Journal of Experimental & Theoretical Artificial
Intelligence

ISSN: 0952-813X (Print) 1362-3079 (Online) Journal homepage: https://www.tandfonline.com/loi/teta20

Taylor & Francis

Taylor & Francis Group

Real-valued syntactic word vectors

A. Basirat &]J. Nivre

To cite this article: A. Basirat & J. Nivre (2020) Real-valued syntactic word vectors,
Journal of Experimental & Theoretical Artificial Intelligence, 32:4, 557-579, DOI:
10.1080/0952813X.2019.1653385

To link to this article: https://doi.org/10.1080/0952813X.2019.1653385

8 © 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

ﬂ Published online: 21 Aug 2019.

(&
Submit your article to this journal &

||I| Article views: 1091

A
& View related articles &'

View Crossmark data &'

@ Citing articles: 1 View citing articles (&

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=teta20

https://www.tandfonline.com/action/journalInformation?journalCode=teta20
https://www.tandfonline.com/loi/teta20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0952813X.2019.1653385
https://doi.org/10.1080/0952813X.2019.1653385
https://www.tandfonline.com/action/authorSubmission?journalCode=teta20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=teta20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0952813X.2019.1653385
https://www.tandfonline.com/doi/mlt/10.1080/0952813X.2019.1653385
http://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2019.1653385&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2019.1653385&domain=pdf&date_stamp=2019-08-21
https://www.tandfonline.com/doi/citedby/10.1080/0952813X.2019.1653385#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0952813X.2019.1653385#tabModule

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE .
2020, VOL. 32, NO. 4, 557-579 Taylor & Francis

https://doi.org/10.1080/0952813X.2019.1653385 Taylor & Francis Group

ARTICLE a OPEN ACCESS ‘l(meckm‘

Real-valued syntactic word vectors
A. Basirat and J. Nivre

Department of Linguistics and Philology, Uppsala University, Uppsala, Sweden

ABSTRACT ARTICLE HISTORY

We introduce a word embedding method that generates a set of real-valued Received 31 October 2018
word vectors from a distributional semantic space. The semantic space is built Accepted 9 June 2019
with a set of context units (words) which are selected by an entropy-based KEYWORDS

feature selection approach with respect to the certainty involved in their Word embeddings; context
contextual environments. We show that the most predictive context of selection; transformation;
a target word is its preceding word. An adaptive transformation function is dependency parsing;

also introduced that reshapes the data distribution to make it suitable for singular value
dimensionality reduction techniques. The final low-dimensional word vectors decomposition; entropy
are formed by the singular vectors of a matrix of transformed data. We show

that the resulting word vectors are as good as other sets of word vectors

generated with popular word embedding methods.

Introduction

The distributional representation of words, known as word embeddings or word vectors, has
shown great improvements on the performance of natural language processing tasks such as part-
of-speech tagging (Collobert et al., 2011) and parsing (Chen & Manning, 2014; Dyer, Ballesteros,
Ling, Matthews, & Smith, 2015). Words in these representations are modelled through real-valued
feature vectors that capture global syntactic and semantic dependencies between words. These
features provide for the application of machine learning techniques that can efficiently process
continuous data with reasonable time and memory complexity (e.g., neural networks).

Real-valued Syntactic word Vectors (RSV) (Basirat & Nivre, 2017) is a method of word embedding that
builds a set of word vectors from right singular vectors of a transformed co-occurrence matrix. RSV uses
an n th root transformation function to reshape the distribution of the co-occurrence data. The co-
occurrence matrix forms a semantic space whose dimensions correspond to a set of context units. The
context units are the set of most frequent words preceding all words of interest. The transformation
function normalises the data distribution in the semantic space and makes the data more suitable for
performing dimensionality reduction.

This paper addresses two problems with RSV: First, context units in RSV are chosen only on the basis
of word frequencies and the model does not provide any way to use other informative features. RSV
uses a limited number of frequent words as context units and completely ignores the less frequent
words. Second, RSV does not provide any systematic solution to define the transformation function. It
uses a predefined transformation function which is experimentally tuned with regard to the perfor-
mance of word vectors on a task (e.g., dependency parsing). These problems are also seen in other
word embedding methods such as GloVe (Pennington, Socher, & Manning, 2014), word2vec (Mikolov,
Chen, Corrado, & Dean, 2013), and HPCA (Lebret & Collobert, 2014). In these methods, the context units
are restricted to the most frequent words and the transformation function is tuned by their end users.

CONTACT A. Basirat @ ali.basirat@lingfil.uu.se @ Department of Linguistics and Philology, Uppsala University, Box 635, 751
26 Uppsala, Sweden

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2019.1653385&domain=pdf&date_stamp=2020-05-01

558 (&) A.BASIRAT AND J. NIVRE

We propose two solutions to mitigate the aforementioned problems with RSV. In order to remedy
the first problem, we add an entropy-based feature selection algorithm to RSV to find a set of more
appropriate context units not only on the basis of word frequencies but also on the basis of the
certainty involved in their contextual environment. The second problem is solved by an adaptive
transformation which normalises the data distribution in the semantic space formed by RSV. These
changes make RSV a simple and adaptive model that is capable of automatically finding the best set of
parameters with respect to a training data set.

We evaluate the word vectors with regard to their contributions to the dependency parsing
task. Our experimental results show that the proposed solutions effectively improve the quality of
the word vectors. We also compare RSV with other popular word embedding methods. The
comparison is done with regard to a word-similarity benchmark and different NLP tasks such as
named-entity recognition, part-of-speech tagging, and dependency parsing. The results obtained
by RSV are on par with the results obtained from other word embedding methods.

Word vectors in distributional semantic space

The word embedding methods can be divided into two major classes: (1) the methods that are
developed in the area of distributional semantics (Basirat & Nivre, 2017; Landauer & Dumais, 1997;
Lebret & Collobert, 2014; Lund & Burgess, 1996; Pennington et al., 2014; Sahlgren, 2006; Schiitze, 1992)
and (2) the methods that are developed in the area of language modeling (Collobert et al., 2011;
Mikolov et al., 2013). Levy and Goldberg (2014b) show that both classes are connected to each other. In
both areas, a set of word vectors is generated through the application of a dimensionality reduction
technique on a co-occurrence matrix, which is built either explicitly (Basirat & Nivre, 2017; Lebret &
Collobert, 2014; Pennington et al., 2014) or implicitly (Collobert et al., 2011; Mikolov et al., 2013;
Sahlgren, 2006) while scanning a raw corpus. In this section, we review the previous work in the area
of distributional semantics since RSV is categorised in this area.

A distributional semantic space is a finite-dimensional vector space (or linear space) whose dimensions
correspond to the contextual environment of words in a corpus. Word similarities in a distributional
semantic space are reflected through the similarities between vectors associated with them. In other
words, similar vectors are associated with similar words.

A distributional semantic space can be built in three main steps: First, each word is associated with
a vector, called context-word vector. The elements of a context-word vector associated with a word are
the frequencies of seeing the word in certain contexts. Context is a region in a text whose presence can
be attributed to a set of textual units, called context units. The relationships between words and context
units in certain contexts are measured by a function, called local weighting function. In the second step,
a transformation function is applied to the context-word vectors in order to weight the importance of
contexts in discriminating between words. We will refer to this function as a global weighting function.
Finally, in the third step, a set of low-dimensional word vectors is extracted from these transformed
context-word vectors through the application of dimensionality reduction techniques.

The matrix formed by initial context-word vectors is called a co-occurrence matrix. Algorithm 1 gives
a bird's-eye view on how a co-occurrence matrix is built. The algorithm takes three lists as input:

(1) a corpus E = (e; ...er) consisting of T words,
(2) a list of context units € = (c; ...cy), and
(3) a vocabulary V = (wq ... wy).

