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MOLECULAR SIMULATION OF FRAMEWORK MATERIALS

GASP: software for geometric simulations of flexibility in polyhedral and molecular framework
structures

Stephen A. Wells* and Asel Sartbaeva

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

(Received 23 January 2015; final version received 17 March 2015)

Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid
units using a simplified, localised physical model. The strengths of the method are its ability to handle large all-atom
structural models rapidly and at minimal computational expense, and to provide insights into the links between local
bonding and steric geometry and global flexibility. We review the implementation of geometric simulation in the ‘GASP’
software, and its application to the study of materials including zeolites, perovskites and metal–organic frameworks. The
latest version (5) of GASP has significant improvements and extensions, in particular an improved algorithm for relaxation
of atomic positions, and the capacity to handle both polyhedral and molecular structural units. GASP is freely available to
researchers.
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1. Introduction

Template-based geometric simulation is a specialised

method for the study of flexible frameworks. Such

frameworks are composed of relatively rigid subunits

(clusters) connected by relatively flexible linkages; that is,

the energetic penalty for distortions of the clusters is an

order of magnitude greater than the energetic penalty for

flexion in the linkage. In the case of a 3D framework silicate,

such as quartz or a siliceous zeolite, the SiO4 tetrahedra are

the relatively rigid clusters, while the Si–O–Si bridge is a

more flexible linkage, as indicated by the wide range of Si–

O–Si angles observed in different framework silicate

structures.[1,2] In a metal–organic framework (MOF), both

the organic linker molecules and the coordination polyhedra

around metal centres may be treated as rigid clusters, with

the potential for flexibility at the interface between them.

The central concept of geometric simulation is to

represent the bonding within rigid units, not by a collection

of two-, three- and four-body empirical potentials, but by a

template or ‘ghost’ representing the ideal bonding geometry

of the cluster, either polyhedral or molecular. Harmonic

constraints linking each atom to the corresponding vertex of

a template then penalise any deviation from the ideal cluster

geometry.[3,4] In the course of a ‘geometric relaxation’, the

positions of atoms and templates are mutually updated to

minimise both deviations from cluster geometry and steric

overlap of atomic spheres. Thus the method implements a

simple physical model which includes the strongest, most

local forces in the system – covalent bonding and steric

exclusion – while neglecting all longer ranged interactions.

Themethod is computationally robust and inexpensive,with

results typically being generated in seconds or minutes on a

single processor, e.g. on a laptop or desktop computer. This

makes the method particularly suitable for the investigation

of large system sizes and for the rapid exploration of

hypothetical conditions of strain and/or extra framework

contents in porous frameworks, on its ownor as an adjunct to

simulations with conventional methods. The process of

fitting cluster geometries to groups of atoms can also be used

as an analysis tool to investigate structural models produced

by other methods, particularly reverse Monte Carlo (RMC)

modelling based on total scattering data.[5–7]

The geometric simulation approach operates at an

entirely different level of theory from ab initio electronic

structure and all-atom empirical-potential methods; it does

not generate a detailed energy landscape, but rather

explores framework geometries that satisfy local steric and

bonding geometric requirements. This simplification can in

fact be a powerful generator of insight, revealing the

significance or otherwise of the long-range (charge,

polarity) effects that are deliberately excluded from the

geometric simulation model.

1.1 Scope of our review

Essential mathematical details in the implementation of

geometric simulation are discussed (Section 2) for the

benefit of current and future users and for those wishing to
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make use of geometric simulation concepts in their own

software. We will take a brief overview (Section 3) of

some of the previous applications of geometric simulation

to polyhedral mineral structures – such as aluminosili-

cates, including zeolites and perovskites – and to proteins,

viewed as molecular frameworks. These topics are

discussed in additional detail in our recent review [8].

In this work we focus on recent developments, especially

(i) improvements and extensions in current geometric

simulation software, (ii) the concepts of the intrinsic and

extrinsic flexibility windows in a zeolite (Section 4) and

(iii) the application of geometric simulation to MOFs

(Section 5).

1.2 Software implementation

Geometric simulation for periodic framework structures is

implemented in a piece of software titled ‘GASP’, for

‘Geometric Analysis of Structural Polyhedra’. The name

‘GASP’ is intended as a respectful pun on the widely used

and extremely comprehensive ‘GULP’ simulation pack-

age.[9] Version 1 of GASP was written in Fortran 90;

subsequent versions have been written in Cþþ . In 2014

GASP was rewritten from scratch (in Cþþ ) to improve

program workflow, implement an improved algorithm for

the update of atomic positions, remove unwanted legacy

features, and provide a more legible and consistent input

and control format. This current version, GASP v.5,

consists of the main GASP code and a small suite of

associated utility programs; it has been successfully

compiled and run under Windows, Linux and Mac OSX

environments. In its current form, GASP requires an input

structure in XTL format, and a control input file containing

parameters and commands. GASP is freely available to

researchers. Prospective users should email the corre-

sponding author to receive a copy of the code, a set of

example input files and a comprehensive manual.

2. Mathematical notes: bivectors, rotors and fitting

The heart of the geometric simulation method is the fitting

of a template to a cluster of atoms. Fundamentally this is a

matter of finding a rotation which matches the orientation

of the template and cluster. In geometric simulations the

rotation is described using the bivector mathematics of

geometric (Clifford) algebra.[10] Since this approach is

not commonly encountered in the physical sciences

literature, we will briefly go over the essential concepts.

The process of fitting a template to a group of atoms, and

of relaxing the atoms to fit the templates, is illustrated

schematically in Figure 1.

