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Computing properties of the hydrogen dissociation reaction in and away from 
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ABSTRACT
We study the dissociation of hydrogen from molecule to atoms and show how we can compute 
thermodynamic and transport properties of both species in a mixture under non-ideal conditions. The 
small system method can be used to sample fluctuations of a few atoms or molecules in a small volume 
element, and gives fast access to accurate thermodynamic data of mixtures that are non-ideal. From 
the results of equilibrium and non-equilibrium molecular dynamics simulations of the dissociation of 
hydrogen in a thermal field, we compute coefficients for transport of heat and mass for the gas mixture 
(0.0052 g cm−3) at average temperature 10400 K. We show that the interdiffusion coefficient, the thermal 
conductivity and the Dufour effect are significantly affected by the presence of the reaction.
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1.  Introduction

The aim of this work is to describe a new procedure to find 
thermodynamic properties of a chemical reaction and use these 
properties to study a chemical reaction that is exposed to a ther-
mal field, i.e. a gradient in temperature. The presence of a chem-
ical reaction changes the way energy is stored in a system, e.g. 
through the formation or breaking of bonds. This also affects 
transport of heat and mass, as we shall see. In a chemical reactor, 
reactions will often take place under severe temperature gradi-
ents.[1] Away from chemical and thermal equilibrium, compo-
nents diffuse and react; and at the same time, the particles serve 
as transporters of heat. As an example, we take the hydrogen 
dissociation reaction:

which takes place on the sun at 106 K.[2–4] In the chemical indus-
try, this reaction is relevant for separation of hydrogen gas from 
a gas mixture (e.g. hydrogen gas from CO2, water, and CO in 
the water-gas shift reaction).[5,6] The fact that the reaction itself 
may contribute to heat transfer was investigated already in 1912 
by Langmuir [7]. When the temperature approached 3500 K, he 
found a large increase in the thermal conductivity and explained 
it by dissociation of hydrogen. From the data, he estimated an 
enthalpy of reaction at constant pressure near 550 KJ mol−1, while 
today the value is estimated to be 435 KJ mol−1 [8–10] under 
standard temperature and pressure. The purpose of this arti-
cle is to find accurate thermodynamic data as well as transport 
coefficients for the hydrogen dissociation reaction. We present a 

(1)
H2 ⇄ 2 H

recent theoretical formulation of the non-equilibrium problem. 
Molecular dynamics simulations are used to find the relevant 
data. The simulated systems are at high temperatures and pres-
sures, conditions that can be difficult to manage in a laboratory.

Equilibrium data are necessary in order to compute the driv-
ing forces of the system. Therefore, we first describe the system 
at equilibrium (Section 2), highlighting results obtained earlier 
by Skorpa et al. [11,12]. The flux equations are then derived from 
the entropy production and the resulting transport coefficients 
are determined.[13] We shall see that the interdiffusion coeffi-
cient defined for this particular system is far from the diffusion 
coefficients that can be computed for single gas components by 
kinetic theory gases.

It is cumbersome to obtain reliable thermodynamic data for 
non-ideal mixtures in experiments as well as by computer simula-
tions, e.g. see Hafskjold and Ikeshoji [14]. In particular, it is difficult 
to find partial molar enthalpies, reaction enthalpies and activity 
coefficients. With the advent of the small system method,[15–17], 
we can find such properties in a single simulation by sampling 
particle fluctuations in small volume elements. We repeat an expla-
nation of this method in Sections 3 and 5, and give the results 
used to compute of transport properties for the hydrogen mixture.

To the best of our knowledge, there is no other systematic 
molecular dynamics simulation study of transport properties in 
a chemically reactive mixture. We base this study on the theo-
retical description first presented by de Groot and Mazur [18]. 
This was extended on by Xu et al. [19–21], who did simulations 
on the fluoride dissociation reaction. Most of the simulations 
and methods presented in this article have been discussed in 
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long-range correction was used. The � is the angle between rij and 
rik. In the triad subscript j, i, k, the middle letter i refers to the 
atom at the subtended angle vertex. The role of the three-particle 
interaction term is to prevent formation of more than one bond 
between hydrogen atoms.

The transition from atomic to molecular hydrogen was based 
on the bond length between the interaction centres of the hydro-
gen atoms. When the distance between two particles was shorter 
than r∗ji ≤ 4.0 in reduced units, they were labelled as part of a mol-
ecule. This is in agreement with the procedure used by Stillinger 
and Weber [23]. More on the use of reduced variables can be 
found in Table 1. All reduced variables are denoted by an asterisk.

3.  The chemical reaction in equilibrium

3.1.  Thermodynamic relations

The enthalpy change of the hydrogen dissociation reaction is 
given by the partial molar enthalpies of the components

where Hi =
(
�H∕�Ni

)
T ,P,Nj

, and i is either hydrogen atom or 
molecule. The reaction Gibbs energy is likewise:

The chemical potential of a component is defined relative to the 
chemical potential of an ideal gas of 1 bar pressure (the standard 
chemical potential �0

i ):

The fugacity of the gas component, fi, is equal to the partial 
pressure of the gas, pi = xiP, times the fugacity coefficient �i. 
Superscript 0 denotes the standard state (1 bar). We introduce 
Equation (9) into Equation (8) and use the condition for chem-
ical equilibrium, ΔrG = 0. This gives the thermodynamic equi-
librium constant K th:

where ΔG0 = 2�0
H − �0

H2
. The equilibrium constant can also be 

expressed in terms of the dissociation constant, Kx, or the pres-
sure-based dissociation constant: KP = KxP∕P

0. Here, P is the 
total pressure. The activity coefficient ratio is defined via:

The equilibrium constant can be found from the van’t Hoff equa-
tion at constant pressure. If the enthalpy of reaction is known at 
standard conditions, then:

In the presence of a varying pressure, there is an additional term 
in this equation:

(7)ΔrH = 2HH −HH2

(8)ΔrG = 2�H − �H2
.

(9)�i = �0
i + RT ln fi∕P

0 = �0
i + RT ln(xiP�i)∕P

0

(10)K th = exp

(
−
ΔrG

0

RT

)
,

(11)K th =
x2H
xH2

P

P0

�2H

�H2

= Kx

P

P0

�2H

�H2

= KP

�2H

�H2

(12)
[
�(lnK th)

�(1∕T)

]

P

= −
ΔrH

0

R
.

(13)� lnK th = −
ΔrH

0

R
�

( 1
T

)
−

ΔrV
0

RT
�P,

more detail in recent works [11–13,22] for a liquid-like mixture, 
a dense gas and a dilute gas. The present work is an in-depth 
analysis of the gas mixture alone, giving an overview of results for 
this system. The aim is to set in perspective several new methods 
of analysis, so that they can be useful for other systems. In this 
manner, we hope to contribute to the creation of transport data 
that are needed in the context of chemical reaction engineering 
and research on reacting mixtures.

2.  The hydrogen dissociation reaction

2.1.  Particle interaction potentials

A full description and analysis of the interaction potential for 
hydrogen atom and molecule was presented already by Skorpa  
et al. [11]. The most essential parts are repeated here in order 
to be able to discuss the properties of the model. The hydro-
gen dissociation reaction can be modelled accurately with clas-
sical interaction potentials derived from quantum mechanics.
[10,19,20,23] Stillinger and Weber [23] showed that it was suffi-
cient to use a classical interaction potential, U, which is the sum 
of two- and three-particle interaction contributions, in order to 
describe the essentials of a chemical reaction:

where u(2) and u(3) are the two- and three-particle potentials, 
respectively (see in Equations (3) and (4)). Diedrich and 
Anderson [24,25] and Kohen et al. [10] derived expressions for 
two- and three-particle potentials of hydrogen. The functional 
form of the two-particle contribution term is:

where � = 5.59 × 10−21 kJ, �2 = 0.044067Å
p, �2 = 3.902767Å, 

rc = 2.8Å and p = 4 are hydrogen-specific parameters.[10] The 
value � was chosen such that the minimum of the potential gives 
the bond dissociation energy of hydrogen (432.065 kJ mol−1 [10]) 
at the bond distance between two hydrogen atoms, re = 0.74 Å. 
[24] When the distance between two atoms is larger than the 
cut-off distance, r ≥ rc, the potential is zero.

