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MONTE CARLO CODES, TOOLS AND ALGORITHMS

DL_MONTE: a general purpose program for parallel Monte Carlo simulation

J.A. Purtona*, J.C. Crabtreeb1 and S.C. Parkerb2

aScientific Computing Department, STFC Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD, UK;
bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

(Received 20 May 2013; final version received 5 August 2013)

Monte Carlo (MC) represents a powerful simulation tool that can be usefully applied to calculating thermodynamic data.
However, such codes are normally bespoke for a particular problem and not widely applicable. In this paper, we report a new
flexible and versatile MC code called DL_MONTE, which builds on the highly successful DL_POLY molecular dynamics
code to allow the treatment of polymers, minerals, semiconductors and metals in a range of applications on both
workstations and highly parallel supercomputers. In addition, to describe its features, we used a recent work to model the
phase diagrams of mixed metal oxide nanoparticles using MgO/MnO as an illustration, adsorption of water at the MgO
surface and, finally, the adsorption isotherms of CO2 in different microporous zeolites. The results demonstrate the
flexibility of the methodology and how semi-grand and grand canonical MC can be readily applied.
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1. Introduction

The academic community covers a diverse range of

disciplines, and as new scientific challenges emerge, novel

processes, devices and materials need to be developed thus

stimulating new software functionality. For example,

climate change has influenced research into clean energy

materials and carbon dioxide (CO2) sequestration. Hence, a

feature of any computer code is that they should be

developed tobeflexible and sufficiently generalised that they

can be used to tackle problems from different areas. In

addition, the growth in computer power has largely been due

to vendors increasing the number of cores within a processor

and/or the number of processors within a computer. Thus,

many of today’s supercomputers contain approximately

100,000 cores, while research groups often have access to

computers containing several thousand cores.

Monte Carlo (MC) and molecular dynamics (MD) are

techniques for sampling configurational space. Both

techniques have strengths and weaknesses. The MC

method is far more suitable for calculating the

thermodynamic properties (e.g. orderings, adsorption,

partition coefficients, solvation, self-assembly, agglom-

eration, melting and crystallisation, and free energy

differences). Meanwhile, MD allows the calculation of

time-dependent quantities such as atomic/molecular

vibrations and transport coefficients. MD algorithms

have been developed such that multimillion particle

simulations can be executed on parallel computers

containing many thousands of cores and a number of

open-source packages exist (e.g. LAMMPS [1] and

DL_POLY [2]). These MD packages support a wide

range of potential models or force fields and include

efficient algorithms for calculating long-range electro-

static interactions and, in order to carry out calculations on

very large simulation cells, data (memory) are distributed

over a large number of computer nodes. The distributed

data strategy has been applied to a number of MC

simulations. However, the stochastic nature of MC moves

inhibits the inclusion of long-range electrostatic inter-

actions and, currently, there is a lack of flexible MC

software that can be used to study large complex systems.

The philosophy behind DL_MONTE is to develop a

versatile MC package to address these limitations and

accelerate simulations on a range of platforms fromhigh-end

PCs through to large computer clusters. To date, it has been

assumed that both stochastic moves of individual particles

and long-range interactions provided by the Ewald sum [3]

are essential and this restricts parallelisation schemes.

2. Program structure

DL_MONTE is designed to be complementary to

DL_POLY [4] and the force field set (the functions

needed to define the interactions in a molecular system)

are almost identical. Consequently, the program can be

used to study a wide range of compounds (e.g. molecular

systems, ionic materials and minerals, metals and

semiconductors). As a huge variety of potential forms
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are available and DL_MONTE is designed to be

adaptable, the program is not supplied with its own force

field parameters. However, it contains many of the

functions contained in other packages GROMOS,[5]

DREIDING [6] and AMBER.[7]

Force fields available include the following:

. Ewald summation

. Two-body (non-bonded and bonded)

. Three-body (non-bonded and bonded)

. Bonded four-body interactions (dihedral and inver-

sion interactions)

The total configuration energy of a molecular system may

be written as

Uðr1; r2; . . . ; rNÞ ¼
XNbond

ibond¼1

Ubond þ
XNangle

iangle¼1

Uangle

þ
XNdihed

idihed¼1

Udihed þ
XN inv

iinv¼1

Uinv

þ
XN21

i¼1

XN
j.i

Upair þ
XN22

i¼1

XN21

j.i

XN
k.j

U3_body

þ
XN21

i¼1

XN
j.i

q
q
i j

4p10rij
;

ð1Þ
where Ubond; Uangle; Udihed; Uinv, Upair and U3_body are

analytical interaction functions representing chemical

bonds, valence angles, dihedral angles, inversion angles,

pair-body forces and three-body forces, respectively. The

first four are regarded by DL_MONTE as intra-molecular

interactions and the next three as inter-molecular

interactions. The position vectors r1; r2 and rN refer to

the positions of the atoms specifically involved in a given

interaction. The numbers Nbond; Nangle, Ndihed and N inv

refer to the total numbers of these respective interactions

present in the simulated system, and the indices

ibond; iangle; iinv and idihed uniquely specify an individual

interaction of each type. The indices i, j (and k) appearing in

the pair-body (and three-body) terms indicate the atoms

involved in the interaction. Within the non-bonded

interactions, we also include force fields to handle metals

via density-dependent functions (Sutton–Chen [8], Gupta

[9] and embedded atom method [10]) and semiconductors

using Tersoff potentials.[11] The bonded and non-bonded

interactions are evaluated in parallel using a replicated data

strategy similar to that described in Ref. [12].

The last term in Equation (1) accounts for the long-

range electrostatic interactions between the ions.

The Ewald sum [3] is an accurate way of summing long-

ranged potentials, such as the Coulomb potential, in

periodic systems. It is generally regarded as the most

appropriate method for simulations containing a few

thousand ions (i.e. the size typically used in MC

simulations). Nevertheless, the Ewald sum is the most

computationally intensive part of the calculation and often

takes approximately 75% of the simulation CPU time.

The basicmodel for a neutral periodic system is a system

of charged point ions mutually interacting via the Coulomb

potential. Ewald’smethod replaces a potentially infinite sum

in real space by two finite sums: one in real space and one in

reciprocal space (in addition, a self-energy correction is also

required).[13] Thus, the Ewald method can be evaluated via

two steps. First, each ion is effectively neutralised (at long

range) by the superposition of a spherical Gaussian cloud of

opposite charge centred on the ion. The combined assembly

of point ions and Gaussian charges becomes the real space

part of the Ewald sum, which is now short ranged and can be

evaluated with the non-bonded interactions. The second step

is to superimpose a second set of Gaussian charges, this time

with the same charges as the original point ions and again

centred on the point ions (so nullifying the effect of the first

set of Gaussians). The potential due to these Gaussians is

obtained from Poisson’s equation and is solved as a Fourier

series in reciprocal space. The complete Ewald sum requires

an additional correction, known as the self-energy correc-

tion, which arises from a Gaussian acting on its own site.

