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ABSTRACT 

This dissertation aims to investigate the sustainability impacts of alternative vehicle 

technologies and develop comprehensive sustainability assessment frameworks to analyze 

potential impacts of these vehicles in the U.S. In order to assess sustainability impact of 

vehicle alternatives, life-cycle based models has been extensively used in the literature. 

Although life cycle-based models are often used for environmental impacts of alternative 

vehicles, analysis of social and economic impacts of these vehicles has gained a tremendous 

interest. In this regard, there is a growing interest among the international platform and 

academia to use the Life Cycle Sustainability Assessment framework to have more informed 

sustainable products, material and technology choices by considering the environmental, as 

well as social and economic impacts. The Life Cycle Sustainability Assessment framework is 

still under development and there is an ongoing research to advance it for future 

applications. In this dissertation, current and future needs of sustainability assessment 

frameworks and the U.S. transportation are identified and addressed. The major research 

gaps are identified as follows: (1) there has been small emphasis on effects of spatial and 

temporal variations on the sustainability impacts of alternative vehicle technologies, (2) no 

national research efforts as of now have been directed specifically toward understanding the 

fundamental relationship between the adoption of electric vehicles and water demand, (3) 

there has been a lack of understanding the dynamic complexity of transportation 

sustainability, encompassing feedback mechanisms, and interdependencies, for the 

environmental, social, and economic impacts of alternative vehicles, and (4) there is no 
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emphasis on addressing uncertainties inherent to the U.S. transportation and its complex 

relationships with the environment, society, and economy. 

The environmental, economic, and social impacts of alternative vehicles are highly 

critical for truly assessing and understanding the long-term sustainability of vehicles and 

propose economically viable, socially acceptable, and environmentally-friendly 

transportation solutions for U.S. passenger transportation. This dissertation provides a more 

comprehensive sustainability assessment framework by realizing following objectives:  (1) 

inclusion of spatial and temporal variations when quantifying carbon, energy, and water 

footprints of alternative vehicle technologies, (2) quantifying environmental, social, and 

economic impacts of alternative vehicle technologies, (3) capturing the dynamic relations 

among the parameters of U.S. transportation system, environment, society, and the economy, 

(4) dealing with uncertainties inherent to the U.S. transportation sector considering the 

complexity of the system and dynamic relationships.  

 The results of this dissertation reveal that the results with consideration of 

uncertainties, temporal and spatial variations, and dynamic complex relationships among 

the system variables can be significantly different than those of without consideration of 

those. Therefore, when developing policies the robustness of proposed scenarios should be 

valuated with consideration of uncertainties, temporal and spatial variations as well as the 

dynamic feedback mechanisms. The outcomes of this study can pave the way for 

advancement in the state-of-the-art and state-of-the-practice in the sustainability research 

by presenting novel approaches to deal with uncertainties and complex systems.   
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CHAPTER 1. INTRODUCTION 

1.1. The U.S. Transportation  

The need for sustainable and more efficient transportation systems is emerging in the 

U.S. owing to increasing concerns about global climate change, national energy security, and 

rising oil prices. Transportation sector has been one of the most significant sources of 

greenhouse gas emissions (GHG) and energy consumption in the U.S. Energy consumption 

and GHG emissions of transportation sector account for approximately 28% of the U.S. total. 

Additionally, the transportation sector is responsible for 67% of total U.S. petroleum 

consumption and 141% of the total U.S. petroleum production. The majority of the energy 

used in the transportation sector, about 93% of the total energy consumption mix, is 

provided through petroleum. On the other hand, light duty vehicles (LDVs)  comprise 63% 

of the total petroleum use, 59% of total energy use, and 60% of the total GHG emissions of 

the U.S. transportation sector (Oak Ridge National Laboratory, 2013). Furthermore, LDVs 

compromise about 85% of the passenger miles traveled in the United States and it is a rapidly 

growing transportation mode in the world as well as in the developed countries (Committee 

for a Study of Potential Energy Savings and & Greenhouse Gas Reductions from 

Transportation, 2011; Sager, Apte, Lemoine, & Kammen, 2011).  

As the U.S. transportation sector heavily relies on petroleum and it is a major contributor of the nation’s GHG emissions, various alternative vehicle technologies such as 
hybrid, plug-in hybrid, and electric vehicles have been developed to minimize these impacts. 

Furthermore, federal governments, national agencies in the U.S. as well as the international 
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organizations promote adoption of alternative vehicle technologies and support the efforts 

aiming to develop environmentally friendly and economically viable policies (DOT, 2013; 

Executive Office of the President, 2013; IPCC, 2007; WBCSD, 2004). According to the President Obama’s climate action plan in 2013, increasing fuel economy standards and 
developing advanced transportation technologies are prioritized strategies to reduce 

environmental impacts of the U.S. transportation sector (Executive Office of the President, 

2013). In this regard, national laboratories, various institutions, and research centers 

evaluate these options comprehensively and try to develop effective policies towards 

minimizing the environmental impacts (Argonne National Laboratory, 2014b; Center for 

Electric Car and Energy Conversion, 2014; Florida Solar Energy Center, 2014; MIT Electric 

Vehicle Team, 2014; National Renewable Energy Laboratory, 2014; Oak Ridge National 

Laboratory, 2014; UC Davis Plug-In Hybrid & Electric Vehicle Research Center, 2014).  

1.2. General Overview of Alternative Vehicle Technologies  

Analyzing alternative vehicle technologies, energy sources, transportation fuels, and 

more efficient ways of using the resources have been a growing interest in the literature and 

industry. The alternative vehicle types have been one of the ways to eliminate impacts of the 

U.S. LDT. The vehicle types considered in this study presented as follows: 

 The Internal Combustion Engine Vehicle (ICV): has an engine in which the 

combustion of a fuel occurs with air in a combustion chamber. In an internal 

combustion engine, the expansion of the high-temperature and pressure 

generated by combustion creates a direct force to component of the engine 
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including pistons, turbine blades, or a nozzle. This force moves the vehicle over a 

distance (e.g. Toyota Corolla).  

 

 The Electric Vehicles (EV): is a typical type of battery electric vehicles (BEV), has 

an electric motor which us powered by a battery. The battery capacity is the most important determinant for EV range. In EV’s, batteries are charged using the 
electricity grid via a standard socket or a special connection providing higher 

voltage and current which allows faster charging.  EVs have several advantages 

over vehicles with internal combustion engines (ICEs) such as energy efficiency, 

environmentally friendliness, reduces energy dependency, and better 

performance. In addition, there are several types of challenges in use of electric 

vehicles related with driving range, charging time, and battery cost. (e.g. Nissan 

Leaf).  

 

 The hybrid electric vehicle (HEV): is a vehicle utilizing both an electric motor and 

an internal combustion engine. There are several types of HEV power trains, but 

all have one ICE, at least one EM (the Toyota Prius has for example two EMs), and 

a battery. Hybrid-electric vehicles (HEVs) have the benefits of both gasoline engines and electric motors. HEV’s can be configured to obtain different objectives 
including improved fuel economy, increased power, or additional auxiliary power 

for electronic devices and power tools. Toyota Prius is a typical HEV type and it is 

ranked as the best-selling hybrid car in the U.S. in 2013. 
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 The Plug-in Hybrid Electric Vehicle (PHEV): which can be charged either from the 

electricity grid or using the internal combustion engine. By combining an electric 

motor and an internal combustion engine, an HEV allows the ICE to run more 

efficiently by driving nearer its ideal rpm. There are several types of PHEV power 

trains based on ranges such as PHEV11 and PHEV38 which represents the two 

common range distances in the United States. The portion of the distance that can 

be powered by electricity depends on several important factors such as all-electric 

range (AER), driving distance, and driving conditions (Raykin, MacLean, & 

Roorda, 2012). AER is defined as the total miles can be driven, after the battery is 

fully charged, in electric mode (engine-off) before the engine turns on for the first 

time (Markel, 2006). The newly introduced plug-in version of Toyota Prius is an 

example of PHEV11. Chevrolet Volt is a PHEV38, which has the highest AER among 

the commercially available counterparts. 

1.3. Problem Statement and Research Objectives 

Alternative vehicle technologies, as an option to reduce negative environmental 

impacts of the U.S. transportation, have gained a tremendous interest in literature as well as 

in industry. Even though there are numerous efforts presenting life-cycle based 

methodologies to investigate the environmental viability of alternative transportation 

options, there is a strong need for robust comprehensive sustainability assessment 

frameworks to be able to analyze their potential to contribute the transportation 

sustainability.  There are mainly several major methodological and application gaps in the 



 

5 
 

sustainability assessment of electric vehicles and the U.S. transportation. First, there has 

been small emphasis on effects of spatial and temporal variations on the sustainability 

impacts of alternative vehicle technologies. Second, no national research efforts as of now 

have been directed specifically toward understanding the fundamental relationship between 

the adoption of electric vehicles and water demand. Third, there has been a lack of 

understanding the dynamic complexity of transportation sustainability, encompassing 

feedback mechanisms, and interdependencies, for the environmental, social, and economic 

impacts of alternative vehicles. Fourth, there is little or no emphasis on addressing 

uncertainties inherent to the U.S. transportation and its complex relationships with the 

environment, society, and economy. In order to fill these methodological and application 

based gaps, this research proposes novel and comprehensive sustainability assessment 

frameworks depending on needs, scope, and system-specific research questions. In this 

regard, current research aims to fill research gaps by answering the following research 

questions;  

1) How do differences in regional driving patterns and electricity generation mix 

(marginal and average) effect energy use and GHG emissions of alternative vehicle 

technologies? 

 

2) How do these spatial variations should affect the vehicle technology policies at 

state level? 
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3) What are the relative impacts of battery and vehicle manufacturing on GHG 

emissions and energy consumption within the total life cycle of vehicles? 

 

4) What is the water footprint of EVs/PHEVs compared to ICVs and other alternative 

vehicle technologies? Does adoption of EVs/PHEVs jeopardize the water sources?  

 

5) How do differences in regional driving patterns and electricity generation mix 

(marginal and average) effect water footprint of alternative vehicle technologies? 

 

6) Do current life cycle assessment methods capable of capturing the system 

behavior, feedback relationships, and the dynamic interdependencies among the 

system variables? How can the existing life cycle assessment methodologies 

improved to provide a more comprehensive sustainability assessment?  

 

7) Why is there a need for dynamic LCA? Are traditional LCA methods sufficient to 

account for feedback relationships and dynamic system behavior? 

 

8) What is the behavior of the U.S. transportation system considering the dynamic 

interactions among the variables of the system? 

 

9) How the uncertainties inherent to the U.S. transportation system effect the 

sustainability impacts of alternative vehicle technologies in the U.S.? 
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10) What is the trend in the LCA research field? What are the future needs for LCA 

framework? 

Fig, 1 shows the generalized outline of the research objectives in parts. This figure 

mainly summarizes the methodological contributions of each phase which is composed of 

the chapters of this dissertation.  

 

 

 

Figure 1. Hierarchical outline of the research objectives 

 

 

 

•Inclusion of Spatial 
Variations

•Highlighting for the for 
need for dynamic 
modeling approach 
(Chapters 3-4)

Phase I

•Modeling the 
relationship between 
variables

•Inclusion of  other 
dimensions of 
sustainability (Chapter 5)

Phase II •Integration of the 
uncsertainties into the 
dynamic model of the 
U.S. transportation 
(Chapter 6)

Phase III
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1.4 Organization of the Dissertation   

This dissertation composed of seven chapters. First two chapters is the introduction 

and generalized explanations of the methodologies utilized in the rest of the dissertation. 

The other chapters are self-standing sections, each has a literature review, details of the 

applied methodology, results, and conclusions. The summary of each section as follows: 

Chapter 1: Introduction 

This chapter presents background information about the U.S. transportation sector and their 

sustainability impacts in the U.S. Also, the alternative vehicle technologies are briefly 

introduced. This section includes the research problem statement, aims and objectives, and 

organization of the dissertation. 

 

Chapter 2: Methodology 

This chapter describes the methodologies applied in this dissertation. Considering that each 

section has its own specific methodology, in this section, a general overview of the applied 

methodologies are given rather than detailed methodology and calculations. Overall, the 

methodologies utilized in this dissertation are Life cycle Assessment (LCA), Life cycle 

Sustainability Assessment (LCSA), Economic Input-Output Life Cycle Assessment (EIO-LCA), 

Triple Bottom Line Life Cycle Assessment (TBL-LCA), The Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation Model (GREET), eGRID database, system 

dynamics modeling.  
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Chapter 3:  State-based Energy and Carbon Footprints of alternative Vehicle Technologies: 

Inclusion of Spatial and Temporal Variations  

This chapter highlights how inclusion of spatial and temporal variations affect the carbon 

and energy footprint of alternative vehicle types.  In addition, a comprehensive literature 

review is carried out to show major gaps in the literature.  In this section, water and energy 

footprints of alternative vehicle technologies quantified for 50 states in the U.S. by utilizing 

life cycle assessment methodology.  

 

Chapter 4: A Missing Gap in the Environmental Assessment of Alternative Vehicle Technologies: 

State-Based Water Footprint Analysis 

 

This chapter points out an important gap in the literature about water footprint of EVs. Since 

the EVs are powered by electric power plants, the source of the electricity generation will 

have a big influence on the water consumption. This section will also include spatial 

variations and present a state-based water consumption and withdrawal of alternative 

vehicle technologies in each state in the U.S. This chapter also presents an application of life 

cycle assessment methodology. The methodological framework is same as in the previous 

chapter. However, the applied methodology is improved by presenting results in stochastic 

values rather than deterministic results presented in the previous chapter.  
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Chapter 5: Dynamic Sustainability Assessment Framework for Alternative Vehicle Technologies  

This chapter includes a System Dynamic (SD) Model to quantify environmental, social, and 

economic impacts of alternative vehicle technologies in the U.S. considering different varying 

factors such as population, GDP, travel demand, public welfare, new vehicle sales, etc. In this 

chapter, a novel methodological contribution is presented to broaden and deepen existing 

life cycle sustainability assessment framework.  

 

Chapter 6: Uncertainty-Embedded Dynamic Sustainability Assessment Framework for 

Alternative Vehicle Technologies 

In this chapter, the dynamic sustainability assessment model developed in chapter 5 is 

improved by integrating uncertainties associated with the U.S. transportation sector. System 

dynamics methodology is utilized to deal with uncertainties, in which various distributions 

representing each variable assigned Monte Carlo simulations are run.  

 

Chapter 7: Conclusions 

This chapter summarizes the results of the proposed methodologies.  Significance of the 

proposed frameworks for the U.S. Electric Vehicle applications will be discussed. Then, the 

limitations of the study will be explained and the conclusion of the dissertation will be made. 

Finally, the recommendations for the future studies will be indicated.  
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CHAPTER 2. METHODOLOGY  

This proposal mainly utilizes two main methodology; Life Cycle Assessment and 

System Dynamics. Detailed calculations are subject to chapter content and therefore, will be 

given in the associated chapter. 

2.1. Life Cycle Assessment 

The necessity of life cycle thinking in sustainable vehicles’ research is very crucial due 
to the fact that environmental loads are produced in various stages of the life cycle of vehicles 

such as material production, use and end-of-life. Life cycle thinking is “a way of thinking 

which will helps us recognize how our selections – such as buying electricity or a new 

computer – are one part of a whole system of events” (United Nations Envionment Program, 

2004). To quantify the system of events associated with vehicle systems, life cycle 

assessment (LCA) models need to be developed and utilized. In this context, LCA is a well-

known and widely used approach to quantifying the potential environmental impacts produced and natural resources used throughout a product’s life cycle, including raw 
material acquisition, production, distribution, use, and end-of-life phases, which 

compromises the system of events (Finnveden et al., 2009). LCA was introduced in the early 

1990s as a practical and robust tool to assess the potential environmental loads of industrial 

activities to help reduce the overall environmental impacts (Rebitzer et al., 2004). The most 

significant strength of LCA is that it considers the whole product life cycle so as to avoid 

problems associated with working with a narrowly defined, in other words limited scope 

(Curran, 1996). In LCA literature, three approaches have been used in the majority of the 
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studies: process-based LCA (P-LCA), economic input-output LCA (EIO-LCA), and hybrid LCA 

(Suh & Huppes, 2005). P-LCA divides the product’s manufacturing process into individual 
process flows to quantify the related direct environmental impacts (Onat, Kucukvar, & 

Tatari, 2014b). This LCA approach provides a methodological framework to estimate the 

environmental impacts of specific processes. Among the LCA methodologies, P-LCA has been 

often used to analyze the environmental implications of certain phases (e.g. manufacturing, 

transportation, use, etc.) without looking at the supply chain impacts. In P-LCA, due to the 

narrowly defined boundaries, some important environmental impacts in the extended 

supply chains might be overlooked since it is not possible to include the upstream suppliers 

for impact assessment using P-LCA (Facanha & Horvath, 2007). Additionally, P-LCA enables 

very detailed analysis, but can be very expensive, time-consuming, and inappropriate. To 

overcome these problems, EIO-LCA models initiated as robust methods in early 2000s 

(Guinée et al., 2011). 

EIO-LCA, which is widely used in literature for quantifying the environmental impacts 

of products or processes, is able to quantify the overall environmental impacts considering 

the entire supply chain (C. T. Hendrickson, Lave, & Matthews, 2005; H. Scott Matthews, 

Hendrickson, & Weber, 2008; Minx et al., 2009). Today, EIO approach is utilized to assist in 

life cycle inventory (LCI) phase, as well as areas of LCA modeling and applications including 

dynamic modeling, environmental policy making, transportation, and life cycle cost analysis 

(Suh & Nakamura, 2007). EIO-LCA basically combines the environmental impact data with 

the economic input-output tables of a nation’s economy to form a comprehensive system 

boundary. Using EIO-LCA model Matthews et al. (H.S. Matthews, Hendrickson, & Weber, 
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2008) analyzed different industrial sectors for carbon footprint analysis. The results of this 

study revealed that on the average, direct emissions from an industry accounts for only 14 

percent of the total supply chain carbon emissions. Additionally, direct emissions plus 

industry energy inputs were found to be only 26 percent of the total supply chain-linked 

emissions. Therefore, using a comprehensive environmental LCA method like EIO-LCA is 

vital for tracking total emissions across the entire supply chain network. As employed in this 

research, Hybrid LCA combines both the P-LCA and EIO-LCA models to analyze process 

specific and supply chain related impacts (Guinée et al., 2011). Although, EIO-LCA was one 

of the most comprehensive LCA methods developed, due to its aging data and limited focus 

on only the environmental impacts, a new EIO-LCA model needs to be developed, one that 

covers TBL impacts and provides a more robust analytical framework, which can be used to 

conduct a broader LCA of products or systems (Murat Kucukvar, Noori, Egilmez, & Tatari, 

2014; Wiedmann, Lenzen, & Barrett, 2009) 

2.2. System Dynamics 

Most of the problems of present are consequences of unforeseen side effects of the 

actions taken in the past, such as global climate change and depletion of resources. The 

policies implemented to solve significant problems mostly fail, make the problem even 

worse, or pave the way for other problems. Effective decision making requires a system 

thinking approach and understating behavior of the growing dynamic complexity of the 

systems. SD is a strong modeling approach to describe and understand the behavior of 

complex systems overtime (J. D. Sterman, 2000). The approach was introduced by Jay 
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Forrester in mid-1950s at Massachusetts Institute of Technology (MIT) (Jay Wright 

Forrester, 1961a). Since then, the SD approach has been employed to address critical 

problems from various fields of studies such as , engineering, economic, social and 

environmental sciences (Egilmez, Kucukvar, & Tatari, 2013b). Moreover, governmental 

organizations, many top companies, universities, and consulting firms use the system 

dynamic approach to solve critical problems and improve their decision making mechanism. 

The main difference between traditional conception of problem and system thinking is that 

the former focuses on the cause and effect relationship between the system components 

individually, while the latter considers system as a whole by covering all of the interactions 

among the components of the system. In other words, traditional approach is a narrower 

model, whereas the system dynamics is a board method which takes the elements of a system 

into account holistically. 

In the SD approach, a dynamic system is modeled by feedback loops, stocks, flows, 

and auxiliary variables. Feedback loops represent the causal relationships between 

components (stocks) of a system. Feedbacks are expressed with flows. Direction of flows 

determines whether the feedback has a negative or positive relationship with the attributed 

variable or stock. Also, auxiliary variables are the rates that regulate flow values on a period 

of time. Stocks are accumulations of the flows which increase or decrease the amount of the 

stock based on the relationship between the stock and the flow. After the model is 

constructed based on the causal relationships including stocks, flows, and auxiliary 

variables, the model is simulated for a certain time period. Then, the simulation outputs are 
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examined and validated in compliance with the initial base case conditions. Validation 

process is to test if the SD model can successfully represent the actual behavior of the system 

analyzed. This is done by comparing the values and trends of the past real data and the model 

results. After the validation of the model, different policies can be developed by altering 

certain variables such as retrofitting rate, energy efficiency, construction rate of new HPGBs 

and leave the rest as defined in the base model. Finally, the policies are compared to evaluate 

their impacts on the system behavior and to see their relative effects respect to the base case 

(J. D. Sterman, 2000), (Egilmez et al., 2013b). 

SD approach has been widely used to conduct policy experiments by many researches 

and policy makers for over 30 years (Egilmez & Tatari, 2012; Trappey, Trappey, Hsiao, Ou, 

& Chang, 2012). SD models are also often used to address environmental issues and 

sustainability problems. For instance, Ford (Ford, 1999) studied wildlife population 

dynamics, air polluting, and vehicle emissions. Forrester et al.(J. W. Forrester, 1971a) and 

Meadows et al. (Meadows, Randers, & Meadows, 1993a) contemplated on global 

perspectives of environmental sustainability issues with a broader scope. Meadows et al. 

(Meadows, Randers, & Meadows, 2004a) and Randers (Randers, 2000b) utilized the SD 

approach to investigate the effects of increasing human population on the earth and natural 

resources. Several other studies utilized SD modeling approach includes the issues related 

to regional sustainable development (Saeed, 1994), environmental management 

(Mashayekhi, 1990), water resource planning (Ford, 1996), urban planning (White, Dajani, 

& Wright, 1974), and ecological modeling (Wu, Vankat, & Barlas, 1993).  SD modeling has 
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been also used for the areas of transportation, construction, building & environment. 

Egilmez and Tatari (Egilmez & Tatari, 2012) developed an SD model for U.S. highway system 

where the reference mode was considered as the increasing GHG emission trend between 

1982 and 2007. Three policy areas including electric vehicles, public transportation and fuel 

efficiency are studied with quantitative policies for the period between 2012 and 2050. 

Results indicated that hybrid (hybrid) implementation of the selected policy areas can only 

lead to reduce the GHG emissions below the levels indicated by Liberman and Warner 

Climate Act. 

In this proposal, system dynamics will be utilized for two main purposes; (1) to 

capture the dynamic relationships between environmental, economic, and social dimensions 

within the context of transportation, (2) to quantify social, economic, and environmental 

impacts of alternative vehicle technologies, (3) to deal with uncertainties inherent to the U.S. 

transportation and impacts of alternative vehicle technologies.  
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CHAPTER 3:  STATE-BASED ENERGY AND CARBON FOOTPRINTS OF 

ALTERNATIVE VEHICLE TECHNOLOGIES: INCLUSION OF SPATIAL AND 

TEMPORAL VARIATIONS  

Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric 

vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions 

and energy consumption compared to internal combustion vehicles. However, making any 

decision among these vehicle options is not a straightforward process due to temporal and 

spatial variations, such as the sources of the electricity used and regional driving patterns. 

In this study, we compared these vehicle options across 50 states, taking into account state-

specific average and marginal electricity generation mixes, regional driving patterns, and 

vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the 

widespread use of solar energy to charge EVs and PHEVs is evaluated. 

3.1. Literature review  

A comprehensive literature review is undertaken to compare scope and main focus 

of various studies addressing environmental impacts of ICVs, HEVs, PHEVs, and EVs. In total, 

38 different peer-reviewed articles, mainly LCA studies, are evaluated based on their scope, 

investigated vehicle technologies, and selected environmental impact categories. A detailed 

evaluation of these papers is shown in table 1. Of the 38 studies, 16 of them covered driving 

patterns and only 8 of them considered marginal electricity mix scenario. Studies containing 

both marginal electricity scenarios and driving patterns are mostly well-to-wheel studies in 

which only fuel-cycle is taken into consideration. 14 of the reviewed studies covered both 

battery and vehicle production phases, while only 11 of them investigated environmental 
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impacts associated with end-of-life phase of vehicles. As a common finding in these studies, 

end-of-life phase is found to have a minimal impact compared to vehicle and fuel cycle. 

Majority of the studies made a comparison between environmental or energy performance 

of ICVs with those of other vehicle technologies. On the other hand, FCEVs are compared with 

other vehicle technologies in 7 studies only. HEVs are the most studied vehicle type 

compared to PHEVs, EVS, and FCEVs. Almost all of the studies, 37 articles, included GWP as 

an environmental impact category. Additionally, energy consumption is one of the most 

interested topics for researchers with 21 studies out of 38. On the contrary, other impact 

categories are significantly lower compared to GWP and energy consumption. For instance, 

water footprint of electric and conventional vehicles is only studied by King and Weber (King 

& Webber, 2008) using a process-based life cycle a.  In addition, the majority of studies 

reviewed are mainly focused on mid-point life cycle inventory results such as energy, water 

and greenhouse gas emissions rather than end-point indicators such as damage to human 

health and ecosystems. Most of the studies reviewed here used the P-LCA methodology and 

only a limited number of studies employed a combination of P-LCA and EIO-LCA, which is 

also known as hybrid LCA (Cooney, Hawkins, & Marriott, 2013; Samaras & Meisterling, 

2008). 

Apart from the studies benchmarked in this study, there are many other studies 

mainly focusing on life cycle cost, vehicle-to-grid electricity transfers, market penetration, 

aged charging, and battery exchanging, etc. However, we limit the scope of literature review 

mainly to environmental LCA studies. Overall, use phase represents the most dominant 
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phase compared to other life cycle components in most of the environmental impact 

categories. Therefore, marginal electricity mix and driving patters have significant effects on 

overall life cycle impacts of EV technologies. M&R of vehicles and battery production are 

responsible for lower amount of total environmental effects compared to operation phase. 

In general, the majority of the studies have primarily focused on either national scale impacts 

or very specific local regions, and none of the studies have analyzed the 51 U.S. states with 

driving patters and marginal electricity mix profiles. As a common conclusion, EVs are found 

to be sustainable from an environmental perspective; however three main factors are 

emphasized in the literature to improve the performance of EVs: battery technology 

improvement, eco-driving behavior, and environmentally benign electricity mix through use 

of renewable energy sources. 
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Table 1. Overview of Environmental LCA studies addressing alternative vehicle technologies 
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Plotkin et. al  
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2                                          

McCleese and 
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2                                     
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2                                         
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Raykin et. al.  
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2                                         

Kelly et. al.  
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Marshall et. al.  
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Faria et. al.  
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Cooney et. al.  

201
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Karabasoglu and 

Michalek 

201
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Onat et al. 

(Chapter 3)  

201

4                                      
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In this chapter, the end-of-life impacts are not included due to their relatively low 

impacts on GWP and energy consumption. Also, FCEVs were not included in our analysis. 

This is because of that they are not likely to penetrate the in the market in near future (Jeong 

& Oh, 2002; Keith & Farrell, 2003). The infrastructure requirement for the hydrogen 

distribution has not been developed and there are still significant concerns about the 

material availability and high cost (Hawkins, Gausen, & Strømman, 2012; Råde, 2001).  

Another important part that is not included in this study was the driving conditions. “Driving conditions” refers to factors influencing the fuel efficiency performance in real world, while “Driving patterns” represents the driving distance which determines the fraction of vehicle kilometers travelled in either electric or gasoline mode. We used the EPA’s label values to reflect vehicles’ fuel economy performances. EPA tests vehicles with 5-cycle 

test to label for their fuel economy. The test results from the phases of each of the 5 drive 

cycles (FTP, HWFET, US06, SC03, Cold FTP) are input to a set of formulae to produce final 

city and highway fuel economy label values. 5-cycle tests contain vehicle performance under 

different climate conditions where air condition is on. Also, fuel efficiency in congested roads 

and highways are calculated with these tests. For more information about these tests, please 

see following references (Gonder, Brooker, Carlson, & Smart, 2009; Meyer, 2011; U.S. 

Environmental Protection Agency Office of Transportation and Air Quality, 2006). EPA 

assigned some weights to these test results to represent typical U.S. driving conditions from 

the certification test cycles. We tried to develop a methodology to modify these fuel economy 

values representing each state and contacted with National Vehicle and Fuel Emissions 
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Laboratory regarding this issue. However, 5-cycle method was developed with no 

understanding of electric vehicles and the impact of cold, air conditioning, or other factors 

on these vehicles. EVs do not run all five cycles for fuel economy or emissions testing, and 

instead for fuel economy and other parameters (e.g., range), EPA applies an adjustment 

factor of 0.7. Currently, EPA is developing a way for EVs to better estimate efficiency and 

range using a 5-cycle process. Moreover, 5-cycle tests do not applied to most of the vehicles 

to determine their fuel economy. When EPA developed the regulation, they were aware of 

that requiring this for every model would be a huge testing burden on manufacturers. 

Especially, since tests like the air conditioning and cold temperature tests required 

specialized test facilities that are in short supply. Therefore, EPA developed a new approach called “derived 5-cycle” method. It is simply a mathematical adjustment to the standard city 
and highway tests. The derived 5-cycle equations adjusted the EVs by about 0.7 (a 30% 

reduction in fuel economy test results obtained from standard city and highway tests). In 

other words, If Nissan Leaf on city and highway tests gets about X mpg on a charged battery, 

but in the real world the experience seems to be pretty close, on average, to about 0.7mpg. 

Tests procedure for PHEVs has completely different test methodology. They are tested both 

with a full battery (charge depleting mode) and with a discharged battery (charge-sustaining 

mode). The charge-sustaining mode is an all-gasoline mode, and the charge-depleting can be 

all-electric (e.g., the Chevrolet Volt) or a mix of electricity and gasoline (the Prius PHEV). In 

charge-depleting mode, EPA does not require 5-cycle testing. They rather run the city and 

highway driving cycles to full battery depletion. In the charge-sustaining mode a vehicle 

might run all 5 cycles, or might use the derived 5-cycle adjustment if they qualify. On the 



 

25 
 

other hand, HEVs are tested same as ICVs, standard highway and city tests. However, they 

are usually more sensitive to hot or cold conditions, usually because of the impact on engine-

off at idle (U.S. Environmental Protection Agency Office of Transportation and Air Quality, 

2006). All in all, there is no widely accepted methodological framework to modify fuel 

economy values of each vehicle type to account based on regional variations such as 

temperature, road density, and congestion rates, etc.. EPA’s fuel economy label values are 
used in the calculations. In the literature, researchers generally conduct laboratory tests to 

calculate the impacts of different driving conditions.  

3.2. Research Motivation and Objectives 

Although there are a wide range of studies evaluating environmental performance of 

EVs and PHEVs, studies covering spatial variations are relatively lower. The importance of 

electricity generation mix and driving patterns has been stressed in previous studies(Faria 

et al., 2013; Faria, Moura, Delgado, & de Almeida, 2012; Huo, Zhang, Wang, Streets, & He, 

2010; Karabasoglu & Michalek, 2013; Kelly, MacDonald, & Keoleian, 2012; Ma, Balthasar, 

Tait, Riera-Palou, & Harrison, 2012; Marshall, Kelly, Lee, Keoleian, & Filipi, 2013; Raykin et 

al., 2012; Samaras & Meisterling, 2008; Sharma, Manzie, Bessede, Crawford, & Brear, 2013; 

Stephan & Sullivan, 2008). Samaras & Meisterling (2008) analyzed life cycle GHG emissions 

of PHEVs considering various electricity mix scenarios and the U.S. average driving patterns. 

