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ABSTRACT OF DISSERTATION 
 

 
 

 
ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR REGULATION  

IN EXPERIMENTAL NEURODEGENERATIVE DISEASE 
 

The α7 nicotinic acetylcholine receptor (nAChR) is involved in learning and 
memory, synaptic plasticity, neuroprotection, inflammation, and presynaptic regulation of 
neurotransmitter release.  Alzheimer’s disease (AD), a neurodegenerative disease 
characterized by diminished cognitive abilities, memory loss, and neuropsychiatric 
disturbances, is associated with a loss of nAChRs.  Similarly, traumatic brain injury 
(TBI) may result in long term neurobehavioral changes exemplified by cognitive 
dysfunction.  Deficits in α7 nAChR expression have previously been shown in 
experimental TBI and may be related to cognitive impairment experienced in patients 
following TBI.  

The purpose of this dissertation was to investigate changes in α7 nAChR 
expression in models of neurodegeneration and determine if allosteric modulation of the 
nAChR facilitates functional recovery following experimental TBI through changes in 
nAChRs.  Experimental models employed include a transgenic mouse model of AD that 
overexpresses the amyloid precursor protein (APPswe mice) and the controlled cortical 
impact injury model of TBI in rats.  Quantitative receptor autoradiography using α-[125I]-
bungarotoxin and [125I]-epibatidine and in situ hybridization were used to investigate 
changes in nAChR density and mRNA expression, respectively.   

In the first study, the effects of aging and β-amyloid on α7 nAChR expression 
were evaluated in APPswe mice.  Hippocampal α7 nAChR density was significantly 
upregulated in APPswe mice compared to wild-type mice.  It is postulated that elevated 
Aβ levels bind to the α7 nAChR resulting in upregulation.  In a second study, 
galantamine, a medication used in the treatment of AD, was administered subchronically 
following experimental TBI to determine if treatment could facilitate cognitive recovery 
and affect nAChR expression.  Interestingly, the results indicate TBI interferes with 
agonist mediated upregulation of nAChRs, and galantamine did not improve function in a 
behavioral task of learning a memory.  In a third study, the regulation of TBI related 
deficits in α7 nAChRs was examined 48 hours following injury.  α7 nAChR deficits 
occurred with a reduction in α7 mRNA in several hippocampal regions and non-α7 
nAChR deficits occurred with a reduction in α4 mRNA in the metathalamus.  The results 

 



of these studies suggest AD and TBI may involve complex but parallel processes 
contributing to the regulation of α7 nAChRs. 
 
 
 
KEYWORDS:  Nicotinic Acetylcholine Receptor, Alzheimer’s Disease, Traumatic Brain 
Injury, Beta-amyloid, Galantamine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     

 
 
 
 
 
 

                                            

      Christina Margaret Charriez             
               

       
                                                                        August 3, 2010 
                                      

 



 

 

 
 
 

 
 
 
 

ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR REGULATION  
IN EXPERIMENTAL NEURODEGENERATIVE DISEASE 

 

 
By 

 
Christina Margaret Charriez 

 
 
 
 
 
 
 
 
 

 
James R. Pauly, Ph.D. 

                                     Director of Dissertation 
 
James R. Pauly, Ph.D. 

                                               Director of Graduate Studies 
 

August 3, 2010 

 

 

 

 

 

 

 



 

 
 
 
 
 

RULES FOR THE USE OF DISSERTATIONS 
 

 
Unpublished dissertations submitted for the Doctor's degree and deposited in the 
University of Kentucky Library are as a rule open for inspection, but are to be used only 
with due regard to the rights of the authors.  Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments. 
 

 
Extensive copying or publication of the dissertation in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 

 
 

 
 
 
 

 

DISSERTATION 

 

 

 

 

Christina Margaret Charriez 

 

 

 

 

The Graduate School 

University of Kentucky 

2010 

 
 
 
 
 
 
 
 
 

 



 

 
 
 
 
 
 
 
 
 

ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR REGULATION 
IN EXPERIMENTAL NEURODEGENERATIVE DISEASE 

 
 
 

 
 

______________________________________ 
 

DISSERTATION 
_______________________________________ 

 
A dissertation submitted in partial fulfillment of the  

requirements for the degree of Doctor of Philosophy in the  
College of Pharmacy  

at the University of Kentucky 
 
 

