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ABSTRACT OF DISSERTATION

INSIGHTS INTO EXPRESSION, CELLULAR LOCALIZATION, AND REGULATION OF
SUPERNATANT PROTEIN FACTOR, A PUTATIVE REGULATOR OF CHOLESTEROL
BIOSYNTHESIS

SPF (Supernatant Protein Factor) is a cytosolic protein that stimulates at least two
enzymes in the cholesterol biosynthetic pathway: squalene monooxygenase and HMG-
CoA reductase. The mechanism of action has not been established but may be related
to lipid transfer between intracellular membranes.

There are three human genes for SPF: SEC14L2 (SPF1), SEC14L3 (SPF2) and SEC14L4
(SPF3). The present study differentiates these closely related genes by evaluating their
tissue-specific and relative expression levels. SPF1 mRNA was found to be most
abundant in liver, mammary gland and stomach. SPF2 showed negligible expression in
all tissues tested; SPF3 expression pattern was similar to that of SPF1, but at 10-50-fold
lower levels than SPF1.

A cDNA to SPF3 was cloned and, upon transfection into rat hepatoma cells, was shown
to increase cholesterol synthesis by approximately 50%, similar to that obtained with
SPF1. However, in contrast to SPF1, SPF3 did not stimulate squalene monooxygenase
activity in microsomal preparations, suggesting that it acts primarily through activation
of HMG-CoA reductase.

SPF possesses a lipid binding domain (Sec14) and a Golgi dynamics domain (GOLD). SPF
resides in the cytosol and requires phosphorylation and the presence of Golgi in order to
stimulate cholesterol synthesis. To determine if SPF associates with specific subcellular
structures, cellular immunofluorescence studies were carried out. A phosphorylation-
defective mutant, a protein lacking the GOLD domain, and the effect of protein kinase
A-mediated phosphorylation of endogenous SPF were examined. No change in the
subcellular location of SPF could be detected with either the phosphorylation mutant or
the native SPF after protein kinase A activation. However, removal of the GOLD domain
resulted in a protein that co-localized with large vesicular structures around nucleus.



Studies with rat hepatoma cells showed that the expression of the two rat SPF genes is
upregulated in response to serum deprivation, and is potentiated by removal of glucose.
Lipid/cholesterol availability was demonstrated to be at least one of the serum
components that affected SPF transcript levels. The oxysterol receptor LXR was shown
not to be involved in SPF gene regulation, implicating SREBP and/or PPARa as the
principal regulators of SPF gene transcription.

KEYWORDS: Supernatant Protein Factor, Cholesterol, Lipid Binding Domain, Golgi
Dynamics Domain, Immunofluorescence
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Chapter 1 : INTRODUCTION

Why is cholesterol important?

It has been proposed that the availability of molecular oxygen gave rise to eukaryotic
life and significantly impacted the evolution of species *. Konrad Bloch, who was
awarded a Nobel prize for delineating the enzymatic steps in the cholesterol
biosynthetic pathway, showed that it was very unlikely for squalene to become cyclized
to lanosterol without molecular oxygen and even less likely for subsequent conversion
of lanosterol to cholesterol *. Therefore it has been postulated that availability of
molecular oxygen made the synthesis of cholesterol possible. Bloch, impressed with the
particular sequence of systematic enzymatically controlled reactions following
cyclization of squalene to lanosterol, proposed that evolutionary pressure demanded
the formation of cholesterol to satisfy the physical requirements of plasma membranes
in eukaryotic cells. In fact, the influence of various sterols on membrane
“microviscosity” was examined in vitro and a systematic increase in membrane
microviscosity was found progressing from lanosterol to cholesterol *. It was also
postulated that certain membrane-related events unique to eukaryotes, such as endo-
and exo-cytosis, became possible due to the appearance of cholesterol. Taken together,

cholesterol is viewed as a crucial molecule in the evolution of membranes and,

moreover, eukaryotic life *°.

Cholesterol markedly influences plasma membrane thermomechanical properties °>. As
an amphipathic molecule, cholesterol is able to intercalate into the lipid bilayer with its
small hydrophilic head group and increase lipid order in fluid membranes to maintain

fluidity and alter the phase transition. Cholesterol also increases bilayer thickness and



decreases membrane permeability. Cholesterol also plays an important role in lateral
organization of the membrane by formation of lipid rafts, which are areas of specific
lipid-protein composition involved in signal transduction. The cholesterol molecule
itself is involved in cellular signaling, in that certain proteins respond to cholesterol
levels through their sterol sensing domains, to influence cholesterol synthesis and
metabolism 2. In addition, early in development certain signaling molecules from the

Hedgehog family of morphogens are covalently modified by cholesterol.

A variety of physiologically important molecules are derived from cholesterol: Vitamin
D, which maintains calcium homeostasis; bile acids, which are necessary for
solubilization and absorption of dietary fats; sex steroids responsible for sexual
differentiation and maintenance of reproductive functions; and the hormones of the
adrenal cortex: mineralocorticoids, involved in salt and water homeostasis, and
glucocorticoids, regulators of growth, metabolism, and the response to stress and

inflammation.

Apart from cholesterol, some intermediates of the pathway serve as precursors for the
synthesis of various non-steroidal isoprenoids. For example, farnesyl or geranylgeranyl
groups anchor certain proteins to the membrane (Ras, Rho, Rab etc.); dolichol takes part
in glycoprotein synthesis; and ubiquinone and heme A are constituents of the

respiratory chain complexes.

In higher eukaryotes cholesterol is either synthesized in cells, with liver and intestine
being major sites of production, or is absorbed in the gut from food. Blood transports
cholesterol in the form of lipoprotein particles. Cholesterol absorbed from food is
transported from the small intestine to peripheral tissues and ultimately the liver as
chylomicron particles. Exogenous and newly synthesized cholesterol constitutes the
liver’s pool of cholesterol. Hepatocytes utilize cholesterol by incorporating it into the
plasma membrane and for bile acid synthesis. Free cholesterol is esterified, packaged

into VLDL particles and secreted into the bloodstream. In blood, VLDL particles are



reduced to more dense LDL particles and in this form cholesterol is distributed
throughout the body. In peripheral tissues cholesterol is taken up by cells via LDL or
scavenger receptors. Cells incorporate it into the plasma membrane and may use it for
the synthesis of steroid hormones. Excess cholesterol is incorporated into HDL
lipoproteins and for transport back to the liver. The liver is able to take up all
lipoprotein particles: chylomicrons, LDL and HDL. Bile acids produced in the liver are
secreted into the bile and stored in the gallbladder to be released into intestine to
solubilize dietary lipids. Bile acids are then either reabsorbed and returned to liver or
excreted. Excretion of bile acids is the only route of cholesterol removal from the

organism.

Maintenance of a balanced lipid profile is crucial for health. Elevated levels of LDL and
low level of HDL lipoproteins are associated with atherosclerosis and coronary heart

disease, a major cause of death in western societies.

Cholesterol biosynthetic pathway

The cholesterol biosynthetic pathway is of major importance for animal and human
physiology. It gives rise to cholesterol, steroidal derivatives and non-steroidal

isoprenoids.

Cholesterol synthesis occurs in eukaryotic cells from the two carbon molecule acetate,
esterified to coenzyme A, in a series of condensation reactions. In cytosol three
molecules of acetyl-CoA are condensed to form 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) which is then reduced to form mevalonate. This reduction is catalyzed by HMG-
CoA reductase and it is the principal regulatory step in the pathway. Subsequently,
mevalonate is phosphorylated to form several active intermediates and then

decarboxylated to form the 5-carbon isoprenoid isopentenyl pyrophosphate (IPP). IPP is



in equilibrium with its isomer dimethylallyl pyrophosphate (DMPP) and these two
molecules condense to form geranyl pyrophosphate (GPP). GPP condenses with
another molecule of IPP to yield farnesyl pyrophosphate (FPP), a 15-carbon molecule.
Squalene synthase then catalyzes the condensation of two FPP molecules to vyield
squalene, a 30-carbon molecule that is subsequently oxidized to 2,3-oxidosqualene by
squalene monooxygenase in presence of molecular oxygen and NADPH. This
epoxidation of squalene is the first oxygen-requiring step in cholesterol synthesis, and is
followed by a cascade of electron shifts resulting in cyclization, all catalyzed by
oxidosqualene cyclase and yielding the characteristic steroid ring structure: lanosterol.
Conversion of lanosterol to cholesterol involves 19 steps, including a series of reduction
and demethylation reactions, all taking place in the membranes of endoplasmic

reticulum.
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Stimulatory effect of supernatant fluid on cholesterol biosynthesis

The first report on the ability of “supernatant fluid” (i.e., the 100,000 x g supernatant
fraction of a tissue homogenate, equivalent to the cell cytosol) to activate the
cyclization of squalene to lanosterol appeared during an investigation on cholesterol
biosynthetic pathway in the Konrad Bloch laboratory . This cyclization occurs in two
steps; first squalene monooxygenase epoxidizes squalene to 2,3-oxidosqualene,
followed by cyclization to lanosterol catalyzed by oxidosqualene cyclase **. It was shown
with microsomal assays that the liver 100,000 x g supernatant fraction stimulates
membrane-bound squalene monooxygenase. Subsequently it was determined that this
supernatant fraction provides two essential components, one heat-stable and one heat-
labile °. The heat-labile component proved to be a protein, which was purified and
termed Supernatant Protein Factor (SPF). The heat-stable components of the supernate
could be replaced by anionic phospholipids (phosphatidylinositol, phosphatidylserine,
phosphatidylglycerol) and FAD °. Solubilized squalene monooxygenase, while
enzymatically active, did not respond to SPF and phospholipids, and therefore it was
concluded that intact membrane is required to observe this stimulation. The apparent
requirement for an intact membrane suggested a substrate- or product-carrier function
for SPF, but binding to substrate (squalene) or product (2,3-oxidosqualene) could not be
shown ’. Later it was found that SPF also stimulates the subsequent step, conversion of
squalene 2,3-epoxide to lanosterol, mediated by oxidosqualene cyclase . In this light,
SPF seemed to influence intramembrane events rather than act as a carrier protein.
Presumably, together with anionic phospholipids, SPF affects some membrane
properties or membrane-associated events which influence the activity of these
enzymes °. In 1980 Friedlander et al.  demonstrated that SPF facilitates the

intramembrane transfer of squalene in in vitro preparations. The mechanism by which

this cytosolic protein directs movement of lipophilic substrate across or between



bilayers remained obscure, but it was proposed that it must involve direct interaction

with the surface of another membrane or particle *°.

Structural features of SPF

In 2000 a novel human ‘tocopherol-associated protein’ (TAP) was cloned, expressed,
and characterized *, soon after the cloning of human SPF was reported ** **. It wasn’t
recognized until later that TAP and SPF are in fact the same entity . Supernatant
Protein Factor/SEC14-like protein 2/Alpha-Tocopherol-Associated Protein
(SPF/Sec1412/TAP) is a 403-amino acid protein found in the cytosol of mammalian cells.
The determination of the SPF primary sequence allowed for sequence comparison
studies; a BLAST alignment with the database of known protein sequences revealed
conserved domains within Sec14l2 protein (SPF) as depicted in the schematic figure

below (Fig.1.2)

n 100 200 300 403aa
1 " " " " 1 " " " " 1 " " L " 1 " " " " [

e m J

Figure 1.2: Conserved domains of SPF protein.

Soon after cloning and expression of SPF, the three-dimensional structure was published

(Fig. 1.3.) ™.


http://pfam.sanger.ac.uk/family?acc=PF03765�

Figure 1.3: Crystal structure of human supernatant protein factor as a ribbon diagram.
The lipid binding cavity is shown in grey, the CRAL/TRIO_N domain in navy, the Sec14
domain in turquoise-green, and the GOLD domain in yellow-orange (as on the scheme in

Fig. 1.2). Taken from reference ™.

Further sequence alignments with the database found presumed homologues in several
species and various proteins that share the same domains. There are three highly
similar SPF proteins in the human genome: hSPF1 (TAP1, Sec14-like 2 protein), hSPF2
(TAP2, Sec14-like 3 protein), and hSPF3 (TAP3, Sec14-like 4 protein). Two proteins in the
rat genome also show high similarity: rSPF (rSec14l2) and p45 (rSec1413, rat SPF-like

protein), a 45-kDa secretory protein from rat olfactory epithelium.

Secl4-like proteins were named after their main protein module: Secl4 domain
(smart00516). Secl4 is a conserved domain known to bind small lipid molecules,
including phosphatidylinositol, retinol, and a-tocopherol. This domain is found in a

number of secretory proteins, such as S. cerevisiae phosphatidylinositol transfer protein



(Sec14p), and multiple lipid-regulated proteins: Cellular Retinal Binding Protein
(CRALBP), Tocopherol Transfer Protein (a-TTP), RhoGAPs, RhoGEFs, PTPMEG2, and
others. The Secl4 domain of PTPMEG2 was found to contain motifs necessary for
targeting to the secretory vesicles **, which might be an additional function besides lipid
binding that this domain possesses. The all-a N-terminal portion of this domain was
recently annotated in the NCBI database as a separate protein module: CRAL/TRIO_N
domain (pfam03765); this domain is absent in some members of the Sec14 family, such
as CGR-1. The carboxy-terminal part of Secl4-like proteins contains a B-strand-rich
protein module, named the GOLD domain (for Golgi Dynamics) (pfam01105). This
domain is proposed to mediate protein-protein interactions. The GOLD domain of the
GCP60 protein was shown to interact with Golgi residual protein giantin *°. It is the main
domain of members of the emp24/gp25L/p24 family, which are proteins involved in
Golgi processing and secretion. P24 proteins are critical components of coated vesicles,
bringing cargo forward from the endoplasmic reticulum to the Golgi. The GOLD domain
is always found combined with a lipid-binding domain (CRAL/TRIO, Sec14, or OxB) or

17-19

with membrane-association domains (PH, FYVE) Interestingly, a recently
characterized CGR-1 protein from C. elegans is the only other known protein that, like
the SPF proteins, contains both Secl4 and GOLD domains. CGR-1 positively regulates

Ras signaling during C. elegans vulvae development *.



Protein Ligand

Identity
h5PFL (hSecldlz) 100%
rSPF (rsecldl?) 4%
hsPFZ (hsecl4l3) T7%

pas (rSecldl3) 7% PI{3,45)P3

hSPF3 (hSaclal4)

L 1 s

Figure 1.4: Schematic representation of a few proteins from the Sec14 protein family.

The availability of the SPF nucleotide sequence facilitated the cloning of a cDNA to SPF
and expression of the recombinant protein. Recombinant, bacterially expressed SPF
was able to stimulate the transfer of squalene and activity of squalene monooxygenase

%21 Hepatoma cells transfected with a plasmid carrying the

in microsomal preparations
SPF cDNA expressed the recombinant human protein and showed a 2-3 fold increase in
cholesterol synthesis, extending earlier studies with purified proteins in reconstituted

systems %2,
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Three human SPF genes

As noted above, there are three highly similar genes encoding SPF-like proteins in the
human genome: SPF1, SPF2 and SPF3. The degree of identity to SPF1 at the protein
level is 77% for SPF2 and 70% for SPF3, as shown in Fig. 1.4. The degree of identity to
SPF1 at the mRNA level is 66% for SPF2 and 59% for SPF3 (full alignment of these
transcripts is shown in Fig. 2.1). The SPF protein that has been the most studied so far is
SPF1 (NP_036561), also referred to as SEC14-like 2, tocopherol-associated protein (TAP),
or simply SPF. Human SPF2 (NP_777635) is also called SEC14-like 3, and SPF3
(NP_777637.1) is SEC14-like 4.

