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ABSTRACT
The modelling of thermodynamic properties of liquids from local density fluctuations is relevant to many
chemical and biological processes. The Kirkwood–Buff (KB) theory connects the microscopic structure of
isotropic liquids with macroscopic properties such as partial derivatives of activity coefficients, partial molar
volumes and compressibilities. Originally, KB integrals were formulated for open and infinite systems which
are difficult to access with standard Molecular Dynamics (MD) simulations. Recently, KB integrals for finite
and open systems were formulated (J Phys Chem Lett. 2013;4:235). From the scaling of KB integrals for finite
subvolumes, embedded in larger reservoirs, with the inverse of the size of these subvolumes, estimates
for KB integrals in the thermodynamic limit are obtained. Two system size effects are observed in MD
simulations: (1) effects due to the size of the simulation box and the size of the finite subvolume embedded
in the simulation box, and (2) effects due to computing radial distribution functions (RDF) from a closed
and finite system. In this study, we investigate the two effects in detail by computing KB integrals using the
following methods: (1) Monte Carlo simulations of finite subvolumes of a liquid with an analytic RDF and (2)
MD simulations of a WCA mixture for various simulation box sizes, but at the same thermodynamic state.
We investigate the effect of the size of the simulation box and quantify the differences compared to KB
integrals computed in the thermodynamic limit. We demonstrate that calculations of KB integrals should
not be extended beyond half the size of the simulation box. For finite-size effects related to the RDF, we find
that the Van der Vegt correction (J Chem Theory Comput. 2013;9:1347) yields the most accurate results.
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1. Introduction

The prediction of thermodynamic properties of fluids from
local density fluctuations is relevant to many chemical and
biological processes [1–4]. The Kirkwood–Buff (KB) theory
provides a sound framework to connect molecular structure
and density fluctuations in multicomponent liquid systems to
macroscopic properties [5–9]. As a result, properties like the
compressibility, partial molar enthalpies, partial molar volumes
and derivatives of activity coefficients can be obtained from
integrating radial distribution functions (RDFs) [10–14]. To
compute these properties, accurate estimates of KB integrals
are required [8,10]. Essentially, the theory by Kirkwood and
Buff relates fluctuations in the number of molecules of an open
system to integrals of RDFs. It is important to note that the KB
theory is only applicable to isotropic systems [8]. The derivation
of KB integrals is available in the original paper of Kirkwood
and Buff [5]. For an infinitely large and open three-dimensional
system, the KB integral for species α and β is defined as [5]:

G∞
αβ ≡

∫ ∞

0
dr4πr2

[
g∞
αβ(r) − 1

]
, (1)

where r is the radial distance and g∞
αβ(r) is the RDF of species

α and β , where the effects of the orientation are already

CONTACT T. J. H. Vlugt t.j.h.vlugt@tudelft.nl

integrated out [8,15]. Species α and β can be the same. To
compute KB integrals from molecular simulation, RDFs of in-
finite and open systems have to be integrated. However, typical
simulation techniques do not provide access to infinite systems
as required by theKB theory.Moreover, it is generally difficult to
simulate high-density fluids in open ensembles [16–20]. Several
studies have simply truncated the integral of Equation (1) to
finite distances when computing KB integrals from molecular
simulations [21–25]. This approximation does not provide the
actual integrals defined by Kirkwood and Buff but it does give
an indication of its order of magnitude [8]. In other studies, the
RDF from finite systems were extended to the thermodynamic
limit, using mathematically involved methods [1,26]. For in-
stance, Wedberag et al. [1] applied the Verlet extension [27] to
extend g(r) to large distances. These methods are difficult to
apply to complex systems where internal degrees of freedom
and molecular interactions should be considered.

Recently, we defined an expression for KB integrals for finite
subvolumes,V , embedded in a larger reservoir [28]. The subvol-
ume can exchangemass and energy with the surrounding and is
grand canonical, which is the ensemble adopted by the theory of
Kirkwood andBuff [5]. Inmolecular simulations, the simulation
box, with volume L3, acts as such a reservoir surrounding the
subvolume (see Figure 1(a)). The size of the subvolume, R, is
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(a)

(b)

Figure 1. (Colour online) (a) Density fluctuations of two molecule types inside
a spherical subvolume V , with radius R. This spherical subvolume is embedded
inside a cubic simulation box with length L, and volume L3. The finite simulation
box acts as a reservoir surrounding the embedded subvolume V . GVαβ is obtained

using Equation (2) or Equation (3). The scaling of GVαβ with the inverse size of the
subvolume, 1/R, is extrapolated to the thermodynamic limit to find G∞

αβ (Equation
(1)). (b) Schematic representation of the definition of the function τ(r) (Equation
(11)), the overlap volume between two spheres separated by a distance r.

gradually increased and the KB integrals are computed for each
subvolume size. The scaling of the KB integrals of finite subvol-
umes with 1/R is used to obtain integrals at the thermodynamic
limit, G∞

αβ . As in the original KB theory, the starting point for
the derivation of the finite-volume KB integrals is molecule
fluctuations in a finite and open subvolume, V ,

GV
αβ ≡ V

〈NαNβ〉 − 〈Nα〉〈Nβ〉
〈Nα〉〈Nβ〉 − Vδαβ

〈Nβ〉 , (2)

where Nα and Nβ are the number of molecules of type α and
β , inside the subvolume V and the brackets 〈· · · 〉 denote the
ensemble average in an open system. δαβ is the Kronecker delta
(equal to 1 when α = β and is zero otherwise).

Starting from Equation (2), the KB integrals for finite sub-
volumes in terms of the RDF of the system are derived in this
work. The final working expression to compute the KB integrals
from molecular simulations equals [28]

GV
αβ =

∫
dr
[
g∞
αβ(r) − 1

]
w(r) (3)

where g∞
αβ(r) is the RDF in the thermodynamic limit and w(r)

is a weighting function, which depends parametrically on the
dimensionality and shape of the subvolume V . For a spherical
subvolume, w(r) is known analytically [28] and depends only
on the dimensionless distance r/2R, where R is the sphere
radius. For volumes of arbitrary shape, w(r) may be computed
numerically. Note that the integral in Equation (3) has a finite
upper bound, because w(r) is zero for r larger than the maxi-
mum distance in the subvolume V , which is 2R in the case of

spheres. Equation (3) can be used to compute the integrals from
RDFs obtained from molecular simulations of closed and finite
simulation boxes, as in the case of the NVT ensemble.