2.1 Geometric algebra in two dimensions

In conventional vector calculus, the mathematics of a 2D

plane would be described in terms of scalar quantities

(based on the unit scalar, (1) and vector quantities (based

on two perpendicular unit vectors e1 and e2). To these,

Clifford algebra adds an additional entity: a directed area

element, the bivector B ¼ e1e2. For clarity we shall

Figure 1. Schematic illustration in 2D of the geometric simulation process. (a) Two approximately trigonal, vertex-sharing clusters in a
2D framework. (b) Initial construction of a template with ideal geometry over each cluster; mismatches are identified between each atom
and the corresponding vertex. (c) Rotational fitting of templates by minimisation of mismatches; this generally leaves some residual
mismatch, as shown for the shared vertex atom. (d) Relaxation of atomic positions to reduce mismatches. Geometric analysis constitutes
steps (a)–(c). Geometric simulation proceeds by iterative repetition of steps (c) and (d).
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capitalise variables representing bivectors and higher grad

objects. Vectors in Clifford algebra can be multiplied

directly; the product of perpendicular vectors is a bivector

while that of parallel vectors is a scalar, e.g.

e1e1 ¼ 1 ¼ e2e2. The bivector is directed in the sense

that B ¼ e1e2 ¼ 2e2e1. The bivector can act to rotate the

basis vectors by multiplication either from the left, rotating

908 clockwise (Be1 ¼ e1e2e1 ¼ 2e2; Be2 ¼ e1e2e2 ¼ e1)

or from the right, rotating anticlockwise (e1e1e2 ¼ e2;

e2e1e2 ¼ 2e1).

The 2D bivector also squares to 21 (B2 ¼ e1e2
£ e1e2 ¼ 2e1e1e2e2 ¼ 21) and so it exponentiates exactly

like the conventional scalar unit imaginary i. We can write

the identity expðBuÞ ¼ cos uþ Bsin u. This expðBuÞ object
can act to rotate a vector through u radians. It is convenient

to define a rotor operatorR ¼ expð2Bu=2Þ and its ‘reverse’
R
~ ¼ expðþBu=2Þ, so that rotation of an arbitrary vector v

anticlockwise by u radians is achieved by the two-sided

operation RvR
~
. The rotor R is an example of a ‘multivector’

object, as it contains scalar and bivector components.

2.2 Geometric algebra and rotations in three
dimensions

The general utility of this approach becomes clearer once

we go from two to three dimensions. In this case we develop

a geometric algebra of eight entities; from the scalar 1 and

unit vectors e1; e2; e3 we develop three bivectors B3 ¼
e1e2;B1 ¼ e2e3;B2 ¼ e3e1; and a directed volume element,

the pseudoscalar J ¼ e1e2e3. The pseudoscalar can convert

between a bivector and its Hodge dual (perpendicular

vector), e.g. JB3 ¼ e1e2e3 £ e1e2 ¼ 2e3 etc. A bivector

rotates vectors in its own plane and generates the

pseudoscalar with a perpendicular vector. Our 2D rotor R

containing the bivector e1e2, if applied to a general vector,

will act to rotate the in-plane (e1 and e2) components of the

vector, but will leave the e3 component quite unaffected –

all components of e1e2e3 cancel when RvR
~
is evaluated.

The even-grade objects (scalar and bivectors) in 3D

have an algebra very similar to Hamilton’s quaternions:

B2
i ¼ 21;BiBj ¼ 2Bk. A general plane can be represented

by a unit bivector B̂ with components c1B1 þ c2B2 þ c3B3;

by the Hodge dual this is the plane normal to the vector

c1e1 þ c2e2 þ c3e3. Thus a general rotation can be carried

out by a rotor R ¼ expð2B̂u=2Þ.
Within the geometric analysis software GASP, a

rotation is parameterised by the three components of a

bivector Bu ¼ 2B̂ sinðu=2Þ; effectively a ‘vector’ bu whose
direction is the rotation axis and whose magnitude is very

close to the rotation magnitude in radians.

2.3 Rotations of polyhedra and clusters

The fitting operation carried out by GASP for each cluster

in a framework – e.g. an SiO4 polyhedron – involves

minimising the mismatch between the positions of a set of

vertices in a template, and the matching set of vertices

based on the current positions of the atoms making up the

cluster. It is trivial to make the centres of the template and

cluster coincident, so we only need to find a suitable

rotation. For each vertex q, we construct a vector pq from

the (Cartesian) position of the centre to the position of the

vertex in the template. It is convenient to construct pq as a

function of the rotation ‘vector’ b. We can then consider

the vector mismatch 1q between pqðbÞ and the matching

vector pq0 based on the current positions of the atoms in

the cluster: 1q ¼ pqðbÞ2 pq0. Thus for example the x

component of 1q is calculated as

1x ¼ pqx 12
1

2
b2y þ b2z

� �� �
þ pqy 2Cbz þ 1

2
bxby

� �

þ pqz Cby þ 1

2
bxbz

� �
2 pq

0
x;

ð1Þ

where C is the scalar quantity

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:02

1

4
ðb2x þ b2y þ b2z Þ

� �s
ð2Þ

equal to cosðu=2Þ. Expressions for 1y;z can be obtained by

cyclic permutation of components of b, and are fully

tabulated in reference [3].

A rotation is found by minimising a penalty function

E ¼Pq1
2
q as a function of the rotation parameters b for

this cluster. The gradient of E with respect to the

components of b is easily constructed analytically, and

the full expression is tabulated in reference [3]. GASP

uses the secant method to minimise E by finding the zero

of the gradient, thus identifying the rotation parameters b

which best fit the template to the cluster. The equations

for 1q can now be used, setting pq0 ¼ 0, to generate a

rotated version of the template, superimposed on the

cluster. This process of fitting is illustrated in the method

schematic, Figure 1(b,c).