Stimulation of HMG-CoA Reductase by SPF

Studies in the 1970’s and 1980’s indicated that SPF stimulated the conversion of
squalene to lanosterol. This conversion can be broken down to epoxidation of squalene
to 2,3-oxidosqualene catalyzed by squalene monooxygenase, and cyclization of
oxidosqualene to lanosterol catalyzed by oxidosqualene cyclase. As mentioned earlier,
SPF was shown to stimulate both enzymes. Later, studies with hepatoma cells
transfected with SPF showed that the increase in cholesterol synthesis when measured
with [**C]-mevalonate was less than that obtained with [**C]-acetate %. This unexpected
finding suggested that part of the SPF stimulation was at or upstream of HMG-CoA
reductase, the enzyme that generates mevalonate. To explore this possibility,
terbinafine, an inhibitor of squalene monooxygenase, was used to block the conversion
of squalene to cholesterol in SPF-transfected cells; under these conditions the synthesis
of squalene was increased when measured from [**C]-acetate and was unchanged when

measured with [**C]-mevalonate. This finding further indicated a stimulatory effect of
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SPF on mevalonate synthesis. There are only 3 steps in the pathway between acetate
and mevalonate: the condensation of two acetate molecules catalyzed by B-
ketothiolase, followed by synthesis of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) by
HMG-CoA synthase, and reduction of HMG-CoA mediated by HMG-CoA reductase. A
stimulatory effect on HMG-CoA reductase was confirmed in microsomal assays by
measurement of mevalonate synthesis from HMG-CoA in presence or absence of SPF
protein ». Although it was not investigated if B-ketothiolase or HMG-CoA synthase is
also affected by SPF, it was suggested that HMG-CoA reductase is the main target, as

this is the main regulatory enzyme of the pathway *.

Requirement for Golgi in SPF function

Knowledge of SPF structural motifs has allowed for structure-function studies to be
undertaken. Deletion of the GOLD domain resulted in a protein that was no longer able

to stimulate cholesterol synthesis *.

The GOLD domain has been suggested to be
involved in interaction with Golgi, and therefore it was argued that an interaction of SPF
with Golgi was necessary for SPF stimulatory effect. This suggestion was supported by
studies with brefeldin-A, which disrupts Golgi structures: The stimulatory effect of SPF
on cholesterol synthesis was abolished when Golgi were disrupted with this agent *.
Moreover, washout of brefeldin-A, which allows for Golgi reassembly, resulted in a re-

gain of SPF activity. This clearly demonstrated that SPF requires Golgi for its function,

although the nature of the interaction between SPF and Golgi remains to be elucidated.
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SPF activation by phosphorylation

It was observed in our laboratory that addition of ATP to microsomes increases the

21

stimulatory effect of SPF on squalene monooxygenase This finding was further
explored by treatments with a variety of protein kinase inhibitors and protein kinases
themselves. It was concluded that both protein kinase A and C are capable of SPF
phosphorylation. Cell culture studies with dibutyryl-cAMP, a PKA stimulator, confirmed
that SPF needs to be activated by PKA to achieve its full activity **. Cell-permeable
protein kinase A inhibitor 14-22 amide was further able to prevent this activation of SPF.
Phosphorylation appeared to increase the SPF stimulation of both squalene
monooxygenase and HMG-CoA reductase. Moreover, sequence analysis of SPF
revealed the presence of a putative protein kinase A (PKA) phosphorylation site within
the coding sequence. Substitution of the serine in position 289 with alanine resulted in

a protein unable to stimulate cholesterol synthesis in cell culture when compared with

wild-type protein *.

Dose response curve for SPF

In vitro assays showed that the amount of SPF used in the assay is critical. SPF activity
increases with an increase in the amount of protein present, reaching its maximum at
0.8 pg per incubation, and then quickly declining, resulting in total loss of stimulation. It
was shown that the SPF activation curve is similar for both enzymes, squalene

monooxygenase and HMG—CoA reductase.

These two observations of similar behavior of SPF led to the suggestion that the
mechanism of stimulation is similar for both enzymes. Since SPF stimulates at least

three enzymes, HMG-CoA reductase, squalene monooxygenase, and oxidosqualene
13



cyclase, it can be argued that the mechanism by which SPF acts is through a general,

membrane-dependent event.

SPF-null mice

Despite the many possible roles for SPF in cellular and organismal biology, SPF (-/-) null
mice did not show an abnormal phenotype, and developed normally **. Notably, plasma
lipids levels were unchanged despite elevated levels of HMG-Co A synthase and
squalene monooxygenase in liver. However, during fasting plasma cholesterol levels
decreased significantly in SPF-null mice, but not in wild-type mice. Fasting decreased
hepatic cholesterol synthesis in both wild-type and SPF-null animals, but with a greater
reduction in SPF-null mice. The decrease in cholesterol synthesis during fasting was
accompanied by a pronounced decrease in the expression of cholesterolgenic enzymes:
HMG-CoA synthase, HMG-CoA reductase and squalene monooxygenase in both wild-
type and SPF-null mice. Interestingly, in fasted wild-type mice, the expression of SPF
mMRNA and protein was elevated. Since PPARa is known to play a role in hepatic
response to fasting **°, PPARa-null mice were subjected to fasting and did not show an
increase in SPF expression upon treatment. It was therefore concluded that the

increase in SPF protein expression during fasting is dependent on PPARa.

The data from SPF-null mice strongly suggests that SPF is upregulated upon fasting to
compensate, at least partially, for the decrease in cholesterol synthesis. The reason for
this compensatory increase is not apparent. Treatment with fibrates, which are PPARa
agonists, also resulted in upregulation of SPF protein expression. The same treatments
in PPARa-null mice did not elevate SPF, indicating a PPARa dependency. Fibrates are
used to lower plasma triglyceride levels; here it was shown that administration of

fibrates to SPF-null mice resulted in significant reduction in plasma cholesterol levels as
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well, suggesting that coadministration of a fibrate and an SPF antagonist, if one can be

discovered, could be beneficial for improving the plasma lipids profile *.

Possible Ligands for SPF

Since SPF stimulates microsomal squalene monooxygenase and appears to promote
intermembrane transfer of squalene, it was postulated early on that SPF is a squalene
transfer protein. However, multiple attempts to show squalene binding were
unsuccessful, or showed only weak affinity, likely not sufficient for direct transfer of

squalene 7.

The sequence similarity of SPF to the yeast phosphatidylinositol transfer protein Sec14p
suggested that phosphatidylinositol might be a ligand for SPF. Saccharomyces cerevisae
Secl4p binds phosphatidylinositol (Pl) and phosphatidylcholine. In fact, SPF binds to PI
with affinity of ~216 nM #, which is the greatest reported binding affinity of any ligand
tested with this protein. Despite containing the Sec14 domain, the lipid-binding pocket
of SPF is larger than that of Sec14p. That leaves a possibility that a larger lipid molecule,
perhaps one of the phosphorylated forms of phosphatidylinositol, might be a

physiological ligand for SPF.

SPF and Vitamin E

Using radiolabeled a-tocopherol as ‘bait’, a 46-kD protein was isolated from the cytosol
of bovine liver in 1999. It was named a-tocopherol-associated protein (TAP) *. As
noted earlier, subsequently it was found that TAP is identical to SPF **. Since then, many

reports showing the ability of TAP to bind various forms of vitamin E have been
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d 273 TAP is closely related to a-tocopherol transfer protein (TTP), the

publishe
principal tocopherol binding/transport protein in the cell [ ]. However, in TTP-null mice
plasma alpha-tocopherol levels are low but levels of liver SPF are not altered, suggesting

that SPF is not directly involved in a-tocopherol homeostasis *.

The term Vitamin E describes a family of tocols and tocotrienols, including a-, B-, y-, 6-
tocopherols, which can be distinguished by differently methylated chromanol
headgroups. Tocotrienols can also have differently methylated headgroups, but in
contrast to tocopherols, they have three unsaturated bonds in the phytyl tail. The only
naturally occurring stereoisomer of a-tocopherol is RRR- a-tocopherol (2R, 4'R, 8'R- a-
tocopherol). This is also the most important physiological form of Vitamin E **. SPF/TAP
was reported to bind to tocopherols, tocotrienols and tocoquinones with various

27; 29; 31; 33

affinities Among the tocols, the best binding affinity was reported with y-

tocopherol, followed by B-tocopherol and a-tocopheryl quinone, an oxidized form of a-

| 127

tocophero . Binding affinity to tocotrienols was not determined.

Despite numerous efforts, it is still unclear what the physiological ligand for SPF is, a
characteristic problem for Sec14 proteins. The possibility exists that all these molecules
are ligands for SPF under different conditions, or in different cell types, and they may

also result in different downstream effects .

a-tocopherol (R;=CHs, R,=CHg)
B-tocopherol (R{=CHjs, Ry=H)
y-tocopherol (R;=H, R,=CH,)
d-tocopherol (R;=H, Ry,=H)

tocotrienol

Figure 1.5: Chemical structures of tocopherols and tocotrienols.
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Is SPF a transcriptional regulator?

As mentioned above, SPF was purified from bovine liver using a-tocopherol as a bait,
and there are several reports of SPF binding to vitamin E; whether this link to vitamin E
is relevant to the stimulatory effect on cholesterol synthesis is unclear *. Interestingly,
in COS-1 cells, SPF moved from the cytosol to the nucleus in response to a-tocopherol
treatment, and a-tocopherol-dependent transcriptional activation was demonstrated *,
raising the question: is SPF a transcription factor? Indeed, a-tocopherol has been shown
to regulate the transcription of various genes. a-Tocopherol downregulates
transcription of the cholesterol scavenger receptors SR-A and CD36, and upregulates the
expression of a-TTP protein, and thus may regulate its own homeostasis **. In addition,
a-tocotrienol and y-tocotrienol were shown to inhibit cholesterol synthesis via post-
transcriptional inhibition of HMG-CoA reductase with y-tocotrienol being much more

|35

potent than a-tocotrienol . This effect was later shown to be due to the tocotrienol

stimulation ubiquitination and degradation of HMG-CoA reductase **.

A general
inhibitory effect of a-tocopherol on most cholesterolgenic enzymes was described
recently *’. The mechanism of this inhibition was attributed to the modulation of SREBP-
2 processing, preventing the SREBP-2 mature form to reach the nucleus, in a manner

analogous to that of sterols ***

. In general it appears that actions of a-tocopherol are in
opposition to those of SPF, which leads to the hypothesis that a-tocopherol binding to
SPF, if it occurs, might prevent the stimulatory effect of SPF on cholesterol synthesis.
However, a study from our laboratory failed to demonstrate an effect of a-tocopherol
on the ability of SPF to stimulate squalene monooxygenase *, and therefore a link

between SPF, Vitamin E, and cholesterol synthesis, if it exists, remains to be elucidated

13
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A role for SPF in cancer

Epidemiologic studies indicated that vitamin E has a protective effect against prostate
cancer *. Since SPF was shown to be linked to vitamin E, the effect of SPF on prostate
cancer was investigated. Indeed SPF, as a-tocopherol-associated protein (TAP), was
shown to inhibit the growth of prostate cancer cells in cell culture . Two separate
mechanisms were identified: First, facilitation of vitamin E uptake and mediation of its
antiproliferative effect; and second, an effect independent of vitamin E, based on its
suppression of PI3K/Akt signaling, a major survival pathway in prostate cancer *.
Immunohistochemical analysis of tissues from patients that underwent prostatectomy
showed that expression of SPF was reduced in areas of malignancy compared with
normal or benign areas. A significant reverse correlation was also found between SPF
expression and aggressiveness in malignancy. Also, a high number of SPF-positive cells

correlated with a lower incidence of recurrence after surgery. These interesting findings

pointed to SPF as a predictor of cancer disease progression and recurrence *.

Copyright © Elzbieta llona Stolarczyk 2009
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Chapter 2 : TISSUE-SPECIFIC EXPRESSION OF THREE HUMAN SPF HOMOLOGS

INTRODUCTION

There are three homologous SPF genes in humans: hSPF1, hSPF2 and hSPF3. All three
genes are located on chromosome 22. Protein and mRNA identity between these three

SPFs is shown in Fig. 2.1.

hSPFL (hSecldl2) ﬂ

'l-_‘
'ﬁ

SPF1/SPF2 | SPF1/SPF3 | SPF2/SPF3
mRNA 66 59 61
Full length protein 77 70 70
CRAL_TRIO_N domain 84 30 75
(protein)
Sec14 domain (protein) 71 65 63
GOLD domain (protein) 84 75 84

Figure 2.1: Human SPF and SPF-like proteins. The table displays the percent identity

between these three SPFs at the mRNA, protein, and domain level.
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The best characterized SPF protein to date is SPF1. Much less is known about the
expression and function of the two other SPF-like proteins: SPF2 and SPF3. SPF1 was
discovered in the liver cytosolic fraction as a factor that stimulated squalene
monooxygenase >. Many years later, when the mRNA sequence of SPF was reported,
several studies were carried out to determine which tissues express this gene. It was
reported that, in addition to liver, SPF transcripts could be detected in small intestine,
brain, lung and skin **; however, at that time the additional SPF-like genes had not been
discovered, and so the possibility of multiple gene transcripts was not addressed. Later
studies by another group identified prostate as a site of SPF1 expression !, and Kempna
et al. * isolated cDNAs to all three SPF genes from human lung cDNA library and
reported the expression of all three transcripts in liver, lung, whole blood and skin;
expression of SPF2 was lowest of the three genes in these tissues. Later, another group
confirmed expression of SPF2 in liver, but not in lung *. Recently, brain and adrenal
gland were identified as additional sites of all three SPF transcripts presence *.

Moreover, SPF3 was found in ovary, testis, epithelial duct cells of several glands and

endothelial cells of small arteries *.

The reported discrepancies in the tissue-specific expression of the SPF genes may result
from the use of probes and primers that were not optimized to distinguish between
these three closely related transcripts. Given the great degree of similarity between
these transcripts, special attention should be put into the design of gene-specific probes
that will detect only the transcript of interest, without crossreacting with transcripts
from the homologous genes. To address this need and to unify the expression data for
all three SPF genes, | designed gene-specific oligos for each SPF transcript, so as to
optimize the signal detection and specificity and allow analysis of the expression pattern
of all three genes in multiple tissues concurrently. Also, for the first time, the relative
levels of each transcript were to be analyzed in selected tissues so as to gain insight into

the relative abundance of each SPF transcript.
20
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Experimental Rationale

There are three homologous SPF genes in human. There were several attempts to
establish tissue-specific expression pattern for corresponding transcripts *****, however
| felt they did not exhibit enough precautions to fully differentiate between these highly
similar transcript sequences. To address these potential short-comings, the expression
pattern of three SPF transcripts was assessed with use of highly specific probes designed
for each SPF transcript. A broad range of tissues was screened concurrently so as to
assess the tissue specific expression pattern of each of these genes. In addition, the
relative levels of all SPF transcripts in selected tissues was determined by RT-PCR. We
hypothesize that conclusions drawn from this expression data would be useful in
designing further studies aimed at elucidating the role or roles of the various SPF genes

in cellular and organismal physiology.