When computing KB integrals from molecular simulations
of closed, finite systems one must be aware of two system-size
effects that originate from: (1) computing finite-volume KB
integrals from subvolumes embedded in closed and finite sim-
ulation boxes [29] and (2) using RDFs obtained from finite and
closed simulation boxes, in contrast to open, infinite systems as
required by the KB theory. For the second effect, RDFs from
open systems, g∞(r), can be estimated from g(r) obtained from
molecular simulations of closed and finite systems. Previously,
Krüger et al. [28] used a correlation based on expanding the
difference between g(r) and g∞(r) in a Taylor series in the
inverse of the number of molecules. Ganguly and van der Vegt
[30] suggested a correction based on the excess or depletion
of molecules within a distance, r, around a central molecule.
Cortes-Huerto et al. introduced a correlation to compute the
KB integrals that includes a correction to the RDF finite-size
effects [31].

The objective of this work is to investigate finite-size effects
associatedwith the computation of KB integrals frommolecular
simulations (e.g. MD) of finite and closed systems. For the two
finite-size effects studied, we present the inaccuracies as a func-
tion of the simulation box size. Also, we investigate subvolume
sizes and provide the distances up to which RDFs need to be
calculated. The paper is organized as follows. In Section 2, a
detailed theoretical derivation of the finite-volume KB integrals
(Equation (3)) is presented, which was omitted from the our
original paper due to size restrictions [28]. The finite-size ef-
fects are studied using two sets of simulations. Monte Carlo
(MC) sampling of KB integrals from subvolumes embedded in
larger simulation box. The KB integrals in the thermodynamic
limit, and the inaccuracies associated with these computations
are investigated for various simulation box sizes. Furthermore,
we demonstrate the finite-size effects related to the RDF by
performingMolecular Dynamics (MD) simulation of aWeeks–
Chandler–Andersen [32] (WCA) mixture. Other than varying
the simulation box size used to obtain KB integrals, we also test
various RDF correction methods to estimate RDFs of infinite
systems, g∞(r). Sections 3.1 and 3.2 provide details regard-
ing the simulation methods and specifications of the systems
studied. In Section 4, we present two main sets of results: (1)
the appropriate system sizes from which KB integrals could be
extrapolated and the magnitude of the inaccuracies made when
simulating finite subvolumes and (2) the numerical inaccura-
cies resulting from computing the RDFs in a closed and finite
simulation boxes, and the effect of applying the discussed cor-
rection methods of the RDFs. Our findings are summarized in
Section 5.
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2. Theory

In this section, we present the theoretical derivation of Equation
(3) which allows for the computation of KB integrals for finite
subvolumes. Similar to the original Kirkwood–Buff theory [5]
for infinitely large and open systems, Krüger et al. [28] derived
an expression that relates local density fluctuations inside the
subvolume with the integral of the RDF of the system. This
was achieved by first considering the average densities and the
fluctuations in density of the open subvolume, V, embedded in
a large reservoir (see Figure 1(a)). The open subvolume, V is
grand canonical. The system is characterized by the following
variables: temperature (T), volume of the subvolume (V), and
chemical potentials (μα and μβ). In this ensemble, we con-
sider the average number of molecules, 〈Nα〉, and the average
number of α and β pairs, 〈NαNβ〉, expressed as integrals of the
one molecule density (ρ(1)

α (r1)) and the two molecule density
(ρ(2)

αβ (r1, r2)),

∫
V
ρ(1)

α (r1)dr1 = 〈Nα〉 (4)∫
V

∫
V
ρ

(2)
αβ (r1, r2)dr1dr2 = 〈NαNβ〉 − δαβ〈Nα〉. (5)

Integrationof the local densities over the subvolumeV yields the
average number of molecules in the grand canonical ensemble
[8]. Subsequently, the density fluctuations in the subvolume V
are expressed as∫

V
dr1
∫

V
dr2[ρ(2)

αβ (r1, r2) − ρ(1)
α (r1)ρ

(1)
β (r2)]

= 〈NαNβ〉 − 〈Nα〉〈Nβ〉 − δαβ〈Nα〉. (6)

For fluid systems, ρ(1)
α (r1) and ρ

(2)
αβ (r1, r2), due to translational

and rotational invariance of the molecules, can be replaced by
cα , and cαcβgαβ(r12), respectively. Here, cα is the macroscopic
number density given by cα = 〈Nα〉/V . The function gαβ(r12)
is the RDF and r12 = |r1 − r2|. For a finite multicomponent
fluid, the integral, GV

αβ , is defined by simply dividing Equation
(6) by cαcβV :

GV
αβ ≡ 1

V

∫
V

∫
V

[
gαβ(r12) − 1

]
dr1dr2

≡ V
〈NαNβ〉 − 〈Nα〉〈Nβ〉

〈Nα〉〈Nβ〉 − Vδαβ

〈Nβ〉 . (7)

Here, the R.H.S (Equation (2)) and the L.H.S. of the equation
are both equal to Equation (3) discussed in Section 1. Equation
(3) is expressed in terms of integral of the RDF of the system,
that could be obtained from molecular simulation. In the limit
V → ∞ and homogeneous conditions, the double integrals on
the L.H.S. of Equation (7) can be reduced to a single integral by
applying the transformation: r2 → r = r1 − r2, which yields
the original expression for the KB integral for infinitely large
systems (Equation (1)). However, for a finite subvolume, V ,
applying this transformation is not possible since the domain of
integration over r depends on r1. In this case, the double volume

integrals in Equation (7) are reduced to a single radial integral
by rewriting the L.H.S. of Equation (7) as

GV
αβ =

∫
drw

(
r
)
hαβ(r), (8)

where hαβ(r) = gαβ(r) − 1, and w(r) is a purely geometric
function characteristic of the volume V defined as

w
(
r
) ≡ 1

V

∫
V
dr1

∫
V
dr2δ(r − |r1 − r2|) (9)

Once the function w(r) is known, the two-dimensional inte-
gral of Equation (7) reduces to the one-dimensional integral
of Equation (8), and the expression for KB integrals for finite
subvolumes is obtained. For the calculation of w(r), we first
rewrite the L.H.S. of Equation (7) as

GV
αβ =

∫
V
drτ(r)hαβ(r), (10)

where the integral is over all space and

τ(r) ≡
∫
V
dr1

∫
V
dr2δ(r − r1 + r2). (11)