By 
Christina Margaret Charriez 

 
Lexington, Kentucky 

 
Director:  James R. Pauly, Ph.D., Associate Professor of Pharmaceutical Sciences 

 
Lexington, Kentucky 

 
2010 

 
Copyright © Christina Margaret Charriez 2010 

 
 
 
 
 

 



ACKNOWLEDGMENTS 

This work would not be possible without my dissertation chair, Dr. Jim Pauly, 

who provided me with opportunity, guidance, and support.  I am grateful for his 

enthusiasm for science and his belief in me as a researcher.  Dr. Pauly and all of the other 

members of my committee, Drs. Robert Blouin, Patrick McNamara, Jimmi Hatton, Peter 

Wedlund, and Richard Kryscio, imparted knowledge and critical thinking skills to me.  In 

addition to the many discussions regarding my research, the coursework and journal 

clubs led by these individuals was invaluable.   I would also like to thank Dr. Guoying 

Bing for serving as my outside examiner.  Along with Drs. Pauly, Blouin, and 

McNamara, Dr. Robert Yokel was also instrumental in my development as a lecturer and 

teacher in the College of Pharmacy. 

Throughout my time in Dr. Pauly’s lab, the companionship of Deann Hopkins, 

Masha Guseva, Matt Kelso, and Tom Woodcock led to many great times learning 

together.  I would also like to thank Pete Van Ess for his mentoring early on in my 

graduate education.  My family deserves recognition as well.  My mom and dad, Judy 

and Charles Charriez, my sister, Stephanie Charriez, and my grandmother, Deana Geil, 

are always there for me.  The pursuit of this graduate work was possible because my 

mother instilled in me determination and my father gave me a love of science.   Most 

importantly, I want to thank my husband, Jeffrey Edwards, for his encouragement means 

so much.  He inspires me each day, and I strive to be a better person because of him. 

 

 

iii 
 



TABLE OF CONTENTS  
 

Acknowledgments.............................................................................................................. iii 

List of Tables ..................................................................................................................... vi 

List of Figures .................................................................................................................. viii 

Chapter 1:  Introduction to Alzheimer’s Disease and Traumatic Brain Injury; Statement 
of the Research Problem and Plan ...................................................................................... 1 

Neuronal Nicotinic Receptors ......................................................................................... 1 

Alzheimer’s Disease ....................................................................................................... 5 
Background ................................................................................................................. 5 
Cholinergic dysfunction in Alzheimer’s disease ........................................................ 7 
Cholinergic markers in early AD .............................................................................. 11 
Cholinergic impairments in transgenic mouse models of Alzheimer’s disease ....... 12 
The relationship between cholinergic neurotransmission and Aβ ............................ 15 

Traumatic Brain Injury ................................................................................................. 22 
Alzheimer’s disease and traumatic brain injury are linked ....................................... 22 
Traumatic brain injury background .......................................................................... 25 
Cholinergic abnormalities in human and experimental traumatic brain injury ........ 31 
Nicotinic AChR changes in experimental TBI ......................................................... 32 
Galantamine as a possible pharmacotherapy in TBI ................................................. 34 

Statement of the Research Problem and Research Plan ................................................ 39 

Hypotheses and Specific Aims ..................................................................................... 40 

Chapter 2:  Upregulation of Hippocampal α7 nAChRs in a Transgenic Mouse Model of 
Alzheimer’s Disease ......................................................................................................... 46 

Introduction ................................................................................................................... 46 

Materials and Methods .................................................................................................. 49 
Animals and tissue preparation ................................................................................. 49 
Cholinergic receptor autoradiography and image analysis ....................................... 50 
Aβ histochemistry ..................................................................................................... 53 
Statistical analysis ..................................................................................................... 54 

Results ........................................................................................................................... 55 

Discussion ..................................................................................................................... 56 

Chapter 3:  Galantamine Treatment Following Traumatic Brain Injury in Rats:  Effects on 
Cognition and nAChR Expression .................................................................................... 73 

Introduction ................................................................................................................... 73 

Materials and Methods .................................................................................................. 76 

iv 
 



Animal surgeries and study design ........................................................................... 76 
Morris water maze behavioral task ........................................................................... 77 
Tissue preparation and nissl staining ........................................................................ 78 
Cholinergic receptor autoradiography ...................................................................... 78 
Image analysis of radioligand binding and cortical sparing and statistics ................ 80 

