2002).   

However in low HRT/SRT systems (HRAS) there is not always time for this to occur.  This 

also means that effluent CODs in HRAS systems are higher than would be expected in higher 

HRT and SRT systems (Miller et al., 2013) . 
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Figure 4: COD Fractionation for particulate (pCOD), colloidal (cCOD) and soluble (readily 

biodegradable) COD (ffCOD) adopted for this work (Jimenez, 2002) 

 

2.2.2 Extracellular Polymer Substances (EPS) 

EPS is considered the prerequisite for the existence of all microbial aggregates 

(Flemming & Wingender, 2001).   It is the construction material responsible for the cell to 

cell adhesion or bacterial aggregation (Ehlers & Turner, 2011; Higgins & Novak, 1997; 

Jorand et al., 1995).  The composition of EPS has been studied extensively and is believed to 

consist primarily of polysaccharides and proteins (Flemming & Wingender, 2001; Park & 

Novak, 2007).  Earlier studies suggest that polysaccharides were the most abundant and 

important constituent, however, more recent studies have shown that protein may be the most 

abundant constituent by ratio, i.e., protein/polysaccharide ratio in the range of 2 to 5 (Higgins 

& Novak, 1997; Jorand et al., 1995; Park & Novak, 2007).  Higgins and Novak (1997) 

studied the role of protein in bioflocculation and found that since cation concentration mainly 

affects the bound protein and not the bound polysaccharide, that the protein not only plays an 

important role in bioflocculation of activated sludge, but it may in fact be dominant.  The role 

of cations is significant in the development of a stabilized biopolymer network.  Higgins and 

Novak (1997) found that divalent cations bind exocellular protein within the biological floc 
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resulting in a stable biopolymer network with good settling and dewatering characteristics.  

High concentrations of monovalent cations displaced the divalent cations from within the 

floc reducing the bound protein content which deteriorated the settling characteristics of the 

sludge. 

2.2.2.1 Modelling EPS 

 Laspidou and Rittmann (2002b) stated that EPS is microbially produced organic 

material that contains both electrons and carbon, but are not active cells.  This is significant 

since the diversion of electrons and carbon away from biosynthesis to EPS formation affects 

both the cell yield and growth rate.  The traditional view of activated sludge systems is that 

the substrate electrons are shunted along two pathways either to the electron acceptor to 

create energy  or to biomass synthesis (Rittmann & McCarty, 2001).  When a significant 

portion of the electrons are shunted to EPS production, less is available for biomass synthesis 

and biomass yield and specific growth rate decreases.  Laspidou and Rittmann (2002a) 

developed a unified theory, which attempts to quantify the relationships among extracellular 

polymeric substances (EPS), soluble microbial products (SMP), original substrate, and an 

electron acceptor.   In this theory, the rate of EPS formation is proportional to the substrate 

utilization rate.   

2.2.2.2 Operational Factors Affecting EPS Production 

Extracellular Polymer Substances (EPS) production impacts the bioflocculation 

removal efficiency for particulate and colloidal substrate.  Past models assume instantaneous 

enmeshment where recent research data shows that this assumption may not be valid for high 
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rate systems. For this research  EPS production calibration data, collected by  (Jimenez, 

2002, 2013),  unpublished),  indicates EPS is a function of growth ( as volatile suspended 

solids VSS),  hydrolysis rate of XB (slowly biodegradable substrate), DO concentration in the 

reactor and EPS hydrolysis rate.  The data shows that EPS production increases with an 

increase in both SRT (0.3 to 2 days) and DO (.01 to 2 mg/L at an SRT of 1.5 days). 

 Ehlers and Turner (2011) evaluated the impact of EPS on bioflocculation in HRAS 

(HRT = 1.1 d, SRT from 0.7 to 1.4 d) systems using domestic wastewater and found an 

inverse relationship between the F:M ratio and EPS production rate.  The results suggested 

that as the F:M ratio increased the EPS production rate decreased.  In addition, in a 

continuous feed reactor during low COD influent feed, an efficient aggregating population 

was not formed which may be due to limiting nutrients and competing microorganisms 

resulting in washout.  Ni, Zeng, et al. (2009) compared the EPS formation coefficient values 

reported in the literature and found that the when using acetate as the electron donor the kEPS 

values ranged from 0.18 to 0.23 (gCODEPS/g CODAc).  The true biomass yield (YOHO) ranged 

from 0.49-.61 on acetate.  These values are based on a sludge age >> 3d. 

2.2.3 Storage Polymers 

2.2.3.1 PHB Formation on Acetic Acid  

In the presence of external substrate, organisms may use the substrate for growth or 

form storage products (Van Loosdrecht & Heijnen, 2002).  Van Aalst-Van Leeuwen et al. 

(1997) developed a metabolic model for PHB production and consumption in bacterial cells 
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in a pure culture subject to feast/famine conditions.  The stoichiometry is described by seven 

internal reactions (Figure 5). 

 

Figure 5: Stoichiometry of PHB formation (Van Aalst-Van Leeuwen et al., 1997) 

 

Poly-β-hydroxybutyrate (PHB) was the dominant storage polymer under excess 

acetate conditions (Smolders et al., 1995; Van Aalst-Van Leeuwen et al., 1997).  Under 

conditions of carbon surplus the rate of substrate uptake will be larger than that needed for 

growth.  The formation of NAPH2 results from the uptake of substrate which is consumed by 

oxidative phosphorylation resulting in the formation of adenosine triphosphate (ATP) and 

NAD+.  Should the consumption of ATP be limited then ATP will accumulate resulting in 

subsequent accumulation of NAD+.  As a result, the production of PHB is highly likely since 

PHB formation requires NADH2.  A key premise of the metabolic model states that the 

composition of the biomass consists of two compartments (Roels, 1983; Van Aalst-Van 

Leeuwen et al., 1997) an active biomass compartment and a PHB compartment.  The active 

biomass is capable of reproduction and growth, and the PHB compartment for storage of 

carbon and energy.  The fraction of PHB in the biomass is represented by fPHB.  The fraction 

of active biomass in the total biomass is than 1-fPHB.  Van Aalst-Van Leeuwen et al. (1997) 
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developed a kinetic model for PHB production where there is a linear relationship (Equation 

3) between the steady state growth rate (dilution rate) and the maximum fraction of PHB 

stored in the cell (fPHB,Max).   𝒇𝑷𝑯𝑩𝒎𝒂𝒙 = 𝟎. 𝟑𝟖 − 𝟎. 𝟕𝟖𝝁 ( 3 ) 

 

Based on this relationship, no PHB accumulation occurs as the dilution rate approaches the 

maximum growth rate.  Should the specific growth rate reach zero, the maximum obtainable 

PHB content (fPHB,Max) becomes 0.39 (C mol/C mol).  

As an alternative to the metabolic model, Ni 2007 developed a growth/storage based 

model using a modified ASM3 framework.  ASM3 is a growth based model expanded to 

include the storage phenomena.  Studies have shown that the ASM3 model developed 

inconsistencies when used to interpret data from short-term respirometric batch experiments 

(Krishna & Van Loosdrecht, 1999; Ni & Yu, 2008).  ASM3 assumes that all the soluble 

substrate is first converted to storage products before it is used for growth.  Krishna and Van 

Loosdrecht (1999) determined that using a simplified version of ASM3 (only aerobic 

heterotrophic conversions and acetate as the sole substrate) was inconsistent under two 

conditions; one being the inconsistencies in the biomass growth rate observed experimentally 

during feast and famine conditions, and second the elevated levels of internal storage 

polymers predicted (SRT of 2.5 days and an HRT of 8h) which were inconsistent with the 

measures oxygen consumption (Ni & Yu, 2008).  Ni and Yu (2008) developed a modified 

ASM3 model incorporating a simultaneous substrate, storage, and growth concept along with 

consideration for microbial maintenance processes and oxygen transfer.  Processes were 

included for hydrolysis of slowly biodegradable substrate, growth on readily biodegradable 



20 
 

substrate, formation of storage products, growth on storage products, maintenance on readily 

biodegradable substrate, maintenance on storage products, and biomass decay and oxygen 

transfer.  Growth on either external substrate (Ss) or internal substrate (XSTO) is managed 

using a substrate switching function controlled by the substrate half saturation coefficient Ks.  

Growth stops when all the external and internal substrate are consumed.  Kinetic parameters 

were added to describe maximum growth rate on storage products, production rate of storage 

products and maintenance rate. Results showed that these parameters along with the substrate 

affinity constant were vital to the models ability to effectively predict the simultaneous 

heterotrophic growth and storage in an activated sludge system under aerobic conditions. 

Review of the literature suggests that systems operated at low DO concentrations 

(<0.9 mg/L; according to Third et al., 2003), typical of an A-stage system, result in the 

microbial uptake of readily biodegradable soluble COD and could result in the formation of 

storage polymers.  Third et al. (2003) showed that during the fill phase of an SBR, using a 

synthetic wastewater with acetate as the organic carbon substrate and at low DO (< 0.01 

mg.L-1), 20% of the substrate goes to oxidation, 5% goes to  assimilation, and 75% to PHB 

production .  At higher DO (> 0.9 mg.L-1), 20% of the substrate goes to oxidation, 20% goes 

to assimilation, and 60% to PHB production. 

2.2.3.2 PHB Formation on Domestic Wastewater 

 As discussed in the previous section, there is an abundance of research supporting 

aerobic storage product production under dynamic conditions in a laboratory plant, using 

synthetic substrate and pure cultures.  There is also significant research studying storage 

product formation using real sludge and real wastewater.  Carucci et al. (2001)  evaluated the 



21 
 

formation of storage products when real sludge is mixed with real wastewater.  Respirometric 

batch tests were run using pure acetate, flocculated and filtered wastewater, and influent 

unsettled wastewater using a F/M ratio of 0.05 – 0.3 gCOD/gVSS to separate the high-OUR 

rbCOD from the low-OUR sbCOD.  The experimental results show a significant production 

of PHB when using only acetic acid as the carbon source (0.55 gCODPHB/gCODAC).  When 

using raw (domestic) wastewater PHB production increased (0.74 vs 0.55 gCOD/gCOD).  

Confirming that PHB is stored from other substrates, however, acetate is still the major 

contributor.  This study only identified PHB analytically, but in order to explain the OURs 

generated either other storage products are being formed or other removal mechanism (non-

storage) must be active. 

2.3 Stoichiometry 

Chemical stoichiometric equations have been used ((McCarty, 1975; Sherrard & 

Schroeder, 1976) to describe the activated sludge bio-oxidation process.  This approach has 

proven effective in understanding how these treatment processes function.  Typical equations 

written to describe aerobic processes are written qualitatively as follows (Sherrard & 

Schroeder, 1976): 

Bacteria + Organics + Nutrients + Oxygen  New Bacteria + CO2 + H2O + Residual 

organics and Inorganics 

This equation could be represented by a chemical stoichiometric equation for an 

aerobic system using domestic wastewater as the organic substrate as follows: 𝐚𝐚[𝐂𝐍𝐂𝐒𝐇𝐦∗𝐍𝐂𝐒𝐎𝐧∗𝐍𝐂𝐒𝐍𝐩∗𝐍𝐂𝐒 + 𝐚𝐎𝟐 + 𝐛𝐍𝐇𝟑 → 𝐜𝐂𝐍𝐂𝐁𝐇𝐪∗𝐍𝐂𝐁𝐎𝐫∗𝐍𝐂𝐁𝐍𝐬∗𝐍𝐂𝐁 + +𝐝𝐇𝟐𝐎 + 𝐞𝐂𝐎𝟐] ( 4 ) 
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Equation 4 represents a typical activated sludge system operating at an SRT > 3 d where the 

available electrons are shunted primarily to biomass growth (fs) or energy (fe).  McCarty 

(1975)  was able to demonstrate that for suspended growth systems, the fraction of electrons 

going to mineralization (energy, fe ) increases as the sludge age (SRT) increases.  Using the 

half reaction approach, McCarty (1975) showed that, using domestic wastewater as the 

electron donor and oxygen as the electron acceptor, the production of CO2 would decrease 

and the consumption of O2 would also decrease as electrons are shunted away from energy 

production towards synthesis of new biomass.    

2.4 Mainstream Nitrogen Removal 

The conventional approach to Nitrogen removal includes two primary mechanisms, 

Nitrification and Denitrification as shown in Figure 6.   The nitrification pathway is a two-

step oxidation of ammonia (NH3/NH4
+).  The first step oxidizes ammonia to nitrite (NO2

-) by 

Ammonia Oxidizing Bacteria (AOB) (Nitritation), the second step oxidizes nitrite to nitrate 

(NO3
-) by Nitrite Oxidizing Bacteria (NOB) (Nitratation).   
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Figure 6: Conventional Nitrogen Removal  

 

The first step (Nitritation) consumes 75 percent of the oxygen (energy) and 

approximately 100 percent of the alkalinity required for the two step process.  The remaining 

25 percent of the overall energy requirement is consumed in the second step (Nitratation).  

The oxidation of ammonia is carried out in an aerobic environment by autotrophic bacteria.  

The denitrification pathway again, is the two step reduction of nitrate to nitrogen gas in an 

anoxic environment (negligible dissolved oxygen) by ordinary heterotrophic bacteria (OHO).  

In the first step (denitratation) the OHOs oxidize organic substrate (COD) using NO3
- as the 

electron acceptor which is reduced to NO2
-.  This consumes approximately 40 percent of the 

total organic substrate needed to complete the denitrification process.  In the second step 

(denitritation) NO2- is converted to nitrogen gas consuming the remaining 60 percent of the 

total organic substrate needed for the reaction.  The process described above 
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(nitrification/denitrification) would be considered the conventional approach to removing 

nitrogen from wastewater.   The industry has introduced alternative approaches to nitrogen 

removal several of which are being evaluated by HRSD including Nitritation/Denitritation 

and Mainstream Deammonification. 

2.4.1 Nitritation/Denitritation 

This approach is a modification of the conventional process where the NO2
- resulting 

from the first step in the nitrification pathway is shunted to the second step of the 

denitrification pathway, in other words the second step of nitrification (Nitratation) and the 

first step of denitrification (Denitratation) are eliminated.  The elimination of these two steps 

is referred to as “Nitrite Shunt”.  To achieve this, the goal is to eliminate NOB from the 

reactor while selecting for AOB (Regmi et al., 2012). This process is illustrated in Figure 7. 

 

Figure 7: Nitrite Shunt 
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This is the Nitrite Shunt process where the first step is referred to as the nitritation 

step and the second is denitritation.  The SHARON process has been used successfully to 

treat ammonium rich sidestream flows i.e. reject water from a digester dewatering process 

(Hellinga et al., 1998).  The sidestream flows also have elevated temperatures (30 oC) which 

the SHARON process takes advantage of, operating at high specific growth rates with 

minimal or no sludge retention required.  When compared to a mainstream system elevated 

temperature provides a second advantage in that, at normal temperatures (i.e. as in a 

wastewater treatment plant 5 to 20oC) the nitrite oxidizing bacteria grow faster than the 

ammonium oxidizers.  The result is that ammonium is completely oxidized to nitrate.  The 

reverse is true at the elevated temperatures.  This introduces one of the key challenges of 

implementing mainstream “nitrite shunt”, NOB suppression since the main wastewater 

stream rarely has elevated temperatures.   The advantages of the sidestream (SHARON) 

approach include (Jubany et al., 2009); 

 A 25% reduction in oxygen demand (energy) 

 A 40% reduction in supplemental carbon (electron donor) demand) 

 A  reduction in biomass production 

These advantages can result in lower capital investment as the result of a decrease in 

required mainstream reactor volumes, and a savings in annual operational costs.  However, 

these advantages most likely would not be realized in a mainstream application, primarily 

due to the fact that COD and Nitrogen removal are still coupled together. In a mainstream 

application there are several operational challenges, the most critical being able to attain 

nitritation through NOB suppression.  One approach to attain NOB suppression is DO control 
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(Jubany et al., 2009).  Research has shown that NOB have a lower affinity for oxygen than 

the AOB (Guisasola et al., 2005; Jubany et al., 2009).   As a result, NOB suppression and 

nitrite accumulation are favored at low DO concentration (Garrido et al., 1997; Jubany et al., 

2009; Pollice et al., 2002; Ruiz et al., 2003)  .  Regmi et al. (2012) induced NOB suppression 

using ammonia based DO control.  The aeration in the activated sludge reactor is controlled 

based on the reactor ammonia concentration.  A solenoid valve regulates the reactor HDO 

(high DO) and LDO (low DO) set points.  The objective is to control the growth rate of 

NOBs by reducing the concentration of the electron acceptor (DO) available.  The 

denitritation pathway converts the NO2
- to nitrogen gas using organic substrate as the carbon 

source.  The challenge is to operate the A-stage process to reduce the carbon passed to the B-

stage to a level that favors the growth of autotrophic biomass, but still having enough 

organics to drive the denitritation process by heterotrophic biomass. This would avoid having 

to provide an exogenous carbon source, e.g. methanol or acetate, to drive denitritation.  

2.4.2 Deammonification 

Deammonification is a two-step process with partial nitritation as the first step 

followed by an anaerobic reactor with anammox biomass. Anaerobic ammonium oxidation 

(anammox) is the biological conversion (Figure 8) of ammonium and nitrite to dinitrogen gas 

(Strous et al., 1999).  Anammox bacteria are obligate anaerobes that convert ammonia and 

nitrite to dinitrogen gas and biomass according to the following overall Equation 5 (Strous et 

al., 1998) 𝟏𝑵𝑯𝟒+ + 𝟏. 𝟑𝟐𝑵𝑶𝟐− + 𝟎. 𝟎𝟔𝟔𝑯𝑪𝑶𝟑− + 𝟎. 𝟏𝟑𝑯+→  𝟏. 𝟎𝟐𝑵𝟐 + 𝟎. 𝟐𝟔𝑵𝑶𝟑− + 𝟎. 𝟎𝟔𝟔𝑪𝑯𝟐𝑶𝟎.𝟓𝑵𝟎.𝟏𝟓 + 𝟐. 𝟎𝟑𝑯𝟐𝑶 (5) 
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The nitritation reactor is operated to produce an effluent with equal amounts of 

ammonia and nitrite which is required for the downstream anammox process. Ammonia – 

oxidizing bacteria (AOB) aerobically convert about half the ammonia to nitrite and the 

anammox bacteria anaerobically oxidize the remaining ammonia using nitrite to nitrogen gas 

(Wett et al., 2013).  This process has been used successfully to treat ammonia rich waste 

streams such as dewatering sidestreams from anaerobically digested sludge (Wett, 2007; 

Wett et al., 2013)  

 In mainstream processes this is accomplished using transient anoxia where the 

aeration is cycled ON/OFF to control the growth of NOB and create an environment that 

favors the growth of AOBs.  (Regmi et al., 2012).  Regmi et al. (2014) developed a nitritation 

DO control strategy to produce equal amounts of ammonia-N and nitrite-N based by 

comparing the NH3-N concentration to the NOx-N (NO2
--N+NO3

--N) concentration.  If NH3-

N is greater than NOx-N, aeration is increased, if it is less than aeration is decreased.  

 

Figure 8: Nitritation/Anammox process 
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The  mainstream deammonification process does have several operational challenges 

(Bott, 2012) 

 The Anammox bacteria are sensitive to temperature, they preferred temperatures > 

30oC.  Typically domestic wastewaters average 20oC which results in a slow growth 

rate, e.g. 10 day doubling time, requiring long SRTs (30 – 50 days).  

Deammonification has been successfully used for sidestream treatment of recycle 

streams (typically centrate from anaerobic digesters) which is warm and nitrogen rich 

(low C/N ratio). 

 Sensitive to nitrite concentration (NH4
+:NO2

- ratio 1:1.3), causes irreversible loss of 

activity and the toxicity is a function of concentration and exposure time. 

 Sensitive to DO, however, this inhibition is reversible. 

 Sensitive to free ammonia concentrations > 10 mg/l. 

2.4.3 Importance of C:N Ratio for B-stage nitrite shunt and/or anammox 

 Daigger et al. (2011) performed a desktop analysis of several biological nitrogen 

removal processes including nitrification, nitritation, and anammox using standard biological 

process calculations.  It is well documented that there are oxygen and carbon savings 

associated with the treatment of ammonia-rich sidestreams using either nitritation 

(SHARON® process) or anammox (DEMON® process).  Daigger et al. (2011) evaluated the 

application of these process to estimate the minimum carbon: nitrogen ratio (C:N) needed for 

total nitrogen removal and the associated oxygen requirements as follows: 

 -Nitrification/denitrification (mgCOD·mg N -1) = 3.5-4.0 
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 Nitritation/denitritation (mgCOD·mg N -1) = 2.0-2.5 

 Partial nitritation/denitritation (mgCOD·mg N -1) = 0.5 

The net oxygen requirement for each removal process is the same (1.71 mg O2·mg N 

converted to N2).  Daigger et al. (2011) demonstrated that when using nitritation and partial 

nitritation, with the associated mainstream nitrogen removal process, significantly reduced 

the influent wastewater C:N ratio required for nitrogen removal.  In addition, for each 

mainstream nitrogen removal process the oxygen requirement is the same provided that 

enough organic material is available to convert the oxidized nitrogen to nitrogen gas. 

 Lemaire et al. (2008) adjusted the influent readily biodegradable COD (rbCOD) 

concentration feeding a single lab scale SBR providing biological nutrient removal.  They 

found that by reducing the influent rbCOD concentration; the NOx
- (nitrite + nitrate) started 

to accumulate in the effluent apparently caused by incomplete denitrification due to lack of 

COD supply.   They found that the COD:N ratio required for conventional nitrification 

(active nitrate pathway) was approximately 9:1, whereas, when the system was operating via 

the nitrite shunt pathway the COD:N ratio was around 7:1.  The relatively high COD:N ratio 

(7:1) reported by  Lemaire et al. (2008)  may be due to the specificity of the wastewater 

treated (i.e., high levels of slowly biodegradable particulate COD and non-biodegradable 

COD).   

The significance of the colloidal fraction of COD on the downstream B-stage using 

nitrite shunt cannot be ignored when modeling HRAS systems. The removal efficiency of the 

colloidal fraction of COD (CB) is a function of the active biomass and EPS concentrations in 

the reactor; both of which are a function of the SRT (Jimenez, 2002).  Longer SRTs (≥ 0.5 
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days) result in an increase in active biomass and EPS concentrations in the reactor, resulting 

in an increase in CB removal efficiency.  Regmi et al. (2014)  hypothesized that the type and 

quantity of COD is important in inducing and maintaining NOB suppression and AOB 

activity.  A rise in the soluble COD fraction in the HRAS effluent would result in a larger 

portion of the influent COD being rapidly removed in the downstream B-stage reactor, 

making less COD available for denitritation.  The ideal effluent from the HRAS (A-stage) 

system would consist primarily of colloidal COD.    

Depending on how the HRAS process is operated the removal efficiency of the 

colloidal fraction of COD can have a significant impact on the TCOD in the reactor effluent, 

which impacts the colloidal COD fraction and the COD:N ratio received downstream.   

2.5 Diauxic Growth 

The preferential use of some substrates over others present in a mixture describes the 

diauxic behavior of many bacteria.  “The diauxie refers to the phenomenon in which a batch 

culture of bacteria growing on a mixture of two substrates preferentially utilizes only one of 

the substrates”.  This phenomenon is illustrated in Figure 9.    

 

Figure 9: Diauxic growth of Escherichia coli on a mixture of glucose and lactose (Clark, 2012). 
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Such a substrate utilization pattern results in the appearance of two successive 

exponential growth phases, with each growth phase corresponding to the consumption of 

only one of the two substrates (Narang et al., 1997).  
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CHAPTER 3  

 MATERIALS AND METHODS 

3.1 Data for Model Calibration and Validation 

3.1.1 Pilot Scale Data Used for Model Calibration 

The New Orleans (NO) is a HRAS pilot plant comprised of the following 

components: a rotating screen, an inlet mechanism (30 gal mixing tank), an aeration tank (40 

gal), a mechanical flocculator and a secondary clarifier (70 gal) (Figure 10).  The unit was 

designed for a flow rate of 7.5 m3/d (2000gal/d) and a hydraulic retention time in the aeration 

tank of 30 minutes.  The SRT ranged from 0.3 days to 2.0 days 

 

Influent
Effluent

Rotating 

Screen

Aeration tank Mechanical 

Flocculator

Secondary 

Clarifier

RAS

Inlet

Mechanism

 

Figure 10:  University of New Orleans pilot plant configuration 

 

The sampling plan for the NO pilot plant involved collecting grab samples several 

times per week.  The sampling points included the effluent from the rotary screen (plant 

influent), the supernatant and MLSS from the aeration tank, the return activated sludge and 

secondary effluent.  Samples were analysed for total COD, soluble COD (i.e. ffCOD is truly 

soluble COD) using a 0.45 micron Hach No. 300 glass qualitative filter paper, floc filtered 

COD using flocculated samples filtered using  a 0.45 micron Hach No. 300 glass qualitative 

filter paper, and total and volatile suspended solids (Jimenez, 2002).  EPS was extracted by 
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using the extraction method developed by Frolund et al. (1995) and is summarized as 

follows: 

 Transfer 300 ml of sludge to an extraction beaker with baffles and the cation 

exchange resin (CER) was added (70g CER/g VSS).  

 Stir suspension for 3 hours at 1000 rpm.  

 The extracted EPS were harvested by centrifugation of a sample of the CER-sludge 

suspension for 1 minute at 12,000g to remove the CER.  

 The supernatant was centrifuged twice for 15 minutes at 12,000g in order to remove 

remaining floc components.  

 Quantify EPS by measuring the total organic carbon content of the sample by using 

an Apollo 9000HS-TOC analyzer (Tekmar-Dohrmann, Mason, Ohio). 

 EPS was extracted at least three times per SRT. Triplicate values were averaged. 

 

The data collected by Jimenez et al. (2013), at varying SRTs and dissolved oxygen 

(DO) concentrations, are based on the pilot plant operating parameters summarized in Table 

2.  The SRT and DO concentration were varied in order to evaluate the effect on the 

production of EPS and the subsequent effect in the removal efficacy of particulate and 

colloidal organics.  A qualitative dataset was generated establishing the relationship between 

SRT, EPS production, and particulate COD removal and DO concentration, EPS production 

and particulate COD removal. 
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Table 2 Typical HRAS model calibration, process operating parameters used to generate model output to 

compare to data in Figure 11. 

SRT Influent Flow 

(m3/d) 

WAS Flow 

(m3/d) 

Reactor Volume 

(m3) 

RAS Flow 

(m3/d) 

Reactor DO 

(mg/l) 

0.3 5 0.2 0.15 3.75 1.5 

0.5 7.5 0.15 0.22 3.75 2.0 

1.0 3.75 0.11 0.22 3.75 1.25 

1.5 3.75 0.12 0.35 3.75 1.5 

2.0 3.75 0.09 0.35 3.75 1.5 

SRT – Solids Retention Time, DO – Dissolved Oxygen concentration in the reactor 

 

The feed source for the pilot was raw influent from the local municipal treatment facility.  

The average influent constituent concentrations are summarized in Table 3. 

 

Table 3 A-stage model influent wastewater constituent concentrations 

Symbol Description Value Units 

SI Soluble undegradable organics 10 g COD.m-3 

SBf Soluble biodegradable organics 60 g COD.m-3 

SBs Slowly biodegradable organics 30 g COD.m-3 

CB Colloidal biodegradable organics 60 g COD.m-3 

XU Particulate undegradable organics from the influent 30 g COD.m-3 

XB Particulate biodegradable organics 150 g COD.m-3 

XOHO,ACT Active Ordinary heterotrophic organisms 10 g COD.m-3 

XE Particulate undegradable endogenous products 0 g COD.m-3 

SNOx Nitrate and nitrite (NO3 + NO2) 0 g N.m-3 

SNHx Ammonia (NH4 + NH3) 35 g N.m-3 

SNB Soluble biodegradable organic N 5 g N.m-3 

XNB Particulate biodegradable organic N 10 g N.m-3 

SALK Alkalinity 6 meq/L 

XINORG Inorganic suspended solids 40 g TSS.m-3 

XEPS Extracellular Polymer Substances 1 g COD.m-3 

XSTO Storage Polymer Substances 1 g COD.m-3 

pH pH 7 - 

 



35 
 

Figure 11 shows data used to calibrate the HRAS model for rbCOD removal, EPS 

production and colloidal removal which was collected by (Jimenez, 2002). This data includes 

EPS production as a function of SRT (Figure 11a), the effect of DO concentration on EPS 

production (Figure 11b), the effect of SRT on the removal efficiency of readily 

biodegradable and colloidal COD (Figure 11c), and impact of DO on the removal efficiency 

of readily biodegradable and colloidal COD (Figure 11d).   

 

Figure 11: HRAS model Calibration data (Jimenez, 2002) 
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3.1.2 Hampton Roads Sanitation District (HRSD) Pilot Data (used for A-stage Model 

Validation and Stoichiometric Analysis) 

HRSD owns and operates an A/B (adsorption/bio-oxidation) pilot plant located at the 

Chesapeake-Elizabeth treatment plant in Virginia Beach, Virginia. The pilot plant consists of 

an A-stage reactor for carbon removal followed by a B-stage for nitrogen removal. Currently, 

the A-stage includes three reactors (45 gal per reactor), operated at a 0.2 day SRT and a 

combined 0.5 hour HRT, and is fed screened and degritted raw municipal wastewater at 4.5 

gpm (24.53 m3/d) (Figure 12). 

 
Figure 12: Process flow diagram of the HRSD A-stage process pilot plant  

 

Operational data from the A-stage pilot plant was used to validate (not calibrate) the 

new carbon A-stage removal model and the stoichiometric analysis. 

The 24 MGD Chesapeake-Elizabeth Treatment Plant (CETP) in Norfolk Virginia provides an 

important opportunity for the potential application of the mainstream deammonification 

process. CETP does not currently perform nitrogen removal, but Hampton Roads Sanitation 
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District (HRSD) anticipates a future treatment objective of 4–5 mg/L Total Nitrogen (TN).   

HRSD is currently operating a pilot study at CETP (Figure 12) to evaluate mainstream 

deammonification. 

The A-stage or adsorption stage utilizes an SRT and HRT lower than most high rate 

activated sludge (HRAS) processes. The idea is to remove COD without oxidizing it by 

adsorption and assimilation.  However the bioflocculation of particulate (pCOD) and 

colloidal COD (cCOD) may only be partial at these low SRTs and HRTs.   

3.1.3 Sample Collection and Monitoring  

Treatment efficiency of both the A-stage and  B-stage were monitored by collecting 

24-hr flow-weighted composite samples from the influent and effluent of each stage and 

analyzing it for TSS, total volatile suspended solids (TVSS), COD, sCOD, floc-filtered COD, 

total Kjeldahl nitrogen (TKN), soluble TKN, total phosphorus (TP) soluble orthophosphorus 

(SOP), and alkalinity. Grab samples are also routinely collected from the influent and 

effluent of each stage and from all activated sludge reactors. The grab samples were analyzed 

for TSS and the soluble species such as NO3
--N, NO2

--N, PO4
3--P (same as SOP), and total 

ammonia nitrogen (NH3-N + NH4
+-N = TAN). The sum of nitrate and nitrite was given the 

term NOX-N or oxidized nitrogen species (Miller et al., 2012). 

Table 4 shows the sampling plan used to collect the data from the HRSD pilot.  EPS 

and storage products were not measured in the HRSD study, but O2 and CO2 off-gas was in 

the later part of the study.  Each of the three A-stage reactors were covered, with the off-gas 

collected and analyzed using a Servomex Model 1440 gas analyzer.  Data collected at 10 

second intervals included %CO2, %O2 and the standard airflow rates (SLPM).  By comparing 
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this data to the ambient air concentrations, the change in CO2 and O2 concentrations in the 

off-gas were calculated.  The change in CO2 along with airflow data allowed the calculation 

of the CO2 production rate (CO2_PR) and the oxygen utilization rate (OUR). 
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Table 4 HRSD A-stage HRAS sampling plan (Miller, 2013) 

 

Parameter Units 
RWI  HRAS Inf/Eff  HRAS  

HRAS RAS 
HRAS Effluent  

TK-101 TK-103 and TK-109 TK-105 TK-107 

CEL              

TSS mg/L 
 

2x/Wk/Composite 2x/Wk/Grab 
 

2x/Wk/Composite 

VSS mg/L 
 

2x/Wk/Composite 2x/Wk/Grab 
 

2x/Wk/Composite 

TCOD mg/L 
  

1x/Wk/Grab 
  

sCOD mg/L 
     

VFA, Distillation mg/L 
 

2x/Wk/Composite 
  

2x/Wk/Composite 

VFA, GC mg/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

TcBOD5 mg/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

ScBOD5 mg/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

TKN mg N/L 
 

2x/Wk/Composite 1x/Wk/Grab 
 

2x/Wk/Composite 

SKN mg N/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

Pilot Plant 

Ammonia 

 

mg N/L 
 

5x/Wk/Composite 
  

5x/Wk/Composite 

Nitrate 

 

mg N/L 
 

5x/Wk/Composite 
  

5x/Wk/Composite 

Nitrite 

 

mg N/L 
 

5x/Wk/Composite 
  

5x/Wk/Composite 

COD 

 

mg/L 
 

5x/Wk/Composite 
  

5x/Wk/Composite 

Sol COD, GF mg/L 
 

5x/Wk/Composite 
  

5x/Wk/Composite 

Sol COD, CM mg/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

ffCOD 

 

mg/L 
 

1x/Wk/Composite 
  

1x/Wk/Composite 

TSS 

 

mg/L 
  

3x/Wk/Grab 3x/Wk/Grab 3x/Wk/Comp 

SVI 

 

mL/g 
  

3x/Wk/Grab 
  

Temperature °C 5x/Week 5x/Week 5x/Week 
 

5x/Week 

pH 

 
 

5x/Week 5x/Week 5x/Week 
 

5x/Week 

DO 

 

mg O2/L 
 

5x/Week 5x/Week 
 

5x/Week 

Online Monitoring 
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Parameter Units 
RWI  HRAS Inf/Eff  HRAS  

HRAS RAS 
HRAS Effluent  

TK-101 TK-103 and TK-109 TK-105 TK-107 

TSS 

 

mg/L 
    

Continuous 

Temperature °C Continuous Continuous Continuous 
 

Continuous 

pH 

 
     

Continuous 

DO 

 

mg O2/L 
  

Continuous 
  

CEL – Certified Environmental Laboratory 

Pilot Plant – On-site sample analysis 

Online Monitoring – Instrumentation and Telemetry system 

RWI – Raw Water Influent 

HRAS Inf/Eff – Pilot influent and effluent  

HRAS RAS – Pilot Return Activated Sludge 
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3.2 Model Development 

The base model to be used for the development of the A-stage HRAS model as part of 

this research is the Activated Sludge Model No.1 (ASM1) (Henze et al., 2000).  This model 

consists of 14 state variables and 8 processes (Table 5).  Although this model has been 

developed for both carbon (r1 and r2) and nitrogen (r3) removal; in meeting our objective of 

developing a model capable of integrating with a full plant model, we will incorporate 

nitrogen transformation by coupling them to carbon transformations. The stoichiometric 

coefficients which represent heterotrophic biomass growth on soluble substrate are shown in 

the biokinetic matrix (Table 5) as coefficients for transformation process 1.   

