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ABSTRACT 

 

Keywords: Cygnus buccinator, image analysis, Landsat, NDVI, trumpeter swan.  

 

 The trumpeter swan (Cygnus buccinator) has historically nested in the Greater 

Yellowstone Ecosystem of Montana, Idaho, and Wyoming. Declines in habitat quality 

may be limiting the growth of the Tri-State Flock. The purpose of this study was to map 

historical nesting areas for trumpeter swans in Yellowstone National Park (YNP) and 

evaluate Landsat images for changes to habitat. Historical nesting sites were evaluated 

through image classification and Normalized Difference Vegetation Index (NDVI) and 

compared to field conditions. Swan nesting records were analyzed in comparison to 

drought index and human visitation rates to determine if these factors may contribute to 

the decline of trumpeter swans nesting in YNP. 

Vegetation type and water quality were evaluated at 36 wetlands identified as 

historical nesting locations. Potamogetonaceae was the largest family represented in plant 

samples and had the highest frequency of occurrence in samples. There was no 

significant difference in whether swans were present or absent in wetlands with regards 

to water quality parameters tested or physical parameters identified. There was an 

association between certain drought index values and the number of cygnets fledged and 

the number of territories occupied by swan pairs. 

 I was unsuccessful in using image classification to define pixel characteristics 

common among historical nesting territories of swans in YNP based on 5 Landsat images 

from 1975, 1979, 1990, 1999, and 2005. I was also unable to distinguish aquatic plant 

species composition, emergent and submergent plants, open water versus aquatic 

vegetation, wetland classification, or swan preference using image classification. No 

relationship was found in a regression model of NDVI values and swan pair occupancy or 

number of swans fledged, with the exception of a weak, positive relationship between 

pair occupancy and positive NDVI values, and a strong, positive relationship between 

swan fledge rates and positive NDVI values derived from the 1990 image. Landsat 

images currently appear to be unreliable in predicting swan pair occupancy or fledging 
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success of nesting pairs. NDVI calculations were not consistently reliable in predicting 

relationships with swan pair presence or fledge success in nesting territories of YNP, but 

significant relationships did indicate that factors which might influence swan pair 

occupancy and fledge rates may be monitored through continued use of NDVI 

calculations. 

There was a significant curvilinear relationship between human visitation rate and 

the number of territories occupied by pairs of swans, the number of territories that 

fledged cygnets, and the number cygnets fledged, which was particularly evident in years 

with high visitation rates and poor swan productivity. There was no significant difference 

in the number of swans fledged in areas near park trails or near park roads compared to 

more remote locations, and swan fledging was independent of proximity to remote or 

visitor-accessible areas.  

A goal of this study was to provide park managers with a method for assessing 

habitat quality that might be used to monitor nesting trumpeter swans in YNP. Image 

classification of nesting wetlands did not provide a useful model of areas suitable for 

nesting trumpeter swans, but NDVI classification has the potential to provide information 

useful in long-term monitoring of factors which may influence swan nesting. While no 

overall trends were observed through Landsat modeling, continued analysis could 

provide information to park managers in terms of the quality of individual nesting sites 

and changes over time. Climate change predictions and human visitation impacts can be 

incorporated to provide managers with the information they need to make decisions 

regarding the future of nesting trumpeter swans in YNP.  
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CHAPTER 1 

 

INTRODUCTION 

 

The trumpeter swan (Cygnus buccinator) is the largest species of waterfowl 

(Family: Anatidae, Tribe: Cygnini) with a wing span up to 2.4 m and weighing up to 13.5 

kg (Slater 2006). Historically, the breeding range extended from Alaska, east to Hudson 

Bay, south to Mississippi and Arkansas, and west to California (Figure 1A, United States 

Department of Agriculture [USDA] 2002). By the early 1900s, the population had 

suffered a noticeable decline due to overharvesting by settlers for skins and food (Banko 

1960, Shea et al. 2002, Proffitt et al. 2009). In 1932, a total of 69 trumpeter swans existed 

within the contiguous United States (Anderson et al. 1986); 31 swans were located within 

the boundaries of Yellowstone National Park (YNP), 26 were located west of YNP in 

Centennial Valley, and 12 elsewhere in the Tri-state Region, an area geographically 

located near the south-western Montana, eastern Idaho, and north-western Wyoming 

boarder (Figure 2; Bellrose 1976). Red Rock Lakes National Wildlife Refuge in 

Montana, west of YNP, was created in 1935 for the purpose of preserving breeding 

habitat for the remaining Tri-state Flock (TSF; Banko 1960). Nesting records for YNP 

date back to 1931, when young were fledged from Trumpeter Lakes, East Tern Lake, and 

Shoshone Lake (R. Shea, pers. comm.). In 1954, the Pacific Coast population of 

trumpeter swans was discovered breeding in Alaska (Hansen et al. 1971). Since 1935, 

trumpeter swan management has helped restore the species to a nationwide count of 

46,225 (SE = 1,172) individuals in 2010 (Groves 2012), but in Wyoming the trumpeter 

swan is still regarded as an “imperiled” species (Slater 2006) and a “species of greatest 

conservation need” (WGFD 2011). 

Three distinct genetic and geographically separated populations of trumpeter 

swans are recognized: Pacific Coast, Rocky Mountain, and Interior (Figure 3, Oyler-

McCance et al. 2007). The breeding range of the Rocky Mountain Population (RMP) 

includes the TSF of non-migratory swans in the core Tri-State Region (USFWS 1995) 

                                                           
A Appendix A. 



2 

 

and the Canadian Flock (CF) that migrates between the breeding grounds in Canada and 

the Tri-State Region where the two flocks winter sympatricly (USFWS 2013a).  

Growth of the RMP has been mostly attributed to the CF (Figure 4, Proffitt et al. 

2009); the 2013 winter survey indicated 90.8% of the RMP were swans from the CF 

(USFWS 2013a), while the TSF made up just 8.8% with 110 cygnets and 455 adult 

swans (USFWS 2013b). Abundance estimates of the TSF in YNP range from 59 

individuals in 1968 (Proffitt et al. 2009) to 24 swans in the 2013 fall survey (USFWS 

2013b). The number of nesting attempts of swans within YNP has decreased dramatically 

over the last 30 years (Figure 5, McEneaney 2007) with two nesting attempts in 2012 

(Smith et al. 2013). Low fledging success rates (cygnets fledged per cygnets hatched) 

within YNP and surrounding areas, combined with the decline of nesting attempts, have 

caused the trumpeter swan to be classified as a “species at risk of local impairment” 

within YNP (McEneaney 2007). The loss of habitat has been loosely linked with local 

drought conditions (Wyoming Palmer Drought Severity Index [PDSI]; Figure 6, Figure 7, 

Figure 8). The specific effects of habitat changes on nesting swans has not previously 

been quantified; an association between drought measures and historical nesting records 

was analyzed for this study.  

Trumpeter swans forage on aquatic vegetation; during the summer in the Greater 

Yellowstone Ecosystem trumpeter swans primarily foraged on Potamogeton spp. (48.2% 

of fecal composition), Chara spp. (14.9%), and Elodea canadensis (8.5%; Squires and 

Anderson 1995). Foraging accounts for 29.6% of the time-budget of wintering swans, but 

shifts to 44.5% of the time-budget during the spring (Squires and Anderson 1997), and a 

lack of abundant vegetation may limit nesting swans in YNP, so plant occurrence was 

measured in historical nesting wetlands.  

Past management efforts have included feeding wintering swans and translocation 

of wintering swans to suitable wetlands, with a focus on expanding the range of the 

sedentary TSF. During winter, swans are vulnerable to reduced water flows, heavy 

formations of ice, severe weather, disease, and pollution (Olliff et al. 1999). 

Translocation efforts were designed to help the TSF by alleviating impacts on resources 

where swans concentrate, reducing disease transmission, and establishing alternate winter 

grounds where weather conditions were not as severe (Kilpatrick et al. 2005). These 
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translocation efforts were mostly unsuccessful in achieving the intended objectives. With 

information derived from GIS modeling; however, habitat use models might be 

developed to identify suitable sites that are currently unoccupied by trumpeter swans. 

Flexible mapping programs that incorporate future management goals and that are 

capable of updating habitat categories based on the latest available imagery are desirable 

because of their ability to remain effective in future years. 

Geographic data have become more precise and readily available in recent years. 

Geographic Information System (GIS) techniques are well suited to evaluate vegetation 

and hydrology to identify and monitor potential habitat for trumpeter swans. Landscape 

changes, such as the 1988 Yellowstone fires or increased human activity near swan 

nesting ponds, could be factors in the decline of suitable nesting sites and nesting success 

(Henson and Grant 1991). These changes potentially affect the landscape in a manner that 

could be assessed when mapped using raster images, GIS software and tools. 

 As Landsat projects have developed, the accuracy and technology involved in 

satellite imagery has advanced dramatically. Landsat multi-spectral scanner (MSS) 

images from the project launched in 1972 (Headley 2010) were processed at 60 m and 

cover four spectral bands (Table 1B). Landsat thematic mapper (TM) images from the 

project launched in 1978 (Headley 2010) have 30 m resolution with seven total spectral 

bands (Table 2). The Landsat enhanced thematic mapper plus (ETM+) project was 

launched in 1999 (Headley 2010) with eight total spectral bands (Table 2). While the 

resolution of satellite imagery is low compared to that of aerial photography, where 

resolution is typically between 1 to 2 m, the resolution of 15 to 60 m for satellite images 

should be sufficient for mapping areas greater than 10 ha. While aerial photographs are 

sometimes available in a color-infrared format, some aerial photographs are only 

available in black and white format. 

The frequency of Landsat image collection is highly reliable as each satellite has a 

16 to 18 day full-Earth coverage cycle (Headley 2010) with 40 years of archived data. 

Aerial images are available on a five to seven year cycle through the USDA Aerial 

Photography Field Office with 65 years of archived data. The consistency of the data 

                                                           
B Appendix B. 
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collection makes Landsat images suitable in terms of long-term habitat analysis when the 

habitat may fluctuate during the season. 

Landsat images are ideal for studies where historical data are needed, where the 

spatial resolution of the data is sufficient to characterize land cover, and where images 

incorporating several spectral bands may be needed to assess habitat quantity and quality. 

Furthermore, Landsat data have become more affordable, and computer software capable 

of processing large amounts of data is readily available (Cowan and Goward 2004). 

Landsat images and GIS data sources can be used with appropriate software to delineate 

suitable habitat within a region and to transfer that information onto highly accurate and 

effective reference maps. Cover vegetation maps have been converted into suitable 

wildlife habitat maps for grizzly bears (Ursus arctos horribilis; Franklin et al. 2002) and 

Northern Spotted Owls (Strix occidentalis caurina; Glenn and Ripple 2004), and for 

mapping landscape-genetics of Blotched Tiger Salamander sub-populations (Ambystoma 

tigrinum melanostictum; Spear et al. 2005). 

Vegetation mapping and wetland modeling require continuous updating due to the 

dynamic nature of landscapes; fortunately satellite imagery allows for flexible modeling 

(Maus and Golden 1995). National Wetland Inventory (NWI) data have been compiled 

into cover maps with limited scope that may be useful in categorizing swan habitat. 

Aerial photography is considered an accurate method of land cover mapping (Sohl et al. 

2004) but transforming the photographs into maps is time-consuming and expensive 

(Glenn and Ripple 2004), and relying solely on aerial photography is not considered a 

long-term land cover mapping option (Wright and Gallant 2007). Harvey and Hill (2001) 

found that the sensitivity of several Landsat bands (from green wavelengths to middle 

infrared wavelengths) provided more accurate wetland classification than SPOT (Satellite 

Pour l’Observation de la Terre; Toulouse, France) image data. 

 Accurate wetland mapping is an important tool used to evaluate land-use, better 

understand the function of wetlands, and help make management decisions (Baker et al. 

2006). Nesting areas used by swans in the Yellowstone Ecosystem are primarily part of 

wetlands within one of three NWI classifications: palustrine, lacustrine-littoral, and 

riverine (Cowardin et al. 1979). Following the Cowardin (1979) System, palustrine 

wetlands include non-tidal wetlands less than 8 ha with the deepest water < 2 m, 
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dominated by vegetation, low salinity, limited by uplands, and traditionally include 

ponds, marshes, bogs, and swamps. Lacustrine-littoral wetlands occur from the boundary 

of the shore to a depth of 2 m or to the maximum extent of emergent aquatic vegetation. 

Riverine wetlands are wetland and deep-water habitats contained by channels with 

moving water. They are limited by uplands, contain flowing water, but do not include 

floodplain wetlands. Geography and terrain are key components in creating montane 

wetlands, as wetlands typically contain poorly drained soils with low slope terrain. 

 Current management plans focus on monitoring known nesting sites for presence 

of swans and nesting attempts, and on maintaining quality of breeding wetlands. 

Management needs include an inventory of habitat characteristics to understand the 

relationship between trumpeter swan presence and nest site characteristics. Habitat 

characteristics should be measured at both a landscape and a local wetland scale (Slater 

2006). Breeding territories in the YNP generally coincide with an entire nesting lake, and 

average 10.1 to 15.0 ha in YNP (Olliff et al. 1999), and range from 2.4 to 51.8 ha 

throughout the entire breeding range (Hansen et al. 1971) with an ideal depth between 

30-cm to 90-cm for subsurface foraging (Johnsgard 1978).  

This study focused on mapping historic breeding sites within YNP, and was 

limited to YNP due to the poor success of trumpeter swans nesting there in recent years. 