Kelly et al. (2012) investigated the impacts of U.S driving patterns, demographic variations, 

and different charging scenarios on GHG emissions of PHEVs at national scale. Ma et al. 

(2012) conducted a full life cycle assessment of EVs considering marginal electricity mixes 
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and driving conditions for the United Kingdom and California. One of the most 

comprehensive studies found in the literature was conducted by Faria et al. (2013), in which 

country scale temporal and spatial variations for France, Portugal, and Poland are taken into 

consideration and their impact on GHG emissions and energy use of EVs and PHEVs were 

highlighted. Raykin et al. (2012) examined how driving patterns influence the GHG emissions 

of PHEVs under various electricity generation mix scenarios in Ontario, Canada. Huo et al. 

(2010) investigated energy use and GHG emissions of EVs considering the various regional 

electricity generation mixes in China and their analysis revealed that EVs are not the best option to reduce GHG emissions in China due to high GHG intensity of China’s current 
electricity generation mix. However, all of these studies are either at national level or for a 

specific region and most of them did not include marginal electricity mix scenario. Also, 

majority of the studies focused on use phase only, known as well-to-wheel analysis. This 

study differs from previous LCA studies by making comparisons across 51 states including 

their representative average and marginal electricity generation mixes and regional driving 

patterns. Additionally, GHG emissions and energy consumption during vehicle and battery 

manufacturing and vehicle maintenance are also included. The objectives of this chapter as 

follows:  

1) to investigate impacts of regional driving patterns and electricity generation mix 

scenarios (marginal and average) on energy use and GHG emissions of alternative vehicle 

technologies,  
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2) to highlight how these spatial and temporal variations influence the vehicle 

technology preference at state level,  

3) to show relative impacts of battery and vehicle manufacturing on GHG emissions 

and energy consumption within the total life cycle of vehicles,  

4) to evaluate impacts of the possible policy implications.  

3.3. Methodology  

LCA is a widely accepted method to quantify the environmental impacts of products 

or processes throughout production, use, and end of life phases (Finnveden et al., 2009). 

Traditionally, there are two main methodologies to utilized in LCA literature: process based 

(P-LCA) and input-output based (IO-LCA). In this study, both of the approaches were used. 

Production and maintenance of vehicles, and the upstream emissions from gasoline supply 

were analyzed with Economic Input-Output Life Cycle Assessment model (EIO-LCA) 

(Carnegie Mellon University Green Design Institute, 2008), while electric power supply and 

battery manufacturing were analyzed with P-LCA. Additional information about LCA 

methods are provided in Chapter 2. Data used in this study is collected from publicly 

available sources such as the U.S. Life Cycle Inventory (LCI) database(National Renewable 

Energy Laboratory, 2013), GREET vehicle cycle model(Burnham, Wang, & Wu, 2006), eGRID 

database(EPA, 2009), and National Household Travel Survey (NHTS) (National Household 

Travel Survey, 2009). Fig. 2 shows the system boundary of the analysis.  
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Figure 2. System Boundary of the Analysis 

 

In this chapter, five vehicle types representing different vehicle technologies have 

been comparatively evaluated based on their energy consumption and GHG emissions for 51 

states in the U.S. All vehicles are ranked based on their GHG emission amount and energy 
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across 51 states, three different electricity generation scenarios are considered. These 

scenarios are as follows: 

1) State-based average electricity generation mix: Based on state level 

electricity power generation profiles in 2009, derived data from the most recent 

eGRID database (EPA, 2009).  

2) State-based marginal electricity generation mix: Estimated state-based 

marginal electricity mix profiles in 2020, derived data from National Oak Ridge Laboratory’s estimations (Hadley W. & Tsvetkova, 2008) and literature(Thomas, 

2012). 

3) 100% solar powered charging stations: a futuristic scenario where 

there are solar charging stations and roof-top solar panels to charge electric vehicles 

are common in residential and commercial buildings. 

The vehicle technologies considered are ICVs, HEVs, PHEVs, and EVs. Toyota Corolla 

(ICV), Toyota Prius (HEV), plug-in Toyota Prius (PHEV-AER18), Chevrolet Volt (PHEV-

AER62), and Nissan Leaf (EV) has been selected to represent each vehicle technology. The 

physical features of the vehicles are presented in table 2.  
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Table 2. Comparison of physical features of the vehicles types 

Vehicle Types 
Weigh
t (kg) 

heigh
t (cm) 

Widt
h 

(cm) 

Lengt
h (cm) 

Coefficien
t of drag 

EPA Size 
Class 

ICV-Toyota Corolla-L 
2014 

1255 146 178 464 0.29 Midsize 

HEV-Toyota Prius 2014 1380 149 174 448 0.26 Midsize 
PHEV-Toyota Prius 2014 1436 149 174 448 0.26 Midsize 
PHEV- Volt 2014 1717 144 157 450 0.28 Compact 
EV-Nissan Leaf 2014 1493 155 177 445 0.28 Midsize 

 

The useful life time for all vehicles is assumed to be 240,000 kilometers (150,000 

miles). The functional unit of this study is 1 kilometer (km) of vehicle travel. GHG emissions 

are reported in grams CO2 equivalent (g CO2-eq.) based on 100 years of time horizon Global 

Warming Potential values recommended by the Intergovernmental Panel on Climate Change 

(IPCC Working Group I, 2001).    

3.3.1. Vehicle Production  

Energy consumption and GHG emissions from automobile manufacturing are 

calculated for each vehicle type by utilizing the EIO-LCA model (Carnegie Mellon University 

Green Design Institute, 2008), which consists of identical sectors and their interactions 

forming the entire U.S. economy. In the EIO-LCA model, there is a sector named Automobile 

Manufacturing, NAICS 336111, where the producer price of the vehicle is an input to 

calculate a set of environmental impacts including GHG emissions and energy consumption. 

Since the EIO-LCA model  developed based on economic activities and interrelations of 

sectors in 2002, based on latest available data form the U.S. Department of Commerce, the 

input values (2013$) are converted into 2002$ by using the producer price indexes. It is 
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assumed that the producer price of vehicles are 80% of the retail price (Samaras & 

Meisterling, 2008). Table 3 summarizes this conversion for each vehicle type. The battery 

cost is deducted from the vehicle costs, since impacts from battery production is calculated 

separately. Also, the vehicle manufacturing impacts, excluding the batteries, of HEV Prius 

and PHEV Prius are assumed to be same since both of the vehicles are identical and have 

exactly same vehicle body. The battery cost for Nissan Leaf was not available in the manufacturer’s web site, and therefore, we have scaled its price by using weights of Volt’s and Leaf’s Li-ion batteries.   

Table 3. Conversions of vehicle producer prices 

 ICV-Toyota 
Corolla-L-2014 

HEV-Toyota 
Prius 2014 

PHEV- Volt-
2014 

EV-Nissan 
Leaf-2014 

Purchaser price ($) 
(MSRP) 

16,800 24,200 26,685 28,800 

Producer price ($) 13440 19360 21348 23040 
Battery cost ($) 0 2589 2,995 3160 
PPI 2013 142.7 142.7 142.7 142.7 
PPI 2002 134.9 134.9 134.9 134.9 
Price for 2002 ($) 12705 15854 17350 18793 

 

The automobile manufacturing sector multipliers corresponding to $1M dollars 

output for GWP and energy consumption are 563 tons of CO2-eq and 8.33 Terajoule (TJ), 

respectively (Carnegie Mellon University Green Design Institute, 2008). The total impacts 

from vehicle manufacturing can be obtained by multiplying these multipliers with the 

corresponding input value for each vehicle type. 
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Additionally, the impacts from material production are separately calculated with 

EIO-LCA model after determining the material component of each vehicle. The material 

component of each vehicle type is estimated with GREET 2.7 vehicle cycle model by using 

their real weights. The EIO-LCA is preferred at this stage as well considering its ability 

capture impacts from entire supply chain and avoid of truncation error. In the GREET model, 

the material composition of each vehicle part is calculated by using the total weight of 

vehicles. After calculating weight of each material, their costs are determined and entered as 

an input to the relevant sector in the EIO-LCA model to calculate impacts from vehicle 

material production separately. These values are buried in the total vehicle production 

impacts However, it was not possible to track the source of the impacts from different phases 

of manufacturing. Therefore, vehicle manufacturing impacts are calculated separately. Table 

4 and 5 show the vehicle weights for each vehicle type and their material compositions by 

weights. Weight of the batteries are obtained through GREET model by using their charge capacity values obtained from manufacturer’s web sites. When calculating the impacts from 
vehicle manufacturing, the impacts of battery manufacturing is excluded since the price 

premium for HEVs, PHEVs, and EVs over a conventional vehicle mainly stems from the 

additional battery and electronics (Samaras & Meisterling, 2008).   
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Table 4. Vehicle weight with and without batteries 

 

Table 5. Vehicle material composition by weight in kg 

Vehicle Materials 
ICV-Toyota 

Corolla-L-2014 
HEV-Toyota 
Prius 2014 

PHEV- Volt-
2014 

EV-Nissan 
Leaf-2014 

Steel 753.340 859.316 965.717 813.992 

Cast Iron 131.756 75.435 76.776 24.443 

Wrought Aluminum 26.603 22.970 25.957 12.681 

Cast Aluminum 56.066 66.061 69.087 67.109 

Copper/Brass 22.626 55.855 62.707 57.390 

Magnesium 0.213 0.237 0.269 0.262 

Glass 34.683 38.492 43.709 42.627 

Average Plastic 134.516 137.406 153.756 148.516 

Rubber 27.288 22.813 25.046 21.542 

Platinum 0.006 0.004 0.005 0.000 

Others 22.859 28.662 32.472 37.225 

 

Producer unit prices ($/kg) for each material type are multiplied with each weight of 

the each material to obtain their costs. Then, the relevant sector multipliers from the EIO-

LCA are derived to calculate the GWP and energy consumption associated with vehicle 

material production. Table 6 indicates producer prices and sector multipliers for each 

material type. Unit prices of each material are obtained from the U.S. Geological Survey 

database(U.S. Geological Survey (USGS), 2014). 

Weight (kg) ICV-Toyota 
Corolla-L-

2014(Toyot
a, 2014a) 

HEV-Toyota 
Prius 

2014(Toyot
a, 2014b) 

PHEV- Volt-
2014(Chevrole

t, 2014) 

EV-Nissan 
Leaf-

2014(Nissa
n, 2014) 

Weight (total) 1255 1380 1717 1493 

Weight (excluding the 
batteries) 

1255 1307 1456 1226 
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Table 6. Producer prices of vehicle materials ($2002) and corresponding sector multipliers 
from EIO-LCA 

Material ICV HEV PHEV EV 
NAICS 

sector ID 
GWP (ton 

CO2eq./$M) 
Energy 

(TJ) 

Steel 163.1 186.1 209.1 176.2 331110 3660 43.3 

Cast Iron 3.4 1.9 2.0 0.6 212210 3660 43.3 

Wrought 
Aluminum 

38.0 32.8 37.1 18.1 33131A 3340 49 

Cast Aluminum 80.2 94.5 98.8 96.0 33131A 3340 49 

Copper 37.8 93.3 104.8 95.9 331420 906 15.1 

Glass 3.9 4.3 4.9 4.8 327211 2050 37.1 

Average Plastic 243.7 249.0 278.6 269.1 325211 2510 42 

Rubber 13.3 11.1 12.2 10.5 325212 894 14.4 

Platinum 108.5 77.5 79.2 0.0 339910 746 8.68 

 

GWP and Energy consumption from vehicle and material manufacturing are 

represented in table 7. The impacts are represented per km of vehicle travel. 

Table 7. GWP and energy consumption from vehicle and material production per km of 
vehicle travel 

  
ICV HEV PHEV EV 

Vehicle 
Production 

GWP (gram of CO2-eq.) 29.63 36.98 40.46 43.83 
Energy consumption (MJ) 0.44 0.55 0.60 0.65 

Material 
Production 

GWP (gram of CO2-eq.) 7.25 7.87 8.70 7.50 
Energy consumption (MJ) 0.10 0.11 0.12 0.11 
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These results are also compared with other studies from literature. In the literature, 

the GWP impacts from vehicle production ranges between 27 to 62.4 gCO2-eq/km depending 

on the assumed useful life for vehicles and vehicle characteristics (Hawkins et al., 2012).  

Impacts from battery production is calculated with the P-LCA and explained in the 

following subsection. Impacts from vehicle and battery production are assumed to be 

independent from the regional variations since majority of the vehicles are manufactured in 

specific places and driven in the entire country. GHG emissions and energy consumption 

from end of life phase are found to be quite small compared to other life cycle phases and 

therefore neglected in this analysis (Schmidt et al., 2004). However, as the fuel efficiency 

standards increase, the relative contribution of manufacturing related impacts can increase. 

It is expected that automobile manufacturers will probably use more energy intensive 

materials such as aluminum, which can increase the emissions and energy consumption 

associated with vehicle production stage. Furthermore, the recycling of these materials can 

be more important (Geyer, 2008; Kim, McMillan, Keoleian, & Skerlos, 2010; Stephan & 

Sullivan, 2008). 

3.3.2. Battery Production 

The choice of battery for the vehicle technologies depends on cost, lifetime, 

performance characteristics such as depth of discharge, behavior under high and low 

temperature, energy density, and their environmental impacts. EVs and PHEVs typically use 

lithium ion (Li-ion) batteries, while nickel–metal hydride battery (Ni-MH) is mostly 

preferred to power HEVs due to its relatively lower cost (Burke, 2007). A major advantage 
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of Li-ion batteries is that they provide a high power and energy density. Additionally, they require little maintenance and there is no scheduled cycling to prolong the battery’s life, 
small self-discharge, and no memory effect (Notter et al., 2010). Considering that Ni-MH 

batteries has lower energy density (Wh/kg), they can increase the weight of the vehicle 

considerable, which is not desirable since increased weight generally  result in loss in fuel 

efficiency. Li-ion batteries are expected to be the most common battery technology in EVs in 

the near future owing to their higher energy density and decreasing cost (Hawkins et al., 

2012).  The HEV in our analysis uses Ni-MH battery, while others (PHEVs, EVs) have Li-ion 

batteries as an electricity storage device. GREET 2.7, vehicle cycle model, were utilized to 

calculate GHG emissions and energy use from battery production. The weights of the 

batteries are determined by equations in the GREET 2.7 model using peak battery power and 

battery energy values, which were obtained from manufacturer’s websites. These values are 
presented in Table 8 and 9. 

Table 8. Properties of Li-ion batteries 

Vehicle 
Type 

Battery 
Type 

Peak battery 
energy(kWh) 

Battery Specific Energy 
(Wh/kg) 

Battery weight 
(kg) 

EV- Leaf Li-Ion 24.0 (Nissan, 2014) 102.0 235 
PHEV- 
Prius  

Li-Ion 4.4 (Toyota, 2014c) 55.1 80 

PHEV- 
Volt 

Li-Ion 
16.5 (Chevrolet, 

2014) 
74.0 223 

 

 

 



 

37 
 

Table 9. Properties of the Ni-MH battery 

Vehicle Type Battery Type 
Peak battery 
power (kW) 

Battery Specific 
Power (W/kg) 

Battery weight (kg) 

HEV- Prius  Ni-MH 27 (Toyota, 2014b) 800 34 

 

The GHG emissions and energy consumption from each battery are presented per 

vehicle km travel in table 10 bellow. The lifetime of the batteries are assumed to be same 

and 150,000 km, which is also life time of the vehicles. 

Table 10. GHG emissions and energy consumption from battery production 

Impact Category HEV PHEV-Prius PHEV-volt EV 

GHG emissions (gCO2-eq./km) 1.00 1.98 5.68 5.59 

Energy (MJ/km) 0.017 0.029 0.079 0.077 

 

According to the analysis results, GHG emissions from li-ion batteries 5.68, 5.59, and 

1.98 gCO2-eq./km for PHEV-AER62, EV, and PHEV-AER18, respectively. In the literature, the 

GHG impacts from li-ion battery production range between 1 to 12 gCO2-eq./km. One of the 

key sources of variability in the results stems from battery lifetime assumptions. The life 

time is generally defined as a certain amount of charge-discharge cycles. However, there is 

no certain agreement regarding the unit of lifetime of batteries because of the uncertainties 

in use patterns and consumer behavior directly effecting the charge-discharge cycles 

(Hawkins et al., 2012). Another important source of the variability is that the studies 

compared are within the last 15 years and the battery technology significantly improved in 

recent years. Therefore, some recent studies were selected to make comparison between the 

results, which is presented in table 11. In this analysis, the lifetime of batteries are assumed 
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to be same as the vehicle lifetimes and they are not replaced during the vehicles’ operation 
phase. In the case of that battery is replaced in the future, the impacts from battery 

production may not be doubled since the battery industry is improving rapidly and energy 

requirement and GHG emissions intensity may possibly be lower than it is today. Impacts 

from battery production are assumed to be independent from the regional variations to be 

consistent with the same assumptions made for vehicle production.  

Table 11. Comparison of GWP (kgCO2 eq.) and Energy use (MJ) per kg of battery production 

Battery 
Type 

Analysis Results 
(Notter et al., 

2010)  

(Samaras & 
Meisterling, 2008), 

 (Rydh & Sandén, 
2005) 

(Majeau-Bettez, 
Hawkins, & 
Strømman, 

2011)  

 GWP  Energy  GWP  Energy  GWP  Energy  GWP  Energy  
Li-Ion 6.2 85.8 6.0 103.6 9.6 136.7 21.6 - 
Ni-MH 7.2 118.2 - - 8.4 116.8 20.1 - 

 

Developments in battery technologies have the greatest potential towards 

widespread adoption of EVs (Cooney et al., 2013). On the other hand, they also have certain 

technological limitations, environmental and economic concerns associated with battery 

production and adoption. Although scope of this analysis is limited with GHG emissions and 

energy consumption, there are other concerns associated with battery production such as 

rare earth metals use and end of life treatment of batteries. Production capacity and material 

reserves for producing EV batteries mainly depends on rare earth metals (Nd, La, Ce, Pr) in 

NiMH batteries and cobalt in both NiMH and Li-ion batteries. However, resource availability 

concerns related to li-ion batteries are relatively much less significant than that of NiMH 

batteries (Hawkins et al., 2012; RYDH & SVARD, 2003). According to the USGS, rare earth 
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metals are relatively abundant globally (USGS, 2009). Gaines and Nelson (Gaines & Nelson, 

2010) investigated the issues related to li-ion batteries and concluded that even if 90% of 

the U.S. light duty vehicle compromise of PHEVs and EVS by 2050, the demand for lithium 

production would not surpass the current production capacity until  and after 2030 if these 

batteries containing lithium are recycled.  

3.3.3. Vehicle Operation Phase 

Use phase is the most carbon and energy intensive phase in the life cycle phases of all 

vehicles (Hawkins, Singh, Majeau-Bettez, & Strømman, 2013; Ma et al., 2012; Samaras & 

Meisterling, 2008). The vehicles compared in this analysis are either powered with gasoline 

or electricity. Hence, analyzing the impacts of electricity generation, gasoline combustion, 

and their upstream are the most influential parts of this study. 

Maintenance and Repair: GHG emissions and energy consumption associated with 

maintenance and repair (M&R) are also quantified, which has generally lower impacts 

compared to fuel supply. Impacts stemming from M&R of vehicles are calculated with the 

EIO-LCA tool with purchases from NAICS sector 81111, Automotive Repair and Maintenance. 

The costs associated with M&R is obtained from the U.S. Transportation Energy Data book 

(Transportation Energy Data book, 2012). The M&R cost for an ICV was approximately 5 U.S. 

cents per km in 2012. This cost is converted into 2002 dollars in value by using the consumer 

price indexes. The total life time M&R for an ICV is calculated as $8970. The M&R cost for an 

EV is approximately is 65-80% of an ICV due to fewer components and moving parts, and 

less maintenance requirement of electric motor in EVs (M. A. Delucchi & Lipman, 2001; Faria 
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et al., 2013). In this analysis, the M&R cost of the EV are assumed to be 70% of and the ICV, 

while M&R cost of the PHEVs is assumed to be 80% of the ICV (M. A. Delucchi & Lipman, 

2001). The cost for the HEV is assumed to be same as the ICV’s.  
Gasoline Supply: The upstream emissions and energy use associated with gasoline 

supply are also calculated with the EIO-LCA tool by using NAICS sector 324110, Petroleum 

Refineries. The producer price for a litre (L) was $0.76 in 2002, after deducting taxes and 

profit (C. T. Hendrickson, Lester, & Matthews, 2006). Upstream GHG emissions to produce 1 

L of gasoline are calculated as 0.56 kgCO2-eq., whereas the upstream energy consumption is 

calculated as 6.37 MJ per L of gasoline. Direct tailpipe emissions resulted from burning 1 L 

of gasoline is 2.26 kg kgCO2-eq. (EPA, 2013). The key input parameters are presented in 

Table 12. 

Table 12. Key input parameters to calculate impacts from gasoline use 

Key input parameters    

Gasoline Producer Price per L ($2002) (C. Hendrickson, Lave, & Matthews, 2006)  0.20 
Upstream emissions for production of 1 L gasoline (kgCO2-eq)(Carnegie Mellon 
University Green Design Institute, 2008) 

560.
20 

Upstream energy  consumption for production of 1 L gasoline (MJ)(Carnegie Mellon 
University Green Design Institute, 2008) 

6.37 

Direct emissions per L  (kgCO2-eq) (EPA, 2013) 2.26 

 

The GHG emission amounts and energy consumption for ICV, HEV, and the gasoline 

operation mode of PHEV are calculated by determining the energy requirement of each 

vehicle type to travel 1 km. The energy delivered to the wheels through burning 1 L of 

gasoline is 8.9 kWh (U.S. Environmental Protection Agency Office of Transportation and Air 

Quality, 2006). Fuel economy labels reported by EPA are utilized to calculate energy 
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consumption and GHG emissions from vehicle operation phase in gasoline mode. The fuel 

economy values for each vehicle are provided in table 13. Data for fuel economy values are obtained from the manufacturer’s websites(Chevrolet, 2014; Nissan, 2014; Toyota, 2014a, 

2014b, 2014c).  

Table 13. Data for fuel economy of vehicles 

 
ICV HEV PHEV-AER18 PHEV-AER62 EV 

Electricity Gas only Electricity Gas only 

Kilometers per Liter (KM/L) 13.2 21.3  40.4 21.3 37.8 15.7 48.5 

Miles per gallon (MPG) 31 50 95 50 89 37 114 

 

In order to calculate GHG emissions per vehicle kilometer traveled, gasoline 

consumption amount per kilometer needed to be determined. By using the impacts 

associated with production and combustion of 1 L of gasoline presented in table 12, impacts 

per km can be easily calculated. For instance, the ICV requires 1/13.2 L (0.076) to travel 1 

km. Hence, the tail pipe emissions from combustion and production of the gasoline 

consumed can be calculated as follows; 

GHG (gCO2-eq/km) = Gasoline consumed (L)* [Direct emissions + Indirect emissions] 
(gCO2-eq/L)                                                                                                                                              (3.1.) 

                                   = 0.076* [2260+560.2] 

                                   = 214.34 gCO2-eq/km 

 

The energy delivered to the wheels through burning 1 L of gasoline is 8.9 kWh. 

Similarly, the energy consumption of the ICV to travel 1km can be calculated as follows; 
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Energy use (MJ/km) = Gasoline consumed (L) * [Direct energy use + Indirect energy use]    
(3.2.)                                   

                                    = 0.076* [8.9 kWh*3.6 MJ/kWh+ 6.37 MJ] 

                                    = 2.92 MJ/km 

The same methodology can be applied to the HEV and gasoline operation mode of the 

PHEVs.  The major sources of variability in GHG emissions and energy consumption in the 

operation phase of vehicles are electricity generation mixes and regional driving patterns, 

which are explained in the following subsection.  

Electricity Supply: Although electricity use in EVs and PHEVs does not cause tailpipe 

emissions, the way the electricity generated plays a crucial role in determining the GHG 

emissions and energy consumption resulted from operating vehicles in electric mode. The 

GHG emissions and energy consumption from electric power generation sector is calculated 

for each state using the electricity generation mix profiles in 2009 published by eGRID(EPA, 

2009) database. The eGRID database also provides the GHG emissions for each state. 

However, upstream emissions such as extraction of raw materials, processing, and 

transportation of fuels for power generation were not included in the eGRID database. 

Therefore, both upstream  and onsite emissions associated with each power generation 

method based on different resources such as coal, natural gas, solar, hydropower, etc., are 

calculated by using data from the U.S. LCI database(National Renewable Energy Laboratory, 

2013). Both upstream and onsite GHG emission factors and energy consumption to generate 

electric power for each type of resource are given in Table 14. 
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Table 14. GHG emission and Energy consumption factors of various energy generation 
sources 

 

Energy Source 

GHG emission factors               

(gCO2-eq/kWh) 

Energy Consumption               

(kWh/kWh) 

Direct Indirect Fuel Feedstock 

Natural gas 588 60 0.22 2.38 

Coal 1050 61 0.06 3.10 

Residual fuel oil 806 99 0.39 3.26 

Nuclear 0 11 0.05 1.07 

Hydro 0 8 0.00 0.00 

PV 0 60 0.00 0.00 

Biomass 43 2 0.24 5.14 

Wind 0 15 0.00 0.00 

Geothermal 0 122 0.00 0.00 

 

Fuel and feedstock energy consumption values are obtained from GREET 2.7 model 

(Burnham et al., 2006). Indirect emission values are obtained from former literature 

(MacPherson, Keoleian, & Kelly, 2012). On the other hand, indirect GHG emission values for 

geothermal power plants and hydropower are also obtained from former literature 

(Samaras & Meisterling, 2008; Sullivan, Clark, Han, & Wang, 2010). All of these values are 

utilized to calculate impacts from electricity consumption for scenarios 1 and 2. In the first 

scenario, state-based electricity generation mix profiles taken from eGRID data base are 

used. Average GHG emission and energy consumption values per output of 1 kWh of 

electricity are calculated by using state based energy mix profiles, which is presented in 

Table 15. 

On the other hand, it was assumed that the existing electricity generation capacity in 

the U.S. could support additional energy demand from use of PHEVs and EVs up to 50% of 
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conversion of the U.S. light duty automobile fleet (Cooney et al., 2013; Denholm & Short, 

2006; Stephan & Sullivan, 2008). For the third scenario which proposes widespread use of 

solar charging station, upstream emissions and energy consumption to construct required 

infrastructure for solar charging stations are also included (Engholm, Johansson, & Persson, 

2013). 

Scenario 1: Average electricity generation mix:  As stated previously, Scenario 1 

utilizes the state based average energy generation mixes. On the other hand, it is important 

to note that there are imports and exports among some states, which may influence the GHG 

emission factors calculated for each state. There were ten states importing 25% or more of 

its energy demand from surrounding states in 2000 (Marriott & Matthews, 2005). The 

import and export values are published by the department of Energy routinely. However, 

this published data does not indicate the importers and exporters and the amount of the 

interstate trade. They simply subtract the gross electricity consumption from the gross 

electricity generation. In this regard, Marriot and Matthews estimated the consumption mix 

of each state as of the year 2000 by utilizing a distance based optimization model (Marriott 

& Matthews, 2005). They assumed that electricity sales will follow the shortest distance. 

According to their model, imported electricity were assumed to be having the same 

generation mix of the state importing that electricity. On the other hand, a large coal-based 

power plant might be establish next to the border of an importing state which might possibly 

purchasing 100% coal based generated electricity, rather than generation mix of the 

exporting state. The complexity of finding consumption based electricity mix profiles for 
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states were stressed by Marriot and Matthews. Considering the abovementioned facts, we 

did not use consumption based mixes. It should be noted that the calculated GHG intensity 

for states can be significantly different for the states that have high export or import.  

Table 15. State-based GHG emission and energy consumption factors per kWh of electricity 
generation 

States 
GHG  emission factor 

(gCO2-eq/kWh) 

Energy consumption 

for power generation 

(kwh/kwh) 

AK 602.12 2.32 

AL 553.13 2.25 

AR 586.67 2.34 

AZ 574.70 2.25 

CA 394.96 1.86 

CO 834.95 2.71 

CT 300.73 1.82 

DC 905.56 3.65 

DE 846.04 2.93 

FL 650.31 2.60 

GA 673.65 2.53 

HI 828.91 3.32 

IA 774.63 2.46 

ID 96.65 0.54 

IL 505.57 2.10 

IN 993.16 3.05 

KS 764.05 2.55 

KY 993.02 3.06 

LA 598.73 2.48 

MA 613.70 2.53 

MD 612.31 2.32 

ME 326.55 2.47 

MI 748.63 2.68 

MN 631.81 2.37 

MO 872.31 2.80 

MS 590.68 2.50 

MT 631.83 1.94 
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States 
GHG  emission factor 

(gCO2-eq/kWh) 

Energy consumption 

for power generation 

(kwh/kwh) 

NC 605.75 2.33 

ND 909.17 2.75 

NE 713.66 2.48 

NH 335.56 1.97 

NJ 313.99 1.85 

NM 909.16 2.90 

NV 659.89 2.42 

NY 327.62 1.64 

OH 902.87 2.92 

OK 774.26 2.65 

OR 251.10 0.99 

PA 595.40 2.33 

RI 636.73 2.65 

SC 432.93 2.04 

SD 429.10 1.29 

TN 554.63 2.11 

TX 687.61 2.52 

UT 950.09 2.98 

VA 512.48 2.30 

VT 11.29 1.14 

WA 159.55 0.68 

WI 722.56 2.60 

WV 1006.04 3.05 

WY 959.99 2.91 

U.S. Avg. 663.3832 2.37 

 

The geographic uncertainty regarding GHG emission factors from electricity 

generation were also highlighted by Weber, Jiaramillo, Marriott, & Samaras, (2010). They 

have compared 7 different estimation of GHG emission factors for states including the state 

consumption mixes calculated by Marriot and Matthews and concluded that there are high 

variations between the GHG emission factors from various datasets. Although some of the 
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dataset they compared were from different years and some of them were reported emissions 

by companies, there are variations among different reports for state based GHG emission 

factors. To overcome this problem, GHG emission rate and energy consumption values are 

varied within a certain range to show its effect on the vehicle preference, which is presented 

in the results section.  

Scenario 2: Marginal electricity generation:  Since GHG intensity of the electricity 

generation highly depends on the energy source, the generation mix of the incremental 

electricity demand, known as marginal electricity, from EVs and PHEVs should be also taken 

into account. Inclusion of marginal electricity to calculate associated GHG emission intensity 

is suggested by many researchers(Chen, Sijm, Hobbs, & Lise, 2008; Dotzauer, 2010; 

Elgowainy, Han, Poch, & Wang, 2010; Hawkes, 2010; McCarthy & Yang, 2010). Marginal 

electricity demand is usually provided through fossil fuels which have significantly higher 

GHG intensity and therefore causes higher operation phase emissions for EVs and PHEVs. 

The reason behind is that the low GHG intensity power generation sources such as nuclear, 

solar, and wind are generally 100% in use and remained fluctuating electricity demand 

provided through nonrenewable sources such as natural gas, coal, and petroleum due to 

their relatively lower short-run marginal costs(Ma et al., 2012). The utilized production 

capacity of renewable energy sources are generally not restricted or driven by the change in 

electricity demand. They are rather influenced by the availability of sunlight for solar, wind 

for wind turbines, weather conditions for hydropower, and security reasons for nuclear 

power plants (Dotzauer, 2010). The marginal electricity mix scenario is developed to 
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account for impacts from different generation costs, demand patterns over the day and 

season. Due to the need for instantaneously meeting the electricity demand, electricity 

power generation operators rely on different generation sources to secure the grid stability. 

For example, while nuclear power and hydroelectric power plants usually provide steady 

supply to meet the base electricity load demand, natural gas or coal power plants provide 

the supply for some portion of the base load and mostly peak demand above the base load. 