 The elemental composition matrix shown in Table 5 are the conversion values i for 

the state variables to be used.  The parameters listed in Table 6 are the default parameters 

used for the model.   These parameters are adjusted to calibrate the model to a specific 

operating condition.  Data should be calibrated with as little change to the default values as 

possible.    
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Table 5  SUMO Peterson Matrix for ASM1 (Takacs, 2013) 

 

j Symbol Name SI SS XU XB XB,H XB,A XE SO SNO SNH SND XND SALK SN2 Rate expression (rj) 

1 r1 
Aerobic growth of 

heterotrophs 
  -1/YH     1     -(1-YH)/YH   -iXB     -iXB*iCharge_SNHx   

μH*(SS/(KS+SS))*(SO/(KO,H+SO))*(SNH/(KNH,H

+SNH))*(SALK/(KALK+SALK))*XB,H 

2 r2 
Anoxic growth of 

heterotrophs 
  -1/YH     1       

-(1-

YH)/(iNO3,N2*

YH) 

-iXB     

-(1-

YH)/(iNO3,N2*YH)*iCharge_S

NOx-iXB*iCharge_SNHx 

(1-

YH)/(iNO3,N

2*YH) 

μH*(SS/(KS+SS))*(KO,H/(KO,H+SO))*(SNO/(KNO

+SNO))*(SNH/(KNH,H+SNH))*ηg*XB,H 

3 r3 
Aerobic growth of 

autotrophs 
          1   

-(-iCOD_NO3-

YA)/YA 
1/YA -iXB-1/YA     

-

(iXB+1/YA)*iCharge_SNHx+(

1/YA)*iCharge_SNOx 

  
μA*(SNH/(KNH+SNH))*(SO/(KO,A+SO))*(SALK/(

KALK+SALK))*XB,A 

4 r4 
Decay of 

heterotrophs 
      1-fP -1   fP         iXB-fP*iXP     bH*XB,H 

5 r5 
Decay of 

autotrophs 
      1-fP   -1 fP         iXB-fP*iXP     bA*XB,A 

6 r6 

Ammonification 

of soluble organic 

Nitrogen 

                  1 -1   iCharge_SNHx   ka*SND*XB,H 

7 r7 

Hydrolysis of 

entrapped 

organics 

  1   -1                     
kh*((XS/XB,H)/(KX+XS/XB,H))*((SO/(KO,H+SO))

+ηh*(KO,H/(KO,H+SO))*(SNO/(KNO+SNO)))*XB,H 

8 r8 

Hydrolysis of 

entrapped organic 

nitrogen 

                    1 -1     

kh*(XND/XS)*((XS/XB,H)/(KX+XS/XB,H))*((SO/(

KO,H+SO))+ηh*(KO,H/(KO,H+SO))*(SNO/(KNO+S

NO)))*XB,H 

 

 

 

Elemental composition               

COD 1 1 1 1 1 1 1 -1 iCOD_NO3 0 0 0 0 iCOD_N2 

N 0 0 0 0 iXB iXB iXP 0 1 1 1 1 0 1 

Charge 0 0 0 0 0 0 0 0 iCharge_SNOx iCharge_SNHx 0 0 -1 0 
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Table 6  ASM1 kinetic and stoichiometric parameters used in the Peterson matrix (Takacs, 2013) 

Symbol Name 
Default 

value 
Unit 

kh Maximum specific hydrolysis rate 3 g XCB.g XOHO
-1.d-1 

KX Saturation coefficient for XB/XOHO 0.03 g XCB.g XOHO
-1 

ηh 
Correction factor for hydrolysis under anoxic 

conditions 
0.4 - 

μH Maximum growth rate of XOHO 6 d-1 

ηg Reduction factor for anoxic growth of XOHO 0.8 - 

KS Half-saturation coefficient for SB 20 g SB.m-3 

bH Decay rate for XOHO 0.62 d-1 

KO,H Half-saturation coefficient for SO2 0.2 g SO2.m-3 

KNO Half-saturation coefficient for SNOx 0.5 g SNOx.m-3 

KNH,H Half-saturation coefficient  for NH4* 0.05 g SNHx.m-3 

μA Maximum growth rate of XANO 0.8 d-1 

bA Decay rate for XANO 0.15 d-1 

ka Rate constant for ammonification 0.08 m3.g XCB,N
-1.d-1 

KO,A Half-saturation coefficient for SO2 0.4 g SO2.m-3 

KNH Half-saturation coefficient for SNHx 1 g SNHx.m-3 

KALK Half-saturation coefficent for alkalinity 0.001 meq/L 

Stoichiometric parameters 

YH Yield for XOHO growth 0.67 g XOHO.g XCB
-1 

fP Fraction of XU generated in biomass decay 0.08 g XU.g XBio
-1 

YA Yield of XANO growth per SNO3 0.24 g XAUT.g SNO3
-1 

iXB N content of biomass (XOHO, XPAO, XANO) 0.086 g N.g XBio
-1 

iXP N content of products from biomass 0.06 g N.g XUE
-1 

iNO3,N2 NO3 reduction to N2 electron equivalence 2.857 g COD.g N-1 

iCOD_NO3 NH3 to NO3 oxidation electron equivalence -4.571 g COD.g N-1 

iCOD_N2 NH3 to N2 oxidation electron equivalence 
-

1.7142857 
g COD.g N-1 

iCharge_SNHx Conversion factor for NHx in charge 0 kCharge.g N-1 

iCharge_SNOx Conversion factor for NO3 in charge -7.14E-05 kCharge.g N-1 

iCV Particulate COD to VSS ratio 1.48 g COD.g VSS-1 
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3.3 Mathematical Model IDE and Calibration/Validation Procedure 

The software used for model simulation is SUMO version 0.9.15.0 developed by 

Dynamita SARL Nyons, France. SUMO includes an integrated development environment 

(IDE) used to define the process configuration to be modeled.  This process configuration 

along with the model matrix are analyzed by the SUMO analysis engine to generate the 

performance data.  The analysis can be run as a static simulation using the baseline data 

entered into the model or as a dynamic simulation using variable input for specific state 

variables.  Each pilot configuration (HRSD and NO) was developed using the SUMO IDE 

(Figure 13).   

 
Figure 13:  SUMO Integrated Development Environment – HRSD A-stage Pilot Configuration (Takacs, 

2013) 
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3.3.1 A-stage Model Calibration using NO Dataset 

Table 7 shows the model parameter values used to generate the model output.  The 

calibration results shown in Table 7  were generated using the current A-stage model matrix 

which is a dual substrate (SBf and SBs) model based on a single heterotrophic population. 

Growth on the external substrate (SBs) is managed using a substrate switching function 

controlled by the substrate half saturation coefficient KBs (Appendix B).    Calibration results 

discussed in subsequent Chapters may differ from the results in Table 7 since those efforts 

used an earlier version of the model matrix.   

Table 7 Partial list of parameter values for the mass balance equations  

Symbol Name Value Unit 

μOHO Maximum growth rate of XOHO 8 d-1 

KBf Half-saturation coefficient for SB 20 g SBf.m-3 

KBs Half-saturation coefficient for SBs 40 g SBs.m-3 

bOHO Decay rate for XOHO 0.62 d-1 

KO,OHO Half-saturation coefficient for SO2 0.1 g SO2.m-3 

qADS Rate constant for adsorption 0.065 d-1 

KSL Half-saturation coefficient for surface limitation 0.009 - 

qSTO Rate constant for growth on XSTO 2 d-1 

kEPS,MAX EPS formation coefficient 0.225 g CODEPS.gVSS-1 

qEPS,HYD EPS hydrolysis 0.25 d-1  

KEPS  Half-saturation coefficient for EPS 100 gXEPS.m-3  

qXB,HYD Rate Constant 2.75 d-1   

kSTO,MAX Maximum Production Rate for Storage Polymers 0.58 g XSTO.gSBf
-1 

fSTO Fraction of XSTO in Active Biomass 0.15 -  

qSTO,HYD Storage Hydrolysis Rate Constant 3 d-1   

KSTO,HYD Hydrolysis Half-saturation coefficient for STO 0.15 gXSTO.gXOHO
-1  

KO,EPS Half-saturation coefficient for SO2 1 g SO2.m-3 

 

The model was calibrated by adjusting the kinetic parameters associated with each 

process.  For soluble substrate removal, the maximum specific growth rate (μOHO) was 
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adjusted (to 8 day-1) so that the utilization rate for the SBf fraction was fast enough to initiate 

the uptake of SBs.  This is consistent with work by Insel et al. (2012)  who established in a 

bench-scale activated sludge SBR, fed acetate as the sole carbon source, that the maximum 

specific growth rate(μOHO )  increased from 3.9 to 7 day-1when the SRT was changed from 10 

to 2 days. The half saturation coefficients (KBf and KBs) were then adjusted to better control 

the utilization of SBf and SBs to simulate the removal of soluble COD to fit the data (Figure 

11c, d).  The elevated half saturation coefficients KBf (20 gCOD/m3) and KBs (40 gCOD/m3) 

at an SRT ranging from 0.3 to 2 days are consistent with results obtained by  Insel et al. 

(2012) . Insel et al. (2012) established that the half saturation coefficient for growth (KS )  

increased from 5 to 25 g CODS/m3 when the SRT was changed from 10 to 2 days.  This 

suggests that KS could be even higher in shorter SRT systems like the A-stage.   

EPS removal (Figure 11a, b) was calibrated by adjusting the EPS formation 

parameter kEPS,MAX (0.225 gCODEPS.gVSS) and the EPS hydrolysis parameter qEPS,HYD (0.25 d-

1).  Colloidal substrate removal (Figure 11c, d) was calibrated by adjusting the adsorption 

rate parameter qADS (0.065 d-1) and the surface limitation parameter KSL (0.009) until the 

HRAS model results trended well with the experimental data.  The A-stage model calibration 

results are summarized in Figure 14  with the detailed results included in Appendix C. 
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Figure 14: A-stage Model Calibration Results – NO Dataset 

 

3.3.2 A-stage Model Validation using HRSD Dataset 

The HRSD configuration was validated against the A-stage model matrix shown in 

Appendix B, using a subset of the pilot data collected (Appendix D).  This dataset includes 

dynamic influent and effluent data for state variables including SBf, SBs, CB, XB, influent 

biomass, and reactor DO (SO2).  Dynamic input into the SUMO IDE also includes influent 

flow, the return activated sludge (RAS) flow, and waste activated sludge (WAS) flow.  The 

default parameter values were obtain from the calibration results (Table 7).  The validation 

procedure involved adjusting the select parameters to improve the model results fit with the 
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HRSD pilot data.  It was found that the A-stage model results were highly sensitive to 

variations in the dissolved oxygen half saturation coefficient KO,OHO ( adjusted to 0.02 g 

SO2.m
-3 ) and the initial fraction of storage products in the cell fSTO (adjusted to 0.1).  

Modifying these parameters generated results that trended well with the observed HRSD 

pilot data for soluble substrate (SBf and SBs) and reactor volatile suspended solids (VSS) 

(Figure 15)   

 

Figure 15: A-stage Model Validation Results – HRSD Dataset 

 

The results shown in Figure 15 for reactor VSS are based on a revised particulate 

COD conversion factor of 1.86 gVSS/gCOD (default value is 1.48 gVSS/gCOD).  This 

revised conversion factor was determined based on COD mass balances generated using the 

HRSD dataset (Appendix G).  The procedure for determining this revised conversion factor 

is discussed in Chapter 7. 
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CHAPTER 4  

MATHEMATICAL MODELING OF CARBON REMOVAL IN THE HIGH-RATE 

ACTIVATED SLUDGE SYSTEM: MODEL PRESENTATION AND APPLICATION 

 

Note: The contents of this chapter will be submitted for publication in Water Research. 

Thomas M. Nogaj, Andrew A. Randall, Jose A. Jimenez, Imre Takacs, Charles B. Bott, Mark 

W. Miller, Sudhir Murthy and Bernhard Wett; Mathematical Modeling Of Carbon Removal 

In The High-Rate Activated Sludge System: Model Presentation And Application 

 

4.1 Introduction 

Mathematical modeling of the activated sludge process has become an essential part 

of the design and operation of wastewater treatment plants. These models were developed to 

analyze the biochemical transformations that occur in wastewater treatment facilities.  These 

biochemical operations alter or destroy materials that microorganisms can act upon via 

mineralization or biotransformation(Grady et al., 2011).  Biochemical operations in activated 

sludge employ two major cycles: carbon and nitrogen.  The microorganisms involved in each 

cycle derive their energy and reducing power from oxidation reactions, involving the transfer 

of electrons.  Organisms that use organic compounds as their electron donor and source of 

carbon for cell synthesis are heterotrophic bacteria.   

The IWA task group on mathematical modeling for design and operation of biological 

wastewater treatment processes has introduced activated-sludge models ASM  No. 1, 2, 2D, 

and 3(Henze et al., 2000).   ASM1 simulates the removal of organic matter (carbon) and 

nitrogen.  Carbon removal occurs through the biological oxidation of organic matter and 

assimilation via biosynthesis, nitrogen removal occurs through biological nitrification and 
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denitrification, plus assimilation.  The ASM 2 models (2, 2d) are an extension of ASM 1 

incorporating biological nutrient (nitrogen and phosphorus) removal.  ASM3 was developed 

as a possible replacement for ASM1 with the significant difference being the importance of 

storage polymers in the heterotrophic conversion of organics in activated sludge systems 

(Krishna & Van Loosdrecht, 1999). 

 

The ASM1 and ASM3 models were developed to simulate the aerobic and anoxic 

treatment of domestic wastewater based on typical operating conditions, e.g. Solids Retention 

Time (SRT) greater than 3 days.  These models were not developed to model activated 

sludge systems with very high organic loads or low SRTs (less than 1 day) where 

bioflocculation/adsorption of particulate and colloidal (slowly biodegradable) substrate and 

storage may become limiting (Henze et al., 2000).  In addition, the very short hydraulic 

retention times of some HRAS systems may result in differences in predicted performance 

since the implicit assumption that substrate reactions can proceed to completion may no 

longer be true. 

These models assume a two-step process for the removal of slowly biodegradable 

substrate (primarily particulate substrate and colloidal substrate): instantaneous enmeshment 

and hydrolysis of particulate and colloidal substrate followed by oxidation of soluble 

biodegradable substrate. However, researchers have overlooked the effect of the kinetics of 

bioflocculation on the overall particulate and colloidal substrate removal process and have 

concentrated their attention on the kinetics of hydrolysis and oxidation when modeling 

carbon removal in activated-sludge systems. 
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Jimenez et al. (2005, 2007) revealed that flocculation plays a major role in the 

removal of particulate and colloidal COD and many operational parameters such as solids 

retention time (SRT), dissolved oxygen (DO) and hydraulic retention times (HRT) can affect 

their removal in the activated sludge process. At low SRT (less than 2 days) and low HRT 

(less than 1 hour) some of the particulate and (especially) colloidal COD may not be 

removed since the kinetic rate of flocculation may not result in complete enmeshment and 

hydrolysis.  Hence, flocculation should be considered as an important mechanism when 

modeling activated sludge systems, especially high-rate activated sludge (HRAS) processes 

(i.e. systems with low SRT and HRT). 

This paper will discuss a mathematical modeling approach which evaluates the 

carbon cycle as it pertains to High Rate Activated Sludge (HRAS) systems.  HRAS are 

operated at low SRTs (typically less than 1 day) where past ASM models are not adequate.  

This approach uses the ASM 1 as the initial framework.   The framework will be modified 

adding the required removal mechanisms to accurately predict the performance of a HRAS 

system.   

4.2 Materials and Methods 

The 24 MGD Chesapeake-Elizabeth Treatment Plant (CETP) provides a unique 

opportunity for the potential application of the mainstream deammonification process. CETP 

does not currently perform nitrogen removal, but Hampton Roads Sanitation District (HRSD) 

anticipates a future treatment objective of 4–5 mg/L Total Nitrogen (TN).   HRSD is 

currently operating a pilot study at CETP (Figure 16) to evaluate mainstream 

deammonification. 
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Hampton Roads Sanitation District (HRSD) owns and operates an A/B 

(adsorption/bio-oxidation) pilot plant located at the Chesapeake-Elizabeth treatment plant in 

Virginia Beach, Virginia. The pilot plant consists of a HRAS reactor for carbon removal 

followed by a B-stage for nitrogen removal. Currently, the HRAS A-stage is a single reactor, 

operated at a 0.5 day SRT and 0.5 hour HRT, and is fed screened and degritted raw 

municipal wastewater at 1.5 gpm (Figure 16). 

 

 

Figure 16: Process flow diagram of the HRSD A/B process pilot plant 

 

HRSD is in the process of modifying the A stage configuration to include a parallel 

process train to include three AS columns.  This configuration would provide flexibility in 

the process to be operated as either CSTR or plug flow type reactor.  Operational data from 

the HRAS pilot plant will be used to further develop and to validate the new carbon HRAS 

removal model discussed in this paper. 
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4.2.1 Sample Collection and Monitoring  

Treatment efficiency of both the A-stage and  B-stage are monitored by collecting 24-

hr flow-weighted composite samples from the influent and effluent of each stage and 

analyzed for TSS, total volatile suspended solids (TVSS), COD, sCOD, floc-filtered COD, 

total Kjeldahl nitrogen (TKN), soluble TKN, nitrate, nitrite, total phosphorus (TP), soluble 

phosphorus (SOP), and alkalinity. Grab samples are also routinely collected from the influent 

and effluent of each stage and from all activated sludge reactors. The grab samples are 

analyzed for TSS and the dissolved fractions of NO3
--N, NO2

--N, PO4
3--P, and total ammonia 

nitrogen (NH3-N + NH4
+-N = TAN). The sum of nitrate and nitrite is given the term NOX-N 

or oxidized nitrogen species.  The data collected through the sampling and monitoring 

program will be supplemented by extracellular polymeric substances EPS data collected by 

Jimenez as part of his dissertation(Jimenez, 2002). 

4.3 Results and Discussion 

4.3.1 High-Rate Activated Sludge (HRAS) System for Carbon Removal 

The objective of a HRAS process is to remove organic carbon from influent wastewater 

at low SRTs, typically less than 1 day, which minimizes the oxygen required to remove 

influent organics and prevents nitrification.  Detailed observations of preliminary results 

from the HRAS pilot system have led to the following modifications of existing models:   
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1. Preliminary results from the pilot show a higher effluent soluble COD than the B-stage 

where it is removed at a significantly longer SRT (Table 8).  Normally, the method to 

quantify the non-biodegradable soluble COD is to operate a lab or pilot scale activated 

sludge system and use the effluent soluble COD as the non-biodegradable fraction.  

However, at the low SRT (and low HRT) of the HRAS system there is a fraction of the 

effluent COD that is biodegradable in the higher SRT B stage, but not biodegradable in 

the A (HRAS) stage.  This has led to the establishment of two state variables for 

soluble biodegradable substrate designated as SBf (SB fast) and SBs (SB slow).  SBf  is the 

soluble COD that is biodegradable in both the HRAS and also in the B stage.  SBs is the 

soluble COD that is non-biodegradable in the HRAS system, but is biodegradable in 

the B stage.   In the HRAS model SBf is biodegraded first, and it is only when SBf runs 

out that biodegradation of SBs becomes significant.  This is analogous to diauxic 

growth in which one substrate is biodegraded immediately by constitutive enzymes, 

and only when it runs out are enzymes induced for metabolism of the second substrate.  

The data does not show, or disprove, this mechanism, but this approach is at least 

plausible mechanistically.  There are several other plausible approaches, however, such 

as simply running out of time to complete the biodegradation of SBf due to the low 

HRT.  
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Table 8  HRSD A-stage HRAS experimental data 

Tank ID TCOD sCOD pCOD ffCOD cCOD 

A-stage (SRT <  1 d) 

Influent 455 260 195 188 72 

Effluent 260 113 147 56 57 

% Removed 43% 57% 25% 70% 21% 

B-stage (SRT >= 6 d) 

Influent 260 113 147 56 57 

Effluent 63 33 30 22 11 

% Removed 76% 71% 80% 61% 81% 

 

Typical characteristics for any municipal wastewater include both soluble and 

particulate organics.  Before developing modifications to the mathematical model it is 

important to define the soluble, particulate and colloidal fractions of the influent 

COD.  In Table 8 total chemical oxygen demand (TCOD) can be defined as the sum 

of particulate COD (pCOD) and soluble COD (sCOD) present in the wastewater.  For 

the purpose of this investigation, the pCOD consists of organic suspended solids 

(ssCOD) retained by a 1.5 micron filter excluding the soluble COD (sCOD) in the 

wastewater (pCOD = TCOD - sCOD).    The state variable XB represents pCOD in 

the A-stage HRAS model.  The colloidal COD (cCOD) consists of the fraction of the 

soluble COD (sCOD, fraction passing the 1.5 micron filter) retained by the 0.45 

micron filter plus coagulant.  The state variable CB represents cCOD in the A-stage 

HRAS model.  The dissolved COD excluding colloids is the truly soluble organic 

material in the wastewater and this was quantified by coagulation/flocculation 
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followed by filtration (i.e. ffCOD) (Jimenez et al., 2005).   The truly soluble COD is 

defined in the HRAS model as the sum of the state variables SBf, SBs and SI.  

Figure 17 shows the COD breakdown adopted for the purpose of developing the 

HRAS carbon removal model(Jimenez, 2002).  The most important aspect is the 

differentiation of particulate and colloidal COD, which has not traditionally been 

done in most studies nor in the ASM derived models.  The reason for this is that in 

higher HRT and SRT systems there is plenty of time for both colloidal and particulate 

COD to flocculate completely and to be degraded.   However, in low HRT/SRT 

systems (HRAS) there is not always time for this to occur.  This also means that 

effluent CODs in HRAS systems are higher than would be predicted by existing 

models. 

 

Figure 17: COD Fractionation for particulate (pCOD), colloidal (cCOD) and soluble COD (ffCOD) 

adopted for this work 

 

The effluent from the pilot A-stage is the influent feed to the B-stage (Figure 16).  

Experimental results from the pilot reveal a sCOD removal efficiency of approximately 
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57%, oxidation of the truly soluble COD accounts for most of the sCOD removal. The 

results (Table 8) show a 25% reduction in pCOD and 21% reduction in cCOD,   which 

demonstrates that the assumption that the pCOD and cCOD are instantaneously 

enmeshed may not be accurate.  In addition, even the effluent ffCOD in the A-stage 

was higher than the B-stage effluent suggesting that there is a fraction of the ffCOD 

that degrades slower than the rest. 

2. Extracellular Polymer Substances (EPS) production impacts the bioflocculation 

removal efficiency for particulate and colloidal substrate (Jimenez, 2002).  Past models 

assume instantaneous enmeshment whereas the data from Jimenez (2002 and 2013) 

shows that this assumption may not be valid for high rate systems.  The EPS data 

produced by Jimenez (2002) and Jimenez et al. (2013) was used as calibration data for 

this study.  The data indicates EPS production increased with SRT (thus decreased with 

growth) over a range of 0.3 to 2.0 days.  In addition, EPS increased with the DO 

concentration over the same range of SRT values. Laspidou and Rittmann (2002a) 

hypothesized that the net EPS  concentration is a function of the portion of influent 

soluble substrate (substrate electron pool) shunted to EPS formation versus the EPS 

hydrolysis rate.  Our HRAS model incorporates EPS production as part of the aerobic 

growth process on SBf and SBs.  The proportionality coefficient kEPS,PC quantifies the 

portion of influent electrons shunted to EPS formation.  The portion of substrate 

electrons that are shunted to EPS formations (kEPS,PC) are then subtracted from the 

biomass yield coefficient YOHO, i.e. YOHO*(1- kEPS,PC)),  reducing the electrons 

available for biomass synthesis.   As substrate concentration decreases, the growth rate 
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decrease subsequently reduces EPS production.  EPS formation is first driven by SBf 

during aerobic growth, although some influent electrons are lost to storage products.  

EPS formation on SBs does not occur until SBf starts to run out.  In the model EPS 

formation driven by influent SBs does not have to compete with the formation of 

storage products (which only occurs through SBf).  Additional SBs becomes available 

through hydrolysis of XB  (Carucci et al., 2001).  KO,EPS was estimated using a nonlinear 

regression analysis of the EPS production data vs DO concentration data provided by 

Jimenez et al. (2000).  The value kEPS,MAX (maximum EPS production) was determined 

by developing a least square logarithmic fit of the dataset provided by Jimenez et al. 

(2000) resulting in an estimated  kEPS,MAX value of 0.25 (gCODEPS/gVSS).  

 

𝐤𝐄𝐏𝐒,𝐒𝐂 = (𝐤𝐄𝐏𝐒,𝐌𝐀𝐗𝐢𝐂𝐁 ) × ( 𝐒𝐎𝟐(𝐊𝐎,𝐄𝐏𝐒+𝐒𝐎𝟐)) ( 6 ) 

    

Equation 6 shows how kEPS, PC was calculated; The term iCB is a stoichiometric 

conversion factor that converts kEPS,MAX from units of gCODEPS/gVSS to 

gCODEPS/gCODVSS. 

3. The production of storage polymers during the growth phase.  Past studies have shown 

that the production of storage polymers at low SRT’s (typical of a HRAS system) 

indicate that storage is dependent on the growth rate of the biomass (Sin et al., 2005; 

Van Aalst-Van Leeuwen et al., 1997).  A linear correlation was developed for the 

accumulation rate of storage polymers based on the difference between the maximum 

substrate uptake rate and the uptake rate required for growth.  When the system is 
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operated close to its maximum uptake rate (which exceeds the possible growth rate) 

then minimal storage is observed (Sin et al., 2005; Van Aalst-Van Leeuwen et al., 

1997).   

Since most WWTP’s are operated at high SRT’s (i.e. low growth rates relative to 

HRAS) it is hypothesized that the maximum substrate uptake rate is higher than the 

amount needed for growth.  Therefore, the maximum flux into the cell(substrate 

electron pool) exceeds the amount that can be utilized for biomass synthesis, resulting 

in a portion of the influent electrons/carbon being diverted to formation of storage 

polymers (Sin et al., 2005). 

The diversion of substrate electrons to storage in our HRAS model is represented by 

the proportionality constant kSTO,PC.  Only SBf can be utilized to form storage products 

in the model.  The portion of substrate electrons that are shunted to storage product 

formation (kSTO,PC) are also subtracted from the biomass yield coefficient YOHO, i.e.  

(YOHO*(1- kEPS,PC – kSTO,PC)),  for aerobic growth using SBf,  further reducing the 

electrons available for biomass synthesis.   Similar to how our HRAS model simulates 

EPS formation our model incorporates the formation of storage products into the 

process for aerobic growth.  However, only SBf is used to form storage products.   As 

the HRAS model evolves during the duration of this research it may be necessary to 

incorporate the formation of storage products in the process for aerobic growth on SBs 

(Carucci et al., 2001). 
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4.3.2 HRAS Model Matrix 

The ASM models uses matrix notation for the presentation of biokinetic models.  The 

matrix approach summarizes the components (state variables) and the transformation 

processes which are to be considered in the model.  The stoichiometric coefficients and 

process rate equations are presented in the matrix.  The matrix is often referred to as the 

Peterson matrix and will be referred to as such throughout this paper.  Using the ASM1 

Peterson matrix as our reference model, proposed modifications to the mathematical model 

for the HRAS model are defined in Figure 18.  A partial list of state variables used is shown 

in Table 9.  The modified stoichiometric matrix is shown in Table 10 with the associated 

process rate equations shown in Table 11.  It must be noted that the pathways emanating 

from SBf and SBs will never both be significant at the same time due to the model kinetic 

equations being such that SBs transformations will not be significant until SBf runs out (i.e. 

when SBf < KBf; see Table 11).  The colloidal substrate (CB) is added as a new state variable.  

The CB and slowly biodegradable particulate COD (XB) are enmeshed which represents the 

colloidal and particulate COD adsorbed through the bioflocculation- removal mechanism.  

The adsorbed organics are then converted through hydrolysis to the slow fraction of soluble 

readily biodegradable substrate SBs. 
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Figure 18: Proposed mathematical model modifications for the HRAS carbon removal model 

 

Table 9  Partial list of state variables 

Symbol Name Units 

SU Soluble non-biodegradable organics g COD.m-3 

SBf Soluble biodegradable organics g COD.m-3 

SBs Slowly biodegradable organics g COD.m-3 

CU Colloidal non-biodegradable organics from the influent g COD.m-3 

CB Colloidal biodegradable organics g COD.m-3 

XU Particulate non-biodegradable organics from the influent g COD.m-3 

XB Particulate biodegradable organics g COD.m-3 

XOHO,ACT Active Ordinary heterotrophic organisms g COD.m-3 

XANO Autotrophic nitrifying organisms (NH4+ to NO3-) g COD.m-3 

XE Particulate non-biodegradable endogenous products g COD.m-3 

SO2 Dissolved oxygen g O2.m-3 

SALK Alkalinity meq/L 

XEPS Extracellular Polymer Substances g COD.m-3 

XSTO Storage Polymer Substances g COD.m-3 
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A new state variable (XSTO) was added for storage products.  Gujer et al. (1999) in 

ASM 3 defines XSTO as a cell internal storage product of heterotrophic organisms (COD).    It 

occurs only associated with XOHO and is not included in the mass of XOHO.  XSTO cannot be 

directly compared with analytically measured PHA or glycogen.    ASM 3 hypothesized, that 

all heterotrophic microorganisms (XOHO) can store substrate.  In contrast, Hanada et al. 

(2002) studied the possibility of combining the characteristics of ASM 1 and ASM 3, 

assuming there are two types of heterotrophic biomass, those that use storage material and 

those that don’t.  This was called the dual biomass model. Hanada et al. (2002) concluded 

that the ratio of heterotrophs to PHA producing heterotrophs (XOHO/PHA) varied from 15-35% 

between facilities; based on operational and environmental conditions. The results revealed 

that the storage rate constant as defined in ASM 3 was not universally applicable.  As part of 

this study,   both concepts will be considered in developing the HRAS mathematical model.



63 
 

Table 10 Partial Peterson matrix for the HRAS model  

j Symbol Name SI SBf SBs CU CB XU XB XOHO,ACT XE SO2 XEPS XSTO 

1 r1 

Aerobic growth of 

heterotrophs - Fast 

  

-

1/(YOHO,AER*(1-

kEPS,PC-kSTO.PC)) 

          1   -(1-YH)/YH 

kEPS,PC/(YOHO,AER*(1-

kEPS,PC-kSTO,PC)) 

kSTO/(YOHO,AER*(1-

kEPS,PC-kSTO,PC)) 

2 r2 

Aerobic growth of 

heterotrophs - Slow 

    

-1/(YOHO,AER*(1-

kEPS,PC)) 
        1   -(1-YH)/YH 

kEPS,PC/(YOHO,AER*(1-

kEPS,PC)) 
  

3 r3 Decay of heterotrophs             1-fU -1 fU       

4 r4 

Hydrolysis of entrapped 

organics   

1 

   

-1 

     

5 r5 

flocculation of colloidal 

substrate     

-1 

 

1 

     

6 r6 

flocculation of colloidal 

inerts    

-1 

 

1 

      

7 r7 

Hydrolysis of storage 

products  

1 

         

-1 

8 r8 EPS hydrolysis 

 

1 

        

-1 
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Table 11 Partial Peterson matrix process rate equations for the HRAS model 

j Symbol Name Rate expression (rj) 

1 r1 Aerobic growth of heterotrophs - Fast μOHO*(SBf/(KBf+SBf))*(SO2/(KO,OHO+SO2))*(SO2/(KO,EPS+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

2 r2 Aerobic growth of heterotrophs - Slow μOHO,SLOW*(SBs/(KBs+SBs))*(KBf/(KBf+SBf))*(SO2/(KO,OHO+SO2))*(SO2/(KO,EPS+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

3 r3 Decay of heterotrophs bOHO*XOHO,ACT 

4 r4 Hydrolysis of entrapped organics qXB,HYD*((XB/XOHO)/(KB,HYD+XB/XOHO))*((SO2/(KO,OHO+SO2))+ηHYD*(KO,OHO/(KO,OHO+SO2))*(SNOx/(KNOx+SNOx)))*XOHO 

5 r5 flocculation of colloidal substrate qADS*CB*(XOHO+XANO)*(KSL/((CB/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

6 r6 flocculation of colloidal inerts qADS*CU*(XOHO+XANO)*(KSL/((CU/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

7 r7 Hydrolysis of storage products qSTO,HYD*(XSTO/XOHO/(KSTO,HYD+XSTO/XOHO))*(KBf/(KBf+SBf))*(KBs/(KBs+SBs))*(SO2/(KO,OHO+SO2))*XOHO 

8 r8 EPS hydrolysis qEPA,HYD*XEPS 
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Mathematical model modifications taking into account the effect of low sludge age 

(SRT) on the wastewater fractions of SS and SI resulted in the inclusion of three new state 

variables, inert colloidal COD (CU), organic molecules available to the fast growing biomass 

associated with low SRT/HRT systems (SBf) and a fraction of the biodegradable COD 

concentration that is not utilized at low SRT’s (SRT<1 d) and HRT’s (SBs) but biodegrades at 

high SRT/high HRT.   Low SRT and HRT result in only partial degradation of the soluble 

substrate in the wastewater; the rest of the biodegradable soluble substrate is removed in the 

B-stage.  The ffCOD experimental data supports this hypothesis.  The A-stage obtained an 

ffCOD percent removal of 70% (SRT < 1 d) with an additional 18% removal in the B-stage 

(SRT ≥ 6 d).  The data reveals that the A-stage effluent ffCOD still contains readily 

biodegradable COD unlike effluents at greater SRTs.  The biodegradable fraction remaining 

in A-stage effluent is designated as SBs which is further biodegraded in the B-stage.  So the 

SS of ASM1 is split into two fractions to model HRAS, i.e. SBf and SBs.  

4.3.3 Fate of the Influent Substrate (SBf & SBs) 

 Laspidou and Rittmann (2002b)  developed a unified theory, which attempts to 

quantify the relationships among extracellular polymeric substances (EPS), soluble microbial 

products (SMP), original substrate, and an electron acceptor.   We have adopted this theory in 

part by developing a model consistent in the way it describes the metabolism of all biomass 

types (De Silva & Rittmann, 2000).  This approach, illustrated in Figure 19 and Figure 20, 

shows the fate of the COD (electron flow) as the substrate enters the cell. 
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Figure 19: SBs electron flow schematic for HRAS model 

 

For SBs, three (3) pathways were identified for which the COD (electrons) entering 

the cell could flow.  A portion of the electrons are used by the cell for biomass synthesis 

(pathway No.1),while pathway No. 2 is for the production of EPS and pathway No. 3 are 

electrons sent to the electron acceptor to generate energy. The distribution of electrons for 

each pathway is defined by a proportionality coefficient (PC); kEPS,PC is the proportionality 

coefficient for the production of EPS (MassEPS/MassSs) and YH is the true yield if all the 

influent substrate were used for biomass synthesis. Since this not the case in our model, YH is 

decreased by the factor (1-kEPS,PC).  
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Figure 20: SBf electron flow schematic for HRAS model 

 

For SBf, the HRAS model has been expanded to include a 4th pathway for which the 

COD (electrons) entering the cell could flow.  A portion of the electrons are used by the cell 

for the production of STO (pathway No. 4). The proportionality coefficient kSTO,PC  has been 

added for the production of storage polymers (MSTO/MS). YH is discounted by the factor (1-

kEPS,PC – kSTO,PC).    