The objectives of this study were as follows: 

1) Create a map using Landsat imagery of the nesting territories of trumpeter 

swans in YNP  and changes over time; 

2) Compare recent Landsat images to historical Landsat images to assess how 

suitable nesting habitat has changed over time; 

3) Identify and predict suitable nesting habitat for trumpeter swans using image 

classification, 

4) Collect selected habitat variables in the field from historical and current 

nesting territories within YNP to compare habitat characteristics of recently-

used sites to those of historical sites no longer used for nesting. 

For objective 3, I sought to determine the reflectance characteristics of wetlands 

known to be used by trumpeter swans, identify habitat shifts that may influence trumpeter 

swan nesting preference, and identify other locations that have suitable characteristics. 
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My goal was to produce a habitat model that would assist wildlife managers by 

identifying potentially suitable wetlands that could be used by breeding trumpeter swans 

but are not currently part of the monitoring program. By designing the model to be 

flexible with changes in climate data, and predicted shifts in climate factors, it is possible 

that the model could indicate areas that are currently unsuitable for trumpeter swan 

nesting, but could become suitable as climate changes persist. 

 Swans appear to be sensitive to lead toxicosis (Blus 1994), with lead creating 

adverse effects on breeding success (Birkhead 1983) as sub-lethal levels of lead result in 

lower waterfowl survival rates and productivity (Slater 2006). Lead tackle has been 

banned from use in YNP and the Red Rocks Lake National Wildlife Refuge for several 

years, but lead tends to stay where deposited and does not deteriorate rapidly in the soil. 

Lead naturally occurs at low levels in the soil; unique hydrothermal features are known to 

collect high levels of metals and other potentially toxic compounds (Otton 1997). Lead is 

easily taken up from the soil by plants and retained in the roots (Sharma and Dubey 2005) 

or accumulated in leafy matter (Fitzgerald et al. 2003) which may pose a hazard when 

swans forage on vegetation. As such, an assessment of whether lead was detectable in 

nesting wetlands was included during sampling and analysis of habitat variables under 

objective 4. 

Anthropogenic disturbances caused by interactions with visitors could impact 

trumpeter swan nesting; trumpeter swans are known to alter their behavior in response to 

human disturbance, with pedestrians causing greater disturbance than vehicles (Henson 

and Grant 1991). Disturbance within 1.0 km of lakes used by swans, including agriculture 

and forestry practices, can have a significant impact on swan use and these lakes are less 

likely to be occupied by breeding swans (Banks 1999). These disturbances lead to a risk 

of nest predation or exposure as eggs might be left uncovered when disturbed. As human 

visitation increases in YNP (Figure 9), wildlife managers must be prepared to mitigate for 

unintended impacts that visitors may present, so the potential relationship between 

visitation rates and trumpeter swans nesting data was evaluated in this study.  
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CHAPTER 2 

 

STUDY AREA 

 

Research was conducted in YNP, an area established as a National Park in 1872 

and preserved by the National Park Service (NPS) under the mission of conserving 

wilderness and allowing ecosystem processes to naturally occur. YNP encompasses over 

8,991 km2 (2.2 million acres); wetlands total only 10.3% of the area (Elliott and Hektner 

2000). Wetlands range in size, depth, and water availability, varying from ephemeral 

ponds and streams to large, permanent lakes and rivers. The majority of these wetlands 

are unsuitable for nesting swans due to oligotrophic conditions, fluctuating water levels, 

and water chemistry influenced from geothermal features (Proffitt et al. 2009).  

Nesting territories available in YNP are generally considered ‘marginal’ as swan 

nesting habitat because they typically occupy small lakes with forested shorelines, and 

contain discontinuous feeding and nesting habitat, with a short season for nesting (Proffitt 

et al. 2009). Elevation ranges from 1,609 m in the northern river drainage to a high of 

3,462 m at Eagle Peak. The weather of Yellowstone is long and cold winters with short, 

cool summers where snowfall accounts for 30% to 70% of annual precipitation (Proffitt 

et al. 2009).  

 A total of 46 historical nesting sites were identified in a file provided by the 

YNP Avian Studies office for this study (L. Baril, pers. comm.). Four sites were located 

on large bodies of water (e.g., Shoshone Lake) and removed as potential study sites 

because the exact historical nest location was unavailable and the large size of the lake 

and deep waters of the lake made transect sampling difficult. Three locations were in 

remote regions of the park (e.g., Trail Lake) and excluded for logistical reasons. One 

location was removed due to presence of geothermal features; access to one location was 

prohibited due to sensitive wildlife; and one location was incorrectly mapped. A total of 

36 locations were surveyed, 16 between 6 – 24 July 2009, and 20 between 15 August – 

12 September 2010. Field seasons were staggered during summer months to incorporate a 

range of growing conditions.  
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CHAPTER 3 

 

FIELD METHODS 

 

 Vegetation type and food availability within each nesting location were sampled 

to compare with Landsat image pixel reflectance to evaluate whether satellite images 

were useful in estimating these variables. Composition of aquatic vegetation within 

historic nesting locations was measured through line transect sampling by wading along a 

60-m transect and recording vegetation type every 5 m to a maximum depth of 1.2 m. 

Vegetation was characterized as either emergent or submergent vegetation. Plant samples 

were collected for verification of genus or species, and destroyed during the identification 

processes. Line intercept sampling was used and minimal plant samples collected to 

minimize disturbance to wetland ecosystems, avoiding large plot vegetation removal. 

Species occurrence and frequency of occurrence were calculated. Plants were identified 

by using Crow and Hellquist (2000a, 2000b) and Dorn (2001) plant guides. 

Weather data during the study was obtained from the nearest weather station, 

recorded daily by NPS rangers and reported to the National Weather Service (Table 3, 

NWS 2009; Table 4, NWS 2010). The three-month (June through August), five-month 

(May through September), and 12-month (July through June) averages of the Wyoming 

state PDSI, Wyoming Climate Division 1 (Yellowstone River drainage) PDSI, and 

Wyoming Climate Division 2 (Snake River drainage) PDSI values were obtained from 

1931 to 2010 (Wyoming PDSI 2011) and a Pearson product-moment correlation was 

used to investigate associations with  cygnet fledge success, number of territories 

occupied by pairs, and territories which fledged cygnets according to YNP nesting 

records. 

Water samples were collected in a 500-mL water collection apparatus to 

determine if patterns existed between water quality and swan presence. Water samples 

were tested with a Hach Fish and Wildlife Conservation Kit (Model AL-36B; Hach 

Company, Loveland, CO) within 20 minutes of water collection. Factors sampled were 

free acidity (gpg CaCO3), alkalinity (gpg CaCO3), carbon dioxide (CO2), water hardness 

(gpg CaCO3), dissolved oxygen (mg/L), and pH. Waste water was collected and disposed 
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of to minimize potential for polluting waterways. A HOBO Water Temp Pro v. 2 data 

logger (Onset Computer Corp; Pocasset, MA) was deployed for a minimum of 10 

minutes to measure water temperature (degree C). An independent sample t-test was used 

to test for a difference in methyl orange alkalinity, carbon dioxide, water hardness, and 

dissolved oxygen between sites where swans were observed during the study and 

historical sites from which swans were absent during the study; a Levene’s Test for 

equality of variance was used to indicate if equal variance could be assumed. The pH was 

broken down into three categories; acidic (pH < 5.5), circumneutral (pH between 5.5 and 

7.4), and basic (pH > 7.5) following Cowardin et al. (1979). A Pearson’s chi-square test 

was performed to test if swan presence was independent of the pH of water. Simple linear 

regression was used to investigate any relationship between water temperature and time 

of day when sampled, day of year when sampled, territory elevation, or size of foraging 

zone. Independent sample t-tests were used to test for a difference in elevation, size of 

foraging zone, and water temperature between sites where swans were observed and 

historical sites from which swans were absent during the study. Statistical tests were 

performed using SPSS Student software (PASW version 18.0; IBM Corporation, 

Armonk, NY). 

Lead levels were evaluated in nesting ponds; soil samples were collected along 

transects to test for the presence of lead in the nesting territory and stored in 59-mL 

Nalgene specimen vials. Samples were sifted to remove plant matter and rocks and tested 

for lead using a LeadCheck Soil Test Kit (Catalog #4ST6; Hybrivet Systems, Inc. 

Framingham, MA), which detects lead levels in the soil at 400 ppm. 
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CHAPTER 4 

 

LANDSAT/GIS METHODS 

 

Landsat images of the study region were obtained from the Global Observatory 

for Ecosystem Services website (http://landsat.org; Global Observatory for Ecosystem 

Services, East Lansing, MI); an image provider with large-scale ortho-rectified Landsat 

images available for free or purchase. These images were specifically chosen because of 

the low cost and large area covered compared to private image providers who can charge 

several hundred dollars for small scale images. The data were available as Landsat MSS 

data (images taken 10 August 1975 and 3 September 1979), Landsat TM data (14 

September 1990), and Landsat ETM+ data (15 September 1999 and 21 July 2005). The 

MSS data scenes for YNP were found in satellite path 041 and row 029. The TM data and 

ETM+ data for YNP were found in path 038 and row 029.  

The mapping software used was ArcGIS (version 10; Environmental Systems 

Research Institute, Redlands, CA). Images were clipped to exclude pixels outside the 

YNP boundary to reduce extraneous data during processing. YNP files were obtained 

through the NPS Data Store (http://www.nps.gov/gis). NWI maps were overlaid onto the 

Landsat image and wetlands around the given historical nesting location were categorized 

into riverine, palustrine, lacustrine-littoral, or lacustrine-limnetic zones. Wetlands within 

a 5.0 km radius of the nesting area could provide additional food to meet nutritional 

requirements (Powell and Engelhardt 2000); a maximum ‘foraging zone’ was calculated 

using the ArcGIS ‘buffer’ feature to measure a 5.0 km distance around each nesting lake 

and using the ‘clip’ feature to incorporate conterminous wetlands from the NWI file. 

Landsat image bands were combined to create a false-color composite image of 

each year of Landsat data obtainedC. The bands were combined through the Image 

Analysis window on-the-fly ‘composite bands’ function. Pixels from the false-color 

composite images were placed into a supervised classification using the ‘Image 

Classification’ toolbar in ArcGIS. The spectral signature was defined based on the 

                                                           
C Appendix C. 
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vegetation sampling performed in 2009 and 2010 and was used as the training signature 

to classify other pixels within wetlands as either ‘open water’ or ‘aquatic vegetation’ as 

identified during plant transect sampling. Pixel classifications were created that identified 

‘aquatic vegetation’ as any pixel where vegetation was present along more than half of 

the transect line, and ‘open water’ as pixels where vegetation was absent from more than 

half of the sampled transect. Aquatic vegetation was combined into ‘emergent’ and 

‘submergent’ vegetation classifications, and a ‘wet meadow’ classification was attempted 

to distinguish areas with shallow water and heavy aquatic vegetation. Other 

classifications were created to identify areas around wetlands, such as areas burned 

during the 1988 forest fire and urban settings within YNP. The broadest classifications 

tested were wetlands identified with swans present versus wetlands identified with swans 

absent. Finally, image classification was based on NWI wetland maps to see if wetland 

categories could be distinguished by Image Classification of the Landsat images. 

The Normalized Difference Vegetation Index (NDVI) function of Image Analysis 

is an on-the-fly raster geo-processing option available in ArcGIS that creates a 

standardized index of vegetation biomass. By using contrasting absorption of red light by 

chlorophyll and the reflective characteristics of vegetation to infrared light, an NDVI can 

be processed as a function of the equation: NDVI = [ (infrared band  – red band) / 

(infrared band + red band) ] and vegetation health may be assessed. The false-color 

composite image was used to create the on-the-fly NDVI imageD; when using MSS data, 

band 2 was input as the red band and band 3 was input as the infrared bad and when 

using TM or ETM+ data, the red bad was identified as band 3 and the infrared band was 

identified as band 4. Raw NDVI values were derived using the raster calculator tool. The 

raw NDVI values generated are between -1.0 and 1.0; where low values or negative 

values (0.1 and below) correspond to areas with no vegetation (e.g., rock or open water) 

and high, positive values indicate dense vegetation. Both Landsat composite images and 

NDVI images were subjectively evaluated for habitat changes over time in an attempt to 

identify habitat changes which influence swan nesting preferenceE.  

                                                           
D Appendix D. 
E Appendix E. 
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CHAPTER 5 

 

METHODS TO EVALUATE HUMAN-WILDLIFE INTERACTIONS 

 

In order to gain a better understanding of human-wildlife interactions and swan 

nesting behavior, park visitation records from 1931 to 2011 (NPS 2012) and swan nesting 

records from 1931-2010 (R. Shea pers. comm.) were compared using a curvilinear 

regression model to test for a relationship between swan pair occupancy and visitation 

rates, between number of territories which fledged young and visitation rates, and 

between cygnets fledged and visitation rates. 

Historical nesting territories were categorized as ‘near trail’ or ‘near park 

highway’ or ‘remote’ by using ArcGIS to locate nesting territories within 1.0 km of a 

park highway or trail. A chi-square test was used to determine if swan fledging was 

independent of remote location or accessible locations. A one-way ANOVA was used to 

test for a difference among near-trail, near-park highway, and remote sites in the number 

of years when swan pairs occupied sites. 
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CHAPTER 6 

 

FIELD METHODS RESULTS 

 

Of 86 plant specimens collected, a total of 36 vascular plant species were 

identified, 6 specimens were identified to genus only, and two specimens were 

unidentifiable. The 36 species were representative of 20 families, and 27 genera. The five 

most common plant species found in foraging zones were Nuphar polysepala (Yellow 

pond lily; n = 12), Schoenoplectus acutus (Hard-stem bulrush; n = 12), Stuckenia 

filiformis (Fine-leaf pondweed; n =11), Carex utriculata (Northwest Territory sedge; n = 

11), and C. aquatilis (Water sedge; n = 10). These five species made up 29.7% of 

specimens sampled (Table 5). The five plants with the highest frequency of occurrence 

along transects were C. aquatilis (22%), N. polysepala (57%), Potamogeton natans 

(22%), P. pusillus (29%), and S. pectinata (23%). The family with the largest 

representation in observed plant samples was Potamogetonaceae with nine species of 

plants.  