MATERIALS AND METHODS

Cloning of cDNAs to SPF2 and SPF3

Amplification: To amplify SPF2 and SPF3 coding sequences, sequence-specific primers
were designed in such a way that they would incorporate an Ndel restriction site at the
start codon and an Xhol restriction site immediately before the stop codon. For SPF2 the
primers were 5’-catatgAGCGGCCGAGTTGGAGAC-3’ and 5’-
ctcgagGACAGGGGTGAGCTCCTTATC-3’ and for SPF3 they were 5-
catatgAGCAGCCGAGTCGGGGAC-3’ and 5’-ctcgagCTGTGTTGGGGAGGGTCTC-3'.
Incubation mixtures (50 pl) contained: 1 pug of human lung cDNA library (Clontech), SPF3
Ndel> and SPF3 Xhol< primers (1 uM each), 2.5 U of Pfu Turbo®DNA polymerase
(Stratagene), dNTP mix (0.5 mM each), 1x Pfu buffer, and water. PCR cycling
parameters were: 5 minutes at 95°C for initial denaturation, followed by 35 cycles of:

denaturation for 1 minute at 95°C, annealing for 1 minute at 64°C, extension at 72°C for
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90 seconds, and final extension at 72°C for 10 minutes. The PCR product was analyzed
by gel electrophoresis on a 1% agarose gel containing ethidium bromide for DNA

visualization.

Subcloning into TOPO: the PCR product was subcloned into Zero Blunt®TOPO® vector
(Invitrogen). The TOPO cloning reaction consisted of 4 ul of PCR product, 1 ul of Zero
Blunt®TOPO® vector, and 1 pl of salt solution (0.2 M NaCl, 0.01 M MgC}) combined in a
small tube and incubated for 7 minutes at room temperature. For transformation, 1-4
ul of the TOPO cloning reaction was added to TOP10 chemically competent E.coli cells,
mixed gently, and incubated on ice for 15-30 minutes. The cells were heat-shocked for
45 seconds at 42°C and placed back on ice. LB media (250 pl) was added to the cells and
the tube was shaken gently at 37°C for 1 hour. From 50-200 pl of each transformation
was spread on a prewarmed selective agar plate (kanamycin for TOPO Blunt) and
incubated overnight at 37°C. The next day 6-12 colonies were picked for analysis.
Analyzing Positive Clones: Colonies were cultured overnight in LB medium with
kanamycin. Plasmid DNA was isolated by miniprep (Promega). Plasmids were analyzed
by restriction analysis with restriction sites used for cloning (Ndel, Xhol) or EcoRl. The
restriction digestion reaction was performed by mixing 1-2 pug of plasmid DNA with 2
units of Ndel and 2 units of Xho!/ in 1xNEBuffer #4 at total volume of 25 ul. Digestion
reactions were incubated for 1-3 hours at 37°C and analyzed by gel electrophoresis on
1% agarose gels to visualize the size of the insert. The band containing the insert of
expected size (1200 bp) was cut out of the gel, placed in a 1.5 ml tube with a filter, and

purified in @ microfuge for 5 minutes at 5000 x g.

Cloning into bacterial expression vector: The pTYB2 vector (New England Biolabs) was
digested with Ndel and Xhol restriction enzymes and ligation of the insert into the
vector was performed as follows. Purified insert and digested vector were combined
together with an excess of the insert at a molar ratio of 3:1 in a 20-ul reaction
containing 0.1-1 U of T4 DNA ligase (Invitrogen) and 1x ligase buffer. The mixture was

incubated at room temperature for 1 hour followed by transformation and analysis of
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positive clones as described above. Positive clones were sent to a commercial firm

(Davis Sequencing, Davis, CA) for sequencing.

Cloning into mammalian expression vector pc3.1DNA(-): The complete coding sequence
of the SPF3 cDNA was amplified by Pfu polymerase, as described earlier, with the use of
primers incorporating Ndel and Xhol restriction sites at the N- and C-termini. The
reverse primer additionally incorporated a stop codon prior to the Xhol restriction site.
The amplified sequence was ligated into the Zero Blunt TOPO vector, plasmid DNA
purified, and the insert was released with Nhel and Xhol restriction enzymes. The insert
was purified by agarose gel electrophoresis and ligated into pc3.1DNA(-) vector

(Invitrogen). Ligation conditions were as described above.

Multiple Tissue cDNA Panels

Gene-specific primers were selected by visual inspection, comparing the three SPF
sequences for regions of divergence. (These primers are shown in Table 2.1.) For
optimization the primers were first tested on each of the three SPF cDNAs. The vectors
containing these sequences were: pTYB4SPF1 and pTYB2SPF3 for the full-length SPF1
and SPF3 cDNAs, and ZeroBluntTOPOSPF2600 for the 600-bp fragment of the SPF2
cDNA. Various polymerases and temperature cycling conditions were tested until the
optimal result was obtained with Tag Polymerase, using a manual ‘hot start’ protocol.
In this protocol the PCR Master Mix was prepared without Tag Polymerase, the
reactions were mixed with 5 pl of the cDNA sample in total volume of 50 ul and heated
to 75°C for 1 minute, and then Tag polymerase was added and thermal cycling started.
Cycling conditions were: 95°C for 3 minutes, followed by 30 cycles of: 95°C for 45
seconds, 55°C for 30 seconds, 72°C for 90 seconds, followed by 10 minute extension at
72°C. PCR products were then analyzed by gel electrophoresis with staining with

ethidium bromide.
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Multiple Tissue Expression Arrays

The oligonucleotide probes used in this study were selected from the proximal 3’
untranslated region of each mRNA. Each probe was fifty nucleotides long and had three
biotin moieties at the 5’end. The sequences of the probes are shown below in Table
2.3. Hybridization to the MTE blot was performed according to the manufacturer’s
instructions (BD Biosciences). Sheared salmon testis DNA was denatured by heating at
90-100°C for 5 min, then quickly chilling on ice. Hybridization solution was prepared by
mixing BD ExpressHyb Solution (BD Biosciences) with heat-denatured sheared salmon
testis DNA. The membrane was prehybridized in hybridization solution with continuous
agitation for 30 minutes at 42°C. Each oligonucleotide probe was denatured as
described above for salmon testis DNA and mixed with hybridization solution, at a final
concentration of 150 ng/ml. Hybridization was carried out overnight with continuous
agitation at the temperature indicated in Table 2.1. The membrane was washed 5 times
for 20 minutes with Wash Solution 1 (0.3 M NaCl, 30 mM Ngitratee2H,0, 1% SDS) at

the hybridization temperature. The membrane was incubated with constant agitation
for 8 minutes in Blocking Buffer (SpotLight™ Hybridization & Detection Kit, BD
Biosciences), then Streptavidin-HRP conjugate was added and incubated for 15 minutes.
The membrane was washed 4 times for 2 minutes with 1x Wash Buffer (BD Biosciences,
Clontech), transferred to another container and incubated for 5 minutes with Substrate
Equilibration Buffer (BD Biosciences, Clontech), after which the membrane was
incubated with the mix of Luminol/Enhancer Solution and the Stable Peroxide Solution
(BD Biosciences, Clontech) for 5 minutes and exposed in the Kodak 1D™ Imager for 30-
60 seconds. The picture was analyzed with the Kodak 1D™ Imager’s software; dots were
analyzed as Region of Interest areas (ROIs) and their net intensities were graphed. Each
membrane was blotted with one probe only. The membrane could not be reblotted
because stripping was not efficient in removing the probe, despite moderating the

stripping conditions.
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Table 2.1: Oligonucleotide probes used for hybridization to MTE arrays with their

hybridization temperatures. X=biotin.

Hybridization

Gene Probe temperature
(°c)
5’-
SPF1 TTGACAGGGAGACACTGAGGGGGCCAGGCCTGCTATAGG 63

AGAAXXXXGG-3’

5’-

SPF2 | ACAGAGAAATCAAAGGGTTAGGAGGTCTCTGAGAAATGA 60
GGGAGXXXXCC 3’
5’-

SPF3 | TGAAGGGGTTGGAGTGCACAGGTAGAGGTGGCTGGGGTC 63

TXXXXTCACT-3’

RT-PCR analysis of relative expression levels

Construction of a Standard-Curve Template: For the RT-PCR studies it was necessary to
construct a template containing the three corresponding cDNA segments of each SPF
mRNA. This template would then be used to generate a standard curve for analysis of
expression of the three SPF genes in each tissue. Short ~200-bp segments from SPF1
and SPF3 transcripts were amplified by PCR from a liver single-stranded cDNA library
created from liver total RNA by reverse transcription. The primers used to select these
segments were: 5'-CTCACCTGCAGTGATCCTGGCA-3’ and 5'-GGGGCCAGGCCTGCTATAG-3’
for SPF1, 5’-tgtacaATGGGAACCTCACCTG-3’ and 5’-ggtaccTTAGGAGGTCTCTGAGAA-3’ for
SPF2, 5’-actagtAGCCTCACCTGCCTCCAGG-3’ and 5’-gtaccaGTGCACAGGTAGAGGTGGCTG-
3’ for SPF3. These 3 cDNA segments were labeled Reall, Real2 and Real3, subcloned
into the ZeroBluntTOPO or TOPOTA vector and then cloned into pTYB11 vector to serve

as a template for RT-PCR (see Fig. 2.2, below).
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Reall Zero Blunt TOPO
I

lug"ﬁ"" pTYB11

TOPO Reall \

Digestion of vectors with Spel, Not !

Foliowed by Reall insert ligation into pTYB11

Real3 Zero Blunt TOPO
|

lg " { pTYB11 Reall

TOPO Real3 \
Digestion of vectors with Bsrsl, Spe
Followed by Real3 insert ligation into pTYB11 Reall
Real2 TOPOTA
lu’gmi(m {
pTYB11 Reall & Real3
TOPO Real?

\

Digestion of vectors with Bsr G1, Kpn 1

Followed by Real2 insert ligation into pTYBi1 Reall&Real3

!pT‘mll Real1&Real2&Real3

Figure 2.2: Cloning scheme for the pTYB11 Reall, Real2, and Real3 templates.
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Reverse Transcriptase Reaction: First-strand cDNA synthesis was performed using
SuperScript Il Reverse Transcriptase (Invitrogen). In a nuclease-free tube, 200 ng of
random primers, 1 ng-5 ug total RNA (Clontech), and 1 ul of dNTP mix (10 mM each)
were combined in total volume of 12 pl in diethylpyrocarbonate-treated water. The
mixture was heated to 65°C for 5 minutes, quickly chilled on ice, briefly centrifuged, and
4 ul of 5x First-Strand Buffer, 2 pl of 0.1M DTT, 1 ul RNaseOUT (Invitrogen), and 200
units of SuperScript Il Reverse Transcriptase were added. The reaction was incubated at
25°C for 10 min, followed by 50 min at 42°C and then inactivated by incubation at 70 °C
for 15 minutes. Synthesized single-stranded cDNA (sscDNA) was quantified, aliquoted
and stored in -80°C.

Real-Time PCR: Gene-specific primers for real-time PCR were designed by visual
inspection or by using ABI Prism Primer Express software (Applied Biosystems). For
SPF1 they were: 5’-TGCAGTGATCCTGGCATCTATG-3’ and 5’-
TGAGGCTTTGTCTGGAAGCAG-3’, yielding an amplicon of 108 bp; for SPF2: 5’-
TCAGAGGCCGGCGTCTATGT-3’ and 5'-GTGAGCTCCTTATCATATTTCTGCAT-3’ (amplicon of
129 bp); for SPF3: 5’-AGCCTCACCTGCCTCCAGG-3’ and 5-CATCGCCTTGAGACTCTGCAG-
3’ (amplicon of 146 bp). Each 20-pl PCR reaction contained 0.2 pg of single-stranded
cDNA or template, gene-specific primers (200 nM each), 3 mM Mggl dNTP mix (200

UM each), 1.25 unit of AmpliTaq Gold (Applied Biosystems), 0.2 units of AmpEraseUNG
to prevent product carryover, and 1x SYBR Green PCR buffer. A standard curve was
created for each pair of gene-specific primers with 10-fold dilutions of template (pTYB11
Reall, Real2, and Real3). Cycling conditions were: 2 minutes at 50°C to activate
AmpEraseUNG, initial denaturation for 10 minutes at 95°C, followed by 40 cycles of:
denaturation for 15 seconds at 95°C and 1 minute of annealing/extension at 58°C. In
order to detect nonspecific amplification, dissociation curves were established for each

PCR product or PCR products were analyzed by gel electrophoresis.
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RESULTS AND DISCUSSION

Sequence Alignments

Measurement of mRNA levels was chosen as the first means for assessing expression of
the three human SPF genes. First, the mRNA sequences of three SPFs were aligned with
use of multiple sequence alignment tool AlignX (VectorNTI, Invitrogen). This alignment
revealed the regions of highest similarity and those that were less conserved (Fig. 2.3).
SPF1 and SPF2 mRNAs were 66% identical, SPF1 and SPF3 mRNAs were 59% identical,
while SPF2 and SPF3 mRNAs were 61% identical.
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Figure 2.3: Multiple sequence alignment of the three human SPF mRNAs (sections 1-
52). NM_012429, human SPF1 mRNA, 2752 bp; NM_174975, human SPF2 mRNA, 2065
bp; NM_144977, human SPF3 mRNA, 2500 bp. This multiple sequence alignment was
created with use of the sequence comparison algorithm AlignX of Vector NTI Advancel0
(Invitrogen). The SPF gene thought to correspond to the most widely characterized SPF
is NM_012429. Sections 11, 13, 14 and 18 are annotated to show the primers used for
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the Multiple Tissue cDNA Arrays, as described below. Sections 25 and 26 are annotated
to show the oligonucleotide probes used for hybridization to Multiple Tissue Expression

arrays, as described below.

Cloning of SPF2 and SPF3 cDNAs

The coding sequence for SPF1 was already available in our lab and had been cloned into
the pTYB4 vector (New England Biolabs, Inc.). | was unable to amplify the full-length
cDNA for SPF2 from human liver or small intestine cDNA libraries, despite a variety of
reaction conditions and multiple primer pairs tested. Only a ~600 bp fragment (302-882
bp of the corresponding mRNA) was able to be amplified from a human small intestine

cDNA library, and it was subsequently cloned into the Zero Blunt TOPO vector.

The SPF3 c¢cDNA was amplified from a human lung cDNA library with sequence-specific
primers derived from the published transcript sequence (NM_174977). The sequence of
the polymerase chain reaction (PCR) product was determined and confirmed to be
identical with SPF3. This PCR product was cloned into the Zero Blunt TOPO shuttle
vector (Invitrogen), plasmid DNA was isolated, the insert was released with Ndel and
Xhol, purified, and cloned into the bacterial expression vector, pTYB2 (New England

Biolabs, Inc.).

