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ABSTRACT
It is shown that ensemble averages computed in the Gibbs Ensemble with Continuous Fractional
Component Monte Carlo (CFCMC GE) are different from those computed in the conventional Gibbs
Ensemble (GE). However, it is possible to compute averages corresponding to the conventional GE
while performing simulations in the CFCMC GE. In this way, one can benefit from the nice features of
CFCMC GE (e.g. more efficient particle exchange) and at the same time compute the ensemble averages
that correspond to the conventional GE. As a case study, the equilibrium pressure and densities of the
systems of 256 and 512 LJ particles at different reduced temperatures (T = 0.7, 0.8, 0.95) are computed
in the conventional GE and CFCMC GE. The validity of the expressions derived for computation of the
thermodynamic pressure and densities corresponding to the conventional GE and computed in the CFCMC
GE is examined numerically. The thermodynamic pressure in the conventional GE and CFCMC GE typically
differs by at most 4%. It is shown that a very good estimate of the average pressure and densities
corresponding to the conventional GE canbe obtainedby performing simulation in CFCMCGE and ignoring
the contributions of the fractional molecule. It is also shown that the fractional molecule does not have an
influence on the structure of the liquid, even for very small system sizes (e.g. 40 particles). The approach
used here to compute the equilibrium pressure and densities of the conventional GE using the CFCMC GE
can be easily extended to other thermodynamic properties and other ensembles.
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1. Introduction

Coexistence properties at Vapour–Liquid Equilbria (VLE) are
crucial to design many industrial processes.[1–3] Molecular
simulations usingMonte Carlo algorithms are widely applied to
provide information regarding the thermodynamic properties
of coexisting phases.[4–6] Since the introduction of Gibbs En-
semble (GE) in 1980s by Panagiotopoulos,[7–9] simulations in
this ensemble are frequently used to study VLE of pure compo-
nents and mixtures.[10–14] Other methods such as histogram
reweighting in the grand-canonical ensemble [15,16] can be
more efficient to study VLE. However, since the GE is conve-
nient and sufficiently accurate, it is still widely used for simulat-
ing phase coexistence of pure components andmixtures.[13,14]

Similar to simulations in the grand-canonical ensemble, GE
simulations rely on sufficiently large acceptance probabilities
for particle exchanges between the simulation boxes. How-
ever, the acceptance probability for particle exchange can be
very low when molecules are large or when densities are high
(e.g. adsorption close to saturation loading, or liquid phases
at low temperatures),[17] even when advanced techniques like
Configurational-bias Monte Carlo are used. When the accep-
tance probability for insertion/deletion is low, it is not straight-
forward to verify if the two phases have reached equilibrium and
that the chemical potentials of a certain component are equal in
the simulation boxes. In this case, one should separately check
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the conditions for chemical equilibrium (equality of pressures,
chemical potentials, and temperatures for all components in
the two phases). The so-called expanded ensemble methods
are among possible solutions to overcome this problem.[18–20]
TheContinuousFractionalComponentMonteCarlo (CFCMC),
recently introduced by Shi and Maginn, is one of the most
commonly used expanded ensemble approaches.[21–30] Pour-
saeidesfahani et al. have introduced amore efficient formulation
of the GE combined with the CFCMC technique.[31] In this
formulation, there is only a single fractional molecule per com-
ponent which can be in either one of the boxes. The chemical
potential can be computed directly without any extra calcula-
tions. These authors also showed that the computed chemical
potentials are identical to those computed in conventional GE,
which was validated for LJ particles and water.[31] For the
simple LJ fluid, the acceptance probability for insertion/deletion
of particles in CFCMC GE at a reduced temperature T = 0.7
is five hundred times larger than in the conventional GE.[31]
Although CFCMC improves the acceptance probability of par-
ticle exchange, it raises a very important question: How should
one relate the properties computed in CFCMC GE simulations
to those computed in the conventional GE? As an example,
when computing the density of the two phases in CFCMC
GE, it is not clear a priori if one should count the fractional
molecule or not.[21,22,31] In this paper, we introduce general
guidelines on how to relate averages computed in the CFCMC
GE to averages in the conventional GE. We consider here the
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computation of pressure and densities in the conventional GE
and in the CFCMC GE introduced by Poursaeidesfahani et al.
[31]. For both conventional GE and CFCMC GE, we derive
equations for thermodynamic pressure of the system. We show
that the calculated thermodynamic pressures of the two sim-
ulation boxes are exactly equal, and that the thermodynamic
pressure of the conventional GE and CFCMC GE are different.
We also show that the structure of the liquid is not influenced
by the fractional molecule. We show how the expansion of the
conventional GEwith the fractionalmolecule affects the average
pressure of the two boxes, and how one can compute the pres-
sure corresponding to the conventional GE in the CFCMC GE.
The pressure is chosen because of its importance in verification
of the equilibrium between the two phases.