 Elevation of the nesting territories ranged from 1807 m (Rainbow Lakes) to 2622 

m (Crescent Lake) with a mean elevation of 2228 m (Table 6; N = 36; S.D. = 228.6 m). 

Mean elevation in sites with swans present was 2303 m (n = 11; S.D. = 232 m); mean 

elevation at sites where swans were absent was 2194 m (n = 25; S.D. = 224 m). Equal 

variance was assumed; there was no significant difference in an independent sample t-test 

between elevation in sites where swans were present and sites where swans were absent 

during the study (d.f. = 34; tcrit = -2.03 > tcalc = -1.33; two-tailed P = 0.19). 

By using NWI maps to outline continuous wetland habitat within 5.0 km of the 

nesting territories, the maximum area of wetlands within foraging zones ranged from 2.0 

ha (Slough Creek Ponds) to 2067.6 ha (Bechler Meadows) with a mean of 155.0 ha 

(Table 6; N = 36; S.D. = 349.4 ha). Of the 36 sites selected, three sites were dry when 

sampled. Twenty-three sites (64%) were categorized as primarily palustrine, seven sites 

(19%) were categorized as primarily lacustrine-limnetic, five sites (14%) were 

categorized as primarily lacustrine-littoral, and one site (3%) was categorized as 

primarily riverine wetland according to NWI maps (Table 6). The mean area of foraging 
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zone in sites with swans present was 145.6 ha (N = 11; S.D. = 144.7 ha); mean area of 

foraging zone in sites with swans absent was 159.2 ha (N = 25; S.D. = 411.4 ha). Equal 

variance was assumed; there was no significant difference in an independent sample t-test 

between the area of foraging zone in sites where swans were present and sites where 

swans were absent during the study (d.f. = 34; tcrit = 2.03 > tcalc = 0.11; two-tailed P = 

0.92). Within the 5.0 km foraging zones, 18 sites had islands present. Swan presence was 

independent of the presence of islands within the foraging zone (d.f. = 1; X2
crit = 3.84 > 

X2
calc = 1.18; P = 0.28). No cells had an expected count less than 5. 

Methyl orange alkalinity was recorded in a range from 1 to 101 gpg CaCO3; the 

mean alkalinity in sites with swans present was 9.8 gpg CaCO3 (n = 11; S.D. = 21.8 gpg 

CaCO3); mean alkalinity at sites where swans were absent was 10.2 gpg CaCO3 (n = 22; 

S.D. = 20.9 gpg CaCO3). Equal variance was assumed; there was no significant 

difference in an independent sample t-test between the mean methyl orange alkalinity in 

sites where swans were present and sites where swans were absent during the study (d.f. 

= 31; tcrit = 2.04 > tcalc = 0.05; two-tailed P = 0.96). 

Carbon dioxide was recorded in a range from 0 to 40 mg/L; mean CO2 in sites 

with swans present was 6.8 mg/L CO2 (n = 11; S.D. = 5.1 mg/L CO2); mean CO2 at sites 

where swans were absent was 10.7 mg/L CO2 (n = 22; S.D. = 8.5 mg/L CO2). Equal 

variance was assumed; there was no significant difference in an independent sample t-test 

between the mean carbon dioxide in sites where swans were present and sites where 

swans absent during the study (d.f. = 31; tcrit = 2.04 > tcalc = 1.38; two-tailed P = 0.17). 

Water hardness was recorded between 1 to 24 gpg CaCO3; mean hardness in sites 

with swans present was 3.5 gpg CaCO3 (n = 11; S.D. = 6.3 gpg CaCO3); mean hardness 

where swans were absent was 5.2 gpg CaCO3 (n = 22; S.D. = 5.4 gpg CaCO3). Equal 

variance was assumed; there was no significant difference in an independent sample t-test 

between mean water hardness in sites where swans were present and sites where swans 

were absent during the study (d.f. = 31; tcrit = 2.04 > tcalc = 0.81; two-tailed P = 0.42). 

Dissolved oxygen was recorded between 4 to 15 mg/L; mean dissolved oxygen in 

sites with swans present was 8.1 mg/L (n = 11; S.D. = 1.6 mg/L); mean dissolved oxygen 

at sites where swans were absent was 7.5 mg/L (n = 22; S.D. = 2.7 mg/L). Equal variance 

was assumed; there was no significant difference in an independent sample t-test between 
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the mean dissolved oxygen in sites where swans were present and sites where swans were 

absent during the study (d.f. = 31; tcrit = 2.04 > tcalc = 0.86; two-tailed P = 0.40). 

None of the sites were considered acidic (pH < 5.5), 15 sites (45.5%) were 

considered circumneutral (pH between 5.5 and 7.4), and 18 sites (54.5%) were 

considered alkaline (pH > 7.4). A Pearson’s chi-square test showed swan presence was 

independent of the pH of water (d.f. = 1; X2
crit = 3.84 > X2

calc = 0.00; P = 1.00). No cells 

had an expected count less than 5. 

The lowest water temperature recorded was 9.4 C (Beach Springs Lagoon) and 

the highest water temperature recorded was 25.9 C (Winegar Lake) with a mean 

temperature of 18.7 C (n = 33; S.D. = 4.22). The mean water temperature in sites with 

swans present was 19.7 C (n = 11; S.D. = 4.0 C); the mean water temperature in sites 

where swans were absent was 18.2 C (n = 22; S.D. = 4.3 C). Equal variance was 

assumed; there was no significant difference in an independent sample t-test between the 

mean water temperature in sites where swans were present and sites where swans were 

absent during the study (d.f. = 31; tcrit = 2.04 > tcalc = 0.96; two-tailed P = 0.35). 

There was a significant linear relationship between water temperature and time-

of-day (Figure 10; R2 = 0.24; d.f. = 1, 31; Fcalc = 9.82 > Fcrit = 4.17; P = 0.004). There was 

a weaker, linear relationship between water temperature and date of sampling (Figure 11; 

R2 = 0.22; d.f. = 1, 31; Fcalc = 8.79 > Fcrit = 4.17; P = 0.006). There was no significant 

relationship between water temperature and elevation (R2 = 0.09; d.f. = 1, 31; Fcrit = 4.17 

> Fcalc = 3.18; P = 0.084) or water temperature and foraging zone size (R2 = 0.02; d.f. = 1, 

31; Fcrit = 4.17 > Fcalc = 0.49; P = 0.491).   

Free acidity and phenolphthalein alkalinity were also sampled for each study site 

with water present, but no statistical analyses were conducted as only two sites registered 

a reading for free acidity and only four sites registered a phenolphthalein alkalinity 

reading. A total of 33 soil samples were tested for the presence of lead (samples were not 

collected in the 3 wetland areas that were dry). None of the samples tested positive for 

lead levels >400 ppm. 

Pearson product-moment correlation was used to investigate if there was an 

association between three-month (June through August) Wyoming PDSI values and 

records of cygnets fledged, territories occupied by swan pairs, or number of territories 
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which fledged cygnets. There was no association between the three-month Wyoming 

state PDSI values and number of cygnets fledged (r = -0.13; d.f. = 78; one-tailed P = 

0.13) or the three-month Wyoming Climate Division 1 PDSI values and the number of 

cygnet fledged (r = 0.07; d.f. = 78; one-tailed P = 0.28). There was a weak, negative 

association between the three-month Wyoming Climate Division 2 PDSI values and the 

number of cygnets fledged (Figure 12; r = -0.22; d.f. = 78; one-tailed P = 0.02). There 

was no association between three-month Wyoming state PDSI values and the number of 

territories occupied by swan pairs (r = -0.07; d.f. = 78; one-tailed P = 0.26), between 

three-month Wyoming Climate Division 1 PDSI values and the number of territories 

occupied by swan pairs (r = 0.16; d.f. = 78; one-tailed P = 0.08), or between the three-

month Wyoming Climate Division 2 PDSI values and the number of territories occupied 

by swan pairs (r = 0.16; d.f. = 78; one-tailed P = 0.08). There was no association between 

three-month Wyoming state PDSI values and the number of territories which fledged 

cygnets (r = -0.06; d.f. = 78; one-tailed P = 0.30), between Wyoming Climate Division 1 

PDSI values and the number of territories which fledged cygnets (r = 0.14.; d.f. = 78; 

one-tailed P = 0.11), or between the three-month Wyoming Climate Division 2 PDSI 

values and the number of territories which fledged cygnets (r = -0.14; d.f. = 78; one-

tailed P = 0.11). 

Pearson product-moment correlation was used to test for an association between 

five-month (May through September) Wyoming PDSI values and records of cygnets 

fledged, territories occupied by swan pairs, or number of territories which fledged 

cygnets. There was no association between the five-month Wyoming state PDSI values 

and cygnets fledged (r = -0.13; d.f. = 78; one-tailed P = 0.13) or the five-month 

Wyoming Climate Division 1 PDSI values and cygnets fledged (r = 0.07; d.f. = 78; one-

tailed P = 0.27). There was a weak, negative association between the five-month 

Wyoming Climate Division 2 PDSI values and the number of cygnets fledged (Figure 13; 

r = -0.23; d.f. = 78; one-tailed P = 0.02). There was no association between five-month 

Wyoming state PDSI values and the number of territories occupied by swan pairs (r = -

0.07; d.f. = 78; one-tailed P = 0.26), the five-month Wyoming Climate Division 1 PDSI 

values and the number of territories occupied by swan pairs (r = 0.16; d.f. = 78; one-

tailed P = 0.08), or the five-month Wyoming Climate Division 2 PDSI values and the 
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number of territories occupied by swan pairs (r = -0.10; d.f. = 78; one-tailed P = 0.20). 

There was no association between five-month Wyoming state PDSI values and the 

number of territories which fledged cygnets (r = -0.06; d.f. = 78; one-tailed P = 0.30), the 

five-month Wyoming Climate Division 1 PDSI values and the number of territories 

which fledged cygnets (r = 0.14.; d.f. = 78; one-tailed P = 0.10), or five-month Wyoming 

Climate Division 2 PDSI values and the number of territories which fledged cygnets (r = 

-0.15; d.f. = 78; one-tailed P = 0.09). 

 Pearson product-moment correlation was used to investigate there was an 

association between twelve-month (July through June) Wyoming PDSI values and 

records of cygnets fledged, territories occupied by swan pairs, or number of territories 

which fledged cygnets. There was no association between the twelve-month Wyoming 

state PDSI values and swans fledged (r = -0.02; d.f. = 78; one-tailed P = 0.43), the 

twelve-month Wyoming Climate Division 1 PDSI values and cygnets fledged (r = 0.15; 

d.f. = 78; one-tailed P = 0.10), or the twelve-month Wyoming Climate Division 2 PDSI 

values and cygnets fledged (r = -0.11; d.f. = 78; one-tailed P = 0.17). There was no 

association between the twelve-month Wyoming state PDSI values and the number of 

territories occupied by swan pairs (r = 0.01; d.f. = 78; one-tailed P = 0.45) or the twelve-

month Wyoming Climate Division 2 PDSI values and the number of territories occupied 

by swan pairs (r = -0.07; d.f. = 78; one-tailed P = 0.27), but there was a weak, positive 

association between the twelve-month Wyoming Climate Division 1 PDSI values and the 

number of territories which were occupied by swan pairs (Figure 14; r = 0.25; d.f. = 78; 

one-tailed P = 0.01). There was no association between the twelve-month Wyoming state 

PDSI values and the number of territories which fledged cygnets (r = -0.03; d.f. = 78; 

one-tailed P = 0.40), the twelve-month Wyoming Climate Division 1 PDSI values and 

the number of territories which fledged cygnets (r = 0.18; d.f. = 78; one-tailed P = 0.06), 

or the twelve-month Wyoming Climate Division 2 PDSI values the number of territories 

which fledged cygnets (r = -0.12; d.f. = 78; one-tailed P = 0.15).  
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CHAPTER 7 

 

GIS RESULTS 

 

Multiple vegetation types were often present along transects, and the resolution of 

each Landsat type (MSS, TM, and ETM+) was too broad to discriminate individual 

vegetation types. Broad signature classes were created of wetlands identified by swan 

presence versus swan absence and tested on all NWI wetlands. The broad classification 

was unable to distinguish differences between specific wetlands where swans were 

located and those without swans in all Landsat images sampled. The classification 

signature was refined to define open water (areas identified in plant transects as water 

with no vegetation visible), aquatic vegetation (areas identified during plant transects as 

deep water with high amounts of vegetation), and ‘wet meadow’ habitat (areas identified 

in plant transects as shallow water with high amounts of vegetation). The resulting 

classification of the Landsat images frequently over-estimated areas of wet meadow. 

Various upland habitats were included to refine the classifications, areas with Lodgepole 

Pine forests and areas of regrowth from the 1988 fires, non-forested sagebrush, thermal 

areas, and ‘urban’ settings within the park such as visitor centers. Increasing the number 

of training samples for the image classification in this manner did not improve the 

discrimination of spectral reflectance in selected wetlands. Training samples based on 

NWI wetland maps were unable to distinguish different categories of wetlands. 