Estimating the marginal electricity generation profiles of states is quite complex due to 

demand load that varies significantly by time (Weber et al., 2010). Marginal generation mix 

depends on both temporal and spatial variations.  

The marginal electricity mix profiles are obtained from a study conducted by Hadley 

and Tsvetkova at the Oak Ridge National Laboratory (Hadley W. & Tsvetkova, 2008). They 

estimated regional marginal mixes by using the Oak Ridge Competitive Electricity Dispatch 

(ORCED) computer model. This model utilizes data from National Energy Modeling System 

containing information about 21,000 electrical generation plants in the U.S. The study 

conducted by Hadley and Tsvetkova is based on the North American Electricity Reliability 

Corporation (NERC) regions specified in 2007 Annual Energy Outlook (AEO). The 

projections of AEO for possible electricity generation mixes were utilized to calculate 

marginal electricity mixes for 2020 and 2030. There were 6 scenarios which combines two 

charging periods (Evening charging from 5 pm to 6 pm and Night-time charging from 10 pm 

to 11 pm) and three charging rates (1.4 kW, 2 kW, 6 kW). They have compared the base case 

(without any PHEV) and these six scenarios and determined which electric plants need to 
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generate more electricity to supply additional load resulted from charging PHEVs. They 

assumed that 25% of the existing fleet is replaced by the PHEVs in 2020 through 2030. Sandy 

(Sandy Thomas, 2012) simplified the analysis conducted by Oak Ridge Laboratory and 

averaged the marginal grid results of 6 scenarios. Additionally, Sandy calculated marginal 

electricity mix profiles for Alaska and Hawaii, which were not included in the Oak Ridge’s study. Marginal electricity profiles for each region are derived from Sandy’s study. 
Considering that these regions are not bound by state borders, a state can be within multiple 

regions. In these cases, the state base marginal emissions are calculated for each region 

associated with these states and multiple results are provided. State based marginal GHG 

emission and energy consumption factors are presented in table 16. In addition to inclusion 

of marginal electricity mix profiles, electricity transmission loss factors for each region are 

also taken into consideration for both scenarios.  

Table 16. State-based GHG emission and energy consumption factors per kWh of marginal 
electricity generation in 2020 

States 
NERC Region 

Abbreviation 

GHG  emission 

factor 

(gCO2-eq/kWh) 

Energy consumption 

for power generation 

(kwh/kwh) 

AK N/A 724.86 2.82 

AL SERC 770.94 2.75 

AR SPP 674.47 2.65 

AZ WECC-RMP/ANM 676.85 2.64 

CA WECC-CA 645.77 2.59 

CO WECC-RMP/ANM 676.85 2.64 

CT NPCC-NE 770.81 2.93 

DC MAAC 774.20 2.85 

DE MAAC 774.20 2.85 

FL FRCC 683.37 2.75 

GA SERC 770.94 2.75 



 

50 
 

States 
NERC Region 

Abbreviation 

GHG  emission 

factor 

(gCO2-eq/kWh) 

Energy consumption 

for power generation 

(kwh/kwh) 

HI N/A 911.30 3.65 

IA 
MAIN 892.70 2.95 

MAPP 751.54 2.76 

ID WECC-NW 648.46 2.60 

IL MAIN 892.70 2.95 

IN ECAR 864.73 2.90 

KS SPP 674.47 2.65 

KY ECAR 864.73 2.90 

LA SERC 770.94 2.75 

MA NPCC-NE 770.81 2.93 

MD MAAC 774.20 2.85 

ME NPCC-NE 770.81 2.93 

MI ECAR 864.73 2.90 

MN 
MAIN 892.70 2.95 

MAPP 751.54 2.76 

MO 
SERC 770.94 2.75 

MAIN 892.70 2.95 

MS SERC 770.94 2.75 

MT 
WECC-NW 648.46 2.60 

MAPP 751.54 2.76 

NC SERC 770.94 2.75 

ND MAPP 751.54 2.76 

NE MAPP 751.54 2.76 

NH NPCC-NE 770.81 2.93 

NJ MAAC 774.20 2.85 

NM WECC-RMP/ANM 676.85 2.64 

NV 
WECC-RMP/ANM 676.85 2.64 

WECC-NW 648.46 2.60 

NY NPCC-NY 699.22 2.77 

OH ECAR 864.73 2.90 

OK SPP 674.47 2.65 

OR WECC-NW 648.46 2.60 

PA MAAC 774.20 2.85 

RI NPCC-NE 770.81 2.93 

SC SERC 770.94 2.75 
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States 
NERC Region 

Abbreviation 

GHG  emission 

factor 

(gCO2-eq/kWh) 

Energy consumption 

for power generation 

(kwh/kwh) 

SD 
MAPP 751.54 2.76 

WECC-NW 648.46 2.60 

TN SERC 770.94 2.75 

TX ERCOT 644.57 2.58 

UT WECC-NW 648.46 2.60 

VA 
SERC 770.94 2.75 

ECAR 864.73 2.90 

VT NPCC-NE 770.81 2.93 

WA WECC-NW 648.46 2.60 

WI MAPP 751.54 2.76 

WV 
MAIN 892.70 2.95 

ECAR 864.73 2.90 

WY WECC-NW 648.46 2.60 

 

The NERC electricity generation regions defined by the Energy Information 

Administration for their 2007 AEO are shown in the Figure 2.  
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*NERC regions abbreviations: 1) East Central Area Reliability Coordination Agreement (ECAR), 2) Electric Reliability Council 

of Texas (ERCOT), 3) Mid-Atlantic Area Council (MAAC), 4) Mid-America Interconnected Network (MAIN), 5) Mid-Continent 

Area Power Pool (MAPP), 6) Northeast Power Coordinating Council/New York (NPCC-NY), 7) Northeast Power Coordinating 

Council/New England (NPCC-NE), 8) Florida Reliability Coordinating Council (FRCC), 9) Southeastern Electric Reliability 

Council (SERC), 10) Southwest Power Pool (SPP), 11) WECC/ Northwest Power Pool Area (WECC-NW), 12) WECC/Rocky 

Mountain, Arizona, New Mexico, S. Nevada Power Area (WECC-RMP/ANM), 13) WECC/California (WECC-CA). 

Figure 3. NERC Regions of EIA’s Electricity Sector Model 
 

Scenario 3: Scenario 3 proposes a widespread use of solar power to charge EVs. The 

use of solar power is provided through roof-top solar panels in residential and commercial 

buildings and solar charging stations. In the scenario 3, the life cycle emission and energy 

values for solar charging station are derived from Engholm et. al.(Engholm et al., 2013). They 

calculated the LCA impacts of a solar charging station, which consists of a steel frame 

standing on a concrete ground. The station has two solar PV modules; each has 7 m2 surface 

area and mounted on the top of the steel frame. Additionally, the system contains several 
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electronic components such as an inverter, cables, and transformers. The GHGs emitted from 

construction of this system including the emissions from manufacturing the PVs, are 

calculated as 72 gCO2-eq per 1 kWh of electricity output. The energy consumption to 

generate 1 kWh of electricity is estimated as 0.11 kWh. In this scenario state-based ranking 

for each vehicle type is affected by the driving patterns only, since the power generation 

scenario were assumed to be identical for each state.  

Driving Patterns: Another important source of the variability among the states is the 

driving patterns, which refers to actual daily vehicle km travel patterns in this study. Since 

PHEVs use both of the energy sources, gasoline and electricity, determining the portions of 

total vehicle travels in each mode is a significant parameter in calculating their impacts. The 

percentage of the distance traveled in electric mode is represented as a parameter, known 

as utility factor (UF). The UF depends on the AER of PHEVs. A longer AER capability will 

provide a greater share of the kilometers travelled in electric mode, which means a higher 

UF. A cumulative distribution of actual daily vehicle km travelled was constructed to 

calculate state based UFs. This distribution indicates the percentage of cumulative daily 

vehicle kilometers travelled less than a given distance per day. For instance, 35% of the 

vehicle km travels are less than 18 km in the state of Florida, which means the utility factor 

of the PHEV-AER18 (Prius) is 0.35. .In order to account for regional variability, specific UFs 

for each state are calculated using the online table designer tool developed by NHTS 

(National Household Travel Survey, 2009). It should be noted that the PHEVs are assumed 

to be fully charged once in a day. The data for daily vehicle kilometers travelled are collected 
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for each from National Household Travel Survey database (National Household Travel 

Survey, 2009). The main objective was to find what percentage of daily travel can be 

powered by PHEVs depending on their AER features. Basically, vehicle kilometer traveled 

data are collected for some distance intervals and it is converted into a cumulative table 

which shows the total vehicle kilometer travelled less than a given distance. It should be 

noted that the given values are based on average daily values. Therefore, any vehicle trip that 

is more than 3090 km is omitted considering that a vehicle can travel maximum 3090 km 

(1920 miles) with 129 km (80 mph) in 24 hours (MacPherson et al., 2012) 

After calculating state-based UFs, the GHG emission of PHEVs can be calculated as 

follows; 

 

GHG/km= UF*[(kWh/km) * (GHGpower generation/kWh)] + (1-UF) * 

[(Lgasoline/km) * (GHG gasoline production/ Lgasoline)]                                                        (3.3) 

 

Basically, Eq. 3.3 has two main parts, where the emissions from electricity 

consumption are calculated in the first part. The second part is used to calculate the 

emissions from gasoline consumption. Similar methodology is applied to calculate energy 

consumption of PHEVs. 
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3.4. Results 

The results for the U.S. average case (at national scale) are given as a base scenario to 

compare its results with Scenarios 1, 2, and 3. Also, contribution of each life cycle phase is 

calculated. According to the results at national scale, the PHEV18 reduces the GHG emissions 

by 29% compared to ICVs, while the GHG emissions for EV, HEV, and PHEV18 are relatively 

similar. Emissions from vehicle and material manufacturing range from 11% to 23% of the 

total life cycle emissions and these emissions are highest for the EVs. GHG emissions from 

battery manufacturing are found to be insignificant compared to total life cycle emissions 

and it is the highest for production of li-ion batteries for EV and PHEV62. Operation phase is 

the most dominant phase for both GHG emissions and energy consumption. Figure 4 shows 

the total life cycle impacts and contribution of each phase per vehicle kilometer travel. 
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Figure 4. Life cycle impacts of each vehicle type; a) GHG emissions, b) Energy consumption 

 

Form energy consumption perspective, the best option is found to be HEVs. EVs and 

longer range PHEVs are found to be less energy efficient. This might be stemming from the 
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decrease the efficiency of the energy utilization. Based on 2009 electricity generation mix in 

the U.S., 2.37 kWh (Feedstock+ fuel) of energy is required per kWh of electricity 

generation(Burnham et al., 2006; EPA, 2009). The contribution of each phase to the total life 

cycle impacts are similar to that of GHG emissions. Since the energy consumption and GHG 

emission impacts highly depend on electricity generation mix, the results for each state will 

vary significantly. 

3.4.1. State-based Average Electricity Generation Mix Scenario  

When state specific average electricity generation mix and driving patterns are taken 

into account, the results for each state are quite different compared to U.S. average results at 

national scale. Figure 5 shows the best vehicle option for each state in the terms of GHG 

emission and energy consumption. According to the results of the scenario 1, EVs are the 

least carbon-intensive vehicle option in 24 states which account for the 56% of the number 

of registered light duty vehicles (LDVs) in the U.S. In other words, 56% of the LDVs in U.S. 

have a significant GHG reduction potential if they are replaced with EVs. On the other hand, 

10 states (23% of the total number of LDVs) favor the PHEV18 option based on spatial 

characteristics from GHG emission perspective. HEVs are better options for 17 states (21% 

of the total number of LDVs). PHEV62 and ICV were not ranked as a best option in any state.    
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Figure 5. State level vehicle preference results according to scenario 1; a) GHG emissions, 
b) Energy consumption 

a) 

b) 
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Energy consumption results are relatively homogenies compared to GHG emission 

results. HEVs are ranked as the best option in the majority of the states, 45 states (91% of 

the total number of LDVs). On the other hand, EVs found to be better option in only 5 states. 

The rest of the states favor PHEV18 as a best option in the terms of energy consumption. 

3.4.2. State-based Marginal Electricity Generation Mix Scenario 

According to marginal electricity generation mix scenario, HEV is the least GHG 

intensive option in most of the states. The state-level preference based on GHG emissions is 

presented in Figure 6. Although scenario 2 is calculated based on NERC regions which are 

not bounded with the state borders, the states that are in multiple regions indicate the same 

result. 

 

Figure 6. State level vehicle preference in the terms of GHG emissions for scenario 2. 
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According to Scenario 2, only two vehicle types are selected based on state-specific 

life cycle GHG emissions. There is significant change in GHG emission results of EVs 

compared to previous scenario. EVs are not ranked as the best vehicle option in any states. 

HEVs are ranked as the best option in 33 states (58% of the total number of LDVs), while 

PHEV18 are selected for 18 states (42% of the total number of LDVs). On the other hand, 

PHEV18 and ICVs are not favored by any of the states. 

HEVs are found to be best option based on energy consumption performance of 

vehicle types in every state. Therefore, the state-specific results were not shown in a 

separate map. The second best option is PHEV18 for all of the states as well. The rest of the 

ranking order (3rd, 4th, and 5th) might be different based on state specific marginal 

electricity mix and driving pattern characteristics. 

3.4.3. Solar Energy Scenario 

As scenario 3 proposes widespread use of solar power to charge EVs, the GHG 

intensity and energy required to produce electricity is significantly reduced. According to 

scenario 3, EVs are ranked as the best vehicle technology option in every state for both GHG 

emissions and energy consumption impacts. Therefore, state-specific results are not 

presented in separate maps. Utilization of solar power provided very low carbon electricity 

source (72 gCO2-eq / kWh) and quite low energy requirements (0.11 kWh/kWh) to generate 

electricity. These values are assumed to be identical for every state and hence, only spatial 

variation stems from the different driving patterns of the states. Additionally, the 

transmission and distribution losses are also saved compared to the previous scenarios. The 
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total life cycle GHG emissions and energy consumption per kilometer an EV travels is 

calculated as approximately 72 gCO2-eq. and 1.59 MJ, respectively. According to scenario 3, 

the GHG emission reduction that can be achieved by utilization of EVs is 73%, while the 

energy consumption reduction is calculated as 55% compared to ICVs. These are the highest 

reduction rates compared to other scenarios. 

3.4.4. Sensitivity of Important Parameters 

The behavior of LCA impact trends of the vehicle options are also analyzed to account 

for variability in the GHG energy emission factors and energy consumption rates. LCA 

impacts of vehicle options are presented as a function of GHG and energy intensity in Figure 

7. The UF values for PHEV18 and PHEV62 are assumed as U.S. average values. As can be seen 

from the figure, the PHEV62 has more GHG emission rate than ICVs when the GHG intensity 

of the electricity supply is above 950 gCO2-eqv/kWh. Any GHG emission factor below 600 

gCO2-eqv/kWh makes EVs the least carbon intensive option. From energy consumption 

perspective, EVs are better option until the point where the required energy to produce 1 

kWh of electricity is 1.25 kWh. Any power generation scenario above 1.75 kWh/kWh of 

energy consumption rate makes the HEVs the most energy efficient option, while the 

PHEV18 are the least energy intensive option in the range between 1.25 and 175 kWh/kWh.  
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Figure 7. LCA impacts as a function of GHG and energy intensity, a) GHG emissions, b) 
Energy consumption per kilometer vehicle travels. 
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Similarly, GHG emissions and energy consumption of the vehicle options are also 

analyzed as a function of various UFs ranging from 0 to 1 and the results are presented in 

Figure 8. 

 

 

Figure 8. LCA impacts as a function of UF varying from 0 to 1, a) GHG emissions, b) Energy 
consumption per kilometer vehicle travels. 
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The sensitivity of GHG emissions and energy consumption are investigated under 

varying UFs. The GHG emission intensity and energy consumption factors are the U.S. 

average values and kept constant for the purpose of the sensitivity analysis. The variation 

starts from UF=0, meaning that PHEVs are in full gasoline mode, to UF=1.00, meaning that 

PHEVs are operating in full electric mode. As can be seen from Figure 7, life cycle GHG 

emissions of the PHEV62 is more sensitive under varying UFs due to its less efficient gasoline mode then the PHEV18’s. The LCA carbon footprint of the EV and HEV are almost the same 
and follow a constant trend. The UFs affect only LCA impacts of PHEVs. Energy consumption 

per vehicle kilometer travel for PHEVs has a different trend and PHEV62 consumes more 

energy than PHEV18 in all of the cases. It can be also concluded that the shift from gasoline 

consumption to electricity consumption increases the energy intensity of the vehicle 

operation. In other words, the efficiency of gasoline utilization is more efficient than the 

utilization and generation of the electric power. This might be because of the significant 

losses in the power generation through non-renewable energy sources and transmission & 

distribution losses in the power generation sector. In addition to those energy losses, the 

electric motor will have additional energy losses depending on its efficiency. 
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CHAPTER 4: A MISSING GAP IN THE ENVIRONMENTAL ASSESSMENT OF 

ALTERNATIVE VEHICLE TECHNOLOGIES: STATE-BASED WATER 

FOOTPRINT ANALYSIS 

Although electrical vehicles are receiving support from the United States federal government 

to achieve energy-efficient and carbon-neutral transportation, increasing levels of water 

demand become a particularly serious challenge for many states, especially since water is 

essential for producing petroleum and electricity as a transportation fuel. Unfortunately, no 

national research efforts as of now have been directed specifically toward understanding the 

fundamental relationship between the adoption of electric vehicles (EVs) and water demand. 

In this regard, this research aims to fill this knowledge gap and provide a practical decision-

making platform with which to analyze the potential water impacts resulting from the 

increased usage of alternative vehicle technologies in the United States. In this chapter, 5 

vehicle types - Internal Combustion Vehicles (ICVs), Hybrid Electric Vehicles (HEVs), Plug-in 

Hybrid Electric Vehicles (PHEV20, PHEV40) and Battery Electric Vehicles (BEVs) - are 

analyzed across 50 U.S. states with 3 different electric power generation mix profiles: the 

state-based average electricity generation mix, the state-based marginal electricity 

generation mix, and a hypothetical electricity generation mix consisting entirely of solar-

powered charging stations. With respect to the water footprint of each vehicle type, water 

consumption and water withdrawal are separately analyzed using what is known as a Well-

to-Tank (WWT) analysis. State-specific variations related to electricity production and 

driving patterns are incorporated into the analysis in order to quantify the water footprints 

of electric vehicle usage on the national scale and on each specific regional scale. 
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4.1. Background 

The United States (U.S.) has one of the largest transportation networks in the world 

with its immense fuel consumption and travel characteristics (Egilmez and Tatari 2012). While the U.S. transportation sector’s energy consumption was observed to be 27.8% of the 
total energy consumption in the U.S., the petroleum-based share of the transportation energy 

consumption mix was 92.8% (Transportation Energy Data Book 2012). In the U.S. passenger 

transportation system, approximately 90% of the total vehicle miles travelled (VMT) was 

attributed to light-duty vehicles (National Transportation Statistics 2013). Combustion 

emissions from U.S. automobiles and light-duty trucks accounted for approximately 60% of 

greenhouse gas (GHG) emissions from the U.S. transportation sector, or 17% of total U.S. 

carbon emissions (Samaras and Meisterling 2008). Due to the aforementioned statistics, 

energy consumption and global climate change have become topics of considerable interest 

for sustainable vehicle transportation, and there is now a growing trend in use of electric 

cars in U.S. highways (Onat et al. 2014a; Onat et al. 2015a). However, vehicle water footprints 

are also becoming increasingly important due to the fundamental connection between water 

consumption/withdrawal and electricity production, as well as the adoption of energy- and 

carbon-efficient electric vehicle technologies, which have a direct impact on regional water 

demand levels. 

Furthermore, the expected increase in the U.S. population will significantly boost the 

demand for light-duty vehicles, in turn simultaneously increasing domestic energy and water 

consumption levels. According to the 2001 National Energy Policy, the growing U.S. 
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population and economy will require 393,000 MW of new energy generating capacity by the 

year 2020, which in and of itself will put additional pressure on domestic water resources. 

Electricity production from fossil fuels and nuclear energy requires a total of 190 billion 

gallons of water per day, accounting for 39% of all freshwater withdrawals in the U.S., 71% 

of which goes to fossil-fuel electricity generation alone. Additionally, coal plants account for 

nearly 52% of the total U.S. electricity generation mix, requiring 25 gallons of water 

withdrawal per kWh of electricity generated from these coal plants (Sandia National 

Laboratories 2015). Overall, coal, nuclear and biomass energy are responsible for the largest 

water withdrawal levels in the U.S. (Fthenakis and Kim 2010). Among these energy sources, 

coal-based power generation is responsible for approximately 50% of the total water 

withdrawal, followed by irrigation, municipal water usage, and other categories.  

Although the number of electric vehicles on U.S. highways has demonstrated an 

increasing trend, many concerns regarding the regional water footprint of electric vehicles 

must still be discussed. To better assess the energy-use-related water footprints of emerging 

electric vehicle technologies, this research aims to quantify the water consumption and 

withdrawal levels of ICVs, PHEVs, and BEVs in the United States. To that end, the scopes of 

the current research primarily focused on the water footprints of the vehicle operation phase 

and excluded other vehicle life-cycle phases, including the vehicle part manufacturing 

phase(s), the vehicle maintenance and repair phases, and the vehicle end-of-life phase. This 

assumption is made based on past studies showing that the vehicle operation phase is 

responsible for the highest energy consumption, whereas the contributions of other life-
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cycle phases were found to be considerably lower compared to the operation phase (Onat et 

al. 2014a; Onat et al. 2015a). 

4.2. Literature review 

Although past studies assessed the environmental performance of BEVs, no study has 

yet been performed covering spatial variations for water footprint analysis. The importance 

of the electricity generation mix and driving patterns has been stressed in previous studies 

(Huo et al. 2010), but no national research effort in the U.S. has yet been directed specifically 

at understanding the intimate relationship between the adoption of EVs and water usage. 

Similarly, no currently available study compares the total water footprints of ICEV, PHEV, 

and BEV technologies to investigate the impacts of regional driving patterns and electricity 

generation mix scenarios (marginal and average) on the water consumption and withdrawal 

of alternative vehicle technologies. The most important goal of this research is to address 

this vital knowledge gap, and so, in this research, ICEVs, PHEVs, and BEVs will be 

comparatively evaluated based on their water footprints for 50 U.S. states, with all vehicle 

types evaluated based on their water consumption and withdrawal levels in each state. To 

account for variability in the electricity generation profiles across the 50 states, three 

different electricity generation scenarios are considered. For clarity, a general overview of 

the steps used in this research is illustrated in Fig. 9. 
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Three policy scenarios were applied in Chapter 3, and are summarized as follows: 

 State-Based Average Electricity Generation Mix: Based on state level 

electricity power generation profiles in 2009 and derived data from the most recent 

eGRID database (EPA 2009). 

 State-Based Marginal Electricity Generation Mix: Based on estimated 

state-based marginal electricity mix profiles in 2020 and derived data from the National Oak Ridge Laboratory’s estimations (Hadley and Tsvetkova 2008), as well 

as applicable literature (Thomas 2012). 

 100% Solar Powered Charging Stations: An extreme scenario in which 

electric vehicles are charged only through solar charging stations. 

According to definitions cited by King and Weber (2008) and Blackhurst et al. (2010), 

the consumption and withdrawal of water are differentiated in this work and defined as 

follows: 

 Water Consumption is the amount of water obtained from a surface 

water or groundwater source that is not directly returned to its original source. For 

example, water evaporation from cooling at a thermoelectric steam power plant is an 

example of water consumption. 

 Water Withdrawal is the amount of water obtained from a surface 

water or groundwater source that is used in a process and then sent back to system. 

For example, the abstracted water used for cooling at a coal power plant and then 
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returned to the catchment that it was originally withdrawn from is an example of 

water withdrawal. 

 

Figure 9 Overview of Chapter 4 

4.3. Methodology 

A Well-to-Wheel (WTW) analysis is a specific type of life cycle assessment used for 

transportation fuels and vehicles. There are two main stages in a WTW analysis, which consist of “well-to-tank (WTT)” and “tank-to-wheel (TTW)” analyses. The former (WTT) 
covers upstream impacts, including raw material extraction, fuel production, and fuel 

delivery, while the latter (TTW) is used for direct impacts such as tailpipe emissions during 

vehicle operation (Elgowainy et al. 2009). Since there is no direct water consumption in the 

vehicle operation phase except for car washing, the water footprint impacts of a car typically 

stem from the WTT part of the vehicle operation phase. Fig. 10 depicts the system boundary 

of this analysis. In this study, five types of vehicles (ICEVs, HEVs, PHEV20, PHEV40, and 
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BEVs) are analyzed, and their respective water withdrawal and consumption impacts are 

quantified across 50 states in the U.S. with three different electric power generation mix 

profiles in each state. Among the alternative vehicle technologies mentioned above, PHEVs 

have both an electric motor and an internal combustion engine, the former of which is 

powered via high capacity power-grid-based battery charging, allowing PHEVs to reduce 

their petroleum consumption to an extent by using electric power. The portion of the 

distance that a PHEV can travel by electricity alone depends on several important factors, 

including the all-electric range (AER) of the vehicle, the driving distance, and driving 

conditions (Raykin et al. 2012). AER is defined as the total miles that can be driven in electric mode (“engine-off”) after the battery is fully charged, before the engine turns on for the first 
time (Markel 2006). The useful lifetime for all vehicles is assumed to be 150,000 miles. In 

addition to state-specific driving patterns obtained from the National Travel Household 

Survey (National Household Travel Survey 2009), three different electricity generation 

scenarios are considered to account for variability in the available power generation 

source(s). These electricity generation scenarios are based on the average and marginal 

electricity generation mixes, as well as a hypothetical scenario consisting of 100% solar 

electricity generation. For the average electricity generation mix, the average mixes 

provided by the eGRID 2009 database were utilized to calculate water withdrawal and 

consumption factors per kWh of electricity generation for each state (EPA 2009), and water 

withdrawal and consumption data for each fuel source is obtained from the National 

Renewable Energy Laboratory (NREL 2011). These factors are quantified in a similar 

manner for the marginal electricity generation scenario for 2020, using marginal electricity 
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mix data from the National Oak Ridge Laboratory’s estimations and literature (Hadley and 

Tsvetkova 2008; Thomas 2012). The third scenario proposes widespread use of solar 

charging stations, and assumes the use of 100% solar energy to power EVs and PHEVs. The 

life cycle inventory for a typical solar charging station is derived from Engholm et al. (2013). 

The functional unit of this analysis is 1 mile of vehicle travel.  

  

Figure 10. System boundary of this analysis (Note: Regions with dashed lines are excluded 
from the analysis) 
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4.3.1. Well-to-Tank (“WTT”) Calculations 

A WTT analysis is conducted for gasoline production and supply as well as for 

electricity generation and supply. Gasoline is consumed by ICVs, HEVs, and PHEVs, and the 

impacts associated with each vehicle type are quantified by determining how much gasoline 

they consume per vehicle mile traveled (VMT). The fuel economy (FE) of ICVs and HEVs is 

assumed to be 30 and 50 miles per gallon (mpg), respectively, whereas the FE of PHEVs is 

assumed to be 50 mpg in gasoline mode and 0.29 kWh/mile in electric mode. Finally, the FE 

of BEVs is assumed to be 0.30 kWh/mile, which is similar to the FE of the Nissan Leaf. 

Although these vehicles as modeled in this research are generic, the fuel economy values 

described above are relevant to their counterparts currently available in the market (Nissan 

2014; Toyota 2014a,b,c). The gasoline and electricity consumption rates (FE values) of these 

vehicles are presented in Table 17. The electricity required to travel a mile includes 

regenerative braking benefits and efficiency losses in the battery, charger, and electric 

motor. Additionally, the transmission and distribution losses for each region that covers the 

corresponding states are taken into account when calculating WTT impacts.  

Table 17. Gasoline and electricity consumption (fuel economy) of the studied vehicles 
(Onat et al. 2015a) 

Vehicle Type Gasoline Electricity 

(mpg) (kWh per mile) 

ICV 30   N/A(*) 
HEV 50 N/A 

PHEV20 50 0.29 
PHEV40 50 0.29 

BEV N/A 0.3 
N/A(*): Not available 
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After calculating the amount of gasoline required to travel 1 mile for each vehicle, the 

resultant amount is multiplied by applicable stochastic water consumption and withdrawal 

factors for petroleum production and supply, as presented in Table 18. Since HEVs and ICEVs 

only consume petroleum, their impacts are calculated by multiplying the amount of 

petroleum consumed to travel 1 mile by the associated water consumption and withdrawal 

factors, which indicate the amount of water consumed or withdrawn to produce and supply 

1 gallon of gasoline. Eq. 4.1 below shows how the water consumption and withdrawal per 

mile are calculated for HEVs or ICEVs. 

 

(WTT impacts) ICV or HEV= (1/FE) ICV or HEV * (impact factor petroleum supply)        (4.1)     

                                                      

On the other hand, since PHEVs use gasoline and electricity, their total impacts are 

the accumulation of impacts from both of these fuel supply sources. To estimate the portion 

of the VMT powered by electricity, the driving patterns of each state must be considered. In 

this study, the driving patterns in each state are considered for two AER options for PHEVs 

(PHEV20 and PHEV40) to calculate the regional impacts associated with PHEVs compared 

to internal combustion vehicles (ICVs). These driving patterns determine what portion of the 

VMT can be powered by electricity for various PHEV AER ranges. For instance, vehicles 

traveling less than 30 miles comprise approximately 63% of the daily VMT in the U.S. (The 

U.S. Department of Transportation 2009), but this percentage can vary from state to state, 

and hence the associated environmental impacts of PHEVs may vary significantly from one 



 

75 
 

state to another. The driving patterns of each state determine what fraction of the total VMT 

is driven in gasoline mode and in electric mode; the fraction of the VMT driven in electric 

mode is defined with an indicator called the Utility Factor (UF). To calculate state-specific 

UFs, the daily cumulative VMT distribution for each state is constructed, thereby presenting 

the total portion of the VMT less than a given distance. The main objective is to estimate what 

percentage of daily travel can be powered by PHEVs in electric mode when their AER 

features are considered; a longer AER provides a greater share of the VMT in electric mode, 

which is represented by a higher UF. It is assumed that the PHEVs are fully charged once 

daily. VMT data for the U.S. states considered in this analysis (including Hawaii and the 

District of Columbia) are collected from 2009 National Household Travel Survey (NHTS) data 

using their online table design tool (National Household Travel Survey 2009).  

 

Table 18. Water withdrawal and consumption factors of different fuel sources (gal/kWh) 

 Withdrawal Consumption 
Fuel Type Min Max Min Max 

PV 0.026 0.033 0.026 0.033 
Wind 0 0.001 0 0.001 
Hydro N/A(*) N/A(*) 1.425 18 
Oil 0.3 0.6 0.3 0.48 
Nuclear 1.1 2.6 0.672 0.845 
Natural gas 0.253 0.283 0.198 0.3 
Coal 1.005 1.2 0.687 1.1 
Bio power 0.878 1.46 0.553 0.965 
Geothermal 1.796 1.796 1.796 1.796 
Petroleum** 2.6 7.15 2  5.5 

N/A(*): Not available 
   **The unit for petroleum is gal/gal indicating that gallons of water consumption/withdrawal to produce a gallon of 
petroleum 
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Electricity supply is another important component of the WTT analysis of this study, 

and is the main source of the observed regional variations owing to different electricity 

generation mixes from state to state. Each energy source utilized to generate electricity has 

different water withdrawal and consumption rates per kWh, as shown in Table 19 for each 

energy source type. It should be noted that the applicable water withdrawal factors can vary 

significantly based on the cooling method used in a particular power plant (Meldrum et al. 