Multiple Tissue cDNA Panels

The expression of the three SPF genes was first analyzed by PCR using gene-specific
primers on a set of first-strand cDNAs generated from 8 human tissues (MTC | panel,
Clontech). The tissues analyzed were: heart, brain, placenta, lung, liver, skeletal muscle,
kidney and pancreas. Gene-specific primers for each sequence were designed and the

specificity of each primer-pair was tested by PCR on cDNA templates for each SPF cDNA
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available in the laboratory. Multiple primer-pairs were tested and the best specificity

was obtained with the following primers, as shown in Table 2.2.

Table 2.2: Gene-specific primers used in the MTC-PCR experiments.

Gene Primers PCR Annotation in
product
Fig 2.2
size
Fw: 5'-CCACCAGACCACAAAGTTG-3’ in red
SPF1 ~200 bp
Rv: 5'-GGCTTTAACAACAAAAAGACG-3’ in Sections 11&14
Fw: 5'-CAGAGACCCTGAAGTTCATG-3’ in green
SPF2 | pv: 57-CACGTACATGGACTTGGGG-3’ ~260bp | i sections 13/14
& 18
Fw: 5'-GTTGCATGAGTGTGAGCTGC-3’ in blue
SPF3 ~420 bp
Rv: 5'-CAGGTAGTAGCTCTTGGGC-3’ in Sections 11&18

These primer-pairs were highly specific for their cognate cDNAs, as shown in Fig. 2.4.
With the confirmed specificity of these gene-specific primers, the expression pattern of
the three SPF genes in tissues from a Multiple Tissue cDNA panel (MTC) was examined
(Fig. 2.5). SPF1 appeared to be expressed in all tissues, as, despite the smear, a band of
~200bp can be seen in placenta, pancreas, brain, liver and kidney. A band is less evident
in lung, heart and muscle, but from this experiment expression cannot be definitively

ruled out. Improved PCR results or another approach would be needed to rule out this
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possibility. For SPF2 no distinct band of ~260 bp was observed in any tissue. However,
the smearing pattern on the gel appears to be different for different tissues and this
may be due to some nonspecific binding of primers, or there might be some product
which is not visible due to the smearing. With SPF3 a clear result indicating no
expression in any of the tissues, except for pancreas, was obtained. In general, the
inability to obtain a clean PCR product in these tissues with these primers prevented the
unambiguous interpretation of these results, and therefore the outcome of this

experimental approach was deemed unsatisfactory.

A B C
SPF1 primers

SPF2 primers SPF3 primers

1 2 3 4 1 2 3 4 1 2 3 4

Figure 2.4: Specificity of the SPF primers. Gel electrophoresis of the PCR products
obtained with A, SPF1l-specific primers; B, SPF2-specific primers; C, SPF3-specific
primers. In each panel the lanes are as follows: lane 1, 500-bp DNA ladder; lane 2, PCR
product with SPF1 as a template; lane 3, PCR product with SPF2 as a template; lane 4,

PCR product with SPF3 as a template.
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SPF1 vector
pancreas
SPF2 vector
pancreas
SPF3 vector

‘: placenta

7 8 9 10 12 13 14 15 16 17 18 19 20

SPF1 primers SPF%rimers SPF3 primers

Figure 2.5: PCR screen on Multiple Tissue cDNA panels for expression of SPF1, 2 and 3.
Gel electrophoresis of the PCR products obtained with each set of primers is as follows:
A, lane 1, 500-bp DNA ladder; lane 2, glyceraldehyde-3-phosphate dehydrogenase
(G3PDH) PCR product (1000 bp) from control cDNA provided by the manufacturer; lanes
3-11, PCR products obtained with SPF1 primers on different tissue cDNA templates;
lanes 12-20, PCR products obtained with SPF2 primers. The DNA templates are
indicated above each lane. B, lane 1, 500-bp DNA ladder; lane2, empty; lanes 3-10, PCR
products obtained with SPF3 primers on different tissue cDNA templates, as indicated

above the figure.

Multiple Tissue Expression arrays

Because of the inconclusive results obtained with the MTC-PCR approach described
above, hybridization of gene-specific probes to Multiple Tissue Expression (MTE) arrays
was chosen as an alternative approach to assess tissue expression patterns. MTE arrays
consist of a nylon membrane with immobilized polyA™ RNA from 75 different human
tissues (Table 2.3), allowing the screening of a broad range of tissues in a single
experiment. Moreover, the probes for this experiment were designed to the 3'-
untranslated regions of the mRNAs, which share much less identity between SPF genes

39



than do the coding regions. Therefore, these probes were expected to overcome the
problems encountered with primer specificity in the earlier MTC-PCR experiments. The
probe sequences used in these experiments are indicated in Fig 2.3 in Sections 25 and
26, and are listed in Table 2.2. Probes were hybridized to the MTE arrays as described in
Materials and Methods (see below). After hybridization the signal from the mRNA dots
was analyzed and net intensities were determined. As shown in Figure 2.6, for the SPF1
transcript the strongest signal was obtained in mammary gland (F9), stomach (B5) and
liver (A9). The signal from trachea (H7), prostate (E8) and testis (F8) was weaker but
noticeable. There was no distinguishable signal from either SPF2 or SPF3 in this

experiment (Figures 2.7 and 2.8).

High expression of SPF1 in liver was not surprising, as it is a main site of cholesterol
biosynthesis. Similarly, prostate and testis are also sites of cholesterol and sex hormone
synthesis. Moreover, high expression of SPF1 in liver and prostate has been
demonstrated by others . Mammary gland, especially during lactation, is a site of
intensive lipid uptake, de novo biosynthesis, transport and excretion; the expression of
SPF1 in this tissue is consistent with a role for this protein in cholesterol synthesis
and/or processing. The basis for expression of SPF in trachea and stomach is less
evident, but suggests that SPF may have additional functions not yet recognized. It
should be noted that polyA®™ RNA was prepared from the whole organs without
distinguishing specific cell-types within the organ, and it is possible that SPF is important
in particular cell-types within an organ. Indeed, there are reports demonstrating the
presence of SPF in endothelial cells of various organs or tissues, consistent with a model
in which SPF serves as a transporter protein and may be involved in lipid absorption or
secretion events “. Further investigation on cell-type specificity of expression within

various tissues and cell types will be needed to elucidate such functions.

MTE arrays were normalized to the expression levels of eight different housekeeping
genes to make possible the quantification of signal and conclusions regarding relative

transcript abundance in different tissues. For this reason different amounts of mRNA
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(from 37 to 1127 ng per dot) were loaded on each blot to account for differences in
transcriptional activity of different tissues (Table in Fig 2.3). Graphs in Figures 2.6-8
display net signal intensity obtained from each tissue after hybridization with each
probe. The results displayed are one-time measurements, as the probes could not be
stripped from the blots effectively. Due to the high cost of each blot, the hybridizations
were performed only once for each probe. For this reason the results were not treated
as quantitative and further conclusions on relative transcript abundance in different
tissues cannot be made from these data. Similarly, the results from each blot cannot be
compared to each other as the blotting was performed at different times with different
probes and there is no control that would allow for comparison between blots.
Therefore the relative levels of each transcript in a single tissue cannot be determined

from these data and another approach had to be undertaken to answer this question.
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Figure 2.6: Human SPF1 tissue specific expression. Multiple Tissue Expression (MTE)
Array probed for presence of SPF1 gene.
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Figure 2.7: Human SPF2 tissue specific expression. Multiple Tissue Expression (MTE)

Array probed for presence of SPF2 gene.
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Figure 2.8

Array probed for presence of SPF3 gene.

44



Table 2.3: Positioning and amount of all polyA+ RNAs loaded on Multiple Tissue

Expression blots.

Position Tissue ng/dot
Al whole brain 130
B1 cerebral cortex 204
C1 frontal lobe 124
D1 parietal lobe 205
El occipital lobe 153
F1 temporal lobe 205
G1 postcentral gyrus of cerebral cortex 146
H1 pons 113
A2 cerebellum left 227
B2 cerebellum right 339
C2 corpus callosum 252
D2 amygdala 156
E2 caudate nucleus 216
F2 hippocampus 170
G2 medulla oblongata 149
H2 putamen 175
A3 substantia nigra 140
B3 accumbens nucleus 119
C3 thalamus 142
D3 pituitary gland 309
E3 spinal cord 142
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A4 heart 376
B4 aorta 77
Ca atrium, left 253
D4 atrium, right 190
E4 ventricle, left 345
F4 ventricle, right 374
G4 interventricular septum 506
H4 apex of the heart 352
A5 esophagus 100
B5 stomach 491
C5 duodenum 161
D5 jejunum 422
E5 ileum 190
F5 ileocecum 176
G5 appendix 158
H5 colon, ascending 183
A6 colon, transverse 130
B6 colon, descending 124
Cé rectum 147
A7 kidney 340
B7 skeletal muscle 270
c7 spleen 188
D7 thymus 146
E7 peripheral blood leukocyte 185
F7 lymph node 254
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H7 trachea 189
A8 lung 158
B8 placenta 520
c8 bladder 183
D8 uterus 158
ES prostate 237
F8 testis 386
G8 ovary 153
A9 liver 1030
B9 pancreas 1127
Cc9 adrenal gland 245
D9 thyroid gland 188
E9 salivary gland 548
F9 mammary gland 101
A10 promyelotic leukemia, HL-60 39
B10 Hela S3 95
ci10 K-562, chronic myelogenous leukemia 69
D10 MOLT-4, lymphoblastic leukemia 42
E10 Raji, Burkitt's lymphoma 54
F10 Daudi, Burkitt's lymphoma 37
G10 SW480, colorectal adenocarcinoma 57
H10 A549, lung carcinoma 43
All fetal brain 101
B11 fetal heart 238
C11 fetal kidney 284
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D11 fetal liver 237
E11 fetal spleen 249
F11 fetal thymus 183
G11 fetal lung 239
Al2 yeast total RNA

B12 yeast tRNA

C12 E.coli rRNA

D12 E.coli DNA

E12 Poly r(A)

F12 human Cot-1 DNA

G12 human DNA 100
H12 human DNA 500

Real-Time Polymerase Chain Reaction (RT-PCR) with the use of a standard curve was
employed to assess the relative levels of expression of three SPF transcripts in selected
tissues. First, the template for the standard curve was created by cloning a short
segment of each SPF cDNA into the single vector (Fig. 2.9).

dilutions was prepared and the standard curve for each SPF gene was generated (Fig.

2.10).
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Figure 2.9: Template for RT-PCR Standard Curve. A segment of each SPF cDNA was

cloned into the pTYB11 vector.
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Figure 2.10: Standard curves generated for each SPF separately from the same

template.

Gene-specific primers were designed for each transcript and the specificity of these

primer pairs was confirmed by standard PCR (Fig.2.11).
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Figure 2.11: Specificity of SPF primers used for RT-PCR. Gel electrophoresis of the PCR
products obtained with SPF1-specific primers, SPF2-specific primers, SPF3-specific
primers on SPF1, SPF2 and SPF3 templates; NTC- no template control (water). For each
pair of primers only a band for specific template was obtained, indicating no

crossreactivity with the other two SPFs.

The expression of each SPF mRNA transcript relative to the other two SPF transcripts
was determined with RNA from liver, stomach, and mammary gland; these tissues were
selected because the MTE blots indicated that all three SPF transcripts were present in
these tissues. First, total RNA was reverse-transcribed to a single-stranded cDNA
template and the expression of each SPF transcript was measured by real-time PCR with
gene-specific primers. The quantity of each transcript in these three tissues then was
determined with use of the standard curve. As anticipated from the MTE hybridization

results, the SPF1 transcript was most abundantly expressed in these tissues (Fig. 2.12).
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Figure 2.12 Relative expression levels of the three SPF transcripts in liver, stomach and

mammary gland, as determined from the RT-PCR experiments.

In liver, SPF1 mRNA was ~20 fold higher than SPF3 mRNA, followed by very low levels of
SPF2 mRNA. Liver was the only tissue where SPF2 mRNA was detectable. In stomach
and mammary gland the trend was similar, with SPF1 mRNA levels higher than SPF3

levels by ~5 fold in stomach and ~70 fold in mammary gland (Fig. 2.11).

Summarizing, SPF expression was most evident in liver, stomach, and mammary tissue,

with levels in liver being at least 50-fold higher than those found in other tissues. My
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studies further show that, of the three SPF transcripts, SPF1 is the most abundant,
followed by approximately 20-fold lower expression of SPF3 and negligible expression of
SPF2. Although | had hoped to uncover differential expression of these genes in various
tissues suggestive of functional differences, the expression patterns did not support this
hypothesis. In all tissues where SPF was present, SPF1 expression dominated,
suggesting that SPF2 and SPF3 were either non-functional, of marginal importance, or
were expressed only in specific conditions or developmental stages. Further studies will

be needed to identify any such conditions.

Copyright © Elzbieta llona Stolarczyk 2009
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Chapter 3 : ABILITY OF THE SPF3 PROTEIN TO STIMULATE CHOLESTEROL SYNTHESIS

INTRODUCTION

Homology is defined as similarity between two sequences or structures that is
attributed to their shared evolutionary history. There are two types of homologous
genes: orthologs and paralogs. Homologous sequences are referred to as orthologs if
the point of divergence was a speciation event. Otherwise they are paralogs of one
another, which is the case for the three human SPF genes. A common paradigm in
proteomics is that structure defines function. Functional assignment is often made
based on sequence or structural similarity; i.e., if a hypothetical protein is similar in
sequence or structure to a known protein, it is often provisionally assigned that same
function. It is thought that orthologs are more likely than paralogs to retain the same
function, because the events that give rise to paralogs, such as gene duplication and
horizontal gene transfer, provide opportunity for diversification of function through the

relaxation of selective pressure ***.

