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ABSTRACT 

 
Intro: Body composition is an important metric to evaluate overall health. Having 
reliable body composition testing methods are critical to ensure that an individual 
is receiving correct data in which to base health, nutrition, and lifestyle decisions. 
With technological improvements, there are more reliable, high-quality testing 
devices for body composition than in the past. However, there remains questions 
on the validity of the devices to properly measure body composition. There is a 
need for a more accurate, simplistic testing methodology.  
Purpose: The purpose of this paper was to examine the use of dual energy x-ray 
absorptiometry (DEXA) based formulas to evaluate body volume (BV). The 
second purpose was to examine the validity of using predicted body volume 
measurements in four-compartment body composition models. 
Methods: Subjects were tested on three devices designed for body composition 
metrics; DEXA for lean body mass, bone mineral content, and fat mass, BodPod 
for body volume, and a bioimpedance spectroscopy (BIS) device using dual 
electrode tabs (SFB7) for total body water. The measured metrics were used to 
compute two DEXA based predicted BV equations, Wilson, et al. (2012) and 
Smith-Ryan, et al. (2017). The results were then compared to measured BodPod 
BV. Second, this study calculated two different four-compartment model 
formulas, Withers, et al. (1998) and Wang, et al. (2005), using a DEXA calculated 
body volumes. These models were then compared to a four-compartment model 
using BodPod measured body volume. 
Results: 90 healthy adults (50 females and 40 males), aged 18 to 66 years 
(median 23 years), BMI 18 to 34 (median 25), weight 45 to 115 kg (mean 73.64 ± 
SD 14.35 kg), height 150 to 191 cm (171.07 ± 9.98 cm), BodPod data was 
collected and used as a standard for comparison to the DEXA based body 
volume formulas; (Wilson et al. 2012) and (Smith-Ryan, et al., 2017). BodPod 
measured BV mean of 70.36 ± SD 13.85 L, Wilson, et al. (2012) 70.88 ± 13.54 L, 
and Smith-Ryan, et al. (2017) 70.02 ± 14.23 L. ANOVA yielded no statistical 
difference between the three groups (p=.915). Among the Withers, et al. (1998) 
formula, paired t-test of BodPod/Withers yielded a significant difference lower 
than Wilson/Withers (z = -6.178, p ≤ .001) and Smith-Ryan/Withers yielded a 
significant difference lower than BodPod/Withers (z = -5.052, p ≤ .001). Among 
Wang, et al. (2005) formula, Wilcoxon signed-rank test of BodPod/Wang yielded 
a significant difference lower than Wilson/Wang (z = -5.816, p ≤ .001) and Smith-
Ryan/Wang a significant difference lower than BodPod/Wang (z = -4.690, p ≤ 
.001). These significant differences indicate the predicted BV equations are not 
equivalent to using measured BV and yielded inaccurate results 
Conclusion: The use of DEXA based BV formulas is a viable replacement for 
other BV testing methodologies for use in four-compartment testing models. 
However, both the Wilson, et al. (2012) and Smith-Ryan, et al. (2017) formulas 
failed to be a viable replacement for measured BodPod values. A new formula, A 
new formula resulted from this study. Further studies may be needed before a 
formula can be utilized in four-compartment models. 
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CHAPTER I 

INTRODUCTION 

 

Body composition is an important metric to evaluate overall health. 

Having reliable body composition testing methods are critical to ensure that an 

individual is receiving correct data in which to base health, nutrition, and 

lifestyle decisions (Pescatello, 2014). With technological improvements, there 

are more reliable, high-quality testing devices for body composition than in the 

past. However, there remains questions on the validity of the devices to 

properly measure body composition. There is a need for a more accurate, 

simplistic testing methodology.   

Body composition testing commonly consists of multiple separate 

metrics, typically first assessing total body weight, lean body mass, and fat 

mass, to calculate body fat percentage. Each of these metrics are important for 

evaluating body composition. There are other metrics that are underutilized and 

could provide a more accurate, complete model of body composition testing, 

such as bone mineral content and body volume. Utilizing these additional 

metrics to create a complete model would lead to higher accuracy in testing of 

body composition.  

 

Body Composition and Health 

Understanding the relationship between body fat percentage and lean 

body mass can be used for guidance towards fitness training and nutrition for 
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overall wellness purposes. According to the Centers for Disease Control and 

Prevention (2017), in America, 38% of the population is obese and another 33% 

are overweight. Over the years, it has become well established that obesity can 

lead to serious health problems. The CDC (2017) has linked obesity to “all 

causes of death (mortality), high blood pressure (hypertension), high LDL 

cholesterol, low HDL cholesterol, or high levels of triglycerides (dyslipidemia), 

type 2 diabetes, coronary heart disease, stroke, gallbladder disease, 

osteoarthritis (a breakdown of cartilage and bone within a joint), sleep apnea 

and breathing problems, some cancers (endometrial, breast, colon, kidney, 

gallbladder, and liver), low quality of life, mental illness such as clinical 

depression, anxiety, other mental disorders, body pain, and difficulty with 

physical functioning.” These issues are largely preventable if healthy body 

composition is maintained.  

 

Body Composition Testing 

A common method many individuals have traditionally used to gauge 

their body composition is to weigh themselves on a common bathroom scale. 

There are many problems with this method. The scales are often uncalibrated, 

low quality, and provide unreliable results. Body weight alone does not provide 

enough data to make informed decisions regarding health and fitness. While 

there are weight charts to give general guidelines, they do not account for the 

composition differences in body fat mass and lean body mass. This method 

also does not account for height, so a person with a height of 5’0” that weighs 
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200 pounds would rate the same on the weight chart as someone who is 6’6” 

and weighs 200 pounds, even though body fat and lean body mass composition 

could be drastically different. Without the composition knowledge, 

misinformation could mislead people to believe they are healthy, when in fact 

their body fat could be too high, or that they are overweight, when in fact, their 

body composition is ideal. 

Another common method to address body composition is to use an 

individual’s height, weight, and age to calculate body mass index (BMI). This 

method uses more data than weight alone. It has the additional benefit of using 

established standardized scales to provide knowledge on where an individual 

would fall within a spectrum (underweight to obese). BMI is calculated using a 

person’s mass in kilograms divided by height in meters squared and reported 

as kg/m2. Using this formula (BMI = kg/m2), the most common categories are as 

follows: (1) underweight -- BMI 18.5 kg/m2 or less, (2) normal weight -- BMI 

between 18.5 kg/m2 and 24.9 kg/m2, (3) overweight -- BMI between 25 kg/m2 

and 29.9 kg/m2, and (4) obesity -- BMI 30 kg/m2 or greater. 

This method is more effective than assessing body weight alone, but still 

has flaws. One major flaw is the numbers are not translatable into true body 

composition. The value from the equation helps to guide the general population 

to a recommended weight range for height, but it does not provide information 

on body composition. BMI only provides information regarding how far someone 

is from a range considered healthy by the BMI, but does not evaluate fat 

percentage, or how far they are from a desirable body fat percentage. Another 
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flaw is that BMI, not only fails to inform individuals of their body fat percentage 

but has no method to distinguish lean body mass from body fat mass. A person 

with a larger lean mass might be calculated to be overweight or obese using the 

BMI formula, even if their body composition is actually normal, or even lean. 

This method misinforms many athletes and muscular people into the belief they 

are overweight or obese, creating the illusion they are unhealthy (a false 

positive). 

Bioelectrical impedance analysis (BIA) devices are another common 

method used to test body composition and provide a technological edge in 

evaluation of body composition. These devices can be hand-held or stand-on 

varieties.  BIA devices provide more information about body composition than 

BMI. BIA estimates body composition by measuring electrical resistance of the 

human body to transmission of 800 microamps at 50KHz (using an electrical 

impedance plethysmograph) into the deep tissues of the body (Lukaski, 

Johnson, Bolonchuk, & Lykken, 1985). This data is then calculated with a 

manufacturer’s formula to statistically estimate body fat percentage and lean 

body mass, providing the beginnings of a body composition model. Some 

models additionally predict total body water but are considered unreliable with 

single frequency scanning (Rallison, Kushner, Penn, & Schoeller, 1993). While 

these devices are affordable and readily available, there is a concern about the 

accuracy and reliability. Many studies have examined BIA and found their 

reliability and accuracy to be questionable, and possibly unfit to be used as a 
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measure of body composition (Dehghan & Merchant, 2008; Peterson, 

Repovich, & Parascand, 2011). 

 

Bioelectrical Impedance Spectroscopy 

A more advanced model of BIA is the bioimpedance spectroscopy (BIS). 

BIS devices scan 256 frequencies between 4 kHz and 1000 kHz. The additional 

scanning provides a validated metric unavailable by single frequency BIA, the 

evaluation of total body water (Higgins, Reid, Going, & Howell, 2007). The 

addition of an accurate body water evaluation, through the evaluation of 

intracellular fluid and extracellular fluid, along with lean body mass and fat 

mass, allows for an additional metric to be calculated into a body composition 

model. The additional metric provides increased accuracy in estimating percent 

body fat. 

 

Underwater Weighing 

 For many years the “gold standard of analyzing percent body fat has 

been underwater weighing, also known as hydrostatic weighing or 

hydrodensitometry (McArdle, Katch, & Katch, 2011). Underwater weighing is 

done by first weighing a subject before entering a water tank. The subject is 

then placed on a scale, lowered into the water tank and asked to expel all air 

from the lungs. The difference in weight is then used to calculate percent body 

fat (Moon, et al., 2011). To get an accurate measurement, an average of 9 

measurements is needed using underwater weighing (Zamora, Jakicic, 
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Hortobágyi, & O'brien, 1995).  The displacement of the water can be used to 

calculate the volume of the subject. Using the formula density = mass x volume, 

density can also be calculated from underwater weighing, allowing more 

complete body composition measurements. Part of the challenge with this 

method is that it is very time consuming to do a valid percent body fat 

measurement using this method. Also, a large water tank and special scale are 

required, which can be very costly and space consuming. With the amount of 

time and space needed, underwater weighing is an inconvenient method 

compared to newer technologies. 

  

Air Displacement Plethysmography 

 Air displacement plethysmography (BodPod) uses whole body 

densitometry to determine body composition in a method similar to underwater 

weighing. The BodPod measures body mass using a precise, calibrated scale. 

The subject then has their body volume measured by sitting in the BodPod as it 

adds small amounts of air and measures the difference in pressure (McArdle, 

Katch, & Katch, 2011). The resulting pressure difference is calculated to 

compute the body volume. The volume in the lungs can either be predicted or 

measured directly through breathing apparatus attached to the BodPod. The 

resulting volumes and mass measurements are then used to calculate density, 

which in turn is used to calculate lean mass and body fat. This method is easier, 

faster, and equally reliable to the traditional method of underwater weighing 

(Fields, Goran, & McCrory, 2002). 
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Dual Energy X-Ray Absorptiometry 

 One of the newest technologies for measuring body composition is dual 

energy X-ray absorptiometry (DEXA). DEXA operates by passing X-ray energy 

through a body and detecting the energy not absorbed on the other side. The 

results are used to derive bone mineral content, fat mass, and lean mass. 

DEXA machine is a fast method (typically taking only 6-10 minutes) to measure 

body composition. Besides being fast, DEXA is also accurate, equal in validity 

to underwater weighing and proving to have even greater reliability (Morrison, et 

al., 1994). 