 The NDVI function was used to create a standardized index of vegetation biomass 

for each wetland sampled. Raw NDVI values were derived using a raster calculator to 

input the NDVI calculation [(infrared band – red band) / (infrared band + red band)] and 

the average of the entire foraging zone calculated (Table 7). A curvilinear regression 

using a quadratic term was chosen because raw data violated the assumptions of linearity 

in the simple linear regression model; the curvilinear regression was used to test for a 

relationship between the mean raw NDVI values of located wetlands and pair occupancy 

and the mean raw NDVI values and fledgling count per wetland. Negative NDVI values 

indicate areas that lack vegetation, such as bare rock or open water, so these areas were 

excluded from a second analysis that included only positive NDVI values (Table 8) and 
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pair occupancy, and mean positive NDVI values and fledgling count per wetland. No 

swans were recorded occupying the sampled wetlands in 1975, therefore the regression 

analysis was expanded to include a three-year swan analysis which included swan data 

from the year prior to, and following, image collection. For other image-year 

comparisons where data were available, analyses were conducted for both the one-year 

swan data set and three-year swan data set. 

 For the 1975 image analysis, there was no significant relationship between three-

year swan pair occupancy and raw NDVI values (R2 = 0.07; d.f. = 2, 33; Fcrit = 3.28 > 

Fcalc = 1.15; P = 0.33), three-year swan pair occupancy and positive NDVI values (R2 = 

0.05; d.f. = 2, 33; Fcrit = 3.28 > Fcalc = 0.81; P = 0.46), in the three-year dataset of swans 

fledged and raw NDVI values (R2 = 0.05; d.f. = 2, 33; Fcrit = 3.28 > Fcalc = 0.79; P = 

0.46), or the three-year dataset of swans fledged and positive NDVI values (R2 = 0.03; 

d.f. = 2, 33; Fcrit = 3.28 > Fcalc = 0.58; P = 0.57). 

 There was no significant relationship in the 1979 NDVI analysis of MSS data 

between one-year swan pair occupancy and raw NDVI values (R2 = 0.02; d.f. = 2, 35; 

Fcrit = 3.27 > Fcalc = 0.37; P = 0.69), three-year swan pair occupancy and raw NDVI 

values (R2 = 0.04; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.67; P = 0.52), one-year swan pair 

occupancy and positive NDVI values (R2 = 0.06; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 1.08; P 

= 0.35), or in three-year swan pair occupancy and positive NDVI values (R2 = 0.07; d.f. = 

2, 35; Fcrit = 3.27 > Fcalc = 1.21; P = 0.31). No swans were fledged during 1979, only the 

three-year dataset of swans fledged and NDVI values were analyzed; there was no 

significant relationship between three-year swan fledging and raw NDVI values (R2 = 

0.03; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.50; P = 0.61) or the three-year swans fledged and 

positive NDVI values (R2 = 0.02; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.32; P = 0.73). 

 No significant relationship was found in the 1990 NDVI analysis of TM data 

between one-year swan pair occupancy and raw NDVI values (R2 = 0.11; d.f. = 2, 35; 

Fcrit = 3.27 > Fcalc = 2.24; P = 0.12) or three-year swan pair occupancy and raw NDVI 

values (R2 = 0.09; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 1.72; P = 0.19). There was a small 

significant relationship in the one-year swan pair occupancy and positive NDVI values 

(Figure 15; R2 = 0.18; d.f. = 2, 35; Fcrit = 3.27 < Fcalc = 3.80; P = 0.03) and the three-year 

swan pair occupancy and positive NDVI values (Figure 16; R2 = 0.16; d.f. = 2, 35; Fcrit = 
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3.27 > Fcalc = 3.38; P = 0.05); there was no significant relationship between one-year 

swan fledging and raw NDVI values (R2 = 0.02; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.29; P 

= 0.75) or in the three-year dataset of swans fledged and positive NDVI values (R2 = 

0.00; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.03; P = 0.97). There was a strong, positive 

relationship between one-year fledge rate and positive NDVI values (Figure 17; R2 = 

0.38; d.f. = 2, 35; Fcrit = 3.27 < Fcalc = 10.54; P = 0.001), and no significant relationship 

between the test of the three-year fledge rate and positive NDVI values (R2 = 0.11; d.f. = 

2, 35; Fcrit = 3.27 < Fcalc = 2.28; P = 0.12). 

 There was no significant relationship between the 1999 NDVI analysis of ETM+ 

data between one-year swan pair occupancy and raw NDVI values (R2 = 0.05; d.f. = 2, 

35; Fcrit = 3.27 > Fcalc = 0.94; P = 0.40), three-year swan pair occupancy and raw NDVI 

values (R2 = 0.03; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.61; P = 0.55), one-year swan pair 

occupancy and positive NDVI values (R2 = 0.07; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 1.25; P 

= 0.30), or the three-year swan pair occupancy and positive NDVI values (R2 = 0.10; d.f. 

= 2, 35; Fcrit = 3.27 > Fcalc = 1.93; P = 0.16). No swans were fledged during 1999, 

therefore only the three-year dataset of swans fledged was analyzed; there was no 

significant relationship between the number of swans fledge and raw NDVI values (R2 = 

0.01; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.14; P = 0.87) or positive NDVI values (R2 = 0.01; 

d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.22; P = 0.81). 

 For the 2005 NDVI analysis of ETM+ data, there was no significant relationship 

between the one-year swan pair occupancy and raw NDVI values (R2 = 0.03; d.f. = 2, 35; 

Fcrit = 3.27 > Fcalc = 0.55; P = 0.58), three-year swan pair occupancy and the raw NDVI 

value (R2 = 0.07; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 1.25; P = 0.30), one-year swan pair 

occupancy and positive NDVI values (R2 = 0.01; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.09; P 

= 0.92), or in the three-year swan pair occupancy and positive NDVI values (R2 = 0.02; 

d.f. = 2, 35; Fcrit = 3.27> Fcalc = 0.40; P = 0.67). The only swan fledged was in 2005, 

therefore the analysis for one-year and three-year dataset of swans fledged and NDVI 

values were the same; there was no significant relationship between swans fledged and 

raw NDVI values (R2 = 0.01; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.24; P = 0.79) or positive 

NDVI values (R2 = 0.01; d.f. = 2, 35; Fcrit = 3.27 > Fcalc = 0.19; P = 0.83).  
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CHAPTER 8 

 

RESULTS OF HUMAN-WILDLIFE INTERACTION EVALUATION 

 

Park records indicated peak park visitation in 2010 with over 3.6 million visitors 

(Figure 9); while visitation does show fluctuations, a steady trend of increased visitation 

was observed from 1904 to 2011 (NPS 2012). When using a curvilinear regression model 

with a quadratic term there was a significant relationship between the number of 

territories occupied by pairs of swans and park visitation (Figure 18; R2 = 0.29; d.f. = 2, 

77; Fcrit = 3.12 < Fcalc = 15.88; P < 0.001); a significant relationship between the number 

of territories which fledged cygnets and park visitation (Figure 19; R2 = 0.37; d.f. = 2, 77; 

Fcrit = 3.12 < Fcalc = 22.31; P < 0.001); and a significant relationship between the number 

of cygnets fledged each year and park visitation (Figure 20; R2 = 0.33; d.f. = 2, 77; Fcrit = 

3.12 < Fcalc = 19.32; P < 0.001). 

Of 44 trumpeter swan nesting sites, 21 were within 1.0 km of a trail, 12 were 

within 1.0 km of a main park highway, and 11 were classified as remote. Swan fledging 

and site location relative to a trail or park highway or remote location were independent 

(N = 44; d.f. = 2; X2
crit = 5.99 > X2

calc = 2.24; P = 0.33). All expected cell frequencies 

were greater than five. The number of years swan pairs occupied the sites was not 

statistically significant among the three groups (d.f. = 2, 41; Fcrit = 3.23 > Fcalc = 0.16; P = 

0.85). The groups were free of outliers, as assessed by inspection of boxplots; the number 

of years pairs occupied sites was normally distributed among remote sites, trail sites, and 

park highway sites (Kolmogorov-Smirnov P > 0.14); variances were equal (Levene’s test 

of homogeneous variance P = 0.92).  
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CHAPTER 9 

 

DISCUSSION 

 

The purpose of this study was to determine if Landsat images were capable of 

identifying areas of suitable quality for nesting trumpeter swans, based on an analysis of 

past nesting locations identified in YNP. The goal for this analysis was to provide park 

managers with a reliable method for assessing habitat quality of nesting wetlands. While 

the image classification of nesting wetlands was unsuccessful in defining a reflectance 

characteristic that identifies areas suitable for nesting trumpeter swans, the NDVI 

classification showed potential for providing information that could contribute to long-

term monitoring to address the issues which contribute to trumpeter swan declines. 

Because declines have led to low pair occupancy rates and fledge rates (Figure 5), all 

analyses were subject to error due to low sample sizes. 

Nesting sites of trumpeter swans in YNP do not generally correspond with 

wintering areas.  Trumpeter swans wintering in YNP are confined to areas of ice-free 

water, such as the rivers and thermal-fed waters (Banko 1960). Poor wintering range food 

quality was thought to influence swan reproduction (Squires 1991) and lead to winter 

supplemental feeding programs, but a more recent study suggested that competition with 

wintering CF trumpeter swans is not the primary factor in the decline of TSF swans 

(Proffitt et al. 2009). Swans increase their feeding from 29.6% of their time-budget 

during the winter to 44.5% of their time during the spring (Squires 1991) and shift dietary 

needs between winter, spring, and summer (Squires and Anderson 1995). Nesting 

trumpeter swans of the TSF primarily forage on Potamogeton spp. (48.2% of fecal 

composition). The largest family represented in plant samples during this study was 

Potamogetonaceae with seven species of Potamogeton and two species of Stuckenia 

identified. Potamogeton spp. had high frequency of occurrence in samples; P. natans 

(22%), P. pusillus (29%), and S. pectinata (23%), and were common in wetlands (9 

species found across 25 wetlands). These findings indicate that necessary food sources 

that trumpeter swans require during the nesting season are present in YNP and are not 

likely to be a limiting factor in the current decline of nesting swans. These findings 
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support the idea that the CF is not depleting resources in YNP prior to the TSF nesting 

(Proffitt et al. 2009). 

There was no significant relationship between the water quality parameters which 

were sampled and presence or absence of swans during the study, which was comparable 

to previous work with swans in the region (Squires 1991). These results indicate that the 

water quality parameters tested were not a contributing factor to whether swans are 

expected on historical nesting wetlands. None of the sites sampled had a major thermal 

feature associated with it, although several sites had small thermal features nearby that 

may have some influence on water chemistry. Lead was not detected in soil samples, 

although the absence of detectable lead levels does not indicate that lead is entirely absent 

from the Yellowstone Ecosystem. Lead levels in soil can be unevenly distributed and 

remain where deposited; any lead pellets or tackle within the park would be expected to 

be located in the substrate due to the long-standing lead ban. While being trapped in the 

substrate may limit lead exposure for most animals, swans have a higher encounter risk 

with lead trapped in the substrate where the roots of aquatic vegetation are growing.  

Results indicate that the habitat characteristics which were examined were not 

significant in influencing the presence or absence of swan pairs on nesting territories in 

YNP. These results were not expected as swans typically select wetlands for nesting that 

are between 2.4 to 51.8 ha throughout the breeding range (Hansen et al. 1971) with an 

ideal depth between 30-cm to 90-cm for subsurface foraging (Johnsgard 1978); several of 

the locations were larger than would be considered ideal. In this study, methods for 

calculating nesting territory size utilized NWI maps to derive the area while other studies 

do not specify the manner which the territory size was calculated. 

Drought factors were expected to have a negative impact on trumpeter swan 

nesting and cygnet fledging as drought might reduce the quality of nesting wetlands by 

altering the aquatic vegetation composition. Drought factors were quantified by the 

Wyoming PDSI values (Figure 6, Figure 7, Figure 8) and the association tested between 

PDSI data and records of cygnets fledged, territories occupied by swan pairs, and number 

of territories which fledged cygnets. There was a weak, negative association between the 

June through August Snake River drainage PDSI values and the number of cygnets 

fledged in YNP (Figure 12), and a slightly stronger, negative association between the 
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number of cygnets fledged and the May through September Snake River drainage PDSI 

values (Figure 13). These results indicate that the number of cygnets which fledge in the 

Snake River drainage region of YNP may be impacted during the summer months by 

changes in seasonal weather patterns. It was expected that drought might have a negative 

impact on trumpeter swans and fledging rates as young are more vulnerable and food less 

available when wetlands dry up, an unexpected increase in precipitation can cause nest 

failure due to flooding. There was a weak, positive association between the July through 

June Wyoming Yellowstone River drainage PDSI values and the number of territories in 

YNP which were occupied by swan pairs (Figure 14). These results indicate that a 

twelve-month drought impact may influence swan pairs choice of specific sites, or impact 

the selection of new sites in the Yellowstone River drainage area of YNP.  

Image Classification was unsuccessful in obtaining a defined pixel characteristic 

of occupied or historically used nesting wetlands of swans in YNP using MSS, TM, or 

ETM+ Landsat images. The defined pixel classifications were unable to distinguish 

aquatic plant species composition, emergent and submergent plant types, open water and 

aquatic vegetation sites, or define classes based on wetland identification or swan 

preference. Output of the Image Classification training samples often resulted in an over-

estimation of wetland habitat throughout YNP, even after pixel identification was refined 

by including habitat outside of wetlands in the classification. Refining pixel classification 

did not resolve the classification outside of the sampled wetlands. Further analysis on fine 

scale Landsat images was unavailable due to the prohibitive costs associate with high-

resolution Landsat data.  