The functional form of the three-particle contribution is the 
sum of the individual contributions from each particle:

where the h-functions in this expressions are given by:

and

Here, �3 = 2.80 × 10−21 kJ, �3 = 0.132587, � = −0.2997 and 
�3 = 1.5Å are constants.[10] The cut-off distance, rc, is the 
same for both the two- and three-particle interactions (2.8 Å). 
The interaction potential that we use has a short range, and no 

(2)U(�1,… , �N ) =
∑
i<j

u(2)(rij) +
∑
i<j<k

u(3)(�i, �j, �k),

(3)u(2)(r) =

{
𝛼
(
𝛽2r

−p − 1
)
exp

[
𝛾2

r−rc

]
if r < rc

0 if r < rc

.

(4)u(3) = hi,j,k(rij, rjk, �i,j,k) + hj,i,k(rji, rik, �j,i,k) + hi,k,j(rik, rkj, �i,k,j),

(5)
hj,i,k(rji, rik, 𝜃j,i,k) =

{
𝜆3a exp

[
𝛾3

(rji−rc)
+

𝛾3

(rik−rc)

]
if rji < rc andrik < rc

0 otherwise

(6)a =
[
1 + �3 cos(�j,i,k) + � cos2(�j,i,k)

]
.
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where the last term gives the pressure dependence, with ΔrV
0 

as the reaction volume.

3.2.  Fluctuations and scaling laws

The thermodynamic correction factor, Γij, is defined as:

where � = 1∕kBT, kB is the Boltzmann’s constant, � is the chem-
ical potential and subscripts i and j denote the two components. 
At constant (T ,V ,�j), we determine Γij from the fluctuation the-
ory formula derived by Reed and Ehrlich [26]:

The small system method gives the inverse of the thermody-
namic correction factor as a (predominantly) linear function of 

(14)Γ−1
ij =

1
�

�
�ln ⟨Ni⟩
��j

�

T ,V ,�k≠j

=
1

�⟨Ni⟩

�
�⟨Ni⟩
��j

�

T ,V ,�k≠j

,

(15)Γ−1
ij (L) =

⟨NiNj⟩ − ⟨Ni⟩⟨Nj⟩
⟨Nj⟩

.

the inverse of the dimension of the small system L [15–17] for 
constant (T ,V ,�j):

This relation can be used to obtain Γ−1
ij,∞ in the thermodynamic 

limit for the grand-canonical ensemble, T ,V ,�j, by sampling 
various small sub-volumes embedded in the larger simulation 
box. The small system will be in the grand-canonical ensemble, 
while the surrounding simulation box can be in any ensemble. 
Once in the thermodynamic limit, transformations can be done 
to other ensembles. The shape of the small system can be con-
veniently chosen as either a cubic box (L is the side), or a sphere 
(L is the radius).

We shall present results in this article for a gas mixture of 
reduced density �∗ = 0.0003 (� =0.0052 g cm−3). The thermody-
namic correction factors obtained from particle fluctuations are 
plotted versus the inverse sphere size (1/L) in Figure 1 at tem-
perature T∗ = 0.07 (where xH2

= 0.984). The values in the region 
0.125 ≤ 1∕L∗ ≤ 0.16 were fitted with straight lines, and extrap-
olated to the thermodynamic limit (L → ∞ and 1∕L → 0), the 
range where the linear 1/L-dependence was observed. This range 
corresponds to spheres that include from 12 to 16 particles at this 
density and temperature. The value of Γ−1

HH
= 1 obeys the ideal 

property already for a wide range of values, while Γ−1
H2H2

 increases 
from approximately 0.9 for the biggest sphere to 1 for 1∕L ≈ 0.4
. The correlation between H and H2 is near zero, explained by 
the dominating concentration of H2. Only Γ−1

H2H2
 varies as a func-

tion of 1/L, and the inverse thermodynamic factor increases with 
decreasing radius of the sampling sphere. See [12] for more details.

The partial enthalpy of component i, hi, at constant T ,V ,�j is 
determined from the following equation:

Brackets denote time and/or ensemble averages. The partial 
enthalpies are also (predominantly) linear functions of the 
inverse of the radius of the small sampling volume (for spherical 
sampling volumes), L (see also [15–17,22]. The partial enthalpies 
of the small sampling volumes are related to the partial enthalpies 
in the thermodynamic limit through

where hi,∞ is the partial enthalpy at constant (T ,V ,�j) in the 
thermodynamic limit.

The partial enthalpy, hi, was determined for the small systems 
at constant (T ,V ,�j). The results for h for H and H2 are shown 
as a function of the inverse radius of the small system in Figure 
2 for T∗ = 0.2. At this temperature, the mole fraction of H2 var-
ies from xH2

= 0.353 (�∗ = 0.0003) to xH2
= 0.758 (�∗ = 0.004) 

between the lowest and the highest densities. Straight lines were 
fitted to in the range 0.15 ≤ 1∕L∗ ≤ 0.3. This range was chosen 
after comparing results for systems with with 1000 and 4096 
particles. No size effect was seen between these system. At the 
other temperatures, results also looked like Figure 2.

(16)Γ−1
ij (L) = Γ−1

ij,∞ +
Aij

L
+…

(17)hi(L) =

�
�H

�Ni

�

T ,V ,�j≠i

= −
⟨UNi⟩ − ⟨U⟩⟨Ni⟩ + kBT⟨Ni⟩

⟨N2
i ⟩ − ⟨Ni⟩2

.

(18)hi(L) = hi,∞ +
A�

i

L
+…

Figure 1. The inverse thermodynamic correction factor, Γ−1
ij  for a mixture of atomic 

hydrogen and molecular hydrogen at density �∗ = 0.0003 and T ∗ = 0.07. At this 
temperature, the degree of dissociation was independent of density within the 
numerical accuracy of the simulation. The straight lines were fitted in the region 
0.125 ≤ 1∕L∗ ≤ 0.16 in order to find the value in the thermodynamic limit.

0 0.1 0.2 0.3 0.4

1/L*

0.5

0.6

0.7

0.8

h*

H
H2

Figure 2.  Partial enthalpies determined from fluctuations at (T , V ,�j), hi, as a 
function of inverse sphere radius (1∕L∗) for reduced density 0.0003 at T ∗ = 0.2. 
Straight lines were fitted in the region 0.15 ≤ 1∕L∗ ≤ 10.3.
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There is no net mass flux out of the box, so the two molar fluxes 
are dependent: JH = −2JH2

.
The entropy production is then (see [18,20] for details):

The (scalar) chemical reaction rate r depends on the driving 
force in a non-linear way, cf. Equation (39). It will not couple 
to the vectorial fluxes (like heat and mass fluxes).[18] Practical 
flux expressions for Jq and JH2

 are obtained from the force–flux 
relations:

where the forces are written as a function of the resistivities, R, 
and the fluxes. Alternatively, we can write the fluxes as a function 
of the forces and the conductivities L as follows:

The coefficients R and L can be organised in a matrix of resis-
tivities and conductivities, respectively. The resistivity matrix 
R has its inverse in the conductivity matrix L. Both matrices 
are symmetric.[29,30] The driving force in the last line should 
not be confused with the scalar driving force of a chemical 
reaction. It appears as a particular difference in the gradients 
of the chemical potentials, due to the relation between the 
fluxes, and therefore related to the reaction Gibbs energy. The 
driving force for interdiffusion of components is a vector; it 
is the gradient in the reaction Gibbs energy over temperature 
at any location x. This quantity does not change sign across 
the box, as we shall see. The value of the R- or L-matrix must 
be understood on this basis.