The algorithm returns an M x N co-occurrence matrix, Cyy. The co-occurrence matrix is first initialised by
zero. Then, it is updated by repeatedly calling a local weighting function for each word e; € E seen at time
step t. The local weighting function measures the strength of the relationship between word e; and all
context units in C. Basically, it defines a contextual environment for each context unit in € and measures
the extent to which e; is in the contextual environment.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 559

Algorithm 1 The co-occurrence matrix Cyy is computed for vocabulary V appearing in corpus E
with respect to context units C. The jth column of C (C.;), which is the context-word vector
associated with the ith word in 'V, is updated for all words e; € E.

procedure Cooccurrence(E, C, V)
(T,M,N) < LenaTH(E, C, W)
Cun — O
fort— 1toT do
i «— Lookup(et, V)
C.; < C.; + LocA-WeicTH(t, C, E)
end for
return C
end procedure

Different types of context units and local weighting functions have been used in the literature,
resulting in two major types of contextual environments:

(1) window-based context
(2) syntax-based context

A window-based context is formed by all words in a sequence (or window) of words associated
with a context unit. A syntax-based context is formed by words that are in certain syntactic
relations with a context unit. The relative position of words is either completely ignored by
these types of context or in some cases, they are modelled by some weights associated with
words with respect to their distance to the context unit.

Latent semantic analysis (LSA) (Landauer & Dumais, 1997) and hyperspace analogue to
language (HAL) (Lund & Burgess, 1996) are among the many methods that use the window-
based context. The context units in LSA are a list of documents whose union forms the
corpus E. The contextual environment of each element in C;sa is all words in the correspond-
ing document, a window with the length of the document. For each word e, the local
weighting function in LSA returns a one-hot vector with all elements equal to zero except
for one which indicates the document that e; belongs to. Schiitze (1992) and HAL define the
context units as a set of words and the contextual environment of the context units as their
surrounding words in a window with a certain length. For each word e, the local weighting
function in HAL returns a real-valued vector whose elements are proportional to the number
of words between e; and each of the context units (words). Fine-grained grammatical tags
such as stem, lemma, and part-of-speech tag are also used as context units. Kiela and Clark
(2014) define context units as the lemmas of words in conjunction with the CCG supertags
associated with them.

The syntax-based context is usually built over the dependency relations between words.
Padé and Lapata (2007) define the contextual environment of a word in a sentence as all
words in the sentence which are in a dependency relation with the target word. Although
Pado6 and Lapata (2007) show that the dependency context can result in higher accuracies in
certain tasks, Kiela and Clark (2014) argue that better results can be obtained from window-
based context if the vectors are extracted from a fairly large corpus with a small window
size. In Section 3.1, we introduce an entropy-based measurement to evaluate the quality of
different types of contextual environments.

560 (&) A.BASIRAT AND J. NIVRE

Once a co-occurrence matrix is computed, it is normalised by a global weighting function (e.g.,
pointwise mutual information (PMI) (Church & Hanks, 1990), term frequency-inverse document
frequency (TF-IDF) (Salton & Buckley, 1988), term frequency-inverse corpus frequency (TF-ICF) (Reed
et al,, 2006), and relative frequencies (Lebret & Collobert, 2014)). Regardless of the type of local and
global weighting functions, the set of context-word vectors extracted from a corpus can be highly
massed around zero. This is because of the Zipfian distribution of words that skews the vector’s
mass toward less frequent words. The dimensionality of the context-word vectors and their Zipfian
distribution limits the practical usage of the vectors. GloVe (Pennington et al., 2014), HPCA (Lebret
& Collobert, 2014), and RSV (Basirat & Nivre, 2017) mitigate this problem by performing a power
transformation function on the elements of the co-occurrence matrix. However, none of these
methods provide a systematic way to set the parameters of the transformation function (e.g.,
power value) and leave them as user-defined parameters. In Section 3.2, we introduce
a transformation function whose parameters are automatically adjusted based on the data dis-
tribution along each dimension of the semantic space.

The problem of dimensionality is mitigated by techniques of dimensionality reduction. Principal
component analysis is a standard technique of dimensionality reduction that is widely used for this
purpose. Mixture models (Blei, Ng, & Jordan, 2003; Hofmann, 1999), and non-linear methods
(Hinton & Salakhutdinov, 2006; Roweis & Saul, 2000) are among the other approaches that have
been used for reducing the dimensionality of a semantic space. In this paper, the low-dimensional
word vectors are formed by a linear transformation of the right singular vectors of the transformed
co-occurrence matrix (see Section 5.4).

Real-valued syntactic word vectors (RSV)

We adopt the three main steps mentioned in Section 2 to build a set of word vectors for syntactic
analysis of languages. In the following sections, we elaborate each of these steps in details.

Context-word vectors

Context-word vectors in our model are built on a set of context units which are basically lower-
cased word forms. Algorithm 2 shows how a local weighting function, IN-conTexT, updates a context-
word vector. Function IN-cONTEXT measures the extent to which the word at position t in corpus E
belongs to each of the contextual environments built by context units C.

Algorithm 2 The context-word vector C is computed for the word seen at position t in the corpus
E. The context-word vector is built with respect to the list of context units € = (¢; ... cy).

procedure LocAL-weiGHT(t, C, E)
M — LenaTH(C)
Cwmi <0
form — 1 to M do
Cm < IN-CONTEXT(t, C(m), E)
end for
return C
end procedure

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 561

Depending on how IN-conTEXT is implemented, several types of contextual environment can be
designed. We have considered four types of contextual environments, window-based symmetric/
asymmetric and syntax-based symmetric/asymmetric In the window-based symmetric context, for
each context unit ¢,, = C(m), IN-CONTEXT returns Z” m) 1. where [; is the positional distance between
t and the ith occurrence of ¢, out of total n(cy) occurrences before and after t in E. It is quite
common to define a threshold value n € N on the values of / in order to filter out those
occurrences of ¢, which are far from t. This threshold value is referred to as window size in the
literature. In the window-based asymmetric context, we use a similar function but instead of
scanning both sides of t we only scan the left side of t.

Syntax-based contexts are defined with respect to the dependency relations between context
units and words. In the syntax-based asymmetric context, /; is the length of dependency path
between context unit ¢,, and t if ¢, is in the list of ancestors of word e;. We factor out all context
units that are not among the ancestors of e; or whose path length from t exceeds the threshold
value of n (n<1). In the syntax-based symmetric context, we look at both ancestors and descen-
dants of e;.

We propose to evaluate different types of contextual environments by the average value of the
conditional entropy of seeing words in the contextual environments (see Equation (1)).

M
H(V|C) = > p(cm)H(V|C = cm) (1)

m=1

The entropy measures the average amount of uncertainty involved in describing a word through
each of the context units. In other words, it measures the extent to which a word can be predicted
from a context unit.

Figure 1(a) shows the average values of conditional entropies for different types of contextual
environment with respect to the different threshold values of n. In general, the contextual
environments defined by asymmetric local weighting functions with small values of n are more
certain in describing words that appear in their domains. The best contextual environment is
defined by asymmetric dependency weighting function with n = 1. It shows that among the other
types of contextual environments, the immediate parent of a word in a dependency tree is the best
descriptor of the word. This conclusion is compatible with what Padé and Lapata (2007) show in
their experiments. It also shows that asymmetric contexts are more certain than symmetric
contexts. This is compatible with the experimental conclusion made by Lebret and Collobert (2015).

However, if the corpus size is large, it might be computationally expensive to first parse a corpus
and then build context-word vectors from the parsed corpus. A solution to this problem is to build
the vectors from window-based contextual environments whose context units are restricted to
a subset of high frequent words which are more certain about describing words in their context. In

8.5 8.5
75 75 /
6.5 — 6.5
55 55
== \Win-Asym == Win-Asym

45 —=Win-Sym 45 —=Win-Sym
=¥= Ctx-Asym == Ctx-ASym
== Ctx-Sym == Ctx-Sym

35 35

1 2 4 8 16 1 2 4 8 16

(a) (b)

Figure 1. Vertical axis: the average conditional entropy of seeing a word given a context unit (a) before and (b) after context
selection. Horizontal axis: the threshold value of n. Win: Window-based, Ctx: Context-based, Asym: Asymmetric, Sym:
Symmetric.

562 (&) A.BASIRAT AND J. NIVRE

[}
0.05 o
o

bl
Zom 2
1~ @

@ |-
Z 3
@ =
& 003 o=t
2 s

S 5
= ° oL E3
§ 02 o o -1
= 5
= 2

2 o -
0.01 S

O
() et L L L L
0 2 0 2 4 8 8 10 12
average conditional entropy average conditional entropy
(a) (b)

15000

10000

5000

data frequency

10

8
6 wopy
4 a\ en
2 coﬂd\\‘on

0

aver

Figure 2. Top: the conditional entropy of contextual environments of words (horizontal axis) versus (a) relative word frequency,
(b) logarithm of relative word frequencies. Bottom: the two-dimensional histograms of the conditional entropy of contextual
environments of words and (c) the relative frequency of words, (d) the logarithm of relative word frequencies.

order to find a proper criterion to choose these sorts of words, we need to study the relationship
between word frequencies and the amount of uncertainty involved in their contextual
environments.

