
Eastern Kentucky University

Encompass

Online Theses and Dissertations Student Scholarship

January 2015

The Status of the Genus Taxus In Kentucky
Robert Reed Pace
Eastern Kentucky University

Follow this and additional works at: https://encompass.eku.edu/etd

Part of the Plant Biology Commons

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in

Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

Recommended Citation
Pace, Robert Reed, "The Status of the Genus Taxus In Kentucky" (2015). Online Theses and Dissertations. 302.
https://encompass.eku.edu/etd/302

https://encompass.eku.edu?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/ss?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd/302?utm_source=encompass.eku.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Linda.Sizemore@eku.edu






 

 

 

 

 

 

 

The Status of the Genus Taxus in Kentucky 

 

 

By  

Robert Reed Pace 

Bachelor of Science 

Eastern Kentucky University 

Richmond, Kentucky 

2009 

 

Submitted to the Faculty of the Graduate School of 
Eastern Kentucky University 

in partial fulfillment of the requirements 
for the degree of 

MASTER OF SCIENCE 
May, 2015 

 

 



ii 

 

Copyright © Robert Reed Pace, 2015 
All rights reserved 

  



iii 

 

DEDICATION 
 

This thesis is dedicated to my wife, 
Elli Pace, who shared my journey in 

pursuing both undergraduate and 
graduate degrees at Eastern Kentucky University.  

  



iv 

 

ACKNOWLEDGMENTS 
 

I want to thank my undergraduate and graduate advisor, and chair of my graduate 

committee, Dr. Ronald Jones, for his advice, assistance, and the sharing of his 

knowledge.  Dr. Jones provided a fantastic learning opportunity both in the class room 

and through my work at the EKU Herbarium.  I would also like to thank my other 

committee members, Dr. Patrick Calie, and Dr. Darrin Smith, for their time, inspiration, 

and assistance.  Special thanks to Dr. Darrin Smith for his training and expertise with 

DART MS.  I would also like to thank Dr. Bruce Pratt for both access to, and training in 

the use of the scanning electron microscope, and Dr. Brad Ruhfel for enabling me to 

continue to work in the EKU Herbarium.  

Special thanks to Dr. Eugene B. Wofford at the University of Tennessee 

Herbarium, Dr. Donna Ford-Werntz at West Virginia University Herbarium, Dr. Robert 

Paratley at the University of Kentucky Herbarium, and Dr. Mary Whitson at Northern 

Kentucky University Herbarium, for specimen loans essential for this project. I also want 

to thank Drs. Ronald Jones and Brad Ruhfel and the Department of Biological Sciences 

for allowing me the use of specimens in the Eastern Kentucky University Herbarium 

I would like to thank the many talented faculty of EKU who over the years have 

inspired me with their limitless passion.  I also would like to thank the EKU’s Graduate 

School for the opportunity to teach a variety of biology labs, which has allowed me to 

share my passion for biology with others.  I also would like to thank my family for 

encouraging me to learn and develop at my own pace.   

Last, but by no means least, I would like to acknowledge Elli Pace, my wife, for 

her assistance, patience, and support during the writing of this thesis. 

  



v 

 

ABSTRACT 

This study involved a detailed study of the genus Taxus in Kentucky.  A thorough 

examination was conducted, including a review of the literature, examination of field and 

herbarium specimens from both native and non-native species, microscopic analysis of 

leaf ultrastructure, chemical analysis of taxane content, and the construction of GIS 

models to predict the occurrence of the native species.   In the review and examination of 

morphological features, it was found that the best features for separation of the taxa were 

plant height, the number of the rows of stomata per abaxial leaf band, and the location of 

papillose cells on the leaf epidermis.  In particular, the SEM studies showed that stomatal 

bands are a reliable way of differentiating native and non-native Taxus species within 

Kentucky.  A key to the taxa was prepared, as well as descriptions of the species.  The 

chemical analysis failed to uncover any reliable differences between taxa utilizing only 

five taxanes.  GIS models were prepared for 13 counties in eastern Kentucky, and these 

predicted the most likely occurrence of Taxus canadensis in each portion of the county.  

This study documented three species of Taxus that occur in Kentucky, T. baccata, T. 

canadensis, and T. cuspidata.   Taxus canadensis is the only native species, considered to 

be a glacial relict, and is currently listed as a state threatened species.  The other two 

species occur only rarely in nature as escapes from cultivation, likely from the spread of 

seeds by birds.  There is no evidence of hybridization between native and non-native 

species.  It was concluded that microhabitat requirements for T. canadensis are very 

restrictive, and that ongoing climate change may impact Kentucky’s native population of 

T. canadensis.  



vi 

 

TABLE OF CONTENTS 
CHAPTER PAGE 

I. INTRODUCTION ..............................................................................................1 

II. LITERATURE REVIEW....................................................................................3 

III. MATERIALS AND METHODS ......................................................................14 

Field and Herbarium Studies for Morphological and Chemical Analyses ......14 

Microscopic Studies .........................................................................................18 

Chemical Studies .............................................................................................19 

Geographic Studies:  GIS (Soils/Topography/Aspect/Slope) ..........................20 

IV. RESULTS .........................................................................................................23 

Morphology......................................................................................................23 

Growth Forms, Needles, and Seeds .................................................................24 

Chemistry .........................................................................................................30 

Habitat Model: Known & Potential Occurrences ............................................33 

Genus Descriptions ..........................................................................................35 

Key to Species..................................................................................................35 

Species Accounts .............................................................................................36 

V. DISCUSSION ...................................................................................................40 

Macroscopic/Microscopic Investigation ..........................................................40 

Chemical Analysis ...........................................................................................40 

GIS Modeling...................................................................................................42 

VI. SUMMARY AND CONCLUSIONS ...............................................................44 

LITERATURE CITED ......................................................................................................46 

APPENDICES ...................................................................................................................50 

APPENDIX A:  Specimen Citations ..............................................................................51 

APPENDIX B:  Scanning Electron Micrographs ..........................................................59 

APPENDIX C:  Taxanes ................................................................................................66 

APPENDIX D:  Mass Spectra ........................................................................................70 

APPENDIX E:  Maps of Distribution in United States, Kentucky, & Nearby States ...81 

APPENDIX F:  Specimen Images ...............................................................................102 

 



vii 

 

LIST OF TABLES 

TABLE          PAGE 

Table 1.  Table of taxa examined during microscopic analysis derived from various 
regional herbaria. ...............................................................................................................16 

Table 2.  Samples collected for chemical and morphological analysis. ............................17 

Table 3.  List of taxanes present per sample and corresponding figure.  Letters after 
Sample # refer to whether sample was a leaf (L) or stem (S). ...........................................32 

file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072866


viii 

 

LIST OF FIGURES 

FIGURE ...................................................................................................................... PAGE 

Figure 1.  Multi-stemmed Taxus baccata ca. 4 m tall, located in a back yard, sample # 
SOTINKY01. .....................................................................................................................25 

Figure 2.  Taxus canadensis producing a low prostrate ground cover under 1 m tall, 
sample # SOTINKY26. ......................................................................................................26 

Figure 3.  Single stemmed Taxus cuspidata ~ 12 m tall located on Eastern Kentucky 
University’s campus outside the Miller Building surrounded by multi-stemmed Taxus × 
media hedges ~ 2 m tall. ....................................................................................................27 

Figure 4.  SEM image of a mature female cone of Taxus baccata, sample # 
SOTINKY01. .....................................................................................................................28 

Figure 5.  SEM image of an immature male cone of Taxus × media, sample # 
SOTINKY02. .....................................................................................................................28 

Figure 6.  SEM of Taxus canadensis abaxial leaf surface showing 5 stomates per band 
with interspersed papillose cells. .......................................................................................60 

Figure 7.  SEM of Taxus baccata abaxial leaf surface showing 10 stomates per band with 
interspersed papillose cells. ...............................................................................................60 

Figure 8.  SEM of Taxus × hunnewelliana abaxial leaf surface showing 9 irregular 
stomates per band with interspersed papillose cells confined to between stoma. .............61 

Figure 9.  SEM of Taxus floridana abaxial leaf surface showing 9 stomates per narrow 
band with interspersed papillose cells. ...............................................................................61 

Figure 10.  SEM of Taxus baccata ‘compacta’ abaxial leaf surface showing 9 stomates 
per irregular band with interspersed papillose cells. ..........................................................62 

Figure 11.  SEM of Taxus baccata ‘nigra’ abaxial leaf surface showing 9 stomates per 
narrow band with densely papillose cells. .........................................................................62 

Figure 12.  SEM of Taxus baccata ‘repandens’ abaxial leaf surface showing 9 stomates 
per irregular band with interspersed papillose cells. ..........................................................63 

Figure 13.  SEM of Taxus brevifolia abaxial leaf surface showing 5 stomates per band 
with interspersed papillose cells. .......................................................................................63 

Figure 14.  SEM of Taxus cuspidata ‘robusta’ abaxial leaf surface showing 10 stomates 
per broad band with interspersed papillose cells. ..............................................................64 

Figure 15.  SEM of Taxus cuspidata abaxial leaf surface showing 10 stomates per broad 
band with densely papillose cells. ......................................................................................64 

Figure 16.  SEM of Taxus globosa abaxial leaf surface showing 8 stomates per broad 
band with interspersed papillose cells. ...............................................................................65 



ix 

 

Figure 17.  SEM of Taxus × media abaxial leaf surface showing 11+ stomates per wide 
band with interspersed papillose cells. ...............................................................................65 

Figure 18.  Yunnanxane.  2α,5α,10β-triacetoxytaxa-4(20),11-dien-14-yl 3-hydroxy-2-
methylbutanoate.  C31H46O9 562.69 g·mol−1. [M + NH4]+ with expected m/z of 580.35. .67 

Figure 19.  2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene.  C28H40O8 504.61 g·mol−1. 
[M + NH4]+ with expected m/z of 522.31. .........................................................................67 

Figure 20.  2α,5α,10β-triacetoxy-14β-(2-methyl)-butyryloxy-4(20),11-taxadiene.  
C31H46O8 546.69 g·mol−1. [M + NH4]+ with expected m/z of 564.36. ...............................68 

Figure 21.  2α,5α,10β-triacetyoxy-14β-propionyloxy-4(20),11-taxadiene.  C29H42O8 
518.61 g·mol−1. [M + NH4]+ with expected m/z of 536.32. ...............................................68 

Figure 22.  2α,5α,10β-triacetyoxy-14β-isobutyryloxy-4(20),11-taxadiene.  C30H44O8 
532.66 g·mol−1. [M + NH4]+ with expected m/z of 550.34. ...............................................69 

Figure 23.  Mass spectrum of leaves of Taxus baccata (SOTINKY01) showing taxanes at 
m/z 536 [M + NH4]+, and m/z 550 [M + NH4]+. ................................................................71 

Figure 24.  Mass spectrum of stem of Taxus baccata (SOTINKY01) showing none of the 
five taxanes present. ...........................................................................................................71 

Figure 25.  Mass Spectrum of leaves of Taxus × media (SOTINKY02) showing none of 
the five taxanes present. .....................................................................................................72 

Figure 26.  Mass Spectrum of stem of Taxus × media (SOTINKY02) showing the 
presence of a taxane at m/z 536 [M + NH4]+. ....................................................................72 

Figure 27.  Mass Spectrum of leaves of Taxus × media (SOTINKY03) showing none of 
the five taxanes present. .....................................................................................................73 

Figure 28.  Mass Spectrum of stem of Taxus × media (SOTINKY03) showing none of the 
five taxanes present. ...........................................................................................................73 

Figure 29.  Mass Spectrum of leaves of Taxus × media (SOTINKY07), showing the 
presence of a taxane at m/z 536 [M + NH4]+. ....................................................................74 

Figure 30.  Mass Spectrum of the stem of Taxus × media (SOTINKY07) showing taxanes 
at m/z 522 [M + NH4]+, and m/z 536 [M + NH4]+. .............................................................74 

Figure 31.  Mass Spectrum of the leaves of Taxus × media (SOTINKY08) showing a 
taxane at m/z 536 [M + NH4]+. ...........................................................................................75 

Figure 32.  Mass Spectrum of the stem of Taxus × media (SOTINKY08) showing none of 
the five taxanes present. .....................................................................................................75 

Figure 33.  Mass Spectrum of the leaves of Taxus canadensis (SOTINKY33), showing 
the presence of taxanes at m/z 536 [M + NH4]+, m/z 550 [M + NH4]+, and m/z 564 [M + 
NH4]+. 76 

Figure 34.  Mass Spectrum of the stem of Taxus canadensis (SOTINKY33), showing a 
taxane at m/z 536 [M + NH4]+. ...........................................................................................76 



x 

 

Figure 35.  Mass Spectrum of the leaves of Taxus × media (SOTINKY36) showing none 
of the five taxanes present..................................................................................................77 

Figure 36.  Mass Spectrum of the stem of Taxus × media (SOTINKY36), showing a 
taxane present at m/z 536 [M + NH4]+. ..............................................................................77 