A formulation containing the total heat flux is not convenient 
when it comes to making a connection with experiments, as it is 
not absolute, but depends on a reference state for the enthalpy. 
The measurable heat flux, J ′q, is introduced via the total heat (or 
energy) flux Jq:

where ΔrH was defined earlier. We obtain

(24)� = Jq
d
dx

1
T

− JH2

[
d
dx

(
�H2

− 2�H

T

)]
− r

ΔrG

T

(25)= Jq
d
dx

1
T

+ JH2

[
d
dx

ΔrG

T

]
− r

ΔrG

T
.

(26)
d
dx

1
T

= RqqJq + Rq�JH2

(27)d

dx

ΔrG

T
= R

�qJq + R
��
J
H

2

,

(28)Jq = Lqq

d
dx

1
T

+ Lq�

d
dx

ΔrG

T

(29)JH2
= L

�q

d
dx

1
T

+ L
��

d
dx

ΔrG

T

(30)Jq ≡ J �q + JHHH + JH2
HH2

= J �q − JH2
ΔrH ,

(31)� = J �q
d
dx

1
T

+
1
T
JH2

d
dx

ΔrGT − r
ΔrG

T
,

3.3.  Kirkwood–Buff integrals

In general, Kirkwood–Buff integrals, Gij,[27] can be used to find 
thermodynamic variables like thermodynamic factors, partial 
molar volumes or isothermal compressibility. This can be done by 
considering density fluctuations in the grand-canonical ensem-
ble, or pair correlation functions.[28] Gij is defined as the integral 
over the pair correlation function gij:

where � is the Kroenecker delta and ci is the concentration of 
i (ci = Ni∕V). The last equality was obtained by introducing 
Equation (15) in the middle equality of Equation (19).

The derivative of the chemical potential of k is related to Gij 
at constant T and P by:

where xi is the mole fraction of i (xi = Ni∕(NH + NH2
); here NH2

 
is the number of molecules so that xH + xH2

= 1). The relation 
between the thermodynamic correction factor and the activity 
coefficient, �i is then [17]:

Other thermodynamic properties can also be defined in terms of 
these integrals. The fluctuation method gives access to values for 
the (T ,V ,�j) ensemble. In order to refer to conditions that are 
interesting to chemists, these values must be transformed to the 
canonical (T ,V ,Nj) or isothermal–isobaric (T ,P,Nj) ensemble. 
Such transformations can only be done in the thermodynamic 
limit, see Schnell et al. [22] for a detailed discussion.

4.  The chemical reaction away from equilibrium

4.1.  The entropy production and the flux equations

In our example, the chemical reaction takes place in a closed 
box exposed to a temperature difference in one direction, the 
x-direction. The temperature and chemical potentials vary only 
in this direction. In molecular dynamics simulations, the conven-
ient flux variables are the total heat flux Jq, the flux of hydrogen 
atoms JH and the flux of hydrogen molecules JH2

, in addition to 
the reaction rate r.

The simulations are set up with a gradient in temperature, 
and allowed to run until stationary state. Then

and

(19)

Gij = ∫
∞

0

[gij(r) − 1]dV = V
⟨NiNj⟩ − ⟨Ni⟩⟨Nj⟩

⟨Ni⟩⟨Nj⟩
−

�ij

ci
=

1
ci
Γ−1
ij −

�ij

ci
,

(20)
1

kBT

(
��i

�xi

)

T ,P

=
1
xi

+
cj

(
2Gij − Gii − Gjj

)

1 + xicj

(
Gii + Gjj − 2Gij

)

(21)
(
�ln �i
�ln xi

)

T ,P

= −
xicj(Gii + Gjj − 2Gij)

1 + cjxi(Gii + Gjj − 2Gij)
.

(22)r(x) = −
�JH2

(x)

�x
=

1
2

�JH(x)

�x
,

(23)
�Jq

�x
= 0.
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We see immediately that the net rate is zero when ΔrG = 0, near 
as well as far from chemical equilibrium, as expected.

4.2.  Transport properties

In multicomponent systems with transport of heat and mass, 
one can define two thermal conductivities; one for the homo-
geneous mixture, and one for zero mass transport (Soret equi-
librium).[31] The situation here is similar in the sense that 
we have zero net mass transport. But it is not the same, as 
the component fluxes differ from zero. We can define one 
conductivity for zero component fluxes, and one conductivity 
for a constant driving force for interdiffusion.

The thermal conductivity, �JH2
=0, defined in the absence of 

component transport, is the normal thermal conductivity for 
momentum transfer. We obtain from Equation (34):

This situation, with no movement of the chemical components 
cannot be realised in this simulation system. The quantity can 
nevertheless be computed.

The thermal conductivity at �
[
ΔrG∕T

]
∕�x = 0 is defined 

from Equation (32):

This conductivity is defined at a constant chemical driving 
force, −ΔrG∕T . In the present case, the chemical reaction 
occurs everywhere in the box, and its driving force is not 
constant. The interdiffusion of components in the box con-
tributes to heat transfer, and makes this thermal conductivity 
different from �JH2

=0. According to non-equilibrium thermo-
dynamics theory, the coefficients are independent of the driv-
ing forces,[18] so a value obtained for one driving force can 
be applied at any driving force.

The interdiffusion coefficient for movement of H2 vs. H, D, 
is defined by [20]:

where the difference in the chemical potentials of H2 and H have 
been contracted by the help of the Gibbs–Duhem equation. The 
derivative of the chemical potential with respect to the density 
can be found from Equation (20).

The heat of transfer, q∗ is finally defined as the ratio between 
the measurable heat flux and the flux of H2 at zero temperature 
gradient:

We will present all the above coefficients, calculated from the out-
come of Equations (36)–(38), once the matrix of L-coefficients 
is known.

(43)�JH2
=0 ≡ −

[
J �q

dT∕dx

]

JH2
=0

=
1

T2rqq

(44)�(ΔrG∕T)
≡ −

[
J �q

dT∕dx

]

ΔrG∕T

=
lqq

T2
.

(45)D = l
��

�

T�H

(
d�H2

dcH2

)

T ,P

,

(46)q∗ ≡
[
J �q

JH2

]

∇T=0

= −
rqm

rqq
.

where subscript T indicates that the reaction Gibbs energy is 
now found while the temperature is kept constant. This form of 
the entropy production gives flux-force relations which relate 
directly to measurable quantities:

or, alternatively

The symmetric coefficient matrix of resistivities, r, is the inverse 
of the coefficient matrix of conductivities l. All sets of coefficients 
will be found and related to the more common coefficients of 
transport in the next subsection.

The entropy production must be invariant to the choice of var-
iables. This gives the following relations between the resistivities:

The non-linear flux–force relation of the chemical reactions can 
be derived using mesoscopic non-equilibrium thermodynamics.
[31] This gives:

The equation can be seen as a rewriting of the law of mass action.
[31] From the law of mass action, we can set the forward reaction 
rate rf  as of a pseudo-first-order reaction:

where kf  is the reaction coefficient. In equilibrium, rf = kf cH2,eq
. 