For each context unit ¢ € C, Figure 2(a) shows how the marginal frequency of c is related to the
uncertainty involved in its contextual environment. The uncertainty is measured as the conditional
entropy of seeing words in the contextual environments of ¢ (see Equation (2)).

HV[C=¢) = — Zp(wn|c) log p(wn|c))

n=1

Figure 2(c) shows the histogram of the two-dimensional random variable consisting of the
marginal frequency of context units and the conditional entropy of seeing words in their con-
textual environments. The figures show that there is almost no correlation between the two
variables, word frequencies and conditional entropies. The small value of the correlation between
the variables, 0.04, confirms that word frequencies are not sufficient to choose a set of context
units with the mentioned properties since this parameter does not provide enough information
about the contextual uncertainty. The value of correlation can be increased to 0.44 if we logarith-
mically scale the word frequencies (Figure 2(b,d)). In this case, too we do not see a strong
relationship between the variables. This suggests the necessity for performing a feature selection
that takes the two parameters into consideration.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 563

log relative word frequency
data frequency

0 2 4] 8 10 12
average conditional entropy

(a)

Figure 3. (a) The selected words after context selection with different values of D corresponding to the colour spectrum
starting with D = 20, dark blue, to D = 200000, dark red. Horizontal axis: conditional entropy of contextual environments of
words; Vertical axis: the logarithm of word frequencies. (b) The histogram of the selected words after context selection.

The following weighting function gives higher weights to the context units with the desired
properties discussed above

(3)

W) = plclexp (_ H(V|E = ¢) — H(V|G)>

202

where ¢ € C is a context unit with the marginal probability of p(c); H(V|C) and o are the mean and
standard deviation of values of H(V|C = ¢;) fori = 1... M (see Equations (1) and (2)). Using Equation
(3), a set of context-word vectors can be built from the D best context units weighted by W. The
parameter D is a user-defined parameter that controls the dimensionality of context-word vectors.
Figure 3 shows how the weighting function chooses high frequent words with low contextual
entropies among all words. Depending on the value of D, context selection filters out words in different
ranges of frequency including many of the most frequent words. Our experiment on the Wall Street
Journal corpus (Marcus, Santorini, & Marcinkiewicz, 1993) shows that around 60% of the selected words
overlap with the words that are more likely to appear as a parent node in a dependency tree. It shows
that the context selection can be used as a replacement for parsing since it could capture a large
portion of the context units which could be determined through parsing the corpus.

In general, theoretically and practically, smaller values of D are more desirable since it results in
a smaller semantic space that can be analysed efficiently. However, a small value of D drastically skews
the data distribution in the resulting semantic space toward zero. It is because of the presence of
many zeros in the context-word vectors which in turn is due to the fact that the weighting function
gives higher weights to the context units with smaller values of the conditional entropy, i.e., context
units whose contextual environment is more predictable. So the context-word vectors formed by
these context units are even more sparse than those that are formed with frequency-based context
selection, where context units are selected only with respect to their frequencies. The skewness in the
data distribution makes the application of dimensionality reduction techniques unreliable. In the next
section, we introduce a transformation function to mitigate this problem.

Figure 1(b) shows the average value of conditional entropy of seeing words in the contextual
environment of context units selected by Equation (3). In comparison with Figure 1(a), an
asymmetric window-based context can be even better than a dependency context if we
eliminate the less informative context units. It can also be seen that neither of the contextual
environments formed by dependency trees are affected by the context selection. It shows that

564 (&) A.BASIRAT AND J. NIVRE

the weighting function preserves the context units that are defined by a dependency weighting
function.

Transformation

We propose to transform the raw context-word vectors in two steps. First, we apply a global
weighting function on the elements of context-word vectors. It can be any of the popular methods
used in the literature. This transformation is helpful to reduce the disproportionate contribution of
the most frequent context units in the context-word vectors. However, it does not affect the
problem with the data skewness mentioned in Section 3.1 .

In the second step, we normalise the data distribution along each dimension of the context-word
vectors. The normalisation is performed through a transformation function that maximises the mean
value of the entropy of data projected onto each dimension of the context-word vectors, i.e., the
elements of each row in the co-occurrence matrix. The commonly used transformation functions for
this purpose are monotonically increasing concave functions that magnify small numbers in their
domain while preserving the given order (e.g., the logarithm function, the hyperbolic tangent, the
power transformation, and the Box-Cox transformation). Given a set of transformation functions
f(x; 6) with parameter 6, we define the best function as one with optimal parameter 6 as follows:

D
6 =argmax » _ p(cq)H(f(X4;6)) (4)
o =
where d is the dimension in the semantic space corresponding to the context unit cg4, and Xy is the
random variable taking the value of data points in the semantic space projected on the dimension d,
i.e., the row in the co-occurrence matrix corresponding to cg.

The unknown distribution of the data along the different dimensions of the distributional
semantic space makes it difficult to analytically optimise the functional in Equation (4), hence
the need for using iterative optimisation techniques such as genetic algorithms or simulated
annealing. Since the computation of the objective function can be expensive for a large number
of dimensions, D, we propose to compute the function for a small number of dimensions, say 100,
which are randomly selected with respect to the frequency of seeing their corresponding context
units, p(cq).

Dimensionality reduction

The final low-dimensional word vectors are built from the transformed context-word vectors in two
steps. First, the vectors are centred around their mean as below:

Con = f(C;6) — E[f(C; 6)] (5)

The final k-dimensional word vectors are then formed by right singular vectors of matrix Cpy as
below:

where N is the number of words, A is a constant scaling factor that controls the standard deviation
of vectors, and VJ, is the matrix formed by the top k right singular vectors of C. Each row of Y is
associated with a word in vocabulary V.

The final word vectors are centred around zero and have an almost diagonal covariance matrix Al.
The former property is because of the mean subtraction step and the latter property is because the
column vectors in Vg are almost orthogonal to each other. The near orthogonality is because the
number of singular vectors is smaller than the total number of dimensions k < D in the co-occurrence
matrix. These properties make the vectors suitable to be used by the back-propagation algorithm as

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 565

argued by LeCun, Bottou, Orr, and Mdiller (2012). In the case that word vectors are used by a neural
network it is important to tune the parameter A with respect to the network architecture. A proper
value of A prevents saturation in the hidden layers of the network and consequently increases the
convergence speed of the network. In Section 5.2, we show how this parameter can be tuned
empirically based on the contribution of the word vectors to a parsing task.

Connection with other methods

In this section, we study how RSV is connected with other word embedding methods including
HAL (Lund & Burgess, 1996), Rl (Sahlgren, 2006), HPCA (Lebret & Collobert, 2014) and GloVe
(Pennington et al., 2014). The reason for choosing these methods is that all of them are based
on the general idea of word embedding developed in the area of distributional semantics. The
connection between the methods developed in the area of distributional semantics and the
methods developed in the area of language modelling (e.g.,, SENNA (Collobert et al., 2011) and
word2vec (Mikolov et al., 2013)) are studied by Levy and Goldberg (2014b).

In general, RSV follows the same architecture as the other word embedding methods developed
in the area of distributional semantics. The main contribution of RSV is the well-defined feature
selection approach and the transformation step it performs on the co-occurrence data. RSV uses an
entropy-based feature selection to find the most informative context units but the other methods
rely on the marginal frequencies of context units. Unlike the other methods that use fixed
transformation functions, RSV uses an adaptive transformation function. In the remainder of this
section, we study the relationship between RSV and the other word embedding methods.