For molecular systems, as opposed to systems

comprised simply of point ions, additional modifications

are necessary to correct for the excluded Coulombic

interactions. These are intra-molecular bonded inter-

actions and it is possible to specify these interactions for

any given molecular type on input. In the real-space sum,

these are simply omitted. In reciprocal space however, the

effects of individual Gaussian charges cannot easily be

extracted, and the correction is made in real space. It

amounts to removing terms corresponding to the potential

energy of an ion l due to the Gaussian charge on a

neighbouring charge m (or vice versa). This correction

appears as the final term in the full Ewald formula below.

Uc ¼ 1

2V010

X1
k–0

expð2k 2=4a2Þ
k 2

XN
j

qj expð2ik · rjÞ
�����

�����
2

þ 1

4p10

XN *

n,j

qjqn

rnj
erfcðarnjÞ

2
1

4p10

X
molecules

XM *

l#m

qlqm dlm
ap
p
þ erfðarlmÞ

r12dlm
lm

( )
;

ð2Þ

where N is the number of ions in the system and N * the

same number discounting any excluded (intramolecular)

interactions. M * represents the number of excluded atoms

in a given molecule and includes the atomic self-

correction. V0 is the simulation cell volume and k is a
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reciprocal lattice vector defined by

k ¼ luþ mvþ nw; ð3Þ

where l;m; n are integers and u; v; w are the reciprocal

space basis vectors. With these definitions, the Ewald

expression given above is applicable to general periodic

systems, and in practice, its convergence is controlled by

three variables: the real-space cut-off, the convergence

parameter a and the largest reciprocal space vector used in

the reciprocal space sum. As the calculation of the

reciprocal space part of the Ewald sum is the most

computationally intensive part of the calculation, much of

the optimisation has been achieved in this section of the

code (as noted above, the real-space summation can be

included within the calculation of the non-bonded two-

body interactions). The calculation is organised so that the

outer loop of the summation is over the reciprocal lattice

vectors and the inner summation over the number of atoms.

This has two advantages. First, many MC ‘moves’ involve

the translation/rotation/insertion of a single atom or a group

of atoms in a molecule (such as CO2). Therefore, the

number of reciprocal vectors is much greater than the

number of atoms being moved, this allows for parallelisa-

tion of the largest vector in the summation. As with many

other MC codes, we store the components of the reciprocal

space summation to prevent excessive recalculation (the

new energy is evaluated by subtracting the old value and

adding the new value).[14] However, for larger simulation

cells, this can lead to large memory requirements. Thus, a

second advantage of placing the reciprocal lattice vectors in

the outer loop is that it is possible to distribute these over

different nodes of a cluster thus significantly reducing the

memory overhead of the calculation.

The DL_MONTE program was used throughout this

study, and the calculations were undertaken on either the

SCARF cluster or the UK national supercomputer

(HECToR). The computational demand for these calcu-

lations and especially including the effects of long-range

interactions are demanding and, therefore, required a parallel

computational strategy to be developed. This may include

running several similar calculations on different nodes (i.e.

task farming). However, this was found not to be the most

beneficial strategy due to the long start-up (equilibration)

times. The calculations presented in this paper were

performed using between 4 and 128 cores (depending on

the number of atoms/molecules in the simulation cell) and

used the message passing interface (MPI) interface. In

Figure 1, the time taken for two example simulations (these

are typical calculations rather than artificial simulations

chosen to demonstrate beneficial parallel scaling) as a

function of the number of cores has been plotted. From these

plots, one can observe that, for even simple calculations such

as MgO (512 ions in total and within the canonical

ensemble), it is beneficial to use approximately 128 cores.

For a larger, more complex example, such as the grand

canonical Monte Carlo (GCMC) simulation of CO2 in

zeolite, good scaling is achieved up to approximately 256

cores. The difference in scaling between these two examples

is largely due to the sizeof the simulation (both the numberof

atomsand thenumber of reciprocal latticevectors). Thus, our

strategy for parallelisation for MC simulations on Beouwolf

style clusters can be applied to a diverse range of simulations

(i.e. NVT, NPT, grand canonical, semi-grand canonical and

Gibbs ensembles).

3. Scientific applications

3.1 Nanoparticles

We have investigated the thermodynamic properties of

ternary nanoparticle mixtures using DL_MONTE. The

objective here is to identify the distribution of cations

within the nanoparticle and how this effects the

thermodynamic properties. In our pilot study, we

examined the MgO–MnO system as we have used this

previously in studies of bulk MnO–MgO solid solutions

and the resulting phase diagram, calculated using

exchange MC, is in good agreement with experiment

with a consolute temperature of approximately 1150K.

[15] In addition, we have successfully used this model to

calculate segregation energies in thin films.[16] The

surface of a crystal always provides a different elastic and

electrostatic environment from that of the bulk, and so

there is a free energy difference between the energy

Figure 1. The time taken for two representative simulations.
The first is for GCMC simulation of CO2 in zeolite-A
(approximately 2400 zeolite ions and 100 CO2 molecules) and
the second for the NPT simulation of bulk MgO (512 ions). Both
calculations used the Ewald summation technique. The zeolite
simulations were carried out on the UK supercomputing facility,
HECToR, a Cray XE6 and the MgO simulation on the IBM
Idataplex, Blue Wonder, at Daresbury Laboratory. All times are
referenced to those taken on a single core.
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associated with any defect, including an impurity, in the

bulk and at the surface of a nanoparticle. Impurities are

thus driven to or from the surface. The basis for all our

calculations is the well-known MC method modified for

nanoparticles of variable composition as described below.

All nanoparticles were cubic and constructed from 8 atom

units identical to the cubic unit cell (u.c.) of the bulk

material (i.e. face centered cubic (FCC)). Calculations

were undertaken on MnO–MgO mixtures comprising

1728 ions (6 £ 6 £ 6), 2744 ions (7 £ 7 £ 7), 4096 ions (8

£ 8 £ 8), 5832 ions (9 £ 9 £ 9), 8000 ions (10 £ 10 £ 10),

13,824 ions (12 £ 12,12) and 21,952 ions (14 £ 14 £ 14).

The Coulombic interactions were calculated directly and

the simulation carried out within the NVT ensemble. We

have considered only the {1 0 0} termination of the

nanoparticle as the {1 0 0} surfaces of both MgO and MnO

are considerably more stable than other terminations. The

role of both point defects (e.g. vacancies and interstitials)

and linear defects (e.g. steps and dislocations) on the

thermodynamics properties of the nanoparticles are

neglected. We do not report results for smaller

nanoparticles as the estimated consolute temperature is

less than that at which the exchange of ions in the

simulations is very inefficient (approximately 500K).