Knowing rf , we can calculate the reaction Gibbs energy at any 
location in the system from Equation (39):

Close to chemical equilibrium, |ΔrG| << RT, and the reaction 
rate in Equation (39) becomes

(32)J �q = lqq
d
dx

( 1
T

)
+ lq�

(
1
T

d
dx

ΔrGT

)

(33)JH2
= l

�q

d
dx

( 1
T

)
+ l

��

(
1
T

d
dx

ΔrGT

)
,

(34)
d
dx

1
T

= rqqJ
�
q + rq�JH2

(35)
1
T

d
dx

ΔrGT = r
�qJ

�
q + r

��
JH2

.

(36)rqq = Rqq

(37)r
�q = rq� = Rq� − RqqΔrH

(38)r
��

= R
��

− 2Rq�ΔrH + Rqq

(
ΔrH

)2
.

(39)r(x) = rf − rb = rf

(
1 − exp

ΔrG

RT

)
.

(40)rf = kf cH2

(41)
ΔrG(x)

RT(x)
= ln

(
1 −

r(x)

rf

)
.

(42)
r = −kf cH2,eq

ΔrG

RT
.
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This results in the following expressions for the fluxes and the 
reaction rate

where AD, BD, and CD are defined by

The function giving the flux of H2 in Equation (55) approaches 
zero in x = 0 and x = l. The analytical expression predicts a solu-
tion to the profile of the mass flux which is symmetric around 
the centre of the box, and can be used for fitting data.

We fitted the simulation results for the hydrogen flux to the 
following equation:

where a is a constant due to energy delivery and consequent shift 
of the reaction in the thermostatted layers, see the Simulation 
section below. We corrected the observed hydrogen flux for a, 
and fitted the central part of the curve to give a, L

�qBD and l / d.
With knowledge of l / d, we fitted the computed inverse tem-

perature profile through the box to Equation (52), and deter-
mined AD, BD and CD (defined in Equations (57)–(59)). When BD 
is known, L

�q can be found from L
�qBD which was determined 

from the fit of JH2
.

The total heat flux, Jq, can be found directly from the simu-
lations, as explained in Section 5. The measurable heat flux, J ′q, 
can be found from the total heat flux using relation Equation 
(30). From knowledge of Jq and BD, Lqq was determined using 
Equation (54). Finally, the l-matrix was found by inverting the 

(53)
ΔrG(x)

T(x)
=

R
��

Rq�

CD sinh

(
2x − l

2d

)
.

(54)Jq = LqqBD

(55)

JH2
= L

�qBD +
1

Rq�d
CD cosh

�
2x − l

2d

�
= L

�qBD

⎡
⎢⎢⎢⎣
1 −

cosh
�

2x−l

2d

�

cosh
�

l

2d

�
⎤
⎥⎥⎥⎦

(56)r = −
1

Rq�d
2
CD sinh

(
2x − l

2d

)

(57)AD =
1
TH

+ CD sinh
l

2d

(58)BD = −
CD

L
�qRq�d

cosh
l

2d

(59)CD =

(
1
TC

−
1
TH

) L
�qRq�

L
�qRq� sinh

l

2d
−

l

d
cosh l

2d

(60)JH2
(x) = a + L

�qBD
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1 −

cosh
�

2x−l

2d

�

cosh
�

l

2d

�
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4.2.1.  Analytical solutions and procedure for decomposition 
of results
The derivatives of Equations (26) and (27) can, using Equations 
(22) and (23), be written in the form

Close to chemical equilibrium, we can use Equation (42) for the 
reaction rate,

When the rate constant and the resistivities are known and con-
stant, these equations can be solved for given boundary con-
ditions of the temperatures and mass fluxes, see Xu et al. [20].

The penetration length, d, is often used to characterise the 
competition between reaction and diffusion. We understand d 
as the distance a molecule can diffuse before it reacts:

The solution of Equations (49) and (50) is for 0 ≤ x ≤ l:

(47)d2

dx2
1
T

= Rq�

dJH2

dx
= −Rq�r

(48)d2

dx2
ΔrG

T
= R

��

dJH2

dx
= −R

��
r.

(49)d2

dx2
1
T

=
Rq�kf cH2,eq

R

ΔrG

T

(50)d2

dx2
ΔrG

T
=

R
��
kf cH2,eq

R

ΔrG

T

(51)d ≡
√

R

R
��
kf cH2,eq

.

(52)
1

T(x)
= AD + BDx + CD sinh

(
2x − l

2d

)

Figure 3. Fluxes of hydrogen molecule, J
H
2
 and atom, J

H
 through the box. The total 

mass flux, J
tot

, is constant as no net mass flux is present. The constant a, obtained 
from the fit, is indicated on the right side of the figure. The temperature gradient 
was created by velocity swapping (0.17 swaps/fs, with 85% success). See Section 5 
for more details on the computational method.
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where v2i =v
2
x,i+v

2
y,i+v

2
z,i and Np = NH + 2NH2

 is the total number 
of atoms.

In the small system method, one samples fluctuations in small 
spheres in the simulation box. The sphere had radius, L, varying 
from L = �p to L = 0.5Ly, where Ly is the length of the simulation 
box in the y-direction. The sampling is done at random positions 
in the simulation box. The number of particles and the energy is 
then computed for each sphere (50 spheres per sampling) and the 
time average gave the fluctuation of particle numbers and energy. 
Fluctuations were sampled every 100-time step.

The NEMD simulations reported here were run for 600 mil-
lion steps (6 parallel runs of a 100 million steps, where 3 million 
steps were used for each parallel run to make the system station-
ary). The time step was 9.0 × 10

−3 in reduced units, correspond-
ing to 0.02  fs. After a stationary state was reached, data were 
sampled every 20 steps.

We adopted the thermostatting routine from Müller-Plathe 
[32] to impose a thermal gradient. The simulation box is an elon-
gated system, where the centre of the box is designated the cold 
zone, and the edges are designated the hot zone. This symmetry 
allows us to average the data from a simulation more efficiently. 
Two atoms were picked at random, one in the designated hot 
zone and one in the cold zone. Then the kinetic energy of the 
particles was swapped if the kinetic energy of the particle in the 
cold zone was higher than that of the particle in the hot zone. The 
frequency of the velocity swaps regulates the energy flow between 
the hot and cold zone, and thus also the observed temperature 
gradient. We determined a range of swapping conditions which 
produced the expected symmetry. An overview of the possible 
gradients produced by the various swapping conditions is pre-
sented in Table 2, for a temperature of 10,400 K in the centre of 
the transport region. However, the thermostatting routine leaves 
two zones on both side of the plots, e.g. Figure 3. This is due to 
the thermostat itself, and these regions should be excluded from 
the analysis.

From the energy change resulting from the swaps, we have 
the total energy flux:

where v is the velocity and t the time over which the transfers 
were counted. The factor 2 in the denominator arises from the 
periodicity of the system, as the energy can flow from the hot to 
the cold slab from two directions (the cold zone is at the centre 
of the box, and the hot zone is at both ends to ensure symmetry). 
This effectively doubles the available area LyLz. In the x-direction, 
the simulation box was subdivided in 128 layers. The thermody-
namic properties were calculated in each of these layers.

Table 2 presents an overview of the cases we studied. Cases 
1a–1d have been performed around the same initial tempera-
ture, T(l∕2) =10,400 K, but with varying temperature gradients 
(created by different swap frequencies). Six parallel runs with 
different initial configurations runs were done for each swap 
condition.