Context-word vectors in HAL are built from word co-occurrences which are weighted with
a windows-based symmetric local weighting function (see Section 3.1). Lund and Burgess (1996)
state that the co-occurrence matrix formed by these vectors can be fairly well estimated by a small
number of its principal components. The low-dimensional word vectors in HAL are extracted from
the co-occurrence matrix through performing a principal component analysis (PCA). HPCA gen-
eralises this approach. In HPCA, Lebret and Collobert (2014) propose to transform the elements of
the co-occurrence matrix by a Hellinger transformation before performing PCA. Given a probability
co-occurrence matrix C, the low-dimensional vectors in HPCA are generated by:

Yy =U"VC 7)
or equivalently by
Yy =sv’ 8)

where Y is the matrix of low-dimensional data, USV" is the singular value decomposition of +/C.
Denoting Y as the empirical mean of the column vectors in Y and o(Y) as their standard deviation,
Equation (9) suggested by Lebret and Collobert (2014) normalises the elements of word vectors to
have zero mean and a fixed standard deviation of A < 1.

©)

In addition to these steps, RSV performs a context selection before building the co-occurrence
matrix. The context selection takes the marginal word frequencies and the amount of uncertainty
in the word'’s contexts into consideration. The Hellinger transformation in HPCA is further general-
ised in RSV. RSV uses a general transformation function whose parameters are adjusted with
respect to the data distribution. In RSV, the transformed context-word vectors are centred around
their mean before performing the singular value decomposition. This is as opposed to HPCA which
performs the data centring after dimensionality reduction. In other words, HPCA performs PCA on
non-centred data. This makes the results of PCA unreliable, especially for the dominant principal

566 (=) A.BASIRAT AND J. NIVRE

components. If HPCA centres the column vectors in v/C before performing PCA then Y in Equation

(9) is 0. Substituting Equations (8) into (9) and the facts that ¥ = 0 and o(Y) = ﬁs, where N is the

number of words, we reach Equation (6).

Now, we turn our attention to the relationship between RSV and RI. Context selection in Rl is on
the basis of word frequencies. Rl filters out the highly frequent context units, i.e., the function
words that contain the grammatical information, and keeps the frequent content words. However,
as we mentioned earlier, context selection in RSV is on the basis of word frequency and the amount
of entropy involved in contextual environments. RSV filters out the less frequent context units
whose contextual environment involves high entropy. The context units filtered by this approach
can be both function words and content words. Another difference between RSV and Rl is in the
method of dimensionality reduction. Sahlgren (2006) proposes to reduce the dimensionality of the
co-occurrence matrix through random projection (Achlioptas, 2001). Random projection is based
on the Johnson-Lindenstrauss lemma stating that any point in a high-dimensional space can be
projected to a lower-dimensional space without pointwise distance distortion between the points.
It uses a random projection matrix whose unit length rows, forming the lower-dimensional space,
are almost orthogonal to each other. Rl employs this idea of near orthogonality and associates each
context unit (word) in the language with a unit length random vector. The local weighting function
in Rl returns the random vector associated with the context unit whose contextual environment
includes the word of interest, e;. The final word vectors are gradually computed through accumu-
lating the random vectors while scanning the corpus. This is equivalent to multiplying a co-
occurrence matrix with a random projection matrix. In RSV, we associate a set of context units
with fully orthogonal vectors and build a co-occurrence matrix from those vectors. The low-
dimensional word vectors are then extracted from the singular vectors of this matrix which is
affected by a transformation function.

RSV and GloVe (Pennington et al.,, 2014) are related to each other as follows. The context
selection in GloVe is on the basis of word frequencies. GloVe filters out the less frequent context
units and preserves the most frequent context units. However, the entropy-based context selection
in RSV may preserve the less frequent context units with small amount of entropy in their
contextual environment. It may also filter out the frequent context units with a large amount of
entropy in their contextual environment. The other difference between GloVe and RSV is the
transformation function they apply on a co-occurrence matrix. Word-vectors in GloVe are extracted
from a logarithmically transformed co-occurrence matrix. However, RSV uses an adaptive power
transformation to generate the word vectors. Using a global log-bilinear regression model,
Pennington et al., 2014 argue that the linear directions of meanings are captured by the matrix
of word vectors Yy with the following property:

Y'Y = log(C) + b1 (10)

where Cyy is the co-occurrence matrix, by is a bias vector, and 14y is a vector of ones. Denoting Y;
as the ith column of Y and assuming | Y; ||= 1 for i = 1...N, the left-hand side of Equation (10)
measures the cosine similarity between the unit-sized word vectors Y; in a kernel space and the
right-hand side is the corresponding kernel matrix. Using kernel principal component analysis
(Scholkopf, Smola, & Miiller, 1998), a k-dimensional estimation of Y in Equation (10) is

Y= VEVT ()

where S and V are the matrices of top singular values and singular vectors of K. Replacing the
kernel matrix in Equation (10) with the second-degree polynomial kernel K = C'C, where C is the
matrix defined in Equation (5), the word vectors generated by Equations (11) and (6) are distributed
in the same directions but with different variances. It shows that the main difference between RSV
and GloVe is in the kernel matrices they are using to extract the word vectors.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE ‘ 567

Experiments

Our experiments are organised in the following way: First, we study the effect of RSV parameters
(Section 5.2) on the dependency parsing task. Then, in Section 5.3, we study the effect of the
entropy-based feature selection on word vectors. In Section 5.4, we study the effect of the
dimensionality of word vectors on the parsing. All of these experiments are run on our develop-
ment sets. In Section 5.5, we report our final results on our test sets and compare them with other
methods of parsing. Moreover, we compare RSV with other popular word embedding methods
(Section 5.6). The comparison is done with regard to the efficiency and effectiveness of the word
embeddings. Different evaluation metrics are used to compare the effectiveness of the word
embeddings.

Experimental settings

We use the Stanford dependency parser (Chen & Manning, 2014) for our parsing experiments.
The parser is an arc-standard system (Nivre, 2004) with a three-layered feed-forward neural-
network as its classifier which is trained by the standard back-propagation algorithm. The
parsing models are trained on two datasets, Wall Street Journal (WSJ) (Marcus et al., 1993)
annotated with Stanford basic dependencies (de Marneffe & Manning, 2008), and the English
part of the corpus of Universal Dependencies (UD) version 1.2 (Nivre et al., 2016). We split WSJ
as follows: sections 02-21 for training, section 22 for development, and section 23 as a test set.
The Stanford conversion tool (de Marneffe, MacCartney, & Manning, 2006) is used for converting
constituency trees to dependency trees. We report the parsing accuracies for both gold and
predicted part-of-speech tags. The predicted part-of-speech tags in both corpora are assigned
through ten-way jackknifing on the training sets. WSJ is tagged by the Stanford part-of-speech
tagger (Toutanova, Klein, Manning, & Singer, 2003) and the universal dependency corpus is
tagged by UDPipe (Straka, Hajic, & Strakova, 2016). The stack-LSTM parser (Dyer et al., 2015) is
used in one of our experiments together with the Stanford parser to show the sensitivity of the
parameter A in Equation (6).

The comparison between RSV and other word embedding methods is done with regard to the
contribution of the word vectors in a word-similarity benchmark, the part-of-speech tagging,
named-entity recognition and dependency parsing. We use the word-similarity benchmark intro-
duced by Faruqui and Dyer (2014). The benchmark evaluates a set of word vectors in 13 different
word-similarity benchmarks. Each benchmark contains pairs of English words associated with their
similarity rankings. The tool reports the correlation between the similarity rankings provided by the
word-similarity benchmark and the cosine similarity between the word vectors. In order to provide
an overall view of the performance of word vectors, we report the average of the correlations
obtained from all word-similarity benchmarks.

We use the veceval tool (Nayak, Angeli, & Manning, 2016) for the part-of-speech tagging and the
named-entity recognition. Veceval is a word embedding evaluation framework that measures the
contribution of a set of word embeddings to different downstream standard NLP tasks. Veceval
uses a two-layer neural network followed by a softmax layer for part-of-speech tagging and
named-entity recognition. The words’ labels are predicted from the embeddings of their surround-
ings. For each word in a sentence, the word embeddings of its surrounding words are concate-
nated and fed to the neural network. The part-of-speech tagging models are trained and tested on
WSJ with the following split: sections 00-18 are used as training data, and sections 19-21 are used
as test data. The named-entity recognition models are trained and tested on the data provided by
the CoNLL-2003 shared task (Tjong Kim Sang & De Meulder, 2003). The shared task provides two
test sets, testa and testb. We use the testa dataset as the test set.

The Stanford parser (Chen & Manning, 2014) is used for the parsing comparison. We use the WS)J
data, prepared for parsing, for training and evaluating the parser. The parsing models are evaluated

568 (&) A.BASIRAT AND J. NIVRE

on the development set of WSJ (i.e. section 22). We compare the F;-score of the labelled and
unlabelled attachment scores.