The residual differences between template and cluster

positions can be used to quantify the distortion of the cluster

from the ideal geometry defined by the template (see

Figure 1(c)). It is a useful feature that this distortion is a

distance measure (that is, distortion can be described by the

mean-squared or RMS vertex–atom mismatch) which is

easier to grasp than a collection of bond length and angle

measurements. Indeed the first application of GASP was as

a form of geometric analysis, to assess large structural

models of polyhedral framework materials produced by

RMC modelling based on total scattering data (see Section

3.1).

During the initial development of geometric simu-

lation, applied to regular polyhedral structural units, it was
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typical for the centre–vertex vectors pq to correspond to

interatomic bonds such as Si–O, with the centre position

of the cluster coinciding with the position of the central Si

atom. However, there is no requirement in the mathemat-

ics of the fitting process for this to be the case. The method

can equally well be applied to a group of atoms

representing a molecular fragment, for example a peptide

unit in a protein backbone. In this case, the centre of the

cluster is simply the geometric centre of the positions of

member atoms, and need not coincide with the position of

any individual atom. The centre–vertex vectors pq then do

not lie along interatomic bonds, but simply describe the

positions of all the atoms in the cluster.

A further process – geometric relaxation – can be

carried out by seeking to minimise these residual

differences as a function of the positions of both atoms

and templates. If this is to be done, we must consider how

to relax the position of an individual atom, which may

belong to multiple clusters and thus have multiple ‘ideal’

positions, and which may furthermore be in steric contact

with other atoms.

2.4 Relaxation of atomic positions

We now consider an atom A which belongs to n clusters

and which is in steric overlap with m other atoms (clearly

if n;m are both zero then nothing need be done). For each

cluster i there is a vertex position which the atom should

move towards, while each contact j is an object which the

atom should move away from. We note that the most

significant radius for zeolite frameworks is that of the

tetrahedral oxygen atoms, for which we use a standard

radius of 1.35 Å [11]; steric radii for all elements present in

the input structure can be defined by the user in the

program control input file. The neighbour search for

contacts is short range and highly localised, and can

therefore be undertaken using a coarse-gridding approach

which scales linearly with system size. Atoms are assigned

to cells in a coarse grid with spacing of order 4Å. Contacts

need only be searched for in the same cell and its

immediately adjacent neighbouring cells. Our goal is to

generate a displacement vector for the atom so that we can

update its position. Previous versions of GASP constructed

this displacement by averaging a set of vectors represent-

ing (i) movement of the atom to a vertex position and (ii)

movement directly away from a steric contact until just out

of contact distance. The most recent version of GASP,

however, uses an improved approach which has not

previously been reported in detail, and which we will now

derive.

We place the atom A at the origin of a temporary

Cartesian coordinate system, so that it currently has a

position r0 ¼ ð0; 0; 0Þ. During the fitting it will develop a

position r ¼ ðx; y; zÞ which is the displacement vector we

require. Each template vertex to which the atom belongs

has a position ri, and each contact atom j has a position rj.

The ri; rj do not change during this part of the process, that
is, ri; rj are parameters while r is variable. The vector from

a vertex to the atom A is thus Dri ¼ r 2 ri, and the vector

from a contact atom to the atom A is Drj ¼ r 2 rj. The

‘penalty’ for the offset between the atom and a vertex

position is Drij j2¼ ðr 2 riÞ2; a harmonic term going to

zero when the atom A is coincident with the vertex i.

For steric contacts the situation is a little more

complicated, as we must consider the current distance

between the atoms ( Drj
�� ��) and their ideal contact distance

dj, which is the sum of their steric radii. The distance by

which the atoms overlap is dj 2 Drj
�� �� and an appropriate

harmonic penalty is this distance squared, which is

d2j 2 2dj Drj
�� ��þ Drj

�� ��2.
The net penalty for our atom A is thus

P ¼
X
i

Drj
�� ��2þX

j

d2j 2 2dj Drj
�� ��þ Drj

�� ��2� �
ð3Þ

and we seek a position r for the atom that will minimise P

by making 7P ¼ 0. Considering for example the x

component of this gradient, and noting that ›x Drkj j2¼
2ðx2 xkÞ while ›x Drkj ¼ ðx2 xkÞ= Drkj j

�� , we find that

›xP ¼ 0 when

X
i

ðx2 xiÞ þ
X
j

ðx2 xjÞ 12
dj

Drj
�� ��

 !
¼ 0: ð4Þ

We can now seek a suitable value of x (and y; z) by
iterating towards a self-consistent solution, using an ‘old’

value of x and Drj
�� �� to generate a ‘new’ value of x.

Beginning with our initial position at the origin, and the

corresponding values of Drj
�� ��, we use this rearrangement

of the preceding equation:

xNEW ¼
P

i xi þ
P

j xjð12 ðdj= Drj;OLD
�� ��ÞÞP

i 1þ
P

j ð12 ðdj= Drj;OLD
�� ��ÞÞ ð5Þ

and iterate until xNEW and xOLD are effectively identical.

Of course y; z must likewise be updated at the same time,

as Drj
�� �� depends on x; y; z.
A few noteworthy features of this approach are as

follows:

(i) If an atom has no steric contacts, it is moved in a

single step to the mean position of all the template

vertices to which it belongs, as desired;

(ii) As constructed the steric exclusion constraint is

holonomic, so the function also penalises the

separation of atom A from a contact j by more

than the ideal contact distance dj. This does not

offer a difficulty in practice, since if the atoms do

move out of contact, they will not be found in

contact at the start of the next cycle of relaxation,
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and so no further penalty will apply;

(iii) The derivation above gives equal weight to the

vertex (i) terms and the steric overlap (j) terms.