In simulations of non-stoichiometric ionic materials and

solid solutions using ‘standard’ MC, kinetic barriers prevent

sampling the whole of the configurational space as almost

always only one cation arrangement – the initial configur-

ation – is sampled. We have described elsewhere MC

exchange simulations in which both the atomic configuration

and the atomic coordinates of all the atoms are changed.[17]

A single cycle allows for one of three possible moves to be

chosen at random with equal probability:

(i) Random displacement of an ion. Allowing random

moves of randomly selected atoms takes account of

relaxation throughout the nanoparticle and

vibrational effects. Todeterminewhether the change

is accepted or rejected, the usual Metropolis

algorithm is applied. The maximum change in the

atomic displacement for each ionic species has a

variable rmax, and its magnitude is adjusted

automatically during the simulation to maintain an

acceptance/rejection ratio of approximately 0.37.

(ii) An exchange of ionic configuration. Changes in

ionic configuration are attempted by exchanging the

position of aMn2þ ion and aMg2þ ion, both chosen

at random. Again, the Metropolis algorithm is used

to accept or reject any attempted exchange.

(iii) A test change in identity of a cation.We evaluate the

potential energy change DmB=A which would result

if one species, B, were to be converted into another,

A. This change in energy is related to the

corresponding change in chemical potential

DmB=A [15] by

Dm ¼ 2kBT ln
NB

NA þ 1
exp

2DUB=A

kBT

� �� �
: ð4Þ

Thus for MgO–MnO, we evaluate the energy

associated with the conversion of a randomly chosen Mg

ion to a Mn ion, DmMg=Mn and the reverse transformation.

We emphasise that the change of Mg into Mn, and vice

versa, is only a temporary substitution to determine the

free energy difference for a given NMn and NMg; after Mg/

Mn is calculated, the MC simulation of the nanoparticle

continues with the initial composition. The test-identity

change method is used in preference to the grand canonical

ensemble as good statistics on DmB=A can easily be

achieved. To calculate the phase diagram, the calculated

values of DmB=A are fitted to the equation:

Dm

kBT
¼ ln

x

12 x

� �
þ axþ bx 2 þ cx3: ð5Þ

By integrating Equation (4) with respect to compo-

sition, we obtain the variation in free energy with respect

to x (x is the mole fraction of a component, in this instance

the mole fraction of Mg2þ) at each temperature.

Each calculation consisted of an initial equilibration of

5 £ 108 cycles followed subsequently by 5 £ 108 pro-

duction cycles. The larger clusters (.4096 ions) pose a

significant computational challenge, and for this reason,

the calculations were performed using 8–128 cores in the

parallel replicated data strategy described above.

One of the principle thermodynamic quantities is the

enthalpy required to create a mixed nanoparticle from

the stoichiometric binary nanoparticles. We call this

the enthalpy of forming, which is measured from the

simulation energies, and define the quantity by the

following reaction:

xMgnOn þ ð12 xÞMnnOn ¼ MgxnMnð12xÞnOn: ð6Þ

The enthalpy of forming for nanoparticles ranging in

size between 1728 and 21,952 ions is presented in Figure 2

and can be interpreted from the change in bond lengths of

the component oxides on the formation of a mixed oxide.

The Mg–O bond length in the bulk oxide is approximately

2.10 Å compared with the longer Mn–O bond length of

2.17 Å. The strain of the ‘bonds’ gives rise to a positive

enthalpy. However, in the nanoparticles starting with a

MgO nanoparticle, when Mn2þ ions are initially added the

enthalpy of forming is negative because the larger Mn ions

progressively replace Mg ions at corners, edges and faces

(Figure 3). This is energetically favourable as the Mn ions

have weaker bonds and thus lower interface energies. The

opposite is true for Mg ions replacing Mn ions in the MnO

nanoparticle. The relative importance of the strain energy

increases with the size of the nanoparticle (Figure 2).
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The phase diagram of the ternary nanoparticles relative

to those of the binary nanoparticles can be determined

using free energy differences given by Equations (4) and

(5) (a detailed description of the methodology is given in

[15]). Calculated phase diagrams are presented in Figure 4.

As anticipated from the enthalpy of forming, the Mn2þ

ions are much more soluble in the binary MgO

nanoparticle than vice versa.

DL_MONTEwas used to calculate the miscibility of the

binary components for a range of temperatures and

nanoparticle size. From this information, the consolute

temperature (the critical temperature above which the

components of amixture aremiscible, Tc) can be determined

as a function of nanoparticle size. Thevariationwith the total

number of ions is nonlinear (Figure 5). Limitations in the

efficiency of the MC method and the range in the

nanoparticle size have prevented us from determining

whether the curve is sigmoidal as observed in previous

studies.

3.2 Water on MgO{100} surface

The interaction of water with surfaces has received

sustained interest from both experimental and theoretical

scientists for a considerable period of time due to its

importance in biology, geosciences and chemistry.

Consequently, there have been numerous experimental

studies (e.g. [18,19]) and theoretical studies (e.g. [20–24]).

GCMC is a standard simulation technique for comput-

ing the adsorption isotherms of molecules on surfaces. As it

is rather well known (see e.g. [13,25]), we give here only a

Figure 4. The calculated phase diagram of the 1728
nanoparticle. The solid line is the binodal and the dashed line
the spinodal.

Figure 5. The consolute temperature Tc as a function of
nanoparticle size (total number of ions).

Figure 3. (Colour online) Structure of 21,952 ion nanoparticle
containing 5%Mn2þ ions. The Mn2þ ions preferentially decorate
corners, edges and faces. Mg2þ, Mg2þ and O2– are coloured
green, purple and red, respectively.

Figure 2. The enthalpy of forming, DH (kJmol–1), for different
size nanoparticles. All calculations were carried out at 800K.

1244 J.A. Purton et al.



brief summary of GCMC. GCMC provides a way of

sampling configurations with a weighting corresponding to

the grand canonical ensemble, in which the number of

molecules is allowed to fluctuate. Naturally, in the present

situation, only the number of H2O molecules varies. Four

kinds of MC moves are used: translations, rotations,

insertions and deletions. At each step, a random decision is

made as to which of these moves will be attempted, the

probabilities of each being fixed. The probability of

acceptance or rejection of each trial move is given by the

usual Metropolis rule, based on the change of total energy

caused by the move. A similar procedure is used for rigid

rotations. There are specified probabilities of deciding to

attempt insertion or deletion, these two probabilities being

equal. The average number of water molecules, kNl, is
controlled over a number of simulations by adjusting the B

parameter of Adams [26]. In the case of insertion, a single

attempt is made to insert an H2O molecule, and the

probability of accepting the insertion is given by the usual

formula:

Pi ¼ min 1;
exp½Bþ ðENþ1 2 ENÞ=kT�

N þ 1

� 	
: ð7Þ

Likewise for deletion, a single attempt is made to

delete an H2O molecule chosen at random, the probability

of this move being given by

Pd ¼ min 1;N exp 2Bþ EN 2 EN21

kT


 �� 	
: ð8Þ

The parameter B is related to the chemical potential, m,
by the equation:

m ¼ kBT Bþ lnL3

V

� �
; ð9Þ

where T and V are the temperature and volume of the

system, respectively, and kB is the Boltzmann constant. L
is the thermal de Broglie wavelength for the water

molecule

L ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2pkBTmÞ
p ; ð10Þ

where h is the Planck’s constant and m is the mass of a

water molecule. For the conditions that interest us in this

work, the spatial probability distribution of H2O molecules

is strongly peaked in the surface region, and the

probability of finding molecules away from this region is

negligible, so that we can regard essentially all the

molecules in the system as being adsorbed on the surface.