2013; World Energy Outlook 2012), so in this study, we used the minimum, maximum, and 

average values for each fuel type. Fig. 11 shows the percentage distribution of the electricity 

generation mix of each state based on Scenario 1 (S1), which, as explained previously, 

includes the average electricity generation profiles. It is important to note that the electricity 

consumption and generation mixes can vary significantly depending on each state’s 
electricity imports and exports. Export and import data for 2009 has not yet been released, 

and even though these values are available for previous years, the exporter and importer 

states involved and the degree of interstate trade are not known, making the estimation of 

consumption mixes complicated and uncertain (Marriott and Matthews 2005).  
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Figure 11. Percentage Distribution of Average Electricity Generation Mix in U.S. 
(abbreviations: Geotherm: Geothermal; Hydro: Hydropower) 

Table 19. State-Specific Average Electricity Generation Mix (Scenario 1) 

States Coal Oil Gas Nuclear Hydro Biomass Wind Solar Geother 

AK 0.09 0.17 0.53 0.00 0.20 0.00 0.00 0.00 0.00 
AL 0.39 0.00 0.22 0.28 0.09 0.02 0.00 0.00 0.00 
AR 0.44 0.00 0.20 0.26 0.07 0.03 0.00 0.00 0.00 
AZ 0.35 0.00 0.31 0.27 0.06 0.00 0.00 0.00 0.00 
CA 0.01 0.01 0.55 0.16 0.14 0.03 0.03 0.00 0.06 
CO 0.63 0.00 0.28 0.00 0.04 0.00 0.06 0.00 0.00 
CT 0.08 0.01 0.31 0.53 0.02 0.02 0.00 0.00 0.00 
DC 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DE 0.59 0.05 0.28 0.00 0.00 0.03 0.00 0.00 0.00 
FL 0.25 0.04 0.54 0.13 0.00 0.02 0.00 0.00 0.00 
GA 0.54 0.01 0.16 0.25 0.03 0.02 0.00 0.00 0.00 
HI 0.14 0.75 0.00 0.00 0.01 0.02 0.02 0.00 0.02 
IA 0.72 0.00 0.02 0.09 0.02 0.00 0.14 0.00 0.00 
ID 0.01 0.00 0.13 0.00 0.80 0.04 0.02 0.00 0.01 
IL 0.46 0.00 0.02 0.49 0.00 0.00 0.01 0.00 0.00 
IN 0.93 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 
KS 0.69 0.00 0.06 0.19 0.00 0.00 0.06 0.00 0.00 
KY 0.93 0.02 0.01 0.00 0.04 0.00 0.00 0.00 0.00 
LA 0.25 0.02 0.48 0.18 0.01 0.03 0.00 0.00 0.00 
MA 0.23 0.02 0.54 0.14 0.02 0.03 0.00 0.00 0.00 
MD 0.55 0.01 0.04 0.33 0.04 0.01 0.00 0.00 0.00 
ME 0.00 0.03 0.45 0.00 0.26 0.22 0.02 0.00 0.00 
MI 0.66 0.00 0.08 0.22 0.01 0.02 0.00 0.00 0.00 
MN 0.56 0.00 0.05 0.24 0.02 0.03 0.09 0.00 0.00 
MO 0.81 0.00 0.04 0.12 0.03 0.00 0.01 0.00 0.00 
MS 0.27 0.00 0.48 0.23 0.00 0.03 0.00 0.00 0.00 
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States Coal Oil Gas Nuclear Hydro Biomass Wind Solar Geother 
MT 0.58 0.02 0.00 0.00 0.36 0.00 0.03 0.00 0.00 
NC 0.55 0.00 0.04 0.35 0.04 0.02 0.00 0.00 0.00 
ND 0.87 0.00 0.00 0.00 0.04 0.00 0.09 0.00 0.00 
NE 0.68 0.00 0.01 0.27 0.03 0.00 0.01 0.00 0.00 
NH 0.14 0.01 0.26 0.44 0.08 0.06 0.00 0.00 0.00 
NJ 0.08 0.01 0.33 0.55 0.00 0.01 0.00 0.00 0.00 
NM 0.73 0.00 0.22 0.00 0.01 0.00 0.04 0.00 0.00 
NV 0.20 0.00 0.69 0.00 0.07 0.00 0.00 0.00 0.04 
NY 0.10 0.02 0.31 0.33 0.20 0.02 0.02 0.00 0.00 
OH 0.84 0.01 0.03 0.11 0.00 0.00 0.00 0.00 0.00 
OK 0.45 0.00 0.46 0.00 0.05 0.00 0.04 0.00 0.00 
OR 0.06 0.00 0.28 0.00 0.58 0.01 0.06 0.00 0.00 
PA 0.48 0.00 0.13 0.35 0.01 0.01 0.00 0.00 0.00 
RI 0.00 0.00 0.98 0.00 0.00 0.02 0.00 0.00 0.00 
SC 0.34 0.01 0.10 0.52 0.01 0.02 0.00 0.00 0.00 
SD 0.40 0.00 0.01 0.00 0.47 0.00 0.11 0.00 0.00 
TN 0.52 0.00 0.01 0.34 0.12 0.01 0.00 0.00 0.00 
TX 0.35 0.01 0.48 0.10 0.00 0.00 0.05 0.00 0.00 
UT 0.82 0.00 0.15 0.00 0.02 0.00 0.00 0.00 0.01 
VA 0.37 0.02 0.17 0.40 0.00 0.03 0.00 0.00 0.00 
VT 0.00 0.00 0.00 0.74 0.20 0.06 0.00 0.00 0.00 
WA 0.07 0.00 0.11 0.06 0.70 0.01 0.03 0.00 0.00 
WI 0.62 0.01 0.09 0.21 0.02 0.02 0.02 0.00 0.00 
WV 0.96 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 
WY 0.91 0.00 0.01 0.00 0.02 0.00 0.05 0.00 0.00 

 

On the other hand, power plants generally rely on fossil fuels due to the need to 

instantaneously meet fluctuating electricity demands. A steady power supply to meet base 

electricity loads is usually provided through nuclear power and hydroelectric power plants, 

while natural gas or coal power plants usually provide for some portion of the steady 

demand and mostly for the peak demand above the base load. Hence, the additional unsteady 

demand from the use of BEVs and PHEVs is more likely to be provided by nonrenewable 

energy sources. Therefore, the regional marginal mixes estimated by the Oak Ridge National 

Laboratory are also taken into consideration as Scenario 2 (S2). As solar power is currently 

one of the most promising renewable energy technologies in terms of energy efficiency and 

environmental impacts, a fully solar electricity generation mix is also evaluated to highlight 
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its benefits in Scenario 3 (S3). Table 20 shows the marginal electricity generation mix of each 

state. 

After defining the electricity generation mixes and impact factors by energy source, 

state-specific impact factors can be calculated by using the values presented in Tables 18, 19, 

and 20; these calculated factors for this study are presented in Table 21. As the impacts per 

kWh of electricity generation in each state are determined, the WTT impacts from each 

vehicle type can be calculated by multiplying the electricity required from the grid to travel 

1 mile (including transportation and distribution losses) by the calculated state-specific 

water consumption and withdrawal factors, depending on the state in question and the 

scenario being considered.  

Since PHEVs can operate in either electric mode or gasoline mode, Eq. 4.1 is not 

sufficient to calculate its impacts. Using the data presented in Tables 18 through 21 and the 

UFs derived from 2009 NHTS data, the per mile water consumption and withdrawal of 

PHEVs can be calculated as follows. 

(WTT impacts) PHEV = UF*[(1/FE on electric mode) * (impact factor electricity supply)                                                               

+ (1-UF) * [(1/FEon gasoline mode)*(Impact factor gasoline supply)]       (4.2)                            

Eq. 4.2 has two parts, the first part representing electric mode impacts and the second 

part representing gasoline mode impacts. Since BEVs only use electric power, the per mile 

water consumption and withdrawal of BEVs can be calculated by using only the first part of 

Eq. 4.2 (UF = 1), thereby eliminating the gasoline related impacts in Eq. 4.2.  



 

80 
 

Table 20. State-specific Marginal Electricity Generation Mix (Scenario 2) 

State  Coal Oil Gas Nuclear Hydro Bio Wind Solar Geother 

AK N/A 0.09 0.16 0.75 0.00 0.00 0.00 0.00 0.00 0.00 
AL SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
AR SPP 0.05 0.02 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
AZ WECC-RMP/ANM 0.07 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
CA WECC-CA 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00 
CO WECC-RMP/ANM 0.07 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
CT NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
DC MAAC 0.25 0.11 0.64 0.00 0.00 0.00 0.00 0.00 0.00 
DE MAAC 0.25 0.11 0.64 0.00 0.00 0.00 0.00 0.00 0.00 
FL FRCC 0.00 0.17 0.82 0.01 0.00 0.00 0.00 0.01 0.00 
GA SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
HI N/A 0.02 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
IA MAIN 0.62 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 

MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
ID WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
IL MAIN 0.62 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
IN ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
KS SPP 0.05 0.02 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
KY ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
LA SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
MA NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
MD MAAC 0.25 0.11 0.64 0.00 0.00 0.00 0.00 0.00 0.00 
ME NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
MI ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
MN MAIN 0.62 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
 MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
MO SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
 MAIN 0.62 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
MS SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
MT WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
 MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
NC SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
ND MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
NE MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
NH NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
NJ MAAC 0.25 0.11 0.64 0.00 0.00 0.00 0.00 0.00 0.00 
NM WECC-RMP/ANM 0.07 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
NV WECC-RMP/ANM 0.07 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
 WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
NY NPCC-NY 0.04 0.14 0.82 0.00 0.00 0.00 0.00 0.00 0.00 
OH ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
OK SPP 0.05 0.02 0.93 0.00 0.00 0.00 0.00 0.00 0.00 
OR WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
PA MAAC 0.25 0.11 0.64 0.00 0.00 0.00 0.00 0.00 0.00 
RI NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
SC SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
SD MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
 WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
TN SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
TX ERCOT 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
UT WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
VA SERC 0.33 0.00 0.65 0.00 0.00 0.00 0.00 0.02 0.00 
 ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
VT NPCC-NE 0.16 0.23 0.61 0.00 0.00 0.00 0.00 0.00 0.00 
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State  Coal Oil Gas Nuclear Hydro Bio Wind Solar Geother 
WA WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
WI MAPP 0.25 0.02 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
 MAIN 0.62 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
WV ECAR 0.56 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00 
WY WECC-NW 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 21. State-specific water withdrawal and consumption factors for Scenario 1 and 2 
(gal/kWh) 

States 

Scenario 1 Scenario 2 

Withdrawal Consumption Withdrawal Consumption 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

AK 0.282 0.369 0.326 0.504 3.903 2.203 0.326 0.415 0.370 0.257 0.399 0.328 
AL 0.772 1.284 1.028 0.635 2.325 1.480 0.500 0.585 0.542 0.358 0.563 0.460 
AR 0.803 1.307 1.055 0.638 2.134 1.386 0.292 0.337 0.315 0.225 0.345 0.285 
AZ 0.738 1.228 0.983 0.574 1.777 1.175 0.307 0.349 0.328 0.233 0.358 0.295 
CA 0.465 0.738 0.601 0.550 2.922 1.736 0.252 0.282 0.267 0.197 0.299 0.248 
CO 0.700 0.832 0.766 0.536 1.406 0.971 0.307 0.349 0.328 0.233 0.358 0.295 
CT 0.769 1.610 1.190 0.514 0.956 0.735 0.386 0.504 0.445 0.301 0.471 0.386 
DC 0.300 0.600 0.450 0.300 0.480 0.390 0.446 0.546 0.496 0.331 0.519 0.425 
DE 0.702 0.856 0.779 0.491 0.783 0.637 0.446 0.546 0.496 0.331 0.519 0.425 
FL 0.563 0.852 0.707 0.392 0.604 0.498 0.269 0.355 0.312 0.219 0.335 0.277 
GA 0.874 1.368 1.121 0.621 1.367 0.994 0.500 0.585 0.542 0.358 0.563 0.460 
HI 0.413 0.680 0.546 0.376 0.748 0.562 0.315 0.610 0.463 0.308 0.492 0.400 
IA 0.832 1.111 0.972 0.589 1.216 0.903 0.720 0.852 0.786 0.501 0.796 0.649 
ID 0.081 0.107 0.094 1.195 14.427 7.811 0.253 0.283 0.268 0.198 0.300 0.249 
IL 1.017 1.850 1.434 0.658 0.950 0.804 0.720 0.852 0.786 0.501 0.796 0.649 
IN 0.945 1.130 1.037 0.653 1.113 0.883 0.672 0.795 0.734 0.471 0.746 0.608 
KS 0.916 1.335 1.126 0.613 0.942 0.778 0.292 0.337 0.315 0.225 0.345 0.285 
KY 0.945 1.135 1.040 0.700 1.696 1.198 0.672 0.795 0.734 0.471 0.746 0.608 
LA 0.609 0.971 0.790 0.434 0.859 0.646 0.500 0.585 0.542 0.358 0.563 0.460 
MA 0.554 0.847 0.701 0.406 0.881 0.644 0.386 0.504 0.445 0.301 0.471 0.386 
MD 0.943 1.560 1.252 0.681 1.692 1.187 0.446 0.546 0.496 0.331 0.519 0.425 
ME 0.321 0.472 0.397 0.590 5.003 2.797 0.386 0.504 0.445 0.301 0.471 0.386 
MI 0.943 1.413 1.178 0.636 1.049 0.843 0.672 0.795 0.734 0.471 0.746 0.608 
MN 0.872 1.361 1.116 0.599 1.151 0.875 0.720 0.852 0.786 0.501 0.796 0.649 
MO 0.953 1.287 1.120 0.682 1.488 1.085 0.720 0.852 0.786 0.501 0.796 0.649 
MS 0.663 1.085 0.874 0.446 0.655 0.550 0.500 0.585 0.542 0.358 0.563 0.460 
MT 0.597 0.718 0.658 0.917 7.061 3.989 0.253 0.283 0.268 0.198 0.300 0.249 
NC 0.960 1.598 1.279 0.692 1.724 1.208 0.500 0.585 0.542 0.358 0.563 0.460 
ND 0.871 1.041 0.956 0.657 1.731 1.194 0.440 0.517 0.478 0.321 0.502 0.411 
NE 0.983 1.525 1.254 0.692 1.508 1.100 0.440 0.517 0.478 0.321 0.502 0.411 
NH 0.744 1.471 1.107 0.597 2.165 1.381 0.386 0.504 0.445 0.301 0.471 0.386 
NJ 0.791 1.658 1.224 0.505 0.675 0.590 0.446 0.546 0.496 0.331 0.519 0.425 
NM 0.794 0.944 0.869 0.558 0.997 0.778 0.307 0.349 0.328 0.233 0.358 0.295 
NV 0.453 0.512 0.483 0.444 1.679 1.062 0.307 0.349 0.328 0.233 0.358 0.295 
NY 0.555 1.088 0.822 0.653 4.170 2.411 0.290 0.363 0.326 0.231 0.357 0.294 
OH 0.978 1.315 1.147 0.667 1.103 0.885 0.672 0.795 0.734 0.471 0.746 0.608 
OK 0.576 0.680 0.628 0.470 1.465 0.967 0.292 0.337 0.315 0.225 0.345 0.285 
OR 0.141 0.169 0.155 0.933 10.650 5.791 0.253 0.283 0.268 0.198 0.300 0.249 
PA 0.914 1.548 1.231 0.613 1.038 0.826 0.446 0.546 0.496 0.331 0.519 0.425 
RI 0.265 0.306 0.285 0.206 0.324 0.265 0.386 0.504 0.445 0.301 0.471 0.386 
SC 0.961 1.824 1.392 0.636 1.111 0.874 0.500 0.585 0.542 0.358 0.563 0.460 
SD 0.401 0.480 0.441 0.950 8.967 4.958 0.440 0.517 0.478 0.321 0.502 0.411 
TN 0.909 1.526 1.217 0.765 3.033 1.899 0.500 0.585 0.542 0.358 0.563 0.460 
TX 0.594 0.838 0.716 0.414 0.672 0.543 0.251 0.281 0.266 0.197 0.298 0.248 
UT 0.872 1.037 0.954 0.631 1.303 0.967 0.253 0.283 0.268 0.198 0.300 0.249 
VA 0.889 1.593 1.241 0.582 0.871 0.727 0.500 0.585 0.542 0.358 0.563 0.460 
VT 0.860 1.998 1.429 0.817 4.350 2.584 0.386 0.504 0.445 0.301 0.471 0.386 
WA 0.184 0.306 0.245 1.119 12.756 6.937 0.253 0.283 0.268 0.198 0.300 0.249 
WI 0.903 1.360 1.132 0.636 1.334 0.985 0.440 0.517 0.478 0.321 0.502 0.411 
WV 0.968 1.156 1.062 0.695 1.478 1.087 0.672 0.795 0.734 0.471 0.746 0.608 
WY 0.919 1.097 1.008 0.659 1.384 1.021 0.253 0.283 0.268 0.198 0.300 0.249 
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In Scenario 3, withdrawal and consumption factors are assumed to be identical for 

every state. The maximum, minimum and average values are 0.033, 0.026, and 0.030 gal per 

kWh of electric power generation from solar panels. 

4.4. Results 

As discussed before, this chapter concentrated on three main policy scenarios based 

on three different electric power generation mix profiles: state-based average electricity 

generation mix, state-based marginal electricity generation mix, and 100% solar-powered 

charging stations. Using Eqn. 4.1 and Eqn. 4.2, the total amounts of water consumption and 

withdrawal are calculated in gallons per VMT (gal/mil). According to analysis findings, the 

aforementioned scenarios only demonstrated a change in the state-based water 

consumption and withdrawal amounts for PHEV20, PHEV40 and BEVs, while the applied 

policy scenarios did not change the water consumption or withdrawal of ICVs, HEVs, or EVs 

with solar charging options. In this regard, the results are presented in the following two 

subsections; subsection 4.4.1. presents the water consumption and withdrawal amounts of 

ICVs, HEVs, and HEVs with solar charging, and subsection 4.4.2. presents the maximum and 

minimum water consumption and withdrawal amounts for PHEVs and BEVs given the 

relevant variations in the 50 states (including Hawaii and the District of Columbia) 

considered in this study. 
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4.4.1. Water Withdrawal and Consumption of ICVs, HEVs, and BEVs with Solar Charging 

Infrastructure 

Fig. 12 shows the minimum and maximum water withdrawal and consumption 

amounts for three vehicle types: ICVs, HEVs, and BEVs with solar charging infrastructure. 

Based on the functional unit (1 VMT), the results are presented in gallons of water required 

for 1 mile of vehicle travel. These findings show that BEVs with solar charging have the 

lowest water consumption and withdrawal compared to ICVs and HEVs, while ICVs are found 

to have higher maximum water usage rates than HEVs. The water withdrawal rates of ICVs 

ranged between 0.23 and 0.08 gallons of water per VMT, while the water consumption of ICVs ranged between 0.18 and 0.06 gallons of water per VMT. The HEV’s maximum and 
minimum water withdrawal amounts were found to be 0.14 and 0.05 gallons of water per 

VMT, respectively, whereas its maximum and minimum water consumption values were 

found to be 0.11 and 0.04 gallons of water per VMT, respectively. These results revealed that, 

despite ICVs having the higher worst-case-scenario water consumption and withdrawal 

levels, it is still possible for HEVs to have higher water consumption and withdrawal values 

than ICVs, depending on relevant factors. For instance, the maximum water consumption of 

HEVs (0.11gal/mil) is found to be higher than the minimum water consumption of ICVs (0.06 

gal/mil), while the water consumption and withdrawal rates of BEVs were found to be 

always less than those of ICVs and HEVs for all maximum and minimum values. 
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Figure 12.  Water Withdrawal and Consumption of ICVs, HEVs, and BEVs with 100% solar-
powered charging options (gal/mil) 

4.4.2. Water Withdrawal and Consumption of BEVs and PHEVs 

Figure 13 presents the water withdrawal and consumption rates, in gal/mil, of BEVs 

and PHEVs in different states, and shows large variations among these states. The results 

indicate that, for the average electricity generation mix scenario (Figure 6a), the water 

consumption and withdrawal rates generally range between 0.01 and 0.05 gallons of water 

per VMT. However, for some states, such as Idaho (ID), Oregon (OR), and Washington (WA), 

the corresponding water consumption rates are shown to reach as high as 4.6 gal/mil, 

because these states, as shown in Figure 4, are heavily reliant on hydropower plants, which 

have a high water consumption rate per kWh based on the NREL database (NREL 2011). On 

the other hand, the marginal electricity mix, which represents a more realistic electricity 

generation scenario, showed more clearly different results for the water footprint of BEVs. 
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In this scenario, the electricity requirement of BEVs is mostly supplied by fossil fuel sources, 

mainly coal and natural gas, and the findings (Figure 6b) showed that water withdrawal and 

consumption rates increased for the majority of states when compared to the average 

electricity mix scenario. For the marginal electricity scenario, the lowest water withdrawal 

and consumption values are observed for Wyoming (WY), Washington (WA), Utah (UT), 

Texas (TX), Oregon (OR), New York (NY), Idaho (ID), and California (CA); among these states, 

CA, NY and TX are among the most heavily populated states in the U.S., and water 

consumption values per VMT range between 0.06 gal/mil and 0.09 gal/mil for CA, 0.07 

gal/mil and 0.11 gal/mil for NY, and 0.06 gal/mil and 0.09 gal/mil for TX. On the other hand, 

the largest observed water footprint is that of Illinois (IL), where a significant percentage of 

electricity generation comes from coal burning with approximately 62% of the total 

electricity production attributed to coal power plants under the marginal electricity mix 

scenario (S2). 

Figures 13 and 14 show the water footprints of the PHEV40 and the PHEV20, 

respectively. For both PHEVs, Scenario S3 (100% solar-powered charging stations) tends to 

have the lowest water footprint as opposed to the average and marginal electricity mix 

scenarios. Upon analyzing the water footprints of PHEVs for the average electricity mix 

scenario (S1), it was discovered that the minimum and maximum water withdrawal values 

for the PHEV40 (Figure 7a) are 0.03 gal/mil in Idaho (ID) and 0.51 gal/mil in Vermont (VT), 

respectively. On the other hand, the minimum and maximum water consumption rates of 

PHEV40 were 0.06 gal/mil in Rhode Island (RI) and 3.59 gal/mil in Idaho (ID), respectively.  
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Likewise, based on the analysis results for the PHEV20 (Figure 8a), the minimum and 

maximum water withdrawal values for PHEV20 are 0.04 gal/mil in Oregon (OR) and 0.38 

gal/mil in Illinois (IL), respectively. However, the minimum and maximum water 

consumption levels of the PHEV20 are found to be 0.06 gal/mil in Rhode Island (RI) and 2.39 

gal/mil in Washington (WA), respectively. 

In addition to the average electricity mix scenario, the impacts of the marginal 

electricity mix scenario on the overall water footprint of the PHEVs are also analyzed, and 

are presented in Figures 13b and 14b. The marginal electricity mix is the most realistic 

power supply scenario, and the largest portion of electricity demand of BEVs and PHEVs is 

supplied by fossil fuel sources. In this scenario, if the marginal electricity demand is supplied 

by coal, natural gas, or another highly water-intensive source, and the water efficiency of a 

PHEV or BEV is relatively low, then the all-electric driving mode of any such vehicle would increase said vehicle’s water footprint when compared to an HEV. This is because, in some 

of the scenarios presented in this chapter, it is clearly shown that the total water footprints 

of BEVs under the marginal electricity mix scenario might be higher than the corresponding 

water footprints of HEVs.  

After analyzing the water footprints of PHEVs under the marginal electricity mix 

scenario, the results showed that the minimum and maximum water withdrawal values for 

the PHEV40 (Figure 13b) are 0.03 gal/mil in Idaho (ID) and 0.51 gal/mil in Vermont (VT), 

respectively. On the other hand, the minimum and maximum water consumption values of 

the PHEV40 are 0.06 gal/mil in Wyoming (WY) and 0.24 gal/mil in Illinois (IL), respectively. 
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Likewise, based on analysis results for the PHEV20 under a marginal electricity mix scenario 

(Figure 14b), the minimum and maximum water withdrawal values for the PHEV20 are 0.06 

gal/mil in Wyoming (WY) and 0.21 gal/mil in Illinois, (IL), respectively, while the 

corresponding minimum and maximum water consumption values are 0.05 gal/mil in 

Wyoming (WY) and 0.18 gal/mil in Illinois (IL), respectively. Overall, the results show that 

the PHEV40 has a smaller total water footprint than the PHEV20 for both average and 

marginal electricity mix scenarios, with a higher dependence on less water-intensive fossil-

fuel energy sources. One of the most interesting finding of this study is that water 

consumption or withdrawal of electric vehicles (BEVs, PEHVs) are generally lower than 

those of ICVs and BEVs in average and marginal scenarios due to water-intensive processes 

involved in petroleum production (please see table 18). However, when electricity 

generation mix scenarios, covering temporal and spatial variations, and driving patterns are 

included in the estimations, there is no one right answer fits for all cases. Therefore, such 

comprehensive analysis provides very useful information for policy makers at both state and 

national level.  

 

 

 

 



 

89 
 

    
 

Figure 13. Water withdrawal and consumption amounts for BEVs (gal/mil) (a) average electricity generation mix (b) 
marginal electricity generation mix 

(NOTE: for 100% solar energy charged BEVs, there is no variation per gallon of water used between states) 
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Figure 14. Water withdrawal and consumption amounts for PHEV40s (gal/mil) average electricity state-mix (b) 100% 
solar power (c) marginal electricity state-mix 
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Figure 15 Water withdrawal and consumption amounts for PHEV20s (gal/mil) a) average electricity state-mix, b) 
100% solar power, c) marginal electricity state-mix 
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CHAPTER 5: DYNAMIC SUSTAINABILITY ASSESSMENT FRAMEWORK FOR 

ALTERNATIVE VEHICLE TECHNOLOGIES 

This Chapter aims to present a practical and novel approach for (1) broadening the 

existing Life Cycle Sustainability Assessment (LCSA) framework by considering macro-level 

environmental, economic and social impacts (termed as the triple bottom line), 

simultaneously, (2) deepening the existing LCSA framework by capturing the complex 

dynamic relationships between social, environmental, and economic indicators through 

causal loop modeling, (3) understanding the dynamic complexity of transportation 

sustainability for the triple bottom line impacts of alternative vehicles, and finally (4) 

investigating the impacts of various vehicle-specific scenarios as a novel approach for 

selection of a macro-level functional unit considering all of the complex interactions in the 

environmental, social, and economic aspects. 

To alleviate these research objectives, we presented a novel methodology to quantify 

macro-level social, economic, and environmental impacts of passenger vehicles from an 

integrated system analysis perspective. An integrated dynamic LCSA model is utilized to 

analyze the environmental, economic and social life cycle impact as well as life cycle cost of 

alternative vehicles in the United States. System dynamics modeling is developed to simulate 

the U.S. passenger transportation system and its interactions with economy, the 

environment, and society. Analysis covers manufacturing and operation phase impacts of 

internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs), plug-in hybrid electric 

vehicles (PHEVs), and battery electric vehicles (BEVs). In total, seven macro level indicators 

are selected; global warming potential, particulate matter formation, photochemical oxidant 
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formation, vehicle ownership cost, contribution to gross domestic product, employment 

generation, and human health impacts. Additionally, contribution of vehicle choices to global 

atmospheric temperature rise and public welfare is investigated. 

 Environmental impacts related to U.S. transportation sector are growing steadily, 

and transportation-related environmental pressures are increasingly scrutinized because of 

concerns related to sustainability (M. Delucchi, 2003). In this regard, alternative vehicle 

technologies, as an option to reduce negative environmental impacts of transportation, have 

gained a tremendous interest in literature as well as in industry. Even though there are 

numerous efforts presenting life-cycle based methodologies to investigate the 

environmental viability of alternative transportation options, the socio-economic aspects of 

transportation sustainability are not addressed sufficiently. Furthermore, the efforts aiming 

to estimate the sustainability impacts of the alternative vehicle options are often limited by 

narrowly defined system boundary and lacks of a system perspective. Although product level 

assessment methods are useful, they are not capable of answering macro-level questions and 

providing a more comprehensive framework. Analysis of alternative vehicle systems needs 

a holistic sustainability accounting which requires a set of environmental, economic and 

environmental indicators (T. A. Litman, 2009). The difficulties related to analyzing the social 

and economic impacts of transportation stem from lack of appropriate methods, tools and 

availability of data. The majority of the studies which conducted an environmental life-cycle 

assessment of alternative vehicles mainly focused on the limited environmental impact 

categories including greenhouse gas emissions, energy consumption, and some atmospheric 
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pollutants (Hawkins et al., 2012). However, the socio-economic effects of transportation 

should be considered since the society and economy are among the three main pillars of 

sustainability which are critical for the quality of life (T. Litman & Burwell, 2006). At this 

point, life cycle sustainability assessment models can be critical for assessing the long-term 

sustainability of alternative vehicle technologies not only from environmental perspective 

but also from social and economic standpoints. While there are several approaches analyzing 

the environmental, economic, and social impacts of alternative vehicle technologies, these 

approaches could only provide a snapshot analysis with an isolated view of all pillars of 

sustainability and neglecting the bigger picture as a system. In this study, we aim to develop 

a more deepened and broadened approach from a system perspective in order to provide an 

in depth sustainability impact assessment of alternative vehicle technologies. The proposed 

model is capable of capturing social, economic, and environmental impacts, as well as the 

dynamic interdependencies, causal relationships among these impact categories, 

transportation system, and its components.  

5.1. Life cycle sustainability assessment 

Almost 12 years passed since Walter Kloepffer and his colleagues have introduced 

the life-cycle sustainability assessment (LCSA) framework where three individual life cycle 

assessment methodologies are combined: Environmental Life Cycle Assessment (LCA), 

Social Life Cycle Assessment (SLCA), and LCA-type Life Cycle Costing (LCC) (Kloepffer, 2008; 

Alessandra Zamagni, 2012). This framework was then put into the conceptual formula (LCSA 

= LCA + LCC + SLCA)  by Klöpffer (2007).  
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LCSA represents the state-of-the-art in the life-cycle assessment literature since it 

provides a system-based approach by combining three important pillars of sustainable 

development as environment, economy, and society (Finkbeiner, Schau, Lehmann, & 

Traverso, 2010; Murat Kucukvar, 2013). Consisting of these three pillars, LCSA framework 

seeks to achieve, in a balanced manner, economic viability, social cohesion and 

environmental protection. Today, there is a growing interest among the international 

platform and academia to methodologically advance the LCSA framework and use it to have 

more informed sustainable products, material and technology choices (Guinée et al., 2011; 

Halog & Manik, 2011; Heijungs, Huppes, & Guinée, 2010; Traverso, Finkbeiner, Jørgensen, & 

Schneider, 2012; S Valdivia, Ugaya, Sonnemann, & Hildenbrand, 2011; Sonia Valdivia et al., 

2012). In a critical review article on the past, present and future of the LCA, the period between 2010 and 2020 is named as the “decade of life cycle sustainability assessment”. 
Although LCSA is still a new concept within the LCA literature, it has gained a wide 

acceptance by LCA practitioners over the last decade. Based on the authors review, there 

have been numerous studies found in the literature that have used LCSA in a real case study. 

To name a few, life-cycle sustainability implications of various renewable and non-

renewable electricity scenarios in UK are analyzed based on economic, social and 

environmental indicators (Santoyo-Castelazo & Azapagic, 2014; Stamford & Azapagic, 2012, 

2014). Hu et al. (2013) presented an approach to put the LCSA framework into practice by 

analyzing the environmental, economic, and social life cycle implications of concrete 

recycling processes. In another paper, Traverso et al. (2012a) analyzed the manufacturing 
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processes of photovoltaic modules and environmental, economic and social impacts of 

Italian and German polycrystalline silicon modules are quantified using the LCSA.  