This electron scheme can be incorporated into the Peterson matrix by modifying the 

stoichiometry for the aerobic growth of heterotrophs to account for the portion of electrons 

that are shunted to EPS resulting in: (𝟏)𝐒𝐁𝐒 + −𝐱𝐒𝐁𝐬𝐒𝐎 = 𝐘𝐇(𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂)𝐗𝐎𝐇𝐎 + 𝐤𝐄𝐏𝐒,𝐏𝐂𝐗𝐄𝐏𝐒         ( 7 ) 

 (𝟏)𝐒𝐁𝐟 + −𝐱𝐒𝐁𝐟𝐒𝐎 = 𝐘𝐇(𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂 − 𝐤𝐒𝐓𝐎,𝐏𝐂)𝐗𝐎𝐇𝐎 +  𝐤𝐄𝐏𝐒,𝐏𝐂𝐗𝐄𝐏𝐒 + 𝐤𝐒𝐓𝐎,𝐏𝐂𝐗𝐒𝐓𝐎 ( 8 ) 

 

We can do a continuity check of the COD based coefficients since 

 ∑ 𝐶𝑂𝐷 𝐵𝑎𝑠𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠) = ∑ 𝐶𝑂𝐷 𝐵𝑎𝑠𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 
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and solve for x (stoichiometric coefficient for dissolved oxygen SO) 𝐱𝐒𝐁𝐬 = (𝟏− 𝐘𝐇) ∗ (𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂) ( 9 )

  

 𝐱𝐒𝐁𝐟 = (𝟏−𝐘𝐇) ∗ (𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂 − 𝐤𝐒𝐓𝐎,𝐏𝐂) ( 10 ) 

 

 

 Substituting Equation (9) into Equation (7) and rearranging maintaining continuity 

(−𝟏)𝐒𝐁𝐬 + (−𝟏) (((𝟏− 𝐘𝐇) ∗ (𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂))) 𝐒𝐎 + 𝐘𝐇(𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂)𝐗𝐎𝐇𝐎 + 𝐤𝐄𝐏𝐒,𝐏𝐂𝐗𝐄𝐏𝐒 = 𝟎    ( 11 ) 

 

and Equation (10) into Equation (8) and rearranging maintaining continuity (−𝟏)𝐒𝐁𝐟 + (−𝟏)(𝟏−𝐘𝐇) ∗ (𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂 − 𝐤𝐒𝐓𝐎,𝐏𝐂)𝐒𝐎 + 𝐘𝐇(𝟏 − 𝐤𝐄𝐏𝐒,𝐏𝐂 − 𝐤𝐒𝐓𝐎,𝐏𝐂)𝐗𝐎𝐇𝐎 + 𝐤𝐄𝐏𝐒,𝐏𝐂𝐗𝐄𝐏𝐒 + 𝐤𝐒𝐓𝐎,𝐏𝐂𝐗𝐒𝐓𝐎 = 𝟎 ( 12 )

  

Using XOHO as the reference constituent, Equation (11) can be written as 

(− 𝟏𝒀𝑯(𝟏−𝒌𝑬𝑷𝑺,𝑷𝑪)) 𝑺𝑩𝒔 + (−𝟏) ((𝟏−𝒀𝑯) 𝒀𝑯 ) 𝑺𝑶 + 𝑿𝑶𝑯𝑶 + 𝒌𝑬𝑷𝑺,𝑷𝑪(𝟏−𝒌𝑬𝑷𝑺,𝑷𝑪)𝒀𝑯 𝑿𝑬𝑷𝑺 = 𝟎   ( 13 ) 

 

and Equation (12) can be written as 

 

(− 𝟏𝐘𝐇(𝟏−𝐤𝐄𝐏𝐒,𝐏𝐂−𝐤𝐒𝐓𝐎,𝐏𝐂)) 𝐒𝑩𝒇 + (−𝟏) ((𝟏−𝐘𝐇) 𝐘𝐇 ) 𝐒𝐎 + 𝐗𝐎𝐇𝐎 + 𝐤𝐄𝐏𝐒,𝐏𝐂(𝟏−𝐤𝐄𝐏𝐒,𝐏𝐂−𝐤𝐒𝐓𝐎,𝐏𝐂)𝐘𝐇 𝐗𝐄𝐏𝐒 = 𝟎 ( 14 ) 

 

In addition to the stoichiometric modifications two (2) new state variables XEPS (g 

CODEPS/L) and XSTO (g CODSTO/L) have been added to the matrix. 

   A hydrolysis process (r8) has been added to the HRAS Peterson matrix for the 

hydrolysis of XEPS to SBf.  A simple but reliable approach for EPS hydrolysis has been added 

to the HRAS model (Table 11);  the EPS rate expression is a first order relationship with 
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respect to EPS (XEPS) with qEPS,HYD as the hydrolysis rate constant(Laspidou & Rittmann, 

2002a).   

The framework for the storage component of the HRAS model is in the preliminary 

development phase.  The storage proportionality coefficient kSTO,PC  is estimated based on the 

kinetic model for the storage product (STO) production phase presented by (Van Aalst-Van 

Leeuwen et al., 1997).  It is assumed that bacterial biomass consists of two primary 

compartments, one for the active biomass and the other for storage products. The active 

biomass is capable of reproduction and growth; the storage products are  used as storage for 

carbon and energy(Roels, 1983).  Further evaluation, e.g. STO product consumption, and 

validation through a review of previous pilot studies and literature will be required to confirm 

which process components and parameters are to be included in the HRAS model. 

4.3.4 Flocculation 

Experimental results from the HRSD pilot plant (Table 8) reveal that a large fraction 

of the effluent COD from the A-stage comprises particulate and colloidal COD. Based on 

this data, particulate and colloidal COD removal efficiencies of 25% and 21%, respectively, 

were accomplished. This data demonstrates that the assumptions included in the existing 

activated sludge models, i.e. that particulate and colloidal COD are instantaneously 

enmeshed into the bio- floc, are not accurate.  

Proposed modifications to the mathematical model for the HRAS process are shown 

in Table 10 (Jimenez, 2002; Jimenez et al., 2005).    The model to date incorporates two new 

process components; r5 flocculation of colloidal substrate (CB) and r6 flocculation of 

colloidal inerts (CU).  The kinetic rate expression for each process  
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r5: 𝐪𝐀𝐃𝐒 × 𝐂𝐁 × (𝐗𝐎𝐇𝐎 + 𝐗𝐀𝐍𝐎) × ( 𝐊𝐒𝐋( 𝐂𝐁(𝐗𝐎𝐇𝐎+𝐗𝐀𝐍𝐎))+𝐊𝐒𝐋) × ( 𝐗𝐄𝐏𝐒𝐊𝐄𝐏𝐒+𝐗𝐄𝐏𝐒) ( 15 ) 

 

r6: 𝐪𝐀𝐃𝐒 × 𝐂𝐔 × (𝐗𝐎𝐇𝐎 + 𝐗𝐀𝐍𝐎) × ( 𝐊𝐒𝐋( 𝐂𝐔(𝐗𝐎𝐇𝐎+𝐗𝐀𝐍𝐎))+𝐊𝐒𝐋) × ( 𝐗𝐄𝐏𝐒𝐊𝐄𝐏𝐒+𝐗𝐄𝐏𝐒) ( 16 ) 

 

is a first order rate expression with respect to the colloidal concentration.  The kinetic 

parameter qADS is the adsorption rate constant and KSL is the surface limitation coefficient.  

The colloidal substrate (CB) is flocculated onto the particulate substrate (XB). The adsorbed 

organics are then converted through hydrolysis to the slow fraction of the soluble readily 

biodegradable substrate (SBs) which can then be oxidized or stored by the biomass. The inert 

colloids (CU) are flocculated onto the inert particulates (XU) and removed from the system 

through wasting. 

The work to-date forms a solid framework for the removal of colloids from a HRAS 

system.  Additional pilot scale studies will be required to confirm this framework including 

the evaluation of the colloidal and particulate COD through the flocculation-removal 

mechanism forming XADS which defines the aggregation (adsorption) of the colloidal and 

suspended (particulate) solids onto the microbial floc. 

 

4.3.5 Mathematical Model Calibration 

The software used for model simulation is SUMO version 0.9.15.0 developed by 

Dynamita SARL Nyons, France.   The process consists of influent flow, aeration basin 
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(reactor), clarifier (solids separation), return activated sludge flow to the reactor (RAS), 

waste activated sludge flow (WAS) and effluent. 

The data collected by Jimenez et al. (2013), at varying SRTs and dissolved oxygen 

(DO) concentrations, are based on the pilot plant operating parameters summarized in Table 

12.  The SRT and DO concentration were varied in order to evaluate the effect on the 

production of EPS and the subsequent effect in the removal efficacy of particulate and 

colloidal organics.  A qualitative dataset was generated establishing the relationship between 

SRT, EPS production, and particulate COD removal and DO concentration, EPS production 

and particulate COD removal. 

 

Table 12  HRAS model calibration, process operating parameters 

SRT 

Influent Flow 

(m3/d) 

WAS Flow 

(m3/d) 

Reactor 

Volume (m3) 

RAS Flow 

(m3/d) 

Reactor DO 

(mg/l) 

0.3 5 0.2 0.15 3.75 1.5 

0.5 7.5 0.15 0.22 3.75 2.0 

1.0 3.75 0.11 0.22 3.75 1.25 

1.5 3.75 0.12 0.35 3.75 1.5 

2.0 3.75 0.09 0.35 3.75 1.5 

 

The feed source for the pilot was raw influent from the local municipal treatment facility.  

The average influent constituent concentrations are summarized in Table 13.  
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Table 13  HRAS model influent wastewater constituent concentrations  

Symbol Description Value Units 

SI Soluble undegradable organics 10 g COD.m-3 

SBf Soluble biodegradable organics 60 g COD.m-3 

SBs Slowly biodegradable organics 30 g COD.m-3 

CU Colloidal undegradable organics from the influent 20 g COD.m-3 

CB Colloidal biodegradable organics 40 g COD.m-3 

XU Particulate undegradable organics from the influent 30 g COD.m-3 

XB Particulate biodegradable organics 150 g COD.m-3 

XOHO,ACT Active Ordinary heterotrophic organisms 10 g COD.m-3 

XE Particulate undegradable endogenous products 0 g COD.m-3 

SNOx Nitrate and nitrite (NO3 + NO2) 0 g N.m-3 

SNHx Ammonia (NH4 + NH3) 35 g N.m-3 

SNB Soluble biodegradable organic N 5 g N.m-3 

XNB Particulate biodegradable organic N 10 g N.m-3 

SALK Alkalinity 6 meq/L 

XINORG Inorganic suspended solids 40 g TSS.m-3 

XEPS Extracellular Polymer Substances 1 g COD.m-3 

XSTO Storage Polymer Substances 1 g COD.m-3 

pH pH 7 - 

 

The model was calibrated by adjusting the kinetic parameters associated with each process.  

Table 14 shows the model parameter values used to generate the model output. 
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Table 14 Partial list of parameter values for the mass-balance equations  

Symbol Name Value Unit 

KB,HYD Saturation coefficient for XB/XOHO 0.03 g XCB.g XOHO
-1 

μOHO Maximum growth rate of XOHO 7 d-1 

KBf Half-saturation coefficient for SB 2 g SBf.m-3 

KBs Half-saturation coefficient for SBs 3 g SBs.m-3 

bOHO Decay rate for XOHO 0.62 d-1 

KO,OHO Half-saturation coefficient for SO2 0.1 g SO2.m-3 

KNOx Half-saturation coefficient for SNOx 0.5 g SNOx.m-3 

KNHx,nut Nutrient half-saturation coefficient 0.05 g SNHx.m-3 

qADS Rate constant for adsorption 0.08 d-1 

KSL 
Half-saturation coefficient for surface 

limitation 
0.002 - 

qSTO Rate constant for growth on XSTO 2 d-1 

KNHx 
Substrate Half-saturation coefficient for 

ANOs 
1 g SNHx.m-3 

kEPS,MAX EPS formation coefficient 0.25 g CODEPS.gVSS-1 

qEPS,HYD EPS hydrolysis 0.12 d-1  

KEPS  Half-saturation coefficient for EPS 100 gXEPS.m-3  

qXB,HYD Rate Constant 2.75 d-1   

kSTO,MAX 
Maximum Production Rate for Storage 

Polymers 
0.58 g XSTO.gSBf

-1 

fSTO Fraction of XSTO in Active Biomass 0.2 -  

qSTO,HYD Storage Hydrolysis Rate Constant 3 d-1   

KSTO,HYD 
Hydrolysis Half-saturation coefficient for 

STO 
0.15 gXSTO.gXOHO

-1  

KO,EPS Half-saturation coefficient for SO2 1 g SO2.m-3 

μOHO,SLOW Maximum growth rate of XOHO on SSLOW 1.5 d-1 
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Figure 21 presents the HRAS model output as either a function of SRT, or as a 

function of DO concentration.  The parameters affected by SRT and DO were ffCOD 

removal (SBf +SBs+SI), and colloidal COD removal.  These predictions are compared to the 

corresponding experimental data from Jimenez et al., 2002.  Overall, the model outputs 

capture all the experimental trends. 

For the removal of soluble readily biodegradable substrate (Figure 21a,b) the 

maximum growth rates used for SBf and SBs were 7 d-1 and 1.5 d-1 respectively.  One 

challenge that had to be overcome during calibration involved developing the matrix so that 

the model would accurately predict results at low DO’s.  Initially, the matrix was designed to 

hydrolyze the particulate biodegradable substrate (XB) to SBf.  At a maximum growth rate for 

SBf greater than or equal to 3 d-1, the HRAS model over predicted the readily biodegradable 

COD removal at low DO but trended well at the higher DO (greater than or equal to 1.0 

mg/l).  Since SBf is considered to consist of the most biodegradable fraction of the influent 

organics (e.g. due to low molecular weights, functional groups that facilitate biodegradation, 

compounds with constitutive enzymes corresponding to them, etc.) we expect a high growth 

rate.  Laspidou et al. (2002a) used a growth rate of 7.5 d-1.  In order to lower the removal 

efficiency of soluble organics in the HRAS model to those that were observed, the HRAS 

matrix was modified so that XB is hydrolyzed to SBs.  However, this modification alone did 

not improve the model accuracy, in fact, it had the opposite effect.  This was due to  two 

factors, one XB was now hydrolyzing to produce more SBs and second the utilization of SBs 

was slowed by a switching function preventing SBs uptake until all the SBf was utilized.  The 

solution was to increase the growth rate on SBf to 7 d-1 (which was a value that also agreed 
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better with  Laspidou et al., 2002a) which accelerated the utilization of SBf and initiated the 

uptake of SBs sooner.  The utilization of SBs was controlled by the maximum growth rate on 

SBs, and this value was adjusted to 1.5 d-1 so that the simulated removal of soluble COD fit 

the data.  Using this value and the revised maximum growth rate for SBf, the HRAS model 

results trended well with the experimental data (Figure 21a, b).  

 

Figure 21: HRAS model calibration results. 

 

Colloidal substrate removal (Figure 21c,d) was calibrated by adjusting the adsorption 

rate parameter qADS (0.08 d-1) and the surface limitation parameter KSL(0.002) until the 

HRAS model results trended well with the experimental data (Figure 21c, d).  Future 

research includes experiments to further validate these parameter values 
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4.4 Conclusions 

Simulation of the HRAS system was accomplished by including the kinetics of 

flocculation on the overall particulate and colloidal substrate removal process.  In addition, 

the removal of soluble substrate in an HRAS system was simulated by differentiating the 

COD that is non-biodegradable in the HRAS system but biodegradable in longer SRT/HRT 

systems.  The biosynthesis and hydrolysis/biodegradation of EPS and storage products were 

also included.  All of the changes made were driven by observed data with the exception of 

including storage products. 

The following list summarizes the preliminary conclusions based on the work completed 

to date:  

1. Differentiating SS into SBf and SBs allowed simulation of the difference in the effluent 

soluble COD of the HRAS (A stage) effluent versus the higher SRT/HRT B stage. 

2. Differentiating colloidal COD from particulate COD allowed better simulation of the 

partial removal of this wastewater constituent observed in HRAS and B stage 

effluent. 

3. The model framework presented in this paper is preliminary and just one approach 

that our team is evaluating.  Future research efforts will evaluate alternatives, e.g. 

single substrate, in order to develop a reliable and efficient HRAS mathematical 

model. 
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CHAPTER 5  

MODELLING OF ORGANIC SUBSTRATE TRANSFORMATION IN THE HIGH-

RATE ACTIVATED SLUDGE PROCESS 

Note: The contents of this chapter has been approved for publication in Water Science & 

Technology. Thomas M. Nogaj, Andrew A. Randall, Jose A. Jimenez, Imre Takacs, Charles 

B. Bott, Mark W. Miller, Sudhir Murthy and Bernhard Wett; Modelling Of Organic Substrate 

Transformation In The High-Rate Activated Sludge Process 

 

5.1 Introduction 

The high-rate activated sludge (HRAS) process for carbon removal uses high food-to-

microorganism ratios and low solids and hydraulic retention times (SRT and HRT) for the 

biological transformation and removal of wastewater organics (COD). When a HRAS system 

is the first step in the Adsorption-Bio-oxidation (A/B) process(Bohnke & Diering, 1986), the 

general objectives are to maximize the removal of organics through adsorption/absorption 

while minimizing the energy input required for treatment and to produce large amounts of 

waste sludge that can be converted to biogas by anaerobic digestion (Schulze-Rettmer & 

Zuckut, 1998). A key mechanism in the adsorption of colloidal and particulate COD is the 

production of extracellular polymeric substances (EPS) produced as part of the aerobic 

growth transformation process. It is argued that the production of EPS is essential to sludge 

floc formation (Li & Yang, 2007).  A key mechanism in the absorption of soluble substrate is 

the production of cellular storage products.  The literature (Beun et al., 2000; Third et al., 

2003) suggests that the operating environment of HRAS systems, high F/M ratios and low 

DO, is conducive to the production of storage products which allows for the redirection of 

COD to downstream processes e.g. anaerobic digestion for energy recovery.  Hence, accurate 
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modelling of this system is of importance to design, control, and optimize the performance of 

not only HRAS systems but of the A/B process as a whole. 

The modelling of the activated sludge process, particularly the COD transformations, 

has significantly evolved towards fundamental principles in the past decades from simple 

single-substrate models to more complex multiple-substrate models involving the processes 

of oxidation, hydrolysis and storage (Dold et al., 1980; Sin et al., 2005). However, these 

models have evolved to describe COD removal in systems operating at long SRT (i.e. > 3 

days) where the biodegradable soluble organic substrate (SB) can be modelled as a single 

substrate with a single kinetic expression. However, full-scale and pilot-scale results from 

HRAS (Haider et al., 2003; Jimenez, 2002; Miller et al., 2012) show that very low SRT (i.e. 

< 1 day) may result in a selection of fast growing bacteria, which are only able to biodegrade 

the most readily degradable organics in the process conditions of the A-stage (i.e. low SRT 

and short contact time). Haider et al. (2003) showed that the inert soluble COD fraction (SU) 

in the effluent from a HRAS with an SRT of 0.5 days was always higher than the same COD 

fraction from a system with an SRT of 20 days. Hence, they recommended that for 

modelling, the SB fraction of the wastewater should be split into two distinct biodegradable 

fractions. In addition, current models assume that flocculation and adsorption of colloidal and 

particulate substrate (CB and XB) is complete and instantaneous; hence, flocculation can be 

ignored in these models (Haider et al., 2003; Jimenez, 2002). However, in HRAS systems 

such as those employed in the A/B process, these assumptions with respect to organic 

substrate flocculation are no longer applicable (Jimenez et al., 2005) and removal of XB and 

CB is only partial.  
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5.1.1 ASM1 Model 

The ASM1 model framework as presented by (Henze et al., 2000) was used as a first 

step to simulate the performance of the HRAS system and the results are depicted in Figure 

22.  In summary, the ASM1 model does not properly predict the removal of organic substrate 

at low SRTs. The ASM1 model under predicts the performance of the HRAS system with 

respect to effluent soluble COD and does not address the higher effluent colloidal CODs 

observed for the HRAS. 

 

Figure 22: ASM1 Prediction for the HRAS System [Aerobic SRT = 0.25 d, DO = 0.2 mg/L, HRT = 30 

min, 𝜇max = 6.0 d-1 ; Ks = 20 mg/L; KO,H = 0.2 mg/L; bH = 0.62 d-1; YH = 0.67] 

 

This study discusses a modelling approach which evaluates the organic substrate 

transformations as it pertains to HRAS systems.  This approach uses the Activated Sludge 

Model No.1 (ASM1) (Henze et al., 2000) as the initial framework. The original framework 

was modified to describe the proper mechanisms required to accurately describe the 

performance of the HRAS system. 
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5.2 Materials and Methods 

Historical operating data from two pilot systems were evaluated to understand the 

organic substrate transformation mechanisms in HRAS and used to calibrate and validate the 

proposed process model. The data used during this study includes operating data from an A-

stage pilot plant owned and operated by the Hampton Roads Sanitation District (HRSD) 

(Miller et al., 2013) and from a HRAS  pilot plant operated at the University of New Orleans 

(Jimenez et al. unpublished data). 

HRSD owns and operates an A/B (adsorption/bio-oxidation) pilot plant located at the 

Chesapeake-Elizabeth treatment plant in Virginia Beach, Virginia. The pilot plant consists of 

a HRAS reactor for carbon removal followed by a B-stage for nitrogen removal (Figure 23). 

Currently, the HRAS A-stage includes three reactors (45 gal per reactor), operated at a 0.2 

day SRT and 0.5 hour HRT, and is fed screened and degritted raw municipal wastewater at 

4.5 gpm (24.53 m3/d). 

 

 

Figure 23: HRSD A-stage pilot plant configuration 
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The dataset used to calibrate the modified models was collected by Jimenez 

(unpublished data) and is refered to as the New Orleans (NO) dataset.  The SRT and DO 

concentration were varied by Jimenez in order to evaluate the effect of these operating 

parameters on the production of EPS and the removal of organic substrate, and the same 

parameters were varied in the models presented in this paper during calibration using the NO 

dataset.    

A partial list of the kinetic parameter values established through model calibration is 

summarized in Table 49 in Appendix F.  The kinetic parameters added represent the 

pathways incorporated in the modified models for soluble substrate, EPS production, 

adsorption/flocculation and creation of storage polymers. 

The New Orleans (NO) is a HRAS pilot plant comprised of the following 

components: a rotating screen, an inlet mechanism (30 gal mixing tank), an aeration tank (40 

gal), a mechanical flocculator and a secondary clarifier (70 gal) (Figure 24). The unit was 

designed for a flow rate of 7.5m3/d (2000gal/d), a hydraulic retention time in the aeration 

tank of 30 minutes, and the SRT varied from 0.3 days to 2 days. 

 

Influent
Effluent

Rotating 

Screen

Aeration tank Mechanical 

Flocculator

Secondary 

Clarifier

RAS

Inlet

Mechanism

 

Figure 24:  University of New Orleans pilot plant configuration 
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The sampling plan for the NO pilot plant involved collecting grab samples several times 

per week.  The sampling points include the effluent from the rotary screen (plant influent), 

the supernatant and MLSS from the solids contact tank, the return activated sludge and 

secondary effluent.  Sample were analysed for total COD, filtered COD using a 0.45 micron 

Hach No. 300 glass qualitative filter paper, dissolved COD using flocculated samples filtered 

using  a 0.45 micron Hach No. 300 glass qualitative filter paper, total and volatile suspended 

solids.  EPS was extracted by using the extraction method developed by Frolund et al. (1995) 

and is summarized as follows: 

  

 300 ml of sludge were transferred to an extraction beaker with baffles and the CER 

was added (70g CER/g VS).  

 The suspension was stirred for 3 hours at 1000 rpm.  

 The extracted EPS were harvested by centrifugation of a sample of the CER-sludge 

suspension for 1 minute at 12,000g to remove the CER.  

 The supernatant was centrifuged twice for 15 minutes at 12,000g in order to remove 

remaining floc components.  

 EPS was quantified by measuring the total organic carbon content of the sample by 

using an Apollo 9000HS-TOC analyzer fabricated by Tekmar-Dohrmann.   

 

 EPS was extracted at least three times per SRT. Triplicate values were averaged. 
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Dynamic simulations were run to calibrate and validate the HRAS model framework.  

The model was calibrated against the NO dataset based on the removal efficiency of the 

soluble (SB) and colloidal COD and the EPS production rate.  These parameters were 

evaluated under variable SRT and variable DO (constant SRT) conditions.  Model validation 

was based on the removal efficiency of the soluble substrate (SB) using a subset of the HRSD 

dataset spanning a 4 week period.  Weekly averages were used as input parameters generated 

from daily composite samples.  

5.3 Modified Model Description 

To describe the behavior of the HRAS pilot plants, the ASM1 model was modified to 

incorporate non-steady state material balance equations for dual soluble substrate (SBf, SBs) 

utilization, production of EPS (XEPS), production of storage products (XSTO), and adsorption 

of inert and biodegradable colloidal COD (CU and CB,).  The modifications were also 

influenced by the literature (Jimenez, 2002; Laspidou & Rittmann, 2002b; Miller et al., 

2013). 

5.3.1 Fate of Soluble Substrate 

Conventionally, the method to quantify the non-biodegradable soluble COD from an 

activated sludge plant is to operate a laboratory or pilot scale system at an SRT longer than 3 

days (Ekama et al., 1986) and use the effluent soluble COD as the non-biodegradable soluble 

fraction. However, at the low SRT (and low HRT) of the HRAS system, this method is no 

longer valid since there is a fraction of the effluent COD that is biodegradable in the higher 

SRT B-stage, but not biodegradable in the A-stage. This led to the establishment of two state 
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variables for SB designated as SBf (SB fast) and SBs (SB slow).  SBf corresponds to the high 

affinity soluble COD that is biodegradable in the HRAS system at low SRT and HRT 

(Haider et al., 2003; Pala-Ozkok et al., 2013).   The high affinity substrate is defined as the 

raw influent SCVFA concentration.  To further support this fractionation; in our model SBf is 

removed in the A-stage which is validated by the experimental results from the HRSD A-

stage pilot which shows, on average, 95 percent removal of influent SCVFAs.  SBs is the 

lower affinity fraction of the soluble COD that is biodegradable at a slower rate in the HRAS 

system and thus only partially biodegraded in the A-stage. Two modified models were 

developed. In one model, SBf is biodegraded first, and it is only when SBf is fully utilized that 

biodegradation of SBs becomes significant. This is analogous to diauxic growth in which one 

substrate is biodegraded immediately by constitutive enzymes, and only when the first 

substrate runs out are enzymes induced for metabolism of the second substrate. The data does 

not show, or disprove, this mechanism, but this model is at least plausible mechanistically. 

This is referred to in this study as the Diauxic Model.  The second model is a dual substrate 

model where SBf and SBs are utilized simultaneously with the growth on SBf occurring at a 

higher maximum specific substrate utilization rate than growth on SBs. This model is referred 

to as the Dual Substrate Model in this study. The difference between the two model 

frameworks is the addition of an inhibition function in the Diauxic Model (KBf/(KBf+SBf)) 

which applies to heterotrophic growth on SBs. There are significant differences in the kinetics 

between each model with the diauxic model including maximum growth rates and half 

saturation coefficients for each soluble substrate fraction.  The Dual Substrate Model uses a 

single maximum growth rates with specific half saturation coefficients for each fraction.  
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Using ASM1 as the template for the development of both models several new state variables 

were added to the matrix, a list of the state variables added to both models is shown in Table 

15.  The stoichiometric and kinetic matrices were also modified with the changes included in 

Appendix F.  Further details are discussed in the following sections. 

 

Table 15  Partial list of state variables (gCOD.m-3) 

 

Symbol Name 

SU Soluble non-biodegradable organics 

SBf Rapidly biodegradable soluble organics 

SBs Slowly biodegradable soluble organics 

CU Colloidal non-biodegradable organics 

CB Colloidal biodegradable organics 

XU Particulate non-biodegradable organics 

XB Particulate biodegradable organics 

XOHO Active ordinary heterotrophic organisms 

XE Particulate non-biodegradable endogenous products 

XEPS Extracellular polymeric substances 

XSTO Intracellular storage polymeric substances 

 

5.3.2 Adsorption of Colloidal COD 

For the purpose of this investigation, the particulate COD (pCOD) consists of organic 

suspended solids (ssCOD) in the wastewater (pCOD =TCOD + sCOD).  The soluble COD 
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(sCOD) excluding colloids is the truly soluble organic material in the wastewater and this 

was quantified by coagulation/flocculation followed by filtration (i.e. ffCOD) (Mamais et al., 

1993). The sCOD is the sum of the state variables SBf, SBs and SU.  

In the Diauxic model it must be noted that the growth rates from SBf and SBs will 

never both be significant at the same time.  This is due to the model kinetic equations being 

such that SBs transformations will not be significant until SBf runs out (i.e. when SBf < KBf).  

The colloidal substrate is distinguished from suspended material in the HRAS model 

since flocculation and enmeshment of colloidal solids may not be complete in low SRT and 

HRT HRAS systems.  The colloidal fraction is separated into its’ biodegradable fraction (CB) 

and its’ non-biodegradable fraction (CU) and added as new state variables.  The CB are 

enmeshed into XB via bio-flocculation (see process r5 in Table 47 of the Appendix F) and 

when this occurs in the model they become part of the XB which can subsequently be 

hydrolyzed (process r4) to form SBs.  The kinetic rate expression for flocculation is a first-

order rate expression with respect to the colloidal concentration (See Table 48 in Appendix 

F).  The CB is flocculated onto the XB, becoming part of that category of organics. The 

adsorbed organics are then converted through hydrolysis to SBs which can then be oxidized or 

converted to EPS or biomass by the microorganisms. The CU is flocculated onto the XU and 

removed from the system through wasting.  The A-stage influent CU concentration is defined 

as the B-stage effluent CU concentration.  Due to flocculation and adsorption in the B-stage, 

this definition could result in the model under estimating the influent CU concentration, just 

as current methods for estimating SI for ASM1 and ASM2 type-models may over-estimate SI 

since soluble microbial products are not explicitly accounted for because it is not practical to 
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do so.  This is the same reason we do not explicitly account for the bio-

flocculative/adsorptive removal of influent CU.     However, better methods for determining 

these COD fractions  may be developed in future  investigations, with the major difficulty 

being developing something still suitable for practical use (as the current method we propose 

is), as opposed to methods only possible in a handful of academic labs 

5.3.3 EPS Production 

Extracellular polymeric substances (EPS) production impacts the bioflocculation 

removal efficiency for particulate and colloidal substrate (Jimenez, 2002). The EPS data 

produced by Jimenez et al. (unpublished data) was used as calibration data for the models. 

This dataset shows a linear correlation between substrate utilization rate and EPS production 

and an increase in EPS production with SRT over a range of 0.3 to 2.0 days. In addition, EPS 

increased with the DO concentration over the same range of SRT values. Laspidou and 

Rittmann (2002a)  indicated that the net EPS  concentration is a function of the portion of 

influent soluble substrate (substrate electron pool) shunted to EPS formation versus the EPS 

hydrolysis rate. Hence, the modified models incorporate EPS production as part of the 

aerobic growth process on SBf and SBs. The proportionality coefficient kEPS,PC (Equation 18) 

quantifies the portion of influent electrons shunted to EPS formation. The portion of substrate 

electrons that are shunted to EPS formations (kEPS,PC) are then subtracted from the biomass 

yield coefficient YOHO,AER, i.e. YOHO,AER*(1- kEPS,PC)), reducing the electrons available for 

biomass synthesis.  In the Diauxic model, EPS formation is first driven by SBf during aerobic 

growth. EPS formation on SBs does not occur until SBf starts to run out. In contrast, the EPS 

formation in the Dual Substrate model occurs simultaneously on both soluble substrate 
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fractions. Additional SBs becomes available through hydrolysis of XB  (Carucci et al., 2001).  

The values for kEPS,MAX (maximum EPS production) and KO,EPS were estimated using a 

nonlinear regression analysis of the EPS production data vs DO concentration data provided 

by (Jimenez, 2002).  This analysis resulted in an estimated kEPS,MAX value of 0.25 (g 

CODEPS/g VSS) and KO,EPS value of 1.5 (gSO2/m
3).  The proportionality coefficient kEPS, PC is 

calculated as shown in Equation 17 and Equation 18. 

𝐤𝐄𝐏𝐒,𝐒𝐂 = (𝐤𝐄𝐏𝐒,𝐌𝐀𝐗𝐢𝐂𝐁 ) × ( 𝐒𝐎𝟐(𝐊𝐎,𝐄𝐏𝐒+𝐒𝐎𝟐)) ( 17 ) 

The value kEPS,SC is the stoichiometric coefficient (SC) normalized to the  biomass 

concentration (gCODEPS/gCODXOHO).   The term iCB (1.48 gCODXOHO/gVSS) is a 

stoichiometric conversion factor that converts kEPS,MAX from units of gCODEPS/gVSS to 

gCODEPS/gCODXOHO.  Since EPS is produced as a function of growth rate, and EPS 

hydrolysis is first order with respect to the amount of EPS available, EPS increases at very 

low SRTs. But as SRT increases a point is reached where the EPS hydrolysis rate exceeds 

EPS production, and beyond that point EPS decreases with increasing SRT.  For the current 

models that occurred at an SRT greater than 2.0 days. 

  𝒌𝐄𝐏𝐒,𝐏𝐂 = (𝐤𝐄𝐏𝐒.𝐒𝐂×𝐘𝐎𝐇𝐎,𝐀𝐄𝐑)×(𝟏−𝐤𝐒𝐓𝐎,𝐏𝐂)(𝟏+(𝐤𝐄𝐏𝐒,𝐒𝐂×𝐘𝐎𝐇𝐎,𝐀𝐄𝐑))  ( 18 ) 

 

5.3.4 Production of Storage Products 

Review of the literature suggests that systems operated at low DO concentrations 

(<0.9 mg/L; according to Third et al., 2003), typical of a HRAS system, the microbial uptake 

of rapidly biodegradable soluble COD (SBf) could result in the formation of storage 
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polymers.  Third et al. (2003) found using acetate as the substrate for COD, the microbial 

uptake of acetate and its conversion to storage polymers was strictly oxygen dependent. At 

low DO, the flow of electrons was used for acetate uptake and production of storage 

polymers. Higher DO supply rates resulted in higher growth rates with the flow of electrons 

mainly going to biomass production with approximately 20% of the substrate being oxidized, 

independent of the DO concentration.  The following expression was added to both the 

Diauxic and Dual Substrate models to simulate the flow of electrons to storage as a function 

of DO concentration. 

𝐟𝐒𝐓𝐎 = (𝒇𝑺𝒉𝒖𝒏𝒕,𝒎𝒂𝒙) × ( 𝐒𝐎𝟐(𝐊𝐎,𝐒𝐓𝐎+𝐒𝐎𝟐)) ( 19 ) 

 

Where fSTO represents the fraction of storage products in the active biomass, fShunt,max 

represents the maximum flow of electrons as a function of dissolved oxygen concentration 

and KO,STO is the half-saturation coefficient for SO2.   

The diversion of substrate electrons to storage in the modified models is represented 

by the proportionality constant kSTO,PC.  The portion of electrons that are shunted to kSTO,PC 

are also subtracted from the biomass yield coefficient YOHO,AER, i.e.  (YOHO,AER*(1- kEPS,PC – 

kSTO,PC)),  for aerobic growth using SBf and SBs,  further reducing the electrons available for 

biomass synthesis. Storage products are biodegraded in the model when both SBf and SBs are 

depleted.  XSTO is hydrolyzed directly to SBs and used for aerobic growth in such cases. 
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5.4 Results and Discussion 

The Diauxic and Dual Substrate models were analyzed using the process simulator 

software SUMO version 0.9.15.0 developed by Dynamita (Nyons, France). The experimental 

datasets from New Orleans and HRSD were used to calibrate and validate the modified 

models. 

5.4.1 Model Calibration 

The soluble substrate (SB) removal efficiency for the NO dataset of 70 percent 

compared to 69 percent for the Dual Substrate Model and 64 percent for the Diauxic Model 

indicates that, although both models were effective in predicting the removal efficiency, the 

dual substrate model results were slightly closer to the NO data.  Figure 25 presents 

calibration curves comparing the Dual Substrate Model results, as a function of SRT and DO, 

with the NO experimental data.  The model fit the NO data reasonably well.  