Experimental Rationale

Although it is clear that SPF1 can stimulate squalene monooxygenase in vitro and
cholesterol synthesis when expressed in cultured hepatoma cells ¥, it is not known if
SPF2 and SPF3 possess the same stimulatory properties. Based on the high degree of
sequence similarity between these gene sequences, | hypothesized that SPF2 and SPF3
might also stimulate cholesterol synthesis. However, as noted above, homology does

not necessarily imply functional equivalence. Therefore, this hypothesis should be
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tested experimentally. To do so | chose microsomal assays and hepatoma cell culture as

experimental test systems.
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MATERIALS AND METHODS

Recombinant Protein Expression and Purification

Recombinant protein was purified with use of the IMPACT (Intein Mediated Purification
with an Affinity Chitin-binding Tag) protein purification system (New England Biolabs).
The pTYB2 vector used for cloning is a fusion vector in which the C-terminus of a cloned
protein is fused to the intein tag followed by chitin binding domain. The pTYB2 vector
containing the SPF3 coding sequence (pTYB2 SPF3) was transformed into E.coli ER2566
competent cells carrying T7 RNA polymerase gene. Cells were grown at 37°C in 4 liters
of LB medium containing 100 pug/ml ampicillin. When the ORoo of the culture reached

0.6-0.8, protein expression was induced with IPTG at a final concentration of 0.5 mM.
Cells were incubated overnight at constant agitation at room temperature. On the next
day the cells were harvested by centrifugation at 5,000 x g for 10 minutes at 4°C. The
cell pellet was resuspended in 100 ml of ice-cold Column Buffer (20 mM Tris-HCI, 500
mM NaCl, 1 mM EDTA, pH 8.0). Cells were divided into 20-ml portions and lysed by
sonication on ice with 10-second bursts for a total of 5 minutes. A cleared lysate was
obtained by centrifugation at 10,000 x g for 1 hour at 4°C. To reduce viscosity, lysates
were treated with DNase for 30 minutes on ice. Cleared lysates were loaded onto the
chitin column at 0.5 ml/min at 4°C. The column was washed with 10 bed-volumes of
Column Buffer at 2 ml/min. On-column self-cleavage of the chitin-bound intein tag was
induced by incubating column overnight in Column Buffer containing 50 mM pB-
mercaptoethanol and eluting the next day with Column Buffer. Eluted protein was then
concentrated, the protein concentration was measured by the Bradford assay and its
quality and purity was checked by SDS-gel electrophoresis, followed by Coomassie blue

staining. Protein was aliquoted and stored at -80°C.
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Squalene monooxygenase assay

Preparation of the liver microsomal fraction: Rats were killed by decapitation, the liver
excised, and microsomes were prepared by standard procedures *. In brief, the liver
was minced thoroughly with scissors, transferred into 2 volumes of ice-cold
homogenization buffer (100 mM Tris-HCI buffer at pH 7.4, containing 0.1 mM EDTA) and
homogenized using a Potter-Elveham homogenizer. All subsequent steps were carried
out at 4°C. The samples were centrifuged at 10,000 x g for 20 min, and the pellet was
discarded and the supernate was centrifuged at 100,000 x g for 60 min. The upper, lipid
layer was removed and the cytosolic supernatant fraction collected. The microsomal
pellet was resuspended with ice-cold homogenization buffer and recovered by 100,000 x
g centrifugation for 60 min. The microsomal fraction was resuspended at ~20 mg of
protein/ml in homogenization buffer and the cytosolic fraction (100,000 x g supernate)
diluted to ~20 mg of protein/ml. The protein content was determined by Bradford assay

with Coomassie Plus Reagent (Pierce). Aliquots were stored at -80°C.

Squalene Monooxygenase Assay: Microsomal squalene monooxygenase activity was
determined with rat liver microsomes (400 pg/incubation) in a final volume of 0.2 ml as
described previously 2. Radiolabeled **C-squalene was synthesized by SRI International
(Menlo Park, CA) and used at 7 mCi/mmol. In brief, 200 pug of microsomal protein, 30
UM FAD, 40 uM [*C]squalene, 10 pg of phosphatidylglycerol, and 0.3 mM AMO 1618
(Calbiochem) to inhibit oxidosqualene cyclase in 200 pl of 20 mM Tris-HCI buffer, pH 7.4,
with 1 mM EDTA. Reactions were started by the addition of 1 mM of NADPH and placed
in a 37°C water bath. After 1 h the incubation volume was brought to 1 ml with water
and the reactions were stopped by the addition of 0.5 ml of 10% KOH in methanol. The
tubes were capped, lipids were saponified at 80 °C for 1 h and then extracted with 3 ml
of petroleum ether. The solvent layer was removed by centrifugal evaporation, the
lipids resuspended in 50 ul of petroleum ether and spotted onto silica thin-layer plates.
Lipids were fractionated with 5% ethyl acetate in hexane, visualized with iodine vapor

stain, and quantified by electronic autoradiography (Packard Instant Imager). The ability
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of SPF to stimulate squalene monooxygenase was determined by adding 0.8 pg of
purified recombinant protein, unless indicated otherwise. Triton X-100 at 0.1% was

used as a reference for maximal activation of microsomal squalene monooxygenase.

Cell culture

MCcARH7777 rat hepatoma cells were cultured in Dulbecco's Modified Eagle Medium
(Gibco) supplemented with 1x Penicillin-Streptomycin mixture (Invitrogen) and 10%

Fetal Bovine Serum (Invitrogen).

Transfections

The day before transfection, cells were plated onto glass coverslips at the density 5x10°
cells per cm’  On the next day plasmid DNA was transfected into cells with use of
Fugene 6 (Roche Diagnostics). Plasmid DNA was mixed with Fugene 6 reagent in serum-
free medium at a ratio of 1 ug:5 pl, and complexes were allowed to form for 30 min at
room temperature. The medium on the cells was replaced with antibiotic-free medium
with 10% FBS and the transfection mixture was added dropwise to the cells. Cells were

assayed 48 hours post-transfection.

Cholesterol synthesis assay

Cholesterol synthesis was measured 48 hours post transfection as follows. The media
was replaced and *C-acetate at 1 uCi/35 mm well was added and cells were incubated
for 3 hours at 37°C. The media was removed, the cells were washed with PBS, and 1 ml
of water was added and the cells were released by scraping. Cells were lysed by
sonication in a water bath for 1 minute, after which 3 ml of a chloroform:methanol (2:1)

mixture was added to each tube and the mixture was vortexed vigorously 5-10 times.
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The lower fraction containing lipids was transferred into a new tube and the solvent was
evaporated under liquid nitrogen. Samples were resuspended in 50 pl of a chloroform:
methanol mixture and spotted onto silica thin-layer plates. Lipids were fractionated
with petroleum ether:ethyl ether:acetic acid (60:40:1), cholesterol was identified by co-
chromatography of authentic standard visualized by iodine-vapor staining, and

guantified by electronic autoradiography (Packard Instant Imager).
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RESULTS AND DISCUSSION

Expression and purification of human recombinant SPF1 and SPF3 proteins

Following the cloning of SPF3 into pTYB2 vector, as described in Chapter 2, the SPF1 and
SPF3 proteins were expressed in E.coli strain ER2566 and purified following the protocol
for intein-fusion proteins with the IMPACT system (New England Biolabs, Inc.). Because
a full-length SPF2 cDNA could not be cloned, it was not possible to generate and test
this putative protein. The pTYB vectors are designed specifically for purification with the
IMPACT system, which attaches a self-splicing element (intein) followed by a chitin
binding domain to the carboxy-terminus of the expressed protein, which allows for
binding to a chitin affinity column. The expressed protein is then released with B-
mercaptoethanol, which promotes intein self-splicing and release of protein. The
cleaved, purified protein retains four extra amino acids at the C-terminus: Leu-Glu-Pro-
Gly. The concentration of recombinant proteins was measured with use of the BCA
protein assay (Pierce) and the purity was analyzed by SDS electrophoresis followed by

Coomassie Blue staining (Fig. 3.1).

46kD

ladder SPF1 SPF3 SPF3 SPF3 SFF3
1ug 1ug Tug 600 ng 780 ng

Figure 3.1: SDS-gel electrophoresis of recombinant SPF1 and SPF3 proteins.
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Stimulation of squalene monooxygenase activity by SPF3

The ability of the recombinant human SPF1 protein to stimulate squalene
monooxygenase activity by approximately 2-fold in microsomes has been reported *.
Maximal stimulation was achieved with 0.8 pg of recombinant protein in a 200-ul

8; 21; 46

incubation, while higher concentrations were inhibitory Therefore, a range of
concentrations was tested with the SPF3 recombinant protein (Fig. 3.2). Triton X-100,
which is strongly stimulatory to this enzyme in vitro, was included as a positive control.
Consistent with previous reports, recombinant SPF1 protein stimulated the activity of
squalene monooxygenase by ~2 fold. Statistical analysis by one-way ANOVA showed
that this stimulation is statistically significant (p < 0.05). In contrast, SPF3 protein was
unable to stimulate squalene monooxygenase activity across the range of
concentrations tested. This raises the possibility that the recombinant SPF3 protein has
other functions or needs other conditions, or cofactors not supplied in microsomal assay

to stimulate squalene monooxygenase. To address this possibility, the ability of SPF3 to

increase cholesterol synthesis in mammalian cell culture was tested.
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Figure 3.2: Squalene monooxygenase activity in the presence of recombinant SPF1 and
SPF3. Radiolabeled 2,3-oxidosqualene formation from squalene was visualized and
measured by electronic autoradiography (Packard Instant Imager). A) Radiolabeled 2,3-
oxidosqualene visualized on a thin-layer chromatography (TLC) plate. B) Quantitative

analysis of radiolabeled 2,3-oxidosqualene formation.
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Stimulation of cholesterol synthesis in rat hepatoma cells

Cloning

In order to express the SPF3 protein in rat hepatoma cells, its cDNA had to be cloned
into the mammalian expression vector pc3.1DNA(-) (Invitrogen). [The SPF1 cDNA had

23]

been cloned into this vector earlier The full-length SPF3 coding sequence was
amplified from pTYB2SPF3 vector with the use of primers incorporating Ndel and Xhol
restriction sites at the termini. The reverse primer incorporated a stop codon prior to
the restriction site. The amplified sequence was ligated into the Zero Blunt TOPO
vector, plasmid DNA purified, and the insert released with Nhel and Xhol restriction

enzymes. The insert was then purified and ligated into the mammalian expression

vector pc3.1DNA(-) vector.

Characterization of an antibody for quantitation of SPF3

To assess expression levels of SPF1 and SPF3 proteins after transfection into the
hepatoma cells, an antibody detecting both proteins was needed. Rabbit polyclonal
hSec1412 antibody (GenWay) was previously tested on immunoblots and in
immunofluorescence and showed a very good signal and the ability to detect the
human, rat and mouse SPF proteins. To address the question of whether this SPF1
antibody also recognizes the SPF3 protein, 50-250 ng of each protein was fractionated
by SDS-polyacrylamide gel electrophoresis, followed by electrophoretic transfer for
immunoblotting. Band intensities were measured and plotted against the protein
amount. It was found that rabbit hSec14l2 antibody (GenWay) detects both SPF1 and
SPF3, although it has approximately 3-fold better sensitivity for SPF1 (Fig. 3.3).
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Figure 3.3: Detection of SPF1 and SPF3 proteins with rabbit Sec14l2 antibody. A)
Immunoblot of SPF1 and SPF3 recombinant proteins probed with rabbit polyclonal

Sec14l2 antibody (GenWay, Inc). B) Semi-quantitative analysis of immunoblot.

HA epitope cloning
To achieve more comparable results, site-directed mutagenesis was employed to insert
an hemagglutinin (HA) epitope at the C-terminus of SPF1 and SPF3 (this cloning
procedure is described in Chapter 4). In subsequent experiments, rabbit polyclonal HA-
probe (Y11) antibody (Santa Cruz Biotechnology, Inc.) was used to compare protein

expression levels.
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Cholesterol synthesis assay with SPF1 and SPF3

Rat hepatoma cells were transfected with SPF1, SPF3, or vector plasmid with Fugene6
transfection reagent (Roche) on day 0. On day 2 de novo cholesterol synthesis from e
acetate was measured in a 3 h window. Results from 3 separate experiments are shown

below (Fig. 3.4).
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Figure 3.4: Stimulation of cholesterol synthesis in rat hepatoma cells upon transfection
with SPF1/3 expression plasmids. White bars: control (lacZ-transfected cells); red bars,
SPF1-transfected cells; blue bars, SPF3-transfected cells. Each value represents the
mean * S.E. of one experiment carried out in triplicate. Statistical analysis was
performed with one-way ANOVA followed by Tukey’s Multiple Comparison Test; a single
asterisk (*) indicates a significant difference from the control with p<0.05; a double

asterisk (**) indicates a p value <0.01.

As can be seen from this set of experiments, SPF3 was just as effective as SPF1 in
stimulating cholesterol synthesis in transfected hepatoma cells. This result is in contrast

to the lack of stimulation obtained with SPF3 in microsomal squalene monooxygenase
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assays (Fig. 3.2). To ensure that SPF3 expression in these cells was comparable to that
of SPF1 in SPF1-transfected cells, mRNA and protein levels were determined in cells
transfected with each plasmid. As shown in Fig. 3.5, mRNA and protein expression
levels varied significantly between experiments, probably reflecting transfection
efficiency. Within an experiment generally similar levels of expression were obtained
for both proteins, suggesting that SPF1 and SPF3 proteins have similar
synthesis/degradation profiles. Moreover, protein levels correlated reasonably well
with  mRNA levels within each experiment for each expression construct, again
suggesting that the differences in protein levels between experiments largely reflected
transfection efficiency rather than differences in transcription, translation, or mRNA or

protein stability for either protein.

65



A)

RNA amount
[fold]

5y
~

Protein amount

[ratio HA tag signal/ B-actin]
T T
]
g

9000

8000
7000
6000
5000+
4000
3000
2000
1000

0

AR A QR SRR %A G L
F F F & X &K
-
exp#l exp#2 exp#3

AR < & KL
P A A A A
N Y p—
exp#l exp#2 exp#3

HA tag _ --

Protein amount

RNA amount

66



Figure 3.5: Expression levels of SPF1 and SPF3 in transfected rat hepatoma cells. Data
are taken from three separate experiments. A) RNA levels assessed by RT-PCR; B)
protein levels as determined from semiquantitative analysis of immunoblot images
(shown below the graph). Proteins were probed with an antibody against the HA
epitope (Y11); B actin was probed with a mouse anti B-actin antibody. Intensities of the
bands were quantified with use of Imagel software (NIH, MD) and expressed as the ratio

of HA tag signal/B actin. C) Correlation of RNA and protein levels.

To assess the transfection efficiency of these plasmids, immunofluorescent staining of
transfected cells was employed, using an antibody that recognizes the added HA
epitope of each protein. Representative pictures are shown in Fig. 3.6. In these
experiments transfection efficiencies were uniformly low (< 10%), but did not differ
greatly between experiments or between plasmids. Moreover, the intensity of the
staining did not differ between the plasmids, suggesting that both proteins were equally
well expressed in these cells. In experiment #1 roughly ~1% of cells expressed SPF1 and
~3% expressed SPF3; in experiment #2 ~4% cells expressed SPF1 and ~8% expressed
SPF3; in experiment #3 ~1% of cells expressed SPF1 and ~6% expressed SPF3. |In
general, higher transfection efficiencies yielded higher mRNA and protein expression
levels, and largely correlated with the expression the corresponding SPF protein:
Experiment 2 showed relatively high transfection efficiency for both plasmids, and the
highest protein and mRNA levels as assessed by immunoblotting and RT-PCR,
respectively; Experiment 3 showed the greatest difference in transfection efficiency
between the two plasmids, and also the greatest difference in SPF protein expression

levels.

67



SPF1-HA SPF3-HA

Figure 3.6: Transfection efficiency of SPF1 and SPF3 expression plasmids as
determined by immunofluorescent staining. Red, HA tag; blue, DAPI nuclear stain.
Representative pictures from three separate experiments. In experiment #1 ~1% of
cells expressed SPF1 and ~3% expressed SPF3; in experiment #2 ~4% cells expressed
SPF1 and ~8% expressed SPF3; in experiment #3 ~1% of cells expressed SPF1 and ~6%

expressed SPF3.

When the ability to stimulate cholesterol synthesis (data from Fig. 3.4) is expressed
relative to the level of expression of each SPF protein (data from Fig. 3.5), the “specific
activity” of each SPF can be determined, as shown in Fig. 3.7. From this analysis it
appears that SPF1 is slightly more effective that SPF3 in its ability to activate this

pathway, although the difference is not statistically significant.
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Figure 3.7: Specific activity of SPF1 and SPF3 proteins to stimulate cholesterol
synthesis. A) Data from three separate experiments; activity of SPF1 protein in each
experiment was set as 100% in order to enable comparison with SPF3 “specific” activity

B) Average of the same data.