Figure 37.  Mass Spectrum of the leaves of Taxus × media (SOTINKY42) showing the 
presence of a taxane at m/z 536 [M + NH4]+. ....................................................................78 

Figure 38.  Mass Spectrum of the stem of Taxus × media (SOTINKY42), showing the 
presence of a taxanes at m/z 536 [M + NH4]+. ...................................................................78 

Figure 39.  Mass Spectrum of the leaves of Taxus cuspidata (SOTINKY53), showing the 
presence of a taxane at m/z 536 [M + NH4]+. ....................................................................79 

Figure 40.  Mass Spectrum of the stem of Taxus cuspidata (SOTINKY53), showing 
taxanes at m/z 522 [M + NH4]+, m/z 536 [M + NH4]+, m/z 550 [M + NH4]+, and m/z 580 
[M + NH4]+. .......................................................................................................................79 

Figure 41.   Mass Spectrum of the leaves of Taxus cuspidata (SOTINKY55) showing the 
presence of taxanes at m/z 536 [M + NH4]+, and m/z 550 [M + NH4]+. ............................80 

Figure 42.  Mass Spectrum of the stem of Taxus cuspidata (SOTINKY55) showing the 
presence of taxanes at m/z 522 [M + NH4]+, m/z 536 [M + NH4]+, and m/z 550 [M + 
NH4]+. 80 

Figure 43.  Map of the continental U.S.A. showing distribution of Taxus species. ..........82 

Figure 44.  Map of Kentucky showing distribution of Taxus canadensis. ........................83 

Figure 45.  Map of Kentucky showing forest types associated with Taxus canadensis. ...84 

Figure 46.  Map of Kentucky showing the distribution of ultisols within the state. ..........85 

Figure 47.  Map of the Kentucky showing potential distribution of Taxus canadensis ....86 

Figure 48.  Map of Eastern Kentucky showing both known and predicted distribution ...87 

Figure 49.  Map of Kentucky showing known and predicted distribution of Taxus 

canadensis derived from herbarium specimens and habitat modeling. .............................88 

Figure 50.  Map of Carter county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................89 

Figure 51.  Map of Jackson county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................90 

Figure 52.  Map of Menifee county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................91 

Figure 53.  Map of Powell county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................92 

Figure 54.  Map of Pulaski county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................93 

file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072914
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072915
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072916
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072917
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072918
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072919
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072920
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072920
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072921
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072921
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072922
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072922
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072923
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072923
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072924
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072924
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072925
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072925


xi 

 

Figure 55.  Map of Rowan county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................94 

Figure 56.  Map of Wolfe county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................95 

Figure 57.  Map of Elliott county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................96 

Figure 58.  Map of Laurel county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................97 

Figure 59.  Map of Lee county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................98 

Figure 60.  Map of McCreary county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .......................................................................99 

Figure 61.  Map of Morgan county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .....................................................................100 

Figure 62.  Map of Whitley county Kentucky showing potential locations of Taxus 

canadensis derived from habitat modeling. .....................................................................101 

Figure 63.  Specimen image of Taxus baccata ‘repandens’ obtained from Northern 
Kentucky University’s Herbarium (KNK). ......................................................................103 

Figure 64.  Specimen image of Taxus brevifolia obtained from Northern Kentucky 
University’s Herbarium (KNK). ......................................................................................104 

Figure 65.  Specimen image of Taxus canadensis obtained from University of Tennessee 
Herbarium (TENN). .........................................................................................................105 

Figure 66.  Specimen image of Taxus cuspidata obtained from West Virginia 
University’s Herbarium (WVU). .....................................................................................106 

Figure 67.  Specimen image of Taxus floridana obtained from Northern Kentucky 
University’s Herbarium (KNK). ......................................................................................107 

Figure 68.  Specimen image of Taxus globosa obtained from Northern Kentucky 
University’s Herbarium (KNK). ......................................................................................108 

Figure 69.  Specimen image of Taxus × hunnewelliana obtained from Northern Kentucky 
University’s Herbarium (KNK). ......................................................................................109 

Figure 70.  Specimen image of Taxus mairei obtained from University of Tennessee 
Herbarium (TENN). .........................................................................................................110 

Figure 71.  Specimen image of Taxus × media ‘coleana’ obtained from Northern 
Kentucky University’s Herbarium (KNK). ......................................................................111 

file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072926
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072926
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072927
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072927
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072928
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072928
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072929
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072929
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072930
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072930
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072931
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072931
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072932
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072932
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072933
file:///C:/Users/Robert%20Pace/Desktop/Robert%20Pace%20The%20Status%20of%20the%20Genus%20Taxus%20(GS_Edit4).docx%23_Toc418072933


1 

 

CHAPTER I 

INTRODUCTION 

 The genus Taxus (yew) is represented by 1 native species in Kentucky, 3 native 

species in the United States, and 24 species worldwide.  About 55 varieties have been 

described.   The species are notoriously difficult to distinguish by the morphological 

characters and geographic differences that have traditionally been used to separate the 

taxa.  The species are all so similar that they have been, at times, considered to belong to 

a single variable species (Pilger 1903).   In recent years micromorphological characters, 

epidermal cell structure in particular, have been used to compare populations.  The yews 

are also well known for their toxic foliage and as a source of metabolically active 

compounds useful in the treatment of certain cancers. 

 The three traditionally recognized taxa in the United States include one rare 

species endemic to the Appalachicola area of Florida (Taxus floridana Nuttall ex 

Chapman), a widespread species of northeastern United States  and southeastern Canada 

that becomes rare near its southern limits in Kentucky and Tennessee (T. canadensis 

Marshall), and a species of far western United States (T. brevifolia Nuttall).  There is also 

a native species of yew in Central America, T. globosa Schlectendahl. 

 Many Asian and European species of yew, as well as hybrids, are cultivated in the 

United States, and these species may occasionally occur spontaneously in habitats away 

from cultivated plants.  Examples of cultivated yews include Taxus× media Rehder, 

Taxus cuspidata Seibold and Zuccarini, Taxus × hunnewelliana Rehder, and Taxus 

baccata L. 
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 This study was initiated to find answers to several questions related to the genus 

Taxus in Kentucky: 

1) What is the distribution and habitat and taxonomic status of the native Taxus 

canadensis in Kentucky? 

2) Are non-native species of Taxus escaping to Kentucky woodlands? 

3) How similar in micromorphological features are native and non-native species of 

Taxus in Kentucky, and can these features be useful in distinguishing taxa? 

4) How similar in chemical profiles are native and non-native species of Taxus in 

Kentucky, and can these features be useful in distinguishing taxa? 

5) Can useful keys be prepared, based on macromorphological and micromorphological 

features, to separate the native and non-native taxa in Kentucky? 

6) Can habitat modeling be prepared to assist in locating populations of Taxus canadensis 

and to understand the unusual distribution of this species within Kentucky? 
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CHAPTER II 

LITERATURE REVIEW 

According to Hageneder et al.  (2001), the family Taxaceae consists of six extant 

genera: Amentotaxus, Austrotaxus, Cephalotaxus, Pseudotaxus, Taxus, and Torreya, and 

the following information is based on this reference.  Amentotaxus is a subtropical genus 

commonly called the catkin yews and are native to Southeast Asia. The genus 

Austrotaxus are found only in New Caledonia and consists of a single species.  The genus 

Cephalotaxus are commonly known as the Plum Yews, and houses eleven species that 

are endemic to China.  The genus Pseudotaxus consists of a single species, commonly 

called the White Berry Yew and is endemic to Southern China.  The genus Torreya is 

common called the Nutmeg Yews and contains six species.  Four species of the genus 

Torreya are endemic to Asia, with two being found in North America.  Torreya and 

Taxus are the only two genera of Taxaceae native to North America. 

 The genus Taxus was first described in 1753 by Linnaeus, with his description of 

the European species Taxus baccata (Linnaeus 1753).   Linnaeus considered the 

Canadian populations as conspecific with T. baccata, but Marshall (1785) separated these 

North American populations as Taxus canadensis.  Nuttall described Taxus brevifolia in 

his North American Sylva (Nuttall 1842–1849), and he also described T. floridana (in 

Chapman 1860).  The other species of Taxus currently recognized were all described in 

the eighteenth and nineteenth centuries.  Opinions on the numbers of species in the genus 

have varied widely, from one (Linnaeus 1753, Pilger 1903) to 24 (Spjut 2007).  In 

addition, many varieties have been described, including Taxus baccata ‘fastigiata’, Taxus 
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baccata ‘repandens’, Taxus cuspidata ‘nana’, etc. (Cope 1998).  Two hybrid species, 

Taxus × media and Taxus × hunnewelliana are also known (Cochran 2014).  These 

hybrids have been extensively bred for the horticultural trade yielding innumerable 

varieties, such as Taxus × media ‘brownii’ (Cope 1998). 

 Genetic studies of Taxus have become popular as more scientists are looking at 

the genes involved in Taxol production (Onrubia et al. 2011) and their regulation, along 

with exploration of kinship (Chybicki et al. 2011).    Phylogenetic studies of Taxus (Hao 

2008, Robertson 1907) haven’t been overly productive due to a lack of consistent 

nomenclature being applied to the species along with disparity between circumscriptions 

for the various species.  Collins et al. (2003) examined the relationship between the 

varieties of hybrids (Taxus × media and Taxus × hunnewelliana) and their parent species. 

This study confirmed the parentage documented historically from the Hunnewell estate 

and Hicks Nursery in the early 1900s (Cochrane 2014, Hatfield 1922).  Li et al. (2001) 

examined the phylogenetic relationship between most species of Taxus but didn’t include 

hybrids.  Allison (1991, 2008) looked at sex expression of T. canadensis, which is the 

only monecious Taxus in North America.  Allison (1990) reveals that germination rates 

of T. canadensis tends to drop when pollen is most dense.  An exact rationale for this 

behavior hasn’t been concluded.  Allison (1993) reports that self-fertilization within yews 

is often quite common, with males cones being more prevalent on younger branches, and 

female cones on branches two years old.  Allison (1992) also reports that deer have major 

impact on reproductive success of T. canadensis via herbivory.  By reducing the 

populations of T. canadensis, it forces the plant to rely more on self-fertilization (Allison 

1993).  Deer may prefer the more tender young shoots of T. canadensis (Holmes et al. 
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2009, Conover & Kania 1988), which houses the mostly male pollen cones, thus reducing 

the amount of pollen. 

The major problem in understanding Taxus classification has to do with a general 

lack of uniformity in the circumscription of Taxus species.   Morphology and 

physiography continue to dominate the taxonomic treatments of Taxus (Cope 1998, Spjut 

2007).  The scant use of phylogenetic analysis at the species level has left many questions 

regarding relationships/kinship between Taxus species questionable or unanswered. 

 The species of Taxus are usually grouped into sectional categories (Spjut 2007), 

with the North American species being placed in two different groups.  Taxus globosa, 

Taxus floridana, and Taxus brevifolia belong to the Wallichiana group and subgroup, and 

Taxus canadensis being placed in the Baccata group.  The non-native species of Taxus 

commonly cultivated in KY, Taxus cuspidata, and Taxus baccata, are placed in the 

Chinensis subgroup of the Wallichiana group and Baccata group respectively. 

 Various evidences have been used to elucidate the taxa.  Geography played a 

significant role in separation of the taxa into species.  This method was preferred by 

Linnaeus (1753) and Cope (1998).  Morphological, geographical, and chemical studies of 

Taxus have been employed more recently by Richard Spjut (2007) to elucidate the taxa.  

Spjut’s approach of comparing both geography, chemistry, and microstructures of the 

leaves provided a rational for the biogeography of the genus, except in regards to the 

hybrids which are mostly ignored.  Phylogenetic examination of T. canadensis, T. 

baccata, T. cuspidata, along with the hybrids (T. × media and T. × hunnewelliana) 

examined by Collins et al. (2003) gave insight into the phylogenetics and origin of the 

hybrid species.  Another phylogenetic examination by Li et al. (2001) provided 
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relationship/kinship between most Taxus species.  Unfortunately the data from Li et al. 

(2001) was not conclusive in discerning relationships between North American species 

and those of Europe/Asia.  Li et al. (2001) hypothesized that multiple separations and 

reintroductions between species over time may be responsible for the confounding 

phylogenetic analysis. 

 Fossil evidence suggests that family Taxaceae originated from a primitive group 

of conifers called “Taxads” around 250 MYA during the early Triassic period 

(Hageneder et al. 2007).  The earliest fossil of a Taxus species, Taxus rediviva, was dated 

to around 200 MYA, and found across the land mass of that period (Hageneder et al. 

2007).  Continental drift eventually isolated Taxus to the holoarctic regions during the 

late Cenezoic era (~64 MYA) (Hageneder et al. 2007).  Taxus baccata first appearance in 

the fossil record dates to around 16 MYA (Hageneder et al. 2007). 