(61)T =
1

3kBNp

Np∑
i=1

miv
2
i

(62)Jq = −

∑
transfers

mH

2

�
v2h − v2c

�

2tLyLz

r-matrix. Knowing Jq, 
d

dx

(
1

T

)
, Lq� and Lqq, we can find d

dx

(
ΔrG

T

)
 

from Equation (28), and further L
��

 from Equation (29) and JH2
.

From the L-matrix we found the R-matrix by inversion. The 
R-matrix was then used to determine the r-matrix, according to 
the relations given in Equations (36)–(38), as well as the reaction 
enthalpy.

5.  Molecular dynamics simulations

We report simulation results for a gas mixture of density � =

0.0052 g cm−3 in the temperature range T =3640–20.800 K. The sim-
ulation box contained 1000 particles (Np = NH + 2NH2

= 1000), 
with dimensions V = LxLyLz, where Ly = Lz = Lx∕2. The mass 
of one hydrogen atom, m0 = 1.67 × 10−27 kg, was used to define 
the reduced total mass density �∗ = ��3

p∕m0. This implies that 
the reduced total mass density is equal to the reduced total molar 
density in terms of (Np = NH + 2NH2

). Reduced units (see Table 
1) are indicated by superscript ∗.[11] In these units �∗ = 0.0003. 
The value of �p in the table was obtained at u2(�p) = 0, giv-
ing �p =

p
√
�2 = 0.458Å. Due to the 3-particle interaction 

the excluded volume diameter is much larger, 2.7Å. The � was 
derived from the binding energy of hydrogen, so that � is the 
minimum of the pair potential, giving �∕kB =51991 K. For more 
details of the simulation procedure, see [11].

The temperature T of a volume element is calculated from 
the average kinetic energy per degree of freedom of all particles:

Table 1. Relations between reduced and real units. In this study �∕kB =51991 K, 
�p = 0.458 Å and m

0
= 1.67 × 10

−27 kg.

Reduced variables Formula
Mass m∗ = m∕m

0

Distance r∗ = r∕�p

Energy u∗ = u∕�
Time t∗ = (t∕�p)

√
�∕m

0

Temperature T ∗ = kBT∕�
Density �

∗ = ��
3

p∕m0

Pressure P∗ = P�3

p∕�
Velocity v∗ =v

√
m

0
∕�

Table 2. The thermal gradient was found from the indicated points (red) in the tem-
perature profile, see Figure 7. Cases 1a–1d have been performed for the same av-
erage temperature, T (l∕2) =10,400 K. The success of the thermostat was measured 
by the number of successful velocity swaps that meet the energy criterion.

Case no. T(l / 2) ΔT dT/dx Swap fre-
quency

Success 
rate

103 K K 10
11
Km

−1 fs−1 %

1a 10.5 -1430 -3.9 0.17 85
1b 10.4 -1070 -2.9 0.13 87
1c 10.3 -940 -2.6 0.10 88
1d 10.4 -750 -2.2 0.08 89
2 15.7 -1210 -3.3 0.10 89

Table 3. The corrected total heat flux, Jcq, measurable heat flux, J′q and the corrected 
mass flux JcH2, at (l / 2).

Case Jcq J�q(l∕2) JcH2
(l∕2)

W m−2 W m−2 mol m−3

1 4 ± 2 ⋅ 10
11

2 ± 1 ⋅ 10
11

2 ± 2 ⋅ 10
5

2 4 ± 2 ⋅ 10
11

4 ± 2 ⋅ 10
11 −5 ± 5 ⋅ 10

4
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correspond to Γ−1
HH ,∞, filled symbols to Γ−1

H2H2,∞
 and crosses to 

Γ−1
HH2,∞

.
The figure shows that Γ−1

HH ,∞ is approximately constant inde-
pendent of temperature and density. A small decrease is seen with 
increasing temperature. An increasing temperature leads to an 
increasing amount of H in the system, see Table 4.

The value of Γ−1
H2H2,∞

 is seen to increase with temperature, as the 
amount of H2 decreases. We see that it increases from approximately 
0.9 to 1 in the investigated temperature interval. The temperature 
dependence is larger for denser mixtures (See [12]).

The value of the thermodynamic correction factor for one 
component interacting with itself is 1 if the system is ideal (pure 
component and ideal gas). The value is zero for interactions 
between different components in this state. We conclude that 
the gas at the lowest temperature, T∗ = 0.07, is close to an ideal 
mixture. At these conditions, only 0.8% of the hydrogen is dis-
sociated (8 H atoms out of a 1000 particles).

6.3.  Partial enthalpies

Results for the partial enthalpies in the different ensembles are 
presented for the temperature interval T∗ = 0.07 − 0.4. See Ref. 
[22] for details. The partial enthalpies in the thermodynamic 
limit are given in Table 5. All results showed a linear dependence 
and the linear fit was done for the range 0.15 ≤ 1∕L∗ ≤ 0.3  in all 
cases. The partial enthalpy in the table increases with increasing 
temperature, for H as well as H2. All sets of partial enthalpies; 
for (T ,V ,�j), (T ,V ,Nj) and (T ,P,Nj) are shown in Figure 5. The 
values obtained in the (T ,P,Nj) ensemble are special in that they 
are designated partial molar enthalpies, and can be used to cal-
culate the reaction enthalpy.

6.4.  The reaction enthalpy and the equilibrium constant

6.4.1.  The standard state. Pressure variations of the reaction 
enthalpy
In order to determine the thermodynamic equilibrium constant 
from the van’t Hoff equation, Equation (11), we need information 
on the standard state, in the present case defined by an ideal gas at 
1 bar. The lowest density mixture of reactant and product is close 
to be an ideal mixture, because the thermodynamic correction 
factors for the main components are close to unity at this condi-
tion, Γ−1

HH ,∞ = 1.00, Γ−1
H2H2,∞

= 0.87, and Γ−1
HH2,∞

≈ 0. In addition, 
the compressibility was near 1/P, the ideal value.

We find an ideal standard state from results at the lowest tem-
perature, (T∗ = 0.07), and use Equation (13) to correct for the 
distance to 1 bar. At this temperature and density, the overall 
pressure of the system is approximately 850 bar. The pressure 
variation from 1 bar to 850 bar gives a contribution of 7 units 
to K th which must be added to the normal van’t Hoff term, see 
Equation (13) for these conditions. For the whole range of pres-
sures and densities used, the correction term varies from 3–24 
units. The enthalpy of reaction was observed to only have a small 
pressure dependence. The enthalpy of the reaction was observed 
to follow a quadratic trend as a function of temperature.

6.4.2.  The temperature dependence of the enthalpy
From the results of the equilibrium simulations, we can include 
the temperature dependence of the enthalpy in the van’t Hoff 

The energy fluxes used are shown in Table 3. The thermo-
stat-dependent coefficient a (from the fit of the flux) was used 
to correct the mass flux, JcH2

= JH2
− a, and the total heat flux, 

Jcq = Jq − aΔrH, prior to further calculations. This helps remove 
the effect of the thermostats on the simulated results.

The average temperature in the simulation was T∗(l∕2) = 0.2 
(10400  K). At this temperature, the equilibrium composition 
contains a sizable concentration of product (H) as well as reactant 
(H2), 50% dissociation, see [11], making it suitable for a study of 
the impact of the reaction on transport properties. Cases 1a–d, 
which have the same temperature in the centre of the box, will 
generate the same set of transport coefficients, as these are inde-
pendent of the driving force. The average of the separate results 
will be referred to as Case 1 in the following.