Several conclusions can be drawn from this data. The ability of SPF proteins to stimulate
cholesterol synthesis appears quite robust; this conclusion is based on the 1.5- to 2-fold
increase in radiolabel incorporation into cholesterol in cultures in which less than 10% of

the cells are transfected with an expression plasmid. This suggests that the rate of
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cholesterol synthesis in transfected cells is as much as 10-fold higher than that in
untransfected cells. Secondly, the ability of SPF3 to stimulate cholesterol synthesis
appears not to be dependent on a stimulation of squalene monooxygenase activity, as
the recombinant protein was largely inactive in microsomal assays of squalene
monooxygenase activity (Fig. 3.2). This is in marked contrast to SPF1, which is able to
double the activity of this enzyme. This suggests that SPF3 acts at a second site in the
cholesterolgenic pathway, likely HMG-CoA reductase, the well-recognized regulatory
step in cholesterol synthesis. It has been shown by this laboratory that SPF1 increases
the activity of this enzyme in cell culture and in vitro *. Because HMG-CoA reductase is
typically the rate-limiting step in cholesterol synthesis, stimulation of this activity is
almost certainly necessary to increase the overall rate of cholesterol synthesis in whole
cells, with stimulation of squalene monooxygenase playing a secondary role. Thus,
although SPF3 does not stimulate squalene monooxygenase activity, it may increase
cholesterol synthesis by acting at HMG-CoA reductase to increase the overall activity of

this pathway.

Finally, it is worth noting that SPF3 expression is approximately 20-fold lower than SPF1
in liver, based on the expression data presented in Chapter 2. Thus, in this highly
cholesterolgenic tissue SPF3 is not likely to play a significant role. It may assume greater
importance in other tissues, such as stomach or mammary gland, or during

development.

Copyright © Elzbieta llona Stolarczyk 2009
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Chapter 4 : INTRACELLULAR LOCALIZATION OF HUMAN SPF PROTEIN

INTRODUCTION

Supernatant Protein Factor (SPF) was originally purified from rat liver cytosol °, and
could not be detected in the microsomal fraction. Comparison to the database of
known proteins revealed that SPF possesses a lipid binding domain (termed Sec14), and
Golgi dynamics (GOLD) domain. This suggests that SPF might be an intracellular lipid
transport protein and that it may interact with membrane components upon ligand

binding or in response to certain stimuli.

In African green monkey kidney (Cos-7) cells, heterologously expressed SPF protein

[3*. It was further shown

translocated into the nucleus upon the addition of a-tocophero
by luciferase reporter assay that SPF, upon addition of a-tocopherol to the cells, acts as
a transcription factor *. However, in cervical carcinoma (Hela) and mouse mast cells,
heterologously expressed SPF protein localized to the cytosol and failed to move to the

nucleus in response to a-tocopherol %,

Recent studies by Zingg et al. ©* have demonstrated that in mastocytoma (HMC-1) and
lung carcinoma (A549) cells, endogenous SPF1 protein partially co-localized with the
Golgi protein giantin. In Hela and adrenocortical (H295R) cells SPF co-localized with a
mitochondrial marker. Localization of SPF1 to the Golgi suggested a role in this
secretory pathway, while association with mitochondria was suggested to have specific
function in the transport of lipid molecules (vitamin E, squalene, phospholipids) into and

out of mitochondria ®. All these reports suggest that SPF localization events are cell-
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type specific and may have different roles depending on cell type, ligand, or specific

conditions.

Incubation of microsomes with the cytosolic fraction or recombinant SPF protein results
in an increase of squalene monooxygenase activity. This effect was potentiated by
addition of ATP to the cytosol, which suggested that secondary modification by
phosphorylation may be necessary for full SPF activity *. In support of this suggestion,
addition of certain kinase inhibitors blocked the ATP-induced increase in SPF activity, at
the same time narrowing the pool of kinases to protein kinase A (PKA) and C (PKC). A
decrease in cytosolic SPF activity was also observed upon addition of various protein
phosphatases, which were able to reduce SPF activity by “50%. To extend these studies,
recombinant SPF protein was preincubated with PKA or PKC in the presence of ATP prior
to addition to the squalene monooxygenase assay. In both cases there was ~2 fold
increase in SPF activity *. The conclusion drawn from these studies was that SPF is
activated by PKA and PKC® by phosphorylation on one or more serine or threonine
residues. The SPF sequence contains three consensus sequences for PKA and six for
PKC. It was later found that rat SPF2 is also stimulated by PKA *. Sequence alignment
of rat and human SPF proteins revealed a single conserved PKA consensus site;
substitution of a serine in this consensus site with alanine resulted in a mutated protein
(SPF1S289A) which retained basal SPF activity in the microsomal assay but could no
longer be activated by PKA or C. These in vitro results were later confirmed in a cell

culture system *.

Cholesterol synthesis was elevated in rat hepatoma cells upon
transfection with SPF and it was further increased when dibutyryl-cAMP, a PKA
activator, was added. Total loss of SPF stimulation was observed upon addition of a cell
permeable PKA inhibitor, 14-22 amide. Morover, expression of the phosphorylation
mutant (SPF1S289A) failed to result in stimulation of cholesterol synthesis in hepatoma

cells, indicating that this serine residue (S289) has to be phosphorylated to stimulate

cholesterol synthesis in whole cells.
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Since GOLD domain stands for Golgi Dynamics domain, and the GOLD domain is thought
to be involved in protein-protein interactions and intramembrane events, it was
suggested that SPF associates with Golgi. One of the means to test this hypothesis was
the construction of a GOLD domain deletion mutant (SPF1del111/SPF292). This
truncated protein was expressed in rat hepatoma cells and indeed, was unable to
stimulate cholesterol synthesis in these cells. This result revealed that the GOLD domain
is necessary for the SPF stimulatory effect and suggested that interaction with Golgi may
be required for SPF function. To determine if interaction with Golgi is required for
stimulation of cholesterol synthesis by SPF1, studies with brefeldin A, which disrupts
Golgi structures, were carried out *. The stimulatory effect on cholesterol synthesis in
SPF1-overexpressing cells was totally lost in brefeldin A-treated cells, which could be
reversed by removal of the disaggregator, allowing reassembly of the Golgi bodies.
These results indicated that SPF-mediated stimulation of cholesterol synthesis depends

on intact Golgi and phosphorylation of SPF %

Experimental Rationale

SPF proteins belong to a family of lipid binding proteins and are thought to be involved
in intracellular transport of small lipid molecules. The structure contains lipid binding
domain and GOLD domain that is thought to be involved in bringing cargo from ER
towards Golgi or in other protein-protein interactions. Previous studies have shown
that the SPF1 protein is activated by phosphorylation and that Ser289 is required for this
phosphorylation. Also, stimulatory the effect of SPF on cholesterol synthesis requires

intact Golgi and the GOLD domain is thought to mediate this putative interaction.

SPF is presumably a transporter protein and therefore | hypothesized that in response to
ligand binding or/and other stimuli it would redistribute within the cell. Two SPF
mutants, one having serine 289 replaced by alanine, and the other missing the GOLD
domain, are inactive, and therefore | hypothesized that, in contrast to the wild type
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protein, these mutant SPF proteins would fail to localize correctly in the cell during

cholesterol synthesis or upon phosphorylation.

To test this hypothesis, immunolocalization studies on hepatoma cells transfected with
an SPF expression plasmid or SPF mutants. Transfected cells were treated with
inhibitory and activating stimuli which were shown earlier to affect SPF activity
(dbcAMP, brefeldin A, PKAI, Vitamin E). Since these treatments and alterations have a
significant effect on the ability of SPF to stimulate cholesterol synthesis, | hypothesized
that they will also engender changes in SPF localization inside the cell. Identification of
the subcellular compartments to which SPF localizes in response to these treatments

would provide insight on the mechanism of SPF function.
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MATERIALS AND METHODS

Site directed mutagenesis by overlap-extension PCR

The PCR fragment (A-Mut-B) containing the desired mutation was obtained in a
sequence of reactions depicted on the scheme in Fig. 4.1 and was used in the whole
plasmid amplification reaction (WPA). A 50 pl WPA reaction consisted of: 50 ng of
template DNA (purified plasmid containing gene to be mutated, in this case pc3.1SPF1),
a primer pair (1 pl of A-Mut-B PCR fragment), 0.2 mM dNTPs, 1x Pfu buffer, and 2.5 U of
Pfu Turbo DNA polymerase. Reaction conditions were: 95°C for 1 minute, followed by
18 cycles of: 95°C for 1 minute, 55°C for 1.5 minutes, and ending with 68°C for 9

minutes.

Cell culture

MCcARH7777 rat hepatoma cells were cultured in Dulbecco's Modified Eagle Medium
(Gibco) supplemented with 1x Penicillin-Streptomycin mixture (Invitrogen) and 10%

Fetal Bovine Serum (Invitrogen).

Plasmid transfections

The day before transfection, cells were plated on glass coverslips at a density of 5x10*
cells per cm® On the second day plasmid DNA was transfected into the cells with use of
Lipofectamine™ (Invitrogen) or Fugene6 (Roche Diagnostics). Lipofectamine
transfections: Plasmid DNA was pre-complexed with Plus™ Reagent (Invitrogen) in
serum-free medium at the ratio 1 pg:10 pl and incubated at room temp for 15 min.
Medium-diluted Lipofectamine was added (2.5 ul per 1 pg of DNA) to form complexes
with the mixture and incubated at room temperature for 15 min. The media was

replaced with half of the recommended volume of serum and antibiotic-free DMEM
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medium. The transfection mixture was added dropwise to the cells and they were
allowed to incubate at 37°C. After 3 h the volume of medium was increased to normal
volume with DMEM containing 20% FBS and 2% penicillin/streptomycin solution.
Fugene6 transfections: Plasmid DNA was mixed with Fugene 6 reagent in serum-free
medium at the ratio 1 ug:5 ul and complexes were allowed to form for 30 min at room
temperature. The media was replaced with antibiotic-free medium containing 10% FBS

and the transfection mixture was added dropwise to the cells.

Immunofluorescence

To determine the cellular localization of the expressed SPF protein, cells were stained
with primary antibody against the hemagglutinin epitope (rabbit polyclonal HA-probe
Y11) followed by a secondary antibody conjugated to the fluorophore, which, upon
excitation, emits fluorescence with a maximum at the specified wavelength. For
colocalization studies antibodies for organelle-specific proteins were used. Cells, once
immunostained and mounted on the glass slides, were analyzed by confocal microscopy.
Efficiency of transfection was also confirmed through X-gal staining on cells transfected

with plasmid containing the lacZ gene.

Isolation of primary hepatocytes

Hepatocytes were prepared from mice as follows: mice were anesthetized with
Ketamine and the liver was perfused via the portal vein with 30 ml of liver perfusion
solution (Ca?" and Mg?*-free HBBS, 10 mM HEPES, pH 7.4, 0.1 mg/ml gentamycin sulfate,
and 0.5 mM EGTA) followed by 30 ml of collagenase solution (Ca?* Mg*'-free HBBS,
0.06% collagenase, supplemented immediately before use with CaCl,, to final
concentration of 0.5 mM) at 3ml/min. The liver was removed, transferred into a tissue

culture plate with collagenase solution and the liver capsule was removed, the
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hepatocytes were dissociated by shaking and filtered through a double layer of gauze.
The cells were pelleted at low speed in a microcentrifuge, washed twice, counted, and
viability determined by trypan blue exclusion. Hepatocytes were plated on coverslips
coated with collagen in 35 mm dishes at 0.5 x 10° cells per 1 ml in DMEM containing 5%
FBS. After 3 hr, the cells were washed and the medium was replaced with fresh
medium. On the following day the hepatocytes were stained for immunofluorescent

analysis.
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RESULTS AND DISCUSSION

Site-directed mutagenesis of SPF

The coding sequence for the hemaglutinin (HA) epitope (YPYDVPDYA) was inserted at
the carboxy termini of the SPF cDNAs previously cloned into the pc3.1DNA(-) plasmid
(SPF1, SPF1 mutants and SPF3). Insertion of the HA tags was carried out with site-
directed mutagenesis by overlap extension PCR, using the strategy depicted on the
scheme below (Fig. 4.1). In brief, two fragments of a target sequence are amplified in
two separate PCR reactions (A and B) by using, for each reaction, one universal (A or B)
and one mutagenic primer, which contains desired insertion, deletion or point mutation
(A-Mut, B-Mut). The two PCR products of these reactions were complementary at one
end and they served as a new, overlapping template for the next reaction. DNA
amplification on the overlapping template was performed with only the universal
primers (A and B). The overlapped PCR product containing the desired mutation (A-
Mut-B) was used as a primer pair for whole plasmid amplification of the original
template. The product of this amplification contains mutated DNA; to eliminate the
unmutated, original DNA template, digestion with the restriction enzyme Dpnl was
performed, taking advantage of its ability to cleave only methylated DNA.
Unmethylated, mutated plasmid was used to transform competent cells. These cells
were then grown on selective media, DNA isolated and sent for sequencing to identify
positive clones. As a result, the following constructs were obtained: pc3.1SPF1-HA,

pc3.1SPF1S289A-HA, pc3.1SPF1del111-HA, and pc3.1SPF3-HA.
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Figure 4.1: Scheme for insertion of the HA tag into the SPF plasmids.

Cellular localization of heterologously expressed SPF protein

Rat hepatoma cells (McARH7777) were grown in 6-well plates and on glass coverslips
and pc3.1SPF1-HA cDNA was transfected into the cells with use Fugene 6 Reagent
(Roche). On the second day post-transfection, the expression of SPF protein was

confirmed by immunoblotting using an antibody to the HA epitope, as follows. The cells
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grown on coverslips were fixed with ice-cold methanol and processed for
immunofluorescence. Coverslips were incubated with primary antibody against the HA
tag or against a marker of interest. To detect the signal, a secondary antibody
conjugated to fluorochrome was used. The coverslips were mounted on glass slides and
analyzed by fluorescent or confocal microscopy. Expressed SPF appeared to localize to

the cytosol (Fig.4.2).

-

Figure 4.2: SPF1-HA protein expressed in McARH7777 cells. A) HA probe (red); B)

Grp94 marker for endoplasmic reticulum (green); C) DAPI nuclear stain (blue); D) merge

of A, Band C.

To determine whether the heterologously expressed SPF protein changes its
intracellular location in response to phosphorylation, transfected cells were treated with
dbcAMP, a PKA stimulator, or 14,22-amide, a PKA inhibitor. No change in localization

was observed upon either of these treatments (Fig. 4.3 E-H).
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Since disruption of Golgi resulted in loss of the SPF-mediated stimulatory effect on
cholesterol synthesis , SPF-transfected cells were treated with brefeldin A for 3 hours
prior to immunostaining. Disruption of Golgi was confirmed by immunostaining for the
Golgi marker GM130 protein (Fig. 4.3 J). No change in SPF subcellular localization was
observed upon disruption of Golgi (Fig 4.3 I-L). Upon treatment with a-tocopherol SPF
protein was reported to translocate from cytosol into the nucleus in Cos-7 cells *. In
transfected rat hepatoma cells SPF protein appeared to remain in cytosol upon addition

of a-tocopherol (data not shown).
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Figure 4.3: SPF1-HA protein expressed in McARH7777 cells, treated with dbcAMP and
brefeldin A. Green - HA probe; red - Golgi marker (GM130); blue - DAPI nuclear stain.