In practice the terms can be weighted by a user-

defined damping parameter multiplying the sums

over j; this term within GASP is set to 0:5 by

default and can be adjusted;

(iv) When atoms are forced into a very severe steric

overlap (where the overlap distance is a

substantial fraction of the sum of their radii),

the fitting routine may attempt to move them into

exact superposition (!) as the gradient of their

overlap penalty is zero here. This is recognisable

as GASP reports an overlap equal to the ideal

contact distance;

(v) Since the space of rotations is non-Euclidean and

cyclic, all coordinate or parameter systems

describing rotations will display a coordinate

singularity or degeneracy at some point. Using

the rotor parameterisation described here, this

problem arises as the magnitude of a rotation

approaches 180+. In consequence, the rotor fitting

process can become numerically unstable as the

magnitude of the rotation increases. Within the

GASP code, large rotations are handled by a

stabilising procedure; when b becomes large, the

initial vectors pq are redefined using the current

value of the rotation and fitting then continues

from this new origin. A ‘running total’ is also kept

when this occurs so that the correct final total

value of b can be reported.

2.5 Iterative geometric relaxation

The full geometric relaxation of a structure proceeds

iteratively. Each fitting cycle has two stages; in the first

stage all templates are fitted over clusters, and in the

second stage all atoms are relaxed based on template

vertex positions and steric contacts (see Figure 1(c,d)).

In our experience, the fitting process is generally stable

once begun and the least squares fits will eventually

converge to a minimum. Typically in each cycle, the

magnitude of the displacements of the atoms decreases.

The process is complete, typically after some tens or

hundreds of cycles, when either (i) the greatest displace-

ment of any atom in the previous step is below a user-

specified very small threshold value, e.g. 1027 Å,

indicating that the process is effectively jammed, or (ii)

the worst mismatch between any atom and template vertex

has dropped below a user-specified threshold, typically

1023 Å,[12] indicating that the match to template

geometry is very good. If the framework has substantial

internal flexibility (redundant degrees of freedom), the

resulting configuration may not be uniquely determined by

the cell parameters. Rather, a range of configurations are

compatible with the bonding constraints, and GASP

reports the first such configuration it encounters. Further

exploration, if desired, can be carried out by performing a

small random perturbation of the atomic positions and then

a further geometric relaxation.

A typical application of GASP is to study the behaviour

of a given framework as its cell parameters are varied.

Earlier versions of GASP used the cell parameter provided

for the input structure; as a result a new input file had to be

prepared for each cell parameter to be investigated. Version

5 now includes a ‘new cell’ feature allowing a new set of

cell parameters (a; b; c;a;b; g) to be specified as an option.
Hence a single input structure can be used for a wide

ranging investigation of cell parameters. This feature is

particularly important for applications toMOFs (Section 5)

where the geometry of molecular clusters is defined by the

input structure.

3. Overview of applications of geometric simulation

In this section we briefly review applications of geometric

analysis and simulation to the study of tetrahedral mineral

frameworks (3.1), especially dynamic disorder in dense

silicates, ‘strain screening’ by polyhedral rotations and the

pressure behaviour and framework folding mechanisms of

zeolites; to octahedral and mixed frameworks (3.2),

particularly perovskites and zirconium tungstate; and to

protein flexibility in structural biology (3.3). Further

sections are devoted to the ‘flexibility window’ phenom-

enon in zeolites (4), and its extension taking account of

extra framework content; and to geometric simulations for

MOFs (5), a new area of application for the method.

3.1 Tetrahedral frameworks

The first application of geometric analysis using GASP

was in the analysis of large structural models generated by

RMC modelling based on total neutron scattering data

[5,6,7]. These models are based on both sharp (Bragg) and

diffuse scattering, and so they capture dynamic disorder as

well as the average (crystal) structure. GASP was applied

both to analyse individual snapshots, quantifying the range

of distortions compared to ideal tetrahedral geometry and

to compare independently generated snapshots with the

same topology. This comparison decomposes the differ-

ences between the models into components of distortion

and polyhedral rotation, and thus revealed a dominant

component of rigid-unit motion [13,14] in the dynamic

disorder of quartz.[4] The hexagonally symmetric b phase

of quartz is revealed as a dynamic average; the local

instantaneous structure is more similar to the trigonally

symmetric structure of a quartz.

The flexibility which allows this large-amplitude

rotational dynamic disorder also allows a framework to

accommodate static distortions locally by collective
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rotations of nearby polyhedra [15]. This leads to the

phenomenon of ‘strain screening’, where geometric

analysis shows polyhedral distortion decreasing rapidly

with increasing distance from a defect site such as an Al/Si

substitution [16]. Ionic and molecular motion through

polyhedral frameworks is likewise strongly influenced by

flexibility. In frameworks such as quartz, O–O distances

defining a channel radius or pore aperture can vary by

amounts on the order of an Ångstrom with little energetic

penalty. This permits the framework to adapt locally to the

presence of mobile ions such as Liþ, reducing the

activation energy for diffusion. Geometric simulations

have been applied to elucidate this phenomenon in systems

such as quartz, aiding in the interpretation of experimental

data.[17–19]

A useful application of geometric simulation is to

study the response of a framework structure to an applied

strain, for example the compression induced experimen-

tally in a diamond-anvil cell. In zeolites such as

edingtonite (EDI framework) [20] and levyne (LEV

framework) [21] geometric simulations have revealed

subtle and counter-intuitive connections between strain in

the unit cell and the local changes arising from collective

rotational motion of the framework tetrahedra. The

question of strain response in zeolites will be developed

further in Section 4 in relation to the ‘flexibility window’.