The function τ(r) has a simple geometrical interpretation: it is
the overlap between the subvolume V and the same subvolume
V shifted by r. This may be seen by making the variable substi-
tution r′2 = r2+r which yields τ(r) ≡ ∫

V dr1
∫
V ′ dr′2δ(r′2−r1),

where V ′ is the subvolume V shifted by r (see Figure 1(b)). The
functionw(r) is obtained from τ(r) by integrating over 4π solid
angle (�) and dividing by V . We have

w
(
r
) = 1

V

∫
dr′τ(r′)δ(r − |r′|) = rD−1

V

∫
d�τ(r) (12)

where D is the dimensionality of space. In the following, we
consider for V hyperspheres of radius R, where by symmetry,
the overlap volume does not depend on �, so τ(r) = τ(r). The
volume of a hypersphere is V = RD ∫ d�/D which, together
with Equation (12), yields

w
(
r
) = τ(r)D rD−1/RD. (13)

The overlap volumes τ(r) of hyperspheres inD=1–3 dimen-
sions (i.e. segment, circle and sphere) are well known [33]. From
these, the corresponding functions w(r) are obtained using
Equation (13) and listed in Table 1. Usingw(r) and the L.H.S. of
Equation (7), we arrive at the final expression for KB integrals
for finite subvolumes (Equation (3)).

Table 1. Geometrical functions w(x), x = r/(2R), for D-dimensional hyperspheres
of radius R. The expressions are valid for x < 1. For x > 1 we have w = 0 in all
cases. Note that in our first paper [28], a factor of 2 was omitted in the expression of
w(x) for D = 1 because we took R as the segment length. Here, we take 2R which
ensures consistency between all dimensions.

w(x)

1D 2(1 − x)
2D 4r( arccos (x) − x

√
1 − x2)

3D 4π r2(1 − 3x/2 + x3/2)



602 N. DAWASS ET AL.

3. Methodology

3.1. Subvolumes finite-size effects

Computing KB integrals using molecular simulations of finite
simulation boxes results in finite-size effects. These effects im-
pact the accuracy of the computed integrals from finite subvol-
umes, and hence the integrals at the thermodynamic limit. In
this section, we show the system, and simulation method, used
to study the finite-size effects. Also, we relate the surface area of
the subvolume embedded in the simulation box to the finite-size
effects of the subvolume.

To deal solely with effects originating from the finite size of
the system, and not RDF related effects, we study a fluid that is
described by an analytic RDF. The following model describes a
liquid with molecules of diameter σ [27,34]:

h(r) = g(r) − 1

=
{

3/2
r/σ exp

[
1−r/σ

χ

]
cos

[
2π
( r

σ
− 21

20
)] r

σ
≥ 19

20 ,

−1, r
σ
< 19

20

(14)

where χ is the length scale at which the fluctuations of h(r)
decay.Aswewill consider a pure component fluid, for simplicity
the indices α and β are dropped in this section. Also, the
parameter σ is set to unity throughout this work, so we use
L for the size of the box instead of L/σ . We show how finite
KB integrals (Equation (3)) scale with the inverse of the size of
the spherical subvolume, V (the subvolume can have any other
shape but in this study, we choose to only consider spherical
subvolumes).

The finite-size effects of the subvolume emerge from pairs
of molecules, where one molecule is inside the subvolume, V ,
and the other is outside V . The contribution of these molecular
pairs to the KB integrals decreases as the size of the subvolume
gets smaller. This relation could be shown using the following
function [28],

F ≡
∫
V
dr1

∫
L3−V

dr2h(r12)

=
∫
V
dr1

∫
L3
dr2h(r12) −

∫
V
dr1

∫
V
dr2h(r12), (15)

where non-zero contributions to F originate from molecule
pairs where one molecule is inside V and the other one outside
V . Assuming a finite correlation length ζ for a layer surrounding
the subvolume, we have h(r12) ≈ 0 for r12 > ζ , (see Figure
2(a)). The volume of this layer, and thus F, increases linearly
with the surface area, A, of the spherical subvolume (for radius
of the sphere larger than ζ ). In the case of an infinitely large
system, the homogeneous conditions allow for the substitution
r = r1 − r2 in the integral over L3, resulting in:

F =
∫
V
dr1

∫
L3
drh(r) −

∫
V
dr1

∫
V
dr2h(r12) ≈ VG∞ − VGV ,

(16)

where G∞ is the KB integral for an infinite volume. As F scales
linearly with the surface area A, the difference (G∞ − GV )

L

R > L/2 

(a)

(b)

Figure 2. (Colour online) Schematic representation of finite-size effects in Section
3.1. (a) related to the function F in Equation (15). The only contributions to F are
from molecule pairs with one molecule (1) inside the subvolume V and the other
molecule (2) in a surrounding layer of thickness ζ , where ζ is the correlation length
of the fluctuations of the RDF (Equation(14)). Molecules outside this layer (r12 > ζ )
do not contribute to F . (b) Schematic representation of the effect of extending R
beyond half the simulation box length, L/2. The volume of the sphere no longer
equals 4

3πR3, and the sphere caps falling outside the box has to be subtracted.
Equation (17) and (18) provide the area and volume of the truncated spherical
subvolume.

scales as A/V , i.e. inversely with the linear dimension of the
subvolume.

To quantify the inaccuracies resulting from these subvolume
finite- size effects, the values of GV

αβ are computed from sim-
ulations of different sizes of the subvolume, R, for a specific
simulation box size L. The KB integrals,G∞

αβ , are obtained from
extrapolating the subvolumesKB integrals to infinite subvolume
size (R → ∞). The KB integrals are compared to integrals
obtained from the direct numerical integration of Equation
(3), with the RDF at each distance computed analytically from
Equation (14). To quantify the inaccuracies in computed KB
integrals due to finite-size effects, we evaluate the differences
between numerical integration of Equation (3) and MC sam-
pling of the double integral of Equation (7). Furthermore, we
examine the distances up to which the computations of the KB
integral are performed (i.e the appropriate subvolume sizes). In
molecular simulation, RDFs are typically computed up to half
the length of the simulation box and as a result the computed
KB integrals are limited to this range. However, in simulations,
one can in principle extend r up to

√
3
2 of the box length [35].