The word vectors are extracted from the English Linguistic Data Consortium (LDC) tokenised
with the Stanford tokeniser." All numbers in the corpus are replaced with a special token < num >
and the uppercase letters are converted to their corresponding lowercase forms. The vectors are
extracted for the tokens with at least 100 times frequency of occurrence in the corpus, resulting in
around 209360 unique tokens. We set the functional f in Equation (4) to f(x; 6) = x® and search for
the optimal value of 8 using simulated annealing. The parameter 6 is restricted to the interval
(0,1), i.e, 6 € (0,1).

RSV parameters

RSV has three parameters that need to be set beforehand:

(1) the scaling parameter A used in Equation (6),
(2) the global weighting function (see Section 3.2), and
(3) the number of context units D used in context selection (see Section 3.1).

In order to show the effect of the parameter A, we train the Stanford parser (Chen & Manning, 2014)
and the stack-LSTM parser (Dyer et al, 2015) with different sets of word vectors randomly
generated with normal distribution with zero mean and different covariance matrices ol, where
o € (0, 1]. Figure 4 shows the parsing accuracies obtained from these vectors. The parsing models
are trained and evaluated on the WSJ. The variations in the accuracies show the sensitivity of the
neural classifiers to the data variance. The difference between the two optimal values, o = 0.1 for
the Stanford parser and o = 0.01 for the stack-LSTM parser, shows that the best value of standard
deviation varies with respect to the target tool.

We study the effect of the two other parameters on the quality of word vectors using different
numbers of context units ranging from 50 to 200, 000 and the context weighting functions listed in
Table 1. Figure 5 shows how the functional in Equation (4) changes with respect to each of these
weighting functions. The values of the functional strictly depend on the context weighting func-
tion. Among these weighting functions, pcw is the same as what Lebret and Collobert (2014) use

94 == Stanford
935 mg== Stack-LSTM
93
925
Q2 92
2
91.5
91
90.5
— - - i n N n ™ n < n n n —
O O O o5 €@ o N S5 ™M 5 < &5 N
S e 9 o o o o o
2 o
o

Figure 4. Vertical axis: unlabelled attachment scores obtained from parsing models trained with randomly initialised word
vectors and gold part-of-speech tags. Horizontal axis: variance of the randomly generated vectors.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 569

Table 1. The list of context weighting functions applied on the co-occurrence matrix Cy . Cj; is the frequency of
seeing word w; in the contextual environment of context unit ¢;. M is the number of context units, and N is the
number of words.

Name Definition
raw G, The raw co-occurrence frequency
pwc Z%] The relative frequency of seeing w; given w;
Cii
=1
pcw G The relative frequency of seeing w; given w;
Ek 1 Chj
pmi max (0 Iog(ka]E, Cul)) The pointwise mutual information between w; and w;
(Zk—w Cr. l) (ZH C’-’)
tf-idf log(Cy)lo Term frequency-inverse document frequency
9 9 Z/ ; sign(Ci.f)
tf-icf Zk 1Zl Cu Term frequency-inverse corpus frequency
log(C; ;) log e
1.2
1
— raw
— pWC
0.8
0.6
0.4
0.2
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Behaviour of the functional in Equation (4) (vertical axis) with f = /x and D = 1000 with respect to different values
of 6 € (0, 1] (horizontal axis).

with the Hellinger transformation. The figure shows that the optimal power value for this function
is around 0.2 which is far from the Hellinger transformation (i.e,, 6 = 0.5).

Figure 6 shows the optimal values of 8 with respect to both global weighting functions and
number of context units. The dimensionality is not a decisive factor in determining the optimal
value of 6. This observation shows that the optimal value of 6 can be computed from a small
subset of dimensions. It confirms the solution proposed in Section 3.2 in response to the problem
of efficiency, where 6 is estimated from a set of randomly selected context units.

Figure 7 is the histogram of the elements of the co-occurrence matrices before and after
performing the transformation. Unsurprisingly, the power transformation function has no effect
on the zero values of the co-occurrence matrices. The zero values are related to the invalid
contextual environments that never occur in the raw corpus. The main effect of the transformation
function is on the non-zero values in the co-occurrence matrix, which are related to the valid
contextual environments that occur in the raw corpus. The transformation makes a clear distinction
between zero and non-zero values in the co-occurrence matrix. In other words, for each word, the
transformation function makes a clear distinction between the contextual environment that the
word can appear in and those that the word never appears in. This distinction between the valid
and invalid contextual environments is similar to the way that word2vec (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013) distinguishes between the valid and invalid contexts using logistic regres-
sion with negative sampling. The logistic regression in word2vec distinguishes between the valid

570 A. BASIRAT AND J. NIVRE

06
—— RAW
—+— PWC
05 PCW
—a— PMI
0.4 <4-=>=—TF-IDF
TF-ICF
0.3
0.2
0.1 — ¢ —2
0
50 100 500 1000 5000 10000 50000 100000 150000 200000

Figure 6. Optimal values of 6 (vertical axis) maximising the functional in Equation (4) for English with respect to different
values of D (horizontal axis) and different global weighting functions.

TF-DF

x107 x107 x107 xio? TFHCF
25 25 25 10 prac 25 12 2

L10° _ RAW c10° PWC 108 PCW w107 PMI 108 TF-DF ci0® _ TFICE

04

o 1 2 3 4 o 05 1 0 05 1 o o5 1 15 2 o 1 2 3 o 2 a4 & 8

Figure 7. Data distribution (TOP) before and (BOTTOM) after performing power transformation.

contextual environments, positive samples seen in the training corpus, and the invalid contextual
environments, negative samples that are randomly generated by the training algorithm. The
randomly generated negative samples are not expected to be seen in the training corpus. In
addition to making a distinction between valid and invalid contextual environments, the transfor-
mation normalises the distribution of the non-zero values. This is desirable for most of the
dimensionality reduction methods such as principal component analysis, presuming that the
data have a normal distribution. Although PCA does not make any assumption about the data
distribution, many of the interesting properties of PCA come from the data with a normal
distribution (Jolliffe, 2002).

Figure 8 shows the accuracy of parsing models trained with the word vectors generated with
different numbers of context units and global weighting functions. Apart from pcw, all the other
functions result in almost the same accuracies. The fact that the word vectors obtained from raw
frequencies are as good as other word vectors obtained from more complex weighting functions
shows that the problems with disproportionate word frequencies are mitigated in RSV through
context selection, transformation, and dimensionality reduction. Among the weighting functions,

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 571

== RAW
92.6 =+=PWC

50 100 500 1000 5000 10000 50000 100000 150000 200000

Figure 8. The effect of the number of context units (horizontal axis) and global weighting function on the parsing accuracy
(vertical axis: UAS). The parsing models are trained evaluated on the development set of WSJ using gold part-of-speech tags.

tf-icf results in slightly better results when the number of context units is relatively small. The best
result is obtained from word vectors extracted with the pwc global weighting function and 50000
context units. In general, the graph shows that the number of context units is more important than
the global weighting function.

Context selection

As described in Section 3.1, RSV uses an entropy-based context selection that weights each context
unit with respect to the entropy of seeing words in its contextual environments and the marginal
frequency of the context unit itself (see Equation (3)). In this section, we study the effect of the
entropy-based context selection on the word vectors. To this end, we train RSV in two ways: one is
based on the context units selected by Equation (3) and the other is based on the top most
frequent context units. In order to provide a detailed study of the feature selection methods, we set
the number of context units D to a small value, D = 1000, and train RSV on two different corpora,
the LDC corpus and the Wikipedia corpus. Both corpora are normalised as described in Section 5.1.
With this setting, for each corpus, we have two sets of word vectors: (1) the entropy-based vectors
(i.e., the vectors trained with the entropy-based feature selection) and (2) the frequency-based
vectors (i.e., the vectors trained with the frequency-based feature selection). The word vectors are
evaluated with regard to their contribution to the word-similarity benchmarks and other tasks such
as part-of-speech tagging, named-entity recognition, and dependency parsing described in
Section 5.1.