3.2 Octahedral and mixed frameworks

Geometric simulation is of course not limited to

tetrahedral frameworks. The octahedral clusters encoun-

tered in minerals such as the perovskites are likewise

suitable for geometric analysis and simulation. For fully

coordinated octahedral systems such as the perovskites

SrSnO3 [22] and SrTiO3,[23] rigid-unit motion is found to

be generally more restricted than it is in the framework

silicates – a natural consequence of the framework

topology, with each octahedron being constrained by links

to six neighbouring clusters rather than four. However,

geometric analysis still provides useful information on

octahedral tilting in the framework.

Simulations using geometric clusters as constraints

have also been very informative in understanding

manganite perovskite frameworks, in which the MnO6

octahedra can be regular or Jahn–Teller (JT) distorted

depending on the oxidation state of Mn. Modelling using

GASP showed that ‘stripe’ patterns in LaMnO3,

conventionally attributed to variations in charge or

oxidation states, can also arise from ordered patterns of

JT distortion.[24] Further RMC modelling using geo-

metric cluster constraints led to a new understanding of the

high-temperature phase of LaMnO3. This system shows an

apparent discrepancy between the long-range average

crystal structure, with regular octahedra, and local

structural probes indicating persistence of JT distortion.

The geometric modelling accounts for this using a

quadrupolar order parameter which does not entirely

vanish in the high-temperature phase.[25]

A particularly interesting system is the mixed

octahedral/tetrahedral framework on zirconium tungstate,

which displays isotropic negative thermal expansion

(NTE) in a cubic structure. Geometric analysis of

structural models confirms the significance of collective

polyhedral rotations in generating NTE.[26] Subsequent

materials were developed to maximise the scope for such

motion and display NTE on a colossal scale.[27]

3.3 Protein flexibility in structural biology

Geometric simulation has also been applied in biophysics

as a method for simulating flexible motion in proteins.[28]

The ‘FRODA’ approach (framework rigidity optimised

dynamic algorithm) makes use of templates to represent

the geometry of portions of a protein structure. Rigid

groups are identified using the ‘FIRST’ rigidity analysis

software,[29] within which FRODA is implemented, and

vary in size from single methyl groups to clusters spanning

multiple secondary structure units or entire protein

domains, depending on the distribution of covalent and

non-covalent constraints in the protein. Geometric

simulation can then be used to explore the flexible motion

intrinsic to the structure. Template-based geometric

simulation derived from FRODA is also used in the

FRODAN [30] method for the generation of pathways of

conformational transition, and in NMsim,[31] a method

combining elements of geometric simulation, elastic

network modelling and empirical-potential molecular

mechanics.

A particularly effective application for FRODA is the

rapid simulation of large amplitudes of flexible motion, by

exploring low-frequency normal modes identified by

coarse-grained elastic network modelling.[32] This allows

FRODA to rapidly traverse the landscape of confor-

mations that are compatible with the bonding constraints

of the input structure. In several recent papers this

approach has been used to investigate target flexibility in

protein folding simulations [33]; side chain crosslinking in

calmodulin caused by the anticancer drug cisplatin [34];

large-scale motion in a multidomain protein, ERp27 [35]

(reconciling an apparent disagreement between crystal and

solution structures); cooperative and independent func-

tional motions in dimeric citrate synthase structures from

across the tree of life [36]; and flexibility in native and

mutant structures of calexcitin.[37]

The scale of the motions that are easily accessible

using geometric simulation is illustrated in Figure 2. Panel

a shows an ‘open’ crystal structure of the dimeric enzyme

citrate synthase, in which two binding clefts are both in an

open state. Panel b shows this structure during geometric

simulation of motion along a symmetric closing mode,
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overlaid on a known crystal structure with the two clefts in

a closed state; and panel c shows the structure during

geometric simulation of motion along an antisymmetric

mode, which closes one cleft and opens the other. The

latter motion is not directly evidenced by crystallography

but is revealed by simulation as a natural motion of the

protein.[36]

A feature of the FRODA implementation of geometric

simulation is that the ‘ghost’ templates, defining rigid

clusters with the geometry of molecular fragments,

generally overlap along bonds with variable dihedral

angles; this is in contrast to the original implementation in

GASP for periodic mineral frameworks, where polyhedral

clusters meet at a shared vertex but do not overlap. Thus

when dihedral angles are the variables, adjacent clusters

typically have two atoms in common rather than one, as

illustrated in Figure 2(d). We may consider a four-atom

‘molecule’ AZBZCZD, in which the bond lengths AB,

BC, CD and the angles ABC, BCD are fixed but the

dihedral ABCD is variable, permitting rotation around the

BZC bond. In geometric simulation we will identify two

rigid clusters, A0ZB0ZC0 and B00ZC00ZD00. Constraints

link the atom B to the vertices B0 and B00, and atom C to

vertices C0 and C00. As a result the cluster bonds B0ZC0 and
B00ZC00 will be kept parallel, but rotation around the BZC

bond is permitted. Another difference from GASP is that

the bonding geometry in FRODA is defined by the input

structure rather than being generated mathematically as

regular polyhedra.

The latest version of GASP has a more general logic for

the identification and handling of clusters, and so is capable

of modelling frameworks containing both polyhedral and

molecular (overlapping) rigid clusters. It is this extension,

making use of concepts developed in FRODA, that makes

GASP v.5 suitable for the study of MOFs.

4. The flexibility window in zeolites

Geometric simulation has been applied to investigate

compression mechanisms in zeolites (Section 3.1),

tetrahedral distortion in real and hypothetical zeolites

and AlPOs,[38] and to the detection of unfeasible

hypothetical zeolite frameworks [39] generated through

symmetry-constrained inter site bonding search.[40,41]

This focus on zeolites led to the following question: in a

zeolite framework, is it possible in principle for the

tetrahedral geometry to be made ideal and perfect? Or are

the small distortions typically seen in crystal structures in

fact inevitable, given the framework topology and

geometry?