This paper is organised as follows. In Section 2, the relevant
equations for computing the pressures in the conventional GE,
the CFCMC GE [31] and the pressure corresponding to the
conventional GE calculated in CFCMC GE are derived. Also,
guidelines for computing averages corresponding to the con-
ventional GE and computed in the CFCMC GE are presented.
The pressures and densities of the two coexisting phases of LJ
particles at various temperatures computed in the conventional
GE and the CFCMC GE are presented in Section 3. In this sec-
tion, the influence of the fractional molecule on the structure of
the two phases is also investigated.Our findings are summarised
in Section 4.

2. Methodology

In the CFCMC GE formulation introduced by Poursaeidesfa-
hani et al. [31], there is only a single fractional molecule per
component which is distinguishable from the whole molecules.
In the case of LJ pair interactions, the LJ interactions of the
fractional molecule are scaled according to [22]:

uLJ(r, λ)

= λ4ε
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where λ is the scaling parameter with λ ∈ 〈0, 1〉. The partition
function of this system is given by [31]:
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where β = 1/(kBT) and � is the thermal wavelength. The
fractional molecule can be transferred between the boxes and i
indicates the boxwhere fractionalmolecule is in.Uint,i andUfrac,i
are the total internal energy of the whole molecules and the
internal energy of the fractional molecule in box i, respectively.
VT is the total volume and V1 is the volume of box 1. δi,j equals
1 when i = j and zero otherwise.[31] Except for the trial moves
used for the thermalisation of the system and volume changes,
three other trial moves are used to facilitate particle exchanges
between the simulation boxes:

• Changing the scaling parameter λ with λ ∈ 〈0, 1〉;
• Swapping the fractional molecule between the boxes;
• Changing the identity of the fractional molecule with a
randomly selected whole molecule in the other simulation
box, while keeping the value of λ constant.

These trial moves are illustrated in Figure 1. By applying
an appropriate biasing function, the first type of trial move
allows for a smooth transformation of the fractional molecule
from a molecule with no interactions to a molecule with full
interactions with its surroundings. Swap and change trial moves
are used to transfer the fractional molecule from one box to the
other. The former trial move is very efficient for low values of
λ and the latter is very efficient for high values of λ.[31] Using
these trial moves, the value of λ can be efficiently changed from
0 to 1 and the fractional molecule can be transferred between
the boxes at all values of λ. These trial moves, combined with
volume-changes and particle displacements are sufficient to
sample the partition function of Equation (2). To improve the
efficiency of simulations, a biasing function is added tomake the
observed probability distribution of the scaling parameter λ in
the two boxes flat. The unbiased probability distribution of this
scaling parameter is denoted by p(λ, j). A sample FORTRAN
code for this algorithm is available from Ref. [32]. A detailed
description of the trial moves and their acceptance rules are
provided in Ref. [31].