6.  The reaction in equilibrium

6.1.  Mixture compositions

The degree of dissociation, mole fraction and pressure of the 
mixture are given in Table 4. We see that there is almost 1% 
dissociation at the lowest temperature (T∗ = 0.07), while for the 
highest temperature (T∗ = 0.4), we have almost 80% dissociation. 
The ideal dissociation constant Kx = xH

2∕xH2
 is also calculated. 

The nearly ideal state at T =3640 K (T∗ = 0.07) can be used as 
a reference.

6.2.  Thermodynamic correction factor

The inverse thermodynamic correction factor in the ther-
modynamic limit, Γ−1

ij,∞, is plotted in Figure 4 as a function 
of temperature for the density in question. Open symbols 

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

-1 ij
,

T*

H-H

H2-H2

H-H2

Figure 4.  The inverse thermodynamic correction factor in the thermodynamic 
limit, Γ−1

ij,∞ for the mass densities �∗ = 0.0003.

Table 4. Number of H atoms (NH), mole fraction (xi), total pressure (P∗) and the  
dissociation constant (Kx) for the density, �∗ = 0.0003.

T ∗ 0.07 0.15 0.2 0.25 0.3 0.4
N
H

8 254 477 574 711 761
N
H
2

496 373 261 213 145 120
x
H
2

0.984 0.595 0.353 0.270 0.169 0.136
Kx – 0.276 1.183 1.973 4.088 5.502
10

5P∗ 1.138 3.045 4.672 6.347 7.983 11.148
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The thermodynamic equilibrium constant and the ratio of 
the activity coefficients calculated from this equation and 
Equation 11 are shown Table 6. When we include the temper-
ature dependence in ΔrH, we obtain K th in the same order of 
magnitude as KP and K th, see Table 6. The ratio of the activity 
coefficients is not constant and follows the same temperature 
dependence as we observe for ΔrH. From the approximation 
ΔrV (T∗ = 0.07) = ΔrV

0  in the last term in Equation (13), we 
calculate a negligible correction due to the pressure variation 
in K th of 3–24 units, varying from the lowest to the highest 
temperature.

6.5.  Equilibrium simulations – summarised

We have seen above how the small system method can be used to 
give accurate data for chemical reactions. It may seem cumber-
some to have to transform variables between ensembles, but the 
transformation procedure is well established.[22,33] The bonus is 
that information can be obtained about non-ideal behaviour in 
mixtures and chemical reactions. This information is otherwise 
not easily accessible.

The results elucidate that the normal assumption of taking 
the reaction enthalpy constant in the integration of the van’t 
Hoff equation can be significantly improved, see Figure 6. The 
calculated reaction enthalpy has the same order of magnitude 
(440 kJ mol−1) as the bond dissipation energy in the interaction 
potential (432 kJ mol−1). The large value may change the trans-
port properties of the mixture, and it is important to know it 
precisely.

7.  The reaction away from equilibrium

7.1.  A stationary state of thermal interdiffusion

The main force driving transport in our box is the gradient in 
the inverse temperature. The inverse temperature is illustrated in 
Figure 7 for Cases 1c and 2. The figure shows the average of six 
parallel runs for each case. The variation in the inverse tempera-
ture was fitted to Equation (52). Error bars indicate the variation 
between the runs. The accuracy of the fit is slightly better for Case 
1 (Figure 7(a)) than for Case 2 (Figure 7(b)).

The thermal gradient leads in both cases to an interesting 
stationary state, which was shown already in Figure 3. The two 
components, which are confined to the box, diffuse due to the 
thermal gradient. The hydrogen atoms diffuse to the cold side of 
the box, while the hydrogen molecules diffuse to the warm side, 
giving rise to thermal interdiffusion.

The average mass fluxes of the molecules and atoms were 
determined from six parallel runs at two temperatures (not 
shown). The net mass flux (Jtot) through the system was always 
zero, as it should be, confirming the relation JH = −2JH2

. An 
increase in the temperature increased the component fluxes as 
the driving force was increased.

In a non-reacting mixture of two components, this interdif-
fusion is absent. The observed thermal interdiffusion of compo-
nents has therefore its origin in the chemical reaction. We see 
a variation in the particle fluxes across the box. This is another 
indication of an impact of the chemical reaction, as the diver-
gence of the flux is related to the reaction rate, see Equation (22). 

equation. The variation in ΔrH with temperature is given in 
Figure 6. The line in the plot corresponds to the value found for 
ideal conditions (plot of lnKx vs 1/T).[11]

The reaction enthalpy (in J mol−1) was fitted to a quadratic 
function of the temperature:

We rewrite the van’t Hoff equation, using the identity 
d(1∕T) = −(1∕T2)dT, ΔrH = aT2 + bT + c, and obtain after 
integration:

(63)ΔrH(�∗ = 0.0003) = 0.0003T2 − 8.9T + 4.9 ⋅ 105

(64)
ln

(
K th,2

K th,1

)
=

1
R

[
aT + b lnT −

c

T

]||||
2

1
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Figure 5.  Partial enthalpy in the ensembles; T , V ,�j, T , V ,Nj and T , P,Nj. Open 
symbols corresponds to values for H, while closed symbols represent H
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Figure 6.  Reaction enthalpy, ΔrH
∗, as a function of temperature. The points  

(⋄) represent results the simulation, where ΔrH = 2H
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− H

H
2
. The polynomial line 

represents the fit of the reaction enthalpy to a temperature function. The straight 
line represents the constant ideal result [11] found by plotting ln Kx as a function 
of temperature (1/T).

Table 5. Partial enthalpies, hi,∞ at T , V ,�j ≠ i, in the thermodynamic limit. Values 
are given in reduced units.

�
∗ = 0.0003

T ∗ hH,∞ hH2,∞

0.07 0.34 -0.46
0.15 0.60 0.18
0.2 0.79 0.57
0.25 0.98 0.95
0.3 1.19 1.31
0.4 1.59 2.04
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in Figure 3, as well as the distribution of components through 
the box.

One may say that the non-equilibrium stationary state is 
characterised by a dissipative structure maintained by energy 
supplied from the outside. Seen from the outside, the simulation 
box appears as a medium for heat transfer only. The entropy 
production can therefore also be expressed by the energy flux 
times the thermal driving force. The more detailed picture used 
here, offers an explanation of the causes of dissipation and the 
mechanism for heat transfer.

The total heat or energy flux is constant through the box 
according to Equation (23) and is known from the simulation. 
The contributions to the energy flux from the measurable heat 
flux and from the reaction enthalpy times the flux of molecules 
are shown in Figure 8. At the boundaries x(0) and x(l) the meas-
urable heat flux is equal to the total heat flux, as the contribution 
from the mass flux goes to zero, as can be seen from Figure . The 
pressure through the box [11] was always constant within the 
accuracy of the calculation as expected (not shown).

7.2.  Properties of the chemical reaction

The flux of molecular hydrogen was first fitted to Equation (60), 
using the procedure described above. The constants from the fit 
are shown in Table 7. The parameter l / d was obtained in this fit. 
From knowledge of l / d and the results of the fits of the analyt-
ical curves to the inverse temperature profile, we computed the 
constants AD,BD and CD, see Table 8. On the basis of these results, 
we computed the various sets of phenomenological coefficients, 
as described earlier in the text. Similar data for fluorine [20] did 
not have the accuracy to do so.