 

Body Composition Compartment Models 

Growing technology trends lead to newer, more valid and reliable 

methods for testing body composition. Technology has improved to include the 

use of x-ray technology, air displacement, and improvements to traditional 

bioimpedance methods. With the use of these new methods, body composition 

is becoming much more reliable, but there are still issues with a practical 

method of accurate testing.  

To compensate for this, multi-compartment models are used to increase 

the accuracy of body composition testing. Multi-compartment models use 

several factors to increase the accuracy of body composition testing, such as 

lean mass, fat mass, total body water, bone mineral content, and residual 

protein. Historically, most testing methods accounted for two of these (lean 

mass and fat mass), creating a two-compartment model. Few, such as the 



8 

DEXA can account for three (fat mass, lean mass, and bone mineral content) 

creating a three-compartment model. The use of a four-compartment model 

would increase the validity of body composition measurements and allow a 

more accurate percent body fat (%BF) evaluation. 

While many of these technologies are accurate, they are also very time 

consuming and impractical when dealing with a four-compartment model. The 

need to create a practical and valid way of establishing a multi-compartment 

model without the use of several testing modalities has not been established. 

The ability to remove multiple testing devices to create an accurate model 

would not only save time, but also cost, reducing the overall expense per test 

and the cost of needing several testing machines. It would also appeal to many 

universities as a way to save space, creating a more effective lab in a much 

smaller space. The need for the large space demands of underwater weighing 

chambers and BodPod could be freed up for other research applications. 

 

Gap in Literature 

A gap in the literature is created from the lack of research on an efficient 

way to create a four-compartment model without the need for many testing 

devices. While many four-compartment models exist (mostly using a BodPod 

for body volume, BIA or BIS for total body water, and a DEXA for bone mineral 

content, lean mass, and fat mass), few have explored the option of comprising 

a testing modality to using only DEXA and BIS only to create a four-

compartment model of testing body composition. Millard-Stafford, et al. (2001) 
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explored the possibility of using BodPod in place of DEXA or underwater 

weighing as a method to compute a four-compartment model, but this study 

found evidence that BodPod was not a valid method of estimating body density 

in place of underwater weighing, making it an unacceptable method of 

evaluating a four-compartment model. The next progression in research to 

reduce the quantity of required testing methods came when Wilson, et al. 

(2012) developed a method to use DEXA as a four-compartment model, 

through the calculation of body volume (BV), with only the use of one additional 

testing methodology, BIA, to evaluate total body water, but it was only in the 

theoretical stages. Smith-Ryan (2017) further explored methods and 

calculations of using DEXA to evaluate a four-compartment model by using lean 

mass, bone mineral content, and fat mass calculated from DEXA scans, a BIA 

for calculation of TBW, and expanded research in using body volume derived 

from calculations of the DEXA results. The results showed promise, but no 

validation of this method has been conducted. The need to explore a multi-

methodology four-compartment model compared to a DEXA predicted BV four-

compartment model still exists. Also, the validation of which formula, Wilson, et 

al. (2013) or Smith-Ryan, et al. (2017), for deriving body volume with a DEXA, 

needs to be explored and compared. 

 

Purpose 

The purpose of this research was to examine the use of dual energy x-

ray absorptiometry (DEXA) based measurements to evaluate body volume. The 
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formulas established by Wilson et al. (2012) and Smith-Ryan et al. (2017) were 

both evaluated for validity in comparison with known measurements by air 

displacement plethysmography (BodPod), to establish the validity of using 

DEXA based measurements to establish body volume. Second, the validity of 

using predicted body volume measurements from DEXA in four-compartment 

body composition models by Withers, et al. (1998) and Wang, et al. (2005) was 

compared to a multi-system four-compartment body composition model for 

validity utilizing BIA, BodPod, and DEXA (Kuriyan, Thomas, Ashok, Jayakumar, 

& Kurpad, 2014). 

It was hypothesized that (1) the predicted body volume equations will be 

statistically equivalent to the measurements of BodPod; (2) the Ryan-Smith, et 

al. (2017) formula will have a smaller variation when compared to BodPod 

values then the Wilson et al. (2012) formula; (3) predicted body volume four-

compartment modes will be statistically equivalent to the multi-system model; 

and (4) there will be statistical difference between DEXA measured body fat 

compared to the Withers, et al. (1998) formula and the Wang, et al. (2005) 

formulas, using both predicted and measured body volumes.  

Results provided important information that will be useful to modify body 

composition testing for future subjects to ensure accurate data is presented to 

all subjects, allowing for more informed decision making regarding their body 

composition in a more time efficient manner. This information should make 

body composition testing faster and more economical when utilizing multi-

compartment body composition models. Further, this research will provide 
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evidence to a potential alternative to the replacement of body volume 

measurement devices in favor of DEXA based formulas. 

 

Limitations 

A limitation to this study was the subjects unable to pass the measured 

thoracic volume portion of the BodPod. Of the 90 subjects, 30 had to use the 

predicted volume setting of the BodPod due to inability to pass measured 

thoracic volume portion. Research cited has shown the predicted thoracic 

model is statistically equivalent to measured thoracic volumes, however exact 

measurements would be more precise (Wagner, 2015). 

A second limitation is that fasted states, workouts, and medical statuses 

were self-reported. Self-reporting in a study is a limitation because there is no 

proof of the action and no guarantee that the subject is being honest. If the 

subject did not report honestly, measurements could be misrepresented. While 

all attempts are taken to avoid subject misrepresentation, honest reporting can 

never be guaranteed.  

Unknown menstrual cycles of female subjects can be an additional 

limitation. Shifts in fluid retention have been linked to female hormonal changes. 

Research has shown that total body water and percent body fat increases 

during the mid and end of a menstrual cycle (Hicks, 2017). Changes in 

menstrual cycle during testing period will affect body composition testing. 

Due to subject availability, this study was also highly skewed toward college-

aged, European-American adults, providing little availability to explore age and 
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racial differences among populations at similar mass with regards to density. 

This population is also not representative of the national census, resulting in a 

formula skewed toward a single population, misrepresenting other volumes. 

The age was also heavily skewed left on the histogram, toward college aged 

adults. This was expected as a sample of convenience was utilized. The study 

was open and encouraged to all ages of over 18, with a need for at least 20 of 

the subjects needing to be from the over-40 age category. The desire was to 

get an equal distribution for age and gender, however there wasn’t an 

opportunity among age. The study was conducted at a university and, 

consequently, the median age was only 23, with a mean age of 28.58 ± 12.53 

years and a range of 18 to 66. This was due to the availability and willingness to 

participate of college age adults versus the over-40-aged adults. Attempts were 

made to normalize this through recruitment as much as possible. 

 

Delimitations 

Underwater weighing was not utilized in this study due to time constraints 

and difficulty of use compared to BodPod. BodPod is easier, faster, and equally 

reliable to the traditional method of underwater weighing (Fields, Goran, & 

McCrory, 2002). There was also limited use to an underwater chamber, while 

there was unlimited access to a BodPod. 

Selected exclusion criteria to this study included a BMI below 18 or above 

35. BMI’s outside this range report body volumes incorrectly. The BodPod 

under estimates people with BMI’s lower than 18 up to 15% and BMI’s higher 
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than 35 by 8.51% (Lowry & Tomiyama, 2015). The cut off for urine specific 

gravity was no greater than 1.030. Normal kidney function is between 1.000 to 

1.030. Values outside of this range can indicate health issues and irregular total 

body water (Sommerfield, et al., 2016). Subjects were also eliminated from 

participation due to metabolic disease, kidney disease, heart disease, 

tachycardia, or hypertension. Irregular health status can result in incorrect body 

composition measurements (Powers, Choi,, Bitting, Gupta, & Buchowski, 2009). 
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CHAPTER II 

REVIEW OF LITERATURE  
 

Body Composition and Health 

 Body fat has long been associated with negative health effects. Chang, 

et al. (2012) conducted a systemic review of older adults and the association of 

body fat to morbidity and mortality. They found as individuals age, they lose key 

components such as bone mineral density and lean body mass, while their 

abdominal fat increases. This increase in abdominal fat is most commonly 

visceral fat, which is highly associated to adverse health effects (Chang, 

Beason, Hunleth, & Colditz, 2012). Many conditions such as metabolic 

syndrome, inflammation, dyslipidemia, insulin resistance, type-2 diabetes, 

cardiovascular diseases, and cancer are associated with high body fat (Cefalu, 

et al., 1995; Després & Lemieux, 2006; Steinberger & Daniels, 2003; Kuk, et al., 

2006). Chang et al. (2012) first looked at common methods of analyzing body 

composition. The first common method was BMI. Chang et al, (2012) showed 

that BMI does not distinguish between lean mass and fat mass in weight, 

making it unreliable as a measure of proper body composition. Anthropometric 

measurements add more data and give a better calculation, but still have a high 

user error and provide unreliable data (Chang, Beason, Hunleth, & Colditz, 

2012).  
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Metabolic Syndrome 

 Visceral adipose fat places individuals at greater risk for metabolic 

syndrome. Metabolic syndrome is a condition postulated to be from underlying 

insulin resistance that leads to other conditions, such as polycystic ovary 

syndrome, fatty liver, gallstones, sleep disturbances, asthma and some forms of 

cancer (Grundy, Brewer, Cleeman, Smith, & Lenfant, 2004). The development 

of metabolic syndrome may further exacerbate the collection of visceral fat, 

increasing many risk factors associated with metabolic syndrome, including 

dyslipidemia and hypertension (Després & Lemieux, 2006; Chang, Beason, 

Hunleth, & Colditz, 2012). The development of metabolic syndrome becomes a 

primary risk factor for other diseases, such as cardiovascular disease and 

diabetes (Chang, Beason, Hunleth, & Colditz, 2012). 

 

Cardiovascular Disease 

 The likelihood of developing cardiovascular disease from metabolic 

syndrome becomes a high probability and leads to severe health 

consequences. Isomaa et al. (2001) studied 4,483 subjects for cardiovascular 

risk associated with metabolic syndrome. The results after follow-up showed 

subjects with metabolic syndrome were three times more likely to develop 

cardiovascular disease then those without metabolic syndrome. This leads to a 

direct link that increased body fat leads to a marked increase in risk for 

cardiovascular disease.  Malik et al. (2004) found similar results in a study 

connecting metabolic syndrome to mortality via coronary heart disease, 
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cardiovascular disease, and all causes in United States adults. The results from 

were consistent with previous studies, finding coronary heart disease, 

cardiovascular disease, and total mortality are significantly higher in US adults 

with metabolic syndrome than in those without metabolic syndrome. The 

research was further expanded by Veronica and Esther (2012) with research 

involving aging, cardiovascular disease, and metabolic syndrome. The findings 

were that metabolic syndrome not only lead to a higher prevalence of 

cardiovascular disease, but other pathological conditions such as increased 

peroxidation of nitric oxide, generation of free radicals, and increased 

lipoperoxidation, which are precursors to cancer. 