In this work, the RDF is extended up to
√
2
2 of the box length

(the range
√
2
2 < L <

√
3
2 involves complex calculations that will

not be considered further). In the results section, we show how
this extension affects the computations of KB integrals. When
the radius of the subvolume, R, is larger than half the box size,
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the surface area and volume of the subvolume are computed by
disregarding the sphere caps falling outside the simulation box
(see Figure 2(b)). Using R− L/2 for the height of the cap falling
outside the simulation box, we obtain the following equations
for the truncated surface area, Atrunc:, and truncated volume,
Vtrunc: [36],

Atrunc: = 4πR
[
R − 3

(
R − L

2

)]
,

1
2
<
R
L
<

√
2
2

(17)

Vtrunc: = 2π

[
2
3
R3 −

(
R − L

2

)2 (
2R + L

2

)]
,
1
2
<
R
L
<

√
2
2

(18)

To compute the KB integrals of the system using the RDF
of Equation (14), MC sampling is performed to numerically
evaluate Equation (7). For simplicity, a brute-force random
sampling algorithm is used instead of importance samplingMC.
The simulations follow the following algorithm:

(1) Specify the size of the cubic simulation box, L, the size
of the spherical subvolume, with radius R, placed in the
centre of the box, and the RDF parameters Ø and σ . In
this study, we fix σ = 1, and test different values of χ

(χ = 1, 2, and 4).
(2) Select two random points inside the simulation box, p1

and p2, accept the points if they both fall inside the sphere
otherwise, generate new points.

(3) Select a random point, p3, and accept if the point is
outside the sphere. Otherwise, choose a new point p3.

(4) Calculate the distance between points p1 and p2 (r12),
and points p1 and p3 (r13). Find h.r12/ and h.r13/ using
Equation (14).

(5) Performing steps 2 and 3 results in one cycle. After a
sufficient number of cycles (in this study we perform
1011 cycles), compute the average of the integrals

∫
V
∫
V

and
∫
V
∫
L3−V (from Equation (7) and Equation (15))

over the RDF.
(6) Finally, calculate GV

αβ (Equation (7)) and F (Equation
(15)) using the sampled averages of the integrals

∫
V
∫
V

and
∫
V
∫
L3−V .

3.2. Finite-size effects of the RDF

While our formulation enables the calculation of KB integrals
from finite subvolumes, the used RDF has to be of that of an
open and infinite system, g∞(r). Using g(r) from molecular
simulation of a closed system results in a systematic error that
affects the accuracy of the KB integrals, thus, the g(r) has to
be corrected. There are several approaches available to estimate
g∞(r) from RDFs computed in closed systems. In this section,
we present the RDF correctionmethods that we consider in this
work. To study the RDF correction methods, MD simulations
of WCA molecules are performed. The system conditions and
the simulation details are provided in this section.

3.2.1. Van der Vegt correction
When computing KB integrals using finite systems, Ganguly
and van der Vegt [30] observe a drifting asymptote due to the
asymptotic behaviour of RDFs in finite systems. Specifically,
this asymptotic behaviour of the RDF does not converge to one.
These authors proposed that the RDF could be corrected using a
correlation that takes into account the excess, or depletion of the
bulk density of molecule-type α around molecule of type β at a
distance r due to the finite-size of the system (simulation box).
The bulk density of molecules β is compensated by computing
the excess or depletion of number of molecules of species β

inside the considered subvolume, V . The subvolume is formed
by taking a distance r from the central molecule of type α. The
correlation takes into account the depletion of molecule-type
β around a molecule of type α, �Nαβ(r), and provides the
corrected RDF, gvdVαβ (r):

gvdVαβ (r) = gαβ(r)
Nβ

(
1 − V

L3

)
Nβ

(
1 − V

L3

)
− �Nαβ(r) − δαβ

, (19)

where gαβ(r) is the RDF obtained from a simulation of a closed
system. For infinitely large andopen systems, gαβ(r) and gvdVαβ (r)
are equal. Nβ is the number of molecules of type β , L3 is the
volume of the closed simulation box (which is assumed to be
cubic), and δαβ is the Kronecker delta. V is the subvolume that
surrounds a molecule of type α, with radius r. This volume
is calculated according to whether r extends to outside the
simulation box or not [36],

V(r) =
{

4
3πr

3, r
L < 1

2
4
3πr

3( 3−4R/L
2R/L ), 1

2 < r
L <

√
2
2 .

(20)

The excess or depletion ofmolecule-typeβ around amolecule of
type α,�Nαβ(r), can be calculated from, depending onwhether
r extends to outside the simulation box or not [36]:

�Nαβ(r)

=
{∫ r

0 dr′4πr′2ρβ

[
gαβ(r′) − 1

]
, r

L < 1
2∫ r

0 dr′4πr′2(1 − 3 + 3L
2r′ )ρβ

[
gαβ(r′) − 1

]
, 1

2 < r
L <

√
2
2

(21)

3.2.2. Inverse-N finite-size correction
Asimplemethod to correct for the finite-size effect seen in radial
distribution functionswas presented byKrüger et al. [28], where
the difference between g(r) and g∞(r) is expanded in a Taylor
series in 1/N [37]:

gN1
αβ (r) = g∞

αβ(r) + c(r)
N1

+ O
(

1
N2
1
, r

)
, (22)

here, gN1
αβ (r) is the RDF for a closed system with N1 molecules,

g∞
αβ(r) is the RDF corrected for the finite-size effect, and c(r)
is a function that describes deviation from a open system. The
function c(r) is usually not known, but can be estimated using
two systems with different sizes in the same thermodynamic
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state (same density/pressure, temperature, and composition).
The term O( 1

N2
1
, r) is the error associated with the correlation

in Equation (22), which is a function of the number ofmolecules
used as well as r. From Equation (22), the corrected g∞

αβ(r) can
be expressed as

g∞
αβ(r) = N1gN1

αβ (r) − N2gN2
αβ (r)

N1 − N2
, (23)

where the subscripts 1 and 2 refer to two systems with different
number of molecules, but with same density/pressure, tempera-
ture and composition. This method of correcting for the finite-
size effect is straightforward, but requires two different set of
simulations, with different box sizes and number of molecules.
The box sizes should not be too different and the resulting g∞

αβ(r)
can only be extended to the size of the smallest system of the
two systems. Another shortcoming of this method is related to
the numerical accuracy arising from subtracting two numbers
of the same magnitude, both in numerator and denominator.
The resulting numerical instabilities are increased when using
two system sizes that are very close to each other [38].