 Yew species have a long history of associations with humans (Burrows and Tyrl 

2001).  Many superstitions surround the plants, going back to ancient times in Egypt, 

Greece, Rome, and Europe.  The branches were a symbol of mourning, and the wood was 

used in funeral pyres.   The branches were among the best for constructing bows and 

arrows.  It was used in sacred rites by the Druids, and later was often planted in 

cemeteries and churchyards.  The species are very long-lived, and some specimens in 

English churchyards are known to be over 1000 years old (Sterry 2007).  Adding to its 

mystery was its reputation for being toxic, especially to horses and cattle, but also to 

humans.  It has been called the most dangerous shrub both in Europe and in America.  

Both fresh and dried foliage and bark are extremely toxic, and can be fatal within a few 

hours of ingestion.  Livestock readily eat the evergreen leaves, especially in the winter.    
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Most human cases occur in children who are attracted to the bright red seeds (there seems 

to be some dispute on their toxicity) or when deliberately eaten by adults in suicide 

attempts.   

 The species have also been used for a variety of herbal remedies and similar uses 

(Moerman 1998).  Taxus canadensis was used by Native Americans of the northeastern 

United States as a drug (antirheumatic, poultice, abortifacient, gastrointestinal problems, 

gynecological aid, and others), a food (a fermented beverage from the seeds and leaves) 

and for making a green dye from the leaves (Moerman 1998).  

Taxus has been the subject of many chemical studies, mainly because the genus is 

the source of the chemotherapeutic drug Paclitaxel (Taxol®) (Windels and Flaspohler 

2011, Banerjee et al. 2008, Cameron & Smith 2008, Cody et al. 2005, Senger et al. 2006, 

Shi & Kiyota 2005, Shi et al. 2003, 2004, Walker et al. 1994, Wang et al. 2010, 2011, 

Watcheung et al. 2011, Zhang et al. 2008). Paclitaxel is a valuable drug used in the 

treatment of breast, lung, and ovarian cancers. Paclitaxel is produced via three methods; 

direct extraction from Taxus (Windels and Flaspohler 2011); via chemical modification 

of the precursor 10-deacetylbaccatin (Walker et al. 1994); and via plant cell 

fermentation’s production of 10-deacetylbaccatin, which is then chemically modified to 

form Paclitaxel. The direct extraction method requires the destructive removal of bark 

from the plant.  This yields a crude chemical cocktail that will be later refined to produce 

pure paclitaxel.  The semisynthetic pathway involves the chemical modification of the 

paclitaxel precursor compound 10-deacetylbaccatin, resulting in pure paclitaxel (Walker 

et al. 1994).  The semisynthetic pathway is non-destructive, as only the needles of the 

plant can be harvested.  Paclitaxel, and 10-deacetylbaccatin, are found to vary in 
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concentration amongst the different species of Taxus.  The highest concentration of 

Paclitaxel and 10-deacetylbaccatin are found in the T. brevifolia (Hageneder et al. 2007), 

and these populations are currently in decline throughout their Pacific coastal distribution 

because of the over-harvesting that occurred prior to the discovery of the semisynthetic 

synthesis for paclitaxel.  The paclitaxel precursor 10-deacetylbaccatin can be extracted 

from most species of Taxus; including T. canadensis (Windels and Flaspohler 2011, 

Wang et al. 2011, Watcheung et al. 2011).  The plant cell fermentation method of 

producing 10-deaccetylbaccatin doesn’t require the continual harvesting of Taxus plant 

material, and as such offers protection for existing Taxus populations. 

Pharmaceutical research into Taxol and other taxanes often is directed toward 

finding species or cultivars of Taxus that have the highest taxanes or Taxol content (Shi 

et al. 2003, 2004), or to discover novel taxanes (Senger et al. 2006; Shi and Kiyota 2005) 

or secondary metabolites (Saxena and Jain 2009).  In addition to discovering new taxanes 

present with Taxus, there is also interest in the synthesis of either existing or novel 

taxanes (Walker et al. 1994).   

The quantification of taxanes within Taxus has historically been achieved via the 

use of High Pressure Liquid Chromatography (HPLC) coupled with mass spectrometry 

(MS) (Cameron and Smith 2008).  This technique allows the separation of the taxanes 

from the other compounds present within the plant material along with measurement of 

relative taxanes content.  A newer technique (described by Cody et al. 2005) in the 

measurement of relative taxanes content utilizes Direct Analysis in Real Time Mass 

Spectrometry (DART MS).  This technique has the advantages of little to no sample 
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preparation with real time results.  DART MS has been used to identify and quantify the 

concentration of taxanes within Taxus wallichiana (Banerjee et al. 2008). 

T. canadensis differs from other Taxus species by a predominance of asexual 

reproduction.  This yew is also the only member of the Taxaceae that is almost 

exclusively monecious, bearing both male and female cones in the leaf axils during 

summer (Windels and Flaspohler 2011).  The reproductive structure of all Taxus is a 

small cone (~4 mm) enveloped in a red aril, each containing a single seed.  The aril and 

cone are the only part of Taxus that are considered non-toxic (Windels and Flaspohler 

2011).  Seeds are dispersed predominantly by ingestion of the seeds by birds and 

mammals and subsequent deposition in their feces, but also just by gravity (Windels and 

Flaspohler 2011).  Taxus seeds show low germination, which coupled with slow growth 

and sensitivity to environmental disturbance, make the genus susceptible to local 

extirpation (Hageneder et al. 2007).  T. canadensis within Kentucky are found mostly in 

small populations, formed either by clonal colonies via the rooting of their prostrate limbs 

or by seeds being locally distributed by gravity.  T. baccata has restrictions on seed 

germination near the parent plant due to an unknown inhibitory means (Devaney et al. 

2014).  It is unknown whether T. canadensis have similar regenerative restrictions. 

Young and Young (1992) provided additional information on the seeds and seed 

germination of Taxus species.  They noted that most species produced good set crops 

every year, some every few years.  Seeds can be stored for several years at prechilling 

temperatures in a moist medium.  They are noted that for some species that seeds 

germinate better if passed through the digestive system of birds.  Laboratory germination 

involves the use of warm stratification and prechilling, and that there is some evidence 
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that the natural germination inhibitors can be leached by culture in a liquid nutritive 

medium. 

 Taxus species are a highly utilized in horticulture (Cope 1998).  The variety of 

growth patterns and ability to be pruned and utilized as topiaries have made them popular 

for landscapers (Cope 1998, Welch 1979).  As such nurseries have historically had issues 

with growing Taxus from seed due to chemical inhibition and low seed germination rates 

(Zarek 2007, Melzack and Watts 1982).  Another issue with cultivation of Taxus revolves 

around their sluggish growth (Hageneder et al. 2007).  One solution to these problems 

with Taxus cultivation has been the extensive use of vegetative propagation in cultivation 

(Hageneder et al. 2007). An advantage of vegetative propagation, in which a clipping of 

the plant is used to produce a clone of the parent plant, is that one avoids germination 

issues entirely.  A disadvantage of using vegetative propagation is that the vegetatively 

propagated specimens do not exhibit the same growth patterns as that of the parent stock 

(Hageneder et al. 2007).  Plants vegetatively propagated do not develop a dominant 

leader stem, instead will develop a more multi-stemmed and sprawling growth pattern 

(Hageneder et al. 2007).  These morphological differences between the vegetative 

derived plants and their parental stock can confound identification (Spjut 2007).  This 

makes growth pattern a useless trait in diagnosing vegetatively propagated specimens.  

To further complicate cultivation, germination of seedlings are inhibited via an unknown 

means by the parent (Devaney et al. 2014).  As such seedlings do not sprout from cones 

near the parent plant.  Hybrid species such as the plethora of cultivars currently used in 

the horticultural trade, e.g. Taxus × media, have been discovered to have impaired 

meiosis, reducing the viability of their sexual reproduction (Collins et al. 2003). 
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Available taxonomic manuals and atlases and websites provide information on 

Taxus species in Kentucky and the United States, and some address the question of 

whether or not non-native species have become naturalized in the country.  The most 

significant world treatment of Taxus is by Spjut (2007), Overview of the Genus Taxus 

(Taxaceae): The Species, Their Classification, and Female Reproductive Morphology, at 

http://www.worldbotanical.com/TAXNA.HTM.  Spjut (2007) also provides a treatment 

with keys for North America at 

http://www.worldbotanical.com/Key%20NA%20Species.htm. The major taxonomic 

resource on Taxus in North America is the treatment in Flora North America (Hils 1993).  

This reference provides detailed description of the genus, pertinent literature citations, 

keys to the genera and species, species descriptions, and notes on their seed maturation 

period, their habitats, and their distributions.  It is noted in this reference that “detailed 

study of the genus (not neglecting the cultivated representatives) is much needed and 

long overdue.”  There is also a comment that extralimital (non-native) species of Taxus 

are not known to naturalize in North America, but that spontaneous saplings of exotic 

species may occur within the range of Taxus canadensis, probably being spread by bird 

droppings.  Taxus canadensis is the only species of the genus listed as occurring naturally 

in Kentucky. 

Other references specific to Kentucky are those by Wharton and Barbour (1973), 

Medley (1993), Jones (2005), Clark and Weckman (2008), and Campbell and Medley 

(2014).  Wharton and Barbour (1973) described Taxus canadensis as occurring in “three 

colonies, each in a different, moist gorge near the western edge of the Pottsville 

Escarpment … a northern relict... persisted since Pleistocene glaciation when it received 

http://www.worldbotanical.com/TAXNA.HTM
http://www.worldbotanical.com/Key%20NA%20Species.htm
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refuge in valleys and coves south of the ice sheet.” Medley (1993) listed seven counties 

for T. canadensis in Kentucky (Carter, Jackson, Lee, Menifee, Pulaski, Rowan, and 

Wolfe), and noted literature records from the Edmonson/Barren county area, based on 

Hussey (1876).   Medley (1993) also noted that T. cuspidata was observed as a rare 

escape on a limestone bluff above the Ohio River floodplain in Jefferson County.  Jones 

(2005) also listed only T. canadensis for the state, but commented that “introduced 

species such as T. cuspidata, the Japanese yew, and T. baccata, English yew, are 

frequently planted in KY and may occasionally escape to disturbed woodlands.”  Clark 

and Weckman (2008) mapped T. baccata as an “extremely rare escape in mixed woods” 

in Whitley County, and mapped T. canadensis as occurring in seven counties in eastern 

Kentucky (Carter, Jackson, Menifee, Powell, Pulaski, Rowan,  and Wolfe).   The Clark 

and Weckman distribution map differs from Medley in the listing of Powell County 

instead of Lee County.  Campbell and Medley (2014) mapped the same counties as 

Medley, and also indicated literature reports from Edmonson and Owsley Counties.  The 

Kentucky State Nature Preserves (2014) currently lists Carter, Jackson, Lee, Menifee, 

Pulaski, Rowan, and Wolfe counties for Taxus canadensis. 

One potential threat for Taxus canadensis is the escape of non-native Taxus into 

the wild that may introduce intra-generic competition via hybrids.  Two species of non-

native Taxus have been observed to escape into the wild within Kentucky: Taxus baccata 

and Taxus cuspidata (Medley 1993, Campbell and Medley 2014).  These two plants are 

seldom confused with T. canadensis due to size differences in adult specimens, but 

within saplings a taxonomic identification would require microscopic examination. Thus 

far these escaped non-native Taxus have been observed as single specimens and not 
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viable populations (Medley 1993, Campbell and Medley 2014).  This reduces any 

potential threat of these non-native species escaping.  Birds are most likely the means 

behind these non-native escapes.  Escape outside of Kentucky have been documented in 

Pennsylvania (Rhoads et al. 2000), New York (Glenn 2013), Massachusetts (Cullina et al. 

2011), and New Jersey (Glenn 2013). Of note is that the most common cultivated Taxus 

within Kentucky is Taxus × media, but it has yet to be documented as escaping into the 

wild. 

.
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CHAPTER III 

MATERIALS AND METHODS 

Field and Herbarium Studies for Morphological and Chemical Analyses 

The objective of field studies and herbarium studies was to locate populations of 

Taxus for sampling of foliage and seeds to be used in chemical and microscopic analyses.  

A list of known occurrences of Taxus species in Kentucky was provided from the 

databases of the Kentucky State Nature Preserves Commission (KSNPC 2015).  A 

collecting permit was obtained from the United States Department of Agriculture 

Forestry Service to collect T. canadensis within Daniel Boone National Forest.   Most 

plant material utilized in this research was obtained from specimen loans from regional 

herbaria (Table 1).   These specimens are individually cited in Appendix A.  For live 

plant specimens (Table 2), samples were obtained by taking one clipping from the plant, 

usually under 10 cm in length.  For collection of the colonial specimens, up to 10 cm 

samples were obtained from the larger more robust plants along the periphery and center 

of the plant colony. A single GPS coordinate is recorded for each isolated individual 

plant, and multiple GPS coordinates are recorded at the vertices of the colonies periphery, 

along with the center of the colony (Delorme Earthmate PN-40, Yarmouth ME).  Plants 

found in the field were visually inspected in the field for the presence of reproductive 

structures and fruit.  If plants contain reproductive structures or fruit, then these were 

included in the samples taken.  Samples along with a 3d barcode were inserted into a zip 

closed plastic bag.  These fresh specimens were placed in a refrigerator as soon after 
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collection as possible.  These samples (Table 2) were processed via chemical analysis 

within 72 hours after collection.   