Although several studies emphasized the importance of system-based tools for LCA, 

the applications of LCSA for large systems are still rare. Guinée et al. (2011) and Zamagni et 

al. (2013) emphasized the importance of the LCSA framework and discussed the necessity of 

system-based sustainability accounting methods for future LCSA models. In this regard, 

some studies used input-output based LCA and hybrid LCA for a system-based LCSA analysis. 

For instance, Wood and Hertwich (2012) discussed the comprehensiveness of input-output 

analysis in LCSA, particularly for socio-economic analysis. In  response to the current 

research needs for system-based LCSA methods, Kucukvar et al. (2014b) developed an 

optimization model in which a hybrid LCSA and compromise programming methods are 

used in conjunction for a multi-criteria decision analysis of hot-mix and warm-mix asphalt 

mixtures. Onat et al. (2014c) also used the LCSA framework for a TBL sustainability analysis 

of U.S residential and commercial buildings and demonstrated the usefulness of input–
output modeling to quantify sustainability impacts as integration into the LCSA framework. 

In a recent work, Onat et al. (2014a) built a hybrid LCSA model by using 19 macro level 

sustainability indicators for comparative life cycle sustainability performance of 

conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full 

battery electric vehicles in the United States. However, only a handful of studies addressed 

this issue and expand the system boundary of LCSA to economy-wide analysis. 
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5.2. Broadening and deepening the LCSA framework 

LCSA framework is still under development and there is an ongoing research to 

eliminate the current shortcomings of the proposed LCSA framework and advance it for 

future applications (Sala, Farioli, & Zamagni, 2012a, 2012b). The Coordination Action for 

innovation in Life Cycle Analysis for Sustainability (CALCAS) is a partnership-based project, 

funded by the European Commission under Sixth Framework Programme (Heijungs et al., 

2010; A Zamagni et al., 2009). In general, this CALCAS project has the following two 

objectives to further improve the life-cycle modeling for sustainability assessment 

(Stefanova, Tripepi, Zamagni, & Masoni, 2014; Weidema, Ekvall, & Heijungs, 2009): 

 Deepening LCA by considering the dynamic relationships among the 

LCA parameters and analyzing the complex causality mechanism between the system 

parameters, and  

 Broadening LCA by including environmental, social and economic 

aspects and broaden the system boundary from micro-level analysis to macro-level. 

In current LCA framework, inclusion of social-economic metrics, linkage between 

social, economic and environmental indicators, and the effects of social choices to life-cycle 

impacts are not fully addressed. However, moving from LCA to LCSA absolutely requires a 

system-based approach since it emphasizes the consideration of all three pillars of 

sustainability, simultaneously. In a real world, the analysis environment-economy-society 

nexus makes the dynamic approach essential because of the fact that these metrics are 

fundamentally connected and there is a strong causal relationship between socio-economic 
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and environmental indicators (Fiksel, 2006). Hence, to truly make LCSA an integrated 

approach and eliminate the shortcomings of the existing isolated modeling structure, a 

system dynamic modeling can be a novel and visionary modeling technique in a way that a 

ripple effects and dynamic relationships are embedded in the state-of-the art for the life cycle 

sustainability accounting.  

In a Deliverable 17 Final Report of CALCAS project, several options and models are 

suggested to broaden and deepen the existing LCA framework (CALCAS, 2009). To name a 

few, material flow analysis, substance flow analysis, environmentally extended input-output 

analysis, hybrid life cycle models and general equilibrium models are listed among the most 

useful analytical models for deepened and broadened LCA (Jeswani, Azapagic, Schepelmann, 

& Ritthoff, 2010). However, most of these methods provide a snapshot analysis without 

considering the dynamics of life cycle sustainability impacts over a period of time. Also, using 

these analytical approaches, mostly life cycle inventory of products of systems analyzed in 

isolation and causalities between the environmental, social and economic indicators and 

complex interactions among the three pillars of sustainability are not fully investigated.  

In a recent paper on ‘Concept, Practice and Future Directions for the LCSA’, the 
following weaknesses are highlighted for the current LCSA framework (Alessandra Zamagni 

et al., 2013): 

 The number of applications of LCSA is still limited and needs to be 

improved, 
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 Social aspects of LCSA framework is less developed and there is a 

further research needs on developing SLCA,  

 Mechanistic understanding by looking at the environmental LCA, social 

LCA and life cycle cost assessment results individually,  

 Lack of understanding the mutual dependencies and complex 

interactions among the three pillars of the sustainability. 

Under the light the aforementioned comments that address critical points for future 

LCSA, broadened and deepened LCSA should go beyond the identifying the snapshot of 

sustainability hotspots (Alessandra Zamagni et al., 2013). Hence, LCSA requires the 

consideration of dynamic relationship between LCSA indicators and provide additional 

insights regarding the time-variant effects of products or systems’ sustainability 
implications. At this point, system dynamics model can be a superior modeling approach to 

address the future research needs of advanced LCSA. The importance of system dynamics 

approach in LCSA is also highlighted in a comprehensive methodology paper addressing the 

issue of developing integrative approach for LCSA which attempts to develop more holistic 

sustainability assessment framework and link dynamic interrelations between LCSA 

indicators over a period of time (Halog & Manik, 2011). 

Even though the environmental dimension of sustainability is an important pillar of 

sustainable development, social and economic dimensions have to be integrated into a 

holistic sustainability assessment framework to make economically viable, socially 

acceptable, and environmentally benign policies towards achieving sustainability for many 
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systems including manufacturing, construction, transportation, etc. (Egilmez, Kucukvar, & 

Tatari, 2013a; Murat Kucukvar, Egilmez, & Tatari, 2014; Onat, Kucukvar, & Tatari, 2015; 

Onat, Kucukvar, et al., 2014c). From a complex system perspective, triple bottom line 

consequences of the transportation impacts are inevitably interconnected, and therefore 

such complexity requires a novel system thinking approach in which all possible outcomes, 

ripple effects, and unforeseen impacts must be estimated (Lee, Geum, Lee, & Park, 2012).  

5.3. System dynamics modeling in transportation research 

The traditional approaches to LCSA often focus on understanding the behavior of a 

system based on the cause and affect relationships among system elements separately, which is generally termed “event oriented thinking.” However, in real life, causal 
relationships are often complex in a way that one stage or element can be the result of 

another and the cause of another simultaneously, which can be considered as series of 

interconnected causal relationships (J. D. Sterman, 2000). Majority of traditional modeling 

approaches fail to capture the feedback relationships among the variables in the system 

(Barlas, 1996). A systems-thinking perspective is vital for understanding and tackling 

sustainability problems (J. Sterman, 2012). From systems-thinking perspective, complex 

systems should be treated and studied as a whole structure (Akhtar, Wibe, Simonovic, & 

MacGee, 2013; Davies & Simonovic, 2011). Three pillars of sustainability that individually 

analyzed in LCSA framework might have a dynamic impact on each other over time. 

Therefore, a holistic LCSA modeling approach is required to observe, analyze and model the 

whole system considering complex feedback mechanisms among the models parameters 
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and LCSA indicators. System dynamics (SD) modeling philosophy serves best to such 

objectives since it assists with defining the feedback mechanisms, potential delays and multi-

dimensional causal relationships quantitatively (Onat, Egilmez, & Tatari, 2014). 

Most of the problems of present are consequences of unforeseen side effects of the 

actions taken in the past, such as global climate change and depletion of resources. The 

policies implemented to solve significant problems mostly fail, make the problem even 

worse, or pave the way for other problems. Effective decision making requires a systems 

thinking approach and understanding behavior of the growing dynamic complexity of the 

systems. In this sense, SD is a strong modeling approach to describe and understand the 

behavior of complex systems overtime. SD is a computer aided dynamic simulation modeling approach to enhance the overall understanding of complex systems’ behavior over time. The 
evolution of dynamic modeling was initiated by Forrester (1961). SD is a very robust 

research method which has been used to model complex socio economic systems to 

understand the pattern of behavior over time (Meadows, Randers, & Meadows, 1993b). SD 

models are also often used to address environmental issues and sustainability problems. 

Forrester (1971) investigated the global impacts of environmental sustainability issues with 

a broader scope. Meadows et al. (2004) and Randers (2000) utilized the SD approach to 

investigate the effects of increasing human population on the earth and natural resources. 

Several other studies utilized SD modeling approach includes the issues related to urban 

sustainability (Feng, Chen, & Zhang, 2013; Mirchi, Madani, Watkins, & Ahmad, 2012), 

product and service systems (Lee et al., 2012), water resource planning (Winz, Brierley, & 
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Trowsdale, 2008), urban planning (Yoshino, Fong, Matsumoto, & Lun, 2009), and highway 

sustainability (Egilmez & Tatari, 2012). 

SD modeling has also been also used in transportation research as a well suited 

modeling approach for strategic policy analysis and decision making supporting tool. SD 

modeling can significantly contribute to understanding the relationships between elements 

of the transportation system and the environment it is interacting with (Abbas & Bell, 1994). 

Shepherd (2014) evaluated over 50 peer-reviewed journal papers that applied SD models in 

transportation research since 1994. The paper indicated that use of SD modeling in the 

transportation research has been focused on several major areas;  

 Alternative fuel vehicles  

 Supply chain management with transportation 

 Highway/infrastructure construction and maintenance 

 Strategic policy at urban, regional, and national scale 

 Air transportation 

 Other emerging areas such as safety, city bus systems, port security 

To give some examples, Han and Hayashi (2008) built a system dynamics model for 

policy assessment and carbon dioxide (CO2) mitigation potential analysis for inter-city 

passenger transportation in China. Wang et al. (2008) used a system dynamics approach 

urban transportation system in Dalian city of China by considering social, economic and 

environmental factors and their complex interactions. In other study, Jin et al. (2009) 

presented a system dynamics approach for integrating complex interactions between 
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ecological footprint indicators for sustainable urban planning including future 

transportation systems. Egilmez and Tatari (2012) developed a system dynamic model in 

order to dynamically simulate CO2 emissions of U.S. transportation system under three 

policy scenarios: fuel efficiency, public transportation and electric vehicle usage. Shepherd 

et al. 2012 also developed a system dynamics model in order to analyze the impact of CO2 

emissions under several scenarios including subsidies, range, charge point availability, 

emission rates and a revenue preserving tax. Schade and Schade (2005) modeled the 

transportation system, which consist of five sub-models, namely: the macroeconomic, the 

transport, the regional economic, the environmental and the policy model. Baldoni et al. ( 

2010) studied the transportation sustainability and energy policy interactions. Majority of 

the transportation studies focused on either carbon footprint, energy, or economic aspects 

of the problem. Moreover, most of the studies focused on either GHG emissions or energy 

consumption associated with transportation sector. Similarly, SD studies focusing on energy 

consumption and climate change associated with transportation sector are limited within 

their system boundaries or at most the relationship between economy & energy, climate & 

energy, and the individual relationships between these sectors and their surrounding 

environment. There has been no effort to study the system of transportation as a whole and 

with its interactions of environment-economy-society nexus and understanding the dynamic 

complexity as it pertains to LCSA and transportation sustainability. 
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5.4. Motivation and research objectives 

As a response to knowledge gaps found in the literature, this research aims to advance 

the state-of-the art in LCSA literature and broaden and deepen the current understanding of 

LCA. To alleviate this goal, the proposed research will explore the dynamic interrelationships between the environmental, social, and economic aspects of U.S. passenger cars’ 
sustainability impacts from life cycle sustainability perspective and study the scenario-based 

projections for the long term policy making. With the overall goal of advancing the state-of-

the-art in LCSA framework and state-of-practice of transportation sustainability, the 

objectives of this Chapter are presented as follows:  

1) Broaden the existing LCA framework by considering macro-level 

environmental, economic and social impacts in an integrated way, 

2) Deepen the existing LCA framework by capturing the complex dynamic 

relationships between social, environmental, and economic indicators through causal 

loop modeling,  

3) As an effective approach towards understanding the dynamic 

complexity of transportation sustainability, develop a SD simulation model that can 

be utilized to understand the triple bottom line impacts of alternative vehicles, and 

finally 

4) Investigate the impacts of extreme customer choice scenarios as a 

novel approach for selection of a macro-level functional unit considering all of their 

inherent mutual relationships in the environmental, social, and economic aspects.  
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Overall, this research is a first and an important attempt towards developing 

integrated and dynamic LCSA framework for sustainability assessment of new generation 

transportation systems. 

 

5.5. Methodology 

In this chapter, system dynamics modeling is utilized to model the U.S. passenger 

transportation system and its interactions with economy, the environment, and society. The 

proposed model aims to quantify the macro-level social, economic, and environmental 

(Triple-bottom-line, TBL) impacts of passenger vehicles from an integrated system analysis 

perspective. Analysis covers the TBL impacts related to manufacturing and operation phases 

of internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs), plug-in hybrid 

electric vehicles (PHEVs), and battery electric vehicles (BEVs). The useful life time is 

assumed to be 150,000 miles per vehicle. The comparison is made based on extreme 

scenarios for each vehicle such as %100 of market share for BEVs from now until 2050, 

which is explained in Section 3 in more detail. Therefore, the defined functional unit is unit 

impacts per extreme scenario. 

A total of seven macro level impact categories are selected and the impacts are 

quantified from 1980 to 2050. The proposed SD model is composed of four comprehensive 

sub-models: environmental, economic, social, and transportation sub-models, which 

contains smaller modules such as population, travel need and on-road fuel efficiency, CO2 
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emissions and climate change, particulate matter formation (PMF), photochemical oxidant 

formation (POF), vehicle ownership cost, human health, public welfare, employment, etc.  

In the methodology section, following hierarchical framework is presented. First, the 

problem statement and reference more are explained. Second, system boundary, exogenous, 

endogenous, and excluded variables are introduced along with a brief explanation about 

each parameter. Third, causal relationships among the parameters and the sub-systems are 

explained. Fourth, mathematical relationships and formulations in the model are explained. 

Fifth, validation of the model is explained with graphical and statistical analyses. 

5.5.1. Problem statement 

As the U.S. transportation sector is an integrated part of economy, the environment, 

and society, it should be analyzed with a broader approach where all of these dimensions 

are dynamically captured. In this regard, the objective of this modeling effort is to develop a 

dynamic model that is capable of capturing dynamic behavior, feedback relations, 

interdependencies, side effects, and macro-level triple bottom line impacts of alternative 

vehicle technologies as well as conventional vehicles in the U.S. The proposed model 

investigates the long term behavior of each sub-system based on different alternative vehicle 

options to minimize their environmental impacts, while revealing the associated changes in 

the economy and society. The reference mode is selected as the change in temperature of the 

atmosphere and upper ocean compared to preindustrial levels. (°C) due to greenhouse gas 

emissions (NASA, 2014). However, validation of all of the sub-models are presented in 

Section 5.5.5. 
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Figure 16. Atmospheric temperature change between 1980 and 2014 

5.5.2. Identification of parameters 

Model boundary is presented in Table 22 by identifying the most important 

exogenous, endogenous, and excluded variables in the model. Exogenous variables are 

externally defined variables representing behaviors or values that are not within the 

boundary of the model, whereas endogenous variables are calculated by the model based on 

the interactions and mathematical relationships among the variables. 
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Table 22. Table of model boundary 

  Endogenous variables Exogenous variables Excluded variables 

 T
ra

n
sp

o
rt

a
ti

o
n

 S
u

b
-m

o
d

e
l 

New passenger vehicle sales Vehicle disposal* End-of-life impacts 

Travel need index Market share of vehicles* Recycling and reuse 

Average annual VMT 
Fuel efficiency of 
vehicles* 

Insurance cost 

On-road fuel efficiency*  
Other environmental impact 
categories 

Population   

Fertility rate   

Number of potential drivers   

Total number of vehicles on-
road 

  

E
n

v
ir

o
n

m
e

n
ta

l 
S

u
b

-m
o

d
e

l 

Emissions from vehicle man.* 
Vehicle man. emission 
rate 

 

Emissions from vehicle op.* 
Petroleum supply 
emission 

 

PMF from vehicle man.* 
Electricity supply 
emissions 

 

PMF from vehicle op.* Tail pipe emissions  

POF from vehicle man.* 
CO2 emissions from rest 
of US 

 

POF from vehicle operation* 
CO2 emissions from rest 
of US 

 

Deep Ocean Temp   

Atmos. U. Ocean Temp   

Economic climate damage 
fraction 

  

E
co

n
o

m
ic

 S
u

b
-m

o
d

e
l 

Annual vehicle operation cost* Battery cost  

Annual vehicle ownership cost* M&R cost  

GDP contribution of 
manufacturing phase 

Useful life time  

GDP contribution of operation 
phase 

Electricity cost  

GDP increase rate Gasoline cost  

 
GDP from rest of the U.S. 
Economy 
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  Endogenous variables Exogenous variables Excluded variables 

S
o

ci
a

l 
su

b
-m

o
d

e
l 

Human health impacts from 
transportation 

Life expectancy  

Adjusted life expectancy 
HH characterization 
factors 

 

Employment from vehicle op. Max life expectancy  

Employment from vehicle man. Life expectancy norm  

Employment from rest of the 
U.S.  

  

Public welfare   

Education index   

Income index   

Life expectancy index   

* These variables are used for each vehicle type separately by represented by single name in this table. 

Additionally, a brief description and units of the most critical parameters are 

presented in Table 23.  

Table 23. Summary of model parameters 

Model parameters Description Unit 

New passenger vehicle sales Number of vehicles sold in a year #vehicl
es 

Travel need index Travel need as a function of employment, public 
welfare and population 

Dmnl 

Average annual VMT Annual vehicle miles traveled Miles 
On-road fuel efficiency* Average fuel efficiency of vehicles on-road Mpg 

Vehicle disposal* Number of vehicles disposed each year #vehicl
es 

Market share of vehicles* Percentage share of vehicle type sold in a year % 
Fuel efficiency of vehicles* Gasoline or electricity consumption performance of 

vehicles 
Mpg 

Population The total number of people in the U.S. #peopl
e 

Fertility rate The average number of children that would be born to 
a woman over her lifetime 

#peopl
e 

Number of potential drivers The number of people older than 16 #peopl
e 
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Model parameters Description Unit 

Total number of vehicles on-

road 

The total number of vehicles on-road #vehicl
es 

Emissions from vehicle 

manufacturing* 

Total CO2 emissions from vehicle manufacturing tCO2 

Emissions from vehicle 

operation* 

Total CO2 emissions during vehicles' operation phase tCO2 

PMF from vehicle 

manufacturing* 

Particulate matter formation from vehicle 
manufacturing 

kgPM1
0-eq 

PMF from vehicle operation* Total PMF during vehicles' operation phase kgPM1
0-eq 

POF from vehicle 

manufacturing* 

Photochemical oxidant formation from vehicle 
manufacturing 

kgNMV
OC-eq 

POF from vehicle operation* Photochemical oxidant formation from vehicle 
operation 

kgNMV
OC-eq 

Deep ocean temp Temperature of the deep ocean  C 
Atmos. upper Ocean Temp Temperature of the Atmosphere and Upper Ocean C 
Economic climate damage 

fraction 

Economic impact of climate change on GDP increase 
rate 

% 

Annual vehicle operation cost* Total operation cost of vehicle including fuel and M&R 
cost 

$ 

Annual vehicle ownership 

cost* 

Total vehicle ownership cost including vehicle 
operation and purchase 

$ 

GDP contribution of 

manufacturing phase 

Contribution of vehicle manufacturing to the U.S. gross 
domestic product 

$ 

GDP contribution of operation 

phase 

Contribution of activities during vehicle operation 
phase to the U.S. gross domestic product 

$ 

GDP increase rate Annual increase rate of the U.S. gross domestic 
product 

% 

Human health impacts from 

vehicle transportation 

Human health impacts of air pollutants and CO2 
resulted from vehicles 

DALY 

Adjusted life expectancy Average life expectancy after being exposed to air 
pollutants and CO2 

Years 

Employment from vehicle 

operation 

Employment generated due to activities during vehicle 
operation phase  

#peopl
e 

Employment from vehicle 

manufacturing 

Employment generated due to vehicle manufacturing #peopl
e 

Employment from rest of the 

U.S. Economy 

Employment trend from rest of the U.S. economy as a 
function of U.S. GDP 

#peopl
e 

Public welfare Geometric average of education, income, and life 
expectancy index. 

dmnl 



 

111 
 

Model parameters Description Unit 

Education index An index representing education status of the U.S.  dmnl 
Income index An index representing income status of the U.S. dmnl 

Life expectancy index An index representing health status of the U.S. dmnl 

* These variables are used for each vehicle type separately by represented by single name in this table. 

5.5.3 System conceptualization  

System conceptualization is explained with the causal loop diagram (CLD) and a brief 

description of each loop. The CLD is presented in Fig. 17 in includes major sub-models and 

the causal relationships among each variable or sub-model. It should be noted that the CLD 

is an overview of the system observed where the complex relationships are explained in a 

simplified form.  
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Figure 17. Causal loop diagram of the model 

 

 

A typical CLD consists of loops which can be reinforcing (an increasing impact of a 

cause on an effect is an increase) or balancing (an increasing impact of a cause on an effect 

is a decrease). In the proposed SD model, nine balancing and three reinforcing loops are 

considered (See Fig. 17). In Figure 17, positive signs indicate a reinforcing effect, whereas 

the negative signs indicate a balancing relationship. The reinforcing and balancing loops are 

briefly explained as follows;  
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Balancing Loops 1, 2, and 3 

1) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) GDP(+)  Public welfare (+) Passenger vehicle transportation  

2) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) GDP (+) Employment (+) Passenger vehicle transportation 

3) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) GDP (+) Public welfare (+) Population(+) Passenger vehicle 

transportation 

 

As transport and mobility activities increase, the related GHG emissions increase, 

accelerating climate change. Steeply increasing atmospheric temperature damages economy 

by reducing the growth rate of GDP which reduces the public welfare through change in 

income status, loss of jobs. In balancing loop 3, any change in public welfare influence the 

population through fertility rates. Passenger vehicle transportation includes the modules of 

travel need index and number of new vehicle sales, which are functions of employment, 

population, and public welfare. The feedback impacts to the passenger vehicle 

transportation module occur via changes in employment, population, and public welfare.  

 

Balancing Loops 4, 5, 6 

4) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) Human health status(+)Population(+) Passenger vehicle 

transportation 
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5) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) Human health status (+)  Public welfare (+) Passenger vehicle 

transportation  

6) Passenger vehicle transportation (+) GHG emissions (+) Climate 

Change(-) Human health status(+)  Public welfare (+) Population(+) Passenger 

vehicle transportation 

 

Climate change has also impact on human health which effects the population 

through life expectancy. Population increases the travel demand and new vehicle sales, 

which increases the impacts of passenger vehicle transportation in the loop 6. As the human 

health status changes due to GHG emissions resulting from passenger vehicle transportation, 

public welfare status changes accordingly. Public welfare affects the new vehicle sales 

through income level and on population through fertility rates. The loops are completed by 

the impacts of population and public welfare on the passenger public transportation.  

 

Balancing Loops 7, 8, 9 

7) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+)Population(+) Passenger vehicle transportation 

8) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+) Public welfare (+) Passenger vehicle transportation  

9) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+) Public welfare (+) Population(+) Passenger vehicle transportation 
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The second environmental impact resulting from passenger vehicle transportation is 

the air pollution which influences the human health status through life expectancy. Same as 

in the balancing loops 4, 5, and 6, human health status affects public welfare and population, 

which are connected to passenger vehicle transportation via their effect on travel demand 

and new vehicle sales.  

Reinforcing loops 1, 2, 3 

1) Passenger vehicle transportation (+) Vehicle ownership expenses 

(+) GDP(+)  Public welfare (+) Passenger vehicle transportation  

2) Passenger vehicle transportation(+) Vehicle ownership expenses 

(+) GDP (+) Public welfare (+) Population(+) Passenger vehicle 

transportation 

3) Passenger vehicle transportation(+) Vehicle ownership expenses 

(+) GDP (+) Employment (+) Passenger vehicle transportation 

As the travel demand and the new vehicle sales increases, the overall expenses 

related to transportation, particularly vehicle ownership costs, increase. Increased 

consumption fastens the economic growth through contribution of industrial sectors 

associated with vehicle manufacturing and operation such as petroleum production and 

supply and electric power generation for electric vehicles. These sectorial outputs changes 

the status of public welfare through income per capita and employment. Both public welfare 
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and employment changes the travel demand of people and population structure, which 

change the impacts of the passenger vehicle transportation in return. 

5.5.4. Model formulation 

In this stage, mathematical relationships between major variables and the sub-

models are explained in detail. The proposed SD model consists of 4 comprehensive sub-

models as follows; 

5.5.4.1. The U.S. transportation Sub-model:  

The transportation sub-model is the focal point of this model, and includes indicators 

related to life cycle impacts of alternative passenger vehicles which depends on the 

estimated vehicle miles travelled (VMT) and on-road fuel efficiency. This sub-model receives 

feedbacks from the economy and social sub-models and population module which is adopted 

from the population module of WORLD3 model and modified for the U.S (Bossel, 2007; 

Meadows et al., 2004b). VMT increases as the travel need index increases, which is a function 

of public welfare, total employment, and population. Additionally, the number of vehicles on-

road is an important parameter of this sub-model. The number of new vehicle sales increases 

as the income index and number of potential drivers increases. Mathematical formulations 

of the critical variables in the Transportation sub-model are as follows; 

 Average annual VMT: This variable is a function of employment, public welfare, 

and population, which are endogenously calculated by the sub-models. An index is 

developed to represent the travel need in a single value by taking geometric average of 

the normalized values of employment, public welfare, and population. The relationship 
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between the average annual VMT and travel need index is estimated by regression 

analysis (R2=0.86). Eq. 5.1 shows the mathematical relationship between these two 

variables. 

 

(Average annual VMT)year=1.54682e+012*LN((Travel need index) year) + 
1.13085e+012                                                                                                                             (5.1) 

 

 

 New passenger vehicle sales: This variable is a function of income index, 

number of potential drivers, and market share of passenger vehicles. A regression 

analysis conducted to estimate total number vehicle sales annually, which is multiplied 

by market share of passenger vehicles (automobiles). The market share data for 

automobiles is obtained from the U.S. Environmental Protection Agency (EPA, 2014) and 

the LAVE-Trans model (The National Research Council, 2013). Number of potential 

drivers are calculated endogenously through the population module, which refers to 

number of people above 16 years old. Income index is calculated endogenously via the 

Society sub-model. Future market share of each vehicle type is obtained from business 

as usual (BAU) case of the LAVE-Trans model, while past market shares are obtained 

from EPA (EPA, 2014). Annual new passenger vehicle sales are calculated as follows; 

 

(New passenger vehicle Sales)year = (Market share of passenger vehicles)year * 
(138723* LOG((number of potential drivers)year)+(Income index)year* 317195 + 
883865)*1000                                                                                                                             (5.2) 
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 On-road fuel efficiency: This variable is calculated for each vehicle type. It is a 

function of the vehicle stuck, inflow of new vehicles with more efficient fuel economy, 

and outflow of disposed vehicles with less fuel economy. It is modeled via using a general 

density formula (mass=density*volume) in physics, where the stock is represented by 

multiplication of existing fuel economy and the number of vehicles. Inflow is the 

multiplication of new vehicle sales and the fuel economy of new vehicles, whereas 

outflow is the multiplication of the number of disposed vehicles each year and the fuel 

economy of the disposed vehicles. The same approach applied for each vehicle type. The 

fuel economy values between 1980 and 2014 of new vehicles are obtained from the 

transportation energy data book (Oak Ridge National Laboratory, 2013), while the future 

values are taken from the Vision model developed by Argonne National Laboratory 

(Argonne National Laboratory, 2014a). Fig. 18 shows the stock and flow diagram of the 

on-road fuel efficiency module for ICVs. 
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Figure 18. Fuel economy module for internal combustion vehicle 

 

 Population: This module is adopted from the population module of WORLD3 

model and modified for the U.S (Bossel, 2007; Meadows et al., 2004b). In this module, 

each age group is modelled as stocks and have different mortality rates based on the 

adjusted life expectancy which includes the human health impacts from air pollution and 

CO2 emissions. Fertility rate is a function of public welfare. The studies in the literature 

confirm that the fertility-development relationship in the U.S. have a J-shaped 

relationship, where declining fertility rate was reversed after a threshold value of 

development (Furuoka, 2009, 2010; Myrskylä, Kohler, & Billari, 2009). In accordance 

with literature, the relationship between public welfare (as an indicator of 

development) and fertility rate is investigated. Eq. 5.3 shows the public welfare and 

fertility rate relationship (R2=0.81). The equation shows the relationship after the 

threshold value where the fertility rate starts to increase. Fig. 19 shows the population 

module of the Transportation sub-model. 
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(Fertility rate)year=-38.9606*(Public Welfare)year^2+70.9836*(Public Welfare)year -
30.2566                                                                                                                                          (5.3) 

 

Figure 19. Stock and flow diagram for population module 

5.5.4.2. The environment sub-model: 

This sub-model calculates the environmental impacts, particularly CO2, PM10-eq. 

(particulate matter less than 10 micrometers in diameter), and NMVOC-eq. (Non-methane 

volatile organic compound) emissions. These emissions are calculated for manufacturing 

and operation phases of passenger vehicles by considering transportation activities and 

upstream components such as petroleum supply and electric power generation. The 

Environment model also contains a climate change module where carbon cycle, atmospheric 

temperature change and associated economic damages are calculated based on the 

population 65

plus

population 45 to

64

population 16 to

44population 0 to 15

births

maturation 15 to 16
maturation 44 to 45 maturation 64 to 65

deaths 65 plusdeaths 0 to 15 deaths 15 to 44 deaths 45 to 64

number of potential drivers

mortality 0 to 15 mortality 15 to 44 mortality 45 to 64 mortality 65 plus

reproductive

lifetime

<year unit>

fertility rate

population

<Adjusted life

expectancy>

<population 0 to 15> <population 16 to

44>
<Public Welfare>



 

121 
 

emissions from the U.S. transportation sector and exogenously defined systems including 

rest of the U.S. and the World. The climate model is a modified version of the Dynamic 

Integrated Climate-Economy model (DICE) developed in Yale University (Fiddaman, 2008; 

Nordhaus, 2006). Mathematical relationships in some of the critical parameters and modules 

are as follows; 

 CO2 Emissions from vehicle manufacturing and operation: Vehicle 

manufacturing emissions are calculated via emission multiplier obtained from literature 

(Onat, Kucukvar, et al., 2014c). The total emission is calculated by multiplying the 

emission multiplier per vehicle and the number of vehicle sale. This procedure applied 

for each vehicle type. Battery manufacturing impacts are included by the representative 

emission multipliers for each vehicle type, which are 6.96 and 7.52 tonCO2 per ICV and 

HEV. The emission multipliers for PHEVs and EVs ranges between 7.49 and 11.2 tonCO2, 

depending on the battery size and all-electric range (AER). The manufacturing emissions 

changes through time as the technology advances. These emissions are entered as 

exogenous lookup variables and this data is obtained from LAVE-trans model. On the 

other hand, operation emissions are calculated using multipliers from the TBL-LCA 

model. The phase emissions for ICVs and HEVs are calculated as follows; 

 

(ICV CO2 emission rate)year = 1/(Avg. on*road fuel eff. of ICVs)year*(Annual VMT per 
vehicle)year * (Petroleum supply emission per gallon of gasoline +Tail pipe 
emissions per gal of gasoline)                                                                                              (5.4)           
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Same methodology is applied for HEVs. Petroleum supply and tail pipe emissions 

are 2.11 kgCO2 and 8.92 kgCO2 per gal on gasoline, respectively (EPA, 2013; Onat, 

Kucukvar, et al., 2014c).  On the other hand, operation phase emissions of PHEVs and 

EVs are calculated as follows;  

PHEV CO2 emission rate)year = (Annual VMT per vehicle)year*(Utility factor*((Avg. on-
road FE of PHEV on elect.) year*Electricity supply emissions per kWh)+(1-Utility 
factor)*(1/(Avg. on-road FE of PHEV on gas) year *(Tail pipe emissions per gal of 
gasoline + Petroleum supply emission per gallon of gasoline)))                                 (5.5)     

 

(EV CO2 emission rate)year =(Annual VMT per vehicle)year *(Avg. on-road FE of 
EVs)year*Electricity supply emissions per kWh                                                                 (5.6)                                                         

              

Where, the utility factor is a function of AER which is determined by battery size 

based on the equations provided by the VISON and LAVE trans models (Argonne 

National Laboratory, 2014a; The National Research Council, 2013). The utility factor is 

calculated as follows; 

0.00049+0.0194148*AER-0.000214596*AER+0.00000130166*AER3 
0.00000000327902*AER4                                                                                                        (5.7)     

                                                          

 PMF and POF from vehicle manufacturing and operations:  The same 

methodology is applied to calculate PMF and POF from vehicle manufacturing and 

operations. Manufacturing PMF multipliers are 16.38, 17.68, 17.9-20.9, 26 kgPM10-eq 

per ICV, HEV, PHEV, and EV, respectively (Onat, Kucukvar, et al., 2014c). PMF and POF 

are calculated by using characterization factors from ReCiPe (ReCiPE, 2009), using 

emissions of CO, NOx, PM10, PM2.5, SO2, and VOC.  Manufacturing POF multipliers are 31.1, 
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33.2, 32.7-38.3, 46.2 kgNMVOC-eq per ICV, HEV, PHEV, and EV, respectively (Onat, 

Kucukvar, et al., 2014c). Similarly, operation phase emissions are calculated using both 

sector and process level data, which is known as hybrid input-output life cycle 

assessment (C. T. Hendrickson et al., 2006; Huang, Weber, & Matthews, 2009; Onat, 

Kucukvar, et al., 2014b; Suh et al., 2004). Sector level data is obtained from the TBL-LCA 

model (Murat Kucukvar, Egilmez, et al., 2014; Onat, Kucukvar, et al., 2014a). Tail pipe 

PMF and POF per burning a gallon of gasoline is 0.0019343 kgPM10-eq. and 0.01152 

kgNMVOC, respectively. Electric power generation and its upstream PMF and POF are 

0.00135394 kgPM10-eq.  and 0.00186 kgNMVOC, respectively, whereas gasoline supply 

PMF and POF values per gallon of gasoline are 0.00192721 kgPM10-eq. and 0.00688 

kgNMVOC, respectively (Onat, Kucukvar, et al., 2014c). 