2.1. Computation of the pressure

In molecular simulations, the thermodynamic pressure is usu-
ally computed by averaging over the instantaneous microscopic
pressures. In any NVT ensemble, the general expression for the
thermodynamic pressure P is [33–35]

P = kBT
(

∂ lnQ
∂V

)
T

(3)

Considering the fact the GE is a special case of the NVT en-
semble, Equation (3) is applicable to the GE and CFCMC GE.
Starting from the partition function of the conventional GE and
following the steps presented in the Supporting Information, the
pressure in the conventional GE is obtained by the conventional
virial equation [35,36]:

PGE,j = kBT
〈
Nj

Vj

〉
GE

+
〈∑

a<b fj(rab,j)rab,j
3Vj

〉
GE

(4)

where rab,j and fj(rab,j) are the distance and the force acting
between particles ‘a’ and ‘b’ in box ‘j’ (assuming pair potentials).
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Figure 1. (Colour online) Schematic representation of the additional trial moves in CFCMC GE. The red sphere is the fractional molecule and the green spheres are the
whole molecules. (a)→(b): changing the scaling parameter λ with λ ∈ [0, 1]. (b)→(c): swapping the fractional molecule between the boxes. (c)→(d): changing the
identity of the fractional molecule with a randomly selected whole molecule in the other simulation box, while keeping the value of λ constant.

Figure 2. (Colour online) (a) Radial distribution functions gWW(r) and (b) gWF(r) for 4 LJ particles at T = 1 and ρ = 0.05. (c) Radial distribution functions gWW(r) and
(d) gWF(r) for 40 LJ particles at T = 1 and ρ = 0.8. To reduce the number of particles and amplify the effect of the fractional molecule, the cutoff radius is reduced to 2σ .

The first term on the right hand side of Equation (4) is the ideal
gas contribution and the second term is commonly known as
the virial contribution.[35] The labeling of the boxes is arbitrary,
therefore, the same equation is obtained for the other box. Since
there is only one thermodynamic pressure for the system, the
pressures of the two boxes are on average equal. In the sameway,
as shown in the Supporting Information, the thermodynamic
pressure in the CFCMC GE is computed from:

PCFCMC,j = kBT
(

∂ lnQCFCMC

∂VT

)
T

= kBT
〈
Nj + δi,j

Vj

〉
CFCMC

+
〈∑

a<b fj(rab,j)rab,j
3Vj

〉
CFCMC

(5)

In this equation, the contribution of the fractional molecule
is included in the ideal gas part and in the virial part. The
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Figure 3. (Colour online) (a) ρ(λ∗ , j)/ρGE for the two phases as a function λ. ρ(λ∗ , j) =

〈
δλ=λ∗ ,i=j

Nj
Vj

〉
CFCMC〈

δλ=λ∗ ,i=j

〉
CFCMC

is the density of box j averaged over the configurations in

which the fractional particle is in box j with λ = λ∗ . Note: in calculation of these densities, the fractional molecule was disregarded. (b) Probability distribution of λ for
the two phases for 256 LJ particles at T = 0.8.

Table 1. Computed pressures and densities in the conventional GE and the CFCMC
GE at different reduced temperatures for 256 LJ particles. PGE (Equation (4)) and
PCFCMC (Equation (5)) are the pressures in the conventional GE and the CFCMC
GE, respectively. P∗

GE (Equation (6)) indicates the pressure corresponding to that
in the conventional GE and computed in the CFCMC GE. P∗∗

GE (Equation (7)) is
the computed pressure in the CFCMC GE, not counting the contributions of the
fractional molecule. The exact same definitions apply to the computed densities
(Equations (8)–(11)). Statistical uncertainties in the last digit are shown in brackets,
i.e. 14.21(1) means 14.21 ± 0.01. The weight function in the CFCMC GE is
calculated iteratively so that the probability distribution p(λ, j) is uniform. The
total volume for T = 0.8 and T = 0.95 is VT = 2 × 83 and for T = 0.7 is
VT = 2 × 12.53.

[Average pressure]/10−3 [Average density]/10−3

T = 0.7 Gas Liquid Gas Liquid
PCFCMC 4.89(1) 4.90(10) ρCFCMC 7.42(1) 786.44(9)
PGE 4.78(1) 4.75(5) ρGE 7.25(1) 786.50(0)
P∗
GE 4.78(1) 4.70(60) ρ∗

GE 7.26(1) 786.50(0)
P∗∗
GE 4.77(1) 5.10(50) ρ∗∗

GE 7.26(1) 785.00(0)

T = 0.8
PCFCMC 14.21(1) 14.20(10) ρCFCMC 20.31(2) 731.00(0)
PGE 13.86(0) 13.87(6) ρGE 19.84(0) 731.16(9)
P∗
GE 13.87(1) 13.80(50) ρ∗