The objective of herbarium work was to obtain specimens from regional herbaria 

to determine if any additional specimen locations could be uncovered (other than those 

documented in previous studies) and to provide specimens for macroscopic and 

microscopic comparisons.   Specimens were borrowed from Northern Kentucky 

University (KNK), totaling 30 specimens, the University of Tennessee (TENN), totaling 

15 specimens, the University of Kentucky (KY), totaling 15 specimens, and West 

Virginia University (WVA), totaling 94 specimens.  These specimens, together with 18 

specimens from Eastern Kentucky University (EKY), provided the basis for herbarium 

studies.   Upon arrival, specimen loans were frozen at -40 °C for no less than three days.  

After freezing the specimens were stored in an insect proof cabinet, and all sheets were 

photographed with a 2d barcode temporarily affixed to the specimen sheet.  Dried plant 

material was sampled for scanning electron microscopy by removal of two leaves from 

the specimen sheet, preferably from any paper packet attached to the sheet.  The 

specimen sheet’s barcode was then inserted into a sample vial containing the two leaves. 
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Table 1.  Table of taxa examined during microscopic analysis derived from various 
regional herbaria. 

Taxon # of specimens 

Taxus baccata Linnaeus 11 
Taxus brevifolia Nuttall 22 
Taxus canadensis Marshall 112 
Taxus cuspidata Siebert & Zuccarini 12 
Taxus floridana Nuttall ex Chapman 7 
Taxus globosa Nuttal ex Chapman 1 
Taxus mairei (Lemée & Leviellé) Shiu-Ying Hu 
ex Liu 1 
Taxus × hunnewelliana Rehder 1 
Taxus × media Rehder 4 
Total: 171 
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Microscopic Studies 

 Dried samples were processed via Scanning Electron Microscopy (SEM) (JEOL 

JCM-5000, Tokyo Japan) in high resolution mode at 10kV.  A leaf, cone, pollen, or fruit 

are attached to metal disc via double-sided carbon tape.  This disc is then inserted into the 

SEM, the chamber door closed, and evacuated of air.  Investigation of the sample focused 

on the number of stomata present in the two bands on the underside of the leaves, along 

papillose cells locations, and cell structures of the leaf mid-vein.  The distance across the 

stomatal bands were measured via SEM and this measurement was included in the 

subsequent images captured.  Along with stomatal bands, the apices of each leaf were 

also recorded via SEM at various resolutions based on the leaf size.  These uncompressed 

TIFF images were recorded at the highest resolution, and at magnifications of 270x and 

330x for each sample.  The TIFF image files were labeled with the sample number along 

with a letter of the alphabet based on whether it was leaf, flower, or fruit. 

Dried herbarium specimens present problems when using a dissecting 

microscope, as the leaves of Taxus are prone to curling inwards towards the midvein.  

This curling can prevent an accurate numeration of the stomata within the stomatal bands.  

This curling of the leaves (revoluteness) also presents a problem due to the short depth of 

field found in most dissecting microscopes.  Scanning Electron Microscopy (SEM) 

doesn’t suffer from shallow depth of field and offers an exemplary view of the Taxus 

abaxial leaf surfaces. 

To combat the leaf curling, leaves were rehydrated with distilled water overnight 

and pressing the leaves in a flat state while drying.  This will produce a flat subject that 

can then be easily explored via SEM or compound light microscope. 



19 

 

In addition to SEM microscopy, samples were also investigated using dissecting 

microscopes and compound microscopy.  Dissection microscopes are useless in 

observation of key abaxial leaf structures due to the lack of proper light transmission 

through the leaves necessary to view stomatal bands.  Compound light microscopes are 

capable of producing enough detail on the leaf abaxial surface as to provide appropriate 

count of stomata if the sample has been properly prepared as to flatten the leaves prior to 

inspection.  Via SEM, the lower leaf surface was examined for characters such as 

marginal cell counts, cell surface morphology, number of stomata per band, apicular leaf 

morphology, bud scale morphology, and coloration.  These characters were recorded and 

utilized to construct a taxonomic key to the Taxus species present within Kentucky. 

Chemical Studies 

The fresh samples collected in the field underwent chemical analysis via Direct 

Analysis in Real Time (DART) mass spectrometry utilizing a DART ion source 

(IonSense, DART® SVP, Saugus MA USA) coupled to a LTQ XL® linear ion trap mass 

spectrometer (Thermo Scientific, San Jose, CA, USA) which was used to obtain the mass 

spectra of all the compounds analyzed using Xcalibur software (Thermo Scientific, San 

Jose, CA, USA). 

The settings for the instrumentation were set to those found in (Banerjee et al. 

2008).  A deviation from the protocol found in Banerjee et al. (2008), is that no calli were 

used, instead the leaves and stem were sampled independently.  A cotton swab saturated 

in ammonia was placed beneath the DART ion source, and re-wetted periodically during 

the chemical analysis.  A few leaves were removed from the zip closed plastic bags via 

alcohol wiped forceps and subsequently placed into the ion stream of the DART ion 
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source.  These leaves were held in the ion stream for about a minute while the mass 

spectrometer recorded the spectrum.  The recorded spectra were then saved to a file 

which was named after the sample number, followed by either the word “leaf” or “stem.”  

The forceps were cleaned with an alcohol solution and dried with a kimwipe (Kimberly-

Clarke, Kimwipe Irving TX) between each processed sample.  Spectra were then 

subsequently normalized by excluding background readings both pre and post sample 

processing.  The goal being to note presence and absence of five taxanes in order to 

characterize Taxus present within Kentucky. 

After a fresh specimen is processed via DART mass spectrometry, it is then 

placed between a layer of newsprint, and that between blotter paper, and herbarium grade 

cardboard.  These layers of cardboard, blotter paper, newsprint, and sample are placed in 

a plant press.  The plant press that contains the fresh specimens are then air dried for a 

period of no less than three weeks.  These now dried specimens are analyzed via 

Scanning Electron Microscopy, and then affixed to herbarium paper along with a label, 

for inclusion into the EKU herbarium. 

Geographic Studies:  GIS (Soils/Topography/Aspect/Slope)  

The first step in generating a habitat suitability model for Taxus canadensis was 

to prepare a list of counties for which there were documented occurrences (specimen or 

literature report) for the species.  This study utilized ArcGIS (ArcGIS 10.2.2, ESRI, 

Redlands CA) for habitat suitability modeling.  This process begins by constructing a 

county map of Kentucky in which specimens are known to occur.  For the habitat 

suitability modeling, the analysis required several ArcGIS data layers.  Starting with 

Land Use / Land Cover provided by the National Land Cover Database for 2011. This is 
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followed by Soil Surveys from the National Resource Conservation Services for 2014, 

then 10 M Digital Elevation Maps from USGS for 2013.  Also added are the NHD 

Hydrology data layer for 2003.  Then a slope raster is constructed using the DEM layer, 

followed by construction of an aspect raster layer using the DEM layer, concluded by the 

addition of Kentucky Department of Transportation’s data layers for local and state 

roads. 

The process of constructing the habitat modeling begins by examining the 

counties in which there are known populations of Taxus canadensis using the above data 

layers.  Two features can immediately be realized as occurring within the counties that 

have known Taxus populations.  First the parent soil type for these counties is classified 

as ultisols.  The second observation is that the areas in which Taxus occur are mixed 

forests.  With this in mind, the construction of the habitat suitability model begins.  This 

process is begun by using ArcGIS’s raster layer reclass/recode on the Land Use/Land 

Cover raster image, setting Mixed Forest as 3, with Evergreen Forest as 2, Deciduous 

Forest as 1, every other type is set to zero.  Again use the raster reclass/recode on the soil 

survey layer, with ultisols set to 1, and all other soil types set to zero. Followed by 

buffering all roads based on their size.  Interstates are buffered for 6 meters, highways by 

5 meters, state roads by 4 meters, and local roads by 3 meters.  The hydrology layer is 

also buffered based on the magnitude of the river or stream.  Raster reclass/recode is then 

used on the slope raster layer based on sharp elevational changes being set to 3, with mild 

elevational changes set to 2, and no elevational changes set as 1.  Raster reclass/recode is 

then used on the aspect data such that North and East are both set to 1, and South and 

West are both set to 2. 
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With all the data layers buffered and reclassed/recoded, ArcGIS’s Map Algebra’s 

Raster Calculator function is used to add the values from all the raster layers and store 

that data into a new raster data layer called “predictions”.  All the hydrology and road 

buffers are then combined into a single file using the Geospatial Analysis’s Union 

command.  What is left is a buffered layer and the “prediction” raster layer.  The next 

task is to convert the buffered polygon layer to a raster layer using ArcGIS’s conversion 

tool, assigning the raster layer a value of 0.  ArcGIS’s Map Algebra’s Raster Calculator 

function is then used to multiply the buffer raster by the “prediction” raster layer, and 

output this raster layer to one called “FinalPredictions”.  The range of values now for this 

FinalPredictions layer data will be from zero to 9.  The higher the positive value the more 

suitable the habitat is for Taxus.  
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CHAPTER IV 
 

RESULTS 

Morphology 

In this study fresh specimens of Taxus were obtained for morphological and 

chemical comparisons from several populations (Table 2).  Gross morphologies, such as 

features of phyllotaxy, leaf apices, and the angle of the petiole or bud to the stem, 

sometimes provide taxonomic differences.   Most of these anatomical differences can be 

observed by the naked eye or via a 10× hand lens.  

Leaf phyllotaxy is important in the gross morphology of Taxus.  Taxus species 

can differ in their leaf density, leaf-ranking, along with whether the leaves present 

themselves upright or drooping.  Taxus can differ significantly in how dense the leaves 

are arranged on the twig, along with the thickness of the twig.  Some Taxus species 

employ an almost radial arrangement of leaves on the twig throughout the length, 

whereas others may be either two-rank, or radially arranged only on the branches apices. 

Leaf apices vary between different Taxus species.  Taxus can have blunt to quite 

sharp leaf tips.  The species also can differ in the angle at the apices, some being acute, 

others obtuse.  These features can be observed via tactile inspection along with the use of 

a hand lens. 

Taxus share many gross morphological similarities between the individual 

species.  This makes gross morphology alone incapable as a method of differentiation.  

Teasing the individual species apart from the Taxus complex requires the exploration, 

along with the gross morphologies, of the microstructures present on the leaves.  
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Structures of prime importance in distinguishing the different taxa of Taxus include; 

stomatal bands, papillosity, midvein cell structure, and leaf margins   Dissecting 

microscopes can be employed to scrutinize these microstructures present on fresh 

specimens.  

Growth Forms, Needles, and Seeds 

Within Kentucky, there are only three species of Taxus that have been 

documented as occurring spontaneously (not cultivated); Taxus baccata (Figure 1), Taxus 

canadensis (Figure 2), and Taxus cuspidata (Figure 3).  Taxus canadensis most often 

exhibits high leaf density, with leaves arranged mostly radially along the top half of the 

plant’s body.  The remaining lower body of T. canadensis possessing a more single 

ranking of leaves.  Taxus baccata mostly exhibits an uplifting of needles in relation to the 

stem with lower needle density.  Taxus cuspidata often exhibits only the newer growth 

having radial leaf arrangement, and single-ranked for the remainder of the branches. 

The reproductive cones, particularly the female cones of Taxus (Figure 4) can 

vary between species in both size and shape.  Unfortunately availability of seeds from 

herbarium specimens and field collections prevent elucidating species via seeds within 

the scope of this research.  For the few seeds available, it was noted that some seeds were 

latitudinally spherical, and some being longitudinally angled to the point of being 

veritably lobed. 

Male cones (Figure 5) are easily distinguished from the female due to more 

knobby or cauliflower like structure.  The male cones erupt in early spring producing 

copious amounts of golden pollen. 
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Figure 1.  Multi-stemmed Taxus baccata ca. 4 m tall, located in a back yard, sample # 
SOTINKY01. 
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Figure 2.  Taxus canadensis producing a low prostrate ground cover under 1 m tall, 
sample # SOTINKY26. 
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Figure 3.  Single stemmed Taxus cuspidata ~ 12 m tall located on Eastern Kentucky 
University’s campus outside the Miller Building surrounded by multi-stemmed Taxus × 
media hedges ~ 2 m tall.  
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Figure 4.  SEM image of a mature female cone of Taxus baccata, sample # SOTINKY01. 

 
Figure 5.  SEM image of an immature male cone of Taxus × media, sample # 
SOTINKY02. 
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 With Taxus, stomates are found in two distinct bands on the leaf abaxial surface.  

These stomatal bands are bisected by the longitudinal leaf midvein.  The number of 

stomates present within these bands is highly valuable in identification of the taxa.  The 

number of stomates within these bands is not exact for each taxa, and varies subtly at the 

population level within constraints. 

Analysis of the SEM images (Figure 6–Figure 17) in Appendix B for both native 

and non-native Taxus species show that the number of stomata found within the stomatal 

banding is an easy way to determine if a specimen is native or non-native to Kentucky.  