The simulations are performed in periodic boundary

conditions, so that the MgO crystal is represented by a

slab, with vacuum layers separating the periodically

repeated images of the slabs. If we denote A as the area of

one side of a slab in each simulation cell, then the mean

number of adsorbed molecules per unit surface area is

s ¼ kNl=2A. Sometimes, it will be convenient to refer to

the ‘coverage’, i.e. the mean number of adsorbed

molecules per adsorption site. For the purpose of defining

this, we choose to regard each surface Mg ion as an

adsorption site. If the area per surface Mg ions is denoted

by a, then the coverage is defined as Q ¼ s=a.
In the present work, we treat the MgO lattice as rigid,

with ions on their bulk positions, the lattice parameter

(twice the Mg–O nearest-neighbour distance) being

a0 ¼ 4.27 Å at all temperatures. The interaction potential

between each H2O molecule and the ions of the lattice is a

sum of atom–atom potentials having the Buckingham

form:

V ¼ Aij exp
2rij
rij

� �
2

Cij

rij
: ð11Þ

The parameters Aij and rij of the short-range repulsions

and the parameter Cij of the dispersion interactions are

taken from the study of McCarthy et al. [21], who obtained

them by fitting to the results of Hartree–Fock calculations

on the interaction of an H2O molecule with a MgO slab,

with the Colle–Salvetti scheme used to correct for

electron correlation.[27] The charges on the Mg and O

ions of the lattice also have the values given by McCarthy

et al. The water molecules are treated as rigid, and the

interactions between them are described by the SPC

model, the molecular geometry also being taken from this

model. The cut-off used in the simulations was 10 Å. We

conclude this section by noting some technical details. The

MgO (1 0 0) surface was orientated parallel to the XY plane

and consisted of eight MgO layers. The vacuum gap was

approximately 16 Å and the number of surface Mg ions

was 144 (72 at each surface and corresponds to a 6 £ 6 u.

c.). The influence of cell size on the simulation results

were checked against a larger cell (an 8 £ 8 surface cell

with 128 Mg ions at each surface). In addition to insertion/

deletion events, the water molecules were allowed to move

(translate) and rotate as a rigid body using the methods

described in Ref. [13]. The translation, rotation and

insertion/deletion steps were undertaken with a probability

of 0.20, 0.20 and 0.60, respectively. The magnitude of the

translation and rotation were controlled by parameters that

were adjusted automatically during the simulation to

maintain an acceptance-to-attempted move ratio of 0.37.

[13]

We have performed GCMC simulations on the H2O/

MgO system at a series of temperatures T ¼ 500, 400, 350,

300, 275, 250 and 225K. These temperatures were chosen

because it became clear from exploratory simulations that

the critical temperature was somewhere between 200 and

300K. At each temperature, we performed simulations at a

rather closely spaced set of m values chosen so that the
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resulting mean values of coverage spanned the range from

0 to approximately 280 kJmol21. As an example of the

number of steps required, we note that, to achieve this

statistical error at 350K, runs of 1 £ 108 steps were

needed. However, the required length of the runs

needed increases strongly as T is reduced, and at 225K,

up to 5 £ 108 steps were needed.

The first result presented is the entire isotherm

calculated for 350K in Figure 6. At low values of m
(approximately 272.0 kJmol21), very few water mol-

ecules adsorb to the surface.

As the chemical potential is increased, there is a rapid

increase in the average number of water molecules until a

plateau is reached at m < 267 kJmol21. This point

corresponds to identical numbers of adsorption sites, as

defined above, and water molecules. The water coverage

increases slightly with further increases in the chemical

potential until m < 238 kJmol21. When the chemical

potential is set above this value, water molecules are

observed both on the surface and in the vacuum. We

present in Figure 7 the energy distribution of water

molecules at two points along the isotherm (m ¼ 270 and

m ¼ 250 kJmol–1), i.e. the step and plateau regions.

The distribution of energies of the water molecules is

both a function of temperature and cover. For the step

region, the distribution of energies for the water molecules

forms a well-defined peak. This is due to the structure of

the water molecules on the surface. The average number of

water molecules, kNl ¼ 69, has not reached a monolayer

and the water oxygen atom is able to sit almost above an

Mg2þ cation with the H atoms pointing towards the O2–

ions (Figure 8(a)). We also note that the peak in energy is

approximately 60 kJmol21, which is similar to the value

of 73.3 kJmol21 determined by energy minimisation.[21]

In the plateau region of the isotherm, the distribution of

molecule energies both broadens and has an extra peak at

approximately 50 kJmol21 (Figure 7). This is due to a

greater diversity in molecular orientations to the surface.

In Figure 8(b), water molecules can be observed with both

Figure 7. (Colour online) The distribution of water molecule
energies determined atm ¼ 270 kJmol–1 andm ¼ 250 kJmol21.
The energies displayed are taken from representative simulations at
275K.

Figure 8. (Colour online) The structure of water molecules at
the surface for (a) kNl ¼ 69 and (b) kNl ¼ 86. TheMg2þ and O2–

ions in the substrate are coloured green and red, respectively. The
O and H atoms in the water molecule are coloured blue and white,
respectively.

Figure 6. The average number of adsorbed water molecules,
kNl as a function of the chemical potential, m. The calculation of
kNl is described in the text. All the calculations were performed
at 350K.
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H atoms coordinated to the oxide ions and with only a

single H atom coordinated to the oxide ion.

3.3 CO2 adsorption in zeolites

The adsorption and separation of CO2 from gas streams is

an important area of research, and there are many published

works, both experimental and computational, on adsorption

and diffusion in bulk zeolite structures [28–40] using a

variety of potential models.[41–44] Surface effects are very

important for adsorption and much less work has been

carried out on the adsorption and transport of CO2 at zeolite

surfaces, so this is where we chose to focus our work.

However, first we needed to determine an accurate potential

model. One of the most sensitive experimental techniques

for testing adsorption models is the adsorption isotherm; at

low pressures, the uptake will depend almost exclusively on

the gas–framework interaction, then as the pressure

increases the uptake will depend on the relative strength

of the gas–gas and gas–framework interactions, and finally

at high pressures the potential model at closer intermole-

cular distances is probed.

Thus, we used the GCMC feature within DL_MONTE

to determine the equilibrium number of CO2 molecules

within a given zeolite structure and, by comparison with

experimental isotherms, probe the relative strengths of the

interactions. Iterative adjustment of the inter-molecular

potentials for different zeolites is used to derive a set of

potential parameters for application in a range of

materials. This is particularly important for zeolite systems

as we require flexibility in being able to model both

siliceous zeolites and aluminosilicates with different

cations, particularly Naþ and Kþ. Another important

feature is that, for these systems, there are a large number

of experimental adsorption isotherms available along with

heats of adsorption to test the effectiveness of the model as

a function of composition.