 

Type 2 Diabetes 

 Increased body fat is also linked to insulin resistance and type 2 

diabetes. Steinberger and Daniels (2003) conducted a study reviewed by the 

American Diabetes Association and containing recommendations from the 

American Diabetes Association’s Clinical Practice Recommendations. Weight 

loss is associated with improved insulin sensitivity, while obesity is associated 

with significantly more insulin resistance. Luckily, the link between diabetes type 

2 and obesity is one that is reversible. Steinberger and Daniels suggest that just 

a 10% to 15% decrease in weight can have massive benefits in the treatment of 

diabetes type 2. Type 2 diabetes is emerging as a major health emergency, 

making the need for accurate body composition testing and education 

paramount. 
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Hypertension 

 Hypertension is also highly linked with body fat. Hayashi et al (2003) 

found in a study of 563 Japanese-Americans that intra-abdominal fat was 

associated with hypertension as a significant predictor of morbidity, even after 

adjustments for total subcutaneous fat area, abdominal subcutaneous fat area, 

body mass index, or waist circumference. Hypertension is a strong risk factor 

for stroke, coronary heart disease, congestive heart failure, and mortality. 

Currently hypertension affects 25% of all Americans, and as many as 90% at 

some point during their lifetime (Wang & Vasan, 2005). The use of proper body 

composition monitoring and treatment could help reduce the risk of this 

condition. 

 

Body Composition Testing 

 Duren, et al. (2008) analyzed methodology and components of body 

composition in a study to address the growing epidemic of obesity and related 

diseases, such as type 2 diabetes. After analyzing multiple methods, Duren, et 

al. (2008) concluded the most important aspect for the benefit of health analysis 

is body fat. Increased body fat was cited as an important factor that leads to 

insulin resistance and has a dramatic impact on metabolism. Accurate 

assessment information is very important to assess body fat. The use of total 

body water and fat free mass is one way suggested to evaluate body 

composition. There is a need to find the optimal method of testing for body fat. 
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Bioelectrical Impedance Spectroscopy 

 Bioelectrical impedance spectroscopy (BIS), also known as multi-

frequency bioelectrical impedance, is widely used as a measurement of body 

composition. BIS is similar to BIA in that it estimates body composition by 

measuring resistance of the human body to electrical transmission. However, 

while BIA only uses a single frequency, BIS uses multiple frequencies to 

provide a more accurate and reliable estimation of body fat, lean mass, and 

total body water. 

 While many methods exist for calculating total body water. Traditionally, 

the gold standard is using underwater weighing, however studies have been 

conducted to create a more practical method of evaluating total body water 

using bioelectrical impedance. A study of 36 healthy males, with cross 

validation analysis on two random subsets, yielded evidence supporting total 

body water calculations by BIA as a valid method (Segal, et al., 1991).  

 Goncalves, et al. (2015) conducted a similar study utilizing 32 athletes. 

Measurements included: total body water, extracellular fluid, and intracellular 

fluid using deuterium and bromide dilution techniques as criterion against BIA. 

When comparing the different methods, no significant difference was found 

between BIA and the criterion measures. These results lead to the conclusion 

that bioelectrical impedance is a valid non-biased assessment of TBW and may 

well be the new standard (Gonçalves, Matias, Santos, Sardinha, & Silva, 2015). 
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Underwater Weighing 

Underwater weighing, or hydrostatic weighing, has historically been the 

“gold standard” of body composition testing. Using the Archimedes principle, 

which states an “object’s loss of weight in water equals the weight of the volume 

of water it displaces, thus making the specific gravity the ratio of the weight of 

an object in air divided by its loss of weight in water. The loss of weight in water 

equals the weight in air minus the weight in water” (McArdle, Katch, & Katch, 

2011). This method is known to be reliable, but very time inefficient, causing 

time delays and reducing the number of subjects that can be tested for body 

composition at a given time.  

A study was conducted to determine the minimum number of trials 

necessary to establish “true” underwater weight during body density 

measurements on 86 college females. Nine to ten trials of underwater weight 

assessment were recorded for each subject. The group was used as a matter of 

convenience. The method used was to conduct underwater weighing on each 

subject 9-10 times per person. What they found was that as people became 

accustomed to the methods of expiration during the weighing that their weight 

continued to increase. This increased body density values by .001–.003 density 

units. These results were anticipated pre-investigation. In 42% of the 

assessments, the subject’s highest underwater weights were observed during 

the first five trials. The magnitude of error associated with these trials was 

considerably higher than for the last several trials. This was due to an 85% 

reduction in within-individual variability (Katch, 2013). This study shows that, not 
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only is a single test time consuming, but to have reliability in the testing method, 

ten tests must be conducted, and the first five will have a high error level, 

making them unusable. With this delay in time, a new gold standard needs to 

be established. 

 

Air Displacement Plethysmography 

Other methods have been compared with underwater weighing to seek a 

new standard in body composition testing. One popular method is air 

displacement plethysmography (BodPod). Fields et al. (2012) conducted a 

systematic review of the validity of air displacement plethysmography, more 

commonly known as a BodPod. The BodPod was compared to DEXA and 

hydrostatic weighing. Results of percent body fat indicated the BodPod and 

hydrostatic weighing results are within 1% for adults and children, whereas the 

BodPod and DEXA results are within 1% for adults and 2% for children. This 

study was conducted because few studies have compared BodPod results with 

multicompartment models results. The studies that have done a comparison 

suggest an underestimation of ≈2–3 %BF by both the BodPod and hydrostatic 

weighing. Compared with four-compartment models, the BodPod 

underestimates percent body fat by ≈2–3 % in adults and children. The 

conclusion found BodPod is a reliable and valid technique that can quickly and 

safely evaluate body composition in a wide range of subject types but lacks the 

accuracy of a four-compartment model.  
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Another study conducted by Utter et al. (2003) compared hydrostatic 

weighing in a collegiate wrestling population in hydrated and acutely dehydrated 

states. The study methods were to examine body composition by BodPod, 

hydrostatic weighing, and three-site skinfolds. The subjects were 66 NCAA 

Division I collegiate wrestlers. The subjects were tested before and after acute 

dehydration (2.6% reduction in body mass). The results yielded no statistically 

significant differences between BodPod and hydrostatic weighing for body 

density, percent body fat, and fat-free mass in the hydrated or the dehydrated 

states. This study found body density, percent body fat, and fat-free mass from 

the BodPod are similar compared with hydrostatic weighing during hydrated 

and acutely dehydrated states. This study provided evidence that BodPod is a 

reliable replacement for hydrostatic weighing in various conditions.  

Another study examined the effect of covert subject actions on percent 

body fat measured by BodPod. The reason why they were examining this is the 

belief some athletes were using methods such as changing their breathing to 

manipulate the readings and to examine how these manipulations might be 

affecting other measurements. Subjects underwent body composition analysis 

by BodPod following the standard procedure using the manufacturer's 

guidelines. The subjects then underwent eight more measurements while 

performing the following intentional manipulations: 4 breathing patterns altering 

lung volume, foot movement to disrupt air, hand cupping to trap air, and heat 

and cold exposure before entering the chamber. The results demonstrated that 

subjects were able to covertly change their estimated BodPod body 
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composition value by altering breathing when compared with the standard 

condition (Tegenkamp, Clark, Schoeller, & Landry, 2011). 

To accurately establish body volume (BV), air displacement 

plethysmography (BodPod) provides a standard comparably equivalent to 

hydrostatic weighing (Lohman & Going, 1993). This allows for a much more 

practical and less time-consuming measurement of assessing BV. One 

question is the validity of a BV measurement when measured thoracic gas is 

not achievable, either by subject error or lack of equipment. McCrory et al. 

(1998) analyzed the validity of BodPod using measured thoracic gas volume 

against BodPod using predicted thoracic volume equations. Studying 50 

subjects, no significant differences were found between measured and 

predicted groups (mean difference ± SE, 53.5 ± 63.3 ml). With these findings, it 

allows for the collection of many more subjects using predicted thoracic volume 

assessment (when measured thoracic volume could not be established). 

Other researchers found similar results showing no significant 

differences between using predicted and measured thoracic volumes with 

BodPod measurements. Wagner (2015) conducted a similar study on 33 

collegiate athletes and found predicted thoracic gas volume was not 

significantly different (p = 0.343) from measured thoracic gas volume. These 

results show BV measurements with a BodPod using predicted thoracic 

measurements are statistically equivalent to measured thoracic volumes. 
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Dual Energy X-Ray Absorptiometry 

A newer trend that has been compared to underwater weighing is dual 

energy X-ray absorptiometry (DEXA). DEXA is quickly becoming the reference 

standard in body composition testing due to its ease of use, speed of testing, 

and high level of reliability and validity. Duren et al. (2008) stated the use of 

dual energy X-ray absorptiometry (DEXA) is the most popular method for 

calculating fat mass, lean mass, and bone tissue. 

One study was completed to compare estimates of body composition in 

two ethnic groups, 31 black and 38 white females, 10 through 16 years of age, 

to establish accurate and precise laboratory standards for field measures of 

body composition. The method used was to examine DEXA scan values 

against corresponding values of fat-free mass and percent body fat from 

underwater weighing. These were determined using the two-compartment 

model of Siri, and these were corrected using the model of Lohman for white 

girls only. The results were the two-compartment model overestimated fat-free 

mass compared to estimates from DEXA for black girls, as did the corrected 

Lohman model for white girls. The two-compartment model significantly 

overestimated percent body fat in both white and black girls compared to 

corresponding estimates from DEXA. Because of this fact, DEXA values of 

percent body fat are typically greater than those from underwater weighing for 

subjects under approximately 24% body fat, but the converse occurs above 

25% body fat. The inability of underwater weighing, using the two-compartment 

model, to account for the body composition in these girls can be corrected in 
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part by measuring the variables for a multicompartment model or more easily by 

using DEXA estimates of body composition. The results of the inaccuracies of 

underwater weighing method provide evidence for the need to replace 

underwater weighing as the “gold standard” and give DEXA the recognition as 

the more valid method and the new “gold standard” for body composition testing 

(Morrison, et al., 1994). 

Glickman et al. (2004) conducted a study to examine the validity of 

DEXA for body composition. DEXA was originally only used as a method to 

measure bone density and total body composition. After improvements in 

software, DEXA can now determine abdominal fat mass. For this study, 65 

adults aged 18-72 participated with DEXA to have their abdominal fat 

measured. Results from DEXA were then compared to computed tomography 

for abdominal fat mass in the L1-L4 region. DEXA showed excellent reliability 

among three different operators to determine total, fat, and lean body mass in 

the L1-L4 region. The DEXA was found to be a reliable and accurate method to 

determine abdominal obesity. This study lends further credit to DEXA as the 

new “gold standard” of body composition testing. 

  

Body Composition Compartment Models 

Siervo and Jebb (2010) reviewed the importance of various aspects of 

body composition in relation to establishing accurate body fat percentage. A 

framework was established with various models of body composition, all with 

limitations on their own. However, the importance of collecting as much 



25 

accurate data as possible was established in order to derive the most accurate 

percent body fat. The use of a multi-compartment model was shown to be more 

accurate than any single testing method. In order to derive a multi-compartment 

model, various data must first be collected. This may include fat mass (FM), fat-

free mass (FFM), total body water (TBW), extracellular water (ECW), 

intracellular water, bone mineral content, and residual protein mass. This data 

can then be utilized by various multi-compartment models to derive accurate 

percent body fat (Siervo & Jebb, 2010). 