Figure 9 shows the results obtained from the word-similarity benchmarks using the word
vectors trained with the entropy-based and the frequency-based feature selections. The results
show that depending on the training corpus the entropy-based feature selection can have
a positive effect on most of the word-similarity benchmarks. The positive effect of the entropy-
based feature selection is clear when we consider the results obtained from the Wikipedia word
vectors. The results obtained from the LDC word vectors are at the same level for both methods.
The average of the results obtained from the LDC word vectors is 0.27 for both entropy-based and
frequency-based feature selection. This indicates that the entropy-based feature selection has
almost no effect on the word vectors extracted from LDC. However, the average of the results
obtained from the entropy-based and frequency-based feature selection on the Wikipedia word

572 (&) A.BASIRAT AND J. NIVRE

Ent-LDC
0.4 Mm HHH H M HEnt Wiki

| T

|
Ll A

P

WS-353-ALL
WS-353-SIM
WS-353-REL
MC-30
RG-65
Rare-Word
MEN-TR-3k
MTurk-287
MTurk-771
YP-130
SimLex-999
Verb-143
SimVerb-3500

Figure 9. The breakdown results obtained from the word-similarity benchmarks with word vectors trained with the entropy-
based feature selection (Ent) and the frequency-based feature selection (Frq). The word vectors are extracted from LDC and
Wikipedia corpora. The x-axis shows the word-similarity benchmarks and the y-axis shows the correlation between word
similarities. Each legend item shows a combination of context selection method (Ent or Frq) and the training corpus (LDC or
Wiki).

vectors are 0.20 and 0.18, respectively. This shows that the entropy-based feature selection does
not lead to any harm to the word vectors and that it can find a set of informative context units
leading to high-quality word vectors.

Table 2 summarises the results obtained from all sets of word vectors on the word-similarity
benchmark, part-of-speech tagging, named-entity recognition, and dependency parsing. The
results show that the entropy-based feature selection improves the quality of the word vectors
when they are assessed on part-of-speech tagging and word similarities. However, we see that it
leads to a slight decrease in the results of named-entity recognition and dependency parsing. The
reduction in the parsing results is not statistically significant. Hence, we conclude that the entropy-
based context selection does not significantly affect the dependency parsing task, but it is slightly
harmful to the named-entity recognition task. However, it is beneficial to the part-of-speech
tagging task, and depending on the training corpus it can improve the results of the word-
similarity benchmark.

In order to have a better understanding about the context units selected by the entropy-based
feature criterion, we compare the set A of context units selected by the entropy-based feature
selection and the set B of context units selected by their marginal frequency. In our comparison, we
look at the intersection and the difference of two sets. When using LDC as the training corpus, the
sets A and B are very similar to each other. The difference between these sets, in this case, is limited
to only two items: A — B = {james, < /s> } and B— A = { rules, independent}. This is the reason
why the results obtained from the LDC word vectors are close to each other. It also shows that the

Table 2. The effect of the entropy-based (Ent) and frequency-based (Frq) feature selections on the word vectors
trained on the LDC and the Wikipedia (Wiki) corpora separately. WSim: the average of the word-similarity
benchmarks, NER: Named-Entity Recognition, POS: Part-Of-Speech tagging, Parsing: F;-score of dependency
parsing on the development set of our parsing setting with gold part-of-speech tags.

WSim NER POS Parsing
Ent-LDC 0.27 95.33 93.37 89.38
Ent-Wiki 0.20 94.97 92.58 89.42
Frg-LDC 0.27 95.59 92.87 89.48

Frg-Wiki 0.18 95.21 91.88 89.44

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 573

frequency of context units plays an important role in the entropy-based context selection.
However, among the 1000 top frequent context units selected from the Wikipedia corpus, 974
context units were in both sets (i.e., |A N B| = 974). The 26 context units in A — B are {color:decom,
format = dmyformat =, flag = rn, l@,v-, m.p.party, goliyon, gf =, defeatedwon, = ingalls, episo-
dest#red, <num>xlib, students.amy, montazur, </s>, = hollingsworth, sen., rediscoving, thnks, color:
laid, color:laun, seasonisuper, color.comm, a-dh-<num>-<num>, vakavulewa, agriculture.pennsyl-
vania, harthac}. Some of these words (e.g., |@,v-) seem completely meaningless, but the others are
meta-data which are used in different regions of Wikipedia documents and they contain informa-
tion about the words that appear after them. The identification of these sorts of context units is
useful for other tasks such as information retrieval and document classification. The 26 context
units in B — A are {stated, bishop, irish, redirect, prize, whose, owned, fall, cover, vol, girl, runs, key,
stone, islands, sometimes, williams, contract, gallery, oxford, taking, wales, administration, policy,
prime, individual}. This comparison shows that the entropy-based context selection prefers some of
the less frequent words that appear as meta-data in the documents to frequent words. Our
experimental results confirm that this selection is beneficial to some tasks such as part-of-speech
tagging and word-similarity benchmarks.

Dimensionality

The dimensionality of the word vectors is determined by the number of singular vectors used in
Equation (6). The number of dimensions affects the time required to perform singular value
decomposition (SVD). Using the randomised SVD method described by Halko, Martinsson, and
Tropp (2011), the extraction of k top singular vectors of an M x N matrix requires O(MNlog(k))
floating-point operations. This shows that the cost for having larger word vectors grows logarith-
mically with the number of dimensions.

The Stanford parser can benefit from the information provided by the high-dimensional word
vectors if it is trained with enough hidden units to capture the inter-relations between the
dimensions. Table 3 shows how the parsing accuracy is affected by the dimensionality of word
vectors and the number of hidden units. In general, increasing the number of hidden units leads to
a more accurate parsing model. However, it is not the same for the number of dimensions.
Increasing the dimensionality of word vectors does not necessarily lead to higher parsing accuracy.
We see that the best parsing accuracy is obtained from word vectors with only 50 dimensions and
400 hidden units. In order to see if this incremental behaviour continues with more hidden units,
we trained the parser with larger numbers of hidden units with maximum 1500 hidden units. Our
empirical results show significant improvement in the parsing accuracy with a larger number of
hidden units. Using 50-dimensional word vectors and 1,200 hidden units, we could get the UAS of
93.6 and LAS of 92.2 on the development set of WSJ, annotated with gold part-of-speech tags.

These achievements are obtained at the cost of a linear reduction of efficiency in both the
training and testing phase of the parser, i.e., the parser becomes slower. Given a set of word
vectors with k dimensions connected to the hidden layer with h hidden units, the weight matrix
between the input layer and the hidden layer grows with the scale of O(kh), and the weight matrix

Table 3. The accuracy of parsing models on the development set of WSJ trained with k-dimensional word
vectors and h hidden units on the development set of WSJ corpus annotated with gold part-of-speech tags.

h— 200 300 400

1k UAS LAS UAS LAS UAS LAS
50 92.6 91.2 92.8 91.4 93.1 91.8
100 92,6 91.2 92.8 914 93.0 91.6

200 92.5 91.0 92.7 91.4 92.8 91.4

574 (&) A.BASIRAT AND J. NIVRE

between the hidden layer and the output layer grows with the scale of O(h). For each input vector,
the back-propagation algorithm passes the weight matrices three times per iteration.

(1) To forward each input vector through the network,
(2) To back-propagate the errors, generated by the inputs, and
(3) To update the network parameters.

Each pass over the network takes O(kh + h) time. So, each input vector needs O(3(kh + h))) time
to be processed by the training algorithm. Given the trained model, the output signals are
generated through only one forward pass that takes O(kh + h) time. So, with a fixed number of
dimensions, we see only a linear growth in the time required for training and testing the parser
which depends on the size of the hidden layer, O(h).