GE 19.83(3) 731.16(9)
P∗∗
GE 13.87(1) 14.20(10) ρ∗∗

GE 19.84(2) 729.00(0)

T = 0.95
PCFCMC 45.02(3) 45.02(4) ρCFCMC 66.80(10) 623.02(8)
PGE 44.44(3) 44.42(6) ρGE 66.02(7) 623.30(10)
P∗
GE 44.42(6) 44.40(50) ρ∗

GE 65.90(20) 623.30(0)
P∗∗
GE 44.50(7) 44.81(3) ρ∗∗

GE 66.10(10) 621.52(8)

thermodynamic pressures in the CFCMC GE (Equation (5))
and conventional GE (Equation (4)) are clearly not identical.
As shown in the Supporting Information, it is possible to com-
pute the pressure corresponding to the conventional GE while
performing simulations in the CFCMC GE:

P∗
GE,j = kBT

〈
δλ=0,i=j

Nj

V2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

Table 2. Computed pressures and densities in the conventional GE and the CFCMC
GE at different reduced temperatures for 512 LJ particles. PGE (Equation (4)) and
PCFCMC (Equation (5)) are the pressures in the conventional GE and the CFCMC
GE, respectively. P∗

GE (Equation (6)) indicates the pressure corresponding to that
in the conventional GE and computed in the CFCMC GE. P∗∗

GE (Equation (7)) is
the computed pressure in the CFCMC GE, not counting the contributions of the
fractional molecule. The exact same definitions apply to the computed densities
(Equations (8)–(11)). Statistical uncertainties in the last digit are shown in brackets,
i.e. 14.10(1) means 14.10 ± 0.01. The weight function in the CFCMC GE is
calculated iteratively so that the probability distribution p(λ, j) is uniform. The
total volume for T = 0.7 is VT = 2× 14.53 and for T = 0.8, VT = 2× 103 and for
T = 0.95, the total volume is VT = 2 × 8.653.

[Average pressure]/10−3 [Average density]/10−3

T = 0.7 Gas Liquid Gas Liquid
PCFCMC 4.95(1) 4.95(6) ρCFCMC 7.53(2) 787.0(0)
PGE 4.89(0) 4.89(4) ρGE 7.44(1) 787.09(1)
P∗
GE 4.89(1) 4.80(50) ρ∗

GE 7.44(2) 787.02(4)
P∗∗
GE 4.88(1) 5.01(3) ρ∗∗

GE 7.44(2) 786.20(0)

T = 0.8
PCFCMC 14.10(1) 14.14(3) ρCFCMC 20.17(2) 730.84(7)
PGE 13.92(1) 13.91(2) ρGE 19.92(1) 730.95(4)
P∗
GE 13.93(1) 13.90(20) ρ∗

GE 19.92(1) 730.93(4)
P∗∗
GE 13.92(1) 14.10(10) ρ∗∗

GE 19.92(2) 729.83(4)

T = 0.95
PCFCMC 44.88(3) 44.86(5) ρCFCMC 66.67(7) 623.39(4)
PGE 44.51(2) 44.51(2) ρGE 65.00(90) 623.60(10)
P∗
GE 44.50(1) 44.60(10) ρ∗

GE 66.10(10) 623.60(10)
P∗∗
GE 44.53(2) 44.76(8) ρ∗∗

GE 66.20(7) 622.30(10)

+

〈
δλ=0,i=j

∑
a<b fj(rab,j)rab,j

3V2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

= PGE,j (6)

The difficulty associated with computing P∗
GE,j using Equation

(6) is that only the states in which the value of λ equals zero are
contributing to the ensemble average. Therefore, long simula-
tions may be required to obtain reliable pressures especially
for the liquid phase. Assuming that there is no correlation
between the volume and the number of whole molecules, and
also no correlation between the volume and the virial part of the
pressure, Equation (6) reduces to
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P∗∗
GE,j = kBT