Colloidal substrate removal was calibrated by adjusting the adsorption rate parameter 

qADS (0.07 d-1) and the surface limitation parameter KSL (0.002) until the Dual Substrate 

Model results trended well with the experimental date.  Ongoing research includes analysis 

of independent datasets to validate these parameter values. 
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Figure 25: Dual Substrate Model calibration results 

 

5.4.2 Modified Model Validation 

The HRSD dataset used for validation spanned a four week period where the pilot 

plant had reached steady-state operating conditions.  Weekly averages, based on daily 

composite samples, were calculated for that period and the data reduced to a format 

compatible with the models.  Influent values for select state variables are shown in Table 16. 

SU, SBs, CB and CU were obtained by comparing the A-stage (low SRT) and B-stage (high 

SRT) effluent COD fractions, including 1.5 micron filtration, ffCOD (0.45 micron membrane 

filters plus coagulant) and VFAs. Dynamic input data for model validation also included 

weekly DO concentrations, and return and waste activated sludge (RAS and WAS) flow. 
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Table 16 Influent state variables for model validation 

Time 

(week) 

Q 

(m3/d) 

SU 

(g/m3) 

SBf  

(g/m3) 

SBs 

(g/m3) 

CU 

(g/m3) 

CB 

(g/m3) 

XU 

(g/m3) 

XB 

(g/m3) 

XOHO 

(g/m3) 

1 24.53 28±1.2 53±2.7 76±3.0 4±0.5 44±4.5 31±5.5 312±34 20±1.0 

2 24.53 19±1.03 50±3.12 89±5.4 11±1.5 40±3.5 38±6.5 278±58.7 20±1.34 

3 24.53 19±0.22 51±0.6 89±1.01 10±1.75 324.0± 53±3 355±2.89 40±0.25 

4 24.53 27±0.31 48±0.72 83±0.94 2±0.2 53±7.0 20±1.5 362±13.2 40±0.25 

Ranges shown are ± one standard deviation. 

 

Dynamic simulations were performed in order to compare the predicted effluent 

values with those of the HRSD pilot plant.  Figure 26a presents a comparison of the effluent 

soluble biodegradable fraction (SBf + SBs) for both the Diauxic and Dual Substrate models. 

Based on these results, the Dual Substrate model better predicts the performance of the 

HRSD pilot plant, however this may be due to the specific process configuration (especially 

HRT) in combination with the specific value of the switching function parameter in the 

Diauxic Model.  This will be further evaluated in the future. Figure 26b shows the Dual 

Substrate Model predicted values for SBf and SBs. Based on the definition of the SBf and SBs 

fractions discussed previously, the model predicts almost full removal of SBf whereas a 

significant part of the SBs fraction passes through the biological reactor operated at an SRT of 

approximately 0.2 days.  

The A-stage typically removed 68 to 77% of the influent SBs with the remainder being 

removed in the B-stage. The lower removal efficiencies/higher effluent SB in the A-stage 
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during weeks 1 and 2 can be attributed to lower SRTs (0.086 and 0.126 days respectively) 

when compared to weeks 3 and 4 (0.236 and 0.23 days respectively). 

 

 

 

Figure 26: Validation Results for the Diauxic and Dual Substrate models 

 

5.4.3 Effect of Influent Biomass 

The HRSD pilot operates at an SRT approaching the washout SRT condition based 

on the maximum growth rate for the heterotrophic biomass population.  This results in a 

biomass population that varies significantly depending on the influent biomass concentration.   

Figure 27 shows the effect of influent biomass concentration at various SRT’s on the reactor 

biomass concentration.  The results show that as the SRT increases above 0.3 d, the biomass 
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concentration in the reactor approaches a condition where the influent biomass concentration 

no longer determines the reactor biomass concentration.  However, at the lower SRT (typical 

of the HRSD pilot) the biomass concentration varies significantly depending on the influent 

biomass concentration. Therefore, the influent biomass concentration is essential to the 

model’s ability to predict the MLVSS and the removal of soluble COD.  This is consistent 

with the results in Figure 26 where the influent biomass concentration increased for weeks 3 

and 4 (Table 16). 

 

Figure 27: Effect of Influent Biomass Concentration 

 

5.5 Conclusions 

A modified ASM1 model was developed to describe the organic substrate 

transformation in the high-rate activated sludge (HRAS) process. Data from two HRAS pilot 

plants was used to calibrate and to validate the proposed model for HRAS systems. Two 

soluble substrate models were evaluated during this study, i.e. the Dual Substrate and the 

Diauxic Models. Both models used two state variables for biodegradable soluble substrate 
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(SBf and SBs) and a single biomass population. The Dual Substrate model provided better 

results than the Diauxic model and therefore it was adopted during this study. Overall;  

 

 The Dual Substrate model described successfully the higher effluent soluble COD 

observed in the HRAS systems due to the partial removal of SBs which is almost 

completely removed in higher SRT systems.  

 The Dual Substrate Model was able to accurately predict the elevated (compared to 

SRT>>1day) effluent soluble COD for the HRSD A-stage. 

 The Dual Substrate Model was more accurate than the Diauxic Model with respect to 

effluent soluble COD during the validation phase using HRSD A-stage data. 
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CHAPTER 6  

MATHEMATICAL MODELING OF THE HIGH RATE ACTIVATED SLUDGE 

SYSTEM: OPTIMIZING THE COD:N RATIO IN THE PROCESS EFFLUENT  

Note: The contents of this chapter will be submitted for publication in Water Research. 

Thomas M. Nogaj, Andrew A. Randall, Jose A. Jimenez, Imre Takacs, Charles B. Bott, Mark 

W. Miller, Sudhir Murthy and Bernhard Wett; Mathematical Modeling Of The High Rate 

Activated Sludge System: Optimizing The COD:N Ratio In The Process Effluent 

 

6.1 Introduction  

The industry has shown a considerable amount of interest in alternative approaches to 

nitrogen removal; one such approach is partial nitrification, i.e.  the oxidation of ammonium 

to nitrite (nitrite pathway).  This approach is a modification of the conventional process 

(Figure 28) where the second step in the nitrification pathway is shunted to the second step of 

the denitrification pathway, in other words, the second step of nitrification (Nitratation) and 

the first step of denitrification (Denitratation) are eliminated.  The elimination of these two 

steps is referred to as “Nitrite Shunt”.   

 

 

Figure 28: Conventional Nitrogen Removal  
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The goal is to eliminate nitrite oxidizing bacteria (NOB) from the reactor while 

selecting for ammonia oxidizing bacteria (AOB) (Regmi et al., 2012) . This process is 

illustrated Figure 29, where the first step is referred to as the nitritation step and the second is 

denitritation.  This paper evaluates a mainstream A/B (Adsorption/Bio-oxidation) process 

focusing on the performance of the A-stage, specifically, the factors effecting the COD:N 

(total COD:TKN) ratio in the A-stage effluent.   The advantages of this approach include: 

 A  reduction in oxygen demand (energy) 

 No supplemental carbon source is needed (use COD in the A-stage 

effluent) 

 

These advantages would result in lower capital investment as the result of a decrease 

in required reactor volumes, and a savings in annual operational costs.  Along with the 

advantages to this approach there are several operational challenges, the most critical being 

able to attain nitritation through NOB suppression.  The challenge is to reduce the carbon 

passed to the activated sludge reactor to a level that favors the growth of autotrophic 

biomass, but also drives the denitritation process by heterotrophic biomass. This would avoid 

having to provide an exogenous carbon source, e.g. methanol or acetate, to drive 

denitrification.  The optimal amount of carbon passed to the activated sludge process is 

measured based on the COD:N ratio.  The COD:N ratio in the B-stage influent (A-stage 

effluent) needed to support nitrogen removal in the B-stage is dependent on the type 

treatment provided in the B-stage.  More influent COD may be needed due to the control 

strategy employed in the B-stage.  One strategy used is transient anoxia (Regmi et al., 2014) , 

where the air flow is cycled on/off  based on select set points, the COD is needed to drive 

down the residual DO concentration in the reactor (when air flow is off)  to suppress NOB 
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activity.  Current research suggests that conventional nitrification/denitrification may require 

a COD:N ratio of  ≥ 9:1 (Grady et al., 2011; Lemaire et al., 2008), nitritation/ anammox may 

require a COD:N ratio ≤ 3:1 (Desloover et al., 2011; Jenni et al., 2014), and 

nitritation/denitritation a COD:N ratio of 7:1(Lemaire et al., 2008; Regmi et al., 2014). 

 

 

 
 

Figure 29:  Nitrite Shunt  

 

6.2 Materials and Methods  

A calibrated process model(Nogaj et al., 2013), using SUMO (developed by 

Dynamita, Nyons, France) was used to evaluate the impact of process operating parameters 

on the effluent COD:N ratio.  The process matrix used for this analysis was developed to 

model a HRAS system (Nogaj et al., 2013).    The process configuration is shown in Figure 

30.  
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Figure 30:  HRAS Process Configuration in SUMO 

 

Historical operating data from two pilot systems were used to understand the effect of 

varying specific HRAS operating parameters on the soluble substrate removal and 

bioflocculation mechanisms in the HRAS model. The data used during this study includes 

operating data from an A-stage pilot plant owned and operated by the Hampton Roads 

Sanitation District (HRSD)  (Miller et al., 2013) and from a HRAS  pilot plant operated by 

the University of New Orleans (Jimenez, 2014). 

The HRAS model process matrix subdivided the readily biodegradable fraction into 

SBf (VFAs) and SBs (the same as ASM2 F-rbCOD).  Biodegradable non-soluble COD is 

subdivided into particulate COD (XCOD) and colloidal (CB).  The HRAS model also includes 

storage of soluble biodegradable substrate, hydrolysis and oxidation. 

The stoichiometry for the aerobic growth of heterotrophic biomass on both SBf and 

SBs shunts influent electrons (COD), not just for growth and maintenance, but also for the 

production of extracellular polymeric substances (XEPS) and cellular storage products (XSTO).  

The rate of bioflocculation is a function of the concentration of colloidal substrate, the total 

active biomass and EPS in the reactor. 
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6.3 Results and Discussion 

One of the benefits of nitrite shunt is the lower operating costs associated with the 

reduction in COD required to complete the denitrification process.  Lemaire et al. (2008) 

demonstrated this concept by adjusting the influent readily biodegradable COD (rbCOD) 

concentration feeding a single lab scale SBR providing biological nutrient removal.  They 

found that by reducing the influent rbCOD concentration; the NOx
- (nitrite + nitrate) started 

to accumulate in the effluent apparently caused by incomplete denitrification due to lack of 

COD supply.   They found that the COD:N ratio required for conventional nitrification 

(active nitrate pathway) was approximately 9:1, whereas, when the system was operating via 

the nitrite pathway the COD:N ratio was around 7:1.  These results support the reduced COD 

requirement for nitrite shunt.  The relatively high COD:N ratio reported by  Lemaire et al. 

(2008)  may be due to the specificity of the wastewater treated (i.e., high levels of slowly 

biodegradable particulate COD and non-biodegradable COD).  Also, additional nutrient 

removal (biological P) was achieved in their experiments.   

The significance of the colloidal fraction of COD cannot be ignored when modeling 

HRAS systems. The removal efficiency of the colloidal fraction of COD is a function of the 

active biomass and EPS concentrations in the reactor; both of which are a function of the 

SRT.  Longer SRTs (≥ 0.5 days) result in an increase in active biomass and EPS 

concentrations in the reactor, resulting in an increase in CB removal efficiency.  Regmi et al. 

(2014)  hypothesized that the type and quantity of COD is important in inducing and 

maintaining NOB suppression and AOB activity.  A rise in the soluble COD fraction in the 

HRAS effluent would result in a larger portion of the influent COD being rapidly removal 
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downstream, making less COD available for denitritation.  The ideal effluent from the HRAS 

system would consist primarily of colloidal COD.   Colloidal COD can be better managed 

downstream in the B-stage due the slower kinetics associated with hydrolysis.   

The International Water Association (IWA) task group on mathematical modeling for 

design and operation of biological wastewater treatment processes has introduced activated-

sludge models ASM  No. 1, 2, 2D, and 3 (Henze et al., 2000). ASM1, which targets the 

removal of carbon and nitrogen, assumes a two-step process for the removal of slowly 

biodegradable substrate (primarily particulate substrate and colloidal substrate): 

instantaneous enmeshment and hydrolysis of particulate and colloidal substrate followed by 

oxidation of soluble biodegradable substrate.  Flocculation plays a major role in the removal 

of particulate and colloidal COD and many operational parameters such as SRT, DO and 

HRT can affect their removal in the activated sludge process (Jimenez et al., 2005, 2007).  

The HRAS model includes mechanisms for the removal of the colloidal fraction of COD 

through the bioflocculation transformation process.  Depending on how the HRAS process is 

operated the removal efficiency of the colloidal fraction of COD can have a significant 

impact on the TCOD in the reactor effluent, which impacts the colloidal COD fraction of the 

COD:N ratio received downstream.   

A number of HRAS model (Nogaj et al., 2013)  simulations were run in order to 

determine the effect of varying on the A-stage operating parameters  on the effluent COD:N 

ratio. The model predictions for SB removal, EPS production, CB removal and storage 

products (XSTO) were compared to support the model results.  These results are based on the 

New Orleans data set which has an influent COD:N(TKN) ratio of 8.5:1. 
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It is important to keep in mind, the COD:N ratio in the influent to the B-stage is only 

one of the criteria used for the out selection of NOBs, additional parameters include low SRT 

and intermittent aeration.  The focus of this paper is on the operational factors effecting the 

COD:N ratio in the A-stage effluent. 

6.3.1 Variable SRT 

Preliminary results using the HRAS model at variable SRT (DO > 1 mg/l) are shown 

Figure 31.  The results (Figure 31a) show that the COD:N(TKN) ratio decreases as the SRT 

increases from 0.3 days to 2 days.  The most significant reduction occurs between 0.5 and 1.5 

days which correlates well with the production of EPS (Figure 31c), the removal of the 

colloidal fraction of the influent COD, and the increase in active biomass (MLVSS) 

concentration (Figure 31d) in the reactor.    
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Figure 31: Effect of variable SRT on A-stage effluent COD:N ratios (a),  TCOD fractions (b), EPS 

production (c) and active biomass concentration (d) (HRAS model), ST = SU + SBf + SBs where SU is the 

inert fraction. 

 

The total COD fractions are shown in Figure 31b.  At the lower SRTs the total COD 

consists primarily of colloidal and particulate COD (> 65 %), which, correlates well with the 

lower EPS production rate and active biomass concentration.  These results suggest that 

operating at low SRTs and a DO > 1.0 mg/l, would increase the COD:N ratio to a value 

adequate to support the B-stage nitritation/denitritation process.  In addition, the composition 

of the total COD in the A-stage effluent, has the highest percentage of colloidal COD, would 

be more suitable for the nitritation process (Regmi et al., 2013).   
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6.3.2 Variable Dissolved Oxygen 

The effect of variable DO concentration in the reactor was evaluated at an SRT of 1.5 

days and 0.13 days.  The lower SRT (0.13 days) is more representative of the HRSD data set.  

Figure 32 shows COD:N ratios at variable DO for an SRT of 1.5 days.  The results suggest 

that at lower DO’s the COD:N ratio would be adequate to support a downstream nitritation 

process. This would largely be due to the lower removal efficiency of colloidal and 

particulate COD, although the soluble biodegradable COD concentration also increases at 

low SRTs (data not shown).  Again, the higher percentage of colloidal and particulate COD 

correlates well with the EPS production rate and active biomass concentrations.  Based on 

the literature these results would suggest that an adequate COD:N ratio would result at the 

lower DO concentrations with the total COD composition that would be ideal to support the 

nitritation process.  At higher DO concentrations (≥ 1.0 mg/L) COD:N ratios are less than 3 

suggesting that an insufficient amount of COD would be available; a supplemental source of 

carbon would be required. 
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Figure 32:  Effect of variable DO on A –stage effluent COD:N ratios (a),  TCOD fractions (b), EPS 

production (c) and active biomass concentration (d) at SRT = 1.5 days (HRAS Model),  ST = SU + SBf + SBs 

where SU is the inert fraction. 

 

Figure 33 shows COD:N ratios at variable DO’s for an SRT of 0.13 days.  The results 

suggest (Figure 33a) that the variable DO has minimal effect on the COD:N ratio at the lower 

SRT.  The COD:N ratios are adequate to support downstream nitritation independent of the 

operating DO in the reactor.  In addition, the soluble COD fraction is significantly higher; 

this would be attributed to the reduced removal efficiency of soluble substrate at these 

operating conditions supported by the very low EPS production  (Figure 33c)  and active 

biomass concentration (Figure 33d)  in the reactor. 
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Figure 33:  Effect of variable DO on effluent COD:N ratios (a),  TCOD fractions (b), EPS production (c) 

and active biomass concentration (d) at SRT = 0.13 days (HRAS Model),  ST = SU + SBf + SBs where SU is 

the inert fraction. 

6.3.3 Effect of Storage 

The HRAS model shunts a portion of the influent electrons to the formation of 

cellular storage products.  At low DOs and SRT the HRAS model predicts soluble substrate 

removal as the accumulation of storage products (XSTO) in the cells (Third et al., 2003), 

which shunts electrons away from the production of EPS.  Colloidal COD removal efficiency 

is a function of the EPS concentration in the reactor, hence lower EPS production rates result 

in a lower CB removal efficiencies.   As a result, the colloidal COD would account for a 

larger fraction of the effluent TCOD, as seen in Figure 31, Figure 32, and Figure 33.   

For variable SRT and DO > 1.0 mg/L (i.e. Figure 34a), the model predicted a ST 

removal efficiency of 60% at an SRT of 0.3 days.  However, colloidal removals are low, and 

Figure 33c indicates that at low SRT, EPS production is very low, regardless of the DO level.  
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From Figure 34a it can be seen that the SB removal efficiency may be attributed to an 

increase in XSTO which  shunts electrons away from growth(Figure 31d) and EPS 

production(Figure 31c) resulting in reduced CB removal efficiency.  Even more significant is 

the effect of low DO (Figure 34b) which shows significant XSTO production as the DO 

decreases.  In addition, we see low active biomass (Figure 32d) and EPS concentrations 

(Figure 32c) along with low CB removal efficiencies. 

 

 

 

Figure 34:  Comparison of the effect of variable SRT and DO on COD removal in the HRAS model (a) 

variable SRT DO >1.0, (b) variable DO at SRT =  1.5 d. Influent TCOD= 301 mg/L 
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6.3.4 Temperature Effect on the COD:N Ratio 

The effect of temperature was evaluated by running each of the above simulations at 

20, 15 and 10 degrees Celsius.  The results are summarized in Figure 35.  As would be 

expected the COD:N ratio increases with a decrease in temperature.  The variation is more 

significant at the lower SRT and DO concentration.  The results show that temperature does 

not have a significant effect on A-stage effluent COD:N ratios. 

 

 

Figure 35:  Effect of Temperature on COD:N ratio at (a) variable SRT, (b) SRT = 1.5 d and variable DO 

 

6.3.5 Optimal HRAS Operating Parameters 

The results presented to this point suggest that there would be a set of optimal 

operating parameters that would stabilize the A-stage effluent and consistently produce an 

effluent with a suitable COD:N for the type nitrogen removal process downstream.  Figure 

36 is a comparison of COD:N ratios at varying  SRT and DO concentrations for the New 

Orleans data set having an influent COD:N ratio of 8.5.  The results suggest an SRT in the 

range of 0.25 to 0.5 days would reliably produce an effluent COD:N ratio at or above 3.0, 

independent of the DO concentration (Figure 36a).  At and SRT > 0.5 days the DO 
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concentration can significantly reduce the COD:N ratio due to heterotrophic biomass growth 

(Figure 36b,d).  The soluble substrate removal at the lower SRTs (<0.25 d) can be more 

attributed the production of storage products than biomass growth, with an increase in XSTO 

at the lower DO (Figure 36c).  The specific OUR (SOUR) data (Figure 36d) shows lower 

SOUR values at lower DO’s which is consistent with the predicted increase in XSTO.   

Assimilation of soluble substrate and conversion to XSTO shunts electrons away from EPS 

production which results in lower colloidal COD removal (Figure 36e,f).  As a result, the 

colloidal fraction of the TCOD in the effluent would increase as the SRT and DO decrease. 
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Figure 36: Comparison of COD:N ratios at constant SRT and variable DO, TCOD = 361 mg/L(), Influent 

COD:N ratio = 8.5:1 (HRAS model) 

 

The results shown in Figure 36a suggest that the COD:N ratio would increase rapidly 

at very low SRTs. However, as the ratio approaches a threshold value, i.e., the influent 

COD:N ratio,  the A-stage is no longer providing any operational value.  Based on these 

model results the A-stage would begin to approach this threshold at an SRT at or below 0.2 

days. 

 



111 

 

The effect of higher influent TCOD (TCOD = 600 mg/L, influent COD:N ratio of 

15:1), which is representative of the HRSD data set, is shown in Figure 37.  The increased 

influent TCOD generated higher COD:N ratios similar to the values seen by Lemaire et al. 

(2008)  especially at SRTs < 0.25d (Figure 37a). 

 

 

 

Figure 37:  Comparison of COD:N ratios at constant SRT and variable DO, TCOD = 600 mg/L, influent 

COD:N = 15:1 (HRAS model) 
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Regmi et al. (2014) operated an A/B pilot to evaluate control strategies for 

mainstream nitritation/denitritation.  The pilot was operated using intermittent aeration 

without oxidized nitrogen recycle and supplemental carbon addition.   They used a novel 

aeration strategy based on set-points for reactor ammonia, nitrite and nitrate concentration 

having the goal of maintaining equal effluent ammonia and nitrite + nitrate (NOx) 

concentrations.    In addition, unique operational and process control strategies were 

developed to facilitate the out-selection of NOB including optimizing the influent COD, 

imposing transient anoxia, operating at an aggressive SRT towards AOB washout and high 

DO (> 1.5 mg/L).  An A-stage effluent COD:N ratio of 7:1 was used to support the B-stage 

nitritation/denitritation.  The model results from Figure 37 suggest that the A-stage pilot 

would have to operate at an SRT at or less than 0.25 d, independent of the reactor DO 

concentration, to produce an effluent with a COD:N ratio of 7:1. 

A monthly average summary of the last 10 months of A-stage effluent COD: N ratios 

are shown in Figure 38 (influent COD:N= 13:1).  The pilot consistently produced an effluent 

with a suitable COD:N ratio,  at an SRT at or below 0.25 d,  to support the downstream 

nitritation/denitritation process.  Also, Figure 38 includes the HRAS model results for this 

period which show that COD:N ratios predicted by the model trend well with the pilot data. 
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Figure 38:  Comparison of A-stage effluent COD:N ratio 

 

The average A-stage effluent TCOD fractions for this period are shown in Figure 39.  

A comparison of the results support that the predicted results from the HRAS model trends 

well with the HRSD pilot data.  The majority of COD in the A-stage effluent is in the 

particulate and colloidal form consistent with the model results for low SRT and DO. 

 

 

Figure 39:  Comparison of TCOD fractions between the pilot data and the HRAS model 

 



114 

 

6.4 Conclusion  

 By using a model that integrates the kinetics of flocculation of the particulate and 

colloidal fractions of the influent COD in a HRAS process, the mechanisms for removal 

including enmeshment and bioflocculation can be added to the process matrix to accurately 

simulate the COD fractions in the effluent COD:N ratio.  Based on the results of the model 

the findings are summarized as follows: 

 

 A low SRT (<0.25 d) insures high effluent substrates (SB and CB), and elevated 

COD:N ratios consistent with NOB out-selection downstream. 

 Temperature did not have a significant impact on the effluent TCOD:N ratio. 

 At low SRTs (≤ 0.25 d) the COD:N ratio was not significantly affected by the DO 

concentration. 

 The HRAS model was able to predict the measured higher fraction of CB in the A-

stage effluent at lower SRTs and DO concentrations. 

 To achieve the benefits of operating an A-stage process, while maintaining an 

effluent COD:N ratio suitable for a downstream nitritation/denitritation process, an 

A-stage SRT in the range of 0.1 to 0.25 d should be maintained. 

 

 This will assist in developing control strategies that optimize the performance of the HRAS 

system to produce an effluent that supports the downstream nitrogen removal process. 
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CHAPTER 7 

USING A STOICHIOMETRIC MASS BALANCE APPROACH TO IDENTIFY 

SOLUBLE SUBSTRATE REMOVAL PATHWAYS IN THE HIGH RATE 

ACTIVATED SLUDGE PROCESS 

Note: The contents of this chapter will be submitted for publication in Water Science & 

Technology. Thomas M. Nogaj, Andrew A. Randall, Jose A. Jimenez, Imre Takacs, Charles 

B. Bott, Mark W. Miller, Sudhir Murthy and Bernhard Wett; Using a Stoichiometric Mass 

Balance Approach To Identify A-stage Soluble Substrate Removal Pathways.  

 

7.1 Introduction 

 

A-stage activated sludge systems are operated at low solids retention times (SRT), 

low hydraulic retention times (HRT) and low residual dissolves oxygen concentrations.  The 

objective is the removal of soluble substrate and adsorption while minimizing oxidation of 

the organic carbon.  The mechanisms for organic removal include bioflocculation of the 

particulate and colloidal fraction of the influent COD and intracellular storage of the soluble 

COD fractions of the influent COD (Beun et al., 2000; Carucci et al., 2001; Third et al., 

2003).  Research has shown that the bioflocculation of the colloidal COD fraction is a 

function of the amount of extracellular polymeric substances (EPS) produced by the bacterial 

cells (Jimenez et al., 2005). Past models assume instantaneous enmeshment whereas the data 

from Jimenez (2002) shows that this assumption may not be valid for A-stage systems with 

SRTs lower than 2 days.    

Research has also shown that under certain operating conditions (low DO, high F:M 

ratio) the low DO limits biomass growth and most of the available DO is used by the  

bacterial cells to transport the soluble substrate into the cell(Third et al., 2003).  This allows 
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the cells to preserve reducing power from influent chemical oxygen demand (COD) by using 

intracellular storage products such as poly-β-hydroxybutyrate (PHB) (Third et al., 2003).  

These soluble substrate removal pathways have been incorporated into an A-stage 

mathematical model (Nogaj et al., 2013) as illustrated in Figure 40.   Although the current 

research supports the likelihood of the production of storage products in A-stage systems, 

this conclusion remains speculative due to the paucity of storage product data for A-stage 

systems.   

Given that the A-stage operates a low SRT’s (<1 d) this can affect the amount of 

substrate used for energy production and that used for synthesis. Considering the observed 

yield as a function of SRT based on Equation 20, the observed yield would decrease as the 

SRT increases (Grady et al., 2011). 

 𝒀𝑶𝑩𝑺 = (𝟏+𝒇𝑫∗𝒃𝑯∗𝑺𝑹𝑻)∗𝒀𝑯𝟏+𝒃𝑯∗𝑺𝑹𝑻  ( 20 )

  

 

YH = True growth yield (gCOD/gCOD) 

 bH = Decay coefficient for heterotrophs (time-1) 

 fD = Fraction of active biomass contributing to biomass debris 

 SRT = Solids Retention Time (time-1) 

 

This is because longer SRT’s provide greater opportunity for biomass decay requiring 

a greater need for maintenance energy.  Shunting more carbon and electrons to CO2 and H2O 

leaves less carbon and electrons available for synthesis of new biomass and other removal 

mechanisms.  At the lower SRT less maintenance energy is required (lower CO2 production) 

leaving more electrons available for the formation of other bioproducts. 

This study utilized two data sets; one based on an A/B pilot configuration at Hampton 

Roads Sanitation District (HRSD) (Miller et al., 2012) and the second dataset from the 
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University of New Orleans (NO) (Jimenez, 2002).  Neither of these datasets included 

laboratory results on the production of PHAs and/or glycogen and only the NO dataset 

included EPS data.  A stoichiometric procedure was developed based on mass balances to 

determine the most likely fate influent organic, i.e. mineralization to CO2 and H2O, 

biosynthesis, EPS, and storage products. 

 

7.2 Objective 

This paper will present an analysis using stoichiometry to determine the bio-products 

formed from soluble substrate removal in an A-stage reactor operating at low SRT (<1 day), 

low HRT (20 min), high F:M ratio (19 gCOD/gMLVSS.d), and no measurable DO (0 .2 

mg/L), providing pretreatment for a mainstream nitrogen removal activated sludge process.  

The results will be used to develop the process components and stoichiometric parameters to 

be used in the HRAS model. 

 

7.3 Materials and Methods 

Historical operating data from two pilot systems were evaluated to understand the 

organic substrate transformation mechanisms in A-stage systems and used to calibrate and 

validate the proposed process model. The data used during this study includes operating data 

from an A-stage (low SRT (SRT <1 day), HRT of 0.5 hrs) pilot plant owned and operated by 

the Hampton Roads Sanitation District (HRSD) (Miller et al., 2013) and from a (low SRT 

(SRT <2 day), HRT of 0.5 hrs) A-stage pilot plant operated at the University of New Orleans 

(Jimenez et al. unpublished data(Jimenez, 2002)). 
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The data set used from the HRSD pilot included the off-gas data collected from the 

A-stage which consisted of three A-stage reactors in series.  These reactors were covered to 

collect the off-gas and analyzed using a Servomex Model 1440 gas analyzer.  Data was 

collected at 10 second intervals included %CO2, %O2 and the standard airflow rates.  By 

comparing this data to the ambient air concentrations, the change in CO2 and O2 

concentrations in the off-gas were calculated.  The change in CO2 represented the CO2 

production rate (CO2_PR) while the change in O2 concentration represented the oxygen 

utilization rate (OUR). 

The dataset used to calibrate the model was collected by Jimenez (unpublished data) 

and is refered to as the New Orleans (NO) dataset.  The SRT and DO concentration were 

varied by Jimenez in order to evaluate the effect of these operating parameters on the 

production of EPS and the removal of organic substrate including colloids, and the same 

parameters were varied in the A-stage model referenced in this paper during calibration using 

the NO dataset.  The process matrix used for this analysis was developed to model an A-

stage system (Nogaj et al., 2013).  The soluble substrate partitioning (Rittmann & McCarty, 

2001) pathways incorporated into the model process configuration are shown in Figure 40. 

This process matrix (Table 17 and Table 18) includes mechanisms for flocculation or 

enmeshment of particulate and colloidal substrate, hydrolysis, and oxidation and storage of 

soluble biodegradable substrate. Extracellular Polymer Substance (EPS) production impacts 

the bioflocculation removal efficiency for particulate and colloidal substrate (Jimenez et al., 

2005).  This model includes mechanisms to predict the production of EPS associated with the 

aerobic growth of heterotrophic biomass.  The low SRT (SRT < 1 day for the HRSD dataset 
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and an SRT < 2 days for the NO dataset) and no measurable DO (DO < 1.0 mg/L for the 

HRSD dataset and 1.0 mg/L < DO < 2.0 mg/L for the NO dataset) conditions in the A-stage 

reactor promote the formation of intracellular storage products. As such, a process 

component was added to the A-stage matrix to predict the formation of storage products.  

This pathway proved to be significant in closing the COD mass balances around the pilot 

reactors. 

The process matrix develop by Nogaj et al. (2013) (Table 17) to describe the 

performance of an HRAS system established two state variables for soluble biodegradable 

substrate designated as SBf (SB fast) and SBs (SB slow).  SBf is the soluble COD that is rapidly 

biodegradable in the A-stage.  SBs is the slowly biodegradable soluble COD that is partially 

degraded in the HRAS system and also in the B stage.   In the A-stage model SBf is 

biodegraded first, and it is only when SBf runs out that biodegradation of SBs becomes 

significant.  

 

 
 

Figure 40:  HRAS Model substrate partitioning pathways (for electron and carbon flow) 
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Each pathway is defined by a substrate partitioning coefficient with feps representing 

EPS production, fs representing biosynthesis, fsto representing the formation of storage 

products and fe representing energy (conversion to CO2 and H2O, mineralization).  
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Table 17 Partial Peterson matrix processes and stoichiometric coefficients for the HRAS model 
 Name SBf SBs CB CU XB XU XOHO,  ACT XEPS XSTO 

r1 

Aerobic growth of XOHOs – 

Fast 

-1/(YOHO,AER*(1-kEPS,PC-

kSTO.PC))   

 

 

 

1 

kEPS,PC/(YOHO,AER*(1-

kEPS,PC-kSTO,PC)) 

kSTO/(YOHO,AER*(1-

kEPS,PC-kSTO,PC)) 

r2 

Aerobic growth of XOHOs – 

Slow  

-1/(YOHO,AER*(1-kEPS,PC-

kSTO.PC))  

 

 

 

1 

kEPS,PC/(YOHO,AER*(1-

kEPS,PC)) 

kSTO/(YOHO,AER*(1-

kEPS,PC-kSTO,PC)) 

r3 Decay of heterotrophs 

   

 1-fU  -1 

  

r4 

Hydrolysis of entrapped 

organics  

1 

 

 

-1 

 

   

r5 

flocculation of colloidal 

substrate   

-1 

 

1 

 

   

r6 

flocculation of colloidal 

inerts    

-1 

 

1 

   

r7 

Hydrolysis of storage 

products  

1 

 

 

 

 

  

-1 

r8 EPS hydrolysis 

 

1 

 

 

 

 

 

-1 
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Table 18 Partial Peterson matrix process rate equations for the HRAS model 

 
Name Rate expression (rj) 

r1 Aerobic growth of heterotrophs - Fast μOHO,Max*(SBf/(KBf+SBf))*(So2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r2a Aerobic growth of heterotrophs - Slow μOHO,Max*(SBs/(KBs+SBs))*(KBf/(KBf+SBf))*(SO2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r2b Aerobic growth of heterotrophs - Slow μOHO,max*(SBs/(KBs+SBs))*(So2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r3 Decay of heterotrophs bOHO*XOHO,ACT 

r4 Hydrolysis of entrapped organics 

qXB,HYD*((XB/XOHO)/(KB,HYD+XB/XOHO))*((So2/(Ko2,OHO+So2))+ηHYD*(Ko2,OHO/(Ko2,OHO+So2))*(SNOx/(KNOx+SNOx)))

*XOHO 

r5 flocculation of colloidal substrate qADS*CB*(XOHO+XANO)*(KSL/((CB/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

r6 flocculation of colloidal inerts qADS*CU*(XOHO+XANO)*(KSL/((CU/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

r7 Hydrolysis of storage products qSTO,HYD*(XSTO/XOHO/(KSTO,HYD+XSTO/XOHO))*(KBf/(KBf+SBf))*(KBs/(KBs+SBs))*(So2/(Ko2,OHO+So2))*XOHO 

r8 EPS hydrolysis qEPA,HYD*XEPS 

r2a corresponds to the Diauxic model, r2b corresponds to the Dual Substrate model 
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7.4 COD Mass Balance 

One of the most important concepts in evaluating the validity of any experimental 

dataset is the mass balance.  HRSD collected off-gas data from the HRAS system measuring 

the oxygen and carbon dioxide concentrations.  This data was used to calculate the oxygen 

utilization rate (OUR) and CO2 production rate (CO2_PR) in the aerated reactors.   The 

oxygen concentrations in both the off-gas and ambient air are calculated using the form of 

the ideal gas law shown in Equation 21 (Cooper & Alley, 2011). 