The CO2 potential that we chose to use in this work

was the EPM2 model by Harris and Yung.[45] The EPM2

model has been widely used for the simulation of CO2; it

accurately reproduces the liquid–vapour coexistence

curve and the critical properties. For the zeolites, we

needed a model that included a variety of different cations

and also hydroxyl groups for the modelling of surfaces,

and was compatible with CO2 and water to cover all of the

simulations that we intended to carry out. We chose

the CLAYFF force field,[46] originally parameterised for

the simulation of clays, which can be thought of as

chemically similar to zeolites because of their alumino-

silicate composition. It includes parameters for a range of

metals including Li, Na and Ca and includes water and the

hydroxyl group. The CLAYFF force field has been used

successfully for the simulation of zeolites.[47] These

authors used the CLAYFF parameters for the zeolite, and

added O–Si–O and Si–O–Si bend terms to accurately

reproduce the zeolite structures. Moreover, Kerisit et al.

[48] successfully used the EPM2 model with the CLAYFF

model in simulations of scCO2/H2O mixtures above a

forsterite surface.

The zeolite structures were optimised using energy

minimisation with the METADISE code.[49] The zeolite

structures (Figure 9) minimised with the CLAYFF

potentials have comparable lattice parameters to exper-

iment, as listed in Table 1.

The MFI structure compares very favourably with

experiment, while some of the faujasite structures exhibit

slightly contracted lattice parameters. However, there are a

couple of possible explanations for this discrepancy. First,

the simulated and experimental systems are not exactly

comparable, as our Na-FAU simulations have a Si:Al

ratio of 1, and only Naþ as a cation, whereas the

experimental composition is Ca0.95Mg0.22Na1.04K0.02

[Al3.40Si8.60O24] · 6H2O – note that as well as having a

different composition, there is also water present in this

structure which will affect the lattice parameters;

secondly, energy minimisation calculations do not take

into account any crystal vibrations and hence neglect

Figure 9. (Colour online) Structure of (a) FAU viewed along
(1 1 0) and (b) MFI viewed along (0 1 0) and (1 0 0). Grey colour
represents silicon and red colour represents oxygen.
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temperature effects. The structures of siliceous faujasite

(FAU) and silicalite (MPI) are shown in Figure 9.

The adsorption isotherms were generated using the

GCMC features in the DL_MONTE code. A different

selection procedure was used for the insertion/deletion of

molecules from that described above. This allows for the

partial pressure to be used as a simulation parameter (the

two methods are equivalent). The insertion of a molecule

is governed by the selection procedure:

Pi ¼ min 1;
bVPg

N þ 1

� �
exp½bðENþ1 2 ENÞ�

� 	
: ð12Þ

While the selection procedure for deletion was

Pd ¼ min 1;
N

bVPg

� �
exp½bðENþ1 2 ENÞ�

� 	
; ð13Þ

where Pg is the partial pressure of the gas. The simulations

were run using the SCARF cluster on 32 cores. The zeolite

framework was held rigid but we allowed the cations to

move. All simulations included a period of equilibration

followed by at least 4 £ 106 steps, until equilibrium was

reached. The potential cut-off was 12 Å. CO2 molecules

could be inserted, deleted, rotated and translated. In

siliceous zeolites the translation, rotation and insertion/

deletion of CO2 were undertaken with a probability of 0.2,

0.2 and 0.6, respectively. For aluminosilicates, the cations

were allowed to move as well, so the probabilities were

0.05 for cation translation, 0.25 for CO2 translation, 0.2 for

CO2 rotation and 0.5 for CO2 insertion/deletion. For our

model system of faujasite, there are regions of the zeolite

structure (the sodalite cages) that CO2 cannot enter due to

the narrow cage windows. We found that during the

GCMC simulations, CO2 was being inserted into these

regions, so we introduced dummy atoms into the sodalite

cages to prevent any CO2 from being adsorbed there.

Each isotherm is the result of a series of simulations at

different pressures. The number of CO2 molecules in the

simulation cell (NCO2) at each pressure is plotted to give

the isotherm. The heat of adsorption is calculated from five

isotherms generated over a narrow temperature range,

usually 263, 268, 273, 278 and 283K (Figure 10(a)) and

the data are used to plot adsorption isosteres, which are

graphs of log p versus 1/T at constant coverage (Figure 10

(b)). The heat of adsorption (isosteric heat) (q), as a

function of coverage (Figure 10(c)), can be calculated

from the gradient using the Clausius–Clapeyron relation-

ship (Equation (14)).

q ¼ 2R
› lnP

›ð1=TÞ

 �

: ð14Þ

3.3.1 Development of model

Initially we focused on the potentials for siliceous zeolites

and produced isotherms of CO2 in siliceous MFI and FAU

using potentials generated by mixing the Lennard-Jones

12-6 CLAYFF zeolite parameters with the EPM2 CO2

potentials using the Lorentz–Berthelot mixing rules but

we found this to overestimate at low pressure and

underestimate at high pressure. To correct the inaccuracy,

we altered the parameters for the CO2–zeolite interaction,

while keeping CO2–CO2 interactions purely as EPM2.

The new CO2–zeolite interaction mixed the CLAYFF

zeolite with CLAYFF parameters for the oxygen of CO2

and EPM2 with a slightly modified r (Lennard-Jones size

parameter) value for C. Figure 11 shows isotherms for CO2

in silicalite (MFI) using this modified potential, which can

be seen to reproduce the experimental isotherms of

Yamazaki et al. [54] very well. Using these isotherms, we

calculate the heat of adsorption to be 17 kJ/mol which is

slightly lower than the value published by Yamazaki et al.

of 23.4 kJ/mol; however, their calculation was over the

temperature range 273–473K, while our calculation was

between 263 and 283K, which may account for the

different values.

For aluminosilicate zeolites, cations are introduced

into the structure, which creates a net charge in the system.

We therefore altered the partial charges to maintain a

neutral cell. For a Si:Al ratio of 1 in Na-FAU, the Oz

(oxygen of zeolite) partial charge was changed by 11%

from 1.05 to 1.16875 to keep the cell charge neutral.

Table 1. Simulated zeolite lattice parameters compared to experiment.