 NDVI raster calculations provided the average raw NDVI and average positive 

NDVI values for nesting wetlands; raw NDVI values below 0.1 correspond to areas like 

rock or open water while high, positive values indicate dense vegetation. The average 

raw NDVI value (Table 7) and average positive NDVI value (Table 8) for each wetland 

were compared to swan pair occupancy and fledging records to ascertain whether a 

relationship existed between NDVI derived values and swan use. Although there was not 

a significant relationship between NDVI values and swan occupancy or cygnet fledging 

in most years, some tests did indicate a relationship. There was a statistically significant, 

but weak, relationship between positive NDVI values from 1990 TM images and the rate 
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of pair occupancy for occupied wetlands in 1990 (Figure 15) and from 1989–1991 

(Figure 16). These results indicated that 17.8% of the total variation in swan pair 

occupancy in 1990 might be explained through factors that are measured in NDVI 

positive values, and 16.2% of the total variation in swan pair occupancy in 1989–1991 

might be explained through positive NDVI values of nesting wetlands. Additionally, 

there was a strong, positive relationship between the positive NDVI calculated values 

using 1990 TM images and cygnet fledging rate in 1990 (Figure 17), indicating that 

37.6% of the total variation in cygnet fledging in 1990 was explained by the positive 

NDVI values. As higher NDVI values indicate more vegetation growth, they may 

indicate better food quality or availability on nesting wetlands. The NDVI model was not 

reliable in precisely predicting nesting or fledging rates for swans, but the relationships 

that were significant may indicate that continuous NDVI calculations might assist in 

remotely monitoring vegetation health in nesting wetlands. 

As park visitation has increased in YNP (Figure 9), the evaluation of the human-

wildlife dynamic can provide important information to determine if additional protection 

to sensitive areas is necessary. There was a significant relationship between the number 

of territories occupied by pairs of swans and park visitation; specifically, 29.2% of the 

total variation in territory occupancy might be explained by park visitation (Figure 18). 

Similarly, 36.7% of the variation in whether territories fledged cygnets might be 

explained by increased visitation (Figure 19) and 33.4% of the variation in the number of 

cygnets fledged might be explained by park visitation rates (Figure 20). These tests all 

suggest that the increase of visitors in YNP may influence swan nesting and cygnet 

fledging within YNP. If vegetation has decreased around nesting sites, it is possible that 

visitors are more visible to nesting swans, which may lead the swans to be more prone to 

alter their behavior. A study on swan nesting disturbance indicated that visual 

obstructions from the highway, such as vegetation or hills, helped to decrease the 

likelihood of disturbances on the nest (Henson and Grant 1991). Nesting sites such as 

Trumpeter Lakes and Lake of the Woods are within 1.0 km of a park highway or trail, but 

the terrain and vegetation make it unlikely that nesting swans will experience high levels 

of disturbance from stopped vehicles or visitors who are hiking.  
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Heart Lake, Lewis Lake, and Shoshone Lake were historically productive nesting 

territories where day use by visitors has potentially impacted swan nesting. All three 

lakes contain hiking trails, camp sites, recreational boating, and a park highway runs 

along the shore of Lewis Lake. Swan Lake and Seven-mile Bridge had vehicle pull-outs 

next to the historical nesting wetland and nature tours are occasionally lead around Swan 

Lake (R. Shea, pers. comm.); Flat Mountain Arm is considered a ‘remote’ location due to 

the lack of trails and roadways, but has back-country campsites accessible by boat. 

Pedestrian and vehicular traffic, particularly vehicles stopping nearby, can cause nesting 

swans to alter their behavior (Henson and Grant 1991) and may cause unintentional 

disturbances on swans.  Human-caused disturbances within 1.0 km of lakes used by 

swans can have a significant impact on swan use, and these lakes are less likely to be 

used by breeding swans (Banks 1999). Nesting territories identified were referenced in 

regards to locations within 1.0 km of a trail (n = 21), 1.0 km of a main park highway (n = 

12), or remote (n = 11). No statistical significance was found between the visitor 

accessibility factor and the number of swan pairs which occupied nesting wetlands. Other 

factors such as the proximity of parking areas to nest territories or visibility of visitor 

activities from nest territories may be more important factors and were not evaluated with 

this test. Park managers must carefully gage the impacts that visitation may have on 

sensitive wildlife in order to adequately mitigate these issues. 
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Figure 1. Historical breeding and wintering range of trumpeter swans (Source:  Matteson, 

S., S. Craven, and D. Compton. 1995. The trumpeter swan. Publication no. 

G3647. University of Wisconsin–Extension, Madison, WI.). 
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Figure 2. Greater Yellowstone Ecosystem Core Region (Source: USFWS. 2006. 

Trumpeter swan survey of the Rocky Mountain Population – winter 2006. U. 

S. Fish and Wildlife Service, Migratory Birds and State Programs, Lakewood, 

CO.).  
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Figure 3. Geographical distribution of the trumpeter swan (Source: Caithamer, D.F. 2001. 

Trumpeter Swan Population Status, 2000. Division of Migratory Bird 

Management, U.S. Fish & Wildlife Service, MD.). 
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Table 1. Spectral band function for MSS Landsat missions 4/5 (Source: Headley, R. 2010. 

Landsat: A global land-imaging project. U.S. Geological Survey Fact Sheet 

2010–3026.). 

Spectral Band Wavelength (nm) Use for mapping: 

Band 1 – Green 0.5 – 0.6 
Sediment-laden water; delineates areas 

of shallow water. 

Band 2 – Red 0.6 – 0.7 Cultural features. 

Band 3 – Near Infrared 0.7 – 0.8 
Vegetation boundary between land and 

water, and landforms. 

Band 4 – Near Infrared 0.8 – 1.1 

Penetrates atmospheric haze best, 

emphasizes vegetation, boundary 

between land and water, and landforms. 
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Table 2. Spectral band function for Landsat 5 TM/Landsat 7 ETM+ missions (Source: 

Headley, R. 2010. Landsat: A global land-imaging project. U.S. Geological 

Survey Fact Sheet 2010–3026.). 

Spectral Band Wavelength (nm) Use for mapping: 

Band 1 – Blue 0.45 – 0.52 

Bathymetric features, 

distinguishing soil from 

vegetation and deciduous from 

coniferous vegetation. 

Band 2 – Green 0.52 – 0.60 

Emphasizes peak vegetation, 

which is useful for assessing 

plant vigor. 

Band 3 – Red 0.63 – 0.69 
Discriminates vegetation 

slopes. 

Band 4 – Near Infrared 0.77 – 0.90 
Emphasizes biomass content 

and shorelines. 

Band 5 – Short-wave Infrared 1.55 – 1.75 

Discriminates moisture content 

of soil and vegetation; 

penetrates thin clouds. 

Band 6 – Thermal Infrared 10.40 – 12.50 
Thermal mapping and 

estimating soil moisture. 

Band 7 – Short-wave Infrared 2.09 – 2.35 

Hydrothermally altered rocks 

associated with mineral 

deposits. 

Band 8 – Panchromatic 0.52 – 0.90 

15-meter resolution, sharper 

image definition. ETM+ 

(Landsat 7) only. 
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Table 3. General weather conditions observed during 2009 study season (Source: NWS. 

2009. Records from the Bechler River (station index 48-0585-02), Mammoth 

Hot Springs (48-9905-01), Tower (48-9025-01) and Lake Yellowstone (48-

5345-04) ranger stations as reported to the National Oceanic and Atmospheric 

Administration in July 2009.). 

Date 
Max. temp. 

(°C) 

Min. temp. 

(°C) 
Precip. (cm) Weather station 

9 July 2009 20.6 2.8 0.3 MHS 

10 July 2009 21.7 4.4 0.1 MHS 

11 July 2009 24.4 4.4 0 MHS 

12 July 2009 27.8 2.8 0 TF 

13 July 2009 29.4 2.8 0.5 TF 

14 July 2009 21.7 4.4 0 TF 

15 July 2009 15.0 2.8 0.1 LY 

16 July 2009 20.0 3.3 0 LY 

17 July 2009 23.3 3.9 0 LY 

18 July 2009 23.3 4.4 0 LY 

19 July 2009 26.1 6.7 0 LY 

20 July 2009 22.8 4.4 0.3 LY 

21 July 2009 21.7 3.3 0.2 LY 

22 July 2009 23.8 5.0 0 LY 

23 July 2009 30.6 10.0 0 MHS 

24 July 2009 32.2 15.0 0 MHS 

25 July 2009 18.3 6.1 0 LY 

26 July 2009 22.8 6.7 0 LY 

27 July 2009 27.8 6.7 0 BR 

Note: Weather Station Identification: 

MHS = Mammoth Hot Springs (elevation 1899 m)  

TF = Tower Falls (elevation 1910 m)  

LY = Lake Yellowstone (elevation 2399 m)  

BR = Bechler River (elevation 1959 m)  



56 

 

Table 4. General weather conditions observed during 2010 study season (Source: NWS. 

2010. Records from the Bechler River (station index: 48-0585-02), Mammoth 

Hot Springs (48-9905-01), Tower (48-9025-01) and Lake Yellowstone (48-5345-

04) Ranger Stations as reported to the National Oceanic and Atmospheric 

Administration in August and September 2010.). 

Date 
Max. temp. 

(°C) 

Min. temp. 

(°C) 
Precip. (cm) Weather station 

16 Aug 2010 25.6 6.1 0 BR 

17 Aug 2010 29.4 5.0 Trace BR 

18 Aug 2010 28.3 3.7 0 BR 

19 Aug 2010 27.2 3.7 0 BR 

20 Aug 2010 21.1 5.6 Trace LY 

21 Aug 2010 22.2 3.3 0 LY 

22 Aug 2010 29.4 12.2 0 MHS 

23 Aug 2010 21.1 0.6 0.1 LY 

24 Aug 2010 13.9 -2.2 0.1 LY 

25 Aug 2010 25.0 -0.6 0 TF 

26 Aug 2010 30.6 0.6 0 TF 

27 Aug 2010 31.1 11.1 0 MHS 

28 Aug 2010 25.0 8.9 0 MHS 

29 Aug 2010 15.6 6.1 1.7 MHS 

30 Aug 2010 19.4 6.1 0.1 MHS 

31 Aug 2010 13.3 2.8 0.1 MHS 

1 Sept 2010 14.4 2.8 0.1 TF 

2 Sept 2010 20.0 -2.8 Trace TF 

3 Sept 2010 18.9 2.8 0 MHS 

4 Sept 2010 26.1 0.0 0 TF 

5 Sept 2010 26.7 8.9 0 MHS 

6 Sept 2010 15.6 -5.0 0.3 LY 

7 Sept 2010 1.7 -4.4 0 TF 

8 Sept 2010 16.1 -2.8 0 LY 
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Table 5. Species occurrence of vascular plants sampled at nesting territories.  

Family Scientific name 
Percent Occurrence 

of Species 

Ceratophyllaceae Ceratophyllum demursum 27% 

Cupressaceae Juniperus communis 6% 

Cyperaceae Carex aquatilis 30% 

 Carex utriculata 33% 

 Eleocharis palustris 21% 

 Schoenoplectus acutus 36% 

Ericaceae Vaccinium occidentale 3% 

Hippuridaceae Hippuris vulgaris 9% 

Hydrocharitaceae Elodea canadensis 6% 

Juncaceae Juncus articulatus 3% 

Lemnaceae Lemna turionifera 21% 

Marsileaceae Marsilea vestita 3% 

Najadaceae Najas guadalupensis 6% 

Nymphaeaceae Nuphar polysepala 36% 

Poaceae Agrostis scabra 3% 

 Hordeum brachyantherum 3% 

 Phalaris arundinacea 3% 

Polygonaceae Polygonum amphibium 9% 

 Rumex crispus 3% 

Portulacaceae Claytonia lanceolata 3% 

Potamogetonaceae Stuckenia filiformis 33% 

 Stuckenia pectinata 18% 

 Potamogeton crispus 9% 

 Potamogeton epihydrus 9% 

 Potamogeton gramineus 6% 

 Potamogeton natans 27% 

 Potamogeton nodosus 3% 

 Potamogeton pusillus 6% 

 Potamogeton robbinsii 6% 

Ranunculaceae Ranunculus aquatilis 6% 

Rosaceae Pentaphylloides floribunda 3% 

 Potentilla palustris 3% 

Salicaceae Salix glauca 9% 

 Populus tremuloides 3% 

Scrophulariaceae Limosella aquatica 3% 

Typhaceae Typha latifolia 21% 
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Table 6. Geographic characteristics of historical nesting locations in YNP (including total 

size of continuous wetland habitat within 5.0 km of historic nesting location, dominant 

habitat type within foraging territory, elevation of nesting territory, and island availability 

within nesting territories as determined from NWI maps). 