3.2.3. Cortes-Huerto et al. correction
Another RDF correction is proposed by Cortes-Huerto et al.
[31]. These authors define KB integrals from finite systems in
terms of number of molecules fluctuations as in the work of
Krüger et al. [28].However, their study consider the fluctuations
inside a cubic subvolume. The use of a different subvolume
geometry should not affect the values of the KB integrals at
the thermodynamic limit, G∞

αβ [29]. The KB integrals are also
defined in terms of integrals over the RDF of the system (Equa-
tion (7)). To compute KB integrals using finite volumes, these
authors modify the L.H.S. of Equation (7) to include RDF finite
effects and finite subvolumes effects. For the RDF finite effects,
a correction based on a relation from the work of Ben-Naim [8]
is used, that strictly only applies when r → ∞,

gαβ(r) = g∞
αβ(r) − 1

L3

(
δαβ

ρα

+ G∞
αβ

)
. (24)

Using this relationmeans that the difference between gαβ(r) and
g∞
αβ(r) in Equation (24) is assumed to be independent of r (for all
values of r). In the results section, we compare the validation of
all RDF corrections over the whole range of r. When including
the RDF correction (Equation (24)) in the L.H.S. of Equation
(7), the following expression for the finite integrals is obtained
[31],

Gαβ(V , L3) = 1
V

∫
V

∫
V

[
g∞
αβ(r12) − 1

]
dr1dr2

− V
L3

(
δαβ

ρα

+ G∞
αβ

)
. (25)

The effect of the finite size of the subvolume,V , is accounted
for by considering the boundary effects considered in the func-
tion F (Equation (16)). The double integral in Equation (25),∫
V
∫
V , is expanded to account for the other integrationdomains,

∫
V
∫
L3 and

∫
V
∫
L3−V . As explained earlier in Section 3.1, parti-

cles in a layer outside V in the volume L3 −V contribute to the
double integral

∫
V
∫
V . This contribution scales with the surface

area, S, of the subvolume. Considering the finite subvolume
effect and using S/V ∝ 1/V1/3,

Gαβ(V , L3) = 1
V

∫
V

∫
L3

[
g∞
αβ(r12) − 1

]
dr1dr2

− V
L3

(
δαβ

ρα

+ G∞
αβ

)
+ Cαβ

V1/3 , (26)

where Cαβ is a constant that is unique for each thermodynamic
state of the system. Cortes-Huerto et al. [31] restrict the volume
V between Vζ and L3, where Vζ = 4πζ 3/3. As a result of the
values of r being always larger than ζ , the value of g∞

αβ(r12)
is set to one. Additionally, it is assumed that the system is
transitionally invariant and the transformation r2 → r = r1 −
r2 applies which transforms the integrals in Equation (26) to
the ones in the original KB integrals expression (Equation (3)).
Applying these assumptions, the expression for KB integrals for
finite subvolumes according to Cortes-Huerto et al. [31] is,

Gαβ(V , L3) = G∞
αβ

(
1 − V

L3

)
− V

L3
δαβ

ρα

+ Cαβ

V1/3 . (27)

In this work, Equation (27) is used to findG∞
αβ from simulations

of finite subvolumes. The computed KB integrals are compared
to those computed by other correction methods. Details of the
system studied and of the MD simulations are provided in the
following section.

3.2.4. Simulations details
To study effects resulting from computing RDFs from simula-
tion of finite and closed systems, we examine a binary mixture
interacting using the WCA potential [32] where the Lennard-
Jones (LJ) potential is shifted and truncated at 21/6σ . TheWCA
mixture is simulated in the NVT ensemble using the Nose–
Hoover thermostat [39]. The MD package LAMMPS [40] is
used to perform the simulations, with 1 million initialization
timesteps and 5 million integration timesteps for each run. A
timestep of 0.001 in LJ reduced units, which are the units used
for other variables, are used. All simulations were performed
for the same system properties with: σ11 = σ12 = σ22 =
1.0, ε11 = ε22 = 1.0, and ε12 = 0.1. Additionally, the same
thermodynamic condition was maintained for all system sizes.
A mixture composition of x1 = 0.75 was used along with the
following reduced values: T∗ = 1.8 and ρ∗ = 0.7. The box
length, L, and number of molecules, N , were varied to obtain
g11(r), g12(r), g22(r) as a function of system size. For all box sizes,
gαβ(r) were computed up to distances of (

√
2/2)L. The RDFs

are used to calculate finite subvolumes KB integrals (Equation
(3)) which are then extrapolated to the thermodynamic limit
to obtain G∞

11 , G
∞
12 , and G∞

22 , respectively. To evaluate the KB
integrals in the thermodynamic limit for the system studied,
simulations of a large system are performed. Specifically, G∞

11 ,
G∞
12 , and G∞

22 are evaluated from averaging the results of five
simulations for a box with L = 80. Each simulation was initial-
ized with a different configuration, thus allowing for computing
the standard deviation for each variable.
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4. Results and discussion

4.1. Subvolumes finite-size effects

KB integrals (G∞) are computed for the liquid with the analytic
RDFmodel in Equation (14), using theMC algorithm discussed
in Section 3.1. The KB integrals for finite subvolumes, GV (in
this section, we drop the indices αβ since a pure fluid is studied)
are computedusing simulationboxeswith the following lengths,
L = 7.5, 10, 15, 20, 40 and 50. For each box size, spherical sub-
volumes with R up to (

√
2/2)L are used. The KB integrals for

finite subvolumes, GV scales with the inverse of the sphere
size, 1/R. For each box size, the linear part of the GV scaling
is extrapolated up to 1/R → 0, to find G∞. Figure 3(a) shows
the scaling behaviour for the case of simulating the systemwhen
χ = 2.The regimewhere the scaling is linear dependson the size
of the simulated box. Larger simulation boxes provide longer
linear regimes. The accuracy of the computations of the KB
integrals at the thermodynamic limit, G∞, depends on the size
of the simulation box. The computed KB integrals from theMC
simulations are compared toKB integrals in the thermodynamic
limit, G∞,num, obtained by numerically integrating Equation
(3) up to very large distances. The differences between the
numerically integrated KB integrals, G∞,num, and KB integrals
from simulations are computed using

Difference% = |G∞,num − G∞|
|G∞,num| ∗ 100%. (28)