 𝑶𝟐𝑪𝒐𝒏𝒄 (𝒎𝒈𝑳 ) =  𝑪𝒑𝒑𝒎∗𝑴𝑾𝑶𝟐∗𝟏𝟎−𝟑𝑹𝒖𝑻 𝑷⁄  ( 21 ) 

   

  Cppm = Oxygen concentration in parts per million (v/v) 

  MWO2 = molecular weight of oxygen (32 g/mol) 

  Ru =  0.08208 atm·m3/kg·mole·K 

  T = Temperature oK 

  P = atmospheric pressure (1 atm) 
 

The oxygen uptake rate (OUR) and the carbon dioxide production rate (CO2_PR) are 

calculated based on the oxygen (O2) and carbon dioxide (CO2) concentrations in the reactor 

off-gas and ambient air containing 20.95 percent O2 and 0.04 percent CO2 using Equation 22 

and Equation 31 respectively. 

 𝐎𝐔𝐑( 𝐦𝐠𝐋.𝐡𝐫) = ((𝑨𝒎𝒃𝒊𝒆𝒏𝒕 𝑶𝟐 − 𝑶𝒇𝒇 𝑮𝒂𝒔 𝑶𝟐) ∗ (𝑨𝒊𝒓 𝑭𝒍𝒐𝒘 ∗ 𝟔𝟎))/( 𝑻𝒂𝒏𝒌𝒔 𝑨𝒆𝒓𝒂𝒕𝒆𝒅 ∗ 𝑽𝑹𝑻𝑹) ( 22 ) 

   

  Ambient O2 = Oxygen concentration in the ambient air (mg/L) 

  Off-Gas O2 = Oxygen concentration in the reactor off-gas (mg/L) 

  Air Flow = Air flow rate to the reactors (standard liters per minute (SLPM)) 

  Tanks Aerated = Number of tanks aerated in the pilot configuration 

  V_RTR = Volume of each reactor (L)  
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Using the HRSD dataset from September 2013 to January 2014, daily COD mass balances 

were calculated using Equation 23 (Melcer & Foundation, 2003).   

 𝑸 ∗ 𝑪𝑶𝑫𝑰𝒏𝒇 = 𝑸 ∗ 𝑪𝑶𝑫𝑬𝒇𝒇 + 𝒒𝒘 ∗ 𝑿𝑽𝑺𝑺 ∗ 𝒇𝑪𝑽 + 𝑶𝑼𝑹 ∗ 𝑽𝑨𝑬𝑹 ∗ 𝟐𝟒 − 𝟒. 𝟓𝟕 ∗ 𝑺𝑵𝑶 ∗ 𝑸 ( 23 ) 

 

  Q= Influent flowrate 

  qw = waste activated sludge flow 

  XVSS = Reactor volatile suspended solids concentration 

  fCV = COD/VSS ratio (1.48 g COD/g VSS) 

  OUR = oxygen utilization rate 

  VAER = Aerated reactor volume 

  SNO = Effluent nitrate concentration 

 

 

The average COD percent recovery for this period is 99.79 % ± 1.25% (Figure 41). 

 

 

 
 

Figure 41: Calculated COD mass balances based on off-gas data 

 

It was found that approximately 80 % of the COD mass balances calculated were < 

100% (averaging 92%), suggesting that a portion of the COD leaving the system is 
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unaccounted for.  Based on the biodegradable soluble substrate removal pathways identified 

in Figure 40, the one pathway that is not considered in the mass balance calculation is the 

formation of storage products. The COD removed through this would leave the system as 

effluent suspended solids or waste activated sludge.  This would suggest that the solids 

COD/VSS ratio of 1.48 gCOD/gVSS does not take into account intracellular storage which 

would result in under predicting the COD being removed as suspended solids from the 

system.  Evaluating the fraction of the dataset with COD mass balances less than 100% and 

applying Equation 24 resulted in an adjusted VSS/COD ratio of 1.86 is needed to close the 

mass balances.  

 𝒇𝑪𝑽_𝑨𝒄𝒕𝒖𝒂𝒍 = 𝑸∗𝑪𝑶𝑫𝑰𝒏𝒇+𝟒.𝟓𝟕∗𝑺𝑵𝑶∗𝑸−𝑸∗𝑪𝑶𝑫𝑬𝒇𝒇−𝑶𝑼𝑹∗𝑽𝑨𝑬𝑹∗𝟐𝟒𝒒𝒘∗𝑿𝑽𝑺𝑺  ( 24 ) 

 

Using fCV_Actual, the target XSTO (gCOD/d) needed to close COD mass balances shown in  

Figure 41, were calculated using Equation 25 

 𝑿𝑺𝑻𝑶_𝑻𝒂𝒓𝒈𝒆𝒕 = (𝒒𝒘 ∗ 𝑾𝑨𝑺𝑽𝑺𝑺) ∗ (𝒇𝑪𝑽_𝑨𝒄𝒕𝒖𝒂𝒍 − 𝒇𝑪𝑽) ( 25 ) 

 

  

7.5 Stoichiometry 

In a dynamic model of a conventional aerobic system (SRT >3 days, DO > 2 mg/L) 

the stoichiometry is typically represented by Equation 26. 

Carbon source + energy source + electron acceptor + nutrients → biomass +CO2+ reduced acceptor + 

end products ( 26 ) 

 

In this system electrons are typically shunted along two pathways, either mineralization (fe) 

or biosynthesis (fs).  Alternative pathways do not need to be modeled i.e. bioflocculation or 

the formation of storage products, since the SRT (>3 days) and HRT (> 4 hours) of these 
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system are long enough to allow for the development of a flocculated biomass (colloidal 

COD removal) and utilization of storage products.  This type of system can being analyzed 

using the half reactions approach with the observed oxygen consumption as input for fe.   

With an A-stage model the system operates at low SRT (< 1 day), low HRT (0.5 hrs), and no 

measurable DO, in this system  alternative pathways may play a more significant role in 

modelling substrate removal making the evaluation of this system more complex and 

dynamic. 

In the A-stage model, the primary removal mechanisms for colloidal COD is 

sequential and involves adsorption (facilitated by EPS), hydrolysis, and consumption for one 

of the four processes shown in Figure 40.  The literature supports the production of 

extracellular polymeric substances (EPS) (Laspidou & Rittmann, 2002a; Ni, Zeng, et al., 

2009)which aid in the adsorption mechanism and formation of storage products (Beun et al., 

2002; Krishna & Van Loosdrecht, 1999; Ni & Yu, 2008; Third et al., 2003) which occur 

under high food/microorganism (F/M) ratios and low DO environments.  These removal 

mechanisms can be represented by Equation 27. 

 
Carbon source + energy source + electron acceptor + nutrients → biomass + EPS + STO +CO2+ reduced 

acceptor + end products 

 ( 27 ) 

 

To solve the stoichiometry in Equation 27 a computer based solution was develop, 

this method is referred as the substrate partitioning model.  This method uses observed 

substrate utilization data and a calculated CO2:O2 ratio as input to a numerical solver (Excel 

Solver) with a series of applied constraints to generate a solution for the stoichiometric 
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coefficients and substrate partitioning fractions representing each substrate removal pathway. 

Since the substrate partitioning model is used to solve the A-stage stoichiometry represented 

in Equation 27, the half reaction model was modified to reflect the A-stage stoichiometry 

with the partitioning fractions from the substrate partitioning model as input to valid the 

results.  

7.5.1 Half Reaction Approach 

The generally accepted half reaction approach, in the absence of significant soluble 

microbial product formation, consists of two pathways for electrons and carbon; one for 

energy the other for biomass synthesis.  These types of reactions consist of three half 

reactions: one for cell material (Rc), one for an electron donor (Rd, organic substrate for 

heterotrophic growth), and one for the electron acceptor (Ra, oxygen in an aerobic 

environment).  The overall stoichiometric equation (R) is the sum of the half reactions 

(McCarty, 1975). 

 𝑅 =  𝑅𝑑 − 𝑓𝑒 ∗ 𝑅𝑎 −  𝑓𝑠 ∗ 𝑅𝑐  ( 28 ) 

 

In order for Equation 28 to balance all the electrons originally in the donor must end up in 

either the electron acceptor or biomass: 

 𝑓𝑒 + 𝑓𝑠 = 1 ( 29 ) 
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To validate this hypothesis, the stoichiometry incorporating each pathway was 

evaluated using the CO2:O2 ratio as the observed parameter calculated from the off-gas data.   

McCarty (1975)  was able to demonstrate that for suspended growth systems, the fraction of 

electrons going to mineralization (energy, fe ) increases as the sludge age (SRT) increases.  

This supports the hypothesis that the A-stage systems, operating at low sludge ages would 

shunt a higher fraction of the available electrons to the synthesis of new biomass (fs).  Using 

the half reaction approach, McCarty (1975) showed that, using domestic wastewater (Table 

19) as the electron donor and oxygen as the electron acceptor, the production of CO2 would 

decrease and the consumption of O2 would also decrease as electrons are shunted away from 

energy production towards biosynthesis (Figure 42).  Using the CO2:O2 ratio as an indicator 

as to the distribution of electrons, and Table 19 stoichiometry, if all the electrons are 

transported to the electron acceptor the CO2:O2 ratio would be 1.1 (Figure 42).  As electrons 

are shunted away from energy production (fe ⬇) to synthesis of new biomass (fs ⬆) the 

CO2:O2 ratio decreases.  This is due to the CO2 produced decreasing at faster rate than the 

decrease of oxygen consumption.  
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Figure 42: Rate of change in the CO2:O2 ratio as electrons are shunted away from fe and towards fs. 

Using domeastic wastewater (SBs) as the electron donor (Table 19). 

 

The stoichiometric molar ratio of CO2:O2 is equivalent to the ratio of the CO2 production rate 

(CO2_PR) to the oxygen utilization rate (OUR) (Equation 30). 

𝐶𝑂2𝑂2 (𝑔𝑔) = 𝑑𝐶𝑂2 𝑑𝑡⁄𝑑𝑂2 𝑑𝑡⁄ = 𝐶𝑂2_𝑃𝑅𝑂𝑈𝑅  ( 30 ) 

Using the HRSD off-gas data, the concentration for CO2 produced can be determined 

from the calculated CO2_PR and the concentration of O2 consumed can be determined from 

the calculated OUR..  Equation 31 was used to calculate the CO2 production rate (CO2_PR). 𝐂𝐎𝟐_𝐏𝐑 = ((𝑶𝒇𝒇 𝑮𝒂𝒔 𝑪𝑶𝟐 − 𝑨𝒎𝒃𝒊𝒆𝒏𝒕 𝑪𝑶𝟐) ∗ (𝑨𝒊𝒓 𝑭𝒍𝒐𝒘 ∗ 𝟔𝟎))/( 𝑻𝒂𝒏𝒌𝒔 𝑨𝒆𝒓𝒂𝒕𝒆𝒅 ∗ 𝑽_𝑹𝑻𝑹)  ( 31 ) 

   

  CO2_PR  = CO2 production rate (mg/L·hr) 

  Ambient CO2 = Carbon dioxide concentration in the ambient air (mg/L) 

  Off-Gas CO2 = Carbon dioxide concentration in the reactor off-gas (mg/L) 

  Air Flow = Air flow rate to the reactors (SLPM) 

  Tanks Aerated = Number of tanks aerated in the pilot configuration 

  V_RTR = Volume of each reactor (L)  
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This approach was used to establish baseline CO2:O2 ratios for varying A-stage 

operating conditions as well as to validate the stoichiometric coefficients determined from 

the substrate partitioning approach discussed in the next section. 

7.5.2 Substrate Partitioning Approach 

To account for significant product formation including the production of EPS and the 

formation of storage products (STO) Equation 28 was modified to incorporate each end 

product (Equation 32): 

 𝑹 =  𝑹𝒅 − 𝒇𝒆 ∗ 𝑹𝒂 −  𝒇𝒔 ∗ 𝑹𝒄 − 𝒇𝒆𝒑𝒔 ∗ 𝑹𝒄,𝒆𝒑𝒔 − 𝒇𝑺𝑻𝑶 ∗ 𝑹𝒄,𝒔𝒕𝒐 ( 32 ) 

 

To balance this equation: 

 𝒇𝒆 + 𝒇𝒔 + 𝒇𝒆𝒑𝒔 + 𝒇𝒔𝒕𝒐 = 𝟏 ( 33 ) 

 

In an attempt to predict the performance of the HRAS system including all four 

pathways shown in Figure 40, a modified approach was taken to partition the substrate 

represented stoichiometrically by Equation 34. aa(𝐶𝑁𝐶𝑆 𝐻𝑚∗𝑁𝐶𝑆𝑂𝑛∗𝑁𝐶𝑆𝑁𝑝∗𝑁𝐶𝑆 + 𝑎𝑂2 + 𝑏𝑁𝐻3 → 𝑐𝐶𝑁𝐶𝐵𝐻𝑞∗𝑁𝐶𝐵 𝑂𝑟∗𝑁𝐶𝐵 𝑁𝑠∗𝑁𝐶𝐵 +𝑑𝐶𝑁𝐵𝑃1𝐻𝑡∗𝑁𝐵𝑃1𝑂𝑢∗𝑁𝐵𝑃1𝑁𝑣∗𝑁𝐵𝑃1 + 𝑒𝐶𝑁𝐵𝑃2𝐻𝑥∗𝑁𝐵𝑃2𝑂𝑦∗𝑁𝐵𝑃2𝑁𝑧∗𝑁𝐵𝑃2 + 𝑓𝐻2𝑂 + 𝑔𝐶𝑂2) ( 34 ) 

This is the basic equation used, NH3 will show up as either a reaction product (b = negative) 

or reactant (b= positive) depending on the balanced constraint equations.  The stoichiometric 

coefficients for CO2 (g) and O2 (a) are calculated form observed values as describe earlier for 

the CO2_PR and OUR respectively. The subscript NCS represents the electron donor, NCB 

biomass synthesis; the equation includes the production of two bio-products, NBP1 

representing EPS production and NBP2 the formation of STO. 
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The experimental dataset are based on aggregate samples representing the 

performance of the A-stage pilot.  The stoichiometry used for the slow fraction of the readily 

biodegradable soluble substrate (SBs) is shown on Table 19.  The stoichiometry shown for 

substrate, biomass, and EPS were obtained from McCarty (1975), the stoichiometry for STO, 

considered to be PHB for this study, was obtain from Dawes (1988) and Van Aalst-Van 

Leeuwen et al. (1997).  SBs was calculated from observed data using ffCOD – VFA-SU (B-

stage effluent sCOD).  This means SBs is equivalent to F-rbCOD from ASM2d. 

 

Table 19 Stoichiometry for the slow fraction (SBs) of the readily biodegradable soluble substrate (i.e. 

equivalent to F-rbCOD from ASM2d) 

Element   

Substrate 

(NCS)   

Biomass 

(NCB)   

EPS 

(NBP1)   

STO  

(NBP2) 

C NCS 10 NCB 5 NBP1 16 NBP2 4 

H m*NCS 19 q*NCB 7 t*NBP1 24 x*NBP2 6 

O n*NCS 3 r*NCB 2 u*NBP1 5 y*NBP2 2 

N p*NCS 1 s*NCB 1 v*NBP1 4 z*NBP2 0 

MW   201   113   352   86 

COD Mass Eq1   1.99   1.42   1.5   1.67 

 m 1.9 q 1.4 t 1.5 x 1.5 

 n 0.3 r .4 u .31 y .5 

 p 0.1 s .2 v .25 z 0 
1 COD Mass equivalents (gCOD/gSubstrate) 

 

SBf was equal to the observed VFA values and its’ stoichiometry is represented by the 

stoichiometry shown in Table 20 with acetate as the electron donor. The biomass formula 

was obtained from Rittmann and McCarty (2001) for biomass growth using acetate and 

ammonia in an aerobic environment. 
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Table 20 Stoichiometry for the fast fraction (SBf) of the readily biodegradable soluble substrate 

Element   

Substrate 

(NCS)   

Biomass 

(NCB)   

EPS 

(NBP1)   

STO 

(NBP2) 

C NCS 2 NCB 7 NBP1 16 NBP2 4 

H m*NCS 4 q*NCB 12 t*NBP1 24 x*NBP2 6 

O n*NCS 2 r*NCB 4 u*NBP1 5 y*NBP2 2 

N p*NCS 0 s*NCB 1 v*NBP1 4 z*NBP2 0 

MW   60   174   352   86 

COD Mass Eq1   1.07   1.33   1.5   1.67 

 m 2 q 1.4 t 1.5 x 1.5 

 n 1 r 0.4 u 0.31 y 0.5 

 p 0 s 0.2 v 0.25 z 0 
1 COD Mass equivalents (gCOD/gSubstrate)  

 

The literature suggests that EPS consists of varying combinations of proteins and 

polysaccharides (Bala Subramanian et al., 2010; Frolund et al., 1996; Ni, Fang, et al., 2009; 

Park & Novak, 2007).  However, protein is produced at a higher rate by a factor of 3 (Park & 

Novak, 2007). As such, the stoichiometric analysis for both fractions (SBf and SBs) were 

made with EPS (NBP1) represented as a protein with the empirical formula C16H24O5N4 

(McCarty, 1975).   

The degrees of reduction (NCEES, 2011), which are the electrons available per unit 

of carbon was determined for the substrate, biomass, and both bio-products. This was used 

for developing the carbon, nitrogen, hydrogen, oxygen, electron, and energy balances (Table 

21). This information was then input into excel solver to generate the COD based 

stoichiometric coefficients for oxygen consumption, biomass production (fs), EPS production 

(feps), and storage product (expressed as PHB) formation (fsto).   
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Table 21 Summary of equations used in the Substrate Partitioning Approach (NCEES, 2011) 

Degrees of reduction - Available electrons per unit of carbon,  a high degree of reduction denotes a low 

degree of oxidation 

 
DR Equations 

e-/unit of carbon 

Acetate 

e-/unit of 

carbon 

Domestic 

WW 

DRCS 4 + m - 2n - 3p 4 5 

DRCB 4 + q - 2r - 3s 4 4 

DRBP1 4 + t - 2u  -3v 4.125 4.125 

DRBP2 4 + x - 2y - 3z 4.5 4.5 

Excel Solver – Objective Function 

Element 

Balance 
Balance Equations Value 

Electron 𝑐𝐷𝑅𝐵𝑁𝐶𝐵 + 𝑑𝐷𝑅𝐵𝑃1𝑁𝐵𝑃1 + 𝑒𝐷𝑅𝐵𝑃2𝑁𝐵𝑃2 − 𝑎𝑎𝐷𝑅𝑠𝑁𝑐𝑠 + 4𝑎 
0 

Excel Solver - Constraints 

Carbon 𝑐𝑁𝐶𝐵 + 𝑑𝑁𝐵𝑃1 + 𝑒𝑁𝐵𝑃2 + 𝑔 − 𝑎𝑎𝑁𝐶𝑆 
0 

Nitrogen 𝑐𝑠𝑁𝐶𝐵 + 𝑑𝑣𝑁𝐵𝑃1 + 𝑒𝑧𝑁𝐵𝑃2 − 𝑎𝑎𝑝𝑁𝐶𝑆 − 𝑏 
0 

Hydrogen 𝑐𝑞𝑁𝐶𝐵 + 𝑑𝑡𝑁𝐵𝑃1 + 𝑒𝑥𝑁𝐵𝑃2 + 2𝑓 − 𝑎𝑎𝑚𝑁𝐶𝑆 − 3𝑏 − ℎ 
0 

Oxygen 𝑐𝑟𝑁𝐶𝐵 + 𝑑𝑢𝑁𝐵𝑃1 + 𝑒𝑦𝑁𝐵𝑃2 + 𝑓 + 2𝑔 − 𝑎𝑎𝑛𝑁𝐶𝑆 − 2𝑎 
0 

Energy1 𝑄𝑜 ∗ (𝑐𝐷𝑅𝐵𝑁𝐶𝐵 + 𝑑𝐷𝑅𝐵𝑃1𝑁𝐵𝑃1 + 𝑒𝐷𝑅𝐵𝑃2𝑁𝐵𝑃2 − 𝑎𝑎𝐷𝑅𝑠𝑁𝑐𝑠 + 4𝑎) 
0 

Determination of Stoichiometric Coefficients (SBf and SBs) 

aa(observed 

substrate 

removed) 

𝑆𝐵_𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝐶𝑂𝐷 𝑀𝑎𝑠𝑠 𝐸𝑞 ∗ 𝑀𝑊 ∗ 1000 

 

a (oxygen 

consumed, 

dual substrate) 
(𝑂2 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑)𝑆𝐵𝑠 = 𝑂𝑈𝑅 ∗ 𝑉𝑜𝑙𝐴𝑒𝑟 ∗ 24𝐹 − (𝑂2 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑)𝑆𝐵𝑓  

 

g (CO2 

produced) 
(𝐶𝑂2 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑)𝑆𝐵𝑠 = 𝐶𝑂2_𝑃𝑅 ∗ 𝑉𝑜𝑙𝐴𝑒𝑟 ∗ 24𝐹 − (𝐶𝑂2 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑)𝑆𝐵𝑓  

 
1 

Qo Heat evolved per unit equivalent of available electrons = 26.9 kcal/mole O2 consumed 

 

For the purposes of this study the CO2:O2 ratio was a key parameter used to match the 

observed data to the model simulation and to understand the shunting of electrons along the 

different pathways.  In developing this ratio, the HRSD pilot dataset used for this study 
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presented specific challenges.  Given that the pilot plant is a continuous flow system, the 

experimental results represent an aggregate sample of all the biochemical reactions occurring 

in the reactor.  No additional experiments were conducted to determine the contribution of 

each readily biodegradable soluble substrate fraction (SBf and SBs) to the aggregate oxygen 

utilization rate (OUR_Sys) or the aggregate CO2 production rate (CO2_PR_Sys).  For the 

purpose of this study, in an attempt to match the XSTO_target value (Equation 25)), an iterative 

approach (Figure 43) was used to select a CO2:O2 ratio for the SBf fraction which best 

represented the contribution of the SBf fraction to the system OUR (Table 50 in Appendix G).  

Subtracting the SBf OUR and CO2_PR values from the aggregate values resulted in the target 

OUR and CO2_PR values for the SBs fraction.  Using these values the target CO2:O2 ratio 

was calculated for the SBs fraction. The target CO2:O2 ratio along with the initial SBs removed 

were input into the substrate partitioning model and the contribution of SBs to the aggregate 

OUR_Sys and CO2_PR_Sys and the substrate partitioning fractions were determined (Figure 

44). 
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Figure 43: Procedure for determining stoichiometric coefficients for SBf at varying CO2:O2 ratios using 

the stoichiometry shown in Table 20. 
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Figure 44: Procedure for determining stoichiometric coefficients for SBs using the stoichiometry shown in 

Table 19  
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7.6 Results and Discussion: 

7.6.1 Dataset Analysis 

7.6.1.1 Single Substrate 

 

Figure 45 shows the observed CO2:O2 ratios for the pilot.  Three dashed lines are 

superimposed over the pilot data.  The upper line shows the predicted CO2:O2 ratio assuming 

the influent COD removed was metabolized like acetic acid (Table 20) and that fs = 0.  This 

gives a maximum CO2:O2 boundary, and it can be seen that the observed CO2:O2 ratios do 

not exceed it significantly.  In contrast, 35% of the observed CO2:O2 ratios exceed the 

boundary if the COD removed is quantified like domestic wastewater (Table 19) 

stoichiometry.  The lowest line uses Table 19 stoichiometry with fs = 0.63. 

 

 

 
 

Figure 45:  Comparison of off-gas CO2:O2 ratio to stoichiometric substrate partition fractions based on 

single substrate using stoichiometry defined in Table 19 and Table 20. 
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7.6.1.2 Mixed Substrate 

Using the observed VFA (COD) removal and the stoichiometry of Table 20 (all 

treated as acetic acid) it was possible to calculate the oxygen consumption and CO2 

production resulting.  The O2 and CO2 changes were then subtracted from the aggregate 

OURs and CO2_PR observed.  The remaining OURs and CO2_PRs were due to non-VFA 

COD removed (i.e. Influent SBs plus hydrolyzed colloidal and particulate COD).  In this way 

it was possible to input the non-VFA driven OUR and CO2_PR into the Table 19 

stoichiometry to back-calculate the quantity of SBs biodegraded.  In addition, by using the 

stoichiometry form Table 19 and Table 20, it was possible to calculate the corresponding 

biomass, storage product (all treated as PHB) and EPS production. 

 

  
 

Figure 46: Composite substrate partition fractions based on combined SBf (acetic acid) and SBs (domestic 

wastewater) stoichiometry 

 

The results in Figure 46 show a consistent portion of the electrons being shunted to 

biomass synthesis (fs) over the entire dataset.  The results suggest that the shunting of 

electrons to feps and fsto is significate over the entire range.  Consistently a higher fraction of 
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electrons are shunted to fsto as opposed to feps. The results support the hypothesis that when 

operating an A-stage system at high F:M ratios and low SRT with no measurable DO that 

formation of storage products is possible which could account for the unidentified COD lost 

in the mass balance.  In addition, the results also suggest that the four mechanisms 

incorporated into the A-stage model should effectively simulate the performance of this type 

of system.  The variation in the partitioning coefficients could be due to specific operating 

parameters and conditions in the system, i.e. F:M ratio, SRT, temperature, DO.  Further 

investigation would be required to determine the specific effect of any one or combination of 

the parameters, as well as, others not yet identified. 

A summary of the stoichiometric yield coefficients generated for the study period 

using combined SBf and SBs stoichiometry (i.e. combined Table 19 and Table 20 

stoichiometry) are summarized in Table 22.  

 
Table 22 Average aggregate COD based stoichiometric yield coefficients based on combined 

stoichiometry 

 Substrate fs (gCOD/gCOD) fEPS 

(gCOD/gCOD) 

fSTO (gCOD/gCOD) 

 SBsys 0.27 0.085 0.27 

 

The results in Table 22 show that, based on the experimental constraints for OUR and 

CO2:O2 ratio, a significant portion of the readily biodegradable COD entering the reactor 

could be proportioned to one of the bio-products as either biomass synthesis (fs), EPS 

production (fEPS), or formation of STO (fSTO).   The average stoichiometric maximum yield 

for biomass (YOHO,Max = fs/(1-fEPS – fSTO)) ,for the system (SBf+SBs), was 0.47 (gCOD/gCOD).     

Using the revised solids COD/VSS ratio, determined from the COD mass balances, the 
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calculated Yobs would be 0.32 (gVSS/gCODSB); this value is comparable to the observed 

value of 0.4 (gVSS/gCODSB).  A comparison of the XSTO calculated from stoichiometry and 

the COD mass balance showed that 38% of the data points were within ±10 % and better 

than 60% were within ± 30%.  This suggests that the stoichiometric approach supports the 

speculative hypothesis that in an A-stage system, the unaccounted for COD in the mass 

balances could be attributed to the formation of storage products. 

 

7.7 Aggregate Stoichiometric Results 

The calibration of the HRAS (A-stage) dynamic computer model using the NO 

dataset generated the results shown in Figure 47 for the proportionality coefficients for EPS 

production (kEPS,PC, equivalent to fEPS) and the formation of storage products (kSTO,PC, 

equivalent to fSTO).  

 

Figure 47:  Substrate Partitioning coefficients kEPS.PC (fEPS) and kSTO,PC (fSTO) generated from the A-stage 

model at variable SRT and DO (SRT=1.5 days). 

 

The results in Figure 47 suggest that as the SRT decreases, while maintaining a DO 

>1.0 mg/l, the kSTO,PC (fsto) would increase slightly at an SRT ≥ 1.0 d and that kEPS,PC 

(fEPS)would remain relatively constant.  Dissolved Oxygen appears to have an inverse effect 
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with kSTO,PC increasing with decreasing DO and kEPS,PC decreasing even at an SRT of 1.5 

days.  The average aggregate fEPS (kEPS,PC )and fsto (kSTO,PC )values generated 

stoichiometrically (0.085 gCOD/gCOD, 0.27 gCOD/gCOD respectively) for the HRSD pilot 

operating at a low SRT (< 2 days) and low DO (<0.2 mg/L), are consistent with the NO pilot 

being operated at very low SRT (average 0.08 days) and low DO (average 0.10 mg/L).  

Operating at a low DO and SRT would suggest increased production of storage products and 

a decrease in the production of EPS.  Steinbuchel (1996) has shown that oxygen limitation 

induces PHA biosynthesis. 

7.8 Conclusions 

The COD mass balance data and a stoichiometric approach are were consistent with 

the speculative hypothesis that storage products with significant associated oxygen demand 

were a significant part a A-stage COD removal.  An independent dynamic computer model 

also implied that storage products should be significant at low DO concentrations.  Future 

work should quantify storage products, EPS, and methane production potential of the waste 

activated sludge to better understand and optimize A-stage systems.  
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CHAPTER 8  

 CONCLUSIONS AND FUTURE RESEARCH 

The purpose of this research was to simulate the performance of an HRAS (A-stage) 

system and simulate the probable mechanisms affecting the removal of soluble and 

particulate COD.  Once these mechanisms were identified from the literature and pilot data, 

the objective was to develop a mathematical model framework that could effectively simulate 

the performance of this type of system.  The task of developing the nitrogen removal model 

is being completed by other members of the research team.   

8.1 Conclusions 

1. It was observed that to effectively model an A-stage activated sludge system that the 

influent readily biodegradable soluble COD (rbCOD) must be subdivided into two 

fractions.  One fraction (SBf) representing the rapidly utilized fraction of the readily 

biodegradable COD which for this research were the volatile fatty acids (VFA) in the 

influent.  The second fraction or slow fraction (SBs) represented the remaining readily 

biodegradable COD which was only partially removed in the A-stage.  This division 

of rbCOD into two state variables allowed the model to correctly simulate the higher 

effluent sCOD observed in the A-stage relative to the B-stage effluent sCOD. 

2. Colloidal COD was observed to pass through the A-stage to the B-stage, indicating 

that enmeshment and hydrolysis of colloidal COD is not complete as assumed in 

current models (ASM1).  This led to the addition of a new process component to the 

A-stage model matrix for flocculation.  The reaction is represented by a first order 

reaction with respect to colloidal substrate concentration. 
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3. It was determined from review of the literature and analysis of the NO data that EPS 

production, which is essential for flocculation of colloidal COD, is a function of 

microbial growth on soluble substrate.  EPS (XEPS) production is defined in the A-

stage model matrix as an end product of aerobic growth for both fast and slow 

fractions of the rbCOD.  The adjustment of kinetic parameters (KEPS, qEPS,HYD, KO,EPS) 

and the relevant stoichiometric coefficient (kEPS,MAX) during the model calibration 

phase result in the model agreeing well with the NO dataset. 

4. The calibration process simulated NO data best when the storage pathway was 

significant.  Removal efficiencies for soluble substrate fractions and EPS production, 

were best simulated over the range of SRT (0.3 to 2 days) when storage product 

formation was significant.    Preliminary calibration results eliminating this pathway 

did not capture the experimental trends as accurately as when the storage pathway 

was included.   This affect was also observed during model validation using the 

HRSD dataset.   

5. It was also observed that the model had difficulty simulating the HRAS performance 

when the influent biomass concentration was not considered.  The results of the 

model simulation show that as the SRT increases above 0.3 d, the biomass 

concentration in the reactor approaches a condition where the influent biomass 

concentration no longer determines the reactor biomass concentration.  However, at 

the lower SRT (typical of the HRSD pilot) the biomass concentration varies 

significantly depending on the influent biomass concentration. Therefore, the influent 
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biomass concentration is essential to the model’s ability to predict the MLVSS and 

the removal of soluble COD. 

6. It was observed that a low SRT (<0.25 d) typical of an A-stage activated sludge 

system can produce high effluent substrate concentrations (SB and CB), and elevated 

effluent COD:N ratios which support NOB out-selection downstream since COD 

helps drive the creation of anoxic conditions (transient anoxia).  It was also observed 

that temperature and DO did not have a significant impact on the effluent COD:N 

ratio at low SRTs (≤ 0.25 d).  The A-stage model was able to predict the measured 

higher fraction of CB in the A-stage effluent at these low SRTs and DO 

concentrations.  To achieve the benefits of operating an A-stage process, while 

maintaining an effluent COD:N ratio suitable for a downstream 

nitritation/denitritation processes, an A-stage SRT in the range of 0.1 to 0.25 d should 

be maintained.  The model was able to accurately simulate the elevated effluent 

colloidal COD and COD:N ratio by adding a process equation for flocculation of 

colloidal substrate (see also conclusion 2). 

7. The calculated COD mass balance using off-gas data suggests that, for better than 80 

percent of the sampling events evaluated, a significant fraction of the COD is 

unaccounted for (mass balance <100%).  The consistent negative bias made it 

unlikely that the low COD mass balances were due to analytical error.  To complete 

the mass balances, the COD in the solids fraction leaving the system was recalculated 

to be 1.86 gCOD/gVSS rather than the 1.48 gCOD/gVSS which is used for 

conventional systems.  An independent stoichiometric analysis was also evaluated 
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and it also implied that there was probably significant storage product formation.  

However, this hypothesis is speculative and future studies need to evaluate the role of 

storage products in A-stage systems.   

 

8.2 Recommendations for Future Research 

Future work should quantify storage products, EPS, and methane production potential 

of the waste activated sludge to better understand and optimize A-stage systems. 

It was observed during the calibration/validation effort that the results were highly sensitive 

to changes in several parameters.  Substrate consumption was controlled by varying the half 

saturation coefficients (KBf and KBs).  Similar values were used (KBf = 20 and KBs = 40) for 

calibration and validation.  The validation process is highly sensitive to the DO half 

saturation coefficient where a significantly lower value (KO,OHO = 0.02) was used as 

compared to the default value of 0.10 used for calibration.  In addition, the formation of 

storage products had a significant effect on the A-stage models ability to simulate the 

removal of soluble substrate (SBf and SBs) for both validation and calibration.  Future work 

should include a sensitivity analysis to identify the extent to which specific parameters affect 

the accuracy of the A-stage model.  Future work should also determine if SBf is preferentially 

biodegradable relative to SBs.  
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APPENDIX A: STOICHIOMETRY SAMPLE CALCULATIONS 
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Chapter 4: Calculate the oxygen utilization rate (OUR) from the off-gas in mg/L·hr 

1. Calculate the oxygen concentration in both the off-gas and ambient air used for 

aeration. 