  

 Economic climate damage fraction: Economic loss due to climate change is 

resented as damage to GDP, which is usually related to damages associated with 

agricultural productivity, dislocations resulting from higher sea levels, and dollar-

equivalent costs such as increases in mortality, morbidity, and social disruption 

(Pindyck, 2011). In the literature, most of the quantification of climate related economic 

damages are expressed as direct impact temperature change to the levels of GDP and 

consumption. Similarly, the economic damage function of the DICE model relates the 

temperature change directly to level of GDP (Nordhaus, 2006). However, global 

warming can have a permanent impact on future GDP and consumption, and therefore should be related to the “growth rate of GDP” rather than directly affecting  “level of 
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GDP” (Pindyck, 2011). Therefore, we combined the DICE model and the economic 

damage function proposed by Pindyck (2011). The atmospheric and upper ocean 

temperature change is calculated using DICE model, whereas the relationship between 

the temperature change and economy is formulized according to climate damage 

function of Pindyck (2011). Eq. 5.8 shows the climate damage function. 

𝛾 = 1.79𝛽∆𝑇𝐻                                                                                                                         (5.8) 

where, ∆𝑇 is atmospheric temperature change, 𝛽 is a variable follows gamma 

distribution (min= 0.000628, max=0.00321, order=4.5, shift= 0.0019, stretch= 

0.00105), and 𝐻 is 100 years. Hence, economic climate damage on GDP growth rate, the 

growth rate loss function, is calculated as follows; 

𝑔𝑡 = 𝑔0 − 𝛾∆𝑇𝑡                                                                                                                                                                         (5. 9) 

where, 𝑔𝑡and 𝑔0 are the growth rates at time 0 and 𝑡. Fig. 20 shows he climate 

change module of the model.  
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Figure 20. Stock and flow diagram for climate change module 

 

5.5.4.3. The Economy sub-model: 

This sub-model is primarily consist of two modules, which are vehicle ownership cost 

and gross domestic product (GDP). Vehicle ownership cost includes vehicle purchase, 

maintained and repair, battery costs (in the case of change), and fuel expenses. The vehicle 

related expenses increases the economic activity in transportation and related sectors and 

contribute GDP through increased consumption. Rest of the U.S. economy is modeled as 
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exogenous variables by using Organisation for Economic Co‑operation and Development 

(OECD) estimates of the U.S. economic growth for the period between 2015-2050 (Chateau, 

Rebolledo, & Dellink, 2011). Some of the key variables are as follows; 

 

 Annual vehicle operating and ownership costs: These variable are calculated for 

each vehicle type and represented as different variables correspond each. Vehicle 

operating cost includes cost of gasoline, electricity, battery replacement, and 

maintenance and repair. Operating costs of HEVs and ICVs are calculated with the same 

formulation, represented in Eq. 5.10 for HEV. 

  

(HEV annual operating cost)time =(Annual VMT per vehicle)time*(1/(Avg. on-road fuel 
eff. of HEVs)time *(cost per gal of gasoline)time+ per mile M&R cost)                        (5.10)                              

 

Equations 5.11 and 5.12, shows the annual operating costs for PHEVs; 

 

(PHEV annual operating cost)time=(Annual VMT per vehicle)time*[[Utility 
factor*(electricity cost per kWh)time *(Avg. on-road fuel eff. of PHEV on elect. )time] 
+[(1-Utility factor)*(1/Avg. on-road FE of PHEV on gas)time*(cost per gal of 
gasoline)time ]+per mile M&R cost*0.85+Battery cost/Useful lifetime]                                                            
b                                                                                                                                                   (5. 11) 
 
(EV annual operating cost)time=(Annual VMT per vehicle)time*[(Avg. on-road fuel eff. 
of EVs)time*(electricity cost per kWh)time +per mile M&R cost*0.8*+Battery cost for 
EV/Useful lifetime]                                                                                                                  (5. 12) 
 

The future cost of electricity, batteries, and vehicles are taken from LAVE-Trans 

model (The National Research Council, 2013), while cost of gasoline are obtained from 
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transportation energy data book (Oak Ridge National Lab., 2013) and annual energy 

outlook 2014 (The U.S. Energy Information Administration, 2014). The gasoline cost 

estimates was until 2040, and therefore, the rest of the data is extrapolated until 2050 

based on department of energy’s estimations. All of the costs are presented in 2013 
constant dollars, using consumer price indexes where it is necessary.  

 

 GDP contribution of manufacturing and operation phases: GDP contribution of 

transportation related expenses are calculated by using the ownership costs. Basically, 

retail prices are multiplied by a set of factors to estimate the producer price of items and 

processes. Producer price of vehicles are assumed to be 65% of the retail price of 

vehicles, while the producer price of the operation phase activities are assumed to be 

80% of the retail prices. Fig. 21 shows a part of the GDP module where total GDP and 

contribution of transportation is calculated. 
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Figure 21. Stock and flow diagram of GDP module 

 

5.5.4.4. The society Sub-model: 

There are three important modules in this sub-model, which are human health, 

employment, and public welfare. Life expectancy data is obtained from the U.S. Social 

Security (the U.S. Social Security, 2014) and calibrated by including impacts of CO2 and air 

pollutant emissions. The air pollutants and CO2 emissions from transportation sector effects 

the life expectancy values of the U.S. The characterization factors to estimate health impacts 

of air pollutants and CO2 are obtained from  ReCiPe (ReCiPE, 2009).  The adjusted life 

expectancy values affect the mortality rates at different age groups through population 

module. Employment in transportation sector is obtained by using the TBL-LCA model, 

where sector-specific employment per $M output are provided as a multipliers (M Kucukvar 

& Tatari, 2013; Onat, Kucukvar, et al., 2014c). Public welfare is a function of income, health, 

and education indexes, which indicates the human development index developed by United 
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Nations Human Development Programme (United Nations, 2014). These indexes are 

calculated based on the guidelines provided by UN and endogenous data calculated by the 

model variables. 

 Employment from vehicle operation and vehicle manufacturing: Employment is 

calculated as a function of economic activity in relevant sectors. Employment multipliers 

(#of people per $ of contribution to GDP) is multiplied by GDP contribution of vehicle 

operation. These multipliers are obtained from the TBL-LCA model (Murat Kucukvar & 

Tatari, 2013; Onat, Kucukvar, et al., 2014a, 2014c) 

 

 Employment from rest of the U.S. Economy: This variable is a function of 

GDP from rest of the economy (excluding the transportation sector). The relationship 

is defined by a regression analysis (R2=0.996) and formulated as follows; 

Employment from rest of the U.S. Economy = e^(-0.206976*LN(GDP from rest of the 
US economy)^2+12.9031*LN(GDP from rest of the US economy)-182.284)       (5.13) 

 

 Public welfare: Calculation of this variable is based on human 

development index developed by United Nations Human Development Programme 

(United Nations, 2014). Public welfare is geometric average of income, education and 

life expectancy indexes. Income and life expectancy indexes are calculated as follows; 

 

Income index = LN((GDP per capita in $2011)-LN(100))/(LN(75000)-LN(100))                          
(5.14) 
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Life expectancy index = (Adjusted life expectancy-Life expectancy norm)/(Max life 
expectancy-Life expectancy norm)                                                                                     (5.15) 

 

where, life expectancy norm and max life expectancy are 25 and 85 years, 

respectively. On the other hand, education index is calculated as a function of GDP per 

capita via a regression analysis (R2=0.90);  

Education index=0.15321*LN(GDP per capita in $2011)-0.783541                       (5.16) 

5.5.5. Model validation Model validation, the accuracy of the model behavior’s compared to the existing 
system behavior (Barlas, 1996), is a critical phase in SD modeling. There are two types of 

modeling techniques from model validation perspective, namely: causal descriptive and 

black-box (Barlas, 1996). Causal descriptive models consider the feedback loops in model structure and question “how real systems operate in some aspects”. On the other hand, only 
the aggregate input-output relationship matters in black-box models, which makes them “purely-data driven”. In both type of modeling approaches, statistical techniques are 
typically used for validity tests (Egilmez and Tatari, 2012). 

Mainly, 9 variable sets are considered to be used in the validation analysis, namely: 

1) Atmospheric temperature change, 2) New passenger vehicle sales, 3) New passenger 

vehicle sales , 4) Population, 5) On-road fuel efficiency of ICVs,  6) GDP, 7) Life expectancy, 

8) Employment, 9) Public Welfare The validation step is carried out by looking at the actual data and the model’s output with two statistical tests: ANOVA and Two Sample Kolmogorov 
Smirnov. As long as both of the data (model and real) are holding the assumptions of the One 
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Way ANOVA test, ANOVA is used. On the other hand, the nonparametric test, Two Sample 

Kolmogorov Smirnov, is used for the variables that the either of the datasets (model or real) 

does not hold the assumptions of the ANOVA test.  

Analysis is done by using SPSS software. According to the analysis results, 7 out of 9 

variables are found to be holding assumptions of ANOVA test, thus ANOVA is used for comparing the real and model’s output data. The only datasets that are not normal were 
found to be associated with 3rd and 5th variables, namely: new passenger vehicle sales and 

new passenger vehicle sales. Results of the ANOVA analysis are shown in Table 24. It is evident that there is no significant different between the model’s output and actual data since 
all test statistic values are greater than the threshold, 0.05. 

Table 24. Results of the ANOVA analysis 

Variable  
number 

Variable name 
One Way ANOVA 

F Value 
Test 

Statistic 
1 Atmospheric temperature change  1.794 0.185 
2 New passenger vehicle sales 0.000 0.986 
4 Population 0.528 0.470 
6 GDP 0.000 1.000 
7 Life expectancy 0.170 0.681 
8 Employment 0.000 0.984 
9 Public Welfare 1.374 0.245 

 

The two variables that contain non-normal data are analyzed with Two Sample 

Kolmogorov Smirnov. The results of normality tests (Kolmogorov-Smirnov and Shapiro-

Wilk) are provided in Table 25, which indicate that at least one test statistic is less than 0.05. 

In Table 26, results of non-parametric two sample Kolmogorov Smirnov test are provided, 
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which indicate that there is no significant difference between the model’s output and the 
actual data (Asymp. Sig. (2-tailed) > 0.05). 

Table 25. Results of Normality Tests 

Tests of Normality: New passenger vehicle sales 

  
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Real Data 0.216 34 0 0.653 34 0 
Model Output 0.173 34 0.011 0.711 34 0 

a. Lilliefors Significance Correction 

       
Tests of Normality: On-road fuel efficiency of ICVs 

  

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Actual Data .164 34 .021 .969 34 .436 
Model Output .071 34 .200* .966 34 .358 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 

 

Table 26. Results of Two Sample Kolmogorov Smirnov 

Test Statisticsa: New passenger vehicle sales Test Statisticsa: On-road fuel efficiency of ICVs 

  VAR00008   VAR00014 
Most Extreme 
Differences 

Absolute .182 Most Extreme 
Differences 

Absolute .324 
Positive .091 Positive .324 
Negative -.182 Negative -.088 

Kolmogorov-Smirnov Z .739 Kolmogorov-Smirnov Z 1.334 
Asymp. Sig. (2-tailed) .646 Asymp. Sig. (2-tailed) .057 

a. Grouping Variable: New passenger vehicle 
sales 

a. Grouping Variable: On-road fuel efficiency of 
ICVs 
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5.5.6. Comparison of alternative vehicle technologies 

The comparison of vehicle types (ICVs, HEVs, PHEVs, EVs) are made based on the 

defined function unit, which is 100% annual market share per vehicle type starting from 

2016. These extreme scenarios are compared with the forecasts of the VISION model, 

developed by the U.S. Department of Energy (Argonne National Laboratory, 2014a). The 

rationale behind the selection of the functional unit is to capture the effect of all system and 

reveal the maximum available sustainability impacts from each vehicle type. It is very 

common that LCA studies that focus on quantifying impacts of vehicles are based on per 

kilometer or mile. Such functional units cannot capture the dynamic relationships and causal 

factors that may affect the performance of vehicles. For instance, if HEVs are sold with 100% 

market share starting from 2016, the number of new vehicle sales, population, economic 

parameters, etc. will be different depending on the impact of HEVs. Hence, both the 

maximum potential in the terms of sustainability impacts and the effects of the system 

parameters are captured. Therefore, the selected functional unit provides a more 

comprehensive comparison between alternatives by considering the behavior of other sub-

systems and parameters depending on the vehicle selection as they have causal 

relationships. This is a more fair comparison for such macro-level studies since the impacts 

of the vehicle types are revealed as much as possible by considering a wider system and a 

deeper mechanism. Table 27 shows these extreme scenarios.  
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Table 27. Summary of the extreme scenarios 

Scenario 
name 

Year 

Market share of new vehicle sales 

ICV HEV PHEV EV 

BAU 

2010 95.8% 4.2% 0.005% 0.001% 

2015 93.7% 5.720% 0.584% 0.001% 

2020 91.6% 7.2% 1.164% 0.001% 

2030 87.6% 9.5% 2.924% 0.001% 

2040 85.7% 10.3% 3.969% 0.001% 

2050 84.0% 10.8% 5.217% 0.001% 

S-HEV 

2010 95.8% 4.2% 0.005% 0.001% 

2015 93.7% 5.720% 0.584% 0.001% 

2016 0.0% 100% 0.000% 0.000% 

2030 0.0% 100% 0.000% 0.000% 

2040 0.0% 100% 0.000% 0.000% 

2050 0.0% 100% 0.000% 0.000% 

S-PHEV 

2010 95.8% 4.2% 0.005% 0.001% 

2015 93.7% 5.720% 0.584% 0.001% 

2016 0.0% 0.0% 100% 0.000% 

2030 0.0% 0.0% 100% 0.000% 

2040 0.0% 0.0% 100% 0.000% 

2050 0.0% 0.0% 100% 0.000% 

S-EV 

2010 95.8% 4.2% 0.005% 0.001% 

2015 93.7% 5.720% 0.584% 0.001% 

2016 0.0% 0.0% 0.0% 100% 

2030 0.0% 0.0% 0.0% 100% 

2040 0.0% 0.0% 0.0% 100% 

2050 0.0% 0.0% 0.0% 100% 
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5.6. Results and discussion 

Results are presented in three sub-sections: environmental impacts, economic 

impacts, and social impacts. 

5.6.1. Environmental impacts 

Fig. 22 shows the CO2 emissions impacts for each vehicle type compared the BAU 

scenario. Manufacturing impacts of S-EV and S-PHEV are much higher compared to other 

scenarios, which is mainly because of the battery manufacturing On the other hand, the CO2 

emissions are revered in the operation phase, in which the EVs are found to be the best 

option followed by the PHEVs. When total life cycle impacts are considered, the impacts of 

manufacturing phase is effective between 2016 and 2018. The total life cycle CO2 emissions 

of EVs are found to be least after several years of worst performance due to manufacturing 

phase. Considering that the battery improvements and associated impacts are taken into 

account, the technological advances in battery technology favors EVs and PHEVs, while fuel 

efficiency improvements favors all of the vehicles at different degrees. BAU scenario, which 

contains much higher number of ICVs, has a declining trend than to fuel efficiency 

improvements of ICVS.  
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Figure 22. CO2 emissions from vehicle transportation a) Manufacturing Phase, b) Operation 
Phase, c) Total Life Cycle Emissions 

 

PMF impacts of vehicle options are presented in Fig. 23. PMF impacts have similar 

trends with those of CO2 emissions. PMF of EVs are highest in the manufacturing phase, 

whereas it is lowest during the operation phase. PMF of PHEVs are very close to that of EVs 

in the operation phase. The maximum PMF reduction potential of EVs are 11% compared to 

BAU case. The effect of manufacturing phase quite influential as it changes the total life cycle 

PMF trend significantly. The increasing trend of manufacturing phase PMF overwhelm the 
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reduced PMF of operation phase for a period of time at the beginning of 2016. There is a 

decreasing trend between 2017 and 2035 and later this trend is reversed due to less 

reduction in operation phase compared to sharp increase in manufacturing phase.  

 

Figure 23. PMF from vehicle transportation a) Manufacturing Phase, b) Operation Phase, c)  

Total Life Cycle  

 

Fig. 24 shows the POF impacts of vehicle options. The trend of manufacturing phase 

similar to that of PMF and CO2 emissions. EVs perform the worst in manufacturing phase, 
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while they are the second worst in operation phase with HEVs. POF impacts of PHEVs are 

least in the operation phase competed to other vehicles. When these two phases are 

combined the HEVs are found to be best alternative due to overwhelming manufacturing 

impacts of PHEVs. EVs can be considered as the worst option for POF impacts since their 

manufacturing impacts are much more than their saving potential in operation phase. Hence, 

their total life cycle impacts are worse than the BAU case with a period of exemption between 

2032 and 2043. Overall, HEVs and PHEVs are better options to reduce POF impacts from 

transportation. 
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Figure 24. POF from vehicle transportation a) Manufacturing Phase, b) Operation Phase, c) 
Total Life Cycle 

The rest of the environmental indicators such as atmospheric temperature change 

and the total CO2 emissions are not shown in figures due to negligible changes resulted from 

each scenario. Basically, the overall climate system is much larger than the U.S. transportation sector’s size in the terms of emission contributions. Therefore, changes in 

transportation sector by using different type of vehicles does not affect the atmospheric 

temperature significantly. Reducing the atmospheric climate change requires much more 
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ambiguous targets and international collaborative efforts. The U.S. transportation sector, 

alone, cannot reduce the rapidly increasing atmospheric temperature and the negative 

impacts of the global climate change. 

5.6.2. Economic Impacts 

Economic impacts are evaluated according to vehicle ownership costs to drivers and 

overall contribution to U.S. GDP. Fig. 25 shows the vehicle ownership costs during the 

operation phase and the total life cycle ownership costs. As shown in Figure 9, both operation 

and total life cycle ownership costs have a decreasing trend, which are sharper for the EVs 

owing to improvement in battery technologies and lower initial costs. Currently, the total life 

cycle ownership cost of HEVs are slightly lower than the BAU case that is composed of ICVS. 

Operation phase costs are lowers for PHEVs until 2029 where EVs became more favorable 

option afterwards. Another interesting result is that the total life cycle cost of ICVs became 

as low as PHEVs and slightly lower than HEVs in 2050 thanks to fuel efficiency 

improvements. While the cost difference is much larger in early years when the EVs are 

introduced to the market, the cost difference becomes smaller after 2030.  
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Figure 25. Annual vehicle ownership costs a) Operation Phase, b) Total Life Cycle 

 

Fig. 26 shows the contribution of each life cycle phase to the U.S. GDP for each 

scenario. GDP contribution in manufacturing phase is dominated by EVs and PHEVs. All of 

the vehicle types have and increasing trend due to increased consumption. While economic 

size of manufacturing and operation phases are similar in the early years, the contribution 

of manufacturing phase becomes higher as the vehicle performances increase towards 2050. 

Operation phase contribution have increasing and stable trend for BAU case and HEVs, 

whereas the contributions PHEVs and BEVs decrease. Because, increasing VMT trend stimulated the contribution of HEVs and ICVs, while it couldn’t overwhelm the effect of 
improved fuel efficiency and batteries for PHEVs and EVs. These improvements pave the way 

for reduced consumption and less contribution to GDP within the transportation sector for 

PHEVs and BEVs. The total life cycle contribution of PHEVs and EVs are larger than those of 

ICVs and HEVs until 2025 and 2030, respectively. Overall, the contribution of HEVs became 

the largest in 2050 with an increasing trend since they are introduced to the market.  
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Figure 26. Contribution to GDP a) Manufacturing Phase, b) Operation Phase, c) Total Life 
Cycle 

5.6.3. Social Impacts 

Social impacts are represented by the indicators of employment and human health. 

Employment contribution of each life cycle phase and vehicles are presented in Fig. 27. 

Employment is very similar to contribution to GDP as they have historically strong 

correlation. Manufacturing phases of PHEVs and EVs have the greatest contribution to 

employment. Manufacturing phases of all of the vehicle types have increasing trends as the 

size of the transportation sector grows with the increasing vehicle demand. On the other 
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hand, only employment contribution of ICVs, defined under BAU scenario, has an increasing 

trend in operation phase, whereas rest of the vehicle types are either stable or decreasing 

due to transformation by the more technology oriented sectors and reduced consumption. 

The total life cycle employment trends have a fluctuating structure where newly introduced 

technologies creates more employment at the beginning and reaches an equilibrium 

afterwards. Overall, the total life cycle employment contribution of HEVs and ICVs are more 

stable and increases with almost a constant slope mainly due to increased travel demand 

and developments in the associated sectors. 
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Figure 27. Contribution to employment a) Manufacturing Phase, b) Operation Phase, c) 
Total Life Cycle 

Human health impacts resulting from PMF, POF, and the global warming are 

presented in Fig. 27. The human health impacts in manufacturing phase is much smaller than 

the operation phase in general. However, as the fuel efficient and battery technologies 

improved the relative impacts of operation phase become smaller. Human health impacts in  

manufacturing phase is dominated by EVs and PHEVs and have an increasing trend over time 

due to increased travel demand. On the other hand, the operation phase impacts are least for 

these two vehicle types. Because manufacturing impacts are smaller compared to operation 
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phase impacts, the human health impact potential of EVs, and PHEVs in operation phase 

dominated the total life cycle impacts and favored these two vehicle types. BAU case 

indicates that the total life cycle human health impacts have a decreasing trend, which can 

be fasten with adoption of EVs and PHEVs. 

 

Figure 28. Human health impacts a) Manufacturing Phase, b) Operation Phase, c) Total Life 
Cycle 

The use of different vehicle types has a negligible impact on public welfare which is a 

function of income, education, and life expectancy indexes. Therefore, the effect of each 

scenario was not presented in a separated figure. The main reasons of this insignificant 
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impact is that the determinants of public welfare does not change significantly as the vehicle 

preference changes. The effect of vehicle choices on income, education, and life expectancy 

indexes are very small and geometric average of these indexes are even smaller.  
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CHAPTER 6. UNCERTAINTY-EMBEDDED DYNAMIC SUSTAINABILITY 

ASSESSMENT FRAMEWORK FOR ALTERNATIVE VEHICLE TECHNOLOGIES 

 

This Chapter mainly focuses on improving the model presented in Chapter 5 by 

considering behavioral uncertainties inherent in the system of transportation as well as its 

surrounding economic, social, and environmental systems.  

6.1. Uncertainty in LCSA 

The reliability of LCA results is highly dependent on the quality of data used. 

According to a review of unresolved problems associated with the LCA methodology, 

uncertainties in life-cycle inventory data is currently among the most critical of these 

problems and is therefore of paramount importance (Reap, Roman, Duncan, & Bras, 2008). 

The researchers also concluded that improper treatment of uncertain data can result in 

problematic decisions during the life cycle impact assessment and in the subsequent 

interpretation of LCA results. According to Finnveden the quality of the input data and the 

degree to which uncertainties are considered are both crucial considerations for any LCA 

analysis. Uncertainty analyses are of particularly great importance today because the 

majority of LCA studies in current literature have assigned a single value to each input 

parameter and then developed deterministic models to estimate the environmental impacts, 

even though using such deterministic models fails to adequately account for the inherent 

variability and uncertainty in any LCA analysis. To make more informed and accurate 

decisions, LCA practitioners need to understand and account for the uncertainty in input 
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data used in LCA (Lloyd & Ries, 2008). Several approaches have been proposed and 

implemented in currently available literature for conducting LCA analyses under 

uncertainty, including Monte Carlo simulation, which has been applied in a handful of LCA 

studies as a promising technique to address data uncertainty and inaccuracy (M. A. J. 

Huijbregts et al., 2001; M. Huijbregts, 2002; Hung & Ma, 2008; M Kucukvar et al., 2014; Murat 

Kucukvar & Tatari, 2011; Lo, Ma, & Lo, 2005; Tatari, Nazzal, & Kucukvar, 2012). According 

to Ciroth et al. (Ciroth, Fleischer, & Steinbach, 2004), the evaluation of uncertainty is 

relatively new in environmental LCA and is not taken into account sufficiently in many LCA 

studies. On the other hand, uncertainty analysis provides useful information to assess the 

reliability of LCA-based decisions and to help to decision makers to reduce uncertainties in 

LCA. In this regard, this chapter used a Monte Carlo simulation technique to deal with 

inherent uncertainties in LCSA of electric vehicles. The distribution of each uncertain 

parameter and their corresponding data sources are presented in the following section. 

 

6.2. Research Motivation and Objectives 

LCSA framework is still under development and there is an ongoing research to 

advance the methodology of LCSA for future applications (Sala et al., 2012a, 2012b). 

According to the European Commission funded project, namely Coordination Action for 

innovation in Life Cycle Analysis for Sustainability (CALCAS), current LCA methodology 

should be advanced in two directions ((Stefanova et al., 2014). The first direction is to 

deepen the LCSA by considering the dynamic relationships among the LCA parameters and 
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analyzing the complex causality mechanism between the system parameters. The second 

direction is to broaden the LSCA by including all pillars of sustainable development as 

environment, economy and society and extend the system boundary from micro-level 

analysis to macro-level discussed in Guinee et al. (Guinée et al., 2011). 

In addition to the CALCAS project, a recent review study pointed out the potential 

limitations and future of LCSA. Based on this work, the following points are highlighted for 

the current LCSA framework (Alessandra Zamagni et al., 2013): 

Point 1: The uncertainties in LCSA results not fully addressed and discussed, 

Point 2: The social LCA (S-LCA) is not well-studied and understood,  

Point 3: There is a mechanistic understanding without looking at the environmental 

LCA, social LCA and life cycle cost assessment results simultaneously, and 

Point 4: there is a lack of understanding the complex and mutual interactions between 

the environmental, economic and social pillars of the sustainability. 

In this regard, moving from LCA method to LCSA framework will require a system-

based approach, as the LCSA methodology emphasizes the simultaneous consideration of all 

three pillars of sustainability. Most currently available published LCSA literature provide  “snapshot” analyses that do not consider the dynamics of the relevant life cycle sustainability 

impacts over a period of time. Also, most LCSA studies looked at the life cycle inventories of 

products of systems from a very isolated perspective, thereby failing to properly address the 

inherent interdependencies between the environmental, social, and economic indicators 
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associated with sustainability. Hence, a proper LCSA will require researchers to consider the 

dynamic relationships between LCSA indicators as well as the inherent uncertainties in LCA 

input parameters. At this point, a system dynamics modeling approach can be a superior 

modeling approach to address the future research needs of advanced LCSA. The importance 

of the system dynamics method with respect to LCSA is also highlighted in a comprehensive 

methodology paper addressing the need to develop a more integrative approach for LCSA, 

which would attempt to develop a more holistic sustainability assessment framework and 

link dynamic interrelations between LCSA indicators over a period of time(Halog & Manik, 

2011). 

Overall this dissertation is a first empirical work addressed all future research needs of LCSA for alternative vehicle’s sustainability research. To do so, this work aims to fulfill 
three main research objectives. The first objective of this research is to provide a holistic 

comparison of electric vehicles and an internal combustion electric vehicles considering the 

time period between 2015 and 2050 over their entire life cycle. The second objective this 

research is to provide an uncertainty-embedded dynamic life cycle sustainability assessment 

framework that can be used for assessing alternative vehicle options considering their 

complex and interdependent environmental, economic and social impacts, simultaneously. 

The third objective of this research is to test several extreme scenarios in order to analyze 

the long-term sustainability of EVs, HEVs, PHEVs and ICVs in the United States. The results 

of this study are presented for seven relevant environmental, economic, and social impact 

categories, including (a) CO2 emissions, (b) particulate matter formation (PMF), (c) 

photochemical oxidant formation (POF), (d) vehicle ownership cost, (e) contribution to gross 
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domestic product (GDP), (f) employment generation, and (g) human health (HH) impacts of 

air pollution and climate change. To address uncertainties in life-cycle model parameters 

and the mutual cause-and-effect relationships between LCSA indicators, an uncertainty-

based system dynamics modeling approach is employed using uncertain parameters with 

predetermined probabilistic distributions. 

6.3. Methodology 

System dynamics is often used to analyze more complex systems with greater degrees 

of uncertainty (Pruyt, 2007), and so this section will serve to explain these uncertainties as 

applicable to the parameters of this model. More specifically, the uncertainty analysis 

performed in this study will involve assigning appropriate distributions to each parameter 

and conducting simultaneous Monte Carlo simulation for each variable in what is known as 

a multivariate sensitivity analysis. Most of the distribution types shown in this study are 

derived from literature, and some distributions are estimated using raw data from publicly 

available resources. Table 1 shows an overview of the model parameters, their assigned 

distributions, and their relevant distribution parameters. The deterministic values 

calculated in the previous study (Onat, Kucukvar, Tatari, & Egilmez, 2015), are assumed to 

be mean values for the assigned distributions. Uncertainties related to environmental 

impacts (CO2 emissions & air pollution), economic impacts (vehicle ownership costs 

depending on gasoline, electricity, M&R costs, etc.), and social impacts (human health 

characterization factors & employment multipliers) are addressed for each vehicle type with 

respect to its corresponding manufacturing and operation phase.  
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Automobile manufacturing emissions are assumed to be normally distributed. The 

standard deviations of these distributions are derived from a study by the Argonne National 

Laboratory, in which the researchers calculated the standard deviations and average values 

of emissions stemming from the manufacturing phase of a generic vehicle. The standard 

deviation values are derived proportionally in accordance with the proportions of the means 

and standard deviations derived from the referred study (Sullivan, Burnham, & Wang, 2010). 