Results on test set

In this section, we report the results obtained from the WSJ and UD test sets and compare them
with the results reported for other similar parsing architecture. Among the many state-of-the-art
parsing architectures, we have chosen Parsito (Straka, Hajic, Strakovd, & Hajic, 2015), UDPipe (Straka
et al.,, 2016), and the Google parsing architecture (Weiss, Alberti, Collins, & Petrov, 2015). The reason
for choosing these parsers is that all of them are inspired by the Stanford neural dependency
parser (Chen & Manning, 2014), used in our experiments. Parsito preserves the greedy nature of the
Stanford parser and adds two main items to it: the first is a search-based oracle similar to a dynamic
oracle and the second is the set of morphological features provided by the corpus of Universal
Dependencies (Nivre et al., 2016). It also replaces the cube activation function used in the Stanford
parser with the tanh function. UDPipe sacrifices the greedy nature of Parsito by adding a beam
search decoder to it. The Google parser uses the arc-standard transition system with a deep feed-
forward neural network as its classifier. The parser does not use pre-trained word embeddings as
input, but instead, it generates the embeddings by another hidden layer, called the embedding
layer. The parser can be trained in both greedy and non-greedy fashions. In the greedy fashion, in
addition to the embedding layer, the parser adds one more hidden layer to the original architec-
ture of the Stanford parser. A perceptron layer is also added to the original architecture which takes
the activations of all hidden layers as input and generates a parsing action as output. The
perceptron is trained with beam search and early update which makes it a non-greedy parser.
Table 4 compares the results obtained from the Stanford neural dependency parser (Chen &
Manning, 2014) trained with our settings and the results reported for the other parsing architec-
tures mentioned above. The superiority of our results to the results reported for original RSV

Table 4. Parsing accuracies on the test set of WSJ and the English UD treebank annotated with both predicted and gold part-of
-speech tags.

Pred. Tag Gold Tag
Corpus Model UAS LAS UAS LAS
WSJ Stanford (Chen & Manning, 2014) 91.8 89.6 - -
Stanford + RSV (Basirat & Nivre, 2017) - - 93.0 91.7
Stanford + RSV (Our setting) 92.7 90.5 93.3 922.0
Google greedy (Weiss et al., 2015) 93.2 91.2 - -
Google perceptron (Weiss et al., 2015) 94.0 92.1 - -
ub Parsito standard oracle (Straka et al., 2015) - - 86.7 84.2
Parsito search-based oracle (Straka et al., 2015) - - 87.4 84.7
UDPipe (Straka et al., 2016) 84.0 80.2 87.5 84.9
Stanford + RSV (Basirat & Nivre, 2017) 84.6 80.9 87.6 84.9

Stanford + RSV (Our setting) 85.6 81.4 88.1 85.4

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 575

(Basirat & Nivre, 2017) shows that the automatic tuning step results in better word vectors. When
we compare our results on UD with the other methods, we see the importance of using more
effective word vectors together with enough hidden units versus increasing the complexity of
parsing architecture.

Comparison

We compare RSV with other methods of word embedding such as:

o SENNA (Collobert et al., 2011)

e GloVe (Pennington et al.,, 2014)

e word2vec (Mikolov et al., 2013), both continuous-bag-of-words (CBOW) and skip-gram
(SGRAM)

e word2vecf (SGARMF) (Levy & Goldberg, 2014a), an extension of the skip-gram model of
word2vec

o HPCA (Lebret & Collobert, 2014)

e RI (Sahlgren, 2006)

Apart from SENNA where we use pre-trained word vectors provided by its authors, all word
vectors are generated from the same corpus as that RSV is trained on (see Section 5.1). Word2vec is
trained with symmetric context but the remaining models are trained with asymmetric context. The
window size for all models is 1 word. We choose these settings on the basis of the arguments made
in Section 3.1. The dimensionality of word vectors for all word embedding methods is set to 50
dimensions. In order to provide a comparison between the syntax-based context and the window-
based context, we use word2vecf, an extension of the skip-gram model that uses dependency
context instead of the window-based context. Word2vec needs a parsed corpus for training. We
use the Stanford dependency parser (Chen & Manning, 2014) to parse the raw corpus described in
Section 5.1 and use the parsed corpus for training word2vecf. We report RSV results obtained from
different global weighting functions mentioned in Section 5.2. We set the size of the context units
D equal to 50000.

Table 5 gives a comparison between the efficiency and the performance of word embedding
methods in different tasks. The columns of the table are divided into two major parts showing the
efficiency and the performance of the word embedding methods. The first part shows the time
required by each of the word embedding methods to generate a set of word vectors. This part is

Table 5. A comparison between the efficiency and the performance of different word embedding methods. The performance is
measured by the contribution of word embeddings on different tasks such as the word similarity (WSim), part-of-speech
tagging (POS), named-entity recognition (NER), and dependency parsing with both predicted and gold part-of-speech tags.

Time POS Dep. parsing (F1-score)
Model (Min.) WSim Tagging NER Gold Predicted
SENNA - 0.4 96.5 97.0 91.4 90.4
GLOVE 52 0.4 95.2 97.4 91.8 90.5
CBOW 145 04 96.3 96.2 91.5 90.2
SGRAM 185 0.5 96.4 97.2 91.6 90.3
SGRAMF 156 0.4 96.3 97.2 91.4 90.4
HPCA 45 0.3 96.3 96.2 90.9 89.9
RI 46 0.2 95.4 93.6 91.2 90.0
RAW 52 0.4 96.1 96.5 91.7 90.5
PWC 52 0.4 96.1 96.6 91.9 90.4
PCW 52 0.3 96.2 96.6 91.0 89.8
PMI 53 0.4 96.2 96.3 91.6 90.4
TF-IDF 53 0.3 96.2 96.6 91.6 90.4

TF-ICF 53 0.3 96.2 96.5 91.8 90.4

576 (&) A.BASIRAT AND J. NIVRE

Table 6. p-value of the null hypothesis Ho: RSV is not better than the other word embedding methods.
SENNA GLOVE CBOW SGRAM SGRAMF HPCA RI
p 0.00 0.40 0.20 0.28 0.18 0.00 0.00

shown in column Time. The second part shows the performance of word embeddings in the word-
similarity benchmark and the other tasks described in Section 5.1. The rows of the table, listing the
word embedding methods, are also divided into two parts. The first part is related to the non-RSV
methods and the second is related to different variants of RSV trained with a different global
weighting function.

The column Time shows that HPCA and RI are faster than RSV which is on par with GloVe.
As discussed in Section 4, all of these methods are closely related to each other. They all
need to scan the training corpus once and explicitly build a co-occurrence matrix. Then, they
apply a transformation function followed by a dimensionality reduction on the co-occurrence
matrix. The reason why HPCA and Rl are faster than RSV is that they use a fixed transforma-
tion function whose parameters are set by the end user. However, RSV runs a parameter
tuning step which searches for the best value of 6 in Equation (4). If the efficiency of the
word embedding is of interest, one can disable the parameter tuning step and use RSV with
the default value of 8 ~ 0.073. In this case, the time required by RSV is comparable with Rl
and HPCA.

The results showing the performance of the word vectors confirm the observation made
by Schnabel, Labutov, Mimno, and Joachims (2015): ‘different tasks favour different embed-
dings’. The best results for the word-similarity benchmark are obtained from word2vec with
Skip-gram architecture. The results obtained from RSV are as good as the other methods.
SENNA results in the highest accuracy on the part-of-speech tagging task. In comparison with
SENNA, RSV shows relatively weaker performance on the part-of-speech tagging but in
general, the results obtained from RSV are comparable or higher than the results obtained
from the other methods. We see a large variation in the results obtained from the named-
entity recognition task. The best result on this task is obtained from GloVe which is distinc-
tively higher than other methods such as RSV. This is different from the results obtained from
part-of-speech tagging, where GloVe shows very weak performance on it but RSV is compar-
ably good. The performance of RSV on the dependency parsing task is as good as other
methods such as GloVe. We see that word2vecf (SGRAMF) does not necessarily result in
higher performance on the dependency parsing task although it uses the dependency
context.

To decide whether the slightly higher results of RSV on the dependency parsing task are
due to chance or not, we perform a bootstrap statistical significance test (Berg-Kirkpatrick,
Burkett, & Klein, 2012) on the results. The null hypothesis of the test is Hy: RSV is not better
than B, where B can be any of the aforementioned word embeddings methods. The results
show that the null hypothesis is rejected for SENNA, HPCA, and RI with quite high confidence.
However, the null hypothesis is not rejected with the standard significance level a = 0.05 for
other methods of word embedding. This shows that the contribution of RSV to the task of
dependency parsing is as good or better than other methods of word embeddings. Table 6
shows the p-values.