Ideal tetrahedral geometry signifies that all SiZO

distances are equal to the ideal bond length, e.g. 1.61 Å,

Figure 2. (Colour online) Illustrative example of geometric simulations for modelling of protein flexibility. Panel (a) crystal structure of
dimeric citrate synthase with binding clefts open, shown as backbone cartoon. Binding sites lie in the clefts between the main body of the
dimer and the small domains at left and right; (b) overlay of crystal structure of citrate synthase with binding clefts closed (light grey) and
a simulation of symmetric closing motion; (c) overlay of crystal structure of citrate synthase with binding clefts closed (light grey) and a
simulation of antisymmetric motion; (d) methods schematic showing the overlap of molecular cluster templates along rotatable dihedral
angles.
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and that all OZSiZO angles are equal to the tetrahedral

angle arccosð21=3Þ, to within some defined precision. In a

geometric simulation, this is equivalent to a requirement

that the mismatch between any atom and its corresponding

vertex on a tetrahedral template be less than a defined

threshold, which we set at 0:001Å. The bridging SiZOZSi

angles are left unconstrained.

The results of this investigation were unexpected and

striking.[12,42,43] It emerges that, first, actually existing

real (natural or synthetic) zeolites can indeed attain ideal

geometry when modelled as silica in geometric simu-

lations. Second, this can be done over a range of densities;

limits arise on expansion from extension of SiZO bonds,

and in compression from steric collisions of oxygen atoms

on adjacent tetrahedra (‘codimeric’ oxygens). This range

we dub the ‘flexibility window’. Third, zeolites under

ambient conditions are found to lie towards the low-

density edge of the window. From this point of view,

zeolites can be viewed as a form of ‘expanded condensed

matter’ – the frameworks seek to be expanded as far as the

framework topology will allow.

Figure 3 illustrates the use of geometric simulation to

explore the flexibility window of the LTN zeolite

framework. This structure is notable for its extremely

large cubic unit cell (a ¼ 35:62 Å) [11] containing 768

tetrahedra; however, GASP rapidly relaxes the structure,

with 2304 independently mobile atoms. The investigation

to determine the range of the flexibility window as

illustrated in Figure 3 took only a few minutes on a single

processor. The initial input is an all-atom representation of

the structure in XTL format, essentially a unit cell and list

of coordinates. Such all-atom inputs are easily generated

from the fully symmetric structure in CIF format by export

of coordinates in a structure viewer such as CrystalMaker

[44]. An initial geometric relaxation using the cell

parameter at ambient conditions rapidly idealises the

tetrahedral geometry and confirms that the structure lies

within its flexibility window. The relaxed structure under

these conditions is shown in Figure 3(c,d). Progressively

increasing the cubic a parameter, we soon find an upper

limit to expansion, beyond which distortions are inevitable

as bonds begin to be over-extended. For LTN this occurs

when the unit cell volume has increased by 2:5%. This

condition is illustrated in Figure 3(a,b); the similarity of

the ambient and maximally expanded cases is visually

evident. Decreasing the a parameter, we find a much

greater scope for compression, with the framework folding

freely until arrested by collisions of codimeric oxygen

atoms. Here this occurs when the unit cell volume has

decreased by 14% and is illustrated in Figure 3(e,f).

The majority of hypothetical zeolites, by contrast, are

found to lack the ‘flexibility window’ property [45] even if

the framework is assigned a low energy by interatomic

potential calculations. This suggests that the flexibility

window is a key criterion in the selection of hypothetical

frameworks as candidates for synthesis [42]; structures

lacking this property cannot be formed without causing

strain in the building units, and so will be disfavoured

relative to structures with a flexibility window. In recent

years, GASP has been applied to assess new frameworks

submitted to the Zeolite Structure Commission (Prof.

M.M.J. Treacy, personal communication by email, 2015).

The flexibility window concept also provides valuable

insights into interpreting experimental data on zeolites

under compression. In zeolites of the analcime group,

displaying phase transitions from high to low symmetry

forms when subjected to pressures of 1–2 GPa, the

transition appears to occur when the structure is

compressed to the limit of the flexibility window.

[46–48] An intriguing finding is that structures displaying

pressure-induced amorphisation at low pressures do so

while the framework lies within its flexibility window.

Figure 3. Application of geometric simulation to zeolite
framework LTN. Panels show a single unit cell of the structure
in tetrahedral (left) and space-filling (right) views. (a,b): structure
at maximum geometric expansion; (c,d): structure with cell
parameter found experimentally at ambient conditions; (e,f):
structure at maximum geometric compression. Note the
similarity of the ambient to the maximally expanded case.
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If the compression conditions move the structure out of its

flexibility window, e.g. through pore occupation by

penetrating pressure media,[49] the structure then resists

amorphisation. From this point of view, the amorphisation

of the framework is a process permitted by framework

flexibility.

4.1 Extrinsic and intrinsic flexibility window

In a recent publication [50] we have further developed the

concept of the flexibility window by considering the effect

of explicitly present extra framework content. The

flexibility window as originally defined may be termed

‘intrinsic’, being a property of the framework alone. The

‘extrinsic’ window, in contrast, is affected by interactions

between the framework and the extra framework content.

This study was conducted based on a structural refinement

of siliceous faujasite by Colligan et al. [51], in which it is

noticeable that extra framework content nominally refined

as ‘water oxygens’ lies in positions that are not in fact

sterically possible, due to clashes with the framework and/

or other extra framework sites (see Figure 4(a,b)).