𝑂2𝐶𝑜𝑛𝑐 (𝑚𝑔𝐿 ) =  𝐶𝑝𝑝𝑚 ∗ 𝑀𝑊𝑂2 ∗ 10−3𝑅𝑢𝑇 𝑃⁄  

Cppm = Oxygen concentration in parts per million (v/v) 

MWO2 = molecular weight og oxygen (32 g/mol) 

Ru =  0.08208 atm·m3/kg·mole·K 

T = Temperature oK 

P = atmospheric pressure (1 atm) 

 

a. Using an off-gas oxygen concentration of 19.47% or Cppm = 194,700 ppm v/v  

𝑂2𝐶𝑜𝑛𝑐 (𝑚𝑔𝐿 ) =  194700 ∗ 32 ∗ 10−30.08208 ∗ 293 1.0⁄ = 259 𝑚𝑔/𝐿 

 

b. Using an ambient air oxygen concentration of 20.95% or Cppm = 209,500 ppm 

v/v  O2Conc (mgL ) =  209500 ∗ 32 ∗ 10−30.08208 ∗ 293 1.0⁄ = 279 mg/L 

c. Using these values calculate the OUR OUR( mgL · hr) = ((Ambient O2 − Off Gas O2)∗ (Air Flow ∗ 60))/( Tanks Aerated ∗ V_RTR) 

Air Flow = 82 SLPM @ 25oC, 66 SLPM @ 20oC   

V_RTR = Reactor Volume @Three reactors 170L each 

Tanks Aerated = 2 

 

d. OUR( mgL·hr) = ((279 − 259) ∗ (66 ∗ 60))/(2 ∗ 170) = 233 mg/L·hr 

2. Calculate the Carbon Dioxide concentration in both the off gas and ambient air used 

for aeration. 
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CO2Conc (mgL ) =  Cppm ∗ MWCO2 ∗ 10−3RuT P⁄  

Cppm = Carbon Dioxide concentration in parts per million (v/v) 

MWCO2 = molecular weight og oxygen (44 g/mol) 

Ru =  0.08208 atm·m3/kg·mole·K 

T = Temperature oK 

P = atmospheric pressure (1 atm) 

 

a. Using an off-gas Carbon Dioxide concentration of 1.05% or Cppm = 10,500 pm 

v/v 

CO2Conc (mgL ) =  10,500 ∗ 44 ∗ 10−30.08208 ∗ 293 1.0⁄ = 19 mg/L 

 

b. Using an ambient air Carbon Dioxide concentration of .04% or Cppm = 400 

ppm v/v  CO2Conc (mgL ) =  400 ∗ 44 ∗ 10−30.08208 ∗ 293 1.0⁄ = 0.73 mg/L 

c. Using these values calculate the CO2 production rate CO2_PR 

 CO2_PR = ((Off Gas CO2 − Ambient CO2)∗ (Air Flow ∗ 60))/( Tanks Aerated ∗ V_RTR) 

 

Air Flow = 82 SLPM @ 25oC, 66 SLPM @ 20oC   

V_RTR = Reactor Volume @three reactors 170 L each 

Tanks Aerated = 2 CO2( mgL·hr) = ((19 − .73) ∗ (66 ∗ 60))/(2 ∗ 170) = 213 mg/L·hr 

 

3. The Observed  ratio of Carbon Dioxide produced to oxygen consumed would be: CO2O2 = CO2_PROUR = 213233 = 0.91 gCO2gO2  
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4. Calculate the COD mass balance 

a. Using the following mass balance equation to represent the HRAS system. Q ∗ CODInf = Q ∗ CODEff + qw ∗ XVSS ∗ fCV + OUR ∗ VAER ∗ 24− 4.57 ∗ SNO ∗ Q 

COD_Inf = Q*CODInf = Total mass of COD in the influent (gCOD/m3) 

COD_Eff = Q*CODEff = Total mass of COD in the Effluent (gCOD/m3) 

COD_WAS = qw * XVSS * fCV = Mass of COD in the waste activated sludge 

(gCOD/m3) 

COD_OUR = OUR * VAER * 24 = Mass of COD removed through 

mineralization (gCOD/m3) 

COD_N = 4.57 * SNO * Q = Oxygen utilized for nitrification, assumed to be 

zero for the HRAS system. 

 

b. Calculate the COD percent recovery using the following parameter values: 

Q = 24.53 m3/d, qw = 0.87 m3/d, CODinf = 520 gCOD/m3 

CODeff = 204 gCOD/m3, WAS_TSS = 4733 gTSS/m3 

VSS fraction = 0.74, fCV = 1.48 gCOD/gVSS 

Volume = 0.17 m3, No. of reactors aerated = 2 

OUR = 225 g/m3·hr 

 

 

 COD_Inf = 24.53 * 520 = 12,756 gCOD/m3 

 COD_Eff = (24.53 - 0.87) * 204 = 4,827 gCOD/m3 

 COD_WAS = (0.87* 4733* 0.74*1.48) = 4510 gCOD/m3 

 COD_OUR = ((0.17 * 2) * 225 * 24) = 1,836 gCOD/m3 



150 

 

COD % Recovery =  COD_Eff +  COD_WAS +  COD_OUR −  COD_N) COD_Inf  

COD % Recovery =  4,827 + 4,510 +  1,836 −  0 12,756 ∗ 100 = 87.6% 

   

c. Calculate the revised fCV required to close the COD mass balance. 

fCV−Actual = Q ∗ CODInf + 4.57 ∗ SNO ∗ Q − Q ∗ CODEff − OUR ∗ VAER ∗ 24qw ∗ XVSS  

fCV−Actual = 12,756 + 0 − 4,828 − 1,8360.87 ∗ 4733 ∗ 0.74 = 2.0 

d. Estimated production of storage product (XSTO) based on the revised fCV. 

   XSTO = CODWAS ∗ (fCVActual − fCV)  

     XSTO = 4510 ∗ (2.0 − 1.48) = 2,345 gCOD/m3 
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 APPENDIX B: 

 HRAS MODEL FRAMEWORK – DUAL SUBSTRATE 
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Table 23  HRAS model framework 

j Symbol Name SU SBf SBs CB XU XB 
XOHO,

ACT 
XANO XE SO2 SNOx SNHx SNB XNB SALK SN2 

XINOR

G 
XEPS XSTO 

1 r1 
Aerobic growth of 

heterotrophs - Fast 
  

-
1/(YOHO,AE

R*(1-

kEPS,PC-
kSTO,PC)) 

        1     
-(1-YOHO,AER) 
/(YOHO,AER) 

  -iN,XB     -iN,XB*iCharge_SNHx     

kEPS,PC/(YOHO,AER*

(1-kEPS,PC-

kSTO,PC)) 

kSTO,PC/(YOHO,AER

*(1-kEPS,PC-

kSTO,PC)) 

2 r2 

Aerobic growth of 

heterotrophs - 

Slow 

    

-

1/(YOHO,AER*(

1-kEPS,PC-

kSTO,PC)) 

      1     
-(1-YOHO,AER) 

/(YOHO,AER) 
  -iN,XB     -iN,XB*iCharge_SNHx     

kEPS,PC/(YOHO,AER*
(1-kEPS,PC-

kSTO,PC)) 

kSTO,PC/(YOHO,AER

*(1-kEPS,PC-

kSTO,PC)) 

3 r3 
Anoxic growth of 

heterotrophs -Fast 
  

-

1/YOHO,AN

OX 

        1       

-(1-

YOHO,ANOX)/(iNO3,N2*

YOHO,ANOX) 

-iN,XB     

-(1-

YOHO,ANOX)/(iNO3,N2*YOHO,ANOX)*iCharg

e_SNOx-iN,XB*iCharge_SNHx 

(1-

YOHO,ANOX)/(iNO3,N2*YO

HO,ANOX) 

      

4 r4 
Anoxic growth of 

heterotrophs -Slow 
    -1/YOHO,ANOX       1       

-(1-

YOHO,ANOX)/(iNO3,N2*

YOHO,ANOX) 

-iN,XB     

-(1-

YOHO,ANOX)/(iNO3,N2*YOHO,ANOX)*iCharg

e_SNOx-iN,XB*iCharge_SNHx 

(1-

YOHO,ANOX)/(iNO3,N2*YO

HO,ANOX) 

      

5 r5 
Aerobic growth of 

autotrophs 
              1   

-(-iCOD_NO3-YANO) 
/YANO 

1/YANO 
-iN,XB-
1/YANO 

    

-

(iN,XB+1/YANO)*iCharge_SNHx+(1/YANO)

*iCharge_SNOx 

        

6 r6 
Decay of 

heterotrophs 
          1-fU -1   fU         

iN,XB-

fU*iN,XU 
          

7 r7 
Decay of 

autotrophs 
          1-fU   -1 fU         

iN,XB-

fU*iN,XU 
          

8 r8 

Ammonification of 

soluble organic 

nitrogen 

                      1 -1   iCharge_SNHx         

9 r9 

Hydrolysis of 

entrapped 

organics 

    1     -1                           

10 r10 

Hydrolysis of 

entrapped organic 

nitrogen 

                        1 -1           

11 r11 
flocculation of 

colloidal substrate 
      -1   1                           

12 r12 
Hydrolysis of 

storage products 
    1                               -1 

13 r13 
Enmeshment 

/storage of SNB 
                        -1 1           

14 r14 EPS hydrolysis     1                             -1   

                      

  

Elemental 

composition 

                   

  

COD 1 
1 1 1 1 1 1 1 1 -1 iCOD_NO3 0 0 0 0 iCOD_N2 0 1 1 

  

N 
0 0 0 0 0 0 iN,XB iN,XB iN,XU 0 1 1 1 1 0 1 0 0 0 

  

Charge 
0 0 0 0 0 0 0 0 0 0 iCharge_SNOx 

iCharge_SN

Hx 0 0 -1 0 0 0 0 
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j Symbol Name SU SBf SBs CB XU XB 
XOHO,

ACT 
XANO XE SO2 SNOx SNHx SNB XNB SALK SN2 

XINOR

G 
XEPS XSTO 

1 r1 
Aerobic growth of 

heterotrophs - Fast 
0 

-
1.5787473

22 

0 0 0 0 1 0 0 -0.492537313 0 -0.086 0 0 -0.006142857 0 0 0.070422535 0.015787473 

2 r2 

Aerobic growth of 

heterotrophs - 

Slow 

0 0 
-

1.578747322 
0 0 0 1 0 0 -0.492537313 0 -0.086 0 0 -0.006142857 0 0 0.070422535 0.015787473 

3 r3 
Anoxic growth of 

heterotrophs -Fast 
0 

-

1.8518518
52 

0 0 0 0 1 0 0 0 -0.298148148 -0.086 0 0 0.015153439 0.298148148 0 0 0 

4 r4 
Anoxic growth of 

heterotrophs -Slow 
0 0 

-

1.851851852 
0 0 0 1 0 0 0 -0.298148148 -0.086 0 0 0.015153439 0.298148148 0 0 0 

5 r5 
Aerobic growth of 

autotrophs 
0 0 0 0 0 0 0 1 0 -18.04761905 4.166666667 

-
4.25266

6667 

0 0 -0.601380952 0 0 0 0 

6 r6 
Decay of 

heterotrophs 
0 0 0 0 0 0.92 -1 0 0.08 0 0 0 0 0.0812 0 0 0 0 0 

7 r7 
Decay of 

autotrophs 
0 0 0 0 0 0.92 0 -1 0.08 0 0 0 0 0.0812 0 0 0 0 0 

8 r8 

Ammonification of 

soluble organic 

nitrogen 

0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0.071428571 0 0 0 0 

9 r9 

Hydrolysis of 

entrapped 

organics 

0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 r10 

Hydrolysis of 

entrapped organic 

nitrogen 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 

11 r11 
flocculation of 

colloidal substrate 
0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 r12 
Hydrolysis of 

storage products 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

13 r13 
enmeshment/stora

ge of SNB 
0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 

14 r14 EPS hydrolysis 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

                      

                      

  

Elemental 

composition 

                   

  

COD 1 1 1 1 1 1 1 1 1 -1 -4.57 0 0 0 0 -1.714285714 0 1 1 

  

N 0 0 0 0 0 0 0.086 0.086 0.06 0 1 1 1 1 0 1 0 0 0 

  

Charge 0 0 0 0 0 0 0 0 0 0 -0.071 0.071 0 0 -1 0 0 0 0 
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Table 24  HRAS model framework rate expressions  

j Symbol Name Rate expression (rj) rj value 

1 r1 Aerobic growth of heterotrophs - Fast 
µOHO,T*(SBf/(KBf+SBf))*(SO2/(KO,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))

*XOHO,ACT 
43.29 

2 r2 Aerobic growth of heterotrophs - Slow 

µOHO,T*(SBs/(KBs+SBs))*(KBf/(KBf+SBf))*(SO2/(KO,OHO+SO2))*(SNHx/

(KNHx,nut+SNHx))*XOHO,ACT 

 

8.66 

3 r3 Anoxic growth of heterotrophs -Fast 
µOHO,T*(SBf/(KBf+SBf))*(KO,OHO/(KO,OHO+SO2))*(SNOx/(KNOx+SNOx)

)*(SNHx/(KNHx,nut+SNHx))*ηGRO,ANOX*XOHO,ACT 
3.38 

4 r4 Anoxic growth of heterotrophs -Slow 
µOHO,T*(SBs/(KBs+SBs)) *(KBf/(KBf+SBf))*(KO,OHO/(KO,OHO+SO2))* 

(SNOx/(KNOx+SNOx))*(SNHx/(KNHx,nut+SNHx))*ηGRO,ANOX*XOHO,ACT 
0.68 

5 r5 Aerobic growth of autotrophs μANO*(SNHx/(KNHx+SNHx))*(SO2/(KO,ANO+SO2))*XANO 22.86 

6 r6 Decay of heterotrophs bO2,OHO,T*XOHO,ACT 6.20 

7 r7 Decay of autotrophs bANO*XANO 12.00 

8 r8 
Ammonification of soluble organic 

nitrogen 
qAMM*SNB*XOHO,ACT 0.80 

9 r9 Hydrolysis of entrapped organics 
qXB,HYD*((XB/XOHO,ACT)/(KB,HYD+XB/XOHO,ACT))*((SO2/(KO,OHO+SO

2))+ηHYD*(KO,OHO/(KO,OHO+SO2))*(SNOx/(KNOx+SNOx)))*XOHO,ACT 
25.90 

10 r10 
Hydrolysis of entrapped organic 

nitrogen 

qXB,HYD*(XNB/XB)*((XB/XOHO,ACT)/(KB,HYD+XB/XOHO,ACT))*((SO2/(

KO,OHO+SO2))+ηHYD*(KO,OHO/(KO,OHO+SO2))*(SNOx/(KNOx+SNOx)))*

XOHO,ACT 

0.52 

11 r11 flocculation of colloidal substrate 
qADS*CB*(XOHO,ACT+XANO)*(KSL/((CB/(XOHO,ACT+XANO))+KSL))*(

XEPS/(KEPS+XEPS)) 
0.00 

12 r12 Hydrolysis of storage products 
qSTO,HYD*(XSTO/XOHO,ACT/(KSTO,HYD+XSTO/XOHO,ACT))*(KBf/(KBf+S

Bf))*(KBs/(KBs+SBs))*(SO2/(KO,OHO+SO2))*XOHO,ACT 
3.78 
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j Symbol Name Rate expression (rj) rj value 

13 r13 enmeshment/storage of SNB qSTO*SNB/SBf*(SBf/(KB,STO+SBf))*(SO2/(KO,OHO+SO2))*XOHO,ACT 1.82 

14 r14 EPS hydrolysis qEPS,HYD*XEPS 0.00 
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Table 25  HRAS model state variables 

Symbol Name Influent 

Initial 

concentration Unit 

SU Soluble undegradable organics 10 25 g COD.m-3 

SBf Soluble biodegradable organics 60 5 g COD.m-3 

SBs Slowly biodegradable organics 30 10 g COD.m-3 

CB Colloidal biodegradable organics 40 1 g COD.m-3 

XU Particulate undegradable organics from the influent 30 700 g COD.m-3 

XB Particulate biodegradable organics 150 100 g COD.m-3 

XOHO,ACT Active Ordinary heterotrophic organisms 10 10 g COD.m-3 

XANO Autotrophic nitrifying organisms (NH4+ to NO3-) 1 80 g COD.m-3 

XE Particulate undegradable endogenous products 0 200 g COD.m-3 

SO2 Dissolved oxygen 0 1 g O2.m
-3 

SNOx Nitrate and nitrite (NO3 + NO2) 0 20 g N.m-3 

SNHx Ammonia (NH4 + NH3) 35 1 g N.m-3 

SNB Soluble biodegradable organic N 5 1 g N.m-3 

XNB Particulate biodegradable organic N 10 2 g N.m-3 
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Symbol Name Influent 

Initial 

concentration Unit 

SALK Alkalinity 6 3 meq/L 

SN2 Dissolved nitrogen 16 16 g N.m-3 

XINORG Inorganic suspended solids 40 350 g TSS.m-3 

XEPS Extracellular Polymer Substances 10 0 g COD.m-3 

XSTO Storage Polymer Substances 10 50 g COD.m-3 

SCO2 Total inorganic carbon 351.00 250.00 g CO2.m
-3 
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Table 26  HRAS model kinetic parameters for Hydrolysis 

Symbol Name Default Unit 

KB,HYD Saturation coefficient for XB/XOHO 0.03 g XCB.g XOHO
-1 

ηHYD 
Correction factor for hydrolysis under anoxic 

conditions 
0.4 - 

qEPS,HYD EPS hydrolysis 0.16 
 

KEPS  Half-saturation coefficient for EPS 100 
 

KEPS,HYD Hydrolysis Half-saturation coefficient for EPS 0.05 
 

qXB,HYD Rate Constant 2.75 
 

qSTO,HYD Storage Hydrolysis Rate Constant 3 
 

KSTO,HYD Hydrolysis Half-saturation coefficient for STO 0.15 
 

KO,EPS EPS Half-saturation coefficient for SO2 0.70 g SO2.m-3 

 

Table 27 HRAS model kinetic parameters for Heterotrophic growth and decay 

Symbol Name Default Unit 

μOHO Maximum growth rate of XOHO 8 d-1 

ηGRO,ANOX Reduction factor for anoxic growth of XOHO 0.8 - 

KBf Half-saturation coefficient for SB 20 g SBf.m-3 

KBs Half-saturation coefficient for SBs 40 g SBs.m-3 

bOHO Decay rate for XOHO 0.62 d-1 

KO,OHO Half-saturation coefficient for SO2 .015 g SO2.m-3 

KNOx Half-saturation coefficient for SNOx 0.5 g SNOx.m-3 

KNHx,nut Nutrient half-saturation coefficient 0.05 g SNHx.m-3 

qSTO Rate constant for growth on XSTO 2 d-1 

KB,STO Half-saturation coefficient for storage of SB 5 - 

KO,STO Half-Saturation Coefficient STO for SO2 0.7 g SO2.m-3 
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Table 28 HRAS model kinetic parameters for Autotrophic growth and decay 

Symbol Name Default Unit 

μANO Maximum growth rate of XANO 0.8 d-1 

KNHx Substrate Half-saturation coefficient for ANOs 1 g SNHx.m-3 

KO,ANO Half-saturation coefficient for SO2 0.4 g SO2.m-3 

bANO Decay rate for XANO 0.15 d-1 

 

Table 29 HRAS model kinetic parameters for other conversion reactions 

Symbol Name Default Unit 

qAMM Rate constant for ammonification 0.08 m3.g XCB,N
-1.d-1 

qADS Rate constant for adsorption 0.06 d-1 

KSL Half-saturation coefficient for surface limitation 0.009 - 

 

Table 30 HRAS model kinetic parameters for temperature dependency 

Symbol Name Default Unit 

θµ,OHO Arrhenius coefficient 1.04 - 

θb,O2,OHO Arrhenius coefficient 1.03 - 

  

Table 31 HRAS model kinetic parameters for operational inputs 

Symbol Name Default Unit 

T Temperature 20.0 Co 

Tbase Arrhenius base temperature 20.0 Co 

 

Table 32 HRAS model stoichiometric parameters for growth yields 

Symbol Name Default Unit 

YOHO,AER Yield for aerobic XOHO growth 0.67 g XOHO.g SB
-1 

YOHO,ANOX Yield for anoxic XOHO growth 0.54 g XOHO.g SB
-1 

YSTO Yield for SB storage and enmeshment 0.9 g XB.g SB
-1 

YANO Yield of XANO growth per SNO3 0.24 g XAUT.g SNO3
-1 

fU Fraction of XU generated in biomass decay 0.08 g XU.g XBio
-1 
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Table 33 HRAS model stoichiometric parameters for nitrogen fractions 

Symbol Name Default Unit 

iN,XB N content of biomass (XOHO, XPAO, XANO) 0.086 g N.g XBio
-1 

iN,XU N content of products from biomass 0.06 g N.g XUE
-1 

iN,EPS N content EPS 0.12 g N.g XEPS
-1 

 

Table 34 HRAS model stoichiometric parameters for charge and electron equivalence 

Symbol Name Default Unit 

iNO3,N2 NO3 reduction to N2 electron equivalence 2.857 g COD.g N-1 

iCOD_NO3 NH3 to NO3 oxidation electron equivalence -4.571 g COD.g N-1 

iCOD_N2 NH3 to N2 oxidation electron equivalence -1.714285714 g COD.g N-1 

iCharge_SNHx Conversion factor for NHx in charge 0.071 Charge.g N-1 

iCharge_SNOx Conversion factor for NO3 in charge -0.071428571 Charge.g N-1 

  

Table 35 HRAS model stoichiometric parameters for calculated variable conversions 

Symbol Name Default Unit 

iCV Particulate COD to VSS ratio 1.86 g COD.g VSS-1 

iCB Biomass COD to VSS ratio 1.42 g COD.g VSS-1 

  

Table 36 HRAS model stoichiometric parameters for EPS and Storage Products (STO) 

Symbol Name Default Unit 

kEPS,MAX EPS formation coefficient 0.2 g CODEPS.gVSS-1 

kSTO,MAX Maximum Production Rate for Storage Polymers 0.56 g XSTO.gSBf
-1 

fSTO Fraction of STO  in the biomass 0.15 
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Table 37 Calculated stoichiometric parameter values for oxygen demands 

Symbol Name Expression Value Unit 

XCOD Particulate COD XU+XB+XOHO+XANO+XE+XEPS+XSTO 1140.0 g COD.m-3 

STOC Total Soluble (Dissolved) Organic Carbon SU+SBf+SBs 40.0 g COD.m-3 

CTOC Total Carbon XCOD+STOC+CB 1181 g COD.m-3 

 

Table 38 Calculated stoichiometric parameter values for suspended solids 

Symbol Name Expression Value Unit 

XVSS VSS XCOD/iCV 770.3 g.m-3 

XTVSS TVSS XVSS+XINORG 1120.3 g.m-3 

 

Table 39 Calculated stoichiometric parameter values for other variables 

Symbol Name Expression Value Unit 

XOHO OHO's XOHO,ACT 10.0 g COD.m-3 

STKN Total Kjeldahl Nitrogen SNB+SNHx 2.0 g N.m-3 

STIN Total Inorganic Nitrogen SNHx+SNOx 21.0 g N.m-3 

STN Total Soluble Nitrogen SNHx+SNOx+SNB 22.0 g N.m-3 

NTN Total Nitrogen STN+XNB 24.0 g N.m-3 

RCtoN Carbon to Nitrogen ratio CTOC/NTN 49.2 gCOD/g N 

PEPS EPS Production (XEPS/XVSS)*1000 0.0 

 RCtoAmm TCOD to Ammonia Ratio CTOC/SNHx 1181.0 

 RSTO Ratio XSTO to XCOD XSTO/XCOD 0.0   
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Table 40 Calculated kinetic parameter values for OUR and Temperature dependency 

Symbol Name Expression Value Unit 

OUR Oxygen Uptake Rate -(v1_SO2*r1+v2_SO2*r2+v5_SO2*r5)/24 18.7 mg/l/hr 

µOHO,T   μOHO*Arrh(θµ,OHO; T; Tbase) 7.00 d-1 

bO2,OHO,T   bOHO*Arrh(θb,O2,OHO;T;Tbase) 0.62 d-1 

 

Table 41 Calculated kinetic parameter values for Growth Rate and Proportionality Coefficients 

Symbol Name Expression Value Unit 

mu Actual Growth Rate 
µOHO,T*(SBf/(KBf+SBf))*(SO2/(KO,OHO+SO2))*(S

NHx/(KNHx,nut+SNHx)) 
4.3 d-1 

fSTO,max STO saturation capacity of biomass (-.783*((mu)/24))+0.39 0.249 

 YPC,O2 STO yield adjusted for DO concentration (YSTO)*(KO,STO/(KO,STO+SO2)) 0.371 g XOHO.g SB
-1 

kSTO,PC STO Proportionality Coefficient Max(.01;YPC,O2*(1-(fSTO/fSTO,max))) 0.010 g CODSTO,g CODSBf
-1 

kEPS,SC EPS Stoichiometric Coefficient (kEPS,MAX/iCB)*(SO2/(KO,EPS+SO2)) 0.070 g CODEPS,g CODXOHO
-1 

kEPS,PC EPS Proportionality Coefficient 
((kEPS,SC*YOHO,AER)*(1-

kSTO,PC))/(1+(kEPS,SC*YOHO,AER)) 
0.045 g CODEPS,g CODSBf

-1 

 

Table 42 Calculated kinetic parameter values for saturation concentrations 

Symbol Name Expression Value Unit 

GO2,sat,eq,field Oxygen saturation concentration 9.1 9.1 mol.L-1.bar-1 

GO2,sat,eq,st Oxygen saturation concentration 9.1 9.1 mol.L-1.bar-1 
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APPENDIX C: NO DATASET CALIBRATION RESULTS 
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Effect of Variable SRT 

Readily Biodegradable COD 

Modeling Results 

  
Influent 10 60 30 

SRT SU SBF SBS 

0.3 10 2.9 20.5 

0.5 10 1.25 18 

1 10 0.4 12.6 

1.5 10 0.3 9.6 

2 10 0.2 8.32 

  

 

 

 

 

 

 

 

  

SRT (days) % COD Removal – Observed Data % COD Removal – A-stage Model 

0.3 62.0% 66.6% 

0.5 70.0% 70.8% 

1 80.0% 77.0% 

1.5 82.0% 80.1% 

2 88.0% 81.5% 
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EPS Production 

Modeling Results 

 
SRT XEPS XVSS 

0.3 80.2 1582 

0.5 185 2369 

1 228 2242 

1.5 223 1992 

2 288 2581 

 

 

 

 

 

  

SRT (days) 

EPS Production Rate 

Obseved Data 

(mgCOD/gVSS) 

EPS Production Rate 

A-stageModel (mgCOD/gVSS) 

0.3 45 50.70 

0.5 70 78.09 

1 100 101.69 

1.5 110 111.95 

2 115 111.58 



166 

 

Colloidal COD Removal Efficiency 

 

Modeling Results 

 Influent 0 60 

SRT CU CB 

0.3 0 57.7 

0.5 0 48 

1 0 24.5 

1.5 0 17.4 

2 0 10.9 

 

 

 

 

 

 

  

SRT (days) 

% COD Removal – Observed 

Data 

% COD Removal – A-

stage Model 

0.3 8.0% 3.8% 

0.5 25.0% 20.0% 

1 50.0% 59.2% 

1.5 65.0% 71.0% 

2 78.0% 81.8% 
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Effect of Variable DO 

Readily Biodegradable COD 

Modeling Results 

  Influent 10 60 30 

DO SU SBF SBS 

0.01 10 49.8 28.3 

0.1 10 1.5 20.4 

0.3 10 0.4 14.6 

0.5 10 0.32 12 

1 10 0.28 10 

1.5 10 0.28 9.6 

2 10 0.28 9.5 

 

DO (mg/l) 

% COD Removal – 

Observed Data 

% COD Removal – A-

stage Model 

0.01 2.0% 11.9% 

0.1 60.0% 68.1% 

0.3 75.0% 75.0% 

0.5 78.0% 77.7% 

1 80.0% 79.7% 

1.5 83.0% 80.1% 

2 83.0% 80.2% 
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EPS Production 

Modeling Results 

 DO (mg/l) XEPS XVSS 

0.01 8 2053 

0.1 20.4 2424 

0.3 86.5 2066 

0.5 125.7 2036 

1 182.5 2038 

1.5 221.2 2059 

2 249 2078 

 

DO (mg/l) 

EPS Production Rate 

Observed Data 

(mgCOD/gVSS) 

EPS Production Rate A-

stage Model 

(mgCOD/gVSS) 

0.01 10 4.60 

0.1 15 10.00 

0.3 45 44.00 

0.5 60.0 64.50 

1 90.0 93.00 

1.5 105.0 112.00 

2 120.0 125.00 
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Colloidal COD Removal Efficiency 

Modeling Results 

 Influent 0 60 

DO (mg/l) CU CB 

0.01 0 59.9 

0.1 0 56.5 

0.3 0 29.5 

0.5 0 23 

1 0 18.9 

1.5 0 17.4 

2 0 16.6 

 

DO (mg/l) 

% COD Removal -

Observed Data 

% COD Removal – A-

stage Model 

0.01 2.0% 0.2% 

0.1 10.0% 5.8% 

0.3 40.0% 50.8% 

0.5 55.0% 61.7% 

1 74.0% 68.5% 

1.5 75.0% 71.0% 

2 75.0% 72.3% 
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Modified Parameter Values 

 

Table 43 NO calibration modified parameter list 

Symbol Name Default Value Unit 

μOHO Maximum growth rate of XOHO 3 8 d-1 

KBf Half-saturation coefficient for SB 2 20 g SBf.m-3 

KBs Half-saturation coefficient for SBs 10 40 g SBs.m-3 

KO,OHO Half-saturation coefficient for SO2 0.1 0.15 g SO2.m-3 

qEPS,HYD EPS hydrolysis 0.16 0.25 
 

qADS Rate constant for adsorption 0.07 0.065 d-1 

KSL Half-saturation coefficient for surface limitation 0.002 0.009 - 

kEPS,MAX EPS formation coefficient 0.2 0.225 g CODEPS.gVSS-1 
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APPENDIX D: HRSD STATE VARIABLE DATASET 
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Table 44 HRSD pilot influent state variables 

Date Time 

Inf Q 

(m3/d) 

Q WAS 

(m3/d) 

Inf SU 

(gCOD/m3) 

Inf SBf 

(gCOD/m3) 

Inf SBs 

(gCOD/m3) 

Inf CB 

(gCOD/m3) 

Inf XU 

(gCOD/m3) 

Inf XB 

(gCOD/m3) 

Inf XOHO_ACT 

(gCOD/m3) 

Inf SNHx  

(gN/m3) 

Inf XNB 

(gN/m3) 

Inf VSS 

(gVSS/m3) Temp (oC) 

03-Sep-13 0 24.53 0.87 38.22 53.50 88.13 37.15 170.00 220.00 23.41 42.01 12.74 207.30 26.80 

04-Sep-13 1 24.53 0.87 32.30 45.21 74.49 44.00 137.00 180.00 19.79 35.50 10.77 175.20 26.70 

09-Sep-13 2 24.53 0.87 30.77 47.89 66.10 85.24 48.00 210.00 18.82 36.48 9.41 177.04 26.50 

10-Sep-13 3 24.53 0.87 33.80 52.60 72.60 41.00 106.00 230.00 20.68 40.07 10.34 194.45 26.80 

11-Sep-13 4 24.53 0.87 30.96 48.18 66.50 61.35 74.00 210.00 18.94 36.71 9.47 178.13 26.90 

12-Sep-13 5 24.53 0.87 36.95 57.51 79.37 26.17 136.00 250.00 22.60 43.81 11.30 212.59 26.90 

16-Sep-13 6 24.53 0.87 27.35 50.90 96.41 60.34 54.00 230.00 20.02 37.97 12.28 167.68 26.70 

17-Sep-13 7 24.53 0.87 27.40 51.00 96.60 28.00 87.00 230.00 20.06 38.04 12.30 168.00 26.50 

18-Sep-13 8 24.53 0.87 31.30 58.26 110.35 35.10 99.00 260.00 22.91 43.45 14.05 191.91 26.50 

23-Sep-13 9 24.53 0.87 30.51 56.79 87.80 83.90 100.00 220.00 22.33 40.86 10.64 198.74 26.00 

24-Sep-13 10 24.53 0.87 28.40 52.86 81.73 62.00 114.00 200.00 20.79 38.04 9.91 185.01 26.00 

25-Sep-13 11 24.53 0.87 30.14 56.10 86.74 51.02 128.00 220.00 22.06 40.37 10.51 196.33 25.70 

26-Sep-13 12 24.53 0.87 34.94 65.03 100.54 11.50 201.00 250.00 25.57 46.79 12.18 227.57 25.70 

30-Sep-13 13 24.53 1.01 32.73 37.01 100.34 63.92 114.00 220.00 21.91 44.54 12.24 173.60 25.50 

01-Oct-13 14 24.53 1.01 30.60 34.60 93.80 56.00 116.00 200.00 20.48 41.64 11.44 162.29 25.30 

02-Oct-13 15 24.53 1.01 31.81 35.97 97.51 74.71 102.00 210.00 21.29 43.28 11.90 168.71 25.20 

03-Oct-13 16 24.53 1.08 33.08 37.40 101.40 79.12 103.00 220.00 22.14 45.01 12.37 175.44 25.20 

07-Oct-13 17 24.53 1.08 33.48 48.99 68.99 72.54 87.00 270.00 22.41 38.35 8.09 220.19 25.80 

08-Oct-13 18 24.53 1.08 28.29 41.40 58.31 73.00 60.00 230.00 18.94 32.41 6.83 186.08 25.30 

09-Oct-13 19 24.53 1.08 31.00 45.36 63.89 35.75 112.00 250.00 20.75 35.51 7.49 203.89 25.10 

10-Oct-13 20 24.53 1.08 28.24 41.32 58.19 31.26 101.00 230.00 18.90 32.34 6.82 185.70 24.50 

15-Oct-13 21 24.53 1.08 21.70 52.20 72.10 58.00 66.00 230.00 19.29 36.41 5.89 183.88 24.30 

16-Oct-13 22 24.53 1.08 23.39 56.27 77.72 40.61 91.00 250.00 20.79 39.26 6.35 198.22 24.10 

17-Oct-13 23 24.53 1.08 23.83 57.32 79.17 85.69 53.00 250.00 21.18 39.98 6.47 201.90 24.20 

21-Oct-13 24 24.53 1.08 22.46 53.06 57.81 98.67 77.00 210.00 20.02 38.52 12.52 193.04 24.30 

22-Oct-13 25 24.53 1.08 25.10 59.30 64.60 48.00 153.00 230.00 22.37 43.05 13.99 215.73 24.00 

23-Oct-13 26 24.53 1.08 23.37 55.21 60.14 62.28 129.00 210.00 20.83 40.08 13.02 200.85 24.00 

24-Oct-13 27 24.53 1.08 24.41 57.66 62.82 57.11 142.00 220.00 21.76 41.86 13.60 209.78 23.60 

28-Oct-13 28 24.53 1.08 15.45 46.89 81.17 108.50 109.00 160.00 20.10 38.21 11.79 169.68 22.90 

29-Oct-13 29 24.53 1.08 16.90 51.30 88.80 51.00 192.00 170.00 21.99 41.80 12.90 185.64 22.90 

04-Nov-13 30 24.53 0.79 17.82 49.21 82.07 59.89 102.00 290.00 20.00 39.74 14.28 212.02 22.50 

06-Nov-13 31 24.53 0.79 17.91 49.46 82.48 52.15 102.00 300.00 20.10 39.94 14.35 213.08 22.40 

07-Nov-13 32 24.53 0.79 17.49 48.31 80.57 56.62 97.00 290.00 19.63 39.02 14.02 208.14 22.40 

12-Nov-13 33 24.53 0.87 23.66 54.40 70.53 70.41 117.00 230.00 18.84 38.84 10.75 140.06 21.50 

13-Nov-13 34 24.53 0.87 24.20 55.65 72.15 55.00 142.00 230.00 19.27 39.73 11.00 143.28 21.20 

14-Nov-13 35 24.53 0.87 23.66 54.40 70.53 65.41 122.00 230.00 18.84 38.84 10.75 140.06 21.10 

18-Nov-13 36 24.53 0.94 24.03 66.80 94.03 56.14 114.00 220.00 18.00 41.38 5.51 198.98 21.00 

19-Nov-13 37 24.53 0.94 21.19 58.90 82.91 65.00 79.00 200.00 15.87 36.49 4.86 175.44 20.80 

20-Nov-13 38 24.53 0.94 21.19 58.90 82.91 55.00 89.00 200.00 15.87 36.49 4.86 175.44 20.80 

21-Nov-13 39 24.53 1.01 23.99 66.68 93.87 39.46 130.00 220.00 17.97 41.31 5.50 198.63 20.60 

25-Nov-13 40 24.53 1.01 24.33 67.61 95.17 75.89 99.00 220.00 18.22 40.91 5.58 201.40 20.00 

26-Nov-13 41 24.53 1.01 23.95 66.57 93.70 52.78 116.00 220.00 17.94 40.27 5.49 198.28 20.20 

02-Dec-13 42 24.53 0.87 21.44 55.51 93.41 92.65 104.00 190.00 17.44 39.20 9.53 181.36 18.70 
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Date Time 

Inf Q 

(m3/d) 