Taxus canadensis, our only native species will always display less than 6 stomates per 

band (Figure 6), whereas non-natives will possess 6 or more stomates per band.  A key to 

Taxus species is presented after the genus descriptions that will allow circumscription of 

Taxus species within Kentucky with the exception of Taxus × media which is too variable 

in microstructures as to differentiate. 

Stomatal banding alone will only permit determination of whether a specimen is 

native or non-native.  In order to provide circumscription it is necessary to examine a 

variety of microstructures such as abaxial leaf surface papillosity.  Within select species 

of Taxus, there will be small surface cells that exhibit an elevated almost conical 

projection of the cell membrane.  The location of these projections within the cell, and 

their occurrence pattern on the leaf abaxial surface is invaluable. 

The shape and texture of the midvein are also important features that are 

necessary for correct identification to the species level.  Taxus differ in the size, cell 

geometry, and papillosity along the midvein. 
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Leaf margins are also valuable in teasing out the individual species of Taxus.  

Leaf margins can exhibit different morphologies, with some species having different 

levels of margins being revolute vs. straight leaf margins. 

Chemistry 

 During the chemical analysis the goal is to quantify the relative intensity of five 

taxanes (Figure 18–Figure 22) within 21 samples of fresh Taxus cuttings.  The taxanes, 

without the dopant ammonium hydroxide, we were looking for are m/z of 504 (Figure 

18), m/z of 518 (Figure 19), m/z of 532 (Figure 20), m/z of 546 (Figure 21), and m/z of 

562 (Figure 22).  Ammonium hydroxide is used as a dopant similar to the study by 

Baneerjee et al. (2008), it is expected that the mass to charge ratios to be increased by m/z 

18.  Thus it is expected that the taxanes will show up via mass spectrometry as m/z 522 

[M + NH4]+ (Figure 18),  m/z  536 [M + NH4]+ (Figure 19), m/z 550 [M + NH4]+ (Figure 

20), m/z 564 [M + NH4]+ (Figure 21), and  m/z 580 [M + NH4]+ (Figure 22) respectively 

(see Appendix C).  One goal of this application of DART M.S. would be to characterize 

species of Taxus via the presence or absence of these five taxanes.  This could lead to a 

chemical method of differentiating species.  In this study the relative intensity of these 

five taxanes differed dramatically between the stem and leaves of the same plant.  Eleven 

samples had no detectable amount of the five taxanes we investigated (Table 3 and Figure 

23–Figure 42 in Appendix D).  Of the ten samples that did show the presence of the 

taxanes, the predominantly present taxanes had the molecular weight of 536m/z.  No 

sample showed the presence of all five taxanes. (Baneerjee et al. 2008) had higher 

relative intensity for the same five taxanes with their study possibly because they were 

using the calli of Taxus plants, not leaves and stems.  The wounds used to produce such 
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calli could increase anti-herbivory compounds such as taxanes within the plant by 

simulating herbivory. 

It may be possible to characterize Taxus via DART M.S. using a more sensitive 

detector, measuring taxanes content of calli, and looking for more taxanes than five.  A 

question that needs to be explored is whether hybrid species of Taxus vary in taxanes 

production from their parents.  Considering the wide variation in phenotypic differences 

possible between the same hybrid species, it may be impossible to differentiate hybrid 

species from other taxa. 

The findings of this study suggest that utilizing leaf and stem alone to characterize 

native and non-native Taxus species via DART was not feasible using only five taxanes.  

Detection of taxanes from leaf and stem was hampered by their extremely low 

concentrations of the taxanes present within these tissues.  A potential problem with using 

DART MS alone is that there could be many other molecules of the same molecular weight 

as taxanes.  These other molecules can saturate the sensor reducing the detection of taxanes.  

One solution for this issue would be to use HPLC or UPLC to separate out as many non-

taxanes from the plant material as possible.  Another complication in this analysis was due 

to the use of only five taxanes, with a larger number of taxanes being explored success may 

be possible.  Utilizing wound calli tissues for the analysis isn’t practical for the 

characterization of species due the amount of time and effort needed to obtain results.  

Chemical fingerprints were produced via DART MS, but they were not unique to each 

Taxus species.  
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Table 3.  List of taxanes present per sample and corresponding figure.  Letters after 
Sample # refer to whether sample was a leaf (L) or stem (S). 
 

Figures Sample# Taxanes Present 

Figure 23 SOTINKY01L [M + NH4]
+ m/z 536 m/z 

Figure 24 SOTINKY01S None 

Figure 25 SOTINKY02L None 

Figure 26 SOTINKY02S [M + NH4]
+ m/z 536 m/z 

Figure 27 SOTINKY03L None 

Figure 28 SOTINKY03S None 

Figure 29 SOTINKY07L [M + NH4]
+ m/z 522, [M + NH4]

+ m/z 536 

Figure 30 SOTINKY07S [M + NH4]
+ m/z 522, [M + NH4]

+ m/z 536  

Figure 31 SOTINKY08L [M + NH4]
+ m/z 536 

Figure 32 SOTINKY08S None 

Figure 33 SOTINKY33L [M + NH4]
+ m/z 536, [M + NH4]

+ m/z 550, [M + NH4]
+ m/z 564  

Figure 34 SOTINKY33S [M + NH4]
+ m/z 536 

Figure 35 SOTINKY36L None 

Figure 36 SOTINKY36S [M + NH4]
+ m/z 536 

Figure 37 SOTINKY42L [M + NH4]
+ m/z 536 

Figure 38 SOTINKY42S [M + NH4]
+ m/z 536 

Figure 39 SOTINKY53L [M + NH4]
+ m/z 536 

Figure 40 SOTINKY53S 

[M + NH4]
+ m/z 522, [M + NH4]

+ m/z 536 , [M + NH4]
+ m/z 550, 

[M + NH4]
+ m/z 580 

Figure 41 SOTINKY55L [M + NH4]
+ m/z 536, [M + NH4]

+ m/z 550 

Figure 42 SOTINKY55S [M + NH4]
+ m/z 522, [M + NH4]

+ m/z 536, [M + NH4]
+ m/z 550 
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Habitat Model: Known & Potential Occurrences 

Several maps were generated, including maps to show the location of various 

Taxus species within the continental U.S. (Figure 43) and a county map of known 

occurrences of Taxus canadensis within Kentucky (Figure 44).  Maps were also 

generated to show important environmental associations associated with Taxus 

canadensis within Kentucky (Figure 45 & Figure 46), along with maps of known and 

predicted areas within the state (Figure 47–Figure 49).  Maps were also created that show 

the predicted areas within counties with known populations of T. canadensis and counties 

with suggested potential populations.  All maps are in Appendix E.  The following 

counties are presented in two groups, those counties that have documented records, and 

those in which the GIS model predicted possible occurrences:  

1)  Counties with Known Occurrences: 

Carter County – GIS modeling predicts the best areas for Taxus within the county to be 

within the southern regions with slight emphasis on the south central (Figure 50). 

Jackson County - GIS modeling predicts the best area for Taxus within the county to be 

wide spread and patchy, with slight emphasis on the western and central regions of the 

county (Figure 51). 

Menifee County – GIS modeling predicts the best area for Taxus within the county to be 

within the southern half of the state and to a lesser degree the eastern half of the county 

(Figure 52). 

Powell County - GIS modeling predicts the best area for Taxus within the county to be 

mostly in the western part of the county and to a lesser degree in the southern portion of 

the county (Figure 53). 
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Pulaski County - GIS modeling predicts the best area for Taxus within the county to be 

along the eastern region, close to the county boundary (Figure 54). 

Rowan County – GIS modeling predicts the best areas for Taxus within the county to be 

within the southeastern region (Figure 55). 

Wolfe County – GIS modeling predicts the best area for Taxus within the county to be 

within western half of the county (Figure 56). 

2)  Counties with GIS Model predicted occurrences: 

Elliott County – GIS modeling predicts the best area for Taxus within the county to be in 

the western region of the county and to a lesser degree the northern portion of the county 

(Figure 57). 

Laurel County – GIS modeling predicts the best area for Taxus within the county to 

western regions of the county (Figure 58). 

Lee County – GIS modeling predicts the best area for Taxus within the county to be 

north eastern quarter of the county (Figure 59). 

McCreary County – GIS modeling predicts the best area for Taxus within the county to 

mostly found in the eastern half of the county (Figure 60). 

Morgan County – GIS modeling predicts the best area for Taxus within the county to be 

within the northern and western regions of the county (Figure 61). 

Whitley County – GIS modeling predicts the best area for Taxus within the county to be 

in the north western regions, and to a lesser degree the extreme southwestern area of the 

county (Figure 62).  
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Genus Description 

Taxus Linnaeus, Sp. Pl. 2: 1040. 1753; Gen. Pl. ed. 5, 462, 1754.  

Yew 

Trees or shrubs of various sizes, mostly dioecious (monoecious in T. canadensis).  

Bark thin, rusty brown, and peeling. Branches highly variable and can be ascending, 

prostrate, or drooping; twigs alternate, most being isodichotomously branched, young 

twigs being paler green, older twigs exhibiting a darker green to almost red coloration 

with age.  Leaves vary between being 2-ranked on older or shaded twigs, and almost 

spirally arranged on younger or sun exposed twigs, springy to stiff in texture; leaves 

tapering to short petiolar base, midrib continuous from petiole to apex, and decurrent on 

the stem.  Abaxial leaf surfaces having outer marginal cells, two stomatal bands, and the 

midrib.  Stomatal bands fainter in color to surrounding cells, with various degrees of 

papillosity; leaf apex mucronate and varying between soft to stiff.   Pollen cones globose, 

with cauliflower like texture, beige to honey-colored, and bearing golden anemophilous 

pollen.  Cone with single seed, terete to triangular, surrounded by a fleshy cup-shaped 

fleshy aril.  Seed falling in late fall into early winter. 

Species number highly variable with Hils (1993) suggesting 6 to 10, and Spjut 

(2007) suggesting as many as 24 (representative species are shown in Figure 63–Figure 

71 in Appendix F), most occurring in a Holarctic distribution. 

  



36 

 

Keys to Species 

1. Plant a small shrub, under 2 m tall, typically monecious; needles  to 3 cm long 

(sometimes longer in older plants), with 2 bands of stomates on lower surfaces, each band 

usually 5 to 7 stomates wide; papillae obscure between stomates …….. T. canadensis 

1. Plant a shrub or small tree, often over 2 m tall (to 25 m), mostly dioecious; needles to 4 

cm long, with two bands of stomates on lower surfaces, each band 7 or more stomates 

wide;  papillae prominent between stomates. 

2. Plant fastigiate, columnar, or pyramidal in commonly cultivated form; leaves 

with 8 to 10 stomates per band on densely papillose abaxial leaf surface, stomatal 

band olive green……………………………...…………………. T. baccata 

2. Plant pyramidal or as wide as tall; leaves with 11 to 13 stomates per band on 

abaxial leaf surface, stomatal band yellow-green …………...… T. cuspidata 



37 

 

Species Accounts 

1.  Taxus canadensis Marshall.  (Figure 65). 

Canada yew, American yew. 

Synonyms:  Taxus baccata Linnaeus subsp. canadensis (Marshall) Pilger; T. baccata var. 

minor Michaux; T. minor (Michaux) Britton; T. procumbens Loddiges 

Shrubs under 2 m, mostly monoecious, low, dichotomously branched, patchy, 

spreading to prostrate. Bark reddish brown, very thin. Branches prostrate and ascending. 

Leaves up to 2.5 cm, dark green on axially, and pale green abaxially, stomatal band 

showing light papillosity with 5 to 7 stomates per band. Seed angular in shape under 5 

mm in diameter, 2n = 24 (Dark 1932, Khoshoo 1960). 

Cones appearing early spring and seeds maturing in late summer to early fall. 

Understory short shrub, either patchy in distribution or as a groundcover, occurring in 

both deciduous and evergreen forests.   Often found in Kentucky along rocky cliffs, creek 

banks, and cave openings. 

Native to Kentucky, distribution is from Ontario to Quebec and south to 

Tennessee and North Carolina.   

Documented counties in Kentucky:  Carter (Meijer, September 1972 KY), 

Jackson (Jones 3965, EKY), Menifee (Huie-Netting 50, EKY), Powell (Jones 8111e, 

EKY), Pulaski (Denham 8/28/1985, EKY), Rowan (Risk 11-403, KNK), and Wolfe 

(Thieret 08/16/1982, KNK).  No voucher record was located to document the occurrence 

of the species in Lee County, as mapped by Medley (1993) and Campbell and Medley 

(2014), or Owsley County, as mentioned by Gonsoulin (1975). 
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The literature report by Hussey (1876) from Edmonson/Barren county area could 

not be verified.  These regions are out of the known range of the species, but still 

possible, as there are disjunct populations of mixed mesophytic species still found in the 

area (Jones 2005). 

2.  Taxus baccata L. (Figure 63) 

English yew, European yew 

Tree reaching heights of 20 m, often with crisscrossing branches.  Leaves up to 4 

cm in length, stomates occurring in 8 to 10 per band, mostly papillose between marginal 

cells and olive green stomatal bands. 