In Table 2, the differences (%) are listed when using the system
sizes shown in Figure 3 and for three χ parameters, χ = 1,
2, and 4. For these parameters, the values of G∞,num/σ 3 are
−1.785, −2.041 and−2.172 respectively. The values of G∞/σ 3

were obtained by extrapolating the linear part of the lines in
Figure 3, which extend until R = L/2 (indicated by a dot for
each line). In general, for all fluctuation length parameters, χ ,
the difference decreases with the system size. For boxes with
L = 7.5 or 10, the difference is equal to or larger than 1%,
but the deviation decreases by approximately 75 and 90% when
increasing L to 15σ and 20σ , respectively. Finally, obtaining the
KB integrals from boxes with L = 40σ and L = 50σ results in
marginal differences. The subvolumes finite-size effect is shown
more clearly when plotting A/V instead of 1/R as shown in
Figure 3(b). This is due to the fact that the linear scaling of GV

with 1/R is correct up to R = L/2 (A/V ∼ 1/R). When R is

Table 2. Differences (%), calculated using Equation (28), between KB integrals
obtained from direct numerical integration of Equation (3), G∞,num/σ 3, and
integrals computed using MC simulations of various simulation box sizes, G∞/σ 3.
The system used is the fluid described by the analytic RDF of Equation (14). The
values of the KB integrals from numerical integration, G∞,num/σ 3, are −1.785,
−2.041 and −2.172 for χ = 1, χ = 2, and χ = 4, respectively. The values of
GV /σ 3 obtained from MC simulations of finite simulation boxes are extrapolated
to the thermodynamic limit to obtain G∞/σ 3.

Box length(L) χ = 1 χ = 2 χ = 4

7.5 1.979 2.262 2.408
10 1.052 1.042 1.000
15 0.323 0.228 0.140
20 0.154 0.105 0.069
40 0.005 0.036 0.007
50 0.003 0.017 0.055

(a)

(b)

Figure 3. (Colour online) KB integrals from finite subvolumes of the fluid described
with the RDF of Equation (14), with χ = 2. GV /σ 3 scales with: (a) the inverse
of the sphere size 1/R, and (b) the ratio of the area of the sphere to its volume
A/V . The integrals are computed using MC simulations for different lengths of the
simulation box, L, and different radii, R, of the spherical subvolume. The dots show
the points where R = L/2 for each box size.

larger than L/2, parts of the sphere fall outside the simulation
box, and for these distances, the ratio Atrunc:/Vtrunc: (Equation
(17) and (18)) is used instead of A/V .

Another important observation made from Figure 3(b) is
related to the size of subvolume used to compute KB inte-
grals. For each box size, the dot in the GV line indicates the
point where the radius of the spherical subvolume equals L/2.
As shown in this figure, increasing R beyond this value will
not extend the linear regime. This finding is manifested when
looking at the correlation between GV and the ratio between
the area and volume of the sphere (A/V) which is presented
in Figure 3(b). As shown by Equation (16), GV scales with
A/V , but this scaling does not continue when R is larger than
half the simulation box size. When the size of the subvolume
extends beyond the simulation box the number of molecules
surrounding the embedded subvolume decreases greatly, and
the subvolume cannot be considered as grand canonical. Thus,
extending the computations of KB integrals beyond L/2 is not
necessary and does not improve the accuracy of the computed
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Figure 4. (Colour online) The function F (Equation (16)) of the fluid described by
the RDF of Equation (14), with χ = 2. The function scales linearly with the surface
area, A/σ 2, for all the box sizes studied. The dots show the points where R = L/2.

KB integrals. In fact, when extrapolating G∞ this range should
be avoided and only the linear part of the function GV should
be used. In Section 4.2.1, the best range used for extrapolating
the scaling of 1/R and GV , to properly obtain KB integrals,
is further discussed. Finally, we examine the scaling of the
function F (Equation (16)) with the surface area of the spherical
subvolume. Figure 4 shows how the function F scales linearly
with the surface area. The integrals over L3 in Equation (16)
become larger as the number of molecules around surface area
of the subvolume increase.

For all simulation box sizes, the values of the function de-
crease when R is larger than L/2 due to the decrease in the
number of molecules at the boundary of the sphere V . In any
case, regardless of the shape of the subvolume, whether a fully
embedded sphere or a truncated sphere, the function F scales
linearly with the surface area.

4.2. Finite-size effects of the RDF

Here, we study the RDF-related effects discussed in Section 3.2.
RDFs obtained from closed, and finite simulations have to be
corrected. Figure 5 shows the enhanced scaling ofGV

αβ with 1/R
when applying an RDF correction. The correction methods for
g(r) are applied to KB integrals computed from closed, finite
molecular dynamics of the WCA mixture described in Section
4.2. In the case of obtaining the RDFs from MD simulations,
the extrapolation ofG∞

αβ is not straightforward. In the following
section, we show how to identify the linear regime.

4.2.1. Identifying the linear regime
We consider the RDF computed for the binary WCA mixture,
while applying the van der Vegt correction, since we find that
it gives the most accurate KB integrals out of the three methods
studied in this work (details are provided in Section 4.2.2). The
MD simulation details and system conditions are provided in
Section 3.2.4. The study is performed to identify the extrapola-
tion range from the scaling of σ/R with GV

αβ from simulation
boxes with L = 10, L = 20 and L = 40. To find the best linear

(a)

(b)

Figure 5. (Colour online) KB integrals for subvolumes from MD simulations of a
binary WCA mixture. The system conditions, for all system sizes are x1 = 0.75,
T∗ = 1.8 and ρ∗ = 0.7. GV22/σ

3 is obtained from integrating g22(r) (Equation
(3)) at each subvolume size, R. The KB integrals are computed for simulation boxes
with L = 10, 20 and 40. In (a), the RDF is not corrected while in (b) the van der Vegt
correction is applied and gvdV22 is used (Equation (19)). In (b), the range used for
extrapolation for the case of L = 40 is shown as well as the extrapolation line from
which G∞

22 /σ 3 is obtained.

range, the start of the 1/R range, 1/a, and the end, 1/b, are varied
(see Figure 5(b)). For each extrapolation range, the square of the
correlation coefficient (denoted as c2 in this work) is computed
to assess the linearity of the selected range. Also, the difference
between the extrapolated KB integrals, G∞

αβ , and the integrals
computed from a large system (L = 80) are computed, using
Equation (28). To relate the tested ranges to the dimensions
of the system, a and b are related to the molecular diameter σ .
Namely, a is set based on howmanymolecular diameters should
be discarded at the beginning of the distances at which the RDF
is computed. The starting point for the 1/R extrapolation could
be varied as follows,

1
a

= 1
xσ

. (29)
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(a)

(b)

Figure 6. (Colour online) The natural logarithm of (a) the linearity 1 − c2 and (b) the differences, as a result of varying the linear range used to extrapolate to G∞
22 . The

differences between KB integrals from MD simulations of large systems and KB integrals, G∞
22 , from different extrapolation ranges. The KB integrals are computed from

MD simulations of the binary WCA mixture (details in Section 3.2.4). The size of the simulation box is set to L = 40. Points with different colours correspond to different
starting point of the extrapolation range, x , and as a result a (Equation (29)). The variable y correspond to how far should the range be extended (Equation (30)).