Q WAS 

(m3/d) 

Inf SU 

(gCOD/m3) 

Inf SBf 

(gCOD/m3) 

Inf SBs 

(gCOD/m3) 

Inf CB 

(gCOD/m3) 

Inf XU 

(gCOD/m3) 

Inf XB 

(gCOD/m3) 

Inf XOHO_ACT 

(gCOD/m3) 

Inf SNHx  

(gN/m3) 

Inf XNB 

(gN/m3) 

Inf VSS 

(gVSS/m3) Temp (oC) 

03-Dec-13 43 24.53 0.87 22.40 58.00 97.60 59.00 145.00 200.00 18.22 40.95 9.95 189.50 18.60 

04-Dec-13 44 24.53 0.87 21.40 55.41 93.24 78.95 117.00 190.00 17.41 39.12 9.51 181.04 18.80 

05-Dec-13 45 24.53 0.79 23.79 61.59 103.64 65.99 143.00 220.00 19.35 43.49 10.57 201.23 18.90 

09-Dec-13 46 24.53 0.79 23.98 22.97 104.48 78.58 241.00 300.00 34.00 45.87 17.33 274.14 18.70 

10-Dec-13 47 24.53 0.79 19.00 18.20 82.80 68.00 183.00 240.00 26.94 36.35 13.73 217.25 18.40 

11-Dec-13 48 24.53 0.87 17.04 16.32 74.26 87.37 133.00 220.00 24.17 32.60 12.32 194.85 18.10 

12-Dec-13 49 24.53 0.94 15.98 15.31 69.65 107.05 106.00 200.00 22.67 30.58 11.55 182.76 18.20 

18-Dec-13 50 24.53 1.04 12.69 35.72 58.99 113.60 129.00 200.00 24.25 31.97 11.26 175.27 17.40 

30-Dec-13 51 24.53 1.04 13.89 39.09 64.56 111.45 153.00 220.00 26.55 35.79 14.70 203.75 17.10 

02-Jan-14 52 24.53 1.04 14.70 41.37 68.32 154.62 128.00 230.00 28.09 37.87 15.55 215.60 17.00 

06-Jan-14 53 24.53 1.04 13.20 52.17 121.33 50.31 55.00 280.00 25.22 36.53 6.29 204.27 16.70 

07-Jan-14 54 24.53 1.04 9.97 39.40 91.63 78.00 1.00 212.00 19.05 27.59 4.75 154.28 16.90 

08-Jan-14 55 24.53 1.04 13.64 53.90 125.36 11.10 97.00 290.00 26.06 37.75 6.50 211.06 16.10 

09-Jan-14 56 24.53 1.04 12.88 50.89 118.36 22.88 73.00 280.00 24.61 35.64 6.14 199.27 16.30 

13-Jan-14 57 24.53 1.04 10.22 40.40 49.90 116.47 6.00 220.00 18.00 26.97 1.85 158.20 16.00 

14-Jan-14 58 24.53 1.04 12.00 47.43 58.57 81.00 61.00 260.00 21.13 31.66 2.17 185.70 15.90 

15-Jan-14 59 24.53 1.04 11.61 45.88 56.66 80.86 58.00 250.00 20.44 30.62 2.10 179.63 16.50 

16-Jan-14 60 24.53 1.04 13.06 51.62 63.76 52.56 105.00 280.00 23.00 34.46 2.36 202.13 16.10 

21-Jan-14 61 24.53 0.87 13.66 38.60 82.08 124.66 83.00 250.00 19.21 30.67 7.48 166.18 16.20 

23-Jan-14 62 24.53 0.84 15.07 42.58 90.53 63.82 171.00 270.00 21.19 33.83 8.25 183.30 15.40 

27-Jan-14 63 24.53 0.84 17.49 49.42 105.09 68.99 207.00 310.00 31.00 37.74 20.35 313.73 14.80 

30-Jan-14 64 24.53 0.87 14.19 40.10 85.27 76.44 149.00 250.00 25.15 30.62 16.51 254.54 14.10 

03-Feb-14 65 24.53 0.87 22.11 30.54 102.33 74.02 159.00 200.00 24.05 35.79 12.01 255.43 14.30 

04-Feb-14 66 24.53 0.87 19.40 26.80 89.80 75.00 135.00 170.00 21.10 31.41 10.54 224.15 14.20 

05-Feb-14 67 24.53 0.87 16.92 23.37 78.31 74.40 107.00 150.00 18.40 27.39 9.19 195.48 14.30 

06-Feb-14 68 24.53 0.87 21.62 29.86 100.07 48.45 185.00 190.00 23.52 35.00 11.74 249.78 14.20 

10-Feb-14 69 24.53 0.87 25.54 40.58 72.32 99.57 118.00 150.00 20.69 31.62 3.13 219.14 14.20 

11-Feb-14 70 24.53 0.87 21.40 34.00 60.60 98.00 90.00 120.00 17.34 26.50 2.63 183.62 14.00 

12-Feb-14 71 24.53 0.87 29.27 46.51 82.90 36.32 215.00 170.00 23.72 36.25 3.59 251.18 14.00 

13-Feb-14 72 24.53 0.87 24.73 39.29 70.03 30.94 185.00 140.00 20.04 30.62 3.04 212.21 13.20 

17-Feb-14 73 24.53 0.87 23.96 40.60 93.13 59.30 226.00 230.00 42.00 36.76 18.29 255.53 13.90 

18-Feb-14 74 24.53 0.87 19.30 32.70 75.00 98.00 137.00 180.00 33.82 29.61 14.73 205.79 14.30 

19-Feb-14 75 24.53 0.87 22.04 37.35 85.65 77.96 186.00 210.00 38.63 33.81 16.82 235.03 14.20 

20-Feb-14 76 24.53 0.94 22.47 38.07 87.32 94.15 179.00 210.00 39.38 34.47 17.15 239.58 14.50 

24-Feb-14 77 24.53 0.94 23.06 54.72 72.59 93.63 80.00 230.00 22.00 31.62 3.03 161.61 14.90 

25-Feb-14 78 24.53 1.01 20.40 48.40 64.20 95.00 52.00 210.00 19.46 27.97 2.68 142.94 14.90 

26-Feb-14 79 24.53 1.01 21.69 51.46 68.26 74.59 85.00 220.00 20.69 29.74 2.85 151.99 14.80 

27-Feb-14 80 24.53 1.01 33.89 80.40 106.65 103.06 150.00 340.00 32.32 46.46 4.45 237.46 15.10 

06-Mar-14 81 24.53 1.01 30.48 63.10 62.68 52.74 343.00 180.00 29.07 38.01 8.20 215.57 14.40 

10-Mar-14 82 24.53 1.01 15.09 22.94 97.59 85.37 168.00 230.00 17.00 33.58 15.24 218.58 14.40 

11-Mar-14 83 24.53 1.01 14.80 22.50 95.70 62.00 192.00 220.00 16.67 32.93 14.94 214.34 14.50 

12-Mar-14 84 24.53 1.08 14.65 22.28 94.75 67.31 182.00 220.00 16.51 32.60 14.80 212.22 14.90 

13-Mar-14 85 24.53 1.08 14.58 22.17 94.28 82.97 164.00 220.00 16.42 32.44 14.72 211.16 15.00 

17-Mar-14 86 24.53 1.15 17.38 26.69 77.76 94.18 155.00 170.00 14.86 31.06 12.10 171.30 15.00 
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Date Time 

Inf Q 

(m3/d) 

Q WAS 

(m3/d) 

Inf SU 

(gCOD/m3) 

Inf SBf 

(gCOD/m3) 

Inf SBs 

(gCOD/m3) 

Inf CB 

(gCOD/m3) 

Inf XU 

(gCOD/m3) 

Inf XB 

(gCOD/m3) 

Inf XOHO_ACT 

(gCOD/m3) 

Inf SNHx  

(gN/m3) 

Inf XNB 

(gN/m3) 

Inf VSS 

(gVSS/m3) Temp (oC) 

18-Mar-14 87 24.53 1.23 16.80 25.80 75.17 52.23 193.00 160.00 14.36 30.02 11.70 165.60 14.80 

19-Mar-14 88 24.53 1.30 16.99 26.10 76.03 56.88 183.00 170.00 14.53 30.37 11.83 167.50 14.60 

24-Mar-14 89 24.53 1.44 19.84 41.85 62.44 102.88 97.00 270.00 16.31 36.58 12.16 197.13 15.30 

25-Mar-14 90 24.53 1.44 18.20 38.40 57.29 90.11 91.00 250.00 14.97 33.56 11.16 180.87 15.40 

26-Mar-14 91 24.53 1.44 16.66 35.16 52.45 86.73 78.00 230.00 13.70 30.73 10.22 165.61 14.90 

27-Mar-14 92 24.53 1.44 17.93 37.84 56.44 86.79 98.00 240.00 14.75 33.07 11.00 178.22 15.20 

31-Mar-14 93 24.53 1.59 16.13 33.84 74.96 87.06 78.00 220.00 14.01 32.22 8.76 174.06 15.50 

01-Apr-14 94 24.53 1.73 17.30 36.30 80.40 61.00 122.00 230.00 15.02 34.56 9.40 186.69 15.70 

02-Apr-14 95 24.53 1.73 18.66 39.15 86.72 47.47 148.00 250.00 16.20 37.27 10.14 201.37 15.80 

03-Apr-14 96 24.53 1.73 17.93 37.63 83.34 57.10 131.00 240.00 15.57 35.82 9.74 193.52 16.00 

07-Apr-14 97 24.53 1.08 17.34 43.65 80.78 76.24 146.00 200.00 15.49 35.33 10.55 198.98 16.80 

08-Apr-14 98 24.53 1.08 17.00 42.80 79.20 62.00 152.00 200.00 15.19 34.64 10.35 195.10 16.70 

09-Apr-14 99 24.53 1.08 15.74 39.63 73.33 87.31 116.00 180.00 14.06 32.07 9.58 180.63 17.00 

10-Apr-14 100 24.53 1.01 18.94 47.68 88.22 40.16 201.00 220.00 16.92 38.59 11.53 217.32 16.90 

14-Apr-14 101 24.53 1.01 17.31 45.73 77.50 80.46 178.00 210.00 16.73 36.23 15.24 297.51 18.10 

15-Apr-14 102 24.53 1.01 17.00 44.90 76.10 64.00 186.00 210.00 16.42 35.58 14.96 292.13 18.20 

16-Apr-14 103 24.53 1.01 14.19 37.47 63.50 45.85 168.00 170.00 13.70 29.69 12.49 243.77 17.70 

17-Apr-14 104 24.53 1.01 13.79 36.42 61.72 59.08 144.00 170.00 13.32 28.86 12.14 236.93 17.90 

21-Apr-14 105 24.53 1.01 18.35 43.87 107.49 40.30 153.00 200.00 15.46 38.21 8.42 175.56 17.60 

22-Apr-14 106 24.53 1.01 17.86 42.70 104.62 26.82 166.00 190.00 15.05 37.19 8.20 170.88 17.80 

23-Apr-14 107 24.53 1.01 16.00 38.26 93.74 61.00 112.00 170.00 13.48 33.33 7.35 153.10 17.90 

24-Apr-14 108 24.53 1.01 18.64 44.57 109.21 43.58 156.00 200.00 15.71 38.82 8.56 178.36 18.00 

29-Apr-14 109 24.53 1.15 17.00 49.30 60.70 60.00 136.00 160.00 13.26 30.20 7.55 170.71 18.50 

30-Apr-14 110 24.53 1.15 18.41 53.38 65.73 51.48 164.00 170.00 14.36 32.70 8.18 184.84 18.60 

05-May-14 111 24.53 1.15 20.30 45.67 91.35 64.68 218.00 170.00 16.75 37.97 12.64 187.77 19.40 

07-May-14 112 24.53 0.87 20.00 44.99 90.01 82.00 194.00 170.00 16.51 37.41 12.45 185.00 19.70 

08-May-14 113 24.53 0.87 18.27 41.10 82.22 69.41 188.00 150.00 15.08 34.17 11.37 168.99 19.80 

12-May-14 114 24.53 0.72 18.87 40.94 72.26 110.93 94.00 230.00 15.57 37.91 11.38 206.37 20.50 

13-May-14 115 24.53 1.01 21.43 46.50 82.07 71.00 163.00 260.00 17.69 43.06 12.93 234.40 20.90 

15-May-14 116 24.53 0.87 18.90 41.01 72.38 82.70 123.00 230.00 15.60 37.98 11.40 206.74 21.30 

19-May-14 117 24.53 1.15 19.30 41.88 72.24 79.58 137.00 230.00 15.93 34.27 11.14 189.43 21.50 

20-May-14 118 24.53 1.15 19.07 41.37 71.37 66.19 145.00 230.00 15.74 33.85 11.01 187.14 21.50 

21-May-14 119 24.53 1.15 20.83 45.20 77.97 32.00 200.00 250.00 17.19 36.98 12.02 204.45 21.60 

22-May-14 120 24.53 1.01 17.94 38.92 67.13 71.01 124.00 220.00 14.80 31.84 10.35 176.04 21.90 

27-May-14 121 24.53 0.79 20.17 43.76 98.08 55.00 169.00 220.00 20.30 36.91 8.57 236.89 22.70 

28-May-14 122 24.53 0.79 18.50 40.15 89.99 48.37 149.00 210.00 18.63 33.86 7.86 217.34 22.70 

29-May-14 123 24.53 0.79 19.50 42.31 94.84 16.35 193.00 220.00 19.63 35.69 8.28 229.07 22.90 

02-Jun-14 124 24.53 0.94 19.47 52.61 91.23 62.70 179.00 180.00 19.60 39.19 7.81 192.92 22.70 

03-Jun-14 125 24.53 0.94 18.84 50.90 88.26 74.00 154.00 180.00 18.96 37.92 7.55 186.65 22.80 

04-Jun-14 126 24.53 0.94 17.30 46.76 81.09 80.84 134.00 160.00 17.42 34.84 6.94 171.48 23.10 

05-Jun-14 127 24.53 0.94 19.60 52.97 91.85 29.58 215.00 180.00 19.73 39.46 7.86 194.24 23.20 

09-Jun-14 128 24.53 1.08 19.40 58.76 89.23 65.62 140.00 210.00 19.53 38.81 6.72 200.11 23.50 

10-Jun-14 129 24.53 1.15 17.04 51.60 78.36 60.00 125.00 180.00 17.15 34.08 5.90 175.74 23.80 

11-Jun-14 130 24.53 1.15 16.97 51.40 78.06 56.57 127.00 180.00 17.09 33.95 5.88 175.05 24.00 
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Date Time 

Inf Q 

(m3/d) 

Q WAS 

(m3/d) 

Inf SU 

(gCOD/m3) 

Inf SBf 

(gCOD/m3) 

Inf SBs 

(gCOD/m3) 

Inf CB 

(gCOD/m3) 

Inf XU 

(gCOD/m3) 

Inf XB 

(gCOD/m3) 

Inf XOHO_ACT 

(gCOD/m3) 

Inf SNHx  

(gN/m3) 

Inf XNB 

(gN/m3) 

Inf VSS 

(gVSS/m3) Temp (oC) 

12-Jun-14 131 24.53 1.15 20.50 62.08 94.28 18.14 201.00 220.00 20.64 41.01 7.10 211.44 24.10 

16-Jun-14 132 24.53 1.15 18.44 55.83 84.79 70.94 124.00 200.00 18.56 37.22 6.38 190.16 24.30 

17-Jun-14 133 24.53 1.15 18.67 56.54 85.86 72.93 127.00 200.00 18.79 37.69 6.46 192.56 24.60 
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Table 45 HRSD pilot reactor state variables  

Date Time 

TK105 

SO2 (g/m3) 

TK106 

SO2 

(g/m3) 

TK107 

SO2 

(g/m3) 

TK107 

XTSS 

(gTSS/m3) 

TK107 

XVSS 

(gVSS/m3) 

WAS TSS 

(gTSS/m3) 

XTSS 

target 

(gTSS/m3) fr1_Q 

03-Sep-13 0 0.02 1.75 2.93 248.48 244.03 2559.45 127.15 0.04 

04-Sep-13 1 0.04 1.63 3.20 210.00 174.30 2163.09 91.88 0.04 

09-Sep-13 2 0.06 0.45 1.06 2683.50 2320.38 4333.70 87.34 0.04 

10-Sep-13 3 0.30 0.46 0.86 2947.45 2799.30 4759.97 72.72 0.04 

11-Sep-13 4 0.25 0.33 0.96 2700.00 2349.00 4360.35 76.10 0.04 

12-Sep-13 5 0.13 0.32 0.87 3222.40 3061.28 5204.00 80.97 0.04 

16-Sep-13 6 0.07 0.60 1.72 2271.72 1667.30 4724.38 75.00 0.04 

17-Sep-13 7 0.11 0.37 1.52 2276.09 1673.73 4733.48 68.00 0.04 

18-Sep-13 8 0.02 0.21 1.05 2600.00 2184.00 5407.09 67.33 0.04 

23-Sep-13 9 0.14 4.19 5.87 1012.24 922.16 1989.90 158.28 0.04 

24-Sep-13 10 0.07 3.54 4.92 942.31 799.15 1852.42 145.76 0.04 

25-Sep-13 11 0.07 1.55 1.76 1000.00 900.00 1965.84 148.59 0.04 

26-Sep-13 12 0.11 0.80 1.10 1159.09 1101.14 2278.59 133.25 0.04 

30-Sep-13 13 0.09 1.31 1.75 1317.10 1192.64 3024.68 135.54 0.04 

01-Oct-13 14 0.08 1.04 1.47 1231.30 1042.33 2827.65 118.18 0.04 

02-Oct-13 15 0.07 1.50 1.70 1280.00 1126.40 2939.48 127.68 0.04 

03-Oct-13 16 0.07 1.87 1.87 1331.01 1217.97 3056.63 133.06 0.04 

07-Oct-13 17 0.10 1.87 1.77 1220.32 1106.99 2302.81 156.10 0.04 

08-Oct-13 18 0.13 2.95 4.48 1031.28 790.60 1946.09 131.25 0.04 

09-Oct-13 19 0.10 1.80 1.66 1130.00 949.20 2132.38 131.72 0.04 

10-Oct-13 20 0.08 0.66 1.05 1029.18 787.38 1942.13 130.79 0.04 

15-Oct-13 21 0.10 0.65 0.68 1307.98 897.87 2353.79 128.97 0.04 

16-Oct-13 22 0.07 1.46 1.60 1410.00 1043.40 2537.39 147.33 0.04 

17-Oct-13 23 0.06 0.42 2.40 1436.16 1082.48 2584.47 146.36 0.04 

21-Oct-13 24 0.27 0.74 1.16 1595.44 1334.06 2201.23 141.64 0.04 

22-Oct-13 25 0.06 0.79 0.67 1782.96 1666.08 2459.95 142.43 0.04 
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Date Time 

TK105 

SO2 (g/m3) 

TK106 

SO2 

(g/m3) 

TK107 

SO2 

(g/m3) 

TK107 

XTSS 

(gTSS/m3) 

TK107 

XVSS 

(gVSS/m3) 

WAS TSS 

(gTSS/m3) 

XTSS 

target 

(gTSS/m3) fr1_Q 

23-Oct-13 26 0.06 0.34 0.34 1660.00 1444.20 2290.30 140.07 0.04 

24-Oct-13 27 0.07 0.46 0.46 1733.78 1575.43 2392.09 145.56 0.04 

28-Oct-13 28 0.07 1.61 2.06 1601.59 1344.36 2344.47 150.43 0.04 

29-Oct-13 29 0.04 0.60 0.59 1752.22 1609.12 2564.97 148.00 0.04 

04-Nov-13 30 0.07 0.35 0.32 3044.80 2544.93 5677.87 92.68 0.03 

06-Nov-13 31 0.05 0.21 0.22 3060.00 2570.40 5706.21 87.58 0.03 

07-Nov-13 32 0.06 0.23 0.19 2989.07 2452.62 5573.95 86.38 0.03 

12-Nov-13 33 0.06 0.20 0.19 2482.97 2063.14 5524.16 109.08 0.04 

13-Nov-13 34 0.06 0.20 0.27 2540.00 2159.00 5651.04 100.69 0.04 

14-Nov-13 35 0.06 0.22 0.27 2482.97 2063.14 5524.16 92.65 0.04 

18-Nov-13 36 0.01 0.24 0.15 1939.35 1935.52 4245.15 99.63 0.04 

19-Nov-13 37 0.05 0.88 0.58 1710.00 1504.80 3743.12 96.39 0.04 

20-Nov-13 38 0.06 0.50 0.32 1710.00 1504.80 3743.12 98.16 0.04 

21-Nov-13 39 0.01 0.68 0.57 1935.98 1928.80 4237.77 96.68 0.04 

25-Nov-13 40 0.05 1.19 1.25 1962.96 1864.81 6833.13 93.73 0.04 

26-Nov-13 41 0.09 1.19 1.24 1932.60 1922.08 6727.46 93.44 0.04 

02-Dec-13 42 0.09 3.32 4.90 1051.89 958.94 1978.73 140.89 0.04 

03-Dec-13 43 0.47 4.19 6.51 1099.10 1046.95 2067.55 137.56 0.04 

04-Dec-13 44 0.05 3.98 5.93 1050.00 955.50 1975.18 131.23 0.04 

05-Dec-13 45 0.06 2.77 4.40 1167.09 1108.73 2195.44 140.89 0.03 

09-Dec-13 46 0.08 4.44 6.71 3629.89 3448.40 6467.83 139.73 0.03 

10-Dec-13 47 0.06 0.51 0.54 2876.61 2758.29 5125.61 99.03 0.03 

11-Dec-13 48 0.08 0.23 0.30 2580.00 2218.80 4597.11 95.64 0.04 

12-Dec-13 49 0.05 0.30 0.46 2419.93 1952.02 4311.89 111.92 0.04 

18-Dec-13 50 0.07 1.37 1.83 2020.00 1858.40 4691.42 122.79 0.04 

30-Dec-13 51 0.03 1.18 1.21 2210.98 2100.43 5354.40 86.76 0.04 

02-Jan-14 52 0.09 1.01 1.09 2339.53 2222.55 5665.70 92.00 0.04 
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Date Time 

TK105 

SO2 (g/m3) 

TK106 

SO2 

(g/m3) 

TK107 

SO2 

(g/m3) 

TK107 

XTSS 

(gTSS/m3) 

TK107 

XVSS 

(gVSS/m3) 

WAS TSS 

(gTSS/m3) 

XTSS 

target 

(gTSS/m3) fr1_Q 

06-Jan-14 53 0.02 1.41 1.72 987.21 869.48 4228.29 119.14 0.04 

07-Jan-14 54 0.10 1.50 2.35 745.58 495.95 3193.39 108.34 0.04 

08-Jan-14 55 0.08 1.42 2.17 1020.00 928.20 4368.74 115.54 0.04 

09-Jan-14 56 0.08 0.81 1.12 963.05 827.44 4124.80 123.07 0.04 

13-Jan-14 57 0.08 1.18 1.10 1673.36 1296.90 3339.30 103.58 0.04 

14-Jan-14 58 0.08 0.92 0.96 1964.21 1786.93 3919.72 108.00 0.04 

15-Jan-14 59 0.08 0.57 0.59 1900.00 1672.00 3791.58 107.32 0.04 

16-Jan-14 60 0.07 0.85 0.90 2137.97 2117.06 4266.47 108.34 0.04 

21-Jan-14 61 3.52 3.48 3.77 2241.07 1933.40 4638.33 85.43 0.04 

23-Jan-14 62 0.16 0.13 0.35 2471.99 2352.37 5116.27 80.81 0.03 

27-Jan-14 63 0.04 0.01 0.10 2869.48 2726.01 7057.83 79.98 0.03 

30-Jan-14 64 0.06 0.03 0.39 2328.14 2086.55 5726.34 67.00 0.04 

03-Feb-14 65 0.11 0.08 0.08 2456.53 2333.71 7172.08 97.26 0.04 

04-Feb-14 66 0.04 0.08 0.51 2155.73 2047.95 6293.87 79.54 0.04 

05-Feb-14 67 0.10 0.08 0.02 1880.00 1673.20 5488.84 72.94 0.04 

06-Feb-14 68 0.07 0.17 0.44 2402.22 2282.11 7013.52 75.72 0.04 

10-Feb-14 69 0.05 0.03 0.01 2303.17 1828.48 8801.69 70.75 0.04 

11-Feb-14 70 0.02 0.06 0.11 1929.93 1283.87 7375.33 58.54 0.04 

12-Feb-14 71 0.02 0.03 0.11 2640.00 2402.40 10088.90 57.98 0.04 

13-Feb-14 72 0.03 0.07 1.72 2230.34 1714.67 8523.38 52.71 0.04 

17-Feb-14 73 0.13 0.13 0.13 2511.52 2385.94 8253.16 66.91 0.04 

18-Feb-14 74 0.18 0.11 0.11 2022.65 1647.07 6646.67 62.39 0.04 

19-Feb-14 75 1.05 0.12 0.12 2310.00 2148.30 7590.94 64.05 0.04 

20-Feb-14 76 0.11 0.11 0.11 2354.78 2232.40 7738.10 68.34 0.04 

24-Feb-14 77 0.12 0.11 0.11 1892.74 1831.49 5986.21 53.18 0.04 

25-Feb-14 78 0.14 0.14 0.14 1674.09 1432.78 5294.66 48.54 0.04 

26-Feb-14 79 0.42 0.45 0.45 1780.00 1619.80 5629.63 55.50 0.04 
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Date Time 

TK105 

SO2 (g/m3) 

TK106 

SO2 

(g/m3) 

TK107 

SO2 

(g/m3) 

TK107 

XTSS 

(gTSS/m3) 

TK107 

XVSS 

(gVSS/m3) 

WAS TSS 

(gTSS/m3) 

XTSS 

target 

(gTSS/m3) fr1_Q 

27-Feb-14 80 2.21 2.21 2.21 2781.04 2641.98 8795.62 99.21 0.04 

06-Mar-14 81 1.71 1.71 1.71 2736.66 2709.54 5022.77 78.28 0.04 

10-Mar-14 82 2.13 2.13 2.13 3264.94 2925.57 6276.51 49.86 0.04 

11-Mar-14 83 1.80 1.80 1.80 3201.65 2813.24 6154.84 48.77 0.04 

12-Mar-14 84 2.21 2.21 2.21 3170.00 2757.90 6094.00 46.59 0.04 

13-Mar-14 85 2.52 2.52 2.52 3154.18 2730.44 6063.58 48.22 0.04 

17-Mar-14 86 2.19 2.19 2.19 2403.31 2162.89 4960.32 53.12 0.05 

18-Mar-14 87 3.85 3.85 3.85 2323.35 2021.35 4795.28 43.90 0.05 

19-Mar-14 88 3.82 3.82 3.82 2350.00 2068.00 4850.30 51.53 0.05 

24-Mar-14 89 0.82 0.82 0.82 2583.13 2453.97 4850.36 60.68 0.06 

25-Mar-14 90 0.45 0.45 0.45 2370.04 2226.13 4450.25 49.37 0.06 

26-Mar-14 91 0.19 0.26 0.23 2170.00 1866.20 4074.63 40.11 0.06 

27-Mar-14 92 0.90 0.90 0.90 2335.25 2161.25 4384.92 47.57 0.06 

31-Mar-14 93 0.35 0.39 1.07 2498.14 1878.68 3815.07 53.99 0.07 

01-Apr-14 94 0.24 0.27 0.58 2679.37 2161.16 4091.85 52.78 0.07 

02-Apr-14 95 0.12 0.15 0.25 2890.00 2514.30 4413.51 49.46 0.07 

03-Apr-14 96 0.25 0.31 0.89 2777.34 2322.09 4241.46 51.27 0.07 

07-Apr-14 97 0.09 0.19 0.22 2225.16 2181.52 4220.49 73.49 0.04 

08-Apr-14 98 0.09 0.40 0.42 2181.76 2097.26 4138.17 64.95 0.04 

09-Apr-14 99 0.09 0.27 0.30 2020.00 1797.80 3831.36 59.55 0.04 

10-Apr-14 100 0.09 0.23 0.33 2430.31 2308.80 4609.61 56.63 0.04 

14-Apr-14 101 0.09 0.13 0.18 2947.83 2800.44 5559.54 110.22 0.04 

15-Apr-14 102 0.08 0.11 0.14 2894.59 2876.30 5459.12 106.84 0.04 

16-Apr-14 103 0.10 0.22 0.28 2415.38 2002.77 4555.35 86.22 0.04 

17-Apr-14 104 0.10 0.22 1.53 2347.62 1891.97 4427.54 83.98 0.04 

21-Apr-14 105 0.09 0.19 0.23 2166.39 1972.23 4589.64 86.74 0.04 

22-Apr-14 106 0.10 0.20 0.19 2108.67 1868.53 4467.36 80.05 0.04 
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Date Time 

TK105 

SO2 (g/m3) 

TK106 

SO2 

(g/m3) 

TK107 

SO2 

(g/m3) 

TK107 

XTSS 

(gTSS/m3) 

TK107 

XVSS 

(gVSS/m3) 

WAS TSS 

(gTSS/m3) 

XTSS 

target 

(gTSS/m3) fr1_Q 

23-Apr-14 107 0.09 0.17 0.18 1889.34 1500.04 4002.69 79.77 0.04 

24-Apr-14 108 0.11 0.15 0.17 2201.02 2035.78 4663.01 82.00 0.04 

29-Apr-14 109 0.11 1.68 2.96 1647.88 1379.99 3044.83 76.53 0.05 

30-Apr-14 110 0.09 0.35 0.38 1784.34 1618.03 3296.99 70.02 0.05 

05-May-14 111 0.14 1.11 1.52 2455.64 2332.86 5081.56 91.43 0.05 

07-May-14 112 0.12 2.20 3.52 2419.41 2397.95 5006.58 98.42 0.04 

08-May-14 113 0.14 2.30 3.20 2210.08 2000.95 4573.40 99.54 0.04 

12-May-14 114 0.10 0.33 0.34 1825.85 1603.07 4438.45 134.34 0.03 

13-May-14 115 0.14 2.10 3.67 2073.80 2068.03 5041.20 125.74 0.04 

15-May-14 116 0.14 2.22 3.77 1829.07 1608.73 4446.28 120.33 0.04 

19-May-14 117 2.19 2.19 3.03 2266.89 2141.73 4169.91 137.75 0.05 

20-May-14 118 6.04 6.81 7.15 2239.53 2090.34 4119.59 119.34 0.05 

21-May-14 119 5.52 6.13 6.26 2446.67 2324.34 4500.63 117.57 0.05 

22-May-14 120 4.29 4.42 4.08 2106.64 1849.63 3875.14 106.59 0.04 

27-May-14 121 1.79 1.23 0.36 3287.68 2975.41 7783.57 99.77 0.03 

28-May-14 122 1.65 1.48 1.78 3016.42 2504.67 7141.37 93.05 0.03 

29-May-14 123 1.12 0.91 2.56 3179.17 2782.25 7526.69 85.62 0.03 

02-Jun-14 124 0.17 0.11 0.80 3396.42 3029.56 6936.97 101.74 0.04 

03-Jun-14 125 0.17 0.11 0.80 3286.11 2835.96 6711.67 98.77 0.04 

04-Jun-14 126 0.17 0.11 0.79 3019.04 2393.72 6166.20 93.15 0.04 

05-Jun-14 127 0.21 0.21 0.24 3419.65 3071.13 6984.41 86.22 0.04 

09-Jun-14 128 1.58 1.93 1.41 1981.29 1882.22 3094.75 98.00 0.04 

10-Jun-14 129 3.18 4.17 4.31 1740.00 1600.80 2717.86 98.00 0.05 

11-Jun-14 130 3.72 4.91 4.84 1733.20 1588.32 2707.25 101.53 0.05 

12-Jun-14 131 3.26 4.13 4.20 2093.44 1988.77 3269.93 100.89 0.05 

16-Jun-14 132 3.01 3.75 3.80 1882.73 1874.20 2612.62 98.00 0.05 

17-Jun-14 133 2.33 2.68 2.41 1906.52 1811.20 2645.64 95.11 0.05 
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Table 46 HRSD pilot effluent state variables  

Date Time 

Eff SU 

(gCOD/m3) 

Eff SBf 

(gCOD/m3) 

Eff  SBs 

(gCOD/m3) 

Eff  CB 

(gCOD/m3) 

Eff  XU 

(gCOD/m3) 

Eff  XB 

(gCOD/m3) 

Eff  TSS 

(gTSS/m3) 

Eff  TVSS 

(gVSS/m3) 

Eff  VSS 

(gVSS/m3) 

Eff Filtered 

COD 

(gCOD/m3) 

03-Sep-13 0 38.22 39.00 25.18 84.60 136.00 70.00 127.15 120.79 134.22 137.00 

04-Sep-13 1 32.30 28.18 13.52 57.00 103.00 50.00 91.88 88.59 96.99 99.00 

09-Sep-13 2 30.77 1.04 41.44 45.74 54.00 60.00 87.34 82.79 84.53 91.28 

10-Sep-13 3 33.80 0.87 26.33 45.00 38.00 50.00 72.72 57.40 70.38 76.00 

11-Sep-13 4 30.96 0.91 31.96 43.17 46.00 50.00 76.10 62.85 73.65 79.53 

12-Sep-13 5 36.95 0.97 30.00 34.08 64.00 50.00 80.97 71.15 78.36 84.62 

16-Sep-13 6 27.35 1.30 24.29 72.06 20.00 80.00 75.00 69.49 72.69 70.59 

17-Sep-13 7 27.40 1.18 19.42 55.00 31.00 70.00 68.00 57.12 65.91 64.00 

18-Sep-13 8 31.30 1.17 15.06 82.47 2.00 70.00 67.33 56.01 65.26 63.37 

23-Sep-13 9 30.51 2.27 67.12 106.10 86.00 100.00 158.28 150.37 134.55 128.13 

24-Sep-13 10 28.40 2.09 61.51 76.00 103.00 90.00 145.76 138.48 123.91 118.00 

25-Sep-13 11 30.14 2.13 61.51 67.22 117.00 90.00 148.59 141.16 126.31 120.29 

26-Sep-13 12 34.94 1.91 47.26 39.90 126.00 80.00 133.25 126.58 113.27 107.87 

30-Sep-13 13 32.73 0.57 29.77 75.92 69.00 120.00 135.54 128.76 100.25 81.43 

01-Oct-13 14 30.60 0.50 23.90 68.00 63.00 100.00 118.18 94.71 87.41 71.00 

02-Oct-13 15 31.81 0.54 27.07 77.58 62.00 110.00 127.68 110.55 94.44 76.71 

03-Oct-13 16 33.08 0.56 28.28 83.08 57.00 120.00 133.06 126.40 98.42 79.94 

07-Oct-13 17 33.48 1.25 16.41 78.86 43.00 160.00 156.10 148.29 126.20 59.46 

08-Oct-13 18 28.29 1.05 13.66 66.00 31.00 140.00 131.25 106.50 106.11 50.00 

09-Oct-13 19 31.00 1.05 11.10 73.85 24.00 140.00 131.72 107.27 106.49 50.18 

10-Oct-13 20 28.24 1.05 13.56 65.15 31.00 140.00 130.79 105.74 105.73 49.82 

15-Oct-13 21 21.70 0.83 18.47 69.00 37.00 120.00 128.97 98.83 98.19 47.68 

16-Oct-13 22 23.39 0.95 22.50 66.16 52.00 140.00 147.33 128.96 112.17 54.46 

17-Oct-13 23 23.83 0.94 21.76 63.47 53.00 140.00 146.36 127.28 111.43 54.11 

21-Oct-13 24 22.46 13.13 35.02 99.39 81.00 110.00 141.64 134.56 134.27 85.53 

22-Oct-13 25 25.10 13.20 32.70 76.00 106.00 110.00 142.43 135.30 135.02 86.00 



182 

 