Cones appearing early spring and seeds maturing in late summer to early fall.  

Seeds are terete and under 5 mm in diameter, 2n = 24 (Dark 1932, Khoshoo 1960). 

Native to Western Europe, not native to Kentucky and escaping infrequently. 
 

Documented counties within Kentucky: Whitley (Weckman 10778, EKY). 
 
3.  Taxus cuspidata Siebold and Zuccarini (Figure 66)  

Japanese Yew, Rigid Branched Yew 
 

Tree or shrub up to 18 m, with stout stems often with short recurved branches.  

Leaves up to 3 cm in length, stomatal band greenish yellow in color, with 11 to 13 

interrupted stomates per band, mostly papillose in bands within marginal cells. 

Cones appearing early spring and seeds maturing in late summer to early fall.  

Seeds are quadrangle near apex ~5 mm in diameter, 2n = 24 (Dark 1932, Khoshoo 1960). 

Native to Japan and Korea, not native in Kentucky, and escaping infrequently. 
 

Documented counties within Kentucky: Jefferson County (Medley and Thomas 

18282-87, as noted in Medley, 1993; specimen could not be located, but is likely in 
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storage at Western Kentucky University).  Other herbarium records for this species are 

apparently from cultivated specimens.  
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CHAPTER V 
 

DISCUSSION 

Macroscopic/Microscopic Investigation 

A large problem that has hampered an understanding of Taxus has been the 

difficult nature of distinguishing the taxa.  An accurate and detailed taxonomic key is 

needed, but difficult to construct, due to the great similarity among taxa in gross 

morphology.  It is therefore best to utilize both macroscopic and microscopic 

characteristics in comparing the taxa.  For the macroscopic investigation, the focus 

should be on branching patterns, growth patterns, and the presence or absence of 

persistent bud scales.  The microscopic investigation should center on small structures on 

the abaxial surface of the leaves, looking for the arrangement and number of stomates 

found within the bands, along with the density and location of any papillae.  Utilizing 

macroscopic features alone, it is possible to distinguish Kentucky’s native Taxus 

canadensis from mature non-native species.  The microscopic features are impossible to 

avoid when it comes to circumscription of the non-native species.  The combination of 

macroscopic and microscopic features allows for the construction of a key to more 

accurately identify the native and non-native species in Kentucky, as indicated in the key 

to species above.   

Chemical Analysis 

Intense chemical analysis with the aim of differentiation of species of Taxus 

undertaken with this research was aimed at reducing the amount of plant matter necessary 

needed to characterize a particular Taxus species.  Unfortunately, Taxus canadensis is 
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threatened in Kentucky and exists only as a small shrub, and this has to be taken into 

consideration when harvesting plant material.  Kentucky’s populations of Taxus 

canadensis are simply too fragile to support harvesting of entire plants for the sake of 

identification via their chemistry.  These plants use taxanes to deter herbivory and as an 

insecticide. Plants often will vary in the amount of taxanes.  Plants in general tend to not 

produce abundant anti-herbivory/insecticide compounds without having experienced 

being browsed by herbivores or insects.  To produce abundant anti-herbivory/insecticide 

compounds otherwise would be a waste of cellular energy.  As such the chemical 

abundance of taxanes within the plant would naturally be expected to vary based on 

things like environment, particularly climate, soil chemistry, hydration, and location.  It is 

also worth noting that taxanes are large and energy expensive molecules, and are 

generally quite toxic to most mammals with the exception of cervids (Conover & Kania 

1988, Windels & Flaspohler 2011).  Taxus in general produce very small amounts of 

these taxanes, and is one of the reasons for the decline of Taxus brevifolia on the West 

coast, due to the amount of bark/needles harvested in order to produce a small amount of 

the chemotherapeutic drug Paclitaxel.  Sophisticated ion detectors in modern mass 

spectrometers can have a problem detecting these compounds in raw plant matter due to 

extremely low concentrations present in the plant materials.  More plant material can 

obviously be harvested from species that reach larger sizes, compared to the shrubby 

Taxus canadensis.  Another possibility is to separate out the other compounds present 

within the plant matter, thus producing a more concentrated extract to be processed via 

DART Mass Spectrometry.  This has been traditionally handled via coupling of Mass 
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Spectrometry with HPLC.  This project in hindsight could benefit from using far more 

taxanes in the characterization in order to have potential success. 

GIS Modeling 

Another problem with studying living Taxus within Kentucky is locating the 

populations.  Kentucky has vast areas of forest within the plant’s habitat with 

considerable changes in elevation that makes traversing its habitat challenging.  With 

Taxus canadensis preferring steep slopes and deep valleys, it is naturally secluded.  Taxus 

canadensis also has a very confined distribution within Kentucky, and understanding why 

it inhabits the region it does and is absent from others hasn’t been understood.  Another 

difficulty in finding Taxus canadensis populations in the wild is that it often grows in 

close proximity to other conifers, particularly the Eastern Hemlock (Tsuga canadensis), 

which looks from a distance quite similar to Taxus canadensis.  This often forces the use 

of binoculars for scouting and requires close proximity in order to obtain a positive 

identification as a yew.  The rugged terrain inhabited by Taxus canadensis may result in 

the species being under-collected and under-represented in local herbaria. 

The difficulty in finding Taxus in Kentucky provides a rationale for habitat 

modeling.  By examining details such as soil, climate, slope, elevation, hydrology, land 

use, land cover, and aspect, one can better understand the habitat needs for the plant.  

These type models provide an understanding of the plants distribution in context of the 

environment.  Models also permit making predictions as to where the plant could 

potentially be found.  This allows an individual to focus on areas in which the model 

predicts a higher likelihood of finding the plant. 
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The modeling for Taxus canadensis within Kentucky aims to provide three main 

types of maps.  One series of maps generated shows the spatial arrangement of various 

aspects of habitat that are associated with Taxus, such as ultisols, mixed forest types, and 

land use/land cover.  Another series of maps shows predictive hot spots in which the 

model indicated elevated potential of occurrence for counties with known populations of 

Taxus canadensis.  The final series of maps contain predictive hot spots for counties in 

which there were no specimens available.  Predictive modeling for these counties could 

be useful in providing new county records for Taxus canadensis. 

This modeling of Taxus canadensis in Kentucky provides a basic framework for 

further study of Taxus by assisting future researchers in locating Taxus populations.  As 

the knowledge of Taxus increases over time, the modeling can be improved, providing 

more accurate predictions.  Modeling also could be used to show how global climate 

change could affect distributions of Taxus canadensis.  
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 

The species Taxus canadensis within Kentucky has an unusual distribution pattern 

that is influenced by soils, forest types, disturbance regimes, and climate.  This research 

explored soils present within the native range in Kentucky, along with elevation, forest 

type, hydrology, and aspect in order to model predicted habitat for this species.  This 

modeling will assist future studies involving Taxus canadensis within the state, and will 

act as a base for more sophisticated modeling.  Three main types of maps were produced 

from this research.  The first series of maps show distribution of soils and forest type that 

are associated with this species.  The second series of maps, shows habitat modeling for 

Taxus canadensis in counties where populations have been previously located.  The third 

series of maps shows habitat modeling for Taxus canadensis in counties where there are 

no records of occurrence. 

Yews are heavily employed by landscapers and are a horticultural favorite for 

hedges and topiaries.  This research explored whether these cultivated Taxus could 

potentially escape into the wild.  The findings show that escape is rare, and is confined to 

Taxus cuspidata and Taxus baccata.  The most popularly cultivated non-native is Taxus × 

media and has not been recorded as escaping into the wild. 

A major obstacle in Taxus research is difficulty in identification.  Mistakes in 

identification can invalidate any information gathered about a species.  This research 

explored the morphological differences between native and non-native species of Taxus 

that are found in the wild areas of Kentucky.  A variety of equipment was employed in 
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morphological examination including scanning electron microscope (SEM).  A product 

of the detailed examination was the production of a dichotomous key for Taxus species 

based on both macroscopic and microscopic features. 

Another means of identification of Taxus species was explored using chemical 

characters instead of morphological ones.  This research involves the observance of five 

taxanes within a variety of Taxus species utilizing Direct Analysis in Real Time Mass 

Spectrometry (DART MS).  This technique of identification via the presence and absence 

of taxanes was not successful due to the extremely low amount of taxanes present within 

the samples, and due to the high variability in concentration of these taxanes due to 

season and herbivory. 

The future for native Taxus canadensis within Kentucky could be affected by 

global climate change.  This could be expected to alter the environment in Kentucky in 

ways that could provide a less hospitable environment for the species.  Taxus canadensis 

prefer cooler and wetter climate. If the climate were to shift towards warmer or drier 

season this could increase the frequency of forest fires and drought, which would be 

highly detrimental to this relict of glacial times.  
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1. Taxus baccata Linnaeus. 

 

India: 
 
N/A.  N/A County — Deoban, Chakrata, UP., J. Sayup (WVA); 

 

U.S.A.: 
 
CALIFORNIA.  Los Angeles County— f, Don A. Emerson (WVA); Yolo 

County—Animal Science Building entrance, UCD, Pat Sullivan (WVA); 
 
KENTUCKY.  Fayette County — University of Kentucky Campus, J. L. Gentry 

1140 (KY); Madison County — backyard of 203 Moberly Ave, Robert R. Pace 
SOTINKY01 (EKY); Whitley County—Woods edge, Resort Cabin Road just off Hwy 
90; ca 0.1 mi SW of Dupont Lodge Loop Rd, Cumberland Falls State Park., Timothy J. 
Weckman 10778 (EKY); 

 
NEW YORK.  Bronx County—New York Botanical Garden, Bronx Park, Bronx 

Co., New York City, N. Y., Harold N. Moldenke 4310 (WVA); 
 
OHIO.  Wayne County—Living Herbarium of Taxus at the Secrest Arboretum - 

Ohio Agricultural Research and Development Center - Wooster, John W. Thieret A30-75 
(KNK);  Living Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural 
Research and Development Center - Wooster, John W. Thieret  (KNK);   Living 
Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural Research and 
Development Center - Wooster, John W. Thieret A30-194 (KNK); Living Herbarium of 
Taxus at the Secrest Arboretum - Ohio Agricultural Research and Development Center - 
Wooster, John W. Thieret B01-086 (KNK); Living Herbarium of Taxus at the Secrest 
Arboretum - Ohio Agricultural Research and Development Center - Wooster, John W. 
Thieret BA31-64 (KNK);  
 

2.  Taxus brevifolia Nuttall 

 

U.S.A.: 
 
CALIFORNIA.  Siskiyou County—, A. T. Leiser D 2504 (WVA); 
 
IDAHO.  Idaho County—Several miles NE of Lowell along US highway 12., 

Matthew H. Hils 1036 (KNK); Ca. 4 miles SW of Lolo Pass (border between Idaho and 
Montana) ca. 60 air miles NE of Lowell., John W. Thieret 56101 (KNK);  Devoto 
Memorial Cedar Stand near Lolo Pass., Michael Wade  (WVA);  Latah County—Along 
Mannering Creek, 2 miles south of Benewah County line, St. Joe National Forest., 
Marion Ownbey 2020 (WVA);  Soshone County—Near Avery, Wendel Swank  (WVA);  
Benton County—Small tree in cultivation, Corvallis, Jeffrey G. Thieret  (KNK);  Jackson 
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County—Elevation 4700 ft in Cascade Range.  Ca 20 miles E of Medford along highway 
140, Matthew H. Hils (KNK); 

 
OREGON.  Jackson County—Prospect District Near the Rogue River, Elevation 

2,700', R. J. Mastrogiuseppe  (WVA);  Josephine County—Ca. 4 air mi W of Selma - 
Siskiyou National Forest - Along Snailback Creek - N of Illinois River Road ( Natioal 
Forest Service Road 4103)., Robert F. C. Naczi 3243 (KNK);  Klamatk County—Al 
Sarena Buzzard Mine, Rogue River National Forest, R. J. Mastrogiuseppe  (WVA);  
Multnomah County—Hoyt Arboretum - Portland., Matthew H. Hils 1053 (KNK);  N/A 
County — Northwestern Oregon, M. L. Bransen  (EKY);  Parkdale County—, Ralph W. 
Mohr 119 (KY);  Unknown County—Willamette National Forest, Richard J. Obyc  
(WVA); 

 
WASHINGTON.  Chelan County—Red Mt. Mine, Don Cole  (WVA); Red Mt. 

Mine, Don Cole  (WVA); Red Mt. Mine, Don Cole  (WVA); Kittitas County—Along Cle 
Elum River near Davis Mt. trail bridge.  Elevation 2500', Donald Cole  (WVA);  Lewis 
County—Snoqualmie National Forest Near Mineral., Robert E. Henderson 18 (WVA);  
Pierce County—Mount Ranier National Park, Longmire Meadows, El = 2700', George A. 
Hall H-120 (WVA); Thurston County—At the head of Mud Bay, F. G. Meyer 1589 
(WVA); 
 

3. Taxus canadensis Marshall 

 

Canada: 
 
Quebec.  Terrebonne County—St-Jerome, Leg. Frere Rolland Germain 8362 

(WVA); 
 

U.S.A.: 
 
CONNECTICUT.  Tolland County—Route 15, Union, near Mass. Line, G. B. 