Kopper et al. (1998) examined a three-compartment model against 

underwater weighing, deuterium oxide dilution, skinfold thickness 

measurements, bioelectrical impedance analysis, and a prediction equation 

based on the body mass index. Body fat was calculated using a three-

compartment body composition model derived from body density and total body 

water percentage. The results showed correlation coefficients between the 

different methods were high and significant. This study shows that the single 

predictive methods have considerable mean and individual biases compared 

with the three-compartment model and all predictive methods underestimated 

body fat in the studied subjects. This information leads to the conclusion that a 

fully developed multi-compartment model would be the most accurate method 

of testing body composition as all single methods are far less valid. Future 

studies need to include the development of population-specific prediction 

formulas. 
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In a study that compared body fat percentage obtained from a four-

compartment model with percent body fat from hydrodensitometry (using -

deuterium) in 291 subjects, results showed there are differences between 

percent body fat measured by the four-compartment and two-compartment 

models. When validated against the reference four-compartment model, two-

compartment models were found to be unsuitable for accurate measurements 

of percent body fat. These further provides evidence that an accurate four-

compartment model is required to measure a valid and reliable percent body 

fat, and two-compartment models are too unreliable. (Deurenberg-Yap, 

Schmidt, Staveren, Hautvast, & Deurenberg, 2001) 

Withers et al. (1998) compared two, three, and four-compartment models 

for analyzing body composition. The two-compartment model study consisted of 

fat mass (FM) and fat free mass (FFM). The three-compartment model 

consisted of fat mass, total body water, and fat free dry mass. The four-

compartment model was comprised of fat mass, total body water (TBW), bone 

mineral content (BMC), and residual mass. These models were compared using 

equal groups of highly trained men (n=12), sedentary men (n=12), highly 

trained women (n=12), and sedentary women (n=12). For this study, all 

experiments were conducted when the subjects were fasting (twelve hours 

since last meal), normally hydrated, and had not exercised for 24 hours. To 

minimize fluid retention in women, they were not tested for seven days 

preceding menstruation or during menstruation. In order to minimize within-

subject biological variability, the bone density and total body water tests were 
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administered on the same morning. Most of the subjects (n=34) had the DEXA 

measurements conducted the same morning as the other two tests, however 13 

were rescheduled the following morning. One woman was not tested until 13 

days later. Hydrodensitometry was used to evaluate bone density percent body 

fat via underwater weighing at residual volume. Fat free mass was estimated 

using the formula percent body fat (%BF) = (497.1/Body Density) - 451.9 

(Brozek, Grande, Anderson, & Keys, 1963). DEXA scans were additionally 

taken and compared to underwater weighting results. Correlation coefficients 

between DEXA and underwater weighing of 1.0 were found for bone mineral 

content, 0.996 for fat, and 1.0 for lean tissue mass. Total body water was 

calculated with a deuterium dilution derived from a saliva sample collected from 

subjects. Their fat free mass was calculated using the assumption that 72% of 

the fat free mass is comprised of water in a normally hydrated person using the 

formula FFM (kg) = TBW (kg) / 72 * 100 (Withers, et al., 1998). 

The two-compartment model was evaluated using fat mass and fat free 

mass. The assumptions were made that fat mass has a density of 0.9007 g/cm3 

and fat free mass has a density of 1.1000 g/cm3 at 36°C. Percent body fat was 

then calculated using the formula %BF = (497.1/Body Density) – 451.9. Three 

compartment models add density to the calculation with the addition of total 

body water, assumed to have a density of 0.9937 g/cm3 and fat free mass 

becomes fat free dry mass, with density modified to 1.569 g/cm3 and percent 

body fat is calculated using the formula %BF = (211.5/Body Density) - 78.01 

(TBW/body mass) - 134.8, where body density is defined as body volume / 
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body mass. The four-compartment model incorporates the additional use of 

bone mineral content, assumed at a density of 2.982 g/cm3 and residual mass, 

assumed a density of 1.404 g/cm3. The formula for the four-compartment model 

of percent body fat became %BF = (251.3 / Body Density) - 73.91 * (TBW / 

body mass) + 94.7 * (BMC / body mass) – 179.0 (Withers, et al., 1998). 

The results for the comparison of the models revealed the overall mean 

of FFM to be 1.1075 g/cm3, significantly greater (P<0.001) than the two-

compartment density assumption of 1.1000 g/cm3. Individual FFM densities 

ranged from 1.0974 g/cm3 to 1.1177 g/cm3.  This resulted in overestimations of 

0.9% and underestimations of 5.9% body fat. The results yielded evidence to 

support that two-compartment models compared to three-compartment models, 

for all groups, resulted in significantly greater means and variances (P<0.02) 

than those found between the three and four-compartment models (Withers, et 

al., 1998). No significant differences were found in the three-compartment 

versus the four-compartment models. Given these results, it is reasonable to 

infer the two-compartment model is significantly less accurate than a three or 

four compartment model, and thereby less useful for evaluating body fat 

percentage. The lack of significant differences between the three and four 

compartment models leads to the conclusion that the division of fat-free dry 

mass into residual mass and bone mineral content leads to little or no 

improvement in measurement of body fat percentage (Withers, et al., 1998). 

Wang, et al. (2005) advanced research in the body composition field 

methodology and created a new formula to evaluate body composition. Wang et 
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al. created the formula FM(kg) = 2.748(BV) – 0.699(TBW) + 1.129(Mo) – 

2.051(Body Mass) where Mo is equal to total body BMC x 1.0436, a metric 

which is measured by DEXA. This method is able to utilize readily available 

metrics to create an accurate four-compartment model to evaluate fat mass in 

kilograms. This formula incorporates the same metrics used by Withers, et al. 

(1998) using body volume, total body water, bone mineral content, and body 

mass to derive a four-compartment model but removes body density in favor of 

only body volume, removing the redundancy of using body mass twice. The 

formula can easily be rewritten to FM (kg) = 2.748 (BV) – 0.699 (TBW) + 1.129 

(BMC*1.0436) – 2.051 (Body Mass) for use with DEXA derived data. This 

formula can also be used to calculate body fat percentage where %BF = (FM / 

Body Mass) X 100 (Wang, Shen, Withers, & Heymsfield, 2005).  

The Withers, et al. (1998) formula of %BF = (251.3 / Body Density) - 

73.91 * (TBW / body mass) + 94.7 * (BMC / body mass) – 179.0 and the Wang, 

et al. (2005) formula of FM(kg) = 2.748(BV) – 0.699(TBW) + 1.129(Mo) – 

2.051(Body Mass) lend themselves to direct comparison. With body density 

equal to body volume / body mass and Mo equal to total body BMC x 1.0436, 

both formulas incorporate the same metrics, BMC, body mass, BV, and TBW.  

 A study to assess the agreement of body fat and fat-free mass measured 

by simpler methods against the four-compartment model used 60 obese 

schoolchildren (defined by body mass index ≥ 95th percentile) between the 

ages of 8y and 13y. Multicompartmental body composition was estimated using 

isotopic dilution, BodPod, DEXA, and anthropometric equations and compared 
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the results against a four-compartment model. The results showed isotopic 

dilution and anthropometric equations underestimated body fat in boys; while 

DEXA, BodPod, and anthropometric equations overestimated body fat in boys. 

All the equations underestimated body fat in girls. Isotopic dilution and DEXA 

two-compartment methods had the best agreement with the four-compartment 

model for both body fat and fat-free mass (Vergara, et al., 2014). This study 

lends further evidence that a four-compartment model is far more valid then the 

use of any single testing modality.  

 

Methods for Evaluating Four Compartment Models 

Wilson et al. (2012) expanded on the methodology of using a four-

compartment model. Their objective was to simplify the process of establishing 

the four-compartment model by eliminating the need for deuterium and 

underwater weighing by instead measuring body protein using DEXA and BIA. 

The protein estimate from direct calibration protein derived from BIA water, 

bone mass, and body volume was compared to the Lohman (1993) and Wang 

(2005) equations–which derived protein content calculated from the data 

collected from the DEXA and BIA, and then was compared to the neutron 

activation analysis, which is considered the gold standard for measurement in 

vivo total body protein. The results of this study were that neutron activation 

analysis had the highest correlation, lowest root mean squared error, and 

fewest outliers with direct calibration protein, compared with the Lohman (1993) 

and Wang (2005) equations–derived protein. This evidence shows there are 
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simpler, and equally efficient methods of calculating body fat by using a four-

compartment model without the complications and expense of underwater 

weighing and chemical compounds, such as deuterium.  

With this new data, Wilson et al. (2012) were able to calculate a new 

method to assess body volume using the DEXA as well. With the lean mass, fat 

mass, and bone mineral content derived from the DEXA, Wilson et al. was able 

to derive the equation of body volume (with a GE-DEXA) = Fat/0.87+ 

Lean/1.072 -BMC/2.283 + 1.504, which converts the GE DEXA mass in 

kilograms to volume in liters (Wilson, et al., 2012). The use of this equation to 

evaluate BV without a separate testing modality would eliminate the need for an 

underwater weighing chamber or BodPod when utilizing a four-compartment 

body composition model. 

Tinsley (2017) examined equations for estimation of body volume from 

DEXA scans to be used for body composition evaluation in modified four-

compartment models. The design of the study used 48 recreationally active 

males and females who completed two pairs of identical assessments, which 

included a DEXA scan and single-frequency bioelectrical impedance 

analysis. Body volume and four-compartment equations were applied to the 

results to establish body composition. The results showed both body volume 

equations demonstrated excellent reliability but there was a significant 

difference between equations when a four-compartment model equation was 

used. The difference was 4.3 kg for lean mass and fat mass and 6.9% for body 

fat percentage. These results showed promise in the use of DEXA to establish 
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a single testing unit that produces a four-compartment model. Future studies 

are needed and include the continued study of body volume measurements. 

Smith-Ryan et al. (2017) further developed a method for creating a four-

compartment body composition model using DEXA for percent body fat, fat 

mass, and lean mass. These researchers sought to derive a new method of 

estimating body volume (Smith-Ryan, et al., 2017). BodPod is an industry 

standard in establishing body volume and a valid alternative to underwater 

weighing for the use of establishing body volume, arguably becoming the new 

gold standard for volume measurements (Lohman & Going, 1993). The Smith-

Ryan et al. (2017) study focused on the validity and reliability of using DEXA for 

calculating body volume in comparison to BodPod and improving the calculation 

formula for using DEXA. When analyzing the body volume results of the DEXA 

and comparing it to results from BodPod, no significant differences were found 

with the Wilson et al. (2012) equation. Using the data from sub samples, Smith-

Ryan et al. (2017) used inverse density coefficients and derived the formula of 

DEXA BV (L) = Fat/0.84+ Lean/1.03 -BMC/11.63 – 3.12 based on the formula 

of Wilson et al. (2012). With the additional research of validity and reliability of 

body volume calculated by DEXA being statistically equivalent to BodPod, there 

is opportunity to eliminate the need for underwater weighing and BodPod to 

calculate a four-compartment model using only DEXA and a total body water 

test. Using the DEXA to evaluate volume for a four-compartment model could 

potentially be the most accurate model, eliminating the need for any other tests 
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and saving hours of time per subject, as well as the expense of additional 

materials and equipment.  

Further research would be needed to validate the use of a DEXA 

predicted BV model against a traditional four-compartment model. Both the 

Wilson, at al. (2012) formula and the Smith-Ryan (2017) formula need to be 

examined against BodPod results for validity and for use in the Withers, et al. 