Calculated lattice parameters (Å) Experimental lattice parameters (Å)

a b c a b c

Siliceous MFIa 20.047 19.935 13.378 20.051 19.876 13.368
Siliceous FAUb 24.056 24.056 24.056 24.258 24.258 24.258
Na-FAUc 24.416 24.412 24.421 24.638 24.638 24.638
K-FAUd 24.543 24.455 24.424 24.998 24.998 24.998

a Experimental data from Artioli et al. [50].
b Experimental data from Hriljac et al. [51].
c Experimental data from Wise [52].
d Experimental data from Lim et al. [53].
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To negate the effect of this change, we ran a series of tests

comparing to experimental values at pressures of 5 and

25 bar by Maurin et al. [41] of N ¼ 93 and 107 molecules

CO2/u.c., respectively. Table 2 lists some of the parameter

changes that we trialled. The first test was to increase 1 Oz

(Oz 1 value) by a series of percentages: 5%, 11%, 20% and

25% (Table 2, tests 1–4). We found that a higher 1 Oz

increased the loading at low pressure more than at high

pressure, to give a loading that was too low at higher

pressure. We then tried these same percentage increases in

1 Oz, while also increasing rAl (Al r value) by 0.15 Å (tests

5–8). We chose to increase rAl because, in the CLAYFF

model, Si and Al have the same potential parameters, the

only difference being the partial charges. Al3þ is a larger

ion than Si4þ, so we thought that increasing rAl would

account for this and reduce some of the increased loading

at low pressure. The best result with rAl increased by

0.15 Å was when 1 Oz increased by 11% (the same

percentage that the charge had changed by), although this

was still giving too low adsorption at high pressure. We

therefore kept these parameters and tried reducing rOz (Oz

r value) by 0.05, 0.1 and 0.15 Å (1.4%, 2.8% and 4.2%) but

found that this increased the loading at low pressure, but

not as high pressure as we wanted (Table 2, tests 9–12).

Finally, we tried reducing rNa (Na r value) by 10%, 15%

and 20%, finding that this increased the loading as we had

hoped (tests 13–15). As the subtleties of these parameter

changes was hard to discern from just two data points,

however, we generated complete isotherms with all of the

rNa parameter changes and calculated the heats of

adsorption for each of them.

The DL_MONTE method was able to distinguish well

between these small changes in potential sets, changing

both the isotherms and the slope of the heats of adsorption

graph (Figure 12). As the isotherms were all relatively

similar and it was hard to choose the best, the final decision

on the parameters that we chose to use was based on being

able to reproduce the heat of adsorption, providing the

isotherm was satisfactory. We therefore chose: 1 Oz

increased by 11%, rAl increased by 0.15 Å and rNa
decreased by 15% (Table 2 and Figure 11, test 14). The full

potential set for siliceous and aluminosilicate zeolites is

listed in Table 3.

To change the Si:Al ratio, the partial charges must also

be changed slightly, so potentials need to be adjusted to

match. The technique that we have found to work well is to

adjust the Oz charges to make the cell neutral and then

adjust the 1 Oz by the same percentage from the original

CLAYFF parameters; all other potential parameters are

Figure 10. (Colour online) Adsorption of CO2 in Na-FAU (a)
adsorption isotherms, (b) adsorption isosteres and (c) heats of
adsorption.

Figure 11. (Colour online) Adsorption isotherms of CO2 in
siliceous MFI, coloured according to temperature. Data points
are our simulations, line is experimental data from Yamazaki
et al. [54] at 273K.
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unchanged from those in Table 3. An isotherm for Na-FAU

with a Si:Al ratio of 1.18 is shown in Figure 13, with

excellent agreement with an experimental isotherm.[55]

The potential parameters have an Oz charge of 21.15885

and 1 Oz of 0.007437 eV.

Now that we have a reliable model, we can use it as a

predictive tool to probe the effect of parameters such as

composition on adsorption. Figure 13 shows the effect on

CO2 adsorption of changing the Si:Al ratio from 1 to 1.18

in Na-FAU, thereby having 96 and 88 Naþ/u.c.,
respectively. This small change in composition has a

significant effect on the CO2 uptake, and our model is

sensitive enough to be able to discern these differences.

The effect that this change of composition has on the CO2

uptake also highlights how difficult it can be to compare

simulated to experimental data as experimentally the

samples may not be ideal. For example, if ion exchange is

used to change the cation species in a zeolite, it may not

be possible to get complete exchange, thus leaving

residual amounts of the other cation species which would

change the adsorption characteristics.

In summary, in this study, we have used the GCMC

functionality in DL_MONTE to derive a set of potentials

that can reproduce adsorption isotherms and heats of

adsorption in a variety of zeolites. The technique is sensitive

enough to distinguish between subtle changes in the

potential parameters, to allow optimisation of a model for

CO2 adsorption in zeolites which can now be used as a

predictive tool.

Table 2. Sensitivity on potential parameters of the number of CO2 molecules adsorbed at two test pressures, 5 and 25 bar, to compare
with experimental data from Maurin et al. [41].

Potential modifications N, molec. CO2/u.c.

Test rAl (Å) 1 Oz rOz
(Å) rNa (Å) P ¼ 5 bar (target ¼ 93) P ¼ 25 bar (target ¼ 107)

Base 3.706 0.006739 3.5532 2.6378
1 þ5% 91.7
2 þ11% 88.6 94.9
3 þ20% 93.8
4 þ25% 92.9 93.7
5 þ4% þ5% 93.5
6 þ4% þ11% 90.6 93.3
7 þ4% þ20% 92.4
8 þ4% þ25% 90.5 92.0
9 þ4% þ11% 21.4% 90.9 103.3
10 þ4% þ11% 22.8% 91.7 100.7
11 þ4% þ11% 24.2% 93.8 101.9
12 þ4% þ25% 24.2% 94.0 102.4
13 þ4% þ11% 210% 95.8 103.2
14 þ4% þ11% 215% 96.9 103.6
15 þ4% þ11% 220% 99.4 105.2

Table 3. Lennard-Jones potential parameters and partial
charges.

1 (eV) r(Å) Charge

Zeolites
Si 7.98817 £ 1028 3.7061 2.1
Al 7.98817 £ 1028 3.8564 1.575
Ozs 0.006739 3.5532 21.05
Oza 0.007501 3.5532 21.16875
Na 0.005641 2.2421 1.0
K 0.004336 3.1810 1.0

CO2ZCO2

Oc 0.006930 3.4044 20.3256
C 0.002421 3.0946 0.6512

CO2-zeolite
Oc 0.006739 3.5532 20.3256
C 0.002421 3.3191 0.6512

Three-body terms ktbijk (eVÅ
2) uijk (8)

OZSiZO 12.1 109.47
OZAlZO 12.1 109.47

Note: Z, zeolite; C, CO2; s,siliceous zeolite; a, aluminosilicate zeolite.

Figure 12. (Colour online) Heat of adsorption of CO2 in Na-
FAU, Si:Al ratio ¼ 1. Green: test 13, blue: test 14, red: test 15,
orange: experimental data from Maurin et al. [41].
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4. Conclusion

We have introduced a new flexible MC code called

DL_MONTE which is now available to the simulation

community. It can be readily applied to a wide range of

materials, from covalently bonded molecules through

insulators, semiconductors to metals because of the

extensive range of force fields available. The inclusion of

the Ewald summation scheme allows for the explicit and

reliable calculation of the electrostatic contribution to the

total interaction energy. Further important developments

have included, first, that the input is largely compatible with

the widely used DL_POLY MD code to both provide

comparisons and reduce the time required for starting

simulations, and secondly, unusually for MC simulation

codes, there is a measure of parallelisation via MPI so that

the user can exploit large parallel computer nodes.