Territory Name Size (ha) Dominate habitat (%) 
Elevation 

(m) 

Islands 

Available 

Alum Creek 116 86% Palustrine 2352 Yes 

Beach Springs 

Lagoon 
25 58% Lacustrine Littoral 2371 No 

Bechler 

Meadows 
2068 80% Palustrine 1960 Yes 

Beula Lake 141 42% Palustrine 2265 No 

Blacktail Ponds 36 90% Palustrine 2025 Yes 

Cascade Lake 42 67% Palustrine 2445 Yes 

Crescent Lake 5 73% Lacustrine Limnetic 2622 No 

Cygnet Lakes 131 81% Palustrine 2537 Yes 

East Tern Lake 165 73% Palustrine 2512 Yes 

Geode Lake 4 74% Lacustrine Littoral 1833 No 

Grebe Lake 112 38% Lacustrine Limnetic 2475 Yes 

Grizzly Lake 120 49% Palustrine 2300 No 

Harlequin Lake 8 51% Lacustrine Limnetic 2105 No 

Hellroaring 

Complex 
4 100% Palustrine 2314 No 

Hidden Lakes 78 50% Lacustrine Littoral 2402 Yes 

Lake of the 

Woods 
21 47% Palustrine 2375 No 

LeHardy Rapids 383 56% Palustrine 2363 Yes 

Lilypad Lake 220 58% Palustrine 1961 Yes 

McBride Lake 15 71% Lacustrine Limnetic 2014 No 

Mt. Everts Lake 10 100% Palustrine 2224 No 
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Table 6 (continued). 

Territory Name 
Size 

(ha) 
Dominate habitat (%) 

Elevation 

(m) 

Islands 

Available 

Obsidian Lake 11 78% Lacustrine Littoral 2366 No 

Pelican Creek 331 76% Palustrine 2370 Yes 

Phoneline Lake 112 94% Palustrine 1945 Yes 

Rainbow Lakes 4 57% Palustrine 1807 No 

Riddle Lake 540 68% Palustrine 2423 Yes 

Robinson Lake 127 86% Palustrine 1996 Yes 

Seven Mile Bridge 129 50% Riverine 2066 No 

Slough Creek Ponds 2 100% Palustrine 1926 No 

South Twin Lake 278 76% Palustrine 2309 Yes 

Sportsman Lake 15 87% Palustrine 2361 No 

Swan Lake 97 82% Palustrine 2222 Yes 

Trout Lake 5 67% Lacustrine 

Limnetic 

2138 No 

Trumpeter Lakes 21 49% Lacustrine 

Limnetic 

1874 No 

White Lake 84 62% Lacustrine 

Limnetic 

2523 Yes 

Winegar Lake 17 44% Lacustrine Littoral 1967 No 

Wolf Lake 101 82% Palustrine 2452 Yes 
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Table 7. Calculated raw NDVI values for historical nesting locations in YNP. 

Territory Name 
2005 

ETM+ 

1999 

TM 

1990 

TM 

1979 

MSS 

1975 

MSS 

Alum Creek 0.52 0.24 0.24 0.34 0.47 

Beach Springs Lagoon 0.26 0.09 0.04 0.14 0.21 

Bechler Meadows 0.55 0.28 0.26 0.36 0.44 

Beula Lake 0.14 0.03 -0.06 -0.03 0.07 

Blacktail Ponds 0.38 0.16 0.15 0.24 0.26 

Cascade Lake 0.45 0.17 0.17 0.28 0.39 

Crescent Lake -0.05 -0.25 -0.30 -0.11 0.10 

Cygnet Lakes 0.48 0.26 0.22 0.31 0.41 

East Tern Lake 0.53 0.27 0.30 0.37 0.43 

Geode Lake -0.02 -0.01 -0.14 -0.01 -0.00 

Grebe Lake 0.24 0.06 0.02 0.05 0.17 

Grizzly Lake 0.24 0.05 -0.01 0.08 0.18 

Harlequin Lake 0.35 0.14 0.10 0.31 0.33 

Hellroaring Complex 0.26 0.08 0.10 0.14 0.13 

Hidden Lakes 0.45 0.22 0.22 0.37 0.41 

Lake of the Woods 0.37 0.15 0.16 0.29 0.29 

LeHardy Rapids 0.32 0.13 0.12 0.22 0.27 

Lilypad Lake 0.49 0.25 0.24 0.32 0.38 

McBride Lake 0.19 0.03 -0.05 0.10 0.19 

Mt. Everts Lake 0.23 -0.01 -0.10 0.12 0.26 

Obsidian Lake 0.38 0.15 0.14 0.32 0.32 

Pelican Creek 0.55 0.27 0.28 0.36 0.46 
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Table 7 (continued). 

Territory Name 
2005 

ETM+ 

1999 

TM 

1990 

TM 

1979 

MSS 

1975 

MSS 

Phoneline Lake 0.59 0.30 0.26 0.38 0.48 

Rainbow Lakes 0.12 -0.05 -0.04 0.08 0.12 

Riddle Lake 0.41 0.18 0.20 0.28 0.36 

Robinson Lake 0.56 0.31 0.30 0.41 0.46 

Seven Mile Bridge 0.38 0.20 0.17 0.29 0.26 

Slough Creek Ponds 0.12 -0.07 0.07 0.20 0.10 

South Twin Lake 0.35 0.16 0.18 0.27 0.28 

Sportsman Lake 0.57 0.28 0.29 0.38 0.42 

Swan Lake 0.41 0.16 0.18 0.25 0.34 

Trout Lake 0.05 -0.05 -0.22 -0.17 0.22 

Trumpeter Lakes 0.16 -0.03 -0.04 0.02 0.11 

White Lake 0.02 -0.09 -0.20 0.13 0.11 

Winegar Lake 0.36 0.14 0.10 0.23 0.26 

Wolf Lake 0.50 0.21 0.23 0.30 0.40 
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Table 8. Calculated positive NDVI values for historical nesting locations in YNP. 

Territory Name 
2005 

ETM+ 

1999 

TM 

1990 

TM 

1979 

MSS 

1975 

MSS 

Alum Creek 0.52 0.25 0.25 0.34 0.47 

Beach Springs Lagoon 0.56 0.35 0.37 0.35 0.43 

Bechler Meadows 0.55 0.28 0.26 0.36 0.44 

Beula Lake 0.43 0.29 0.28 0.33 0.32 

Blacktail Ponds 0.40 0.19 0.18 0.24 0.26 

Cascade Lake 0.58 0.27 0.34 0.42 0.51 

Crescent Lake 0.23 0.23 0.24 0.27 0.26 

Cygnet Lakes 0.49 0.28 0.25 0.31 0.41 

East Tern Lake 0.55 0.30 0.33 0.39 0.44 

Geode Lake 0.14 0.10 0.14 0.21 0.11 

Grebe Lake 0.48 0.26 0.32 0.39 0.41 

Grizzly Lake 0.53 0.25 0.32 0.36 0.41 

Harlequin Lake 0.41 0.19 0.20 0.31 0.34 

Hellroaring Complex 0.26 0.13 0.12 0.14 0.13 

Hidden Lakes 0.46 0.23 0.25 0.37 0.42 

Lake of the Woods 0.43 0.21 0.28 0.36 0.35 

LeHardy Rapids 0.51 0.30 0.30 0.32 0.39 

Lilypad Lake 0.50 0.27 0.27 0.34 0.40 

McBride Lake 0.39 0.24 0.28 0.26 0.27 

Mt. Everts Lake 0.39 0.20 0.12 0.26 0.37 

Obsidian Lake 0.39 0.17 0.18 0.32 0.33 

Pelican Creek 0.57 0.29 0.29 0.36 0.47 
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Table 8 (continued). 

Territory Name 
2005 

ETM+ 

1999 

TM 

1990 

TM 

1979 

MSS 

1975 

MSS 

Phoneline Lake 0.59 0.30 0.26 0.38 0.48 

Rainbow Lakes 0.17 0.09 0.12 0.13 0.12 

Riddle Lake 0.48 0.23 0.28 0.36 0.42 

Robinson Lake 0.56 0.31 0.30 0.41 0.46 

Seven Mile Bridge 0.41 0.27 0.27 0.29 0.27 

Slough Creek Ponds 0.12 0.09 0.11 0.20 0.10 

South Twin Lake 0.38 0.22 0.26 0.29 0.31 

Sportsman Lake 0.61 0.33 0.36 0.41 0.45 

Swan Lake 0.53 0.23 0.26 0.30 0.40 

Trout Lake 0.42 0.23 0.22 0.26 0.32 

Trumpeter Lakes 0.22 0.17 0.17 0.19 0.19 

White Lake 0.30 0.20 0.22 0.29 0.28 

Winegar Lake 0.46 0.26 0.28 0.33 0.35 

Wolf Lake 0.53 0.26 0.31 0.37 0.44 
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Viewer-subjective evaluations utilized Landsat composite images with a false-

coloration applied. The MSS images (1975 and 1979) were created using an R-G-B 

composite of 4-2-1 while the TM and ETM+ images (1990, 1999, and 2005) were created 

using an R-G-B composite of 4-3-2. Each image is displayed in a 1:60,000 scale unless 

otherwise noted, with the YNP image displayed at a 1:1,500,000 scale for location 

purposes. Sites sampled in 2009 are marked with green dots, while sites sampled in 2010 

are marked with blue dots. The images are displayed, in order: 

a) 1975 MSS; 

b) 1979 MSS; 

c) 1990 TM; 

d) 1999 ETM+; 

e) 2005 ETM+; 

f) YNP location map. 
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Figure 21. Landsat image of the Alum Creek historical nesting site.  
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Figure 22. Landsat image of the Beach Springs Lagoon and Pelican Creek historical 

nesting sites.  

  



68 

 

 

Figure 23. Landsat image of the Bechler Meadows and Lilypad Lake historical nesting 

sites.  
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Figure 24. Landsat image of the Beula Lake historical nesting site.  
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Figure 25. Landsat image of the Blacktail Ponds and Mount Everts Lake historical 

nesting sites.  
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Figure 26. Landsat image of the Cascade Lake, Grebe Lake, and Wolf Lake historical 

nesting sites.  
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Figure 27. Landsat image of the Crescent Lake historical nesting site.  
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Figure 28. Landsat image of the Cygnet Lakes historical nesting site.  
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Figure 29. Landsat image of the East Tern Lake and White Lake historical nesting sites.  
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Figure 30. Landsat image of the Geode Lake and the Hellroaring Complex historical 

nesting sites.  
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Figure 31. Landsat image of the Grizzly Lake historical nesting site.  
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Figure 32. Landsat image of the Harlequin Lake and Seven Mile Bridge historical nesting 

sites.  
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Figure 33. Landsat image of the Hidden Lakes historical nesting site.  
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Figure 34. Landsat image of the Lake of the Woods historical nesting site.  
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Figure 35. Landsat image of the LeHardy Rapids to Fishing Bridge historical nesting site.  

  



81 

 

 
Figure 36. Landsat image of the McBride Lake historical nesting site.  
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Figure 37. Landsat image of the Obsidian Lake historical nesting site.  
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Figure 38. Landsat image of the Phoneline Lake and Robinson Lake historical nesting 

sites.  
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Figure 39. Landsat image of the Rainbow Lakes historical nesting site.  
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Figure 40. Landsat image of the Riddle Lake historical nesting site.  
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Figure 41. Landsat image of the Slough Creek Ponds and Trumpeter Lakes historical 

nesting sites.  
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Figure 42. Landsat image of the South Twin Lake historical nesting site.  
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Figure 43. Landsat image of the Sportsman Lake historical nesting site.  
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Figure 44. Landsat image of the Swan Lake historical nesting site.  
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Figure 45. Landsat image of the Trout Lake historical nesting site.  
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Figure 46. Landsat image of the Winegar Lake historical nesting site.  
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Viewer-subjective evaluations utilized NDVI images which were calculated using 

the Image Analysis function. The MSS images (1975 and 1979) were calculated using 

band 2 as the red band and band 3 as the infrared band while the TM and ETM+ images 

(1990, 1999, and 2005) were created using band 3 as the red band and band 4 as the 

infrared band. Each image is displayed in a 1:60,000 scale unless otherwise noted, with 

the YNP image displayed at a 1:1,500,000 scale for location purposes. Sites sampled in 

2009 are marked with green dots, while sites sampled in 2010 are marked with blue dots. 

The images are displayed, in order: 

a) 1975 MSS; 

b) 1979 MSS; 

c) 1990 TM; 

d) 1999 ETM+; 

e) 2005 ETM+; 

f) YNP location map. 
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Figure 47. NDVI image of the Alum Creek historical nesting site.  
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Figure 48. NDVI image of the Beach Springs Lagoon and Pelican Creek historical 

nesting sites.  
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Figure 49. NDVI image of the Bechler Meadows and Lilypad Lake historical nesting 

sites.  
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Figure 50. NDVI image of the Beula Lake historical nesting site.  
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Figure 51. NDVI image of the Blacktail Ponds and Mount Everts Lake historical nesting 

sites.  
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Figure 52. NDVI image of the Cascade Lake, Grebe Lake, and Wolf Lake historical 

nesting sites.  
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Figure 53. NDVI image of the Crescent Lake historical nesting site.  
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Figure 54. NDVI image of the Cygnet Lakes historical nesting site.  
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Figure 55. NDVI image of the East Tern Lake and White Lake historical nesting sites.  
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Figure 56. NDVI image of the Geode Lake and the Hellroaring Complex historical 

nesting sites.  
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Figure 57. NDVI image of the Grizzly Lake historical nesting site.  
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Figure 58. NDVI image of the Harlequin Lake and Seven Mile Bridge historical nesting 

sites.  
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Figure 59. NDVI image of the Hidden Lakes historical nesting site.  
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Figure 60. NDVI image of the Lake of the Woods historical nesting site.  
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Figure 61. NDVI image of the LeHardy Rapids to Fishing Bridge historical nesting site.  
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Figure 62. NDVI image of the McBride Lake historical nesting site.  
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Figure 63. NDVI image of the Obsidian Lake historical nesting site.  
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Figure 64. NDVI image of the Phoneline Lake and Robinson Lake historical nesting 

sites.  
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Figure 65. NDVI image of the Rainbow Lakes historical nesting site.  
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Figure 66. NDVI image of the Riddle Lake historical nesting site.  
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Figure 67. NDVI image of the Slough Creek Ponds and Trumpeter Lakes historical 

nesting sites.  
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Figure 68. NDVI image of the South Twin Lake historical nesting site.  
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Figure 69. NDVI image of the Sportsman Lake historical nesting site.  
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Figure 70. NDVI image of the Swan Lake historical nesting site.  
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Figure 71. NDVI image of the Trout Lake historical nesting site.  
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Figure 72. NDVI image of the Winegar Lake historical nesting site.  
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Sampled wetlands were evaluated through visual inspection. Both false-color 

composite images which were created using all available Landsat bands and NDVI 

calculated images were evaluated for changes to the wetland area and surrounding 

landscapes to distinguish changes over time which may provide insight into trumpeter 

swan nesting efforts.  