〈
Nj

Vj

〉
CFCMC

+
〈∑

a<b,a,¬frac fj(rab,j)rab,j
3Vj

〉
CFCMC

(7)

where the notation ‘¬frac’ indicates that contribution of frac-
tional molecule in virial part of the pressure should be disre-
garded. It is important to note that P∗∗

GE is an approximation for
the pressure corresponding to the GE, and unlike P∗

GE, PGE, and
PCFCMC, the quantity P∗∗

GE may not be equal for both simulation
boxes. In the gas phase, particles are usually far enough from
each other that the contribution of the virial part in the total
pressure is limited andnot correlatedwith the volumeof thebox.
However, in the liquid phase, stronger correlation between the
contribution of the viral part of the pressure and the volume of
thebox is expected.The validity of the simplificationofEquation
(7) is numerically investigated in the next section. One can use
the exact same approach to define different densities:

ρGE,j =
〈
Nj

Vj

〉
GE

(8)

ρCFCMC,j =
〈
Nj + δi,j

Vj

〉
CFCMC

(9)

ρ∗
GE,j =

〈
δλ=0,i=j

Nj

V2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

(10)

ρ∗∗
GE,j =

〈
Nj

Vj

〉
CFCMC

(11)

where ρGE,j is the average density of box j computed in the con-
ventional GE, ρCFCMC,j is the average density of box j computed
in the CFCMC GE (including the fractional molecule), ρ∗

GE,j is
the average density of box j computed in the CFCMC GE only
when the value of λ equals zero excluding contribution of the
fractional molecule, and ρ∗∗

GE,j is the average density of box j
computed in the CFCMCGE excluding the fractional molecule
and averaged over all values of λ.

3. Simulation details

To examine the validity of equations provided in the Supporting
Information, the VLE of a system with 256 and 512 LJ particles
is investigated at three different reduced temperatures (T = 0.7,
0.8, 0.95). The LJ potentials are truncated and shifted at σ = 2.5.
Simulations are carried out in the conventional GE and the
CFCMC GE. The LJ parameters σ and ε are used as units
of length and energy respectively. Consequently, all calculated
properties are in reduced units. A biasing function W(λ, i) is
computed iteratively to obtain a flat probability distribution
of λ and that the fractional molecule is located with equal
probability in both boxes. After 2 million equilibration cycles,
a long production (500 million cycles) run is carried out to
reduce the uncertainties in the values computed for pressures
introduced in Equations (4)–(7). The number of Monte Carlo
steps per cycle equals the total number of molecules in the
system, with a minimum of 20. For more simulation details
the reader is referred to Ref. [31].

4. Results

To compute the pressures and densities, simulations are per-
formed in the conventional GE and the CFCMC GE. In Tables
1 and 2, the average pressures derived in Equations (4)–(7) and
corresponding densities for the gas and liquid phases are shown
for three different reduced temperatures (T = 0.7, 0.8, 0.95)
and for two system sizes (256 and 512 particles).

An important point in Tables 1 and 2 is the fact that the
thermodynamic pressures of the two phases computed in the
conventional GE (PGE) are equal. The thermodynamic pres-
sures of the two phases computed in CFCMC GE (PCFCMC) are
also equal. However, the thermodynamic pressures of the two
ensembles, CFCMCGE and the conventional GE (PCFCMC, and
PGE) are clearly not equal. As discussed in the previous section,
the presence of the fractional molecule in the CFCMC GE sim-
ulations results in an increase in the thermodynamic pressure.
However, the computed values for P∗

GE and PGE are nearly
identical. In the same way, densities computed in CFCMC GE
including the fractional molecule (ρCFCMC) are not equal to
those computed in the conventional GE (ρGE). However, den-
sities corresponding to the conventional GE but computed in
CFCMC GE (ρ∗

GE) are equal to densities computed in the con-
ventional GE (ρGE). This numerically confirms the validity of
the derivations provided for computing properties correspond-
ing to the conventional GE in the CFCMC GE. Only the states
in which the value of λ is zero are contributing to the P∗

GE. As
a result, the uncertainties associated with P∗

GE values are much
larger than the other ensemble averages.