An important capability of DL_MONTE is allowing the

user to go beyond the usual NVE and NVT ensembles, and

in this paper, we have illustrated this by describing three

applications where we apply semi-grand and grand

canonical ensembles. These include the use of the semi-

grand canonical ensemble to model the phase stability of

mixed oxide nanoparticles and the GCMC option to

investigate an oxide water interface. In the final application,

we again use GCMC, in this case to model CO2 sorption in

microporous alumina silicates, but use the approach to

improve the quality of the force fields as a pre-cursor to a

full investigation.

Our results on mixed MgO/MnO nanoparticles show

that the semi-grand ensemble is a highly efficient approach

for condensed phase systems, particularly when the atom

sizes are similar. We report the phase diagrams and our

prediction that there is a marked variation of consolute

temperature with temperature and it is only when the

nanoparticle has in excess of 25,000 atoms that it

converges to bulk behaviour.

The GCMC results of water on MgO surfaces have

enabled us to evaluate a more reliable estimate of the

critical point and address how this is linked to the

adsorption behaviour. In contrast, our work on the sorption

of CO2 in the microporous zeolites enables us to distinguish

and rationalise the sorption behaviour as a function of

framework structure and composition. Furthermore, the

presence of detailed experimental isotherms for certain

structures and compositions has allowed us to investigate

the sensitivity of the results to the details of the

intermolecular interactions and indeed to derive new and

more reliable parameters.

In summary, the newly available DL_MONTE MC

code now allows the academic community to access and

use this highly flexible simulation engine. To obtain a copy

of the code, please contact J.A.P. and is available through

the web link (http://www.ccp5.ac.uk).

Acknowledgements

The authors acknowledge useful discussions with Professor Mike
Gillan (UCL) and Professor Neil Allan (Bristol). Part of this work,
funded by NERC, made use of the facilities of HECToR, the UK’s
national high-performance computing service, which is provided
by UoE HPCx Ltd at the University of Edinburgh, Cray Inc. and
NAG Ltd, and funded by the Office of Science and Technology
through EPSRC’s High End Computing Programme. The SCARF
computing resources were provided by STFC’s e-Science facility.
DL_MONTE was developed under the auspices CCP5.

Notes

1. Email: j.c.crabtree@bath.ac.uk
2. Email: s.c.parker@bath.ac.uk

References

[1] Plimton S. Fast parallel algorithms for short-range molecular
dynamics. J Comput Phys. 1995;117:1–19.

[2] Todorov IT, Smith W, Trachenko K, Dove MT. DL_POLY_3: new
dimensions in molecular dynamics simulations via massive
parallelism. J Mater Chem. 2006;16:1911–1918.

[3] Ewald PP. Die Berechnung optischer und elektrostatischer
Gitterpotentiale. Ann Phys. 1921;64:253–287.

[4] Forester TR, Smith W. The DL_POLY user’s manual, 1994. Ref no.
DL/SCI/TM100T.

[5] van GunsterenWF, Berendsen HJC. Groningen molecular simulation
(GROMOS) library manual. Groningen: BIOMOS; 1987.

[6] Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force
field for molecular simulations. J Phys Chem. 1990;94:8897–8909.

[7] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson
DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second
generation force field for the simulation of proteins, nucleic acids,
and organic molecules. J Am Chem Soc. 1995;117:5179–5197.

[8] Sutton AP, Chen J. Long range Finnis–Sinclair potentials. Philos
Mag Lett. 1990;61:139–146.

[9] Gupta R. Lattice relaxation at a metal surface. Phys Rev B.
1981;23:6265–6270.

[10] Daw MS, Baskes M. Embedded-atom method: derivation and
application to impurities, surfaces, and other defects in metals. Phys
Rev B. 1984;29:6443–6453.

Figure 13. (Colour online) Adsorption isotherm of CO2 in Na-
FAU with Si:Al ratio ¼ 1 (green) and Si:Al ratio ¼ 1.18 (red and
blue) at 303.2K. Data points are our simulations, blue line is
represents experimental data from Pillai et al. [55].

Molecular Simulation 1251

http://www.ccp5.ac.uk


[11] Tersoff J. New empirical approach for the structure and energy of
covalent systems. Phys Rev B. 1988;37:6991–7000.

[12] Smith W, Forester TR. Parallel macromolecular simulations and the
replicated data strategy. 1: The computation of atomic forces.
Comput Phys Commun. 1994;79:52–62.

[13] Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford:
Clarendon Press; 1989.

[14] Vlugt TJH, Garcia-Perez E, Dubbeldam D, Ban S, Calero S.
Computing the heat of adsorption using molecular simulations: the
effect of strong coulombic interactions. J Chem Theory Comput.
2008;4:1107–1118.

[15] Lavrentiev MY, Allan NL, Barrera G, Purton JA. Ab initio
calculation of phase diagrams of oxides. J Phys Chem B. 2001;105:
3594–3599.

[16] Purton JA, Allan NL. Monte Carlo simulation of segregation in
ceramic thin films: comparison of the MgO/MnO{10 0} and {2 1 0}
surfaces. J Cryst Growth. 2006;294:130–136.

[17] Purton JA, BarreraGD,AllanNL, Blundy JD.MonteCarlo and hybrid
Monte Carlo/molecular dynamics approaches to order–disorder in
alloys, oxides, and silicates. J Phys Chem B. 1998;102:5202–5207.

[18] Ferry D, Gelob A, Senz V, Suzanne J, Toennies JP, Weiss H.
Observation of the second ordered phase of water on the MgO(1 0 0)
surface: low energy electron diffraction and helium atom scattering
studies. J Chem Phys. 1996;105:1697–1701.

[19] Ferry D, Picaud S, Hoang PNM, Girardet C, Giordano L,
Demirdjian B, Suzanne J. The properties of a two-dimensional
water layer on MgO(0 0 1). Surf Sci. 1998;409:101–116.

[20] Langel W, Parrinello M. Ab initio molecular dynamics of H2O
adsorbed on solid MgO. J Chem Phys. 1995;103:3240–3252.

[21] McCarthy ML, Schenter GK, Scamehorn CA, Nicholas JB.
Structure and dynamics of the water/MgO interface. J Phys Chem.
1996;100:16989–16995.

[22] Allen JP, Marmier A, Parker SC. Atomistic simulation of surface
selectivity on carbonate formation at calcium and magnesium oxide
surfaces. J Phys Chem C. 2012;116:13240–13251.

[23] Fox H, Horsfield A, Gillan MJ. Methods for calculating the
desorption rate of an isolated molecule from a surface: water on
MgO(0 0 1). Surf Sci. 2007;601:5016–5025.

[24] Fox H, Gillan MJ, Horsfield A. Methods for calculating the
desorption rate of molecules from a surface at non-zero coverage:
water on MgO(0 0 1). Surf Sci. 2009;603:2171–2178.

[25] Frenkel D, Smit B. Understanding molecular simulation. 2nd ed.
San Diego, London: Academic Press; 2002.