Once x, and subsequently a, is set the end point of the extrapo-
lation range could be again related to σ ,

1
b

= 1
a + yσ

(30)

In this section, we demonstrate how to find the best extrapo-
lation range for the case of the values of GV

22. The results for
the effect of varying x and y on the quality of the linear fit (c2)
and the accuracy in KB integrals computations (difference% )
are shown in Figures 6–8 for the box sizes L = 40, L = 20 and
L = 10, respectively. In these figures, the values of −ln(1 − c2)
and −ln.difference/ are plotted as functions of x and y. Also,
in each plot a dashed line is added to indicate values of c2 and
difference% that we consider acceptable. x and y combinations
that fall under the line are considered to give poor estimations
of the KB integrals. Specifically, the following threshold values
are considered, 8 for −ln(1 − c2) and 5 for −ln.difference/
corresponding to c2 = 0.9997 and difference = 0.7%.

Using a box sizewithL = 40 provides sufficient linear regime
that results in very low values of the difference % between KB

integrals computed and KB integrals from very large systems.
Figure 6 shows that choosing lower x and y is favourable. The
same observations are made when studying L = 20 (Figure 7).
Using a large value of y could result in an extrapolating range
that includes the diverging part of the GV and 1/R scaling.
Figures 6 and 7 show that, for a given x, the values of−ln(1−c2)
and −ln.difference/ start decreasing after a specific y value. In
general, y should not be larger than 4σ . Finally, for L = 10,
Figure 8 indicates that there is a range that is sufficiently linear.
However, very few possibilities of x and y combinations provide
low differences, i.e. the linear regime extends to a value that
deviates from the integral at the thermodynamic limit, G∞.

Besides examining the linear range for each system size in-
dividually, it is possible to investigate the effect of the system
size by comparing Figures 6–8. Mainly, larger box sizes pro-
vide a longer linear regime and smaller differences between KB
integrals computed from these boxes and integrals from very
large boxes. When performing the study for the other integrals
as well, GV

11 and GV
12, a few general findings could be observed.

First, it is recommended to choose x larger than 1, to avoid any
fluctuations at small distances. This corresponds to discarding
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(a)

(b)

Figure 7. (Colour online) The natural logarithm of (a) the linearity 1 − c2 and (b) the differences, as a result of varying the linear range used to extrapolate to G∞
22 . The

differences between KB integrals from MD simulations of large systems and KB integrals, G∞
22 , from different extrapolation ranges. The KB integrals are computed from

MD simulations of the binary WCA mixture (details in Section 3.2.4). The size of the simulation box is set to L = 20. Points with different colours correspond to different
starting point of the extrapolation range, x , and as a result a (Equation (29)). The variable y correspond to how far should the range be extended (Equation (30)).

at least 1σ from the GV and 1/V scaling line. As for the end
of the extrapolation range, y, taking short distances ensures
that the extrapolation range does not extend to the end of the
line, where the values of GV

αβ are diverging. We find that not
exceeding b = a + 4σ ensures that the linear fit is acceptable.
This applies to boxes with L larger than 20. Finally, while it is
important to use linear rangeswith high values of the correlation
coefficient, c2 that does not always result in correct estimations
of the KB integrals at the thermodynamic limit, especially for
small simulation boxes. In the following section, inaccuracies
in KB integrals resulting from finite sizes related to RDFs are
discussed.

4.2.2. Comparing correctionmethods
Using RDFs computed from finite and closed simulation boxes
lead to a systematic error in KB integrals computations. These
RDF finite-size effects should be corrected. In Figure 5, we
already showed the scaling of GV

22 with σ/R (a) when using
RDFs that are not corrected and (b) when applying the van der
Vegt correction [30]. For all the system sizes used, implementing
the correction enhances the linear scaling of the finite-volume

KB integrals. In addition to the van der Vegt correction, we
considered the 1/N correlation method [28], and the method
proposed by Cortes-Huerto et al. [31] We compare between
the correction methods by considering the differences between
the corrected RDF obtained from small systems and the RDF
computed using a large system (L = 80). Figure 9 shows the
quantity ln|g(r) − g80(r)| for all distances, where the RDFs are
computed for the WCA binary mixture using L = 10, 20 and
40. Generally, the differences decrease with larger box sizes, and
the differences are larger for small r. Also, for all system sizes,
the van derVegt correction and the correction of Cortes-Huerto
et al. result in lower deviations from the finite RDF than in the
case of the 1/N correlation.

The integrals G∞
11 , G

∞
12 and G∞

22 are computed for the binary
WCAmixture using three different simulation boxes, with L =
10, L = 20 and L = 40. In the case of the 1/N correlation, the
values of G∞

αβ are obtained using two simulation box sizes, that
are not very different. For instance, to compute KB integrals
from a simulation box with L = 10, RDFs from simulations
of boxes with L = 10 and L = 11, at the same density and
temperature, are required. The obtained integrals from each



MOLECULAR SIMULATION 609

(a)

(b)

Figure 8. (Colour online) The natural logarithm of (a) the linearity 1 − c2 and (b) the differences, as a result of varying the linear range used to extrapolate to G∞
22 . The

differences between KB integrals from MD simulations of large systems and KB integrals, G∞
22 , from different extrapolation ranges. The KB integrals are computed from

MD simulations of the binary WCA mixture (details in Section 3.2.4). The size of the simulation box is set to L = 10. Points with different colours correspond to different
starting point of the extrapolation range, x , and as a result a (Equation (29)). The variable y correspond to how far should the range be extended (Equation (30)).

Table 3. Differences (%) between G∞
αβ/σ 3 computed using MD simulations of a large system (L/σ = 80) and the integrals from simulations of small boxes, L = 10, 20

and 40. The MD results are for a binary WCAmixture (x1 = 0.75) at T∗ = 1.8 and ρ∗ = 0.7 (reduced units). Each column includes differences as a result of implementing
a different RDF correction method. For the 1/N correlation, two MD simulations were used, L = 10, 11, L = 20, 21 and L = 40, 41. Our best estimates for G∞

αβ/σ 3 are

G∞
11 /σ 3 = −1.603, G∞

12 /σ 3 = −0.5446, G∞
22 /σ 3 = −2.870.