(1998) and the Wang, et al. (2005) four-compartment body composition models. 
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CHAPTER III 

METHODOLOGY 
 

Experimental Design 

Subjects were tested on three devices designed for obtaining body 

composition metrics: DEXA for lean body mass, bone mineral content, and fat 

mass; BodPod for body volume; and a bioimpedance spectroscopy (BIS) device 

using dual electrode tabs (SFB7) for total body water to examine the validity of 

two separate DEXA predicted body volume (BV) equations, Wilson, et al. 

(2012) and Smith-Ryan, et al. (2017), compared to measured BodPod BV. This 

study also compared two different formulas for establishing a four-compartment 

model, Withers, et al. (1998) and Wang, et al. (2005), using DEXA calculated 

body volumes. These models were compared to a four-compartment model 

using BodPod measured body volume. 

  

Subjects 

Subjects were informed, prior to arrival, to be fasted for at least: (1) 8 

hours before testing, (2) 2 hours without water, (3) 24 hours without alcohol, (4) 

24 hours without intensive exercise, and (5) be normally hydrated (calculated by 

urine specific gravity less than 1.030). At least 24 hours prior to any testing, 

subjects were given information and instruction about each of the different body 

composition methods they were to participate in.   
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Initial Assessment 

 Subjects arrived at the lab and completed informed consent documents 

(see Appendix B) and health history questionnaires to ensure all subjects were 

healthy as defined by meeting all inclusion criteria (see Appendix C). Female 

subjects signed documentation denoting they were not currently pregnant and 

that there was no possibility they could be pregnant prior to their scan (see 

Appendix A). Subjects with elevated resting heart rates (over 100 beats per 

minute) or high blood pressure (greater than 140/90) were disqualified from 

participation in the study. Subjects who self-reported a history of metabolic 

diseases, previous kidney, heart, or hydration issues were also disqualified from 

participation in the study. Subjects were then questioned to confirm they did not 

(1) have a large meal within eight hours of their visit, (2) consume alcohol within 

24 hours of their visit, (3) drink any fluids for two hours prior to testing, or (4) 

participate in any hard, physical activity for 24 hours before testing.  

Upon arriving to the lab, subjects self-obtained a urine sample in a 

standard medical-grade specimen cup for analysis by the research team. They 

were instructed to catch approximately half the cup mid-stream. The urine 

sample was tested for urine specific gravity and color to ensure normal 

hydration (defined as specific gravity less than 1.030). During the initial 

bathroom visit, the subjects were also asked to void their bowels (if possible) so 

that an accurate body mass could be measured. Subjects then had their height 

measured with a wall mounted measuring tape and speed square. Height data 

was recorded on data sheets with all measurements in centimeters (cm) (see 
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Appendix D). Subjects next had their weight measured via the BodPod 

calibrated scale and recorded on the data sheet in kilograms (kg).  

 

Body Composition Testing 

 The body composition metrics of the subjects were measured utilizing a 

variety of different testing methods. Air displacement plethysmography 

(BodPod) was utilized to measure total body volume with both measured and 

predicted thoracic volumes. Dual energy x-ray absorptiometry (DEXA) was 

utilized to measure fat mass, lean mass, and bone mineral content. Finally, 

bioelectrical impedance spectroscopy (BIS) was utilized to measure total body 

water.  

 

Bioelectrical Impedance Spectroscopy 

Subjects were tested for body composition using bioelectrical impedance 

spectroscopy attached to silver chloride dual wet electrodes via SFB7 device 

(ImpediMed Limited, Queensland, Australia) (see Appendix E). Each contact 

point for wet electrode pads was: (1) shaved to be hair free, ensuring proper 

conduction, and (2) cleaned utilizing isopropyl alcohol. Subjects were positioned 

lying supine on a nonconductive athletic training table. Electrodes were placed 

on each limb, with the dual electrode placed at the styloid process and 

extended to the lunate on both hands and the distal tibia and talus of both feet 

allowing measurement of right whole-body water and left whole body water (see 

Appendix D). Measurements were immediately repeated. Dual-tabs were then 
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removed, and the site was cleaned with isopropyl alcohol. New dual-tabs were 

then applied, and measurements repeated twice more. Measurements were 

analyzed by Impedimed (see Appendix E) analytical software. Results were 

recorded (see Appendix D) and averaged to calculate TBW. 

 

Air Displacement Plethysmography 

Body composition assessment via air displacement plethysmography 

was measured using a Cosmed BodPod (COSMED USA, INC, Concord, CA) 

(see Appendix E). Subjects wore standardized, gender appropriate, 

compression garments and a swim cap (per manufacturer recommendations). 

Subjects were instructed to remove all metallic objects and jewelry for the 

remainder of the testing session. Subjects were then weighed on a calibrated 

BodPod scale and body mass was recorded. Subjects were then instructed to 

remain still and breathe normally while being tested. Additionally, lung volumes 

were measured during the BodPod test, utilizing the measured lung capacity 

scan settings. Subjects were instructed to remain still and breath according to 

the prompts on the computer guiding the lung measurement. Subjects that were 

unable to complete the measured thoracic body volume in five attempts had 

their predicted thoracic volume measurements recorded using BodPod Siri 

settings (as defined by manufacturer recommendations for subject population). 

Scans were repeated if body volume measurements differed by more than 25 

ml. Total body mass, predicted thoracic volume or measured thoracic volume, 

first body volume, second body volume, and total body volume were recorded. 
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Dual Energy X-Ray Absorptiometry 

Dual energy X-ray absorptiometry (DEXA), measurements were 

conducted utilizing a GE Lunar Prodigy Advance Bone Densitometry scanner 

(General Electric Company, Cincinnati, OH) (see Appendix E). Subjects wore 

standardized clothing (medical scrubs). Subjects were again reminded to 

ensure all metal and jewelry had been removed. All scans were performed 

utilizing the total body scan. Subjects were placed upon the table symmetrically 

with feet and knees secured together with Velcro straps. Subjects were 

scanned using the total body option from the top of their head to the bottom of 

their feet. Data of total body mass, lean body mass, and bone mineral content 

were recorded (see Appendix D). 

 

Data Collection 

 Data was collected following each individual test. Data was stored on 

each individual testing device for future recall, as well as collected on a data 

sheet, and stored in electronic data Microsoft Excel (Microsoft Corp. Seattle, 

WA, version 2016) (see Appendix E) sheets (see Appendix D). Data for the 

bioelectrical impedance spectroscopy (BIS) included left body water, repeated 

measurement, right body water, repeated measurement, reposition 

measurements, and reposition repeated measurements. Data for the BodPod 

included total body mass, predicted thoracic volume or measured thoracic 

volume, first body volume, second body volume, and total body volume. Data 
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for the DEXA scanner included total body mass, lean body mass, and bone 

mineral content.  

 

Tester Reliability 

 Test/re-test reliability was conducted with each device. Reliability testing 

for DEXA was conducted on 16 subjects, tested on three occasions in a single 

week at the same time of day, Monday, Wednesday, and Friday for lean mass, 

fat mass, percent body fat, and bone mineral content. Intraclass correlation 

coefficients (ICC) were calculated using the two-way random effects model with 

absolute agreement for all four variables tested: LM, FM, %BF, and BMC [ICC 

(3,1)]. The ICC of r = 0.99 indicated excellent test/re-test reliability for all 

variables. SFB7 measurements were conducted then immediately repeated. 

Electrodes were removed and replaced, and measurements were again 

conducted then immediately repeated during the same session. All four values 

were recorded for analysis with an average being generated for each 

measurement. Intraclass correlation coefficients (ICC) were calculated using 

the two-way random effects model with absolute agreement [ICC (2,1)]. The 

ICC of r = 0.99 indicated excellent test/re-test reliability. Reliability testing for the 

BodPod was conducted on 16 subjects, tested on three occasions in a single 

week at the same time of day, Monday, Wednesday, and Friday. Intraclass 

correlation coefficients (ICC) were calculated using the two-way random effects 

model with absolute agreement [ICC (3,1)]. The ICC of r = 0.99 indicated 

excellent test/re-test reliability. 
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Data Analysis 

Data was extracted from each of the body composition testing devices 

for total body mass, lean body mass, body fat, and body fat percentage. For 

devices that did not include a body fat percentage result, the formula of body fat 

divided by total body mass was used to calculate body fat percentage. To test 

for continuity on the same device, the formula of 1 - (lean body mass divided by 

total body mass) to calculate percent body fat was utilized.  

All statistical tests were conducted using IBM SPSS Statistics software 

(Armonk, NY, version 23) and formatted using Microsoft Excel 2016 (Seattle, 

WA, version 2016) (see Appendix E). Variables was analyzed for normality 

using a Shapiro-Wilk normality test. Values found to be normally distributed 

were defined by normality test p > .05. Summary statistics for normally 

distributed demographic items were analyzed using descriptive data statistics 

and reported as means and standard deviations. These included height, weight, 

Wilson, et al. (2012) body volume formula, Smith-Ryan, et al. (2017) body 

volume formula, and BodPod measured body volume values. Data analysis for 

Wilson, et al. (2012) body volume formula, Smith-Ryan, et al. (2017) body 

volume formula, and BodPod measured body volume values was conducted 

using a single factor ANOVA for variance analysis and paired two sample t-Test 

to identify paired differences. 

Values found to not be normally distributed were defined by normality 

test p ≤ .05. Summary statistics for not normally distributed demographic items 

were analyzed using descriptive data statistics and reported as medians and 
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range. These included age, BMI, total body water, Withers, et al. (1998) formula 

utilizing BodPod measured values, Withers, et al. (1998) formula utilizing 

Wilson, et al. (2012) predicted values, Withers, et al. (1998) formula utilizing 

Smith-Ryan, et al. (2017) predicted values, DEXA measured percent body fat, 

Wang, et al. (2005) formula utilizing BodPod measured values, Wang, et al. 

(2005) formula utilizing Wilson, et al. (2012) predicted values, Wang, et al. 

(2005) formula utilizing Smith-Ryan, et al. (2017) predicted values, and DEXA 

measured fat (kg). Data analysis for Withers, et al. (1998) formula utilizing 

BodPod measured values, Withers, et al. (1998) formula utilizing Wilson, et al. 

(2012) predicted values, Withers, et al. (1998) formula utilizing Smith-Ryan, et 

al. (2017) predicted values, DEXA measured percent body fat, Wang, et al. 

(2005) formula utilizing BodPod measured values, Wang, et al. (2005) formula 

utilizing Wilson, et al. (2012) predicted values, Wang, et al. (2005) formula 

utilizing Smith-Ryan, et al. (2017) predicted values, and DEXA measured fat 

(kg) was conducted using Friedman test for variance analysis and Wilcoxon 

signed-rank test to identify paired differences. 
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CHAPTER IV 

RESULTS 
 

Normality 

A normality test was conducted on all applicable variables and formula 

results pertaining to this study (Table 1). Results indicated that all variables and 

formulas were normal, as defined by a significance greater than .05, with the 

exception of age, BMI, total body water, %BF of Smith-Ryan/Withers, DEXA 

based %BF, and all FM (kg) measurements. 

 

Table 1 - Normality 

 

Sig. Sig.