Table 9 presents the penetration depth, d, of the hydrogen 
dissociation reaction, e.g. how far a particle can diffuse before it 
reacts. The average value obtained for Case 1 is 14Å, and 11Å for 
Case 2, see Table 9. A reduction in d with temperature is likely. 
For comparison, the mean free path of a hydrogen atom, �H, at 
the given density is 10Å, as calculated from the total volume 
of the box, the excluded diameter found from the pair correla-
tion function (2.7 Å, see [11]) and the total number of particles 
(NH + 2NH2

= 1000). We conclude that the reaction in the pres-
ent case is very fast and that particles will react after the first or 
second collision with another particle. Xu et al. [20] found a 
smaller penetration depth, 4Å for fluorine. Their reaction was 
less endothermic 200 KJ mol−1 compared to about 424 KJ mol−1 
in the present case.

The net rate, r from Equation (22), and the forward rate, rf , 
are plotted in Figure 9. From the figure, we see that the forward 
rate is larger than the net rate through the box, except in the hot 
region, where the net reaction goes in the opposite direction. The 
corresponding chemical driving force, −ΔrG∕RT from Equation 
(53), is plotted in Figure 9. We see that only in the centre of the 
box, |ΔrG∕RT| << 1. We approach chemical equilibrium near 
the centre. In general, we are far from equilibrium in most of 
the box, where ΔrG is in the order of several thousand kJ mol−1. 
Peculiar is the shift in sign of the driving force and the net rate, 
taking place in the centre. This means that the reaction is actively 
and rapidly absorbing heat on the hot side and actively delivering 
heat on the cold side. The large value and the sign of the reaction 
rate must explain much of the mechanism for heat transfer.

Chemical reactions at equilibrium are shifted with the tempera-
ture according to Le Chatelier’s principle. In this case, we are far 
from chemical equilibrium in the ends of the box. We find an 
increase in the number of molecules at low temperatures. This 
can be said to be in agreement with Le Chatelier’s principle. But, 
it contains an extra element, since we do not compare equilib-
rium states. When the net reaction leads to release of heat by 
shifting to the side of the molecule, there is also an extra delivery 
of heat to the heat sink (the cold zone). There is thus an addi-
tional mechanism of heat transfer due to the chemical reaction, 
supplementing the ordinary mechanism of momentum transfer.

The increase in the mole fraction of hydrogen molecules on 
the low-temperature side, on the cost of the mole fraction of 
the hydrogen atom, is shown in Figure 8. The shifts through the 
box are in agreement with the direction of component fluxes 

Table 6. K th and �2H∕�H2 as a function of the temperature.

T ∗ K th KP �
2
H∕�H2

0.15 604 628 1.0
0.2 3208 4126 0.8
0.25 8606 9344 0.9
0.3 16564 24356 0.7
0.4 37932 45778 0.8

Figure 7.  The average of six runs of an inverse temperature profile through the 
box. Error bars are shown. The inverse temperature profile was fitted, according to 
procedures described in the text, to (Equation (52)). The red markers indicate the 
start and stop of the fit.
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The ratio ΔrG∕RT was found from the net and the forward 
rate according to Equation (41), and the result of this calculation 
is included in Figure 9 (circles). We see that the two curves are 
crossing zero on the same location in the box. This is necessary, 
as the rate is zero when the driving force is zero. It is interesting 
that the approximate expression used by Xu et al. [20] overlaps 
with the analytical expression used here, in the centre of the box. 
The earlier and the present analysis are thus supporting each 
other, when we approach conditions near equilibrium.

7.3.  The transport coefficients for heat and mass

We can finally return to the issue of transport coefficients for heat 
and mass in the reacting mixture. The various sets of phenom-
enological coefficients obtained from the parameters in Tables 
7 and 8 are shown in Tables 10 and 11. As mentioned before, 
uppercase symbols for the coefficients refer to the description 
with the energy flux as a variable, lowercase symbols for the 
coefficients refer to the description using instead the measurable 
heat flux as a variable.

We first checked that all sets of resistivities and conductivities 
had a positive matrix determinant. This is required from the 
second law of thermodynamics. We verified furthermore that 
Cases 1a–d gave the same coefficients within the accuracy of the 
simulation (not shown). This is also required in non-equilibrium 

Figure 8. Mole fraction of H and H
2
, xi, along the simulation box (a), and measurable 

heat flux, J′q, with the reaction enthalpy carried by the molecule, ΔrHJH
2
, along the 

simulation box (b). Figure 9.  The variation in the net reaction rate, r, and the forward reaction rate, rf  
(b), and in the dimensionless chemical driving force −ΔG∕RT through the box. The 
approximate expression Equation (42) to the driving force is also shown in Figure (b).

Table 7. Constants from fit to mass flux according to procedures described in the 
text. Case 1 is the average of Cases 1a–d.

Case 104a 104LmqBD l / d

mol m−2 s-1 mol m−2 s-1 –

1 –17 ± 1 –8 ± 4 3.8 ± 0.5
2 –10 ± 1 –6 ± 3 5.0 ± 0.5

Table 8. Constants obtained from the fit of the inverse temperature profile, as de-
scribed in the text. Case 1 is an average of Cases 1a–d.

Case 10–5 AD 102 BD 10–6CD

K–1 K–1 m K–1

1 9.4 ± 0.1 6 ± 2 2 ± 2

2 6.2 ± 0.1 7 ± 2 4 ± 4

Table 9. Forward rate constant, kf, penetration depth, d, and mean free path of 
hydrogen, �H. Case 1 is an average of case 1a–d.

Case 10
10kf d �H

m–3mol–1 Å Å

1 3 ± 1 14 ± 2 10
2 3 ± 1 14 ± 2 10
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Here, � is the thermal conductivity in the presence of a chem-
ical reaction, mi is the mass fraction of component i and n the 
stoichiometric constant. As a measure for �, we take our value 
of �(ΔrG∕T)

. The result is also shown in Table 12

As can be seen from Table 12, the interdiffusion coefficient 
from the simulations is two order of magnitudes smaller than 
the value found using Equation (65) from kinetic theory. The 
main contribution to Dsim comes from l

��
, which is one order of 

magnitude smaller than obtained by Xu for fluorine.[20]
The thermal conductivities, �JH2

=0 and �(ΔrG∕T)
, are derived 

from rqq and lqq, respectively. The values in Table 13 for �JH2
=0 

are as expected for a gas at high temperature.[35] In this case, 
kinetic theory gives 1.3 WK

−1
m

−1, comparable to the results for 
�
J
H
2
=0

. But, striking is that the value of �(ΔrG∕T)
, for which there 

is no comparable data, is up to 5 times larger than the value of 
�JH2

=0. Butler and Brokaw [34] observed a similar trend in their 
estimates for thermal conductivities of dissociative reactions, 
from a different basis, however. The result shows that the chem-
ically reacting mixture is much more able to conduct heat, than a 
non-reacting mixture. In a search for well-conductive fluids, this 
finding may be interesting. It is unfortunately not yet possible to 
discuss how general the finding is, for instance whether or not it 
is related to distance of the reaction from chemical equilibrium. 
This should be studied further.

The transport property that expresses the coupling between 
the heat and mass flux, the heat of transfer, is also presented 
in Table 13. The negative sign means that heat is transferred 
in the direction opposite to the movement of the molecule. 
Extra heat is thus transported down the temperature gradient. 
Surprising is the high value of the heat of transfer. Common 
values for heats of transfer are typically some kJ. Near chemical 
equilibrium Xu et al. found q∗ = −ΔrH,[20] giving a value of 
several hundred kJ. Our value is up to 10 times higher than the 
enthalpy of reaction. The interdiffusive fluxes are without doubt 
effective as contributors to the mechanism of heat transfer. The 
small penetration depth, the large enthalpy of reaction and the 
large reaction rate are also likely to play a role. Clearly it is not 
a valid assumption to neglect the coupling of heat and mass (a 
Dufour-type contribution), in the description of heat transport 
in a chemically reacting mixture. Therefore, more research is 
needed to obtain a more precise picture and insight into this 
unexplored territory.