Box length(L) Without correction van der Vegt [30] 1/N correlation [41] Cortes-Huerto method [31]

(a) G∞
11 /σ 3

10 5.6 0.3 0.29 3.7
20 1.2 0.2 0.9 3.3
40 0.01 0.2 1.8 2.2

(b) G∞
12 /σ 3

10 31 3 4 4
20 7 0.1 0.3 3
40 0.2 0.7 17 2

(c) G∞
22 /σ 3

10 29 0.9 2 4
20 8 0.6 3 3
40 0.4 0.6 13 2

correction method are then compared to integrals computed

using a system with L = 80. The differences (%) between KB

integrals computed using L = 80 and KB integrals G∞
11 , G

∞
12

and G∞
22 from finite simulation boxes (L = 10, 20and40) are

presented in Table 3. For each KB integral, G∞
αβ , the differences

are computed when the RDF is not corrected and when the
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Table 4. Differences (%) between G∞
f /σ 3 (Gf = G11 + G22 − G12/2) computed using MD simulations of a large system (L = 80) and the integrals from simulations of

small boxes, L = 10, 20and40. The MD results are for a binary WCAmixture (x1 = 0.75) at T∗ = 1.8 and ρ∗ = 0.7 (reduced units). Each column includes differences as a
result of implementing a different RDF correction method. For the 1/N correlation, two MD simulations were used, L = 10, 11, L = 20, 21 and L = 40, 41. Our estimate
for G∞

f /σ 3 equals−3.380 ± 0.005.

Box length(L) Without correction van der Vegt [30] 1/N correlation [41] Cortes-Huerto method [31]

10 37 1.8 2.4 5.2
20 9.4 0.3 2.5 3.9
40 0.4 0.8 17.4 2.8

(a) (b)

(c)

Figure 9. (Colour online) The natural logarithm of the difference between RDFs from MD simulation of systems with finite sizes, g(r), and RDF from simulation of system
with very large size, g80(r). The RDFs are computed for the binaryWCAmixture with: x1 = 0.75, T∗ = 1.8 and ρ∗ = 0.7. The differences are computed for three different
simulation box sizes (a)L = 10, (b)L = 20 and (c)L = 40. For each system size, the difference between g(r) and g80(r) is computed at each r. The different colours
represent different RDF correction methods (Section 3.2).

correction methods discussed in this work are applied. Overall,
the differences decrease with larger simulation boxes, with the
exception of the 1/N correlation. Additionally, for box sizes
up to L = 20, the van der Vegt method results in the lowest
differences. For large boxes, Table 3 shows that aRDF correction
is not needed and in the case of L = 40 the differences resulting
from not using a corrections and the differences resulting from
the correctionmethods are not comparable. Thismeans that one
does not have to correct the RDF for very large systems. Other
than the individual KB integrals, we also consider the quantity,
Gf = G11 + G22 − 2G12, which is useful when computing
the thermodynamic factor, �, from the KB integrals [10]. For
L = 80, we find that Gf /σ 3 = −3.38 ± 0.005, deviations from
this value are presented in Table 4 for the case of not using a
RDF correction as well as when using the three RDF correction
methods. In the table, the differences (%) are computed using
Equation (28). Using the RDF without a correction result in

considerable differences in the values of Gf , especially for the
smallest simulation box with L = 10. Out of the three methods,
the van der Vegt correction [30] leads to the lowest differences
in theKB integrals results in the thermodynamic limit. In Figure
9, we show that the method of Cortes-Huerto et al. [31] is
similar to the van der Vegt correction [30] when estimating the
function g∞

αβ(r). Still, when computing the KB integrals the van
der Vegt correction provides lower differences than the method
of Cortes-Huerto et al. [31], which assumes that the RDF is
independent of r. Also, the van der Vegt correction is fairly
simple to implement, and the corrections are applied to one
simulation for each size, unlike the 1/N correlation, where for
each size two simulations are required. Another shortcoming of
the latter method is its numerical inaccuracy when correcting
theRDF, resulting in inconsistencywith regard to predicting the
KB integrals. Furthermore, we apply the correctionmethodpro-
posed by Cortes-Huerto et al. [31] to the same WCA mixture.
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The method enhances the computation of the integrals from
finite systems, but the differences(%) in the KB computations
are not lowered as in the case of the van der Vegt correction.

5. Conclusions

In this work, we studied the finite-size effects related to the
computation of KB integrals from molecular simulations of fi-
nite subvolumes.We presented the uncertainties in KB integrals
due to the following: (1) effects due to the finite size of the
subvolume, and simulation box, used to compute the KB inte-
grals and (2) effects related to computing RDFs frommolecular
simulations of closed systems, in contrast to open systems as
defined in the KB theory. We showed that uncertainties in the
computations of the KB integrals decrease when increasing the
size of the simulation box, and hence the embedded subvolume.
We varied the system size and find that simulation boxes with
lengths larger than 15σ are sufficient to reduce errors in com-
putedKB integrals to below 0.1%.We vary the size of the subvol-
ume, or the distance at which the RDF are computed. We find
that a larger distance does not always ensure higher accuracy. In
fact, for a given simulation box size, the radius of the spherical
subvolume should not be extended beyond half the length of
the simulation box. When using an analytic RDF model for the
computations of the KB integrals, it is relatively straightforward
to identify the linear regime in the scaling of finite subvolumes
integrals with the inverse size of the subvolume. However, using
RDFs computed from MD simulation of WCA molecules did
not necessarily result in identifiable linear regime. In this work,
we presented some guidelines for extrapolating the scaling of
finite subvolumes KB integrals to the thermodynamic limit. In
some cases small simulation boxes provided a sufficient linear
regime; however, RDF finite effects caused the resulting KB
integrals to deviate from these obtained from very large systems.
Uncertainties arising from using RDFs of closed systems were
evaluated formultiple simulation box sizes, as well as for various
RDF correction methods. We demonstrate that using a RDF
correction can significantly enhance the convergence of the KB
integrals and eventually the accuracy of the computations of the
integrals. We compare between the RDF correction methods
and find that the van der Vegt correction of Ref. [30] achieves
the lowest error and is the easiest to apply.
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