The deterministic emission values including GHGs and air pollutants are obtained from 

(Onat, Kucukvar, et al., 2014c) and (Onat, Kucukvar, Tatari, & Egilmez, 2015). On average, 

the standard deviation of the manufacturing emissions is approximately 10% of the mean 

value, while the standard deviation of the petroleum supply and distribution emissions is 

higher at about 26% of the mean value (Venkatesh, Jaramillo, Griffin, & Matthews, 2011). 

The distribution for CO2 emissions per kWh of electric power generation is assumed to be 

triangular and the proportions of worst, base, and average values are derived from (Michalek 

et al., 2011). Standard deviation of tail pipe CO2 emissions is only 2% of the mean (Venkatesh 

et al., 2011). The distribution type and parameters of tail pipe air pollutant emissions are 

derived from the referred study (Zhang, Bishop, & Stedman, 1994). The distributions for air 

pollutant emissions for petroleum production and electric power generation are derived 

from the Argonne National Laboratory’s study (Brinkman, Wang, Weber, & Darlington, 

2005). For some variables, such as the fuel economy values of each vehicle type, a unit 

normal distribution with a mean of 1 and standard deviation of 0.07 is assigned (Wi & Park, 

2013). These proportional values of the mean and standard deviation are derived from the 

referred values, and we assigned unit distributions for some variables because these 
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variables were initially defined as lookup variables, each consisting of an exogenous table of 

inputs to the model such that the value changes independently of other variables over time. For instance, the fuel economy values and the standard deviation of new vehicles’ fuel 
economy values are obtained from the BAU case of the VISION model, after which these 

lookup values are multiplied by the assigned unit distribution to obtain the fuel economy 

distribution for each year. The average costs per gallon of gasoline and per kWh of electricity 

are assumed to have triangular distributions, the data for which is obtained from the U.S. 

Energy Information Administration (Faron, Pagerit, & Rousseau, 2009; The U.S. Energy 

Information Administration, 2014, 2015a, 2015b).  Using these data sets, the proportions of 

maximum and minimum values are obtained for each year, and their proportions to the 

corresponding mean values are estimated to construct the triangular distributions. The 

distributions for employment multipliers are estimated using raw data from the U.S. Bureau 

of Labor Statistics (the U.S. Bureau of Labor Statistics, 2015). Human health characterization 

factors are taken from ReCiPe (ReCiPE, 2009). In both cases, the distributions are assumed 

to be triangular, using minimum and maximum values derived from available literature 

(Michalek et al., 2011; AM De Schryver, 2011; Shah & Ries, 2009).  
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Table 28. Distribution types and parameters of the model variables 

Variable Name 

Determ

inistic 

values 

Unit 
Dist. 

type 

Distribution 

parameters 
References 

CO2 emission 

multiplier per 

ICV 

6.960 tonCO2-eq 

/vehicle 

Normal µ= 6.96, σ=0.668  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

CO2 emission 

multiplier per 

HEV 

7.520 tonCO2-eq 

/vehicle 

Normal µ= 7.52,  σ= 0.723  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

CO2 emission 

multiplier per 

EV 

11.10 tonCO2-

eq/vehicle 

Normal µ= 11.1, σ= 1.066  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

Petroleum 

supply CO2 

emission per 

gallon of 

gasoline 

2.11 kgCO2-eq 

/gal 

Normal µ=  2.11, σ= 0.549  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Venkatesh et al., 2011) 

Electricity 

supply CO2 

emissions per 

kWh 

0.696 kgCO2-eq 

/kWh 

Triangle a= 0,  b= 0.696, 

 p= 1.067 

(Michalek et al., 2011; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

Tail pipe CO2 

emissions per 

gal of gasoline 

8.92 kgCO2-

eq/gal 

Normal µ= 8.92, σ= 0.1784  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Venkatesh 

et al., 2011) 

PMF multiplier 

per ICV 

16.38 kgPM10-eq 

/vehicle 

Normal µ= 16.38, σ= 
1.57248 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

PMF multiplier 

per HEV 

17.68 kgPM10-eq 

/vehicle 

Normal µ= 17.68,  

σ= 1.69728 

(Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 
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Variable Name 

Determ

inistic 

values 

Unit 
Dist. 

type 

Distribution 

parameters 
References 

PMF multiplier 

per EV 

26.00 kgPM10-eq 

/vehicle 

Normal σ= 26, µ= 2.496  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

Tail pipe 

PM10eq 

emissions per 

gal of gasoline 

1.93E-

03 

kgPM10-eq 

/gal 

gamma α= 1.93E-03,    

β=0.14768 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Zhang et 

al., 1994) 

Petroleum 

supply PM10eq 

emission per 

gallon of 

gasoline 

9.21E-

04 

kgPM10-eq 

/gal 

Normal µ= 9.21E-04, 

 σ=  8.84E-05 

 (Brinkman et al., 2005; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

Electricity 

supply PM10eq 

emissions per 

kWh 

2.26E-

04 

kgPM10-

eq/kWh 

Beta α= 0.38,    β=1.3 (Brinkman et al., 2005; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

POF multiplier 

per ICV 

31.10 kgNMVOC

-

eq/vehicle 

Normal µ=31.1,  σ= 2.99  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

POF multiplier 

per HEV 

33.20 kgNMVOC

-

eq/vehicle 

Normal µ= 33.2, σ= 3.18  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

POF multiplier 

per EV 

46.20 kgNMVOC

-

eq/vehicle 

Normal µ= 46.2, σ= 4.44  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c; 

Sullivan, Burnham, et al., 

2010) 

Tail pipe 

NMVOC 

emissions per 

gal of gasoline 

1.15E-

02 

kgNMVOC

-eq/gal 

Gamma α= 0.03196,     
β= 0.360413 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Zhang et 

al., 1994) 

Petroleum 

supply NMVOC 

emission per 

6.88E-

03 

kgNMVOC

-eq/gal 

Normal µ=6.88E-03, σ= 
6.6E-04 

 (Brinkman et al., 2005; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 
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Variable Name 

Determ

inistic 

values 

Unit 
Dist. 

type 

Distribution 

parameters 
References 

gallon of 

gasoline 

Electricity 

supply NMVOC 

emissions per 

kWh 

1.86E-

03 

kgNMVOC

-eq/kWh 

Beta α= 0.45,    β=1.24  (Brinkman et al., 2005; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

Fuel economy 

distribution 

lookup 

variable 

dmnl Normal µ= 1, σ= 0.07  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Wi & Park, 

2013) 

AER 40.00 miles Normal µ= 40, σ=2.8 (Bastani, Heywood, & 

Hope, 2012; Onat, 

Kucukvar, Tatari, & 

Egilmez, 2015) 

cost per gal of 

gasoline 

lookup 

variable 

dmnl Triangle a= 0.8496,  b= 

1.124  p= 1 

 (Faron et al., 2009; Onat, 

Kucukvar, Tatari, & 

Egilmez, 2015) 

per mile M&R 

cost 

0.05 $/mile Triangle a= 0.042,  b= 

0.0625  p= 0.05 

 (Barnes & Langworthy, 

2003; Faron et al., 2009; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

Unit cost of EV 

battery 

lookup 

variable 

dmnl Normal µ= 1, σ=0.04  (Barnett et al., 2009; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

electricity cost 

per kWh 

Lookup 

variable 

dmnl Triangle a= 0.5439,  b= 

2.34  p= 1 

 (Faron et al., 2009; Onat, 

Kucukvar, Tatari, & 

Egilmez, 2015) 

Battery 

replacement 

1.00 #of 

replaceme

nt 

Triangle a= 0,  b= 3  p= 1  (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; Onat, 

Kucukvar, et al., 2014c) 

EV range 100.00 miles Normal µ= 100, σ=7  (Bastani et al., 2012; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015) 

Employment 

multiplier of 

vehicle 

operation 

1.43E-

05 

#person/$ Beta α= 5.15E-06 ,    

β=1.65E-05 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; the U.S. 

Bureau of Labor Statistics, 

2015) 

Employment 

multiplier of 

vehicle 

manufacturing 

1.32E-

05 

#person/$ Weibull α= 3.45,    
β=1.62E-05 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; the U.S. 

Bureau of Labor Statistics, 

2015) 
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Variable Name 

Determ

inistic 

values 

Unit 
Dist. 

type 

Distribution 

parameters 
References 

HH CF for PMF 2.60E-

04 

DALY/kgP

M10-eq 

Triangle a= 1.56E-05,  b= 

5.75E-04  p= 2.6E-

04 

 (Michalek et al., 2011; 

Onat, Kucukvar, Tatari, & 

Egilmez, 2015; ReCiPE, 

2009) 

HH CF for POF 3.90E-

08 

DALY/kgN

MVOC-eq 

Triangle a= 3.51E-08,  b= 

7.02E-08  p= 3.9E-

08 

 (Onat, Kucukvar, Tatari, & 

Egilmez, 2015; ReCiPE, 

2009; Shah & Ries, 2009) 

HH CF for GWP 1.40E-

06 

DALY/kgC

O2-eq 

Triangle a=1.19E-06,   

b= 3.51E-06   

p= 1.4E-06 

(A. M. De Schryver, 

Brakkee, Goedkoop, & 

Huijbregts, 2009; Onat, 

Kucukvar, Tatari, & 

Egilmez, 2015; ReCiPE, 

2009; An De Schryver, Van 

Zelm, Humbert, McKone, 

& Huijbregts, 2011) 

 

After the uncertainties associated with the model parameters are defined, 1,000 

iterations are run simultaneously for 31 different parameters. These iterations are run in 

each year from 1980 to 2050, thereby revealing the behavioral limits of the environmental, 

economic, and social impacts of alternative vehicle technologies. Additionally, we estimated 

the histogram distribution of each impact for every year and presented the parameters of 

these distributions for 2030 and 2050 in the following section.  

6.4. Results 

Results for seven different impact categories are presented within the subsections of 

environmental, economic, and social impacts. In the subsections of the results, deterministic 

and multivariate behaviors, as well as histogram distributions in 2030 and 2050 are 

presented.  
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6.4.1. Environmental Impacts 

Results if the environmental impacts, including CO2 emissions, particulate matter 

formation, and photochemical oxidant formation, are explained in the following subsections.  

6.4.1.1. CO2 emissions: 

Fig. 29 shows the total life cycle CO2 emissions of each vehicle type (scenario) based 

on the deterministic values of the relevant parameters. The initial peak observed in the 2016 

is due to the sudden increase in vehicle manufacturing emissions, which is subsequently 

overwhelmed by the savings in operation-phase emissions in later years. The maximum CO2 

emission reduction potential of EVs is the highest in the long run, with that of PHEVs as a 

close second. It should be noted that technological improvements in battery technology and 

fuel efficiency improvements were taken into consideration in this study; while the former 

most strongly favored the emission reduction potential of PHEVs and EVs, the latter favored 

all vehicle types to some degree; since both of these factors were considered simultaneously, 

these overall improvements may have contributed to some extent to the superior 

performance of EVs and PHEVs in terms of CO2 emissions. Likewise, the declining trend in 

the BAU scenario is mainly due to the fuel efficiency improvements of ICVs.   
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Figure 29. Total life cycle CO2 emissions based on deterministic values. 

 

Fig. 30 shows the stochastic results for each scenario and their behavioral limits in 

probabilistic terms. For instance, of 1000 iterations, 50% falls into the orange shaded area. 

Similarly, blue, green and grey areas are composed of the 75%, 95%, and 100% of the 

simulation results, respectively. The same representation is applied for each impact category 

in the following subsections. According to Fig.3, the uncertainty associated with EVs is higher 

than others and the span between maximum and minimum values of emissions has an 

increasing trend (Fig 3-d). All of the scenarios result in a decreasing CO2 emission trend, 

while BAU scenario (Fig. 3-a) has the smallest decrease since 2015. Fig. 30 should be 

evaluated along with the values presented in Table 29 and Fig 31.  
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Figure 30. The multivariate dynamics of total annual CO2 emissons (tonCO2) a) BAU, b) S-
HEV,  c) S-PHEV, d) S-EV. 

 

Table 29 shows the distribution parameters for the CO2 emissions in 2030 and 2050. 

The standard deviation of the S-EV is 11% and 19% of the mean in years 2030 and 2050, 

respectively, while the corresponding percent values for the BAU and S-HEV scenarios are 

3% in 2030 and 2050. The maximum CO2 emissions value for the S-EV scenario is 

approximately 1.5 times greater than its mean value in 2050, while the corresponding 

minimum CO2 emissions value is about half of the mean value in 2050. Hence, the estimated 

CO2 emission reduction potential for EVs can be estimated within ±50% of the mean value, 

whereas the corresponding variations for the S-PHEV, S-HEV, and BAU scenarios in 2050 are 

approximately ±21%, ±11%, ±9%, respectively. Based on a 90% confidence interval, the 
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maximum CO2 emission reduction potentials of HEVs, PHEVs, and EVs are 3%, 11%, and 10% 

in 2030 compared to their respective 2015 emission levels. In 2050, these reduction 

potentials increase to 11%, 23%, and 20%, respectively. From the stochastic results, it is 

interesting to note that the CO2 emission reduction potential of PHEVs is found to be slightly 

higher than that of EVs, which was found to be greater on average. On the other hand, based 

on a 90% confidence interval, the CO2 emissions rate for the BAU scenario increases by 9% 

in 2030 and by 4% in 2050, compared to its corresponding CO2 emissions rate in 2015.   

Table 29. C02 emission distribution parameters  

Year Scenario Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 5.37E+08 6.46E+08 5.93E+08 5.93E+08 1.80E+07 5.93E+08 6.05E+08 6.16E+08 

S-HEV 4.80E+08 5.88E+08 5.28E+08 5.27E+08 1.59E+07 5.27E+08 5.39E+08 5.49E+08 

S-PHEV 4.00E+08 5.51E+08 4.71E+08 4.70E+08 2.49E+07 4.70E+08 4.87E+08 5.03E+08 

S-EV 3.20E+08 5.83E+08 4.44E+08 4.46E+08 5.10E+07 4.46E+08 4.82E+08 5.11E+08 

2
0

5
0

 

BAU 5.11E+08 6.21E+08 5.68E+08 5.68E+08 1.80E+07 5.68E+08 5.81E+08 5.91E+08 

S-HEV 4.39E+08 5.32E+08 4.84E+08 4.84E+08 1.51E+07 4.84E+08 4.95E+08 5.04E+08 

S-PHEV 3.13E+08 4.75E+08 3.99E+08 4.01E+08 2.93E+07 4.01E+08 4.21E+08 4.37E+08 

S-EV 1.91E+08 5.20E+08 3.64E+08 3.68E+08 6.93E+07 3.68E+08 4.17E+08 4.53E+08 

 

Fig. 31. shows the histogram of CO2 emission results for each scenario in 2030 and 

2050, whose parameters are given in Table 2. As can be seen from Fig. 4 (a) and (b), the 

uncertainty range of S-EV is much higher. Both of the distributions in 2030 and 2050 have 

similar shape.   
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Figure 31. Histogram of the total CO2 emissions based on Monte Carlo simulations: a) in 
2030, b) in 2050. 
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6.4.1.2. Particulate matter formation:  

Fig. 32 shows the PMF impacts of each scenario based on the deterministic values 

presented in Table 1. The initial jump observed for all scenarios in 2016 (except for the BAU 

scenario) is due to the PMF impacts of the manufacturing phase, which suddenly increases 

due to new vehicle sales. Consequently, the manufacturing impacts of HEVs, PHEVs, and EVs 

are greater than those of ICVs. Because the operation-phase savings are reduced over time, 

the decreasing trend of PMF is reveres after 2035 and 2036. Aside from these differences, 

PMF impacts demonstrate a similar trend to that of CO2 emissions. PHEVs have the maximum 

PMF reduction potential, with 11% smaller PMF impacts compared to the BAU scenario, 

which is mostly composed of ICVs. EVs become a better option after 2025 compared to the 

PMF impacts of ICVs. 

 

Figure 32. Total life cycle PMF based on deterministic values. 
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The stochastic results are presented in Fig. 33. The uncertainty ranges (the difference 

between maximum and minimum values of PMF impacts) are higher in BAU (Fig 33-a) and 

S-EV (Fig. 33-d). The smallest range is observed in S-PHEV (Fig 33-c). Considering that 

PHEVs had the maximum potential of reduction in the deterministic scenario, adoption of 

PHEVs is a more robust strategy to reduce PMF impacts.  Furthermore, the uncertainty range 

associated with PMF impacts of PHEVs decreases overtime. Behaviorally, there has been no 

significant difference compared to deterministic trends. PMF impacts of all scenarios 

decreases until a certain time, then a slight increase is observed. For more detailed 

evaluation, it is necessary to look at the findings in Table 30 which shows the distribution 

parameters of PMF impacts in 2030 and 2050. 
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Figure 33. The multivariate dynamics of total annual PMF emissions (kgPM10-eq) a) BAU, 
b) S-HEV,  c) S-PHEV, d) S-EV. 
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times greater than that of the S-PHEV in 2050. This range is also high for the BAU scenario 

in both 2030 and 2050. According to these results, based on a 90% confidence interval, the 

maximum PMF reduction potentials of HEVs and PHEVs are 1% and 5% in 2030 compared 

to 2015 emission levels, whereas EVs and ICVs (BAU scenario) may cause an increase of up 

to 3% and 9%, respectively, again compared to 2015 emission levels. In 2050, the PMF 

reduction potentials of the S-HEV and S-PHEV are 1% and 7%, respectively, while the BAU 

and S-EV scenarios demonstrate increases of 11% and 6%, respectively. Unlike the CO2 

emission impacts, the deterministic and stochastic values for PMF impacts indicated similar 

results, with PHEVs as the best alternative vehicle option compared to other vehicle types.  

Table 30. PMF distribution parameters 

Year Scenario Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 1.47E+08 2.23E+08 1.81E+08 1.81E+08 1.43E+07 1.81E+08 1.92E+08 2.00E+08 

S-HEV 1.35E+08 2.00E+08 1.66E+08 1.65E+08 1.25E+07 1.65E+08 1.75E+08 1.83E+08 

S-PHEV 1.36E+08 1.95E+08 1.62E+08 1.62E+08 9.88E+06 1.62E+08 1.70E+08 1.76E+08 

S-EV 1.36E+08 2.16E+08 1.73E+08 1.73E+08 1.27E+07 1.73E+08 1.81E+08 1.90E+08 

2
0

5
0

 

BAU 1.53E+08 2.30E+08 1.87E+08 1.87E+08 1.34E+07 1.87E+08 1.97E+08 2.04E+08 

S-HEV 1.37E+08 1.97E+08 1.67E+08 1.66E+08 1.15E+07 1.66E+08 1.75E+08 1.82E+08 

S-PHEV 1.42E+08 1.85E+08 1.61E+08 1.61E+08 7.27E+06 1.61E+08 1.66E+08 1.71E+08 

S-EV 1.38E+08 2.17E+08 1.77E+08 1.78E+08 1.44E+07 1.78E+08 1.87E+08 1.96E+08 

 

Fig. 34 shows the histogram of the simulation results for PMF impacts in 2030 and 

2050. AS can be seen from the figure, the uncertainty ranges of BAU, S-HEV, and S-PHEV 

decrease, while it is increasing for S-EV. The shape of the distributions are similar in 2030 

and 2050, while distribution shape of BAU, S-HEV, and S-EV are more flat in 2050 compared 

to their shape in 2030. 
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Figure 34. Histogram of the total PMF based on Monte Carlo simulations: a) in 2030, b) in 
2050. 
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6.4.1.3. Photochemical oxidant formation 

Fig. 35 shows the POF impacts for each scenario from 1980 to 2050. Same as the 

previous impact categories, the initial increase in 2016 is due to sudden increase in vehicle 

manufacturing impacts with respect to HEVs, PHEVs, and EVs, the manufacturing POF 

impacts of which are greater than those of ICVs. In this impact category, PHEVs and HEVs are 

better alternatives and have very similar impact trends. On the other hand, the S-EV scenario 

yielded worse results than the BAU case most of the time, except for a brief period between 

2032 and 2043. As with the PMF impacts discussed previously, a reversed behavioral trend 

is observed after some point around the year 2038, owing mainly to the imbalances in 

manufacturing and operation phase impacts. Ordinarily, the operation-phase savings 

gradually reduce over time, whereas the manufacturing impacts increase as a result of new 

vehicle demand, leading the impacts of manufacturing phase to eventually outweigh the 

savings in the operation phase. This behavioral pattern was clearly observed with respect to 

the PMF and POF impacts, because the manufacturing and operation phase impacts are close 

to each other and changes in one such impact significantly affects the impact trend over time. 

According to the POF results based on deterministic values, HEVs and PHEVs are preferable 

for reducing the POF impacts of passenger vehicle transportation.  
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Figure 35. Total life cycle POF based on deterministic values. 
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decreasing trend. However, the impacts can be understood by evaluating the distribution 

parameters given in Table 31.  

1,000

1,050

1,100

1,150

1,200

1,250

1,300

1,350

1,400

1,450

1,500

1980 1990 2000 2010 2020 2030 2040 2050

M
ill

io
n

 k
g

N
M

V
O

C
e

q

S-EV S-PHEV S-HEV BAU



 

170 
 

 

Figure 36. The multivariate dynamics of total annual POF (kgNMVOC-eq) a) BAU, b) S-HEV,  
c) S-PHEV, d) S-EV. 

 

Table 31 shows the distribution parameters for POF emissions in 2030 and 2050. The 

normalized standard deviation of the S-EV scenario is found to be the highest at 18% and 

26% of the its mean values in 2030 and 2050, respectively. The corresponding normalized 

standard deviations for BAU and S-EV are both 8% in 2030 and 7% in 2050., while that of 

the S-PHEV scenario is 9% in 2030 and 11% in 2050. The maximum POF impact value for 

the S-EV scenario is approximately 1.5 and 1.7 times greater than its mean value in 2030 and 

2050, respectively, while the corresponding minimum values are 66% and 56% of the S-EV’s 
mean value in 2030 and 2050, respectively. These ranges are smaller for other scenarios, 

which are approximately ±20%, ±21%, and ±25% in both 2030 and 2050 for the BAU, S-HEV, 
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and S-PHEV scenarios, respectively. Based on a 90% confidence interval, the maximum POF 

impact reduction potentials of HEVs and PHEVs are 1% and 8% in 2030, respectively, while 

ICVs and EVs increase the POF impacts by 8% and 1% in 2030, all compared to 2015 

emission levels. These corresponding reduction potentials in 2050 are 1%, 9%, 10%, and 

6%, respectively, again compared to 2015 emission levels. Hence, it can be concluded that 

PHEVs are the better alternative based on stochastic results with a 90% confidence interval, 

which is similar to what was proposed based on the deterministic results (Fig. 35). It should 

be noted that, according to the results based on deterministic values, the S-PHEV and S-HEV 

scenarios had very similar trends with almost the same POF impact reduction potentials by 

the final year. However, the stochastic results showed that the POF reduction potential of 

PHEVs is almost 9 times greater than those of HEVs. Furthermore, while the results based on 

deterministic values indicated that S-EV is worse than BAU scenario, as opposed to results 

based on deterministic values, S-EV performed better than the BAU in the terms of POF 

impacts. Another interesting finding is that the S-EV scenario had the best performance on 

average, demonstrating much better results than the S-HEV and BAU scenarios and slightly 

better results than the S-PHEV scenario in both 2030 and 2050. 

 

 

 

 



 

172 
 

Table 31 POF distribution parameters 

 

The histogram distributons of the simulations are presented in Fig. 37. According to 

these histograms and the parameters shown in Table 4, distribution of S-EV skewed to the 

left and its mean value has the lowest POF impacts fallowed by the S-PHEV. Therefore, 

stocastic results basedon 90% confidence interval did not favored S-EV which has long tail 

untill the right end of the distributions. S-EV had the greatest uncertainty ranges in all of the 

nevirnmental indicators, which mainly stem from the uncertainties associated with the 

source of the electricity generation to power EVs. 

 

 

 

Year Scenario Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 9.47E+08 1.36E+09 1.15E+09 1.14E+09 8.99E+07 1.14E+09 1.22E+09 1.27E+09 

S-HEV 8.26E+08 1.25E+09 1.05E+09 1.05E+09 8.26E+07 1.05E+09 1.11E+09 1.17E+09 

S-PHEV 7.78E+08 1.22E+09 9.58E+08 9.53E+08 8.75E+07 9.53E+08 1.02E+09 1.08E+09 

S-EV 6.11E+08 1.37E+09 9.27E+08 8.86E+08 1.65E+08 8.86E+08 1.05E+09 1.18E+09 

2
0

5
0

 

BAU 9.94E+08 1.40E+09 1.18E+09 1.17E+09 8.36E+07 1.17E+09 1.25E+09 1.30E+09 

S-HEV 8.31E+08 1.25E+09 1.05E+09 1.05E+09 7.58E+07 1.05E+09 1.11E+09 1.16E+09 

S-PHEV 7.57E+08 1.18E+09 9.18E+08 8.97E+08 9.73E+07 8.97E+08 9.88E+08 1.07E+09 

S-EV 4.93E+08 1.46E+09 8.75E+08 8.04E+08 2.31E+08 8.04E+08 1.05E+09 1.25E+09 
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Figure 37. Histogram of the total POF based on Monte Carlo simulations: a) in 2030, b) in 
2050. 
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6.4.2. Economic impacts 

Economic impacts are evaluated based on annual vehicle ownership costs to the 

drivers and the contrubion to the U.S. GDP, which are explained in the following sub-

sections.  

6.4.2.1. Vehicle ownership cost 

Fig. 38 shows the vehicle onwership costs based on the deterministic values 

presented in Table 1 for each vehicle type. The annualized total life-cycle cost of EVs are 

much higher than those of other alternative vehicles when they are introduced to the market 

in 2009-2010, whereas the ownership costs of HEVs and PHEVs are relatively lower in the 

same years. On the other hand, the ownership costs of each vehicle type converge over time 

to a very close grouping by 2050, showing a decreasing trend in ownership costs mainly due 

to fuel efficiency improvements and advances in battery technology. The sharpest decrease 

is observed in the ownership costs of EVs due to decreases in battery costs and in the initial 

puchase price of EVs, with the overall ownership costs of EVs reaching their lowest value by 

2050. 
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Figure 38. Annual vehicle ownership costs based on deterministic values 

 

The stochastic results for ownership costs are presented in Fig. 39. Uncertainty rage 

associated with ownership cost of EVs (Fig. 39-d) has a decreasing trend and reaches its 

lowest range by 2050. Ownership costs of ICVs (Fig. 39-a) has also relatively higher 

uncertainty range and a relatively steady range with through time. Smallest uncertainty 

ranges was observed in the ownerships costs of HEVs (Fig. 39-b) and PHEVs (Fig-39-c). 

While ownership costs of EVs and PHEVs have decreasing trends, HEVs and ICVs have slight 

fluctuating behavior and uncertainty range. 
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Figure 39. The multivariate dynamics of total annual vehicle ownership cost (2013$) a) 
BAU, b) S-HEV,  c) S-PHEV, d) S-EV. 

Table 32 shows the distribution parameters of the ownership cost simulations for 

each vehicle type in 2030 and in 2050. The standard deviation of the S-EV scenario is 5% and 

4% of the mean in 2030 and 2050, respectively. Likewise, the maximum ownership cost for 

the S-EV scenario is approximately 1.16 and 1.14 times greater than its mean value in 2030 

and 2050, respectively, while its corresponding minimum ownership cost is about 89% of 

its mean value in in 2050. In other words, the estimated ownership costs of EVs are 

approximately ±%15 and ±%11 of the mean value in 2030 and 2050, respectively. The 

ownership costs of ICVs, HEVs, and PHEVs are ±%6, ±%6, and ±%5 of their mean values in 

2030, whereas these ranges in 2050 are ±%7, ±%6, and ±%6 of their corresponding mean 

values, respectively. According to these results, within a 90% confidence interval, PHEV is 

the only vehicle option that can reduce the ownership cost compared to other vehicle types, 
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and its reduction potential is as low as 1% by 2030 compared to ICV ownership costs in 2015. 

On the other hand, the ownership costs of EVs and ICVs are higher in 2030 compared to ICV 

ownership costs in 2015. The ownership cost reduction potentials of all vehicle types 

become much greater in 2050, at which point cost reductions reach as low as approximately 

20% for all vehicle types compared to ICV ownership costs in 2015. The stochastic results 

indicate a similar outcome, and the uncertainty associated with ownership costs is in fact 

found to be relatively smaller than those of environmental impacts. 

Table 32 Vehicle ownership cost distribution parameters 
 

 

Fig. 40 shows the histogram of the vehicle ownership cost results for each vehicle 

type in 2030 and 2050, whose parameters are given in Table 5. According to the figure, 

uncertainty range of EV becomes smaller and its location respect to distribution of other 

vehicles changes in the period of between 2030 and 2050. Also, the shape of the distribution 

for EV ownership cost changes, while other distributions have relatively similar shape 

compared to their distributions in 2030.  

Year Scenario Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 4808.37 5374.74 5082.26 5083.27 103.583 5083.51 5154.19 5220.96 

S-HEV 4612.73 5145.58 4854.27 4854.2 95.7818 4854.48 4922.38 4978.71 

S-PHEV 4676.26 5178.08 4909.06 4909.36 81.6018 4909.37 4962.48 5016.1 

S-EV 4594.75 6079.18 5221.13 5200.78 254.876 5200.82 5395.11 5560.12 

2
0

5
0

 

BAU 3628.23 4114.92 3860.22 3860.78 89.5717 3860.8 3923.38 3977.72 

S-HEV 3776.18 4204.01 3977.24 3976.71 78.4187 3976.89 4032.93 4078.09 

S-PHEV 3667.96 4094.1 3869.22 3868.5 67.749 3868.64 3915.39 3956.08 

S-EV 3394.33 4285.33 3765.88 3756.84 141.499 3757.12 3863.98 3957.5 
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Figure 40 Histogram of the vehicle ownership costs based on Monte Carlo simulations: a) in 
2030, b) in 2050. 
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6.4.2.2. Contribution to GDP 

Fig. 41 shows the total life-cycle contribution to GDP for each scenario based on 

deterministic values. While the BAU and S-HEV scenarios both have increasing trends, 

the GDP contributions of the S-PHEV and S-EV scenarios tend to fluctuate more, mainly 

due to the constantly shifting balance between increases in VMT and advances in fuel 

economy. While the former stimulates the consumption of fuel (gasoline and/or 

electricity), the latter (including battery efficiency improvements) reduces the 

consumption of gasoline and electricity. PHEVs and EVs contribute more to the GDP due 

to their higher operating and purchase costs when they are introduced to the market, but 

as battery and electric vehicle prices decrease over time and fuel efficiencies increase, 

the amount of money spent on batteries and/or electricity decreases, in turn reducing 

the overall contribution to GDP to some extent.  Overall, HEVs are shown to have the 

highest contribution to GDP by 2050, with ICVs (the BAU scenario) as a close second. 
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Figure 41 Annual contribution to GDP based on deterministic values 

 

The stochastic results are presented in Fig. 42 for each scenario.  .  As with the 

stochastic trends of the S-EV scenario observed in previous impact categories, the 

uncertainty range is higher than those of other scenarios. The BAU, S-HEV, and S-PHEV 

scenarios all have increasing trends of contribution to GDP, while the S-EV scenario’s 

contribution to GDP fluctuates significantly based on either stochastic or deterministic 

values. No significant change in uncertainty ranges is observed for the BAU, S-HEV, or S-

PHEV scenarios, but the uncertainty range for the S-EV scenario increases suddenly after 

2015 and fluctuates thereafter until 2050.  
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Figure 42 The multivariate dynamics of the contribution to GDP (2013$) a) BAU, b) S-HEV, 
c) S-PHEV, d) S-EV. 