8.  Conclusions

For the first time, we have been able to decompose molecular 
dynamics simulation results of a chemically reacting mixture and 
determine transport properties of the mixture without making 
assumptions of ideality; see also [11–13]. For the reaction this 
study has focused on, the hydrogen dissociation reaction, the 
chemical reaction in the closed box exposed to a thermal field is 
very far from chemical equilibrium away from the centre of the 
box. The thermal conductivity calculated from the measurable 
heat flux at a constant chemical driving force, is much larger 
than in a system without mass movement, while the diffusion 
constant is smaller than typical for gases. The heat of transfer is, 
however, very large, indicating that the mechanism of heat trans-
fer changes radically in the presence of a reaction. The findings 

thermodynamics; coefficients do not depend on the driving 
force. We proceed with the average of these values which defined 
Case 1.

To the best of our knowledge, the full set of coefficients for 
a reacting gas mixture have only been estimated once before, 
by Xu et al. [20]. The thermal resistivities, Rqq, are in the same 
order of magnitude in the two investigations, but the resistivities 
to mass transfer are one order of magnitude larger in the pres-
ent case, where the reaction enthalpy is larger and the particles 
smaller in size. The coupling coefficient, R

�q, is also one order 
of magnitude larger in the present investigation. The sign of r

�q 
is positive for hydrogen dissociation, while it was negative for 
fluorine association.[20] The choice of a positive direction for 
the reaction explains the sign of the coefficient, cf. Equation (37). 
In a situation, with lack of data to compare with, it is good to 
know that system behaves according to predictions from theory.

We calculated also the more familiar transport coefficients, 
as defined by Equations (43) (�JH2

) and (45) (Dsim). The results 
for these transport coefficients are shown in Tables 12 and 13. 
The local temperature was used to find the interdiffusion coef-
ficient, see Equation (45), meaning that it varies across the box. 
There is also a small contribution from the non-ideality of the 
mixture, from the derivative ��H∕�cH2

. The value is decisive for 
the observed interdiffusion.

Butler and Brokaw [34] related the binary diffusion coeffi-
cient, DAB, of a reacting mixture to the enthalpy of reaction and 
the thermal conductivity:

(65)DAB =
�R2T3n

PΔrH
2mAmB

.

Table 10. Resistivities to transport of heat and mass for various sets of fluxes and 
forces (see text for definitions).

R
qq
= r

qq
Rq� R

��
rq� r

��

m W−1 K ms mol−1 K J ms mol−2 K m s mol−1 K J ms mol−2 K
1 6 ± 1 ⋅ 10

−9
1.9 ± 0.3 ⋅ 10

−2
9 ± 2 ⋅ 10

4
1.6 ± 0.3 ⋅ 10

−2
7 ± 2 ⋅ 10

4

2 9 ± 2 ⋅ 10
−9

5.0 ± 0.8 ⋅ 10
−2

3 ± 1 ⋅ 10
5

4.6 ± 0.9 ⋅ 10
−2

3 ± 1 ⋅ 10
5

Table 11. Conductivities for transport of heat and mass for various sets of fluxes 
and forces (see text for definitions).

Lqq Lq� L
��

= l
��

lqq lq�

W K m−1 mol K m−1 s mol2 K,J−1 ms W K m−1 mol K m−1 s
1 6 ± 4 ⋅ 10

8 −1.3 ± 0.9 ⋅ 10
2
4 ± 2 ⋅ 10

−5
5 ± 3 ⋅ 10

8 −1.1 ± 0.8 ⋅ 10
2

2 6 ± 4 ⋅ 10
8 −8 ± 6 ⋅ 10

1
2 ± 1 ⋅ 10

−5
5 ± 3 ⋅ 10

8 −8 ± 6 ⋅ 10
1

Table 12.  The interdiffusion constant, from simulations (Dsim) and kinetic theory 
(Dkin) in the centre of the gradient (at l / 2) and the binary diffusion coefficient, DAB, 
according to Butler and Brokaw [34]. All units are in m2 s−1.

Case Dsim(l∕2) Dkin(l∕2) DAB

2 3 ⋅ 10
−7

2 ⋅ 10
−5

5 ⋅ 10
−5

Table 13. Heat of transfer, q∗, and the thermal conductivities in the absence, �JH2
=0 

and presence, �(Δr G∕T )
 (from lqq), of a chemical reaction. The reaction enthalpy, 

ΔrH =424 kJ mol−1, refer to the average temperature in Case 1.[11].

Case q∗ �JH2
=0 �(Δr G∕T )

kJ mol−1 W K−1 m−1 W K−1 m−1

1 −2700 ± 600 1.5 ± 0.3 4 ± 3

2 −5000 ± 1000 0.5 ± 0.1 2 ± 1
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reaction at equilibrium. J. Non-Equilibr. Thermodyn. 2007;32:341–
349.
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and partial molar reaction enthalpies from equilibrium molecular 
dynamics simulation. J. Chem. Phys. 2014;141:144501.

  [23] � Stillinger FH, Weber TA. Molecular dynamics simulation 
for chemically reactive substances. fluorine. J. Chem. Phys. 
1988;8:5123–5133.

  [24] � Diedrich DL, Anderson JB. An accurate quantum Monte Carlo 
calculation of the barrier height for the reaction H +H = H + H. 
Science. 1992;258:786–788.

  [25] � Diedrich DL, Anderson JB. Exact quantum Monte Carlo calculations 
of the potential energy surface for the reaction H +H  H + H. J. 
Chem. Phys. 1994;100:8089–8095.

  [26] � Reed DA, Erlich G. Surface diffusion, atomic jump rates and 
thermodynamics. Surface Sci. 1981;102:588–609.

  [27] � Kirkwood JG, Buff FP. The statistical mechanical theory of solutions. 
I. J. Chem. Phys. 1951;19:774–778.

  [28] � Krüger P, Schnell SK, Bedeaux D, et al. Kirkwood-Buff integrals for 
finite volumes. 2013;4:235–238.

  [29] � Onsager L. Reciprocal relations in irreversible processes. I. Phys. 
Rev. 1931;37:405–426.

  [30] � Onsager L. Reciprocal relations in irreversible processes. II. Phys. 
Rev. 1931;38:2265–2279.

  [31] � Kjelstrup S, Bedeaux D. Non-equilibrium thermodynamics for 
engineers. Singapore: World Scientific; 2010.

  [32] � Müller-Plathe F. A simple nonequilibrium molecular dynamics 
method for calculating the thermal conductivity. J. Chem. Phys. 
1997;106:6082–6085.

  [33] � Ben-Naim A. A molecular theory of solutions. Oxford: Oxford 
University Press; 2006.

  [34] � Butler JN, Brokaw RS. Thermal conductivity of gas mixtures in 
chemical equilibrium. J. Chem. Phys. 1957;26:1636–1643.

  [35] � Uribe FJ, Mason EA, Kestin J. Thermal conductivity of nine 
polyatomic gasses at low density. J. Phys. Chem. Ref. Data. 
1990;19:1123–1137.

  [36] � van Duin ACT, Dasgupta S, Lorant F, et al. Reaxff: a reactive force 
field for hydrocarbons. J. Phys. Chem. A. 2001;105:9396–9409.

question the neglect of Dufour effects in the modelling of similar 
systems, and asks for systematic investigations.

As new force fields become available for calculation of chem-
ical reactions using classical potentials, such as ReaxFF,[36] one 
may be able to use the procedure for more important chemical 
reactions.
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