Date Time 

Eff SU 

(gCOD/m3) 

Eff SBf 

(gCOD/m3) 

Eff  SBs 

(gCOD/m3) 

Eff  CB 

(gCOD/m3) 

Eff  XU 

(gCOD/m3) 

Eff  XB 

(gCOD/m3) 

Eff  TSS 

(gTSS/m3) 

Eff  TVSS 

(gVSS/m3) 

Eff  VSS 

(gVSS/m3) 

Eff Filtered 

COD 

(gCOD/m3) 

23-Oct-13 26 23.37 12.98 33.48 70.17 107.00 110.00 140.07 133.07 132.79 84.58 

24-Oct-13 27 24.41 13.49 34.67 72.44 106.00 120.00 145.56 138.29 137.99 87.90 

28-Oct-13 28 15.45 19.31 44.52 106.72 86.00 100.00 150.43 142.90 121.15 99.61 

29-Oct-13 29 16.90 19.00 42.10 77.00 111.00 100.00 148.00 140.60 119.20 98.00 

04-Nov-13 30 17.82 0.71 32.63 67.84 80.00 110.00 92.68 82.04 109.01 62.41 

06-Nov-13 31 17.91 0.67 29.77 92.66 51.00 100.00 87.58 73.26 103.01 58.98 

07-Nov-13 32 17.49 0.66 29.53 85.32 55.00 100.00 86.38 71.27 101.60 58.17 

12-Nov-13 33 23.66 6.13 27.63 107.58 87.00 60.00 109.08 93.39 77.21 73.67 

13-Nov-13 34 24.20 5.66 23.14 84.00 91.00 60.00 100.69 79.58 71.27 68.00 

14-Nov-13 35 23.66 5.21 19.90 90.23 76.00 50.00 92.65 67.37 65.58 62.57 

18-Nov-13 36 24.03 0.80 27.89 124.28 81.00 80.00 99.63 94.65 116.96 78.56 

19-Nov-13 37 21.19 0.77 29.04 107.00 99.00 70.00 96.39 91.57 113.16 76.00 

20-Nov-13 38 21.19 0.78 29.96 102.06 109.00 70.00 98.16 93.25 115.23 77.39 

21-Nov-13 39 23.99 0.77 26.39 143.84 63.00 70.00 96.68 91.85 113.50 76.23 

25-Nov-13 40 24.33 0.75 24.52 123.40 75.00 70.00 93.73 89.05 110.04 73.91 

26-Nov-13 41 23.95 0.75 24.74 102.56 95.00 70.00 93.44 88.77 109.70 73.68 

02-Dec-13 42 21.44 36.15 48.93 132.48 144.00 40.00 140.89 133.84 137.73 100.37 

03-Dec-13 43 22.40 35.30 46.30 85.00 184.00 40.00 137.56 130.68 134.48 98.00 

04-Dec-13 44 21.40 33.68 44.14 108.78 156.00 30.00 131.23 124.67 128.29 93.49 

05-Dec-13 45 23.79 36.15 46.58 95.48 181.00 40.00 140.89 133.84 137.73 100.37 

09-Dec-13 46 23.98 0.70 28.94 142.38 66.00 150.00 139.73 132.74 146.49 97.76 

10-Dec-13 47 19.00 0.50 18.50 93.00 51.00 110.00 99.03 77.79 103.82 69.29 

11-Dec-13 48 17.04 0.48 19.18 85.30 50.00 110.00 95.64 72.55 100.27 66.92 

12-Dec-13 49 15.98 0.56 26.40 102.05 65.00 120.00 111.92 106.32 117.34 78.31 

18-Dec-13 50 12.69 4.87 48.57 86.87 86.00 120.00 122.79 116.65 114.41 86.08 

30-Dec-13 51 13.89 4.72 45.49 103.89 60.00 120.00 86.76 82.43 117.78 83.44 

02-Jan-14 52 14.70 5.01 48.27 114.03 67.00 120.00 92.00 87.40 124.89 88.47 

06-Jan-14 53 13.20 12.98 47.50 116.32 54.00 120.00 119.14 113.18 129.99 92.37 
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Date Time 

Eff SU 

(gCOD/m3) 

Eff SBf 

(gCOD/m3) 

Eff  SBs 

(gCOD/m3) 

Eff  CB 

(gCOD/m3) 

Eff  XU 

(gCOD/m3) 

Eff  XB 

(gCOD/m3) 

Eff  TSS 

(gTSS/m3) 

Eff  TVSS 

(gVSS/m3) 

Eff  VSS 

(gVSS/m3) 

Eff Filtered 

COD 

(gCOD/m3) 

07-Jan-14 54 9.97 11.80 45.23 94.00 60.00 110.00 108.34 102.92 118.21 84.00 

08-Jan-14 55 13.64 12.58 45.23 94.55 67.00 120.00 115.54 109.76 126.06 89.58 

09-Jan-14 56 12.88 13.40 49.83 81.89 98.00 120.00 123.07 116.92 134.28 95.42 

13-Jan-14 57 10.22 0.83 31.14 128.80 44.00 90.00 103.58 88.42 108.92 58.51 

14-Jan-14 58 12.00 0.87 31.13 103.00 71.00 100.00 108.00 102.60 113.56 61.00 

15-Jan-14 59 11.61 0.86 31.25 93.28 79.00 100.00 107.32 101.95 112.85 60.62 

16-Jan-14 60 13.06 0.87 30.20 80.86 94.00 100.00 108.34 102.92 113.92 61.19 

21-Jan-14 61 13.66 0.69 21.48 79.16 104.00 40.00 85.43 76.82 72.70 49.68 

23-Jan-14 62 15.07 0.65 18.18 72.10 109.00 30.00 80.81 68.74 68.77 47.00 

27-Jan-14 63 17.49 0.71 18.47 121.33 57.00 50.00 79.98 91.65 109.68 50.83 

30-Jan-14 64 14.19 0.59 15.93 93.28 58.00 40.00 67.00 64.32 91.88 42.58 

03-Feb-14 65 22.11 0.84 22.29 84.76 90.00 60.00 97.26 107.91 121.63 61.14 

04-Feb-14 66 19.40 0.69 16.91 81.00 61.00 50.00 79.54 72.18 99.48 50.00 

05-Feb-14 67 16.92 0.63 16.38 63.07 73.00 40.00 72.94 60.70 91.22 45.85 

06-Feb-14 68 21.62 0.66 12.95 64.78 68.00 50.00 75.72 65.41 94.70 47.60 

10-Feb-14 69 25.54 1.18 44.58 89.70 64.00 30.00 70.75 82.20 110.43 76.14 

11-Feb-14 70 21.40 0.98 36.62 81.00 41.00 30.00 58.54 56.28 91.38 63.00 

12-Feb-14 71 29.27 0.97 28.20 61.56 59.00 30.00 57.98 55.22 90.51 62.40 

13-Feb-14 72 24.73 0.88 27.51 52.87 54.00 30.00 52.71 45.63 82.28 56.73 

17-Feb-14 73 23.96 0.82 24.56 83.66 108.00 40.00 66.91 60.27 106.69 70.79 

18-Feb-14 74 19.30 0.76 25.94 101.00 85.00 30.00 62.39 52.39 99.48 66.00 

19-Feb-14 75 22.04 0.78 24.41 117.77 64.00 40.00 64.05 55.23 102.14 67.76 

20-Feb-14 76 22.47 0.83 27.09 119.61 77.00 40.00 68.34 62.87 108.97 72.30 

24-Feb-14 77 23.06 0.70 28.82 129.41 63.00 30.00 53.18 40.05 80.22 77.79 

25-Feb-14 78 20.40 0.64 26.96 114.00 59.00 30.00 48.54 33.37 73.22 71.00 

26-Feb-14 79 21.69 0.73 32.46 109.12 93.00 30.00 55.50 43.62 83.72 81.18 

27-Feb-14 80 33.89 1.31 62.91 200.90 164.00 50.00 99.21 94.24 149.65 145.11 

06-Mar-14 81 30.48 0.73 48.14 46.65 109.00 40.00 78.28 76.79 80.99 77.79 
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Date Time 

Eff SU 

(gCOD/m3) 

Eff SBf 

(gCOD/m3) 

Eff  SBs 

(gCOD/m3) 

Eff  CB 

(gCOD/m3) 

Eff  XU 

(gCOD/m3) 

Eff  XB 

(gCOD/m3) 

Eff  TSS 

(gTSS/m3) 

Eff  TVSS 

(gVSS/m3) 

Eff  VSS 

(gVSS/m3) 

Eff Filtered 

COD 

(gCOD/m3) 

10-Mar-14 82 15.09 1.00 20.71 64.20 42.00 40.00 49.86 45.88 64.62 52.14 

11-Mar-14 83 14.80 0.98 20.22 58.00 45.00 40.00 48.77 43.90 63.21 51.00 

12-Mar-14 84 14.65 0.94 18.80 60.61 36.00 40.00 46.59 40.06 60.38 48.72 

13-Mar-14 85 14.58 0.97 20.05 57.40 44.00 40.00 48.22 42.92 62.50 50.43 

17-Mar-14 86 17.38 1.17 23.80 58.64 6.00 60.00 53.12 47.13 52.88 54.46 

18-Mar-14 87 16.80 0.97 17.23 52.00 1.00 50.00 43.90 32.18 43.70 45.00 

19-Mar-14 88 16.99 1.14 22.96 38.91 22.00 60.00 51.53 44.35 51.29 52.83 

24-Mar-14 89 19.84 0.81 30.98 65.38 59.00 60.00 60.68 64.26 78.32 60.23 

25-Mar-14 90 18.20 0.66 23.14 73.00 27.00 50.00 49.37 42.53 63.72 49.00 

26-Mar-14 91 16.66 0.54 16.92 61.88 20.00 40.00 40.11 28.08 51.77 39.81 

27-Mar-14 92 17.93 0.64 21.90 68.53 26.00 50.00 47.57 39.49 61.40 47.21 

31-Mar-14 93 16.13 0.90 25.93 69.04 37.00 30.00 53.99 47.92 61.09 51.14 

01-Apr-14 94 17.30 0.88 23.82 59.00 54.00 20.00 52.78 45.80 59.73 50.00 

02-Apr-14 95 18.66 0.82 19.88 41.64 63.00 20.00 49.46 40.22 55.97 46.86 

03-Apr-14 96 17.93 0.85 22.01 53.20 56.00 20.00 51.27 43.22 58.02 48.57 

07-Apr-14 97 17.34 1.03 35.94 81.69 121.00 70.00 73.49 69.81 115.37 67.89 

08-Apr-14 98 17.00 0.91 30.09 84.00 97.00 60.00 64.95 61.90 101.96 60.00 

09-Apr-14 99 15.74 0.83 27.44 97.99 63.00 60.00 59.55 52.05 93.49 55.02 

10-Apr-14 100 18.94 0.79 22.12 92.15 68.00 50.00 56.63 47.07 88.91 52.32 

14-Apr-14 101 17.31 6.32 40.32 114.04 66.00 50.00 110.22 107.32 143.62 70.15 

15-Apr-14 102 17.00 6.13 38.87 98.00 75.00 50.00 106.84 100.85 139.23 68.00 

16-Apr-14 103 14.19 4.95 30.90 58.96 81.00 40.00 86.22 65.68 112.36 54.88 

17-Apr-14 104 13.79 4.82 30.12 64.27 71.00 40.00 83.98 62.30 109.43 53.45 

21-Apr-14 105 18.35 1.39 36.81 102.45 92.00 60.00 86.74 84.02 96.98 80.47 

22-Apr-14 106 17.86 1.28 33.04 92.82 92.00 50.00 80.05 71.56 89.49 74.26 

23-Apr-14 107 16.00 1.28 34.72 97.00 87.00 50.00 79.77 71.06 89.18 74.00 

24-Apr-14 108 18.64 1.31 33.50 106.55 84.00 50.00 82.00 75.09 91.68 76.07 

29-Apr-14 109 17.00 2.17 19.83 92.00 56.00 60.00 76.53 56.86 87.30 45.00 
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Date Time 

Eff SU 

(gCOD/m3) 

Eff SBf 

(gCOD/m3) 

Eff  SBs 

(gCOD/m3) 

Eff  CB 

(gCOD/m3) 

Eff  XU 

(gCOD/m3) 

Eff  XB 

(gCOD/m3) 

Eff  TSS 

(gTSS/m3) 

Eff  TVSS 

(gVSS/m3) 

Eff  VSS 

(gVSS/m3) 

Eff Filtered 

COD 

(gCOD/m3) 

30-Apr-14 110 18.41 1.99 15.29 85.32 45.00 60.00 70.02 47.60 79.87 41.17 

05-May-14 111 20.30 2.08 49.15 89.47 86.00 80.00 91.43 86.86 100.66 89.18 

07-May-14 112 20.00 2.24 54.76 116.00 79.00 80.00 98.42 93.50 108.35 96.00 

08-May-14 113 18.27 2.26 57.34 92.13 96.00 90.00 99.54 94.57 109.58 97.09 

12-May-14 114 18.87 20.62 45.87 95.64 131.00 110.00 134.34 127.62 153.60 102.24 

13-May-14 115 21.43 19.30 39.17 96.10 119.00 100.00 125.74 119.46 143.77 95.70 

15-May-14 116 18.90 18.47 39.09 78.54 123.00 100.00 120.33 114.32 137.58 91.58 

19-May-14 117 19.30 19.01 28.01 93.68 109.00 120.00 137.75 130.87 127.05 81.67 

20-May-14 118 19.07 16.47 21.92 86.55 93.00 100.00 119.34 113.37 110.06 70.75 

21-May-14 119 20.83 16.22 19.55 71.40 104.00 100.00 117.57 111.69 108.43 69.70 

22-May-14 120 17.94 14.71 18.67 67.68 92.00 90.00 106.59 84.70 98.31 63.19 

27-May-14 121 20.17 13.78 12.65 84.40 81.00 70.00 99.77 91.65 110.23 59.40 

28-May-14 122 18.50 12.85 12.11 72.54 77.00 70.00 93.05 79.71 102.81 55.40 

29-May-14 123 19.50 11.82 8.66 62.01 80.00 60.00 85.62 67.49 94.60 50.97 

02-Jun-14 124 19.47 0.91 23.20 96.43 98.00 70.00 101.74 90.62 101.57 50.47 

03-Jun-14 125 18.84 0.88 22.58 102.70 94.00 60.00 98.77 85.41 98.60 49.00 

04-Jun-14 126 17.30 0.83 21.76 93.11 89.00 60.00 93.15 75.97 93.00 46.21 

05-Jun-14 127 19.60 0.77 16.56 88.08 76.00 60.00 86.22 65.08 86.07 42.77 

09-Jun-14 128 19.40 1.37 33.13 108.10 63.00 80.00 98.00 84.28 104.69 70.10 

10-Jun-14 129 17.04 1.37 35.49 89.10 82.00 80.00 98.00 84.28 104.69 70.10 

11-Jun-14 130 16.97 1.42 37.45 90.16 90.00 80.00 101.53 96.46 108.46 72.63 

12-Jun-14 131 20.50 1.41 33.58 70.51 108.00 80.00 100.89 95.85 107.78 72.17 

16-Jun-14 132 18.44 1.37 34.09 91.10 80.00 80.00 98.00 84.28 104.69 70.10 

17-Jun-14 133 18.67 1.33 32.31 74.69 89.00 80.00 95.11 79.38 101.60 68.03 
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APPENDIX E:  HYDROLYSIS  
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Hydrolysis 

Bacteria can only utilize low molecular weight organic compounds.  Many high molecular 

weight, colloidal and particulate substrates, which are typically present in domestic 

wastewater, cannot be utilized directly by microorganisms.  These substrates must be made 

available through external enzymatic reactions that produce low molecular weight compounds 

that can be transported across the cell membrane.  These reactions are referred to as 

hydrolysis (Henze et al., 2000).   

Lysis Regrowth 

The HRAS model incorporates the Lysis-regrowth concept to depict the loss of viability and 

biomass in biochemical operations.  Based on the assumption that only active, viable biomass 

is present; it is viewed as continually undergoing death and lysis, yielding particulate 

substrate (XB) and biomass debris.  Once converted to XB, it enters the hydrolysis cycle where 

it is convert to SBs and available as substrate for growth.  This process is illustrated in Figure 

48 for the HRAS model. 



188 

 

 

Figure 48: Schematic representation of the lysis: regrowth approach to modeling biomass decay 

 

The A-stage model includes several hydrolysis processes shown in Table 23 including; 

 Hydrolysis of entrapped organics to form slowly biodegradable substrate (XB  SBs) 

 Hydrolysis of storage products to readily biodegradable substrate (XSTO  SBf) 

 Hydrolysis of EPS to readily biodegradable substrate  (XEPS  SBf) 

These processes play a significant role in the calibration of the model and ultimately the 

ability of the model to effectively predict system performance over a wide range of operating 

conditions. 

  



189 

 

APPENDIX F: PARTIAL PETERSON MATRIX 
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Table 47 Partial Peterson matrix processes and stoichiometric coefficients for the HRAS model 

  Name SBf SBs CB CU XB XU XOHO,  ACT XEPS XSTO 

r1 Aerobic growth of XOHOs – Fast -1/(YOHO,AER*(1-kEPS,PC-kSTO.PC)) 

 

        1 kEPS,PC/(YOHO,AER*(1-kEPS,PC-kSTO,PC)) kSTO,PC/(YOHO,AER*(1-kEPS,PC-kSTO,PC)) 

r2 Aerobic growth of XOHOs – Slow 
 

-1/(YOHO,AER*(1-kEPS,PC-kSTO.PC)) 
    

1 kEPS,PC/(YOHO,AER*(1-kEPS,P-kSTO,PC C)) kSTO,PC/(YOHO,AER*(1-kEPS,PC-kSTO,PC)) 

r3 Decay of heterotrophs 
    

1-fU 
 

-1 
  

r4 
Hydrolysis of entrapped 

organics  
1 

  
-1 

    

r5 
flocculation of colloidal 

substrate   
-1 

 
1 

    

r6 flocculation of colloidal inerts 
   

-1 
 

1 
   

r7 Hydrolysis of storage products 
 

1 
      

-1 

r8 EPS hydrolysis   1           -1   

 

Table 48 Partial Peterson matrix process rate equations for the HRAS model 

 
Name Rate expression (rj) 

r1 Aerobic growth of heterotrophs - Fast μOHO,Max*(SBf/(KBf+SBf))*(So2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r2a Aerobic growth of heterotrophs - Slow μOHO,Slow,Max*(SBs/(KBs+SBs))*(KBf/(KBf+SBf))*(SO2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r2b Aerobic growth of heterotrophs - Slow μOHO,max*(SBs/(KBs+SBs))*(So2/(Ko2,OHO+SO2))*(SNHx/(KNHx,nut+SNHx))*XOHO 

r3 Decay of heterotrophs bOHO*XOHO,ACT 

r4 Hydrolysis of entrapped organics 

qXB,HYD*((XB/XOHO)/(KB,HYD+XB/XOHO))*((So2/(Ko2,OHO+So2))+ηHYD*(Ko2,OHO/(Ko2,OHO+So2))*(SNOx/(KNOx+SNOx)))*XO

HO 

r5 flocculation of colloidal substrate qADS*CB*(XOHO+XANO)*(KSL/((CB/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

r6 flocculation of colloidal inerts qADS*CU*(XOHO+XANO)*(KSL/((CU/(XOHO+XANO))+KSL))*(XEPS/(KEPS+XEPS)) 

r7 Hydrolysis of storage products qSTO,HYD*(XSTO/XOHO/(KSTO,HYD+XSTO/XOHO))*(KBf/(KBf+SBf))*(KBs/(KBs+SBs))*(So2/(Ko2,OHO+So2))*XOHO 

r8 EPS hydrolysis qEPA,HYD*XEPS 

r2a corresponds to the Diauxic model, r2b corresponds to the Dual Substrate model 
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Table 49 Partial list of default parameter values for the mass-balance equations 

Symbol Name Value Unit 

KB,HYD Saturation coefficient for XB/XOHO 0.03 g XB/g XOHO 

μOHO,Max Maximum growth rate of XOHO on SBf 7.0 d-1 

μOHO,Slow,Max
1 Maximum growth rate of XOHO on SBs 3.0 d-1 

KBf Half-saturation coefficient for SBf (XOHO) 5.0 g SBf.m-3 

KBs Half-saturation coefficient for SBs(XOHO) 40 g SBs.m-3 

bOHO Decay rate for XOHO 0.62 d-1 

KO,OHO Half-saturation coefficient for SO2(XOHO) 0.1 g SO2.m-3 

qADS Rate constant for adsorption 0.07 d-1 

KSL Half-saturation coefficient for surface limitation 0.002 - 

qSTO Rate constant for growth on XSTO (XOHO) 2.0 d-1 

kEPS,MAX EPS formation coefficient 0.25 g CODEPS.gVSS-1 

qEPS,HYD EPS hydrolysis 0.12 d-1  

KEPS  Half-saturation coefficient for EPS (XOHO) 50 gXEPS.m-3  

qXB,HYD Particulate COD Hydrolysis Rate Constant 3.5 d-1   

kSTO,MAX Maximum Production Yield for Storage Polymers .65 g XSTO.gSBf
-1 

fShunt,Max Fraction of XSTO in the Active Biomass .30 -  

qSTO,HYD Storage Hydrolysis Rate Constant 3.0 d-1   

KSTO,HYD Hydrolysis Half-saturation coefficient for XSTO (XOHO) 0.15 gXSTO.gXOHO
-1  

Ko2,EPS Half-saturation coefficient for So2 1.5 g SO2.m-3 

Ko2,STO Half-saturation coefficient STO for So2 1.0 gSO2.m-3 

KEPS,HYD Saturation Coefficient XEPS 0.05 gXEPS.gXOHO
-1 
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APPENDIX G: STOICHIOMETRY TABLES 
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Table 50  Stoichiometry dataset 

Date 

COD 

Mass 

Balance 

OUR 

(mg/L·hr) 

CO2_PR 

(mg/L·hr) 

CO2:O2 

Ratio 

Aerobic 

SRT 

(d) 

Temp 

(oC) 

fCV Calculated 

(gCOD/gVSS) 

Influent 

Biomass 

(gCOD/m3) 

9/16/2013 89% 247.8 240.8 0.98 0.1 26.7 1.79 20.02 

9/17/2013 91% 224.49 241.7 1.08 0.1 26.5 2.02 20.06 

9/18/2013 86% 250.63 228.59 1.07 0.12 26.5 1.97 22.91 

9/23/2013 74% 67.14 92.97 1.38 0.05 26 2.79 22.33 

9/24/2013 75% 75.26 97.18 1.31 0.05 26 2.99 20.79 

9/25/2013 96% 127.11 129.02 1.05 0.05 25.7 2.8 22.06 

9/26/2013 84% 189.31 164.32 0.87 0.07 25.7 3.89 25.57 

9/30/2013 102% 199.96 171.76 0.92 0.06 25.5 1.66 21.91 

10/1/2013 95% 188.38 175.62 0.94 0.06 25.3 1.97 20.48 

10/2/2013 86% 184 164.44 0.9 0.06 25.2 1.83 21.29 

10/3/2013 94% 186.48 156.26 0.84 0.06 25.2 1.65 22.14 

10/15/2013 94% 171.08 149.15 0.9 0.06 24.3 2.64 19.29 

10/16/2013 82% 150.83 137.35 0.92 0.06 24.1 2.38 20.79 

10/17/2013 78% 164.62 143.76 0.88 0.06 24.2 2.38 21.18 

10/21/2013 89% 104.56 98.97 1.18 0.07 24.3 1.71 20.02 

10/22/2013 79% 96.53 102.35 1.07 0.08 24 1.98 22.37 

10/23/2013 103% 104.58 100.58 0.96 0.07 24 1.87 20.83 

10/24/2013 103% 92.9 96.97 1.05 0.07 23.6 1.86 21.76 

10/28/2013 93% 83.93 90.33 1.12 0.07 22.9 1.58 20.1 

10/29/2013 99% 83.97 106.9 1.28 0.08 22.9 1.85 21.99 

11/4/2013 91% 152.9 150.56 1.04 0.11 22.5 1.64 20 

11/6/2013 96% 175.08 172.62 0.99 0.11 22.4 1.7 20.1 

11/7/2013 101% 204.15 170.2 0.83 0.11 22.4 1.64 19.63 

11/12/2013 108% 139.64 172.72 1.26 0.09 21.5 1.35 18.84 

11/13/2013 99% 128.38 178.53 1.39 0.09 21.2 1.52 19.27 

11/14/2013 91% 131.36 172.24 1.32 0.09 21.1 1.65 18.84 
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Date 

COD 

Mass 

Balance 

OUR 

(mg/L·hr) 

CO2_PR 

(mg/L·hr) 

CO2:O2 

Ratio 

Aerobic 

SRT 

(d) 

Temp 

(oC) 

fCV Calculated 

(gCOD/gVSS) 

Influent 

Biomass 

(gCOD/m3) 

11/19/2013 110% 139.91 144.55 1.13 0.07 20.8 1.16 15.87 

11/20/2013 112% 112.76 150.35 1.33 0.07 20.8 1.18 15.87 

11/21/2013 96% 109.84 153.9 1.41 0.08 20.6 1.28 17.97 

11/25/2013 145% 172.73 181.01 1.3 0.06 20 0.87 18.22 

11/26/2013 117% 225.59 163.57 0.74 0.06 20.2 0.7 17.94 

12/2/2013 94% 129.57 104.67 0.8 0.05 18.7 1.66 17.44 

12/3/2013 81% 121.74 86.1 1.03 0.05 18.6 2.06 18.22 

12/4/2013 90% 79.67 102.76 1.3 0.05 18.8 2.36 17.41 

12/5/2013 100% 94.78 110.95 1.18 0.05 18.9 2.77 19.35 

12/9/2013 60% 118.28 120.93 1.4 0.13 18.7 1.77 34 

12/10/2013 109% 140.57 125.59 0.9 0.12 18.4 1.77 26.94 

12/11/2013 108% 124.74 124.96 1.01 0.11 18.1 1.68 24.17 

12/12/2013 113% 119.33 114.53 0.97 0.09 18.2 1.18 22.67 

12/18/2013 129% 129.51 120.66 0.93 0.07 17.4 0.89 24.25 
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Table 51 SBf substrate partition fractions 

Date 
CO2:O2 

Ratio 

xSBf_calc 

(gO2/gCODSBf) 

YOHO,MAX 

(gCODOHO

/gCODSBf) 

YOHO 

(gCODOHO

/gCODSBf) 

YEPS 

(gCODEPS/

gCODSBf) 

YSTO 

(gCODSTO

/gCODSBf) 

9/16/2013 1.4 0.795 0.079 0.068 0.038 0.098 

9/17/2013 1.45 0.556 0.233 0.168 0.077 0.200 

9/18/2013 1.425 0.654 0.160 0.125 0.064 0.158 

9/23/2013 1.975 0.132 0.751 0.397 0.105 0.366 

9/24/2013 1.975 0.132 0.751 0.397 0.105 0.366 

9/25/2013 1.525 0.381 0.400 0.254 0.095 0.270 

9/26/2013 1.975 0.132 0.751 0.397 0.105 0.365 

9/30/2013 1.4 0.797 0.078 0.067 0.035 0.100 

10/1/2013 1.975 0.132 0.751 0.397 0.104 0.367 

10/2/2013 1.4 0.798 0.078 0.067 0.035 0.100 

10/3/2013 1.4 0.797 0.078 0.068 0.035 0.100 

10/15/2013 1.875 0.154 0.713 0.383 0.105 0.357 

10/16/2013 1.975 0.132 0.751 0.397 0.105 0.366 

10/17/2013 1.925 0.142 0.733 0.391 0.105 0.362 

10/21/2013 1.975 0.132 0.751 0.397 0.104 0.366 

10/22/2013 1.975 0.132 0.751 0.397 0.105 0.366 

10/23/2013 1.975 0.132 0.751 0.397 0.105 0.366 

10/24/2013 1.65 0.250 0.566 0.327 0.102 0.322 

10/28/2013 1.8 0.177 0.676 0.369 0.102 0.351 

10/29/2013 1.975 0.132 0.750 0.397 0.104 0.367 

11/4/2013 1.6 0.290 0.512 0.304 0.100 0.306 

11/6/2013 1.5 0.426 0.352 0.231 0.090 0.252 

11/7/2013 1.4 0.795 0.079 0.068 0.038 0.099 

11/12/2013 1.4 0.795 0.079 0.068 0.038 0.099 

11/13/2013 1.425 0.654 0.160 0.125 0.063 0.158 

11/14/2013 1.975 0.132 0.751 0.397 0.105 0.366 
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Date 
CO2:O2 

Ratio 

xSBf_calc 

(gO2/gCODSBf) 

YOHO,MAX 

(gCODOHO

/gCODSBf) 

YOHO 

(gCODOHO

/gCODSBf) 

YEPS 

(gCODEPS/

gCODSBf) 

YSTO 

(gCODSTO

/gCODSBf) 

11/19/2013 1.5 0.426 0.352 0.231 0.091 0.252 

11/20/2013 1.45 0.555 0.233 0.169 0.077 0.199 

11/21/2013 1.975 0.132 0.751 0.397 0.106 0.365 

11/25/2013 1.45 0.555 0.233 0.169 0.078 0.199 

11/26/2013 1.45 0.555 0.233 0.169 0.078 0.199 

12/2/2013 1.525 0.380 0.402 0.255 0.098 0.267 

12/3/2013 1.975 0.132 0.751 0.398 0.107 0.364 

12/4/2013 1.975 0.132 0.751 0.398 0.107 0.364 

12/5/2013 1.975 0.132 0.751 0.398 0.107 0.364 

12/9/2013 1.975 0.132 0.751 0.398 0.107 0.364 

12/10/2013 1.75 0.196 0.647 0.359 0.106 0.340 

12/11/2013 1.55 0.344 0.444 0.274 0.100 0.281 

12/12/2013 1.4 0.790 0.082 0.070 0.045 0.095 

12/18/2013 1.4 0.799 0.077 0.067 0.033 0.101 

  Average 0.474 0.270 0.085 0.269 

  Std Dev 0.277 0.133 0.027 0.106 

  Minimum 0.077 0.067 0.033 0.095 

  Maximum 0.751 0.398 0.107 0.367 
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APPENDIX H: HRSD PILOT OFF-GAS DATA 
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Table 52 HRSD pilot off-gas data 

Date OUR mg/L.hr CO2_PR mg/L.hr CO2:O2 Ratio 

9/3/2013 55.87 76.98 1.37 

9/4/2013 89.22 108.80 1.40 

9/5/2013 124.65 125.24 0.99 

9/6/2013 113.93 118.64 1.03 

9/16/2013 247.80 240.80 0.98 

9/17/2013 224.49 241.70 1.08 

9/18/2013 229.19 231.33 1.07 

9/19/2013 223.56 223.08 1.00 

9/20/2013 211.88 207.35 0.98 

9/23/2013 69.25 95.10 1.38 

9/24/2013 75.26 97.18 1.31 

9/25/2013 128.03 130.38 1.05 

9/26/2013 189.31 164.32 0.87 

9/27/2013 146.33 142.51 0.92 

9/30/2013 206.77 173.62 0.92 

10/1/2013 188.38 175.62 0.94 

10/2/2013 184.00 164.44 0.90 

10/3/2013 186.48 156.26 0.84 

10/11/2013 69.48 31.41 0.26 

10/15/2013 179.12 154.42 0.90 

10/16/2013 150.87 137.39 0.92 

10/17/2013 164.62 143.76 0.88 

10/18/2013 137.43 125.28 0.91 

10/21/2013 105.39 102.56 1.18 

10/22/2013 96.53 102.35 1.07 

10/23/2013 104.58 100.58 0.96 

10/24/2013 92.90 96.97 1.05 

10/25/2013 83.35 92.92 1.03 

10/28/2013 83.95 93.59 1.12 
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Date OUR mg/L.hr CO2_PR mg/L.hr CO2:O2 Ratio 

10/29/2013 83.97 106.90 1.28 

10/30/2013 86.22 116.61 1.38 

10/31/2013 92.39 113.00 1.23 

11/1/2013 104.19 105.24 0.97 

11/4/2013 156.78 163.13 1.04 

11/5/2013 163.83 176.15 1.08 

11/6/2013 175.08 172.62 0.99 

11/7/2013 204.15 170.20 0.83 

11/8/2013 171.23 148.23 0.83 

11/12/2013 142.32 176.48 1.26 

11/13/2013 128.55 178.54 1.39 

11/14/2013 131.51 172.28 1.32 

11/15/2013 112.19 141.03 1.17 

11/19/2013 148.81 145.89 1.13 

11/20/2013 112.94 150.37 1.33 

11/21/2013 110.14 154.11 1.41 

11/22/2013 128.13 160.79 1.26 

11/25/2013 172.45 183.34 1.30 

11/26/2013 225.59 163.57 0.74 

11/27/2013 249.62 142.39 0.55 

12/2/2013 133.09 106.14 0.80 

12/3/2013 124.12 91.30 1.03 

12/4/2013 79.67 102.76 1.30 

12/5/2013 95.41 111.29 1.18 

12/6/2013 103.11 114.88 1.13 

12/9/2013 92.87 119.93 1.40 

12/10/2013 140.57 125.59 0.90 

12/11/2013 124.78 125.00 1.01 

12/12/2013 119.33 114.53 0.97 
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Date OUR mg/L.hr CO2_PR mg/L.hr CO2:O2 Ratio 

12/13/2013 109.23 105.67 0.98 

12/16/2013 144.32 126.29 0.97 

12/18/2013 129.51 120.66 0.93 

12/19/2013 109.93 108.45 0.99 

12/20/2013 118.03 119.36 1.01 

3/24/2014 201.89 74.03 0.37 

3/25/2014 148.46 119.44 0.83 

3/26/2014 129.55 130.40 1.02 

3/27/2014 113.12 139.09 1.23 

3/28/2014 123.29 126.39 1.00 

3/31/2014 155.64 142.39 0.92 

4/1/2014 148.04 158.05 1.07 

4/2/2014 141.88 148.88 1.05 

4/3/2014 145.77 147.97 1.02 

4/4/2014 131.13 118.13 0.89 

4/7/2014 145.10 148.03 0.92 

4/8/2014 171.00 172.39 1.01 

4/9/2014 150.71 167.48 1.12 

4/10/2014 106.64 135.70 1.27 

4/11/2014 120.80 137.45 1.17 

4/14/2014 150.11 158.95 1.09 

4/15/2014 151.89 138.60 0.90 

4/16/2014 94.06 129.89 1.41 

4/17/2014 77.48 136.17 1.80 

4/22/2014 145.55 130.46 0.85 

4/23/2014 160.78 155.55 0.98 

4/24/2014 149.26 153.98 1.04 

4/25/2014 157.43 144.92 0.93 

4/28/2014 154.26 158.56 1.03 
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Date OUR mg/L.hr CO2_PR mg/L.hr CO2:O2 Ratio 

4/29/2014 130.41 136.72 1.05 

4/30/2014 129.34 131.95 1.03 

5/1/2014 151.76 142.56 0.94 

5/2/2014 146.52 137.13 0.93 

5/5/2014 151.63 152.92 1.03 

5/6/2014 151.29 148.52 0.98 

5/7/2014 143.65 166.80 1.16 

5/8/2014 146.30 167.45 1.17 

5/9/2014 148.37 172.92 1.18 

5/12/2014 148.90 193.37 1.31 

5/13/2014 152.03 180.63 1.21 

5/14/2014 144.38 174.05 1.21 

5/15/2014 148.85 160.17 1.08 
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