Table 33 shows the distribution parameters of contribution to GDP for each scenario 

in 2030 and 2050.  The standard deviation values are all relatively small, with 2030 values 

of 3% for both the BAU and S-HEV scenarios, 2% for the S-PHEV scenario, and 5% for the S-

EV scenario. The GDP contribution range for the S-EV scenario is around 30% and 26% of 

the mean value in 2030 and 2050, respectively, while the corresponding range is around 

14% for all other scenarios in both 2030 and 2050. In other words, the uncertainty range of 

the S-EV is approximately two times greater than that of any other scenario. However, the 

uncertainty range of S-EV with respect to GDP contribution is smaller than its corresponding 

uncertainty ranges for the environmental impact categories (Section 3.1). According to the 

results, within a 90% confidence interval, all of the considered scenarios yield increases in 
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GDP contribution relative to 2015 contributions. The additional GDP contribution of the BAU 

scenario is 15% in 2030 and 31% in 2050, both relative to its 2015 contributions. Both the 

S-HEV and S-PHEV scenarios increase the contribution to GDP by 13% from 2015 to 2030; 

by 2050, these potential contribution increases reach up to 28% of 2015 contributions. The 

S-EV scenario, however, is found to be the highest potential contributor to GDP in 2030 with 

a 22% increase compared to 2015 contributions. Finally, within a 90% confidence interval, 

the S-HEV scenario shows the highest potential of GDP contribution by 2050, with a 

contribution increase of around 33% compared to 2015 contributions. 

Table 33 Contribution to GDP distribution parameters 

Year Scen. Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 3.23E+11 3.74E+11 3.48E+11 3.48E+11 9.41E+09 3.48E+11 3.54E+11 3.60E+11 

S-HEV 3.20E+11 3.67E+11 3.42E+11 3.42E+11 8.71E+09 3.42E+11 3.49E+11 3.54E+11 

S-PHEV 3.19E+11 3.66E+11 3.44E+11 3.44E+11 8.12E+09 3.44E+11 3.50E+11 3.55E+11 

S-EV 3.17E+11 4.20E+11 3.62E+11 3.62E+11 1.64E+10 3.62E+11 3.73E+11 3.85E+11 

2
0

5
0

 

BAU 3.72E+11 4.26E+11 3.98E+11 3.98E+11 9.99E+09 3.98E+11 4.05E+11 4.11E+11 

S-HEV 3.83E+11 4.31E+11 4.07E+11 4.07E+11 8.81E+09 4.07E+11 4.13E+11 4.19E+11 

S-PHEV 3.65E+11 4.15E+11 3.90E+11 3.90E+11 7.84E+09 3.90E+11 3.96E+11 4.00E+11 

S-EV 3.37E+11 4.36E+11 3.80E+11 3.79E+11 1.60E+10 3.79E+11 3.90E+11 4.01E+11 

 

Fig. 43 shows the histogram of the GDP contribution values for each scenario in 2030 

(Fig. 43a) and in 2050 (Fig. 43b). From the figure, the uncertainty range of the S-EV scenario 

is largest in both 2030 and 2050, and no significant change is observed in the shape of the 

distributions between 2030 and 2050. One of the main changes is that the distribution of the 

S-EV is shifted to the left in 2050 compared to its distribution in 2030. The distributions for 



 

183 
 

the BAU, S-HEV, and S-PHEV scenarios are very similar in 2030, whereas they have moved 

slightly apart from one another by 2050. 

 

 

Figure 43 Histogram of the contribution to GDP based on Monte Carlo simulations: a) in 
2030, b) in 2050. 
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6.4.3. Social Impacts 

Social impacts, employment generation and human health impacts, are presented in 

the following sub-sections.  

6.4.3.1. Employment generation 

The total employment generation in the transportation sector and in all related 

sectors in its supply chain is presented in Fig. 44, based on the deterministic values 

presented in Table 28. The trend of employment generation is very similar to that of GDP 

contribution, since these two variables are linearly correlated. Similar to previous impact 

categories, the initial increase in the scenarios is due to an initial increase in demand for new 

vehicles, which thereby stimulates the vehicle-manufacturing sector and increases the 

employment generated in this sector. Although the demand for new vehicles increases over 

time and thus continues to generate employment, improvements in fuel efficiency and 

battery technology reduced fuel consumption, including batteries, electricity, and gasoline. 

For the S-EV scenario, the loss of employment due to these improvements ultimately 

outweighs the positive employment generation due to increased EV manufacturing demand, 

resulting in a decreasing trend until 2040, when the positive employment generation due to 

increased demand once again becomes dominant. For all other scenarios, the employment 

generation demonstrates an almost steady increasing trend, with the sole exception of the S-

PHEV scenario from 2015 to 2020. The overall employment generation is highest for the S-

HEV and BAU scenarios, both of which ultimately reach nearly identical employment 

generation rates by around 2050. 
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Figure 44. Total life cycle employment generation based on deterministic values 

 

Stochastic results for employment generation are presented in Fig. 45 for each 

scenario. The uncertainty ranges for employment generation are found to be higher than 

those for previous impact categories, with the 50% uncertainty range (the orange area in the 

figure) covering an especially large area. The uncertainty ranges for the BAU and S-EV 

scenarios are slightly higher than those of other scenarios. As opposed to the fluctuating 

behavior observed in the results based on deterministic values, the stochastic results appear 

to have steadier behavior, most demonstrating increasing trends. The uncertainty range for 

the S-PHEV scenario (Fig. 18c) has a relatively decreasing trend, while that of the S-EV 

scenario increases briefly between 2015 and 2025. A more detailed analysis of the 
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uncertainty analysis can be made by evaluating the values presented in Table 34, in which 

the distribution parameters for each scenario are shown for 2030 and 2050.  

 

Figure 45. The multivariate dynamics of the employment generation (#of people) a) BAU, 
b) S-HEV, c) S-PHEV, d) S-EV. 

 

The normalized standard deviation values are all relatively high at 20% for the BAU 

scenario, 19% for the S-HEV scenario, 16% for the S-PHEV scenario, and 17% for the S-EV 

scenario in 2030; these values in 2050 are 19% for the BAU scenario, 16% for the S-HEV 

scenario, and 13% for both the S-PHEV and S-EV scenarios. The variations between the 

minimum and maximum employment generation values in 2030 are approximately ±39%, 

±38%, ±35%, and ±40% of the mean values of the BAU, S-HEV, S-PHEV, and S-EV scenarios 
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in 2030, respectively, whereas these variations in 2050 are ±37%, ±33%, ±39%, and ±36% 

of the mean values, respectively. Within 90% confidence interval, all scenarios lead to an 

increase in employment in the U.S. transportation sector. Employment generation in 2030 

(relative to employment levels in 2015) by the BAU, S-HEV, S-PHEV, and S-EV scenarios are 

36%, 31%, 27%, and 36% in 2030, respectively, while the corresponding 2050 employment 

values are 53%, 50%, 36%, and 33% compared to transportation-related employment levels 

in 2015 for the BAU, S-HEV, S-PHEV, and S-EV scenarios, respectively. According to the 

stochastic results, within 90% confidence interval, the employment generation potential is 

greatest for the BAU scenario, whereas this generation potential is highest for the S-HEV 

scenario according to the results based on deterministic values. In 2030, the employment 

generation potentials are highest for the BAU and S-EV scenarios.  

Table 34. Employment generation distribution parameters  

Year Scenario Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 3.18E+06 7.19E+06 5.09E+06 5.09E+06 1.01E+06 5.09E+06 5.92E+06 6.49E+06 

S-HEV 3.20E+06 7.03E+06 4.99E+06 5.00E+06 934499 5.00E+06 5.76E+06 6.29E+06 

S-PHEV 3.38E+06 6.88E+06 4.98E+06 4.98E+06 810818 4.98E+06 5.63E+06 6.08E+06 

S-EV 3.56E+06 7.88E+06 5.30E+06 5.26E+06 896458 5.26E+06 6.01E+06 6.52E+06 

2
0

5
0

 

BAU 3.75E+06 8.09E+06 5.81E+06 5.82E+06 1.08E+06 5.82E+06 6.69E+06 7.30E+06 

S-HEV 3.97E+06 7.92E+06 5.85E+06 5.86E+06 955813 5.86E+06 6.62E+06 7.17E+06 

S-PHEV 4.05E+06 7.37E+06 5.55E+06 5.55E+06 730892 5.55E+06 6.14E+06 6.51E+06 

S-EV 3.91E+06 7.77E+06 5.40E+06 5.35E+06 726972 5.35E+06 5.96E+06 6.38E+06 
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Fig. 46 shows the histogram of the distributions for each scenario type in 2030 and 

2050. In 2030, the distribution shapes of scenarios are very similar, whereas distributions 

of S-EV and S-PHEV become more close to a bell shape curve in 2050.  
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Figure 46. Histogram of the employment generation based on Monte Carlo simulations: a) 
in 2030, b) in 2050. 
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6.4.3.2. Human health impacts 

Human health impacts are the total impacts due to air pollution and climate 

change. Fig. 47 shows the human health impacts from 1980 to 2050 for each scenario, 

based on the deterministic values presented in Table 28. According to the figure, the 

human health impacts have a decreasing trend, with the S-PHEV and S-EV scenarios 

demonstrating the highest reduction potential compared to other scenarios. The 

reduction rate decreases for all scenarios except for the BAU scenario and reaches 

saturation by 2050, mainly because of the limited reduction potentials of fuel efficiency 

improvements compared to rapidly increasing travel demand.  

 

Figure 47. Total life cycle human health impacts based on deterministic values 
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Stochastic results for human health impacts are presented in Fig. 48 for each scenario. 

The uncertainty ranges for human health impacts are found to be greater than those of 

previous impact categories. The 50% range, the area shaded with orange color, appears to 

be greater and close to the minimum values. The uncertainty ranges gradually getting 

smaller for S-HEV (Fig. 48-b) and S-PHEV (Fig. 48-c), while they are realty constant for BAU 

scenario (Fig. 48-a) and S-EV (Fig. 48-d). The width shaded areas are not symmetric 

according to the line of mean value (blue line). The widths above the orange shaded area are 

greater than those of bellow the orange shaded area. 

 

Figure 48. The multivariate dynamics of the human health impacts (DALY) a) BAU, b) S-
HEV, c) S-PHEV, d) S-EV. 
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Table 35 shows the diistribution parameters for each scenario in 2030 and 2050. The 

normalized standard deviations in 2030 are 25%, 24%, 25%, and 27% in 2030 for the BAU, 

S-HEV, S-PHEV, and S-EV scenarios, respectively, whereas their corresponding 2050 values 

are 24%, 24%, 25%, and 30%, respectively. The maximum human health impacts of the BAU 

and S-HEV scenarios are approximatelly 1.7 times greater than their mean values in both 

2030 and 2050, whereas their corresponding minimum values are approximately 60% of 

their mean values in both 2030 and 2050. On the other hand, the maximum human health 

impacts of the S-PHEV scenario are times 1.8 times greater than its mean value in both 2030 

and 2050, while its minimum value is approximately 55% of its mean in 2030 and 53% of its 

mean in 2050. For the S-EV scenario, the maximum value of human health impacts is 1.9 

times greater than its mean value in 2030 and 2.1 times greater than its mean value in 2050, 

while the corresponding minimum values are 48% of its mean in 2030 and 40% of its mean 

in 2050. The human health impacts have the highest uncertainty ranges compared to 

previous impact categories due to more significant inherent uncertainties embedded in 

spatial factors, such as the specific locations of air emissions and the higher unceraintes 

related to end-point characterization factors for the human health impacts of different air 

pollutants and of climate change in general. According to the stochastic results with a 90% 

confidence interval, as opposed to the results based on deterministic values, neither ICVs 

(BAU scenario), HEVs, nor PHEVs are expected to decrease human health impacts, but rather 

are expected to increase human health impacts from 2015 to 2030 by 27%, 13%, and 2%, 

respectively. Furthermore, the human health reduction potential of EVs is as low as 1% in 

2030, which was found to be much greater in the results based on deterministic values. In 
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2050, the BAU and S-HEV scenarios still show increases in human health impacts by 23% 

and 4% relative to 2015 values, but now PHEVs and EVs indicate a decrease in human health 

impacts from 2015 to 2050 by 12% and 14%, respectively.  

Table 35. Human health impact distribution parameters 

Year Scen. Min Max Mean Median StDev 50% 75% 90% 

2
0

3
0

 

BAU 756131 2.18E+06 1.26E+06 1.20E+06 308517 1.20E+06 1.47E+06 1.71E+06 

S-HEV 674191 1.93E+06 1.12E+06 1.08E+06 274733 1.08E+06 1.31E+06 1.52E+06 

S-PHEV 556233 1.80E+06 1.00E+06 955868 249401 955880 1.18E+06 1.37E+06 

S-EV 454705 1.82E+06 952518 901588 254795 901700 1.12E+06 1.33E+06 

2
0

5
0

 

BAU 729494 2.09E+06 1.21E+06 1.16E+06 295645 1.16E+06 1.41E+06 1.65E+06 

S-HEV 625610 1.76E+06 1.03E+06 990672 251680 990888 1.21E+06 1.39E+06 

S-PHEV 457848 1.54E+06 858041 815297 215790 815386 998898 1.18E+06 

S-EV 315191 1.63E+06 791527 749094 239585 749144 928884 1.16E+06 

 

Fig. 22 shows the histogram of the distributions of human health impacts in 2030 and 

in 2050. The shape of the distributions is similar to a triangular distribution, in which the 

mean values are closer to the lower values. There is no significant change in the shape of the 

distributions between 2030 and 2050.  
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Figure 49. Histogram of the human health impacts based on Monte Carlo simulations: a) in 
2030, b) in 2050. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

In this dissertation, novel methodological frameworks are presented to advance 

state-of-the-art and state-of-the-practice in the transportation sustainability research as 

well as in the Life Cycle Sustainability Assessment Framework.  

Chapter 3 demonstrates the effects of spatial and partially temporal variations 

(scenario 2) on the GHG emissions and energy consumption of some alternative vehicle 

technologies and highlights how these factors can influence the vehicle technology 

preference at state level. Also, analysis results revealed that the impacts of battery and 

vehicle manufacturing are much smaller than that of operation phase of the vehicles. Based 

on comparative evaluation of three different scenarios, it can be concluded that the use of 

renewable energy sources to power EVs/PHEVs should be encouraged to achieve reduction 

in GHG emission and energy consumption. Although solar energy has become popular as a 

source of electric power, number of solar charging stations is still very limited. Increased 

concerns regarding the high carbon intensive structure of the U.S. electricity grid have 

stimulated the development of more effective powering ways of EVs/PHEVs. Considering 

that there is significant energy losses during electricity generation, distribution, and 

transmission, use of on-site solar energy can save these losses and provide more efficient 

way of powering EVs/PHEVs. Additionally, the market share of PHEVs is expected to increase 

(Eudy & Zuboy, 2004), which might require some additional upgrades in the transmission 

and distribution systems and construction of new power plants in the future. The increased 

electricity demand are usually provided through either with conventional ways, with large 
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power plants located far from the demand center, or smaller power generation options 

utilizing renewable energy sources. The latter is known as distributed generation, which can 

be provided through utilization of Photovoltaic (PV) systems(Li, Lopes, & Williamson, 2009). 

As the power generation unit cost has been declining for solar technologies, the use of PVs is 

expected to be greater(The U.S. Energy Information Administration, 2014). PVs can serve as 

charging stations for EVs/PHEVs and a power generation source to grid at the same time. 

Similarly, roof-top PV panels in residential and commercial buildings can serve as a 

distributed power generation source and as an environmental friendly recharging option for 

EVs/PHEVs.  

In Chapter 3, although the economic feasibility of the scenarios are not investigated, 

use of renewable energy to power electric vehicles is inevitable to achieve carbon-free 

transportation system in the U.S. It should be also noted that inclusion of marginal electricity 

scenario is the most realistic scenario among the proposed policies and inclusion of it 

suggested by various researchers(Chen et al., 2008; Dotzauer, 2010; Elgowainy et al., 2010; 

Hawkes, 2010; McCarthy & Yang, 2010; Thomas, 2012). Hence, implementation of renewable 

energy based charging options for EVs/PHEVs are highly recommended. On the other hand, 

the market penetration of these vehicle types should be analyzed and estimated to develop 

more effective, environmental friendly and economically viable policies. Another important 

point is that the reduction potential of all alternative vehicle technologies in the scenarios 1 

and 2 are the marginal reductions which may not be enough to reduce or even stabilize the 

GHGs stored in the atmosphere. Estimating these impacts from such dynamic system 

requires a holistic dynamic system approach in which all of the variables of the system and 
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the interactions among them are captured (Onat, Egilmez, et al., 2014). Moreover, since the 

sustainability concept is an optimization process among the three pillars known as 

environment, economic, and social dimensions (Murat Kucukvar, Noori, et al., 2014), impacts 

from the adoption of alternative vehicle technologies should be analyzed with inclusion of 

these three dimensions. Integration of all sustainability dimensions and dynamic modeling 

approach are step to analyze the impacts of alternative vehicle technologies. Therefore, 

Chapter 5 and 6 focuses on these research gaps. 

The U.S. population is expected to rise significantly, but accessible water supplies are 

not.  According to the U.S. Department of Energy, until 2020, the expected population growth 

ranges between 20% and 50% in most water-stressed regions of the U.S. (Sandia National 

Laboratory 2015). This growth, in turn, will also substantially increase the demand for 

passenger cars and vehicle miles of travel, so it will be essential for the U.S. to gain a detailed 

understanding of the interdependencies of water-reliant vehicle systems, promote the 

adoption of water- and energy-efficient BEVs, and develop energy production technologies 

to reduce water consumption and withdrawal rates. These goals can be achieved through 

bridging research and practice gaps by integrating the following three initiatives:  

(1) More thoroughly analyzing the water footprints of alternative passenger cars 

using life-cycle-based holistic methodologies,  

(2) Providing state-based incentives for water-efficient transportation vehicles, 

especially in highly water-sensitive and water-stressed states, and  
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(3) Minimizing water-related impacts from energy production supply chain 

activities including resource mining, energy production, and energy distribution.  

This dissertation is a first and critical step toward an integrated water footprint 

analysis of alternative passenger cars in the U.S., and the results will provide a vital guidance 

for decision makers when developing sustainable vehicle transportation policies in the most 

water-stressed areas in the U.S. The policy analysis scenarios used in this study can also be 

very helpful to test different electricity generation options for alternative electric vehicles 

based on average and marginal electricity mixes on a case-by-case basis, and may also prove 

useful to test newly proposed options such as, in this case, charging EVs solely with 

photovoltaic (PV) technology. Using an uncertainty-based water withdrawal and 

consumption analysis like that of this study, decision makers will also be able to use 

stochastic estimation to see the difference between water consumption and water 

withdrawal for each state, and the findings of this dissertation will help policy makers to 

propose state-specific electric vehicle use policies considering current water supply risks as 

well as the estimated availability of water resources in the future. Based on the analysis 

results of Chapter 4, the following points are highlighted: 

 100% solar-charging options have the lowest water withdrawal and 

consumption rates, and can therefore serve as an important power source in most 

water-stressed states, including California (CA), Arizona (AZ), Nevada (NV), Florida 

(FL), Texas (TX), and New Mexico (NM). All of these states are expected to have 

significant population increases in near future, and so the number of vehicle miles 
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traveled is expected to increase immensely for each of these states. However, these 

regions can also benefit from their warm climate and long periods of sunshine, 

allowing them to effectively install and implement solar charging stations for 

charging electric vehicles. 

 For the average electricity mix generation scenarios considered in this 

study, the water consumption and withdrawal of the states analyzed ranged between 

0.01 and 0.05 gallons per VMT. However, exceptions were observed in some states, 

including Idaho (ID), Maine (ME), Alaska (AK), Montana (MT), New York (NY), Oregon 

(OR), South Dakota (SD), Vermont (VT), Washington (WA) and Tennessee (TN), 

where the net water consumption rate was shown to reach up to 4.6 gal/mil. These 

unusually high values are primarily due to higher shares of hydropower plants for the 

total electricity generation of each of these states. However, looking at the more 

realistic marginal electricity mix scenarios of each state, their respective net water 

withdrawals increased substantially, while their total water consumption values 

showed a decreasing trend due to higher reliance on fossil-fuel energy sources such 

as coal and/or natural gas. 

 In addition, for PHEV20s and PHEV40s, the maximum water 

withdrawal amounts for the average electricity mix scenarios of each state are always 

higher than those of the corresponding marginal electricity mix and 100% solar 

charging scenarios.  
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 Under a 100% solar charging scenario, the total water withdrawal and 

consumption rates of PHEV40s were found to be less than those of PHEV20s for all 

states, because PHEV40s operate in electricity mode more often due to their higher 

AER. Since petroleum is a more water-intensive resource than solar energy according 

to the NREL database (NREL 2011), the larger petroleum consumption of PHEV20s 

increased their net water footprint.  

 Although selecting appropriate alternative passenger cars can have a 

significant impact on the total water footprint of vehicle transportation, water use in 

electricity generation and distribution is also an important factor to consider for the 

water footprint. In particular, power plant cooling systems (coal, natural gas, nuclear, 

etc.) require large amounts of water, and current cooling technologies therefore have 

high water consumption/withdrawal impacts. In this regard, one potential avenue of 

research might be to develop new, more water-efficient cooling systems that would 

thereby reduce or even eliminate the need for fresh water resources, thus 

significantly reducing the overall water footprints of BEVs and PHEVs in the U.S.  

 It should also be kept in mind that BEVs can be an effective solution for 

many states to minimize the net water footprint of passenger transportation. Hence, 

it is important to note that, even with the existing electric power generation mix, 

various policy incentives such as tax credits and carpool lane access might be 

implemented with respect to BEVs to make them more attractive to consumers and 

to promote the adoption of electric cars nationwide. However, there are still 

important barriers for a sustainable future for electric vehicles in the U.S. For 
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example, affordability and accessibility are still among the most significant socio-

economic constraints preventing the more widespread adoption of electric vehicles 

(Onat et al. 2015b). According to the U.S. Department of Energy, “The high-purchase 

price gets part of the blame for consumer hesitancy to buy electric vehicles. While the 

market has been growing quickly, additional cost reduction of electric vehicle technology is required to directly compete on a cost basis with conventional vehicles” 
(National Science Foundation 2015). Another major challenge for making electric 

vehicles a strong choice for consumers is the current relative lack of accessibility to 

fast charging stations, as the relatively small number of large-scale vehicle-charging 

stations makes recharging electric vehicles inconvenient for public usage  For this 

reason, the authors conclude that minimizing the current and future water footprint 

of BEVs in most water-stressed areas will require a joint effort by research institutes, 

federal and local governments, and society as a whole. Incentives for EVs, such as tax 

credits, the development of energy-efficient electricity production technologies 

considering the entire supply chains, and the improvement of accessibility and 

affordability for BEVs, will continue to become important policy areas that need 

urgent attention for a more sustainable future for electric vehicles. 
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The framework presented in Chapter 5 is an important attempt towards advancing 

the state-of-the-art in LCSA framework and state-of-practice of transportation sustainability. 

One of the main conclusions of this study is that inclusion of dynamic interactions among the 

sustainability indicators, as wells as the system of interest. This approach can be critical to 

deepen the existing LCSA framework and to go beyond the current LCSA understanding 

which provides a snapshot analysis with an isolated view of all pillars of sustainability. One 

of the main advantages of this approach is its ability to provide a more comprehensive and 

in depth analysis as an integrated dynamic LCSA framework, in which the product 

(alternative vehicles) are assessed considering the environment surrounding it and the 

interrelations among its sustainability impacts. Some of the important results and general 

remarks are summarized as follows; 

 BEVs are mostly found to be a better option in the environmental impact 

categories such as CO2 emissions and PMF. While these environmental impacts are higher 

between 2015 and mid-2020s, CO2 emissions and PMF impacts of BEVs significantly 

decreased towards 2050 due to battery and fuel efficiency improvements. POF impacts 

of BEVS are found to be highest, whereas HEVs and PHEVs have the lowest POF impact. 

 While environmental impacts of BEVs are the highest in the manufacturing 

phase compared to manufacturing phase impacts of other vehicle options, the operation 

phase CO2 emissions and PMF and BEVs are found the be the least.  

 Analysis results revealed that even though the entire U.S. automobile stock is 

replaced with BEVs, it has a negligible impact on slowing down to rapidly increasing 
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atmospheric temperature. Hence, more ambiguous and international efforts are crucial 

to reverse or slow down the increasing atmospheric temperature. 

 While the vehicle ownership cost of BEVs is much larger in early years when 

the EVs are introduced to the market, these costs significantly decrease towards 2050. 

The ownership costs of all vehicle options decrease towards 2050 as the fuel efficiency 

and batteries are improved. BEVs had the highest benefit (cost reduction) owning to 

these improvements.  Operation phase costs of HEVs were found to be lowers until 2030 

when operation phase costs of BEVs become lowest.  

 GDP contribution of manufacturing phase becomes more important towards 

2050, whereas GDP contribution of operation phase lowers for BEVs, PHEVs, and 

partially HEVs. Overall, GDP contribution of BEVs were found to be highest for BEVs until 

2030s, than it starts to decrease toward 2050. The contribution of HEVs became the 

largest in 2050 with an increasing trend since they are introduced to the market. 

 Newly commercialized technologies such as BEVs and PHEVs generate more 

employment at the beginning and reaches an equilibrium afterwards. However, 

employment generation of HEVs and ICVs has a steady increasing trend due to rising 

travel demand and developments in the associated sectors. 

 Manufacturing phase human health impacts are much higher than the human 

health impacts in the operation phase. Overall, the BEVs have the greatest potential on 

reducing human health impacts due to air pollution and climate change.  

 Analysis results revealed that vehicle choice does not affect the public welfare 

significantly. Exogenous determinants of public welfare, life expectancy, income, and 
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education overwhelm the effects of vehicle choice. However, this effect is not necessary 

same for all products and therefore should be taken into consideration for LCSA of 

products and systems.  

There is a strong need for robust simulation models that would allow us to consider 

dynamic complexity and deep uncertainty to mainly understand, not just predict, possible 

future scenarios. Most decisions related to transportation sustainability have to be made in 

deeply uncertain situations, where the relationships among the main factors of the system, 

the probability distribution of these varying factors, and the plausible alternative outcomes 

are inherently complex and uncertain. While the approach presented in this study provide 

important insights to understand the dynamic complexity and the system as a whole, the 

model needs certain improvements to account for uncertainties associated with fuel 

economy, emission rates, driving behavior, spatial variations, etc. Hence, Chapter 6 deal with 

uncertainties inherent to the U.S. transportation.  

In Chapter 6, the uncertainties associated with sustainability impacts of alternative 

vehicle technologies in the U.S. The system dynamics model is used to quantify triple bottom 

line impacts and to deal with uncertainties. This analysis is acritical effort towards deepening 

and broadening the existing life cycle sustainability assessment framework. The presented 

approach provided a more comprehensive sustainability assessment framework by dealing 

with uncertainties with a novel approach as well as capturing the dynamic relations among 

the parameters of U.S. transportation system, environment, society, and the economy. 

Uncertainty analysis allowed us to identify the likelihood of the impact reduction potentials 
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of different vehicle types as well as the behavioral limits of the scenarios. Some of the 

important findings of Chapter 6 are summarized as follows: 

 PHEVs are found to be better options to minimize transportation 

related CO2 emissions, PMF, and POF impacts compared to other vehicle types. 

According the results with 90% confidence interval, PHEVs have capability reducing 

the transportation related annual CO2 emissions, PMF, and POF impacts up to 23%, 

7%, and 9% by 2050 compared to 2014 levels.  

 Analysis results reveal that the results with consideration of 

uncertainties can be significantly different than those of without consideration of 

uncertainties. Therefore, when developing policies the robustness of proposed 

scenarios should be valuated with consideration of uncertainties as well as the 

dynamic feedback mechanisms. 

 Vehicle ownership costs of each vehicle type have decreasing trends 

and they are tend to reach a saturation in long term with no significant ownership 

cost difference in long term. According the results with 90% confidence interval, EVs 

and PHEVs are the most promising alternative for ownership cost reduction in the 

long term. However, they are not expected to be a better alternative in near term. 

HEVs can be better alternatives until 2030s in the terms of ownership cost reduction.  

 Contribution to GDP is highest for EVs in near term, whereas, in long 

term, no significant difference is observed among the scenarios. Although all of the 

vehicle types contributes to GDP in both near and long term, the newer technologies 
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such as EVs and PHEVs can stimulate the research and development better and pave 

the way technological advancement. Therefore, these vehicle types can be more 

preferable considering their potential to contribute the economy.  

 All of the scenarios generate significant employment. According to the 

results with 90% confidence interval, EVs have the greater potential of employment 

generation in near term, which also makes EVs more preferable due to their ability to 

create green jobs and contribute the advancement in the battery technology. In the 

long term, BAU scenario and S-HEV performed better as they still will be creating 

more jobs in the petroleum production and distribution sector.  

 Results of the uncertainty analysis (based on 90% confidence interval) 

showed that EVs are the best alternative both in near and long term to reduce human 

health impacts stemming from air pollution and global warming.  

 The highest uncertainty is observed in the impacts of S-EV in all of the 

impact categories. This is mainly due to uncertainties related to the electric power 

generation sector. The fuel source of the electric power generation can significantly 

change the impacts of electric vehicles.  

 Selection of different vehicle types has an insignificant effect on some 

macro-level indicators such as public welfare, income index, and human health index. 

However, effects of these indicators should not be neglected when developing 

transportation related policies. Furthermore, such macro-level socio-economic 

indicators should be considered in the integrated system based life cycle 

sustainability assessments.  
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Overall, EVs and PHEVS are found to be better alternative in most of the impact 

categories. It should be noted that all of the environmental impacts presented here are the 

annual impacts. The cumulative CO2 emissions, PMF, and POF impacts of the transportation 

system have increasing trends for all scenarios. Observing these behaviors is inevitable since 

there is no outflow specifically to reduce cumulative transportation impacts. For instance, 

the carbon sequestration through trees and oceans cannot identify and select to absorb the 

emissions from transportation among those of many other sources. Hence, assigning an 

outflow, a carbon sequestration mechanism, for specifically transportation emissions is not 

a realistic approach. On the other hand, within the entire model, the relationships are 

defended based on cumulative impacts such as increasing atmospheric temperature is 

calculated through the accumulated CO2 emissions in the atmosphere, which is modeled 

using the DICE model (Nordhaus, 2006). The climate model induces the accumulated 

transportation emissions, as well as the emissions from rest of the U.S. and the world, since 

the global warming is a subject of a much wider system. It should be also noted that none of 

the scenarios has a significant impact on changing global temperature increase since their 

reduction emission reduction potential is very limited compared to the emissions from 

entire world. Therefore, strong collaborative efforts is crucial to fight climate change.  

Although the dynamic model provides a comprehensive sustainability assessment 

framework, it can be improved significantly by integration of multi-criteria decision making 

and adaptive policy scenarios. Considering that there are many conflicting objectives among 

different indicators, one alternative can be the best for an impact category, while it can 
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perform worst in another impact category (Onat, Kucukvar, Tatari, & Zheng, 2015). 

Sustainable solutions should propose a balanced solution in which all of the impacts are 

reduced as much as possible while maintaining or increasing the benefits, which requires a 

multi criteria decision making framework integrated with the integrated sustainability 

assessment framework proposed in this research.   

Results of this dissertation can be beneficial for policy makers, industry stakeholders, 

and researchers towards proposing more sustainable solutions and developing better 

decision making frameworks. The outcomes of this dissertation can pave the way for 

advancement in the state-of-the-art and state-of-the-practice in the sustainability research 

by presenting novel approaches to deal with uncertainness and complex systems.   
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