Age .000 .000

BMI .200
* .047

Weight .200
* .258

Height .101 .095

Total Body Water .000 .001

DEXA BV (L)  = (Wilson, et al. 2012) .200
* .306

DEXA BV (L) = (Smith-Ryan, et al. 2017) .200
* .318

BodPod Measured .200
* .224

%BF = (BodPod/Withers) .200
* .188

%BF = (Wilson/Withers) .200
* .079

%BF = (Smith-Ryan/Withers) .008 .004

Dexa %BF .200
* .031

FM(kg) = (BodPod/Wang) .003 .001

FM(kg) = (Wilson/Wang) .001 .000

FM(kg) = (Smith-Ryan/Wang) .000 .000

Dexa Fat (kg) .000 .000

Shaded regions fail to show normaility

Shapiro-Wilk

Kolmogorov-

Smirnov
a

Tests of Normality

*. This is a lower bound of the true significance.
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Subject Data 

Subject data included 90 healthy adults (Table 2), 50 females and 40 

males, aged 18 to 66 years (median 23 years), BMI 18 to 34 (median 25), 

weight 45 to 115 kg (mean 73.64 ± SD 14.35 kg), height 150 to 191 cm (171.07 

± 9.98 cm), total body water 25 L to 63 L (median 37.58 L), who volunteered 

from a sample of convenience. 

 

Table 2 – Subject Descriptive Data 

 

Age (yrs) BMI Weight (kg) Height (cm) Total Body Water

Mean 28.59 25 73.64 171.07 39.99

Median 23 25 73.08 169.23 37.58

Standard Deviation 12.53 3 14.35 9.98 9.68

Range 48 16 69.33 40.64 37.70

Minimum 18 18 45.31 149.86 25.09

Maximum 66 34 114.63 190.50 62.79

Count 90 90 90 90 90

Age (yrs) BMI Weight (kg) Height (cm) Total Body Water

Mean 28.10 25 66.34 163.94 33.18

Median 22.5 24 63.99 163.83 33.47

Standard Deviation 12.88 4 11.82 6.04 4.31

Range 48 16 51.84 27.94 18.78

Minimum 18 18 45.31 149.86 25.09

Maximum 66 34 97.14 177.80 43.87

Count 50 50 50 50 50

Age (yrs) BMI Weight (kg) Height (cm) Total Body Water

Mean 29.20 26 82.77 179.97 48.51

Median 23 26 80.88 180.34 48.49

Standard Deviation 12.21 3 11.86 5.92 7.53

Range 47 13 53.77 26.04 30.38

Minimum 19 19 60.86 164.47 32.41

Maximum 66 32 114.63 190.50 62.79

Count 40 40 40 40 40

Male Only Descriptive Data

Total Subject Descriptive Data

Female Only Descriptive Data
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Body Volume Results 

All subjects were measured in the BodPod on measured thoracic 

settings. Of the 90 subjects, 60 completed measured thoracic volumes and 30 

were unable to complete within five attempts. The 30 that were unable to 

successfully complete measured thoracic volume utilized the predicted Siri 

model (as defined by manufacturer recommendation for the population). 

BodPod data was collected and used as a standard for comparison to the 

DEXA based body volume formulas; DEXA BV (L) = Fat/0.87 + Lean/1.072 - 

BMC/2.283 + 1.504 (Wilson et al. 2012) and DEXA BV (L) = Fat/0.84 + 

Lean/1.03 - BMC/11.63 - 3.12 (Smith-Ryan, et al., 2017). BodPod measured 

body volume (Table 3) yielded a mean of 70.36 ± 13.85 L, Wilson, et al. (2012) 

yielded 70.88 ± 13.54 L, and Smith-Ryan, et al. (2017) yielded 70.02 ± 14.23 L. 

 

Table 3 – Body Volume Descriptive Data 

 

 

An ANOVA (Table 4) was conducted comparing the three body volume 

groups; BodPod measured, the results of the formula from Wilson, et al. (2012), 

and the results of the formula from Smith-Ryan, et al. (2017), Results of the 

ANOVA yielded a P-value of .915, indicating no significant variance among the 

three body volume groups. 

BodPod Measured Wilson, et al. 2012 Smith-Ryan, et al. 2017

Mean 70.36 70.88 70.02

Standard Deviation 13.85 13.54 14.23

Count 90 90 90

Body Volume Descriptive Data
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Table 4 – ANOVA: Body Volume 

 

 

 A paired t-Test (Table 5) was then conducted to compare both the 

Wilson, et al. (2012) and Smith-Ryan, et al. (2017) formulas to the measured 

BodPod values. The paired difference between BodPod measured and Wilson, 

et al. (2012) showed Wilson, et al. (2012) higher than BodPod by 0.53 ± 0.89 L. 

The paired difference between BodPod measured and the Smith-Ryan, et al. 

(2017) formula showed BodPod measured body volumes 0.34 ± 0.85 L higher 

than the Smith-Ryan, et al. (2017). The paired difference between Wilson, et al. 

(2012) and the Smith-Ryan, et al. (2017) formula showed Wilson, et al. (2012) 

body volumes 0.87 ± 0.71 L higher than the Smith-Ryan, et al. (2017). The 

significance levels between all pairs were approximately p ≤0.001, indicating 

there was a significant difference between each pairing.  

 

 

 

 

SUMMARY

Groups Count Sum Average Variance

BodPod Measured 90 6332.14 70.36 191.91

DEXA BV (L) (Wilson, et al. 2013) 90 6379.41 70.88 183.29

DEXA BV (L) (Smith-Ryan, et al. 2017) 90 6301.52 70.02 202.45

Source of Variation SS df MS F P-value F crit

Between Groups 34.22 2 17.11 0.09 0.915 3.030

Within Groups 51411.10 267 192.55

Total 51445.31 269

Anova: Single Factor - Body Volume

ANOVA
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Table 5 – Volume t-Test Paired Differences 

 

 

Withers Percent Body Fat Formula 

 The Withers, et al. (1998) formula of %BF = (251.3 / BD) - 73.91 * (TBW 

/ body mass) + 94.7 * (BMC / body mass) – 179.0 was used to evaluate percent 

body fat and compared to DEXA derived percent body fat for comparison 

standard. Body volume was utilized (as part of the body density) from the 

measured BodPod volumes, the Wilson, et al. (2012) formula, and Smith-Ryan, 

et al. (2017) formula. The resulting median (Table 6) of the DEXA derived 

percent fat was 26.37% with a range of 33.87%. The resulting median of the 

BodPod and Withers, et al. (1998) formula was 26.37% with a range of 35.87%. 

The Wilson, et al. (2012) formula and Withers, et al. (1998) formula median was 

26.19% with a range of 39.79%. The Smith-Ryan, et al. (2017) formula and 

Withers, et al. (1998) formula median was 22.44% with a range of 41.02%.  

 

Table 6 – Percent Body Fat Descriptive Statistics

 

Lower Upper

BodPod Measured - (Wilson, et al. 2012) -0.53 0.89 -0.71 -0.34 .000

BodPod Measured - (Smith-Ryan, et al. 2017) 0.34 0.85 0.16 0.52 .000

(Wilson, et al. 2012) - (Smith-Ryan, et al. 2017) 0.87 0.71 0.72 1.02 .000

Body Volume Paired Samples Test

Paired Differences

Sig. (2-

tailed)Mean

Std. 

Deviation

95% Confidence 

Interval of the 

Dexa %BF %BF (BodPod/Withers) %BF (Wilson/Withers) %BF (Smith-Ryan/Withers)

Median 26.37 25.09 26.19 22.44

Range 33.87 35.87 39.79 41.02

Minimum 11.95 8.34 8.78 3.01

Maximum 45.82 44.20 48.57 44.03

Count 90 90 90 90

%BF Descriptive Data
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A Friedman test (Table 7) was conducted to examine variance between 

the four groups; BodPod/Withers, et al. (1998), Wilson, et al. (2012)/Withers, et 

al. (1998), Smith-Ryan, et al. (2017) /Withers, et al. (1998) formulas and DEXA 

%BF. The results yielded an asymptotic significance of ≤ .001, indicating there 

was a significant variance among the four %BF values. 

 

Table 7 – %BF Friedman Test 

  

 

 A Wilcoxon signed-rank test (Table 8) was then conducted to evaluate 

the BodPod/Withers, et al. (1998), Wilson, et al. (2012)/Withers, et al. (1998), 

Smith-Ryan, et al. (2017)/Withers, et al. (1998) and DEXA %BF in paired 

comparisons. The paired difference between DEXA %BF and BodPod/Withers 

was BodPod/Withers showed a significant difference lower than DEXA %BF  

(z = -0.498, p ≤ .001). The paired difference between DEXA %BF and 

Wilson/Withers showed no significant difference (z = -1.080, p = 0.280). When 

comparing the paired difference between DEXA %BF and Smith-Ryan/Withers, 

Smith-Ryan/Withers showed a significant difference lower than DEXA %BF (z = 

-7.281, p ≤ .001).  

%BF Friedman Ranks

Mean 

Rank

Dexa %BF 3.08 N 90

%BF (BodPod/Withers) 2.14 Chi-Square 101.187

%BF (Wilson/Withers) 3.22 df 3

%BF (Smith-Ryan/Withers) 1.56 Asymp. Sig. .000

a. Friedman Test

Test Statistics
a 

%BF Friedman Ranks
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Among the formulas, the paired difference between Wilson/Withers and 

BodPod/Withers was calculated. BodPod/Withers showed a significant 

difference lower than Wilson/Withers (z = -6.178, p ≤ .001). The paired 

difference between BodPod/Withers and Smith-Ryan/Withers showed Smith-

Ryan/Withers a significantly lower than BodPod/Withers (z = -5.052, p ≤ .001). 

The paired difference between Wilson/Withers and Smith-Ryan/Withers showed 

Smith-Ryan/Withers had a significantly lower than Wilson/Withers  

(z = -7.567, p ≤ .001). 

 

Table 8 – Percent Body Fat Wilcoxon Signed-Rank Test 

 

 

Wang Fat Mass Formula 

 The Wang, et al. (2005) formula of FM (kg) = 2.748 (BV) – 0.699 (TBW) 

+ 1.129 (BMC) – 2.051 (Body Mass) was used to evaluate body fat and 

%BF Wilcoxon Signed-Rank Test

             

Z

Asymp. Sig. 

(2-tailed)

%BF (BodPod/Withers) - Dexa %BF -5.498
b .000

%BF (Wilson/Withers) - Dexa %BF -1.080
c .280

%BF (Smith-Ryan/Withers) - Dexa %BF -7.281
b .000

%BF (Wilson/Withers) -                        

%BF (BodPod/Withers)
-6.178

c .000

%BF (Smith-Ryan/Withers) -                

%BF (BodPod/Withers)
-5.052

b .000

%BF (Smith-Ryan/Withers) -                

%BF (Wilson/Withers)
-7.567

b .000

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

c. Based on negative ranks.
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compared to DEXA derived body fat for a comparison standard. Body volume 

was used from the measured BodPod volumes, the Wilson, et al. (2012) 

formula, and Smith-Ryan, et al. (2017) formula. The resulting median (Table 9) 

of the DEXA derived fat mass was 17.74 kg with a range of 32.43 kg. The 

resulting median of the BodPod and Wang, et al. (2005) formula was 15.69 kg 

with a range of 33.49 kg. The Wilson, et al. (2012) formula and Wang, et al. 