 

Alum Creek 

The Alum Creek location was in an open meadow at the confluence of Alum 

Creek and the Yellowstone River along the Grand Loop Highway. The area of 

Alum Creek directly adjacent to the highway and confluence of the Yellowstone 

River was heavily braided and primarily barren of vegetation with mudflats and 

sparse sedges. This mudflat region was distinguished in all years of viewer 

observations, and with observable increases of the mudflat each year in both the 

composite and NDVI images, distinguished by a decrease in vegetation at the 

confluence. The most prominent landscape feature noted was Sulphur Spring to 

the south-east, and the Yellowstone River. Lodgepole Pine mixed forest areas 

were located to the north-west of the Alum Creek site, with a large patch of forest 

adjacent to the site. This area appeared densely forested in the 1975 and 1979 

MSS images, while the 1990 TM image shows distinct changes; due to the 1988 

forest fires, a portion of the forested area was involved in canopy and mixed burn. 

The Grand Loop Highway was barely distinguished in the MSS images, but noted 

in the 1990, 1999, and 2005 composite and NDVI images. The Mary Mountain 

trailhead was within the scope of the image but not visually located.  

Beach Springs Lagoon and Pelican Creek  

Beach Springs Lagoon and Pelican Creek were located in close proximity to one 

another and therefore were the images were grouped as landscape-level features 

were comparable due to location. The Pelican Creek location was at the mouth of 

Pelican Creek where it flowed into Yellowstone Lake. This area was open due to 

the wet soils associated with the creek meandering through the valley between the 

Lodgepole Pine mixed forest. The open water at the mouth of Pelican Creek was 

not noticeable in images other than the 2005 ETM+ image. Plant vigor in the 
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Pelican Creek area was highest in 1975 and 2005 according to the NDVI image. 

Beach Springs Lagoon was a small, spring fed wetland in open sagebrush along 

Mary’s Bay. Beach Springs Lagoon showed an increase in vegetation in 1979, 

while other images showed large areas of open water. Sulphur Hills was 

distinguished easily in the top middle of the composite images, as was Steamboat 

Springs in the bottom corner, and Indian Pond between Pelican Creek and Beach 

Springs Lagoon. The East Entrance road bisected the Pelican Creek site, but was 

indistinguishable in both MSS images, and barely visible in the 1999 ETM+ 

image. In the 1990, 1999, and 2005 images, where the roadway was distinguished 

it was difficult to separate from the beach at Mary’s Bay. The Fishing Bridge RV 

Park, including the water treatment facility, was distinguished in all images and it 

was noted that the RV Park was within the 1.0 km buffer that was used to 

characterize areas with potential human disturbance. Other man-made features 

located on the landscape were the Pelican Valley trailhead and a picnic area on 

Mary’s Bay; neither were located on the Landsat images. 

Bechler Meadows and Lilypad Lake 

Bechler Meadows and Lilypad Lake images were located in close proximity to 

one another and therefore were grouped as landscape-level features were 

comparable due to location. Bechler Meadows was an incredibly complex braided 

wetland system comprised of the Bechler River, and tributaries including 

Boundary Creek and Bartlett Slough, with several non-forested wetlands 

identified over the meadow region such as willow and sedge bogs. The fluvial 

valley indicated the highest plant vigor in the 1975 NDVI image. The Bechler 

River was easily distinguished in the composite image from 1979 to 1999, with 

some indication of oxbows present in the 1990 image. Lilypad Lake was located 

on the south end of Bechler Meadows and surrounded by Lodgepole Pine mixed 

forest. Composite images and NDVI analysis indicated the majority of the open 

water during the analysis period was located in the middle of the lake. Ranger 

Lake and Falls River were easily distinguished in most NDVI images, but were 

difficult to distinguish in the MSS composite images, likely due to the larger 
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resolution. The south-west region of the park had little development, and no man-

made level disturbances were found. 

Beula Lake 

Beula Lake was a large lake surrounded by Subalpine Fir forest near the southern 

boundary of YNP and connected via stream and forested wetlands to Herring 

Lake. The forest fires of 1988 showed damage on the landscape level to the 

Subalpine Fir forest area as observed in the 1990, 1999, and 2005 composite and 

NDVI images. An area of small hot springs which feed a tributary of the Falls 

River were visible in 2005 and barely discernable in 1999; no other images were 

clear enough to distinguish the hot springs. South Boundary Lake was visible in 

all images to the south of the Beula Lake and Herring Lake region. The meadow 

between Beula Lake and Herring Lake, and the wetland on the north-eastern edge 

of Beula Lake both showed good vegetation health measured by NDVI in all 

years except 1979. This trend also followed in the wetlands surrounding the Falls 

River, but a dramatic loss of vegetation was measured in 1990 NDVI images 

south of the Falls River. This region of the park had little development; two 

backcountry campsites were located at Beula Lake and no man-made level 

disturbances were found. 

Blacktail Ponds and Mount Everts Lake 

Blacktail Ponds and Mount Everts Lake were located in close proximity to one 

another and therefore the images were grouped as landscape-level features were 

comparable due to location. Blacktail Ponds was a series of small lakes and 

wetlands near Blacktail Deer Creek at the base of the Blacktail Plateau. Mount 

Everts was a small lake located on a hilltop above the Blacktail Ponds. The steep 

hillside which separated the two, and other similar areas, was distinct due to the 

lack of vegetation on the downslope. Both areas were subject to varying levels of 

non-forested burn during the 1988 wildfires with some areas of forested burn 

visible on the landscape. The fire scars in the image were more prominent in the 

Douglas-fir forested areas than in the non-forested scrub-sagebrush area 

surrounding Blacktail Ponds and Mount Everts Lake. A section of the Grand 

Loop Road was directly visible from the Blacktail Ponds and within view on the 



124 

 

landscape images and was visible in ETM+ images and the TM image, but not on 

the MSS images. The Blacktail Creek Trailhead parking lot was located adjacent 

to the wetlands but was not distinguishable in any of the images. 

Cascade Lake, Grebe Lake, and Wolf Lake 

Cascade Lake, Grebe Lake, and Wolf Lake were located in close proximity to one 

another and therefore the images were grouped as landscape-level features were 

comparable due to location. The lakes formed a series of large lakes along the top 

edge of the Solfatara Plateau, with the headwaters of the Gibbon River flowing to 

the west. To the south and north-west was Lodgepole Pine mixed forest, with 

Whitebark Pine mixed forest to the north-east. The forest fires of 1988 had a 

definite impact on forests to the south of the lakes, with the difference in forested 

area visible to the south severely impacted in the 1990 image with scars visible in 

the 1999 and 2005 images. Each lake had backcountry campsites located around 

the shore, but these features could not be located on the Landsat images. The 

Norris-Canyon Road and Grand Loop Road, Canyon Village, the Cascade Lake 

picnic area and trailhead, and the Cascade Creek trailhead were all located within 

the scope of the image; the roads and visitor center area were all visible to some 

extent in all images examined. An equipment facility and service roads were 

located near the Canyon Village junction and visible in each image; this area grew 

noticeably between 1999 and 2005. The Cascade Lake trailhead and picnic area 

was clearly visible in 2005; the Cascade Creek trailhead was barely distinguished 

in the 2005 image. Neither trailhead was located in any other image.   

Crescent Lake 

Crescent Lake was a high mountain lake located on the north side of a steep talus 

slope in the Gallatin Range. Surrounding the lake was primarily Whitebark Pine 

mixed forest and talus slopes. Several small lakes were within the visible scope of 

the image and were easily identified, but lakes were over-identified in the image 

as some areas around Crescent Lake which looked similar to open water were 

instead shadows created by the northern aspect of the mountainous ridgeline. The 

images of Crescent Lake and other lakes in the region appeared to be deep water 

environments with little wetlands associated around the lakes. In the 1999 image, 
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Crescent Lake had a color change from the typical color of open water to a color 

which was generally associated more with thermal features. The other lakes in the 

area were not affected by a similar change in color. A small area of Lodgepole 

Pine mixed forest located on the south slope of the Gallatin Range was subject to 

canopy and mixed forest burn in the 1988 forest fires. This region of the park had 

little development and the only man-made features near the lake were a 

backcountry campsite at the lake, the Crescent–High Lake Trail and Specimen 

Creek Trail; none of these features were visible in any of the Landsat images. 

Cygnet Lakes 

Cygnet Lakes was a series of small wetlands on the Central Plateau which were 

connected by Magpie Creek. The Cygnet Lakes were primarily in an open sedge 

bog meadow with Lodgepole Pine mixed forest surrounding the lakes. Several 

thermal features were visible along the eastern edge of the image; the Violet 

Springs and Mud Pot were easily distinguished in all images. The forest fires in 

1988 had a significant impact on the landscape to the east of the Cygnet Lakes 

area. The mixed forest was subject to both canopy and mixed burn, while the open 

meadow was subject to non-forested burn. The burn scars were visible in images 

from 1990 to 2005 while the 1975 and 1979 images showed no fire scars. NDVI 

images indicated good vegetation health in 1975, while the 1990 image showed 

areas of minimal vegetation growth in the wetlands around the lake and the 

burned area. This region of the park had little development and the only man-

made feature in the image was the Cygnet Lakes Trail which terminated at the 

southernmost tip of the opening into the meadows around the lakes; this feature 

was not visible in any of the images viewed. 

East Tern Lake and White Lake 

East Tern Lake and White Lake were located in close proximity to one another 

and the images were grouped as landscape-level features were comparable due to 

location. Along with White Lake and East Tern Lake being detected, West Tern 

Lake and Fern Lake were easily identified in all images. The lakes were 

surrounded by Lodgepole Pine mixed forest. The Ponunta Springs and other hot 

springs were distinguished in all composite images. The wildfires of 1988 burned 
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around the Fern Lake area, and scars from the damage were visible in the 1990, 

1999, and 2005 images. The NDVI images in these years also indicated that large 

areas with no vegetation were present in the burned region. The NDVI images of 

the wetland indicated that White Lake contained little vegetation, while East Tern 

Lake had a higher occurrence of vegetation within wetlands. This region of the 

park had little development with the only development the Astringent Creek Trail 

and a backcountry campsite north of Fern Lake. No man-made level disturbances 

were located in the images. 

Geode Lake and Hellroaring Complex 

Geode Lake and the Hellroaring Complex were located in close proximity to one 

another and the images were grouped as landscape-level features were 

comparable due to location. Geode Lake was a small lake located in a Douglas-fir 

forested, talus slope region near the Yellowstone River. The Hellroaring Complex 

was a small wetland located in open sagebrush habitat along the south side of 

Hellroaring Creek east of the confluence with the Yellowstone River. The 

Yellowstone River and Hellroaring Creek were easily visible, including some 

sections of rapids along the Yellowstone River. Steep hillsides were distinguished 

due to the barren area caused by landslides. The NDVI images showed the 

Yellowstone River as an area lacking vegetation while Hellroaring Creek showed 

up as an area with vegetation present. The NDVI images indicated that Geode 

Lake had little vegetation and the Hellroaring Complex NDVI image indicated 

little vegetation in the shallow area and increased vegetation in the lower region. 

A section of the Grand Loop Road was within view on the landscape and was 

visible in ETM+ images and the TM image, but not on the MSS images.   

Grizzly Lake  

This area was largely comprised of Lodgepole Pine mixed forest with some 

thermal features present, such as Roaring Mountain. Other thermal features 

distinguished included the Amphitheater Springs and the springs which fed 

Lemonade Creek. The area around Grizzly Lake was subject to a tremendous 

amount of canopy burn during the fires in 1988. In the inspection of images in 

1975 and 1979, the areas were entirely forested prior to the forest fires. The NDVI 
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image indicated that the vegetation health in the wetlands on the south side of 

Grizzly Lake were less vigorous than prior to the burn. A section of the Grand 

Loop Road was visible in the image, along with the Grizzly Lake trailhead; which 

was most visible as it paralleled Obsidian Creek. 