Immunolocalization studies with mutant SPF proteins, previously shown to lose the
ability to stimulate cholesterol synthesis, were then performed. Phosphorylation
mutant (SPF1S289A) and GOLD domain deletion mutant (SPF1del111) were expressed in

rat hepatoma and cells processed for immunofluorescence. Compared with wild-type
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protein, no difference was observed in the subcellular localization of SPF1S289A mutant,
as it remained in the cytosol (Fig 4.4 E-H). Interestingly, the Golgi domain deletion
mutant, SPF1del111, localized to large vesicular formations around the nucleus, but
which appear to be different from Golgi (Fig 4.4 I-L). A similar result was found for the
protein-tyrosine phosphatase PTP-MEG?2, in which a deletion mutant consisting of the
Sec14 domain of this protein also associated with large vesicular structures surrounding
the nucleus **. This raises the possibility that the GOLD domain is not the only targeting
signal on SPF, and that the Sec14 domain, assumed to be involved only in lipid binding,
also contributes to the subcellular localization of these proteins. In support of this
hypothesis, p45, the rat ortholog of SPF2, associates with large cytoplasmic vesicles, and
this association is not disrupted by removal of the GOLD domain *. Together these
findings suggest that SPF targeting in the cell is a complex function of multiple

components of this multidomain protein.
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Figure 4.4: SPF1 and it mutants expressed in McARH7777 cells. Green - HA probe; red -

Golgi marker (GM130); blue - DAPI nuclear stain.

As mentioned earlier and shown in Fig. 4.3, heterologously expressed SPF protein
localized to the cytosol and did not appear to move in response to any of tested
treatments. Because expression from the transfected plasmid yields higher than normal
levels of the protein in the cell, subcellular movement in response to various stimuli may
not be evident, as the abundance of the protein may obscure the relocation of a small

but important fraction of the protein. It is also possible that the very high levels of
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expressed SPF protein overwhelm the cellular processing machinery, such as the
phosphorylation pathway, resulting in a majority of protein that is not properly modified
for activity. To address this possibility, | attempted to see where the endogenous SPF
localizes. Unfortunately, McARH7777 cells express negligible amounts of SPF, which is
undetectable by immunofluorescence with antibodies to SPF. Therefore, to assess
localization of endogenous SPF the studies were carried out with mouse primary

hepatocytes.

Antibody specific for SPF protein

Our custom-made chicken antibody against SPF was successfully used for
immunoblotting, however the results from immunofluorescence studies were
unsatisfactory. Various methods of fixation (4% paraformaldehyde, ice-cold methanol)
and blocking (BSA, goat serum) were tested, as well as range of antibody
concentrations. Despite these efforts, the background signal remained very high. The
most likely reason for this appeared to be the purity of the antibody. Therefore, the

antibody was purified by affinity chromatography.

Affinity chromatography takes advantage of specific binding between interacting
molecules. The system for chromatographic purification is composed of a column with
an immobilized ligand through which the mixture to be purified is passed. Only
molecules having specific binding affinity to the ligand stay on the column and are later
eluted. The appropriate ligand for antibody purification in this instance is SPF, and so
large quantities of recombinant SPF1 are needed. As the previously purified protein
exhibited some contamination when evaluated by SDS-polyacrylamide gel
electrophoresis, the protein was further purified by gel filtration. Gel filtration, also
called size-exclusion chromatography, separates molecules based on size. Multiple
fractions were collected, analyzed by electrophoresis, and those containing only the 46-

kD protein were pooled, resulting in significantly improved purity of the SPF1
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preparation. For affinity chromatography the recombinant SPF protein was immobilized
to a Sulfolink (Sulfolink, Pierce) column, taking advantage of free sulfhydryl bonds
(cysteines) on SPF. The chicken SPF primary antibody was applied to the column,
washed with several volumes of buffer, and eluted with a low pH glycine buffer and

subsequently neutralized by addition of 1M Tris-HCI, pH 8.5, before use.

Affinity-purified chicken SPF antibody was tested by immunostaining of SPF-transfected
cells. There was a marked increase in signal from transfected cells compared with signal
obtained with non-purified antibody, however the background remained high in cells

that did not express the transfected protein, and therefore unsatisfactory (Fig. 4.5).

Figure 4.5: Affinity-purified chicken SPF antibody shows significant background in
immunofluorescent staining. Hepatoma cells transfected with SPF1-HA protein and
stained with: A, affinity-purified chicken SPF antibody; B, HA probe; C, DAPI nuclear

stain; and D, merge of A-C.



Subsequently new commercial antibodies to SPF became available. | tested goat
polyclonal SPFa/B(N-18) and SPFa/B(N-14) antibodies (Santa Cruz Biotechnology, Inc.);
however, they showed a very weak and not very specific signal on immunoblots.
Fortunately, rabbit anti-human Sec14l2 antibody (GenWay Biotech, Inc.) yielded a
strong and very specific signal on immunoblots as well as in immunofluorescent

staining.

Before isolation of primary hepatocytes the expression of SPF in mouse and rat liver was
confirmed by immunoblotting. A reasonable amount of protein was detected in both
mouse and rat liver cytosol. This also demonstrated that the GenWay Sec1412 antibody

against human SPF detects proteins of the same size from mouse and rat (Fig. 4.6).
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Figure 4.6: SPF protein is present in rat and mouse liver cytosol. Immunoblot

developed with rabbit anti-human Sec1412 antibody (GenWay Biotech, Inc.).

Mouse primary hepatocytes were prepared as described in the Materials and Methods
section and plated on collagen-coated coverslips. The next day the cells were fixed and

processed for immunofluorescent staining (Fig.4.7).

It should be noted that there was no negative control in studies on primary hepatocytes,
as all were expected to express SPF. However, the conditions for immunofluorescence
were optimized earlier on McARH7777 cells, where endogenous SPF protein could not

be detected.
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Figure 4.7: Endogenous mouse SPF protein (red) localizes to the cytosol. Red, Sec14I2
antibody signal; blue, DAPI nuclear stain.

It appeared that endogenous SPF protein, as anticipated, is present ubiquitously in the
cytosol. To see if endogenous SPF protein moves in response to the treatments
described earlier, cells were treated for 3 hours with dbcAMP, PKAi (inhibitor), brefeldin

A, or a-tocopherol and processed for immunostaining.
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Figure 4.8: SPF protein localizes to cytosol in mouse primary hepatocytes and does not
relocate in response to various treatments. Treatments: A) none; B) 0.2 mM dbcAMP;
C) 0.1 uM PKAi; D) 100 nM brefeldin A; E) 50 uM a-tocopherol. Green —Sec14I2 antibody

signal; blue —DAPI nuclear stain.

Analysis by confocal microscopy showed no evident change in protein subcellular

localization (Fig. 4.8).
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Summarizing, | conclude that SPF either does not translocate in response to these
treatments or that perhaps only a small portion of the protein was responsible for the
effect on cholesterol synthesis and only this protein relocates within the cell, and that
this limited movement cannot be detected by immunostaining. Perhaps subcellular
fractionation and subsequent analysis of SPF content after these treatments would

reveal relative changes in localization, as well as the membrane structures involved.

This finding was a bit surprising, as the effect of these treatments clearly affected the

21; 22

ability of SPF to stimulate cholesterol synthesis It would appear that SPF is
relatively highly expressed in hepatocytes, an observation consistent with early
enzymology studies that demonstrated an abundance of this protein in cytosol. The
abundance of this protein would obscure subcellular changes in a small proportion of

the protein.

Copyright © Elzbieta llona Stolarczyk 2009
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Chapter 5 : REGULATION OF SPF EXPRESSION IN RAT HEPATOMA CELLS

INTRODUCTION

Shibata et al. ** found that plasma lipids levels were unchanged in SPF-null mice, despite
elevated levels of HMG-CoA synthase and squalene monooxygenase in liver. However,
during fasting plasma cholesterol levels decreased significantly in SPF-null mice, but not
in wild-type mice. Fasting decreased hepatic cholesterol synthesis in both wild-type and
SPF-null animals, with a greater reduction in SPF-null mice. The decrease in cholesterol
synthesis likely resulted from a pronounced decrease in the expression of the
cholesterolgenic enzymes HMG-CoA synthase, HMG-CoA reductase, and squalene
monooxygenase in both wild-type and knockout mice. Notably, in fasted wild-type

mice, expression of SPF mRNA and protein was elevated.

The data from SPF-null mice strongly suggests that SPF is upregulated upon fasting to
compensate, at least partially, for the decrease in cholesterol synthesis. The reason for
this compensatory increase is not clear. In agreement with these observations, previous
data from our lab have shown that SPF activity was decreased by about 50% in rats fed
high fat diet and returned to normal upon return to normal chow diet *’. The decrease
in expression was suggested to explain the decrease in SPF activity in liver preparations
from the high-fat diet animals, since activity could not be increased by in vitro

2, which this laboratory has shown to be able to activate SPF * %

phosphorylation
These results are in agreement with studies from SPF-null mice and suggest that
upregulation of SPF expression during fasting might be attributed, at least in part, to

removal of lipids from the diet.
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The gene that was deleted in SPF-null mice is a mouse SPF (mSec1412), an ortholog of
the human SPF1 gene (hSec1412) with 93% identity. The studies described below were
conducted in rat hepatoma cells, in which there are two established rat orthologs of
SPF: rat SPF (rSec14l2, with 94% identity to human SPF1) and rat SPF-like protein
(rSec1413/p45, with 97% identity to human SPF2).

SREBPs, Sterol Regulatory Element Binding Proteins, are membrane-bound transcription
factors that are master regulators of fatty acid and cholesterol biosynthesis. SREBP-1a
regulates enzymes responsible for biosynthesis of fatty acids and cholesterol, SREBP-1c
is specific for fatty acid biosynthesis, and SREBP-2 regulates cholesterol biosynthesis.
While SREBPs activate the transcription of genes responsible for sterol and fatty acid
synthesis in response to low levels of these lipids, the LXR-dependent regulatory
pathway is activated in response to elevated cellular sterols. Oxysterols, which are
oxidized derivatives of cholesterol, are the known endogenous ligands for the LXR
nuclear receptor. The LXRa receptor increases the expression of cholesterol efflux
genes and decreases cholesterol uptake and synthesis by suppressing SREBP activation,

and accelerating HMG-CoA reductase degradation *.

The following studies were undertaken to gain insight into the mechanisms that govern

the expression of SPF proteins.

Experimental Rationale

Fasting decreased hepatic cholesterol synthesis in both wild-type and SPF-deficient
animals with a greater reduction in knockout mice **. The decrease in the cholesterol
synthesis rate was accompanied by a pronounced decrease in the expression of
cholesterolgenic enzymes: HMG-CoA synthase, HMG-CoA reductase, and squalene
monooxygenase. Expression of the SPF transcript and protein was elevated in wild-type

mice during starvation. | hypothesized that serum deprivation similarly will induce
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expression of SPF in a hepatoma cell line, mimicking starvation in mice, facilitating
studies on the regulation of SPF in a cell culture system. Putative nuclear receptors

regulating SPF expression also will be identified.
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MATERIALS AND METHODS

Materials

Cholesterol, hydroxypropyl-B-cyclodextrin, 25-hydroxycholesterol, 22(S)-hydroxy-

cholesterol, and GW3965 were purchased from Sigma-Aldrich, Inc.

Preparation of cholesterol: cyclodextrin complexes. Cholesterol was dissolved in ethanol
(5 mg/ml) and 1 ml of that solution was dried under liquid nitrogen. Two ml of 5%
hydroxypropyl-B-cyclodextrin solution in water was added to the cholesterol and the
mixture was sonicated in a water bath at room temperature until the solution was

clarified.

Cell culture

MCcARH7777 rat hepatoma cells were cultured in Dulbecco's Modified Eagle Medium
(Gibco) supplemented with 1x Penicillin-Streptomycin mixture (Invitrogen) and 10%

Fetal Bovine Serum (Invitrogen), unless otherwise stated.

Preparation of Lipid-Deficient Serum. One volume of Fetal Bovine Serum (Invitrogen)
was mixed with one volume of diethyl ether and vortexed vigorously. The ether fraction

containing the lipids was removed and the delipidated serum was used for cell culture.

RT-PCR

Total RNA was isolated from cells with use of TRIzol reagent (Invitrogen) and the
concentration of RNA was measured spectrophotometrically with use of the Nanodrop
instrument (Thermo Scientific). The reverse transcriptase reaction and real-time PCR
were performed as described in Materials and Methods in Chapter 2. Gene-specific
primers for real-time PCR were designed using ABI Prism Primer Express software
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(Applied Biosystems). The sequences of the primers are displayed in Table 5.1. Results

were analyzed with use of Comparative C; method *°.

Table 5.1: Gene-specific primers used in real-time PCR.

Gene Primers

B actin Fw: 5’-CCGTGAAAAGATGACCCAGATC-3’

Rv: 5'-AATGCCAGTGGTACGACCAGA-3’

HMGcr Fw: 5- TCATCCTCACGATAACCCGGT-3’

Rv: 5’- GGCCGGCAATACCCAAAAT-3’

rSec14l2 Fw: 5’- AATTCCCACATGGTCCCTGAG-3’

Rv: 5- ACTTTCTTGGCATGGATGAAGC-3’

rSec14l3 Fw: 5’- CAGTATGAGCACTCGGTGCAGA-3’

Rv: 5’- GCTCCATCAGATGAGAACTGCC-3’
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RESULTS AND DISCUSSION

As fasting up-regulated the hepatic expression of SPF in mice **, | wanted to generate an
in vitro model using cultured hepatoma cells. To do this | started by changing the
concentration of glucose in the media and looking at its effect on SPF and HMG-CoA
reductase expression in treated cells. McARH7777 rat hepatoma cells are usually
cultured in high glucose (4.5 g/L) media; | cultured these cells at a low concentration of
glucose (1 g/L). After 48 hours RNA was isolated from the cells and the expression of
HMG-CoA reductase and the two rat SPF genes (Sec1412 and Sec14I3) was assessed by
real-time PCR. Although | anticipated an increase in SPF expression when the glucose
concentration was reduced (as is seen in fasting), lowering the glucose concentration in
the media had no significant effect on mRNA levels for HMG-CoA reductase or either
SPF gene; indeed, a trend toward a decrease in expression was seen (Fig. 5.1, orange
bars). Since this data showed that a reduction in the glucose concentration does not
result in the upregulation of SPF genes, | concluded that these conditions may not
appropriately mimic the fasting state in mice. This led to the conclusion that fasting
may alter other components of serum, including hormones and other nutrients; changes
in the level of these components may be responsible for the changes seen in SPF
expression in fasted animals. Since very little is known about SPF regulation, and serum
has multiple components, | decided to explore the role of serum in SPF expression.
When cultured hepatoma cells were maintained in serum-free medium for 48 h the
expression of both rat SPF genes was increased while HMG-CoA reductase expression
remained unchanged (Fig. 5.1, red bars). The increase in SPF transcripts was less than
100%, but statistically significant. Interestingly, when cells were cultured in low glucose
and serum-free media the increase in both SPF transcripts was more dramatic (Fig.5.1,

brown bars), indicating that removal of glucose potentiates the effect serum.
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This result supported the hypothesis that the increases in SPF expression induced by

fasting might be mediated by changes in serum components.
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Figure 5.1: Serum removal results in an increase in the expression of SPF proteins in
rat hepatoma cells; this effect is potentiated by removal of glucose. Cells were
cultured for 48 h in high or low glucose, with or without FBS. HG, high glucose; LG, low
glucose; FBS, fetal bovine serum; HMGcr, HMG-CoA reductase. Statistical analysis
performed by ANOVA, (*) p<0.05; (**) p<0.0001; N, number of experiments run in

duplicate.