[26] Adams DJ. Grand canonical ensemble Monte Carlo for a Lennard-
Jones fluid. Mol Phys. 1975;29:307–311.

[27] Colle R, Salvetti D. A general method for approximating the
electronic correlation energy in molecules and solids. Theor Chim
Acta. 1975;37:1404–1408.

[28] Goj A, Sholl DS, Akten ED, Kohen D. Atomistic simulations of CO2

and N2 adsorption in silica zeolites: the impact of pore size and
shape. J Phys Chem B. 2002;106:8367–8375.

[29] Plant DF, Maurin G, Deroche I, Gaberova L, Llewellyn PK. CO2

adsorption in alkali cation exchanged Y faujasites: a quantum
chemical study compared to experiments. Chem Phys Lett.
2006;426:387–392.

[30] Hirotani A, Mizukami K, Miura R, Takaba H, Miya T, Fahmi A,
Stirling A, Kubo M, Miyamoto A. Grand canonical Monte Carlo
simulation of the adsorption of CO2 on silicalite and NaZSM-5.
Appl Surf Sci. 1997;120:81–84.

[31] Maurin G, Llewellyn P, Poyet T, Kuchta B. Influence of extra-
framework cations on the adsorption properties of X-faujasite
systems: microcalorimetry and molecular simulations. J Phys Chem
B. 2005;109:125–129.

[32] Maurin G, Belmabkhout Y, Pirngruber G, Gaberova L, Llewellyn P.
CO2 adsorption in LiY and NaY at high temperature: molecular
simulations compared to experiments. Adsorption. 2007;13:
453–460.

[33] Bulanek R, Frolich K, Frydova E, Cicmanec P. Microcalorimetric
and FTIR study of the adsorption of carbon dioxide on alkali–metal
exchanged FER zeolites. Top Catal. 2010;53:1349–1360.

[34] Montanari T, Busca G. On the mechanism of adsorption and
separation of CO2 on LTA zeolites: an IR investigation. Vib
Spectrosc. 2008;46:45–51.

[35] Dunne JA, Mariwals R, Rao M, Sircar S, Gorte RJ, Myers AL.

Calorimetric heats of adsorption and adsorption isotherms. 1. O2,

N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir. 1996;12:

5888–5895.

[36] Dunne JA, Rao M, Sircar S, Gorte RJ, Myers AL. Calorimetric heats

of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4,

C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites.

Langmuir. 1996;12:5896–5904.

[37] Papadopoulos GK, Jobic H, Theodorou DN. Transport diffusivity of

N2 and CO2 in silicalite: coherent quasielastic neutron scattering

measurements and molecular dynamics simulations. J Phys Chem B.

2004;108:12748–12756.
[38] Babarao R, Jiang JW. Diffusion and separation of CO2 and CH4 in

silicalite,C-168 schwarzite, and IRMOF-1: a comparative study from

molecular dynamics simulation. Langmuir. 2008;24:5474–5484.

[39] van den Bergh J, Ban SA, Vlugt TJH, Kapteijn F. Modeling the

loading dependency of diffusion in zeolites: the relevant site model.

J Phys Chem C. 2009;113:17840–17850.

[40] Deroche I, Maurin G, Borah BJ, Yashonath S, Jobic H. Diffusion of

pure CH4 and its binary mixture with CO2 in faujasite NaY: a

combination of neutron scattering experiments and molecular

dynamics simulations. J Phys Chem C. 2010;114:5027–5034.

[41] Maurin G, Llewellyn PL, Bell RG. Adsorption mechanism of carbon

dioxide in faujasites: grand canonical Monte Carlo simulations and

microcalorhnetry measurements. J Phys Chem B.

2005;109:16084–16091.
[42] Garcia-Sanchez A, Ania AO, Parra JB, Dubbeldam D, Vlugt TJH,

Krishna R, Calero S. Transferable force field for carbon dioxide

adsorption in zeolites. J Phys Chem C. 2009;113:8814–8820.

[43] Jaramillo E, Chandross M. Adsorption of small molecules in LTA

zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J Phys Chem B.

2004;108:20155–20159.

[44] Babarao R, Hu ZQ, Jiang JW, Chempath S, Sandler SI. Storage and

separation of CO2 and CH4 in silicalite, C-168 schwarzite, and

IRMOF-1: a comparative study from Monte Carlo simulation.

Langmuir. 2007;23:659–666.

[45] Harris JG, Yung KH. Carbon dioxide’s liquid–vapor coexistence

curve and critical properties as predicted by a simple molecular

model. J Phys Chem. 1995;99:12021–12024.

[46] Cygan RT, Liang JJ, Kalinichev AG. Molecular models of

hydroxide, oxyhydroxide, and clay phases and the development of
a general force field. J Phys Chem B. 2004;108:1255–1266.

[47] Bushuev YG, Sastre G. Atomistic simulations of water and organic

templates occluded during the synthesis of zeolites. Micropor

Mesopor Mater. 2010;129:42–53.

[48] Kerisit S, Weare JH, Felmy AP. Structure and dynamics of

forsterite-scCO2/H2O interfaces as a function of water content.

Geochim Cosmochim Acta. 2012;84:137–151.

[49] Watson GW, Kelsey ET, de Leeuw NH, Harris DJ, Parker SC.

Atomistic simulation of dislocations, surfaces and interfaces in

MgO. J Chem Soc, Faraday Trans. 1996;92:433–438.

[50] Artioli G, Lamberti C, Marra GL. Neutron powder diffraction study

of orthorhombic and monoclinic defective silicalite. Acta Crystal-

logr B. 2000;56:2–10.

[51] Hriljac JA, EddyMM, Cheetham AK, Donohue JA, Ray GJ. Powder
neutron diffraction and 29Si MAS NMR studies of siliceous zeolite-

Y. J Solid State Chem. 1993;106:66–72.

[52] Wise WS. New occurence of faujasite in Southeastern California.

Am Mineral. 1982;67:794–798.

[53] Lim WT, Choi SY, Choi JH, Kim YH, Heo NH, Seff K. Single

crystal structure of fully dehydrated fully Kþ-exchanged zeolite Y

(FAU), K71Si121Al71O384. Micropor Mesopor Mater. 2006;92:

234–242.

[54] Yamazaki T, Katoh M, Ozawa S, Ogino Y. Adsorption of CO2 over

univalent cation-exchanged ZSM-5 zeolites. Mol Phys. 1993;80:

313–324.

[55] Pillai RS, Peter SA, Jasra RV. CO2 and N2 adsorption in alkali metal

ion exchanged X-faujasite: grand canonical Monte Carlo simulation

and equilibrium adsorption studies. Micropor Mesopor Mater.
2012;162:143–151.

1252 J.A. Purton et al.


	Abstract
	1. Introduction
	2. Program structure
	3. Scientific applications
	3.1 Nanoparticles
	3.2 Water on MgO{100} surface
	3.3 CO&inf;2&/inf; adsorption in zeolites
	3.3.1 Development of model


	4. Conclusion
	Acknowledgements
	Notes
	References