Harlequin Lake and Seven Mile Bridge 

Harlequin Lake and Seven Mile Bridge were located in close proximity to one 

another and the images were grouped as landscape-level features were 

comparable due to location. The wetlands that formed Seven Mile Bridge were 

heavily braided from the Madison River flooding through the Madison Canyon 

with water flowing through alternate channels and creating islands throughout the 

wetland. Harlequin Lake was a small lake located on a ridge above the valley 

floor. The area was consisted of Douglas-fir forest to the north of the Madison 

River, Lodgepole Pine mixed forest south, and open meadows with sedge bogs 

along the Madison River. The Madison Range, including Mount Jackson, were 

located in the image because of the lack of vegetation on the steep southern 

slopes. The area was subject to a patchy mosaic of forest fires in 1988, with heavy 

canopy to the south of the Madison River, areas of non-forested burn around the 

wetlands by Seven Mile Bridge, and patches of canopy and undifferentiated burn 

directly around Harlequin Lake. The area appeared to be heavily forested prior to 

the wildfires. NDVI images indicated healthy vegetation growth in the Seven 

Mile Bridge wetlands after the 1988 forest fires, while Harlequin Lake showed 

varying amounts of open water and vegetation growth around the lake without 

any pattern. A section of the West Entrance Road bordered the Madison River and 

was visible in all images; the Seven Mile Bridge trailhead could not be 

differentiated from the road, nor was Madison Junction or the Madison 

Campground. 

Hidden Lakes 

Hidden Lakes was two small wetlands located between Delusion Lake and the 

Flat Mountain Arm of Yellowstone Lake. Both Delusion Lake and Flat Mountain 

Arm were both visible in all images. This area was primarily comprised of 

Subalpine Fir and wet forest with open areas created by sedge bogs near the 
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wetlands around Hidden Lakes. Only a small portion of open water existed on the 

wetlands, and the site was difficult to distinguish in both MSS images. The NDVI 

image showed good vegetation health in the wetland region in 1999 and 2005. 

This area was subject to forest fires in 1988 in the forested area between Delusion 

Lake and Hidden Lakes and immediately south of Hidden Lakes, although little 

fire damage was noted near Flat Mountain Arm. The change in vegetation was 

distinct as the wetlands stood out against the recently burned areas in the 1990 

image, and the changes were more pronounced the 1999 and 2005 images. The 

NDVI image depicted the burned area as low NDVI, which indicated low plant 

growth or barren areas. This region of the park had little development with no 

trails or backcountry campsites, and no man-made level disturbances were 

located. 

LeHardy Rapids to the Fishing Bridge 

The LeHardy Rapids to Fishing Bridge nesting site was located along the 

Yellowstone River in a series of back sloughs along a valley surrounded by 

Lodgepole Pine mixed forest. The site was bordered on the west by the Grand 

Loop Road and on the east by the Howard Eaton Trail. LeHardy Rapids, Ochre 

Springs, and the hot springs associated with the Mud Volcano system were visible 

in the composite images; no vegetation changes were noted from the thermal 

features in the NDVI images. The NDVI image indicated vegetation vigor was 

highest in 1975 and in 2005. The Yellowstone River appeared in composite 

images to have large areas of sandbars in 1979 and 1990, which may be related to 

the low vegetation health measure in the NDVI images in those years. The Grand 

Loop Road was visible in all composite images, although the areas where the road 

bordered the Yellowstone River were difficult to distinguish between road and 

river. The road was most visible in the area where it intersected with the East 

Entrance Road just north of Lake Village and west of the Fishing Bridge RV 

Park. The Fishing Bridge RV Park and the Lake Village Visitor Center were both 

features that were distinguished in all composite images, although these features 

were not discerned in the NDVI images. A fire break underneath a transmission 
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line was visible in the images from 1990, 1999, and 2005, but was not observed in 

the MSS images.  

Lake of the Woods 

This area was largely comprised of Lodgepole Pine mixed forest with some 

thermal features present, such as Roaring Mountain. Other thermal features 

distinguished included the Amphitheater Springs and the springs which fed 

Lemonade Creek. The area immediately around Lake of the Woods was burned 

during the forest fires in 1988, but large stretches around Lemonade Creek were 

unburned. In the inspection of images in 1975 and 1979, the areas were entirely 

forested prior to the forest fires. A section of the Grand Loop Road was visible in 

the image, along with the Solfatara North trailhead, and a clear cut under the 

transmission line that runs along the Solfatara Creek Trail. The transmission line 

was clearly visible in each image, while the road was most visible when it 

paralleled Obsidian Creek. 

McBride Lake 

McBride Lake was a small, narrow lake located on the top of a rock outcropping 

above Slough Creek at the base of Buffalo Plateau with a series of wetlands 

created by oxbows from the movement of Slough Creek throughout the valley 

below. Sandbars were distinguished along the lower stretch of Slough Creek in 

the composite images. McBride Lake were an open water with little aquatic 

vegetation indicated through NDVI images. The forest fires of 1988 had a small 

impact in the Slough Creek area, with some non-forested and undifferentiated 

burns around McBride Lake and to the west at the base of the Buffalo Plateau. 

Minimal scarring was observed in the later composite images, and these changes 

to the landscape were not reflected in NDVI images. This region of the park had 

little development with a few backcountry campsites and a patrol cabin in the 

valley; no man-made level disturbances were located. 

Obsidian Lake 

Obsidian Lake was a small, narrow lake located at the top of the Obsidian Canyon 

with a small wetland locate near the steep western slope into the canyon. The lake 

was surrounded by Lodgepole Pine mixed forest. Obsidian Lake was difficult to 
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distinguish in the MSS images as the area of open water was too small for the 

resolution to detect any changes within the lake basin. The area to the west and 

south of Obsidian Lake was subject to almost continuous burns from the 1988 

forest fires, with the exception being near wetlands created from Obsidian Creek 

opening out of the canyon and outflow from Apollinaris Spring. The NDVI 

images reflected the vegetation changes due to the forest fire, and the Obsidian 

Lake wetlands showed increased plant health only in 1999. A section of the Grand 

Loop Road traveled through the Obsidian Canyon below Obsidian Lake and was 

visible in all images; the Mount Holmes trailhead could not be differentiated in 

any images. A transmission line was visible due to the clear cut area underneath 

the lines through the forested area but not through the open meadow in all 

composite images. 

Phoneline Lake and Robinson Lake 

Phoneline Lake and Robinson Lake were located in close proximity to one 

another and the images were grouped as landscape-level features were 

comparable due to location. Both lakes were surrounded by Lodgepole Pine 

mixed forest, with the sedge bog wetlands providing open areas from trees. These 

clearings were detected in both composite and NDVI images. Neither lake had 

indication of large areas of open water in the wetland environment; both areas 

when sampled were primarily emergent vegetation. Robinson Creek was a 

prominent feature due to the gully formation where the creek meandered. The 

south-west region of the park had little development; the Bechler Ranger Station 

and the gravel road to the station were the only man-made features. The Ranger 

Station was barely detected in any image and the roadway was undetected. 

Rainbow Lakes 

Rainbow Lakes were a series of small lakes located near the northern boundary of 

YNP and fed by Landslide Creek. This northern slope in this area was an arid, 

open sagebrush habitat, while the southern slope was dominated by Douglas-fir 

forest. The NDVI images indicated that the southern slope with the forest was 

high in vegetative growth while the northern slope was primarily devoid of 

vegetation. This was likely related to a rain shadow effect caused by the northern 
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slope in this region. The wetlands around Rainbow Lakes were always visible in 

the composite image, likely because they were a source of water which was a 

dynamic feature on the dry landscape. This site was located near the border of 

YNP and the town of Gardiner MT was not visible as all area outside YNP had 

been removed from analysis. The Stevens Creek Road and Stephen’s Creek Bison 

Capture Facility were located within the scope of the image; sections of the road 

were distinguished in all images while the Bison Facility was most easily defined 

in the 2005 image and not clearly distinguished in any other image. 

Riddle Lake 

Riddle Lake was a large lake in a Subalpine Fir area surrounded by extensive 

wetlands which open the landscape by excluding the forest. Open areas created by 

wetlands were visible on composite images due to the lack of forest on the 

landscape, but these features were not distinguished in the NDVI images. The 

wildfires of 1988 created several areas of deforested land around Riddle Lake 

which were evident in the 1990, 1999, and 2005 composite images, but not 

pronounced in the NDVI images. The wetlands around Riddle Lake prevented 

extensive damage through the region, but some areas still experienced heavy 

mixed and canopy burns. The Grant Village Visitor Center was located at the 

south end of the West Thumb of Yellowstone Lake and was visible all composite 

images, as was the South Entrance Road.  

Slough Creek Ponds and Trumpeter Lakes 

Slough Creek Ponds and Trumpeter Lakes were located in close proximity to one 

another and the images were grouped as landscape-level features were 

comparable due to location. Both locations were located in open sagebrush habitat 

with the Lamar River and Slough Creek joining just west of Slough Creek Ponds 

forming sedge bogs. Trumpeter Lakes was visible in all images, with varying 

levels of open water and mudflats. Slough Creek Ponds was often difficult to 

distinguish, likely due to the resolution of the MSS images. The Lamar River and 

Slough Creek, as well as the wetlands created by the confluence of Slough Creek 

into the Lamar River were all easily distinguished. The Northeast Entrance Road 

traversed east to west just south of the two nesting locations; the roadway was 



132 

 

largely undetectable in the composite images and was the only man-made feature 

on the landscape.  

South Twin Lake 

South Twin Lake was the southern lake in a connected pair of lakes surrounded 

by Lodgepole Pine mixed forest. The area which connected the two lakes was 

mostly forested, while the wetlands at the southern end of South Twin Lake were 

more extensive. To the south, Nymph Lake was identified as an open water 

habitat, with thermal features located on the northern side. Roaring Mountain was 

easily located in each image, while smaller thermal features like Roadside Springs 

and Bijah Springs were harder to distinguish in the MSS images. The area around 

South Twin Lake was not subject to burns in the 1988 forest fires, but extensive 

stretches of canopy burn extended to the west of the Twin Lakes, and around the 

North Twin Lake. The fire scars were widespread through inspection of the NDVI 

images following the fires, and the composite images showed obvious changes to 

the forest in the burned region. Sections of the Grand Loop Road traveled past the 

Twin Lakes and was visible in the 1990 and 1999 composite images; no other 

man-made features were located in the images. 

Sportsman Lake 

Sportsman Lake was a small lake at the base of a large ridge surrounded by 

Whitebark Pine forest to the south and Lodgepole Pine mixed forest to the north. 

To the north was a steep cliff which confined the open meadow created by the 

lake and Mullherin Creek to the south. The meadow area showed good vegetation 

in the 1979 and 2005 NDVI images. Small patches of mixed and canopy burn 

from the 1988 forest fires stretched through the area around Sportsman Lake. 

While the area of damage did not appear to be serious, the fire scars viewed in the 

TM and ETM+ images indicated that the damage was severe. This region of the 

park had little development and the only man-made features near the lake were 

backcountry campsites at the lake, a patrol cabin, and the Sportsman Lake Trail; 

none of these features were visible in any of the images. 
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Swan Lake 

Swan Lake was a large lake located on Swan Lake Flats which was an open, 

sagebrush on the eastern base of the Gallatin Range. Lodgepole Pine mixed 

forests existed on the far southeast side of the Flats region. Vegetation health in 

the wetlands around Swan Lake indicated the highest vegetation health in 1975 

and 2005. Panther Creek, Indian Creek, and Obsidian Creek all join the Gardner 

River on the south end of the Flat, after they join the Gardner River flows into a 

canyon Sheepeater Cliffs. The creek beds and wetlands around the creeks were 

visible in all images, as were the Cliffs. Bunsen Peak was visible as the southern 

slope had little vegetation due to the steep slope. The entire Flats area was subject 

to grassland burns, with canopy and mixed forest fire burns to the east in the 1988 

forest fires. The forest damage appeared to be more extensive than the grasslands 

fire damage in the composite images and NDVI images. The Grand Loop Road 

traversed north to south, running on the eastern edge of Swan Lake with a vehicle 

pull-out and view point of the Gallatin Range directly along the eastern shore of 

Swan Lake; both these features were visible in the TM and ETM+ images. A 

transmission line ran through the area but was not visible as it ran through the 

open meadow in all composite images and no clear cut was present in conjunction 

with the line. 

Trout Lake 

Trout Lake was a small lake located near the Northeast Entrance Road, located in 

the open sagebrush-fescue habitat, on the edge of a larger Douglas-fir forest 

region. Trout Lake appeared to have a well-defined shoreline with little aquatic 

vegetation throughout the analyzed images. Another small lake, Buck Lake, was 

easily distinguished, as was Soda Butte Creek along the base of Soda Butte 

Canyon. Several areas to the east of Trout Lake initially appeared to be open 

water, but on further inspection these areas were from the shadow on the northern 

aspect of The Thunderer. Several areas to the north-west of Trout Lake were 

similar in appearance to many of the hot springs that had been located in other 

images; these features were identified upon further analysis as eroded cliff edges. 

The sandbars along Soda Butte Creek were easily identified, and contributed to 
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the lack of vegetation measured by the NDVI images. The Pebble Creek 

Campground was located within the observable aspect of the images, but was not 

distinguished in the composite or NDVI images.  

Winegar Lake 

Winegar Lake was a small lake surrounded by Lodgepole Pine mixed forest 

located near the southern boundary of YNP. Several small wetlands were in close 

proximity to Winegar Lake; these were not always easily distinguished in MSS 

images, likely due to the resolution of older Landsat images. Falls River was the 

largest landscape feature in the scope of the image, and the section which flows 

through the Falls River Basin was difficult to distinguish in the 1975 and 1979 

images, likely due to the braiding and oxbows which create no defined channel. 

Several falls and rapids along the Falls River were distinguished in all composite 

images. The NDVI image indicated that the majority of the open water was 

located in the south-west portion of the lake, with varying amounts of aquatic 

vegetation in the north-east portion of the lake. The south-west region of YNP had 

little development, and no man-made level disturbances were found. 
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