Rossbach  (WVA); 
 
ILLINOIS.  Carroll County—, Robert A. Evers 108298 (KNK); Daviess 

County—Apple River Canyon State Park, Alfred C. Koelling 396 (TENN); 
 
INDIANA.  Monroe County—In Bloomington Indiana, R. Dale Thomas 123084 

(TENN); 
 

KENTUCKY.  Carter County—Carter Cave State Park, W. Meijer  (KY);  
Cascade caverns, F. A. Gilbert 831 (WVA);— Cascade Caverns, F. A. Gilbert 831 
(EKY);  Above Tygarts Creek, upstream from bridge on KY 182 near entrance to Carter 
Caves State Park., Timothy J. Weckman 1182 (EKY);  Ky 182 at S end of bridge over 
Tygarts Creek., Elizabeth M. Browne 9601 (EKY);  Jackson County—Along War Fork 
below Resurgence Cave, Julian Campbell  (KY); Along Warfork Creek., Ronald L. Jones 
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3965 (EKY);  1.1 miles SE of Wind Cave Church, on the south side of War Fork Creek, 
60' above the creek at entrance to War Fork Cave, about 8 air miles northeast of McKee, 
Greg Sievert  (EKY);  Menifee County—Daniel Boone Natioal Forest.  Middle Fork Red 
River - N Bank ca 2 mi upstream from bridge of KY. 715 over Red River, Alvin Mosley 
1 (KY);Frenchburg; Gladie Creek - Central section limestone talus, Julian Campbell  
(KY);  Roadside along KY 715, Approx. 3mi Wolf/Menifee Co. boarde at bridge., 
Kathryn Huie-Netting 50 (EKY);  Both sides of Gladie Creek above 1,000 ft on either 
side of dry fork mough and along Dry Fork about 1,000 ft above mouth., J. Campbell  
(EKY);   Powell County—Along HW11, streamban just south of entrance to Natural 
Bridge State Park, near Wolfe County line., Ronald L. Jones 8111e (EKY);  Pulaski 
County—White oak creek off Rt 196., Andy Denham  (EKY);  Rowan County—
unnamed tributary of Minor Cr.- 0.3 mile north of Minor Cr. - Shop Br. Jct., Allen C. 
Risk 11-403 (KNK);  Minor creek tributary 0.4 miles N of Shop Branch, Julian Campbell  
(KY);  Wolfe County—South of Bridge and on West side of road.  Ca. 1.7 mile south of 
Wolfe-Powell Co. Line on Kentucky highway 11., John W. Thieret  (KNK); Daniel 
Boone National Forest.  KY. 11 - 1.7 mi. S of Wolfe-Powell Co. Line., Robert Brooks  
(KY);  On KY 11, two miles south of Natural Bridge State Park., Jennifer R. Francis 41 
(EKY); Cliffs above KY 715 about 0.6 road mile northwest of bridge over Red River, in 
ravine north of Sky Bridge., Bryce D. Fields 881 (EKY); Along Middle Fork Red River, 
Robert R. Pace SOTINKY26 (EKY); Along Middle Fork Red River, Robert R. Pace 
SOTINKY27 (EKY); Along Middle Fork Red River, Robert R. Pace SOTINKY28 
(EKY); Along Middle Fork Red River, Robert R. Pace SOTINKY29 (EKY); 

 
MASSACHUSETTES.  Worcester County—on W side of Hwy. 202 about 300 

meters.  Just N. of the village of Winchester Springs, Vernon Bates 247 (TENN); 
 
MAINE.  Waldo County—Meguntioook Lake, Ray C. Friesner 9067 (WVA); 
 
MICHIGAN.  Alger County—Pictured Rocks National Lakeshore.  Ca. 10 miles 

NE of Munising., John W. Thieret  (KNK);  Miner's Falls, James C. Myers 209 (WVA);  
Cheboygan County—George along Brutus Road, James C. Myers  (WVA);  Chippewa 
County—Sugar Island, Sault Ste. Marie, Mrs. Oscar Lund  (WVA);  Emmet County—, 
John W. Thieret 48674 (KNK);  Luce County—Along Sucker River, highway 416 ca. 0.6 
miles SE of jct 416/H58; east of Grand Marais, MI., Timothy J. Weckman 5951 (EKY);  
Mackinac County—Cut River Gorge - crossing of US Route 2, George A. Hall H-66 
(WVA);  Ontonagon County—Behind Mineral River Shopping Plaza, White Pine, 
Michigan, Timothy J. Weckman 4251 (EKY); 

 
MINNESOTA.  Fillmore County—, John W. Thieret (KNK); Lake County—

Cascade River Gorge, Ken E. Rogers 10073 (TENN); St. Louis County—T 61N R 21W 
NW 1/4 of SW 1/4 of Sec 34, Roger Lake 98-6 (WVA); 

 
N/A.  N/A County—NE x, Sec 27, T 14 N, R 4 W CMU Campus, Bruce P, 

Beerbower (WVA); 
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NORTH CAROLINA.  Ashe County—Along Long Hope Creek at the Ashe-
Watauga County line on Richardson Farm.  First reported in Wauauga county by 
Gladston McDowell and Dr. J. H. Hardin., S. W. Leonard 2099 (TENN); Along Long 
Hope Creek at the Ashe-Watauga County line on Richardson Farm.  First reported in 
Wautauga county by Gladston McDowell and Dr. J. H. Hardin., S. W. Leonard 2099 
(TENN); Along Hope Creek at the Ashe-Watauga County line on Richardson Farm, S. 
W. Leonard 2099 (KY);  Along Long Hope Creek at the Ashe-Watauga County line on 
Richardson Farm, S. W. Leonard 2099 (WVA); 

 
NEW HAMPSHIRE.  Belknap County—Rt. 107, near boundary Pittsfield., L. E. 

Richardson 6044 (WVA);  Cheshire County—SW corner of intersection of Hwy. 9 and 
Hwy. 123.  Twon of Stoddard.  430 meters, Vernon Bates 46 (TENN); Glebe Road., H. 
E. Ahles 76358 (WVA); 

 
NEW YORK.  Dutchess County—Three miles east of Red Hook, Hays Helmick  

(WVA);  Erie County—800 ft. N of sewer access road, 900 ft. E of Meadow Drive, 
David D. Taylor 70 (WVA); 800 ft. N. of sewer access road, 900 ft. E. of Meadow Drive, 
David D. Taylor 70 (EKY);  N/A County—,   (WVA);  Oneida County—W. bank of E. 
Branch of Fish Creek, Yorkland Rd., Anneville., G. B. Rossbach 10506 (WVA);  
Tomkins County—Six Mile Cr., Ithaca N.Y., Mr. H. A. Davis 1645 (WVA);  Warren 
County—Along road S. of pond, A. S. Margolin 128 (WVA); 

 
OHIO.  Licking County—Near Fallsburg Sec. 8, Peg Heimbrook  (WVA);  

Ottawa County—, Ronald L. Stuckey 4839 (KNK);  Wayne County—Living Herbarium 
of Taxus at the Secrest Arboretum - Ohio Agricultural Research and Development Center 
- Wooster, John W. Thieret  (KNK); 

 
PENNSYLVANIA.  Bucks County—Rich, wooded cliffs along Tchickon Creek, 

1 mi. S.W. of Ottsville, J. W. Adams 8334 (WVA);  Erie County—Six Mile Creek Park- 
E side of Erie - along Six Mile Creek 150 ft upstream from Depot Rd (Hwy 531) bridge 
on S side of creek., Dwayne Estes 11566 (TENN);  Erie County—Elk Cr, 102mi W. of 
bridge on Rt 98, L. K. Henry  (WVA);  Bog along Hubbel Run, 3.5 mi. SE of Wattsburg, 
L. K. Henry  (WVA);  Tioga County – South of Willsboro, E. M. Gress  (WVA);  Picket 
County—, G. Gonsoulin 4332 (KNK); 

 
TENNESSEE.  Pickett County—Rock Creek Trail on northern slope 

approximately 1.5 miles east of junction of Rock Creek and TN 154., Joey Shaw JSh# 
762 (TENN); Approximately 1.5 miles east of junction of Rock Creekand TN 154, Joey 
Shaw JSh# 762 (EKY); Washington County—Veterans Administration Center, Mountain 
Home, J. M. Roland  (TENN); 

 
VIRGINIA.  Montgomery County—Above Tom's Creek at Summyside School 

House, 10 miles N.W. of Blacksburg., A. B. Massey 5067 (WVA); Prince William 
County—Population growing on steep northeast-facing shaly slope in mixed woods 
above southwest side of Bull Run, between Manssas National Battlefield Park and gas 
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pipeline, elevation c. 180 ft., P. M. Mazzeo; W. W. Diehl 2,772 (WVA); Smyth 
County—Altitude 2075 feet, John K. Small (WVA); 

 
VERMONT.  Essex County—Guildhall Essex Co. VT, Arthur Stanley Pease 

35841 (KY); 
 
WEST VIRGINIA.  Berkeley County—519 Faulkner Ave., Federick Thompson  

(WVA);  Grant County—Greenland Gap, J. A. Labriola  (WVA);  Greenbrier County—
Camp Wood, Homer Duppstadt  (WVA); Alvon, Allyne Shisler  (WVA);  Along 
Greenbrier River Trail 1 miles below Remick-Auto road, William N. Grafton  (WVA); 
Anthony's Creek, Allyne Shisler  (WVA); Hancock County—Lower Laurel Trail 
Wilderness Area, J. F. Clovis #1981 (WVA);  Tomlinson Run Park, Russell West 533 
(WVA); Tomlinson Run State Park, John S. Bonar 2-1 (WVA); Mercer County—Above 
camp creek road at sharp curve east of Brush Creek interchange, William N. Grafton  
(WVA);  Banks of Bluestone River and Brush Creek, East of WV turnpike rest area., 
William N. Grafton  (WVA);  Brush Creek Falls, Meade McNeill  (WVA);  Mineral 
County—Sulfur to Hartmansville Rd along Emory's Run, Melvin Brown  (WVA);  
Above the Potomac River., Melvin Brown  (WVA);  Pendleton County—Near Franklin, 
Elevation 1,700', Gerald Swank  (WVA); , David B. Pingley 1683 (WVA);  Near 
Franklin, Elevation 1,700', Gerald Swank  (WVA);  Pleasants County—Above Sugar 
Creek; 0.1 - 0.2 mi. SE., Co. Rt. 3012 & 0.3 mi, E., Co. Rt. 7 at Twiggs, Lafayette Distr., 
Allison W. Cussick 23,165 (WVA);  Pocahontas County—Cranberry Glades,   (WVA);  
Cranberry Glades, P. D. Strausbaugh 789 (WVA);  Buckskin Res., J. B. Hinkle  (WVA);  
Head of Greenbrier River, A. B. Brooks  (WVA);  Cranberry Glades, John L. Sheldon  
(WVA);  Near Huntersville, F. W. Hunnewell 19,793 (WVA);  William's River, A. D. 
Hopkins  (WVA);  Above upper Cranberry River & swamp, above Big Glade of 
Cranberry Glades, 3400 ft., G. B. Rossbach 73100 (WVA);  Preston County—
Cranesville, Mr. H. A. Davis 2698 (WVA);  In cemetery - probably transplanted from 
swamp near where it occurs in small amounts, Cranesville, John L. Sheldon 1476 
(WVA);  Cranesville, W. E. Ramsey  (WVA);  Randolph County—Huttonsville, Rodney 
L. Bartgis  (WVA);  4 miles above Spruce-Shavers Fork, Roger Findley 132 (WVA);  
Just below Fish Hatchery Run & sw. of Cheat Bridge, Alt. 3560 ft., George B. Rossbach 
1313 (WVA);  Blister Run, R. E. Henderson  (WVA);  Sinks of Gandy, James A. Stewart 
856 (WVA);  Summers County—0.75 mi E of Barger Spring, L. L. Gaddy  (TENN); Big 
Stony Creek, Rodney L. Bartgis  (WVA); Barger Springs, Weldon Boone 438 (WVA); 
Near mouth of Stony Creek/Barger Springs, William N. Grafton  (WVA);  Tucker 
County—5 m. S.E. of Davis, E. T. Wherry  (WVA);  Wetzel County—Along Fish Creek 
1 to 3 mi. West of Littleton, Oscar Haught 397 (WVA);  Wyoming County—Still Run, 
Cabin Creek, Dana Stike Evans  (WVA);  Mullens, Dana Stike Evans  (WVA); Mullens, 
Dana Stike Evans  (WVA); 
 

4. Taxus cuspidata Siebold & Zuccarini 

 

U.S.A. 
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CALIFORNIA.  Los Angeles County—Claremont, Don A. Emerson  (WVA); 
 
KENTUCKY.  Bullitt County—Contact Station area., Charles R. Gunn 1290 

(KY);  Fayette County—Rose St. Lexington KY, Richard Knodel  (KY); Lexington 
cemetery cultivated, Phill Fisher  (KY);  UK Campus, Claude F. Wade 6 (KY); Courtney 
Ave backyard, Robert R. Pace SOTINKY36 (EKY); Jefferson County—Left end of row 
of evergreens flanking Central Ave. entrance., Ruth B. (Alford) MacFarlane 4313 (No. 
29) (KY); Madison County — The Ravine on EKU's campus, Robert R. Pace 
SOTINKY55 (EKY); 

 
NEW JERSEY.  New Brunswick County—Rutgers University Campus, Daniel R. 