The compression experiments were carried out using a

methanol/ethanol/water pressure medium; we, therefore,

considered cage occupation by various combinations of

water and methanol molecules. For this study, water

molecules were represented as spheres while methanol

was represented as two spheres representing the methyl

and hydroxy groups. Framework and content geometries

generated during these simulations are shown in Figure 4

(b–d). Geometric relaxation of the structure with water

occupying all refined extra-framework sites, with both

framework and content atoms mobile, shifts the extra-

framework water from the refined positions to a different,

approximately close-packed, arrangement, as shown in

Figure 4(b,c). The experimental extra framework electron

density may be better accounted for if the cages are

occupied by both water and methanol molecules in a

disordered arrangement, as shown in Figure 4(d).

The limits of the flexibility window in compression

behave more or less as expected. At zero or low loadings,

we observe the framework-controlled limit of the intrinsic

window. At higher loadings, the extrinsic window takes

over, as framework–content interactions begin to limit the

degree of compression that the framework can achieve.

An unexpected feature, however, is the limitation of the

extrinsic window on expansion. When the beta cages are

heavily loaded (containing both methanol and water

molecules), the maximum expansion the framework can

achieve is less than the limit of the intrinsic window! The

cages require a degree of internal flexibility to accommo-

date their bulky contents, and this internal flexibility is

lacking at the expanded edge of the intrinsic window.

5. Geometric simulation and flexibility in MOFs

There is considerable current research interest in questions

of rigidity and flexibility in MOFs.[52] If materials of this

type are to attain their potential for industrial applications,

design principles for control of their stability, rigidity and

flexibility are a prerequisite. For this reason, the capacity

to handle MOFs, ZIFs (zeolitic imidazolate frameworks)

and similar frameworks with non-polyhedral components

is now included in version 5 of GASP. We will briefly

review the features needed to make MOFs tractable in

GASP (Section 5.1) and an illustrative case study (Section

5.2).

5.1 Geometry and rigidity of non-polyhedral
framework units

The geometry of polyhedral units is communicated to

GASP by specifying a polyhedral shape, e.g. ‘tet’ for

tetrahedron, the identity of the centre and vertex species,

e.g. ‘Si O’, and an ideal bond length, e.g. ‘1.61’ (Å). Non-

polyhedral molecular units are now specified by a series of

Figure 4. (Colour online) Geometric simulations of framework
flexibility with extra framework contents. Panel (a) framework
tetrahedra and extra framework ‘water’ spheres in a beta cage of
siliceous faujasite from a refined crystal structure [51]; (b)
geometrically relaxed framework and contents, showing
substantial rearrangements to resolve steric clashes; (c)
geometrically relaxed framework and contents, with framework
oxygens in space-filling view. One of the framework six-ring
apertures has been removed from the view to allow the contents to
be seen; (d) cage occupation by a combination of water and
methanol molecules. Figures are from the authors’ work in
reference [50].
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lines, each identifying a ‘central’ atom species, e.g. ‘C’,

followed by all species to which it may bond. Terminal

(singly bonded) species need not be specified explicitly.

Thus for example the bonding in a typical small organic

molecule might be specified by the lines ‘C C H N O’, ‘N

C H’ and ‘O C H’. With this information, GASP will

identify a series of overlapping bonded groups each

consisting of a ‘central’ atom and its bonded neighbours.

The geometry of each such cluster, as found in the input

structure, will then be maintained in subsequent geometric

simulations. An atom can simultaneously be a vertex

species in a polyhedral group and part of a molecular

group – for example the metal-coordinating carboxylate

oxygens found in many MOFs.

If no further processing took place, all dihedral angles

in molecular framework components would be variable.

However, in general, the linkers in MOFs show

considerable rigidity due to delocalised bonding extending

over adjacent sp2 hybridised atoms. GASP, therefore,

carries out a further phase of cluster unification if desired.

sp2 hybridised carbon and nitrogen atoms are recognised

by their trigonal bonding, and adjacent cases are unified

into a single cluster, thus rigidifying the molecule

appropriately. Cluster rigidity can be fully controlled by

the user on a bond-by-bond basis when required: the

bonding topology can be exported from GASP in a simple

text format and edited to label specific bonds as rotatable

or locked. Non-sp2 rigidity arising from over constraint, as

for example in adamantanes, arises naturally from the

overlap of rigid clusters in GASP.

Sensible steric radii must also be assigned to the atoms

present in the structure. This is to some extent a question of

judgement, and detailed results – especially on the limits

in compression of the flexibility window – will depend on

the values chosen. The radii assigned should therefore be

reported explicitly when the results are affected by steric

contacts within the framework. In the study below (5.2),

the results depend only on the bonding geometry; for

completeness we note that the radii assigned were

C ¼ 1.70, H ¼ 1.0, Cr ¼ 0.6, O ¼ 1.35 Å.

Flexibility in the structure can then be explored by

specifying new cell parameters for the system; GASP will

impose these new parameters but maintain the bonding

geometry of clusters specified in the original input.

Geometric relaxation will determine how the framework

responds to the strain, within the geometric simulation

model, and whether the molecular clusters can maintain

their shape or must be distorted. In the general case, a

flexibility window is a 6D hypershape, as the cell

parameters a; b; c;a;b; g can all be varied independently.

An exploration within a particular crystal system is

generally more constrained; a cubic system has only a

single relevant parameter, a hexagonal system has two.

With these new capabilities in GASP version 5, the

concept of the ‘flexibility window’ can now be generalised

from zeolites to MOFs, ZIFs and flexible frameworks in

general.