The values of P∗∗
GE computed for the gas phase are very close

to the values computed for PGE and P∗
GE (deviation less than

0.2%). This is not the case for P∗∗
GE computed for the liquid phase

(deviation up to 4%). The gas phase density of the conventional
GE can be accurately estimated using ρ∗∗

GE (see Tables 1 and 2).
Since the contribution of the virial part in the pressure of the
gas phase is negligible and the ideal gas part is defined by the
density, P∗∗

GE for the gas phase can be used as an estimate of P∗
GE

and PGE.
In the liquid phase, the presence of a fractional molecule

(with scaling parameter larger than zero) may influence the
density and structure of the liquid phase. Radial Distribution
Functions (RDFs) can be used to investigate the effect of the
fractional molecule on the structure of the phases. The CFCMC
GE system can be considered as a binary system, therefore,
there are three different RDFs gWW(r) (Whole–Whole), gWF(r)
(Whole-Fractional) and gFF(r) (Fractional–Fractional). Since
there is only one fractional molecule, gFF(r) is always zero. In
Figure 2, gWW(r) and gWF(r) are plotted for different densities
and values of λ. To reduce the number of particles and amplify
the effect of the fractional molecule, the cutoff radius is reduced
to 2σ and minimum box size and number of particles are used
for these simulations. Simulations are performed in the NVT
ensemble with only a single fractional molecule with a fixed
value of λ. As shown in Figure 2, gWW(r) are almost identical
for all values ofλ. To test the extreme case, the interactions of the
fractional molecule with the whole molecules were changed in
such a way that the fractional molecule is acting as an attraction
site without any repulsive potential (uLJ = −aλσ 6/(σ 6 + r6)).
For λ = 1 and a < 60kBT , hardly any changes were observed in
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the RDFs, when the density was close to typical liquid densities
(not shown here). This indicates that the structure of the liquid
is not affected by the fractional molecule.

In Figure 3(a), the dependency of the density (excluding the
fractionalmolecule) to the value ofλ is investigated.An interest-
ing point is that the densities corresponding to the conventional
GE are only recovered when the value of λ is close to zero. It can
be observed that the density of the gas phase increases and the
density of the liquid phase decreases as λ changes from 0 to 1. In
Figure 3(b), the unbiased probability distribution of λ in the two
phases is shown. The fractional molecule is most of the times
in the liquid phase. As a result, ρ∗∗

GE for the gas phase is close to
ρ∗
GE for the gas phase. It can be seen that the fractional molecule

is most of the times in the liquid phase with λ close to one.
In this case, the density of the liquid phase in underestimated.
Therefore, one would expect the ρ∗∗

GE to be slightly lower than
the values of ρ∗

GE for the liquid phase. This is confirmed by data
presented in Tables 1 and 2. Underestimation of the density
of the liquid phase can influence both the ideal part and virial
contribution of ρ∗∗

GE. This explains why the values reported for
P∗∗
GE are slightly off.

5. Conclusions

In this study, we showed that there are differences between the
averages computed in the CFCMC GE and those computed in
the conventional GE. Although these differencesmay be limited
for many properties, it is important to know that they exist.
For example, the thermodynamic pressures in the conventional
GE and CFCMC GE are different and typically differ by at
most 3% for a system of 256 LJ particles. We also introduced
guidelines for computing the averages corresponding to the
conventional GE and computed in the CFCMCGE.We showed
analytically and numerically that these values are identical to
values computed in the conventional GE. As an example, we
computed the pressure and density in the conventional GE and
CFCMC GE introduced by Poursaeidesfahani et al. [31]. The
pressure and densities corresponding to the conventional GE
and computed in the CFCMC GE are equal to the pressure and
densities computed in the conventional GE. However, due to
the limited sampling (only when λ = 0) of these averages in
CFCMC GE, long simulations are required to obtain reliable
results. For the gas phase, the pressure is predominately defined
by the ideal gas part. Therefore, using the estimation provided
by Equation (7) (i.e. ignoring the fractional molecule in the
ideal gas part and the virial part), one can compute the pressure
corresponding to the conventional GE from the gas phase of a
CFCMC GE simulation and still sampling for all values of λ.
We also showed that the structures of the two phases are not
influenced by the fractional molecule.
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