Mock  (WVA); 
 
OHIO.  Wayne County—Living Herbarium of Taxus at the Secrest Arboretum - 

Ohio Agricultural Research and Development Center - Wooster, John W. Thieret  
(KNK);   Living Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural 
Research and Development Center - Wooster, John W. Thieret A30-125 (KNK);  Living 
Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural Research and 
Development Center - Wooster, John W. Thieret A30-182 (KNK);  Living Herbarium of 
Taxus at the Secrest Arboretum - Ohio Agricultural Research and Development Center - 
Wooster, John W. Thieret A30-257 (KNK);  Shelby County—Memphis. Cultivated - 486 
St. Nick Drive. Rehd. Ed. 2-3., Elizabeth M. Browne 72D20.6 (TENN); 
 

5.  Taxus floridana Nuttall ex Chapman 

 

U.S.A.: 
 
FLORIDA.  Alachua County—Gainesville University of Florida campus, 

Cultivated south side of Hume Auditorium, Bian Tan 172 (WVA);  Calhoun County—
Appalachicola River, near Bristol., W. C. Muenscher 14309 (WVA);  Liberty County—
Torreya State Park Ca 10 miles N of Bristol, John W. Thieret  (KNK);  Torreya State 
Park; near stone bridge., B. Eugene Wofford 47221 (TENN); , John K. Small  (WVA);  
Rock Bluff Florida, F. S. Blanton 7050 (WVA); Branch of Big Sweetwater Creek, E side 
of State Rd. 270. N of Big Sweetwater Creek. Between Torreya State Park and State Rd. 
12, Steven R. Hill 19143 (WVA); 
 

6.  Taxus globosa Schlectendahl 

 

Mexico: 
N/A.  Tamaulipas County—Rancho del Cielo to Ojo de Augua del Indio below 

5000 ft.  Above Gomez Farias - Tamaulipas; Mexico, A. J. Sharp 50/50178 (TENN); 
 

7.  Taxus mairei (Lemée & Leviellé) Shiu-Ying Hu ex Liu 

 

China: 
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Jiangsu.  Nanjing County—Cultivated in the Nanjing Botanical Garden Memorial 

Sun Yat-Sen of the Jiangsu Institute of Botany, Sino-American Purple Shan Botanical 
Expedition (SAPSBE); T. R. Dudley 45324 (TENN); 
 

8.  Taxus × hunnewelliana Rehder 

 

U.S.A.: 
 
OHIO.  Wayne County—Living Herbarium of Taxus at the Secrest Arboretum - 

Ohio Agricultural Research and Development Center - Wooster, John W. Thieret A31-
197 (KNK); 
 

9.  Taxus × media Rehder 

 

U.S.A.: 
 
OHIO.  Wayne County—Living Herbarium of Taxus at the Secrest Arboretum - 

Ohio Agricultural Research and Development Center - Wooster, John W. Thieret A30-
131 (KNK); Living Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural 
Research and Development Center - Wooster, John W. Thieret A31-84 (KNK); Living 
Herbarium of Taxus at the Secrest Arboretum - Ohio Agricultural Research and 
Development Center - Wooster, John W. Thieret A31-123 (KNK); Living Herbarium of 
Taxus at the Secrest Arboretum - Ohio Agricultural Research and Development Center - 
Wooster, John W. Thieret  (KNK); 

 
KENTUCKY. Madison County — East side of 3rd street near intersection of 

Woodland Ave., Robert R. Pace SOTINKY2 (EKY); East side of 3rd street between 
Main st. and Irvine Road, Robert R. Pace SOTINKY3 (EKY); Northeast corner of Jones 
building on EKU's campus, Robert R. Pace SOTINKY4 (EKY); In between Coates and 
Jones building on EKU's campus, Robert R. Pace SOTINKY5 (EKY); In between Coates 
and Jones building on EKU's campus, Robert R. Pace SOTINKY6 (EKY); Near Library 
on EKU's campus, Robert R. Pace SOTINKY7 (EKY); Corner of Moore building on 
EKU's campus, Robert R. Pace SOTINKY8 (EKY); Hedge to the left of the front of 
Roark building on EKU's campus, Robert R. Pace SOTINKY41 (EKY); Pyrimidal 
shaped to the left of front of Roark building on EKU's campus, Robert R. Pace 
SOTINKY43 (EKY); Wolfe County — Cottage Rd., Robert R. Pace SOTINKY33 
(EKY); South side of hemlock lodge, Robert R. Pace SOTINKY34 (EKY); North side of 
hemlock lodge, Robert R. Pace SOTINKY35 (EKY); Menifee County — Cliff along HW 
715, Robert R. Pace SOTINKY37 (EKY);  
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APPENDIX B:  Scanning Electron Micrographs 
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Figure 6.  SEM of Taxus canadensis abaxial leaf surface showing 5 stomates per band 
with interspersed papillose cells. 

 

Figure 7.  SEM of Taxus baccata abaxial leaf surface showing 10 stomates per band with 
interspersed papillose cells. 
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Figure 8.  SEM of Taxus × hunnewelliana abaxial leaf surface showing 9 irregular 
stomates per band with interspersed papillose cells confined to between stoma. 
 

 
Figure 9.  SEM of Taxus floridana abaxial leaf surface showing 9 stomates per narrow 
band with interspersed papillose cells. 



62 

 

 
Figure 10.  SEM of Taxus baccata ‘compacta’ abaxial leaf surface showing 9 stomates 
per irregular band with interspersed papillose cells. 
 

 
Figure 11.  SEM of Taxus baccata ‘nigra’ abaxial leaf surface showing 9 stomates per 
narrow band with densely papillose cells. 
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Figure 12.  SEM of Taxus baccata ‘repandens’ abaxial leaf surface showing 9 stomates 
per irregular band with interspersed papillose cells. 
 

 
Figure 13.  SEM of Taxus brevifolia abaxial leaf surface showing 5 stomates per band 
with interspersed papillose cells. 
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Figure 14.  SEM of Taxus cuspidata ‘robusta’ abaxial leaf surface showing 10 stomates 
per broad band with interspersed papillose cells. 
 

 
Figure 15.  SEM of Taxus cuspidata abaxial leaf surface showing 10 stomates per broad 
band with densely papillose cells. 
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Figure 16.  SEM of Taxus globosa abaxial leaf surface showing 8 stomates per broad 
band with interspersed papillose cells. 
 

 
Figure 17.  SEM of Taxus × media abaxial leaf surface showing 11+ stomates per wide 
band with interspersed papillose cells. 
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APPENDIX C:  Taxanes  
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Figure 18.  Yunnanxane.  2α,5α,10β-triacetoxytaxa-4(20),11-dien-14-yl 3-hydroxy-2-
methylbutanoate.  C31H46O9 562.69 g·mol−1. [M + NH4]+ with expected m/z of 580.35. 
 

 

 

Figure 19.  2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene.  C28H40O8 504.61 g·mol−1. 
[M + NH4]+ with expected m/z of 522.31. 
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Figure 20.  2α,5α,10β-triacetoxy-14β-(2-methyl)-butyryloxy-4(20),11-taxadiene.  
C31H46O8 546.69 g·mol−1. [M + NH4]+ with expected m/z of 564.36. 
 

 
Figure 21.  2α,5α,10β-triacetyoxy-14β-propionyloxy-4(20),11-taxadiene.  C29H42O8 
518.61 g·mol−1. [M + NH4]+ with expected m/z of 536.32. 
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Figure 22.  2α,5α,10β-triacetyoxy-14β-isobutyryloxy-4(20),11-taxadiene.  C30H44O8 
532.66 g·mol−1. [M + NH4]+ with expected m/z of 550.34.  
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APPENDIX D:  Mass Spectra 

  



71 

 

 

Figure 23.  Mass spectrum of leaves of Taxus baccata (SOTINKY01) showing taxanes at 
m/z 536 [M + NH4]+, and m/z 550 [M + NH4]+. 
 

  

Figure 24.  Mass spectrum of stem of Taxus baccata (SOTINKY01) showing none of the 
five taxanes present. 
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Figure 25.  Mass Spectrum of leaves of Taxus × media (SOTINKY02) showing none of 
the five taxanes present. 
 

 

Figure 26.  Mass Spectrum of stem of Taxus × media (SOTINKY02) showing the 
presence of a taxane at m/z 536 [M + NH4]+. 
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Figure 27.  Mass Spectrum of leaves of Taxus × media (SOTINKY03) showing none of 
the five taxanes present. 
 

 

Figure 28.  Mass Spectrum of stem of Taxus × media (SOTINKY03) showing none of the 
five taxanes present. 
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Figure 29.  Mass Spectrum of leaves of Taxus × media (SOTINKY07), showing the 
presence of a taxane at m/z 536 [M + NH4]+. 
 

 

Figure 30.  Mass Spectrum of the stem of Taxus × media (SOTINKY07) showing taxanes 
at m/z 522 [M + NH4]+, and m/z 536 [M + NH4]+. 
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Figure 31.  Mass Spectrum of the leaves of Taxus × media (SOTINKY08) showing a 
taxane at m/z 536 [M + NH4]+. 
 

 

Figure 32.  Mass Spectrum of the stem of Taxus × media (SOTINKY08) showing none of 
the five taxanes present. 
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Figure 33.  Mass Spectrum of the leaves of Taxus canadensis (SOTINKY33), showing 
the presence of taxanes at m/z 536 [M + NH4]+, m/z 550 [M + NH4]+, and m/z 564 [M + 
NH4]+. 
 

 

Figure 34.  Mass Spectrum of the stem of Taxus canadensis (SOTINKY33), showing a 
taxane at m/z 536 [M + NH4]+. 
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Figure 35.  Mass Spectrum of the leaves of Taxus × media (SOTINKY36) showing none 
of the five taxanes present. 
 

 

Figure 36.  Mass Spectrum of the stem of Taxus × media (SOTINKY36), showing a 
taxane present at m/z 536 [M + NH4]+. 
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Figure 37.  Mass Spectrum of the leaves of Taxus × media (SOTINKY42) showing the 
presence of a taxane at m/z 536 [M + NH4]+. 
 

 

Figure 38.  Mass Spectrum of the stem of Taxus × media (SOTINKY42), showing the 
presence of a taxanes at m/z 536 [M + NH4]+. 
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Figure 39.  Mass Spectrum of the leaves of Taxus cuspidata (SOTINKY53), showing the 
presence of a taxane at m/z 536 [M + NH4]+. 
 

 

Figure 40.  Mass Spectrum of the stem of Taxus cuspidata (SOTINKY53), showing 
taxanes at m/z 522 [M + NH4]+, m/z 536 [M + NH4]+, m/z 550 [M + NH4]+, and m/z 580 
[M + NH4]+. 
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Figure 41.   Mass Spectrum of the leaves of Taxus cuspidata (SOTINKY55) showing the 
presence of taxanes at m/z 536 [M + NH4]+, and m/z 550 [M + NH4]+. 
 

 

Figure 42.  Mass Spectrum of the stem of Taxus cuspidata (SOTINKY55) showing the 
presence of taxanes at m/z 522 [M + NH4]+, m/z 536 [M + NH4]+, and m/z 550 [M + 
NH4]+. 
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APPENDIX E:  Maps of Distribution in United States, Kentucky, & Nearby 

States 
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APPENDIX F:  Specimen Images 
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Figure 63.  Specimen image of Taxus baccata ‘repandens’ obtained from Northern 
Kentucky University’s Herbarium (KNK). 
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Figure 64.  Specimen image of Taxus brevifolia obtained from Northern Kentucky 
University’s Herbarium (KNK). 
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Figure 65.  Specimen image of Taxus canadensis obtained from University of Tennessee 
Herbarium (TENN). 
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Figure 66.  Specimen image of Taxus cuspidata obtained from West Virginia 
University’s Herbarium (WVU). 
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Figure 67.  Specimen image of Taxus floridana obtained from Northern Kentucky 
University’s Herbarium (KNK). 
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Figure 68.  Specimen image of Taxus globosa obtained from Northern Kentucky 
University’s Herbarium (KNK). 
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Figure 69.  Specimen image of Taxus × hunnewelliana obtained from Northern Kentucky 
University’s Herbarium (KNK). 
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Figure 70.  Specimen image of Taxus mairei obtained from University of Tennessee 
Herbarium (TENN). 
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Figure 71.  Specimen image of Taxus × media ‘coleana’ obtained from Northern 
Kentucky University’s Herbarium (KNK). 
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