5.2 Case study: rigidity and strain in MIL-47 and
MIL-53

The MIL-47/MIL53 system provides an interesting first

test case. These materials are metal dicarboxylate MOFs

with very similar structures, distinguished by the oxidation

state of the metal ion and the consequent presence or

absence of a bridging hydroxy group in the framework.

In this case, two frameworks with essentially identical

topology display strikingly different flexibility behaviour:

rigidity in one case,[53] flexible compliance in the other,

with the structure folding by a ‘wine-rack’ mechanism.

[54] We have therefore examined a vanadium MIL-47 and

a chromium MIL-53 framework using GASP version 5.

The goal of this pilot study is, first, to see what insights

geometric analysis and simulation can produce into the

rigidity of the framework, and second, to determine

whether geometric simulation can produce the wine-rack

mechanism as a stress-free motion of the framework.

Considering first the crystal structure of MIL-47,[55]

we note that the coordination of the metal (vanadium)

centre by oxygens is sixfold but shows substantial

deviations from regular octahedral geometry. Indeed, the

metal ion appears to lie off the plane formed by four

coordinating carboxylate oxygens, being much closer to

one of the bridging oxygens than to the other, as shown in

Figure 5(a), due to the formation of the [VO]2þ vanadyl

unit. This immediately raises the question of whether

regular octahedral geometry around the metal centre is in

Figure 5. (Colour online) Investigation of rigidity and
flexibility in MOFs. Panel (a) adjacent VO6 octahedra in MIL-
47 linked by a bridging oxygen vertex and two carbonyl groups,
showing the apparent distortion from octahedral geometry in the
crystal structure; (b) the same octahedra after geometric
relaxation of the framework, showing almost regular geometry;
(c) view down the channels of MIL-53; (d) simulation of ‘wine
rack’ motion in MIL-53.
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fact possible. Investigating with GASP using a polyhedral

specification of ‘oct v o 1.97’ – the bond length being

chosen from the average of the bonds observed in the

crystal structure – we find that at the cell parameters

given, the distortion of octahedra cannot be reduced below

0:060 Å (for comparison, the input crystal structure

displays a distortion of 0:174 Å). The geometry of the

octahedra after relaxation is shown in Figure 5(b).

Consideration of the connections between any two

adjacent metal centres in the.a. direction makes clear the

origin of the distortion. Adjacent metal ions are linked

through one bridging oxygen and through two carboxylate

groups, defining a very restrictive bonding geometry.

An incompatibility between the bond lengths in the MO6

octehedra, the OZCZO carboxylate group and the spacing

between adjacent metal centres (set by the a cell

parameter) leads to distortions. The distortions could be

reduced further by adjustments of the a parameter and the

VZO bond length; for example, with the given octahedral

geometry, a slight expansion of the a parameter from 13:64
to 14:05 Å reduces the bonding distortion in the framework

to a mere 0:0025 Å.
In the MIL-53 framework, the bridging oxygen

between adjacent metal centres is converted to a bridging

hydroxyl, reflecting the different oxidation states of the V

and Cr ions in the frameworks. The Cr metal centre is

found in square planar coordination by four carboxylate

oxygens, with the hydroxy groups making up an

‘octahedron’; the CrZOH bond differs from the

CrZOcarboxylate bond, at 1:90 versus 1:97 Å. This can be

represented in GASP by specifying a square-planar Cr:

Ocarboxylate;4 geometry and a Cr:OH ‘bar’ geometry. Thus

the bond lengths are all constrained, but the

OHZCrZOcarboxylate angle is permitted to vary. Analysis

of the input crystal structure using these settings reports a

small distortion in the square planar units of 0:032 Å;
geometric relaxation reduces this distortion to less than

0:001 Å, effectively zero. Thus if we take the view that the

change from a bridging oxygen to a bridging hydroxyl

group acts to reduce constraints on the bonding geometry

around the metal centre, we find that the MIL-47

framework contains intrinsic stresses but the MIL-53

framework can be geometrically relaxed.

To investigate flexibility and the capacity for large-

scale motion in MIL-53, we make use of the ‘new cell . . . ’

feature to vary the unit cell of the framework and observe

the response of the framework. GASP seeks to maintain

the geometry around the metal centres (square planar

CrZO þ bars CrZOH) and the molecular geometry of

the dicarboxylate linkers. To investigate ‘wine rack’

motion, we consider variations in the b and c parameters.

An initial test shows that neither parameter can be varied

on its own without the immediate onset of unresolvable

distortions in the framework due to incompatible bonding

geometry. However, a variation in which b is increased

and c reduced in an appropriate ratio does generate a

stress-free motion in which the framework folds as

expected. This is illustrated in Figure 5(c), showing the

crystal structure of MIL-53 with pores open, and in

Figure 5(d), in which the b; c parameters have been

substantially altered from their initial values (b ¼ 16:73
and c ¼ 13:04 Å) to b ¼ 18:40; c ¼ 10:00 Å. Here c was

set arbitrarily and we searched for a value of b that allows

the framework geometry to remain undistorted.

The results reported here are simply those of a pilot

study demonstrating the applicability of GASP to the study

of MOFs. Detailed results will depend on subtle

interactions between the local bonding geometry around

metal sites (polyhedral shapes, bond lengths), the steric

geometry (atomic radii) assigned to the atoms and the

global geometry of the framework (unit cell parameters).

Elucidating these interactions will be highly productive of

insights for the design and understanding of MOFs.

We anticipate that the investigation of rigidity and

flexibility of MOFs using GASP will be a rich seam for

future study. Of particular interest will be the comparison

of results from the real-space approach of GASP and

reciprocal-space approaches, such as those recently

applied to MOFs by Rimmer et al. [56]; and the

comparison to other framework flexibility approaches

such as the bar and hinge approach of Sarkisov et al. [57].
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