Conclusion

In this paper, we have proposed a word embedding method that extracts a set of word vectors
from a distributional semantic space. The context units (words) corresponding to the dimensions of
the semantic space are selected not only on the basis of their frequencies but also on the basis of
the amount of certainty involved in their contextual environments. It has been empirically shown

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 577

that the number of context units is the only tuning parameter of the word embedding method.
Using these context units, a set of initial high-dimensional word vectors is formed. The elements of
these vectors are a function of the frequency of seeing words in the domain of the context units.
The distribution of these vectors is highly skewed toward the null vector of the semantic space.
This problem is mitigated by a power transformation function whose degree is automatically
determined by simulated annealing. The final low-dimensional word vectors are formed with
right singular vectors of the matrix formed by the transformed vectors. The word vectors have
been evaluated with regard to their contributions to the dependency parsing task. The experi-
mental results show that the word vectors are highly influenced by the proposed context selection
and the transformation steps. The word embedding method has also been compared with other
popular word embedding methods. The comparison was made with regard to the efficiency and
the performance of word embedding methods on different downstream tasks. In comparison with
other word embedding methods, it has been shown that the proposed method is on a par with
other word embedding methods.

Note

1. https://www.ldc.upenn.edu/.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Achlioptas, D. (2001). Database-friendly random projections. In Proceedings of the 20th acm sigmod-sigact-sigart
symposium on principles of database systems (pp. 274-281). Santa Barbara, California, USA.

Basirat, A., & Nivre, J. (2017). Real-valued syntactic word vectors (RSV) for greedy neural dependency parsing. In
Proceedings of the 21th nordic conference on computational linguistics (NoDaLiDa) (pp. 20-28). Gothenburg, Sweden.

Berg-Kirkpatrick, T., Burkett, D., & Klein, D. (2012). An empirical investigation of statistical significance in NLP. In
Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational
natural language learning (pp. 995-1005). Jeju Island, Korea.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3,
993-1022.

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740-750). Doha, Qatar.

Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational
Linguistics, 16(1), 22-29.

Collobert, R, Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing
(almost) from scratch. Journal of Machine Learning Research, 12, 2493-2537.

de Marneffe, M.-C,, MacCartney, B, & Manning, C. D. (2006). Generating typed dependencyparses from phrase
structure parses. In Proceedings of the fifth international conference on language resources and evaluation (LREC
2006) (pp. 449-454). Genoa, ltaly: European Language Resources Association (ELRA).

de Marneffe, M.-C,, & Manning, C. D. (2008). The Stanford typed dependencies representation. In Coling 2008:
Proceedings of the workshop on cross-framework and cross-domain parser evaluation (pp. 1-8). Manchester,
United Kingdom.

Dyer, C,, Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based dependeny parsing with stack
long short-term memory. In Proceedings of the 53rd annual meeting of the association for computational linguistics
(ACL) and the 7th international joint conference on natural language processing (pp. 334-343). Beijing, China.

Faruqui, M., & Dyer, C. (2014). Community evaluation and exchange of word vectors at word-vectors.org. In
Proceedings of the 52nd annual meeting of the association for computational linguistics: System demonstrations
(pp. 19-24). Baltimore, Maryland.

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Review, 53(2), 217-288.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313
(5786), 504-507.

https://www.ldc.upenn.edu/

578 (&) A.BASIRAT AND J. NIVRE

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international acm sigir
conference on research and development in information retrieval (pp. 50-57). Berkeley, California, USA.

Jolliffe, 1. (2002). Principal component analysis. Springer-Verlag New York.

Kiela, D., & Clark, S. (2014). A systematic study of semantic vector space model parameters. In Proceedings of the 2nd
workshop on continuous vector space models and their compositionality (cvsc) at conference of the european chapter
of the association for computational linguistics (eacl) (pp. 21-30). Gothenburg, Sweden.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological Review, 104(2), 211.

Lebret, R., & Collobert, R. (2014). Word embeddings through Hellinger PCA. In Proceedings of the 14th conference of the
european chapter of the association for computational linguistics (EACL) (pp. 482-490). Gothenburg, Sweden.

Lebret, R, & Collobert, R. (2015). Rehabilitation of count-based models for word vector representations. In
Computational linguistics and intelligent text processing (pp. 417-429). Cairo, Egypt.

LeCun, Y. A, Bottoy, L., Orr, G. B., & Mdller, K.-R. (2012). Efficient backprop. In Montavon G., Orr G.B., Miiller KR. (eds)
Neural networks: Tricks of the trade. Lecture Notes in Computer Science, 7700, 9-50. Springer Berlin Heidelberg.
Levy, O., & Goldberg, Y. (2014a). Dependency-based word embeddings. In Proceedings of the 52nd annual meeting of

the association for computational linguistics (pp. 302-308). Baltimore, Maryland.

Levy, O. & Goldberg, Y. (2014b). Neural word embedding as implicit matrix factorization. In Advances in neural
information processing systems (pp. 2177-2185). Montreal, Canada.

Lund, K, & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior
Research Methods, Instruments, & Computers, 28(2), 203-208.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993, June). Building a large annotated corpus of English: The Penn
treebank. Computational Linguistics - Special Issue on Using Large Corpora, 19(2), 313-330.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In
Proceedings of workshop at the international conference on learning representations (ICLR). Scottsdale, Arizona.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural information processing systems 26 (pp. 3111-3119). Curran
Associates, Inc. Lake Tahoe, Nevada.

Nayak, N., Angeli, G., & Manning, C. D. (2016). Evaluating word embeddings using a representative suite of practical
tasks. In Proceedings of the 1st workshop on evaluating vector-space representations for nlp, august 2016 (pp. 19-23).
Berlin, Germany.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. In Proceedings of the workshop on incremental
parsing: Bringing engineering and cognition together (pp. 50-57). Barcelona, Spain.

Nivre, J., de Marneffe, M.-C,, Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., McDonald, R., Petrov, S., Pyysalo, S.,
Silveria, N., Tsarfaty, R, Zeman, D., (2016). Universal dependencies v1: A multilingual treebank collection. In
Proceedings of the 10th international conference on language resources and evaluation (Irec 2016) (pp. 1659-1666).
Portoroz, Slovenia.

Pado, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33,
161-199.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). Doha, Qatar.

Reed, J. W,, Jiao, Y., Potok, T. E., Klump, B. A., EImore, M. T., & Hurson, A. R. (2006). Tf-icf: A new term weighting scheme
for clustering dynamic data streams. In 2006 5th international conference on machine learning and applications
(icmla’06) (pp. 258-263). Orlando, Florida.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500),
2323-2326.

Sahlgren, M. (2006). The word-space model (Unpublished doctoral dissertation). Stockholm University.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing &
Management, 24(5), 513-523.

Schnabel, T, Labutov, I., Mimno, D., & Joachims, T. (2015). Evaluation methods for unsupervised word embeddings. In
Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 298-307). Lisbon,
Portugal.

Scholkopf, B., Smola, A., & Miiller, K--R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural
Computation, 10(5), 1299-1319.

Schitze, H. (1992). Dimensions of meaning. In Proceedings of the 1992 ACM/IEEE conference on supercomputing (pp.
787-796). Minneapolis, Minnesota, USA.

Straka, M., Hajic, J., & Strakova, J. (2016). Udpipe: Trainable pipeline for processing conll-u files performing tokeniza-
tion, morphological analysis, pos tagging and parsing. In Proceedings of the tenth international conference on
language resources and evaluation (LREC 2016). Portoroz, Slovenia.

Straka, M., Hajic, J., Strakova, J., & Hajic, J.,, jr (2015). Parsing universal dependency treebanks using neural networks
and search-based oracle. In International workshop on treebanks and linguistic theories (tlit14) (pp. 208-220). Warsaw,
Poland.

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE . 579

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the seventh conference on natural language learning at hlt-naacl 2003 -
volume 4 (pp. 142-147). Edmonton, Canada.

Toutanova, K., Klein, D, Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 conference of the north american chapter of the association for
computational linguistics on human language technology-volume 1 (pp. 173-180). Edmonton, Canada.

Weiss, D., Alberti, C,, Collins, M., & Petrov, S. (2015). Structured training for neural network transition-based parsing. In
Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint
conference on natural language processing (volume 1: Long papers) (pp. 323-333). Beijing, China.

	Abstract
	Introduction
	Word vectors in distributional semantic space
	Real-valued syntactic word vectors (RSV)
	Context-word vectors
	Transformation
	Dimensionality reduction

	Connection with other methods
	Experiments
	Experimental settings
	RSV parameters
	Context selection
	Dimensionality
	Results on test set
	Comparison

	Conclusion
	Note
	Disclosure statement
	References