(2005) formula median was 17.40 kg with a range of 34.20 kg. The Smith-Ryan, 

et al. (2017) formula and Wang, et al. (2005) formula median was 14.39 kg with 

a range of 39.17 kg.  

 

Table 9 – Fat Mass (kg) Descriptive Statistics 

 

 

A Friedman test (Table 10) was conducted to examine variance between 

the four groups; DEXA fat (kg), BodPod/Wang, et al. (2005), Wilson, et al. 

(2012)/Wang, et al. (2005), and Smith-Ryan, et al. (2017)/Wang, et al. (2005). 

The results yielded an asymptotic significance of p ≤ .001, indicating there was 

a significant variance among the four FM (kg) values. 

 

 

Dexa Fat (kg) FM(kg) (Bod Pod/Wang) FM(kg) (Wilson/Wang) FM(kg) (Smith-Ryan/Wang)

Median 17.74 15.69 17.40 14.39

Range 32.43 33.49 34.20 39.17

Minimum 9.62 4.69 6.29 1.14

Maximum 42.05 38.17 40.49 40.31

Count 90.00 90.00 90.00 90.00

FM (kg) Descriptive Data
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Table 10 – Fat Mass (kg) Friedman Test 

  

 

 A Wilcoxon signed-rank test (Table 11) was then conducted to analyze 

the BodPod/Wang, et al. (2005), Wilson, et al. (2012)/Wang, et al. (2005), 

Smith-Ryan, et al. (2017)/Wang, et al. (2005) and DEXA fat (kg) in paired 

comparisons. The paired difference between DEXA fat (kg) and BodPod/Wang 

was BodPod/Wang showed a significant difference lower than DEXA fat (kg)  

(z = -7.132, p ≤ .001). The paired difference between DEXA fat (kg) and 

Wilson/Wang showed Wilson/Wang a significantly lower than DEXA fat (kg) (z = 

-2.372, p = .018). The paired difference between DEXA fat (kg) and Smith-

Ryan/Wang was Smith-Ryan/Wang showed a significant difference lower than 

DEXA fat (kg) (z = -7.941, p ≤ .001).  

Among the formulas, the paired difference between Wilson/Wang and 

BodPod/Wang was BodPod/Wang showed a significant difference lower than 

Wilson/Wang (z = -5.816, p ≤ .001). The paired difference between 

BodPod/Wang and Smith-Ryan/Wang showed Smith-Ryan/Wang a significantly 

lower than BodPod/Wang (z = -4.690, p ≤ .001). The paired difference between 

FM (kg) Friedman Ranks

Mean 

Rank

Dexa Fat (kg) 3.43 N 90

FM(kg) (Bod Pod/Wang) 2.00 Chi-Square 135.693

FM(kg) (Wilson/Wang) 3.09 df 3

FM(kg) (Smith-Ryan/Wang) 1.48 Asymp. Sig. .000

Test Statistics
a

a. Friedman Test
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Wilson/Wang and Smith-Ryan/Wang showed Smith-Ryan/Wang a significantly 

lower than Wilson/Wang (z = -7.381, p ≤ .001). 

 

Table 11 – Fat Mass (kg) Wilcoxon Signed-Rank Test  

 
  

FM (kg) Wilcoxon Signed-Rank Test

Z Asymp. Sig. (2-

tailed)

FM(kg) (Bod Pod/Wang) - Dexa Fat (kg) -7.132
b .000

FM(kg) (Wilson/Wang) - Dexa Fat (kg) -2.372
b .018

FM(kg) (Smith-Ryan/Wang) - Dexa Fat (kg) -7.941
b .000

FM(kg) (Wilson/Wang) - FM(kg) (Bod Pod/Wang) -5.816
c .000

FM(kg) (Smith-Ryan/Wang) - FM(kg) (Bod Pod/Wang) -4.690
b .000

FM(kg) (Smith-Ryan/Wang) - FM(kg) (Wilson/Wang) -7.381
b .000

a Wilcoxon Signed Ranks Test

b Based on positive ranks.

c Based on negative ranks.
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CHAPTER V 

DISCUSSION 

 

Body Volume Values 

The first goal of this research was to evaluate the merits of using a 

DEXA machine to establish body volume. The formulas evaluated to establish 

BV using a DEXA were the Wilson, et al. (2012) and Smith-Ryan, et al. (2017) 

formulas. These formulas were then compared to the measured values from the 

BodPod for significant differences. If the DEXA-based formulas for measuring 

BV were found statistically equivalent to the measurements of the BodPod, then 

logically the DEXA becomes a viable method to replace other BV devices, such 

as BodPod and underwater weighing. Creating an alternative methodology of 

measuring BV with only a DEXA would allow the use of predicted BV values in 

a four-compartment model and save time by eliminating the need for a second 

device for the measure of BV. 

 

Hypothesis 1 

The first hypothesis of this study was the predicted body volume equations 

would be statistically equivalent to the measurements of BodPod. Evidence was 

found to support this hypothesis. No significant differences were found between 

the three groups containing both predicted body volume equations and the 

BodPod measured volume. An ANOVA conducted between the three body 

volume groups indicating no statistical difference between the formulas and the 
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measured BodPod results (p = 0.915). This was consistent with the first 

hypothesis. These results were expected, as the formulas were well 

researched, accounted for predicted densities of each metric, and were derived 

from linear regression. The finding of no statistical difference granted merit to 

the possibility of replacing BodPod measured body volume with DEXA based 

formulas. 

 

Hypothesis 2 

The second hypothesis was the Ryan-Smith, et al. (2017) formula results 

would have a smaller variation when compared to measured BodPod values 

then the Wilson et al. (2012) formula results. Evidence was found to support 

this hypothesis. Paired sample t-Tests were conducted comparing the Wilson, 

et al. (2012) formula and the Smith-Ryan, et al. (2017) formula to the measured 

BodPod body volume.  Wilson et al. (2012) formula body volume calculated 

0.53 ± 0.89 L greater than the measured BodPod volume, while the Smith-

Ryan, et al. (2017) formula calculated 0.34 ± 0.85 L less than measured 

BodPod values. As Smith-Ryan, et al. (2017) mean difference to the measured 

BodPod results were smaller compared to the Wilson et al. (2012) formulas 

results, the Smith-Ryan, et al. (2017) formula is a statistically better choice to 

replace measured BodPod values for use in four-compartment body 

composition models. These results are consistent with the second hypothesis. 

The findings of this hypothesis followed a logical progression as Smith-

Ryan, et al. (2017) researched the Wilson, et al. (2012) formula and expanded 
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upon it. Smith-Ryan, et al. (2017) did have a smaller mean difference, and the 

standard deviation put it within the same range of BodPod, as did the Wilson, et 

al. (2012) formula, but there was still a difference. In this study, it was not found 

that these formulas were a perfect match to BodPod measured body volumes. 

The difference in body volumes could be a result of sample of the constant 

needing further evaluation.  

Statistically, it appeared that these formulas, particularly Smith-Ryan, et al. 

(2018), were viable replacements for BodPod measured body volume. It then 

became imperative to evaluate the use of these formulas in a practical setting. 

While no statistical variance was found, and the difference in measured and 

predicted body volumes was as low as 0.34 ± 0.85 L, there was still a 

difference. It remained to be seen if this small mean difference yields a clinical 

significance when utilized to evaluate body composition in a four-compartment 

body composition model. 

 

Body Composition Formulas 

The second goal of this research was to evaluate the predicted body volume 

values derived from the formulas and the measured BodPod values for use in 

two separate four-compartment body composition model formulas, Withers, et 

al. (1998) and Wang, et al. (2005). Validity of using predicted body volume 

measurements, to arrive at a statistically equivalent value compared to the multi 

testing modality that utilizes the BodPod, needed to be assessed. The results 



55 

from these formulas were compared to the body composition results given by 

the DEXA factory.  

Both four-compartment models utilize the same metrics to evaluate a four-

compartment model; bone mineral content, total body mass, body volume, and 

total body water. Utilizing similar formulas with the same metrics allowed each 

formula to be evaluated with only a BIS for TBW, DEXA for BMC, and a DEXA 

utilizing predicted BV formulas measured BodPod values. These results 

allowed evaluation of the statically equivalent predicted BV values for clinical 

significance and practical use. 

 

Hypothesis 3 

The third hypothesis of the research was that predicted body volume four-

compartment models would be statistically equivalent to a multi-system four- 

compartment model. Evidence was found to reject this hypothesis. Examining 

the difference between the pairing of the Smith-Ryan/Withers formula and the 

BodPod/Withers formula yielded a statistically significant difference of Smith-

Ryan/Withers formula (median = 22.44, range = 41.02) lower than the 

BodPod/Withers formula (median = 25.09, range 35.87) (p < .001). This 

variation is a direct result of the 0.34 ± 0.85 L BV difference between the Smith-

Ryan, et al. (2017) formula and the measured BodPod values. All other values 

were consistent in the Withers, et al. (1998) formula.  

The reason for this variation in the formula could be an intolerance to the 

variation of the body volume or the need of an updated four-compartment 
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model formula. Because the Withers, et al. (1998) formula is %BF = (251.3 / 

BD) - 73.91 * (TBW / body mass) + 94.7 * (BMC / body mass) – 179.0, and BD 

is defined as body mass / BV, which can be redefined as (251.3 * BV) / body 

mass, as BV increases, the total value of (251.3 / BD) increases, which causes 

a greater difference in the resulting %BF. Because the Smith-Ryan, et al. 

(2017) mean is higher than the measured BodPod mean, results varied 

significantly. These results lead to the conclusion that Smith-Ryan, et al. (2017) 

is unsuitable for use in the Withers, et al. (1998) formula.  

These results illustrated the clinical significance of the predicted body 

volume difference compared to measured BodPod values. While there was no 

statistical variance in the body volume measurements, there was a statistically 

significant difference once the body volume values were placed into practical 

use as a metric for calculating %BF. When comparing the results from Smith-

Ryan, et al. (2018) minimum values to those of the measured BodPod minimum 

values, the Smith-Ryan, et al. (2018) formula underestimated the %BF by 8% 

utilizing the Withers, et al. (1998) formula values, and 11% with the Wang, et al. 

(2005) formula values. At the minimum values, this could result in a healthy 

female of athletic or lean %BF being misdiagnosed and mistreated as 

dangerously underweight. Conversely, the same error in the upper %BF range 

could also result in a misdiagnosis of a slightly overweight individual, needing 

only mild nutritional and fitness changes, being diagnosed as morbidly obese 

and being prescribed unnecessary medications for weight loss. 
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Hypothesis 4 

The fourth hypothesis stated there would be a statistical difference between 

DEXA measured body fat compared to the Withers, et al. (1998) formula and 

the Wang, et al. (2005) formula, using both predicted and measured body 

volumes. This hypothesis was based on the premise that if a four-compartment 

model was truly more accurate, then there would be a statistical difference 

compared to the DEXA. Further research revealed this assumption to be 

accurate. Research into the validity of DEXA based %BF versus a four-

compartment model found a significant difference in that DEXA consistently 

underestimated %BF by a mean of 1.7% compared to a four-compartment 

model (p < .001) (Ploeg, Withers, & Laforgia, 2003). Evidence was found to 

accept this hypothesis for Smith-Ryan, et al. (2017) and measured BodPod, but 

not Wilson, et al. (2012).  