To address this possibility, | have tried to identify the components of serum that could
alter SPF gene expression. Since SPF is known to upregulate cholesterol synthesis, |
hypothesized that a decrease in serum cholesterol levels might upregulate SPF
expression. As expected, when hepatoma cells were cultured in medium containing
serum from which the majority of lipids had been removed (lipid-deficient serum, LDS),
the expression of both SPF genes and HMG-CoA reductase was increased, although the

increase was not statistically significant (Fig. 5.2).
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Figure 5.2: Effect of delipidated serum on HMG-CoA reductase and SPF gene
expression. Cells were cultured for 48 h in high-glucose media in the presence of

normal (FBS) or delipidated (LDS) serum; n = 5.

By the same logic, since high cholesterol levels inhibit cholesterol synthesis through
negative feedback regulation, it was anticipated that SPF and HMG-CoA reductase
expression would be suppressed upon supplementation of the media with a mixture of
cholesterol:25-hydroxycholesterol  (10:1  pg/ml). Both cholesterol and 25-
hydroxycholesterol downregulate cholesterol biosynthesis via inhibition of SREBP
processing *'. Indeed, as shown in Fig. 5.3, supplementation of the media with a mixture
of cholesterol:25-hydroxycholesterol resulted in a decrease in the expression of HMG-
CoA reductase and both SPF genes by up to 50%. These results indicate that the
expression of both SPF genes depends on cholesterol availability, and suggest that the
upregulation of SPF gene expression upon serum deprivation may result, at least in part,

from the loss of cholesterol in the medium.
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Figure 5.3: Sterol supplementation decreases SPF expression. Cells were cultured for
48 h in high-glucose media in the presence or absence of FBS and a cholesterol/25-
hydroxycholesterol mixture. FBS, fetal bovine serum; 25-HC, 25-hydroxycholesterol; n =

2.

As shown above, a mixture of cholesterol:25-hydroxycholesterol decreased the
expression of SPF genes in the presence and absence of serum. Since both of these
compounds inhibit the SREBP pathway but 25-hydroxycholesterol is also a ligand for LXR
receptor”, these results raised the question as to whether SPF gene expression is
regulated by SREBP or LXR. To test the role of the LXR in SPF regulation, a specific LXR
agonist, GW3965, was added to cells cultured in the absence of serum. If LXR activation
suppresses SPF expression the addition of an LXR agonist should prevent or reverse the
induction of SPF gene expression by serum deprivation. However, as shown in Fig. 5.4,

the LXR agonist was unable to prevent the increase in SPF expression in these cells. This
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result suggests that cholesterol (and 25-hydroxycholesterol) act through the SREBP

pathway, rather than the LXR pathway, to suppress SPF expression.
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Figure 5.4: LXR ligand does not change the effect of serum and glucose removal on SPF
expression. Cells were cultured in low-glucose media. FBS-fetal bovine serum;

GW3965, LXR receptor agonist; n = 2.

Summarizing, my studies in rat hepatoma cells have shown that expression of both rat
SPF genes is upregulated in response to serum removal, which is potentiated by removal
of glucose. Also, my studies have shown that lipids, most likely cholesterol, are the
likely components of serum whose absence contributes to the increase in SPF
transcripts. These results are consistent with a role for SPF in upregulating cholesterol

synthesis in hepatoma cells.

To further explore the effect of serum and glucose removal on SPF expression, |
attempted to identify transcription factors that regulate the transcription of the SPF
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genes. LXR, SREBP and/or PPARa were considered to be likely candidates. My studies
show that LXR is most likely not the transcription factor governing expression of SPF
genes in my cell culture system, as addition of an LXR agonist did not suppress SPF
expression. The possibility of regulation via SREBP remains to be tested. Moreover, the
possibility that SPF gene expression is regulated differently in cell culture than in a

whole animal must also be considered.

Copyright © Elzbieta llona Stolarczyk 2009
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Chapter 6 : SUMMARY OF RESEARCH

SPF is a cytosolic protein known to stimulate cholesterol biosynthesis. HMG-CoA
reductase, squalene monooxygenase and oxidosqualene cyclase are the three enzymes
of the cholesterol biosynthetic pathway that are known to be stimulated by SPF. The
mechanism of SPF action is not yet well understood. More recent studies have revealed
that there are three highly similar SPF genes in the human genome. They encode three
homologous proteins: SPF1, SPF2 and SPF3. The protein that has been studied the most
to date is SPF1. Little is known about the expression of the other two SPF proteins and
nothing is known about their function. To gain insight into possible functions for these
proteins, | utilized three different approaches to determine which tissues express SPF
genes. In all, over 75 tissues were screened for expression of SPF mRNA, using highly
sensitive probes designed to detect each SPF gene transcript with high specificity. SPF
expression was most evident in liver, stomach, and mammary tissue, with levels in liver
being at least 50-fold higher than those found in other tissues. My studies further show
that, of the three SPF transcripts, SPF1 is the most abundant, followed by approximately
20-fold lower expression of SPF3 and negligible expression of SPF2. Although | had
hoped to uncover differential expression of these genes in various tissues suggestive of
functional differences, the expression patterns did not support this hypothesis. In all
tissues where SPF was present, SPF1 expression dominated, suggesting that SPF2 and
SPF3 were either non-functional, of marginal importance, or were expressed only in
specific conditions or developmental stages. Further studies will be needed to identify

any such conditions.

The SPF2 transcript could only be detected in human liver and its level was very low

when compared with SPF1 and SPF3. Full-length SPF2 could not be cloned and
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therefore | was unable to assess its ability to stimulate cholesterol synthesis. The fact
that p45 protein, a rat ortholog of human SPF2, was able to stimulate cholesterol
synthesis *, suggests that human SPF2 might have similar ability. This question remains
to be answered in future studies. However, given the negligible expression levels in all
tested tissues, it is reasonable to discount SPF2 as a factor contributing to the
stimulatory effect of SPF on cholesterol biosynthesis in liver. The possibility remains
that SPF2 is expressed in other, as yet untested tissues, or that its expression is induced
in response to certain stimuli or conditions. Both of these possibilities remain to be
tested. My studies revealed that human SPF3 protein is capable of stimulating
cholesterol synthesis in cell culture, although it appears somewhat less effective than
SPF1, and is unable to stimulate squalene monooxygenase activity in microsomal
preparations. This finding suggests that SPF3 may act only on HMG-CoA reductase, in
contrast to SPF1, which stimulates both squalene monooxygenase and HMG-CoA
reductase, as well as oxidosqualene cyclase. The possibility that SPF3 activates HMG-
CoA reductase in vitro remains to be determined. Overall, the limited expression of
SPF3 in all tissues including liver suggests that, like SPF2, the protein does not play a
significant role in regulating cholesterol synthesis, although it remains possible that its
expression is upregulated, perhaps in select tissues, in response to environmental,
hormonal, or developmental stimuli. In the absence of such data, | conclude that SPF1
should be considered as a main human SPF homolog responsible for stimulating

cholesterol synthesis in liver.

SPF was shown to require phosphorylation and the presence of Golgi structures in order
to stimulate cholesterol synthesis in rat hepatoma cells . It was hypothesized that,
once activated by phosphorylation, SPF associates with some membranous
compartment, perhaps the endoplasmic reticulum (ER), in order to stimulate the
enzymes of the cholesterolgenic pathway, which are membrane-bound proteins. |
anticipated that in response to protein kinase A-mediated phosphorylation induced by

adding dbcAMP to rat hepatoma cells, SPF will associate with some membrane
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compartment and that this change in localization would be captured by my
immunocytochemistry studies; by comparison, the phosphorylation mutant SPF1S289A,
which cannot be phosphorylated, and the wild-type protein in cells treated with a PKA
inhibitor, will fail to translocate. However, my studies in rat hepatoma cells revealed no

noticeable change in protein localization inside the cell in response to these treatments.

Disruption of Golgi by brefeldin A in rat hepatoma cells was shown to abolish the
stimulatory effect of heterologously expressed SPF protein on cholesterol synthesis *.
Similarly, SPF protein lacking the GOLD domain (SPF1del111), thought to mediate Golgi
interactions, was also unable to stimulate cholesterol synthesis . | anticipated that
these effects would be reflected by changes in protein cellular localization. Treatment
with brefeldin A did result in disruption of Golgi structures, but no change in SPF protein
localization was observed. Transfections with a GOLD domain mutant resulted in a
protein localizing mainly to the large vesicular structures around nuclei, different from
Golgi, suggesting that remaining Secl4 domain may contain signal targeting to these

vesicular structures.

To rule out the possibility that the change in subcellular localization could not be
detected due to the abundance of overexpressed protein in transfected cells, or
because the recombinant protein behaves differently than the endogenous one, |
decided to test the effect of the above treatments on the endogenous SPF. To do so |
isolated primary hepatocytes from mice and performed these treatments on these cells;
once again, however, | did not observe a change in the SPF subcellular location. These
results led to the conclusion that SPF either does not translocate in response to these
treatments or that perhaps only a small portion of the protein was responsible for the
effect on cholesterol synthesis and only this protein relocates within the cell, and that is
why the movement cannot be detected by immunostaining. Perhaps subcellular
fractionation and subsequent analysis of SPF content after these treatments would

reveal relative changes in localization, as well as the membrane structures involved.
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SPF-null mice had previously been shown to develop normally, and their plasma lipids
are unchanged *. However when tested by food restriction, plasma cholesterol levels
decreased significantly in these mice, but not in wild-type mice. Interestingly, in starved
wild-type mice expression of mouse SPF protein was elevated. These findings strongly
suggested that SPF is a “buffering” protein, responsible for maintaining plasma
cholesterol levels during short-term starvation *. In my studies in rat hepatoma cells |
found that expression of both rat SPF genes is upregulated in response to serum
removal, which is potentiated by removal of glucose. This effect of glucose is puzzling;
glucose removal potentiated the effect of serum removal on SPF gene expression, but
glucose removal alone did not significantly increase SPF expression. My studies have
shown that lipids/cholesterol are the likely components of serum whose absence
contributes to the increase in SPF transcripts; first, when hepatoma cells were cultured
in delipidated serum SPF transcripts were increased; and second, supplementation of
media with a mixture of cholesterol:25-hydroxycholesterol decreased the levels of SPF
and HMG-CoA reductase transcripts. These results are consistent with a role for SPF in
upregulating cholesterol synthesis in hepatoma cells. | also investigated the possible
role of insulin in SPF regulation, but media supplementation with insulin did not appear

to alter SPF gene expression.

To further explore the effect of serum and glucose removal on SPF expression, |
attempted to identify transcription factors that regulate the transcription of SPF genes.
LXR, SREBP and/or PPARa were considered to be likely candidates. Peroxisome
proliferator-activated receptor alpha (PPARa) was recognized as critical regulatory
element directing cellular responses to fasting *®*°. In fact, Shibata at al. ** showed that
during starvation SPF expression is elevated in wild-type mice, but not in PPARa-null
mice, suggesting that PPARa acts upstream of SPF expression. | have begun to test this
hypothesis in our cell culture model by treating cells with PPARa agonists, which were
expected to induce SPF gene expression. Preliminary data (not shown) did not support

this hypothesis, but further investigation is needed to rule out this hypothesis
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completely. The possibility that SPF gene expression is regulated differently in cell
culture than in a whole animal must also be considered. My studies show that LXR is
most likely not the transcription factor governing expression of SPF genes in my cell
culture system, as addition of an LXR agonist did not suppress SPF expression. The

possibility of regulation via SREBP remains to be tested.

The mechanism of the SPF stimulatory effect on cholesterol synthesis remains to be
elucidated. The fact that this protein stimulates three different enzymes of the
cholesterolgenic pathway implies some general mechanism. All three enzymes are
membrane-bound proteins and it was demonstrated earlier that, at least for squalene
monooxygenase, SPF does not stimulate the solubilized enzyme, but only the
membrane-bound form, suggesting some membrane-dependent event ’. Notably, SPF
has two relevant domains: Sec14, a lipid binding domain, and a GOLD domain, proposed
to mediate protein-protein interactions involved in Golgi function. It is predicted that
such two-domain proteins may serve as adaptor proteins in assembling protein
complexes on membranes, or perhaps help in cargo packaging into membrane vesicles
. In fact, p45 protein, the rat homolog of human SPF2, was shown to be concentrated
in secretory vesicles in COS-1 cells and secreted from the cell ®. In further support of
this contention is the observation that the most likely ligand for SPF,
phosphatidylinositol (Pl), is a lipid that resides in the membrane, and therefore to bind
this ligand SPF has to associate with phosphatidylinositol-rich membranes. Since Pl was
identified as the most likely ligand for SPF ”/, and there are several phosphorylated
derivatives of Pl in the cell, it should be further explored whether one of these
phosphorylated Pls has a higher affinity for SPF than Pl. In support of this hypothesis
lies the finding that PI(3,4,5)P3 was identified as a lipid ligand of rat p45 protein ®.
Identification of a true physiologic ligand would be helpful in further investigations on

the mechanism of action of SPF.

Also, the link of SPF protein with phosphatidylinositol-3-kinase (PIP3K) remains to be

explored. SPF was earlier coprecipitated with PI3K and was shown to decrease the
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activity of this kinase *'. Later, another study showed that SPF inhibits prostate cancer
cell growth via inhibition of PI3K/Akt pathway *. It would be interesting to test whether
overexpression of SPF in hepatocellular carcinoma cells would also result in inhibition of
cell division. Indeed, SPF expression in rat hepatoma cells is very low when compared
with normal liver tissue, which is consistent with this hypothesis. Presently it is unclear
if the SPF inhibitory effect on the PI3K pathway is linked to its ability to stimulate

cholesterol synthesis; further studies in this direction are warranted.

In the light of current knowledge on SPF, it is reasonable to think that SPF participates in
the assembly or trafficking of some membrane vesicles, perhaps containing substrates
for the enzymes it stimulates; or by influencing the properties of the ER membrane in
such a way that it creates more favorable conditions for the catalyzed reactions to
occur. It is also possible that the stimulatory effect on cholesterol synthesis is not the

III

primary function of SPF, but rather a “collateral” effect of another action. Also, the
stimulatory effect on cholesterol synthesis was shown so far only in liver-derived cells,
making it possible that it is the only site of this type of SPF activity. Therefore, given the
several different reports on SPF function, including its ability to inhibit the PI3K pathway
44 its ability to retain vitamin E inside the cell °, and its ability to stimulate enzymes of
cholesterol biosynthetic pathway, it would be reasonable to think that perhaps the
function of SPF is cell-type specific, and depends on the availability of other proteins

with which SPF interacts.

Copyright © Elzbieta llona Stolarczyk 2009
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