Friedman Ranks test yielded a significant variance among the four groups  

(p ≤ .001) which was consistent with the fourth hypothesis. The pairings of 

BodPod/Withers and Smith-Ryan/Withers were both found to be statistically 

significant when compared to DEXA %BF (p < .001). Both pairings were found 

to be statistically lower than DEXA %BF, indicating Smith-Wilson, et al. (2017) 

may be an acceptable substitution in a four-compartment model for the use of 

BV. However, no statisticaly significant difference was found between the 

Wilson/Withers pairing and the DEXA %BF (p = .280), which was not consistent 

with the fourth hypothesis. This result was anticipated as a likely possibility due 
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to the Wilson, et al. (2012) BV formula not being thoroughly tested. This formula 

may not be ready for use in a four-compartment model to test percent body fat. 

 

Wilson, et al. (2012) Concerns 

The Wilson, et al. (2012) formula was derived principally on scientific 

theory, based on previous density studies of body composition metrics but, 

while very sound in theory, it had not been thoroughly tested. This formula was 

preliminary work of an idea not previously created. However, it remained 

virtually untested, as it was created using known densities of body metrics and 

a thorough understanding of DEXA based measurements, but no traditional 

testing. The conformational study after the creation of the theoretical formula by 

Wilson, et al. (2012) consisted of only 11 subjects and the only data analysis 

conducted was a simple correlation. This formula had great promise but needed 

thorough study to verify the constants had real-world applications and 

consistency to applicable samples. This study was a significant beginning but 

needed more data to analyze the formula (that likely contributed to the variance 

shown in this study) that resulted in a body volume of 0.53 ± 0.89 L higher than 

the measured BodPod values. 

 

Smith-Ryan, et al. (2012) Concerns 

The Smith-Ryan, et al. (2017) formula originally had 127 subjects used to 

create the formula, but only 27 to cross-validate and 40 to verify reliability. Also, 

the mean age: 35.8 ± 9.4 years, which was 7.2 ± 3.1 higher than this study. This 
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age variance could account for the difference in body volume. As younger 

adults traditionally have approximately 7.5% less body fat at 28 than at 35 (St-

Onge & Gallagher, 2010), the body volume would be lower at the same weight, 

as the density of lean muscle is 1.06 × 103kg/m3 and the density of the fat 

tissue is 9.30 × 102kg/m3 (Martin, Daniel, Drinkwater, & Clays, 1994).  Also, the 

number of males and females was not reported separately. As men have higher 

lean mass and lower percent body fat on average than females, the distribution 

could be skewed due to one gender. In addition, the BMI distribution of the 

Smith-Ryan (2017) study was 19.9 to 45.6, allowing for morbidly obese 

subjects.  It has been documented that in obese subjects, the BodPod error 

underestimates by 8.51% (Lowry & Tomiyama, 2015). Using this data to create 

the body volume formula would create a formula that was approximately equal 

near the normal BMI measured values, but the obese measurements would 

place additional erroneous low values in the data set and create a formula that 

would measure BV too high, as was the case in this research. 

 

Hypothesis Results 

After analyses among the hypotheses of this study, the results found: 

1. The predicted body volume equations will be statistically equivalent to 

the measurements of BodPod. Evidence was found to accept. 

2. The Ryan-Smith, et al. (2017) formula will have a smaller variation when 

compared to BodPod values then the Wilson, et al. (2012) formula. 

Evidence was found to accept. 
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3. Predicted body volume four-compartment modes will be statistically 

equivalent to the multi-system model. Evidence was found to reject this 

hypothesis. 

4. There would be a statistical difference between DEXA measured body 

fat compared to the Withers, et al. (1998) formula and the Wang, et al. 

(2005) formulas, using both predicted and measured body volumes. 

Evidence was found to accept for Smith-Ryan, et al. (2017) and BodPod, 

but not for Wilson, et al. (2012). 

 

Formula Changes 

 The mean difference between predicted body volume equations and 

measured BodPod body volume resulted in the predicted BV equations being 

unsuitable for use in a four-compartment model, creating a need to re-evaluate 

the formulas. The Smith-Ryan, et al. (2017) formula was selected to be 

adjusted due to it being the most current research and based from the previous 

research of Wilson, et al. (2012). Paired analysis between each subject’s 

measured BodPod values and Smith-Ryan, et al. (2017) values were conducted 

and averaged. Median, mean, and mode were all evaluated. The constant was 

then adjusted and analyzed, comparing BodPod measured values to new 

predicted values, as well as new pairings utilizing the Withers, et al. (1998) and 

Wang, et al. (2005) formulas. The formula was modified from DEXA BV (L) = 

Fat / 0.84 + Lean / 1.03 – BMC / 11.63 – 3.12 and changed to DEXA BV (L) = 

Fat / 0.84+ Lean / 1.03 – BMC / 11.63 – 2.78. Statistical procedures were then 
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replicated for the new formula. Normality was first conducted yielding similar 

results as the previous formulas (Table 12). 

 

Table 12 - Doernte Normality 

 

 

Descriptive statistics (Table 13) comparing the new formula to measured 

BodPod values yielded BodPod with a mean of 70.357 ± 13.853 L and the new 

formula with a mean of 70.357 ± 14.228 L. 

 

Table 13 – Doernte Paired Sample Statistics 

 

 

A correlation (Table 14) was then conducted between measured BodPod 

values and the new modified formula yielding a correlation of 0.999 indicating a  

very high correlation. 

 

Kolmogorov-Smirnov Shapiro-Wilk

Sig. Sig.

BodPod Measured .200* .224

Doernte BV .200* .318

%BF BodPod/Withers .200* .188

%BF Doernte/Withers .003 .004

FM(kg) Bod Pod/Wang .003 .001

FM(kg) Doernte/Wang .000 .000

Shaded regions fail to show normaility		

Tests of Normality

*. This is a lower bound of the true significance.

Paired Samples 

Statistics Mean Std. Deviation

Std. Error 

Mean N

BodPod Measured 70.357 13.853 1.460 90

Doernte BV 70.357 14.228 1.500 90
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Table 14 – Doernte Correlation 

 

 

Paired samples t-Test (Table 15) conducted between measured BodPod values 

and modified predicted BV yielded a difference of 0.000 ± 0.854 L (p = 0.998). 

 

Table 15 – BodPod - Doernte Paired Differences 

 

 

A Wilcoxon signed rank test (Table 16) was then conducted between both 

Withers, et al. (1998) and Wang, et al. (2005) formulas, utilizing BodPod 

measured BV and reformulated predicted BV. There were no statistical 

differences in any formula between BodPod groups or reformulated groups. 

 

Table 16 – Doernte Wilcoxon Signed-Rank Test 

 

N Correlation Sig.

BodPod Measured & Doernte BV 90 .999 .000

Lower Upper

BodPod Measured - 

Doernte BV
0.000 0.854 -0.179 0.179 0.998

Sig. (2-tailed)Mean Std. Deviation

95% 
Paired Samples 

Test

Paired Differences

Wilcoxon Signed 

Ranks Test

 %BF Doernte/Withers -

BodPod/Withers

FM(kg) Doernte/Wang - 

Bod Pod/Wang

Z -1.257
b

-.682
b

Asymp. Sig. (2-tailed) .209 .495

b. Based on positive ranks.
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Descriptive data (Table 17) of both four-compartment models, utilizing 

measured BodPod values and reformulated predicted BV, were conducted and 

listed below. 

 

Table 17 – Doernte Formula Descriptive Statistics 

 

 

Statistical analysis of the reformulated predicted body volume formula revealed 

it may be a better fit for use in four-compartment body composition models than 

the Wilson, et al. (2013) and Smith-Ryan, et al. (2017) formulas. Further studies 

would need to be conducted with repeated samples to evaluate the 

reformulated equation. 

 

Future Studies 

This study consisted of 90 participants, but out of that 90, only 18 were over 

the age of 40. Future subject populations should have more age variance. 

Future studies should also explore the creation of different formulas for various 

age groups to account for the changing body composition trends as subjects 

age. This study also had a subject bias of ethnicity being highly skewed toward 

European Americans. This could affect results by skewing bone density. 

25th

50th 

(Median) 75th

%BF BodPod/Withers 90 24.824 8.549 8.337 44.204 18.675 25.092 29.764

%BF Doernte/Withers 90 24.552 9.416 4.644 45.244 17.484 23.811 29.358

FM(kg) Bod Pod/Wang 90 17.531 7.459 4.685 38.173 12.588 15.691 21.213

FM(kg) Doernte/Wang 90 17.527 8.521 2.074 41.249 12.113 15.326 21.262

Maximum

Percentiles

Descriptive Statistics N Mean

Std. 

Deviation Minimum
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Research has shown that race has an effect on bone mineral content (BMC) 

(Peacock, et al., 2009) (Vásquez, Shaw, Gensburg, Okorodudu, & Corsino, 

2013) (Ettinger, et al., 1997). Multiple formulas may also need to be conducted 

for various BMI groups of smaller ranges, instead of one universal formula. 

Previously sited research has shown that as BMI moves to underweight, 

measurements can be misrepresented by as much as 15% too high, while 

measuring 8.51% too low for the obese category (Lowry & Tomiyama, 2015). 

Further research should be conducted to compare the viability of a uniform 

formula versus the need for multiple formulas. 

Future studies should also consider a much larger sample size. This study 

had a sample size of 90 and Smith-Ryan, et al. (2017) had a sample of 127 

subjects. While this was a large enough sample size to be significant and create 

a formula statistically equivalent to measured BodPod values, it may not be 

large enough to be accurate enough as a metric for body composition models. 

A much greater sample size may be needed before a formula is refined enough 

to be utilized in a four-compartment model. 

Further research should also examine body volume testing utilizing 

deuterium oxide and hydrostatic weighing. While research has found the 

BodPod to be statistically equivalent to underwater weighing, and in some 

cases argued to be the new standard, other research has found there are 

variances (Gibby, et al., 2017). This study has shown evidence that statistically 

equivalent body volume can still cause formula failure when utilized as 

compartment model metrics. Future studies should be conducted utilizing 
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underwater weighing for body volume measurements and re-evaluated against 

formulated body volumes. 

 

Conclusion 

  The use of DEXA based body volume formulas is a viable replacement 

for other BV testing methodologies for use in four-compartment testing models. 

However, both the Wilson, et al. (2012) and Smith-Ryan, et al. (2017) formulas 

failed to be a viable replacement for measured BodPod values. A new formula, 

or multiple formulas, need to be developed before the predicted values are 

suitable for use in body composition formulas. 
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BioImp Body Composition Analysis Software (ImpediMed Limited, Queensland, 
Australia) 
 
 
Cosmed BodPod (COSMED USA, INC, Concord, CA) 
 
 
GE Lunar Prodigy Advance Bone Densitometry scanner (General Electric 
Company, Cincinnati, OH) 
 
 
IBM SPSS (IBM Corp. Released 2015. IBM SPSS Statistics for Windows, 
Version 23.0. Armonk, NY: IBM Corp.) 
 
 
Microsoft Excel 2016 (Microsoft, Redmond, Washington) 
 
 
SFB7 (ImpediMed Limited, Queensland, Australia) 
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