Results ........................................................................................................................... 81 

Discussion ..................................................................................................................... 87 

Chapter 4:  Experimental Traumatic Brain Injury Reduces the Expression of 
Hippocampal α7 nAChR mRNA .................................................................................... 112 

Introduction ................................................................................................................. 112 

Materials and Methods ................................................................................................ 115 
Animals and tissue preparation ............................................................................... 115 
Nicotinic receptor autoradiography ........................................................................ 116 
Nicotinic receptor mRNA in situ hybridization. ..................................................... 117 
Image analysis and statistics ................................................................................... 120 

Results ......................................................................................................................... 120 

Discussion ................................................................................................................... 123 

Chapter 5:  Summary and Conclusions ........................................................................... 139 

Research Study Acknowledgments ............................................................................. 149 

Appendix ......................................................................................................................... 150 

References ....................................................................................................................... 151 

Vita .................................................................................................................................. 186 

 
 
 
 
 
 

v 
 



LIST OF TABLES 
 
Table 1.1.  A summary of the nicotinic cholinergic receptor changes in AD measured 
with radioligands or by immunological detection ........................................................... 42   
 
Table 1.2.  A summary of the muscarinic cholinergic receptor changes in AD measured 
with radioligands or by immunological detection ........................................................... 44 
 
Table 1.3.  The study of Alzheimer’s disease and traumatic brain injury as paradigms for 
neurodegenerative disease:  A review of the similarities and models employed in the 
dissertation research ......................................................................................................... 45 
 
Table 2.1.  Modulation of the α7 nAChR, measured by α-[125I]-bungarotoxin (BTX) 
binding, with aging in APPswe and wild-type mice ........................................................ 64 
 
Table 2.2.  The effects of aging in APPswe and wild-type mice on non-α7 nAChR 
expression, measured by [125I]-epibatidine (EPI) binding ............................................... 66 
 
Table 2.3.  The effects of aging in APPswe and wild-type mice on mAChR expression, 
measured by [3H]-quinuclidinyl benzilate (QNB) binding .............................................. 67 
 
Table 2.4.  A summary of the binding results in APPswe and wild-type mice ............... 68 
 
Table 3.1.  α7 nAChR density, as measured by α-[125I]-bungarotoxin (BTX) binding, in 
hippocampal and cortical brain regions following TBI and 15 days of drug treatment .. 94 
 
Table 3.2.  The effects of traumatic brain injury and nicotinic receptor drug treatment on 
non-α7 nAChRs throughout the brain following TBI ..................................................... 95 
 
Table 3.3.  A summary of the binding results shows the number of ipsilateral brain 
regions significantly altered following experimental TBI ............................................... 96 
 
Table 4.1.  Alterations in α7 nAChR density, as measured by α-[125I]-bungarotoxin 
(BTX) binding, throughout the brain following TBI in rats .......................................... 129 
 
Table 4.2.  Changes in α7 nAChR mRNA following TBI in rats measured by in situ 
hybridization .................................................................................................................. 130 
 
Table 4.3.  Reductions in non-α7 nAChR expression, measured by [125I]-epibatidine 
(EPI) binding, following TBI in rats .............................................................................. 131 
 
Table 4.4.  Diminished levels of thalamic α4 nAChR mRNA as measured by in situ 
hybridization following TBI in rats ............................................................................... 132 
 

vi 
 



Table 4.5.  A summary of the results from the nAChR determinations displays the 
number of ipsilateral brain regions significantly altered following 1 or 2 mm CCI...... 133 
 
 
 
 
 
 
 
 
 

vii 
 



LIST OF FIGURES 
 
Figure 2.1.  Enhanced α7 nAChR expression in APPswe mice compared to wild-type 
controls ............................................................................................................................. 69 
 
Figure 2.2.  Representative autoradiographs demonstrating cholinergic receptor binding 
in APPswe and wild-type mice in the aging study .......................................................... 71 
 
Figure 2.3.  β-amyloid histochemistry was employed for the detection of Aβ deposition 
in APPswe mice ............................................................................................................... 72 
 
Figure 3.1.  Body mass following TBI in rats treated with galantamine, nicotine or saline 
.......................................................................................................................................... 97 
 
Figure 3.2.  Acquisition training in the Morris water maze behavioral task in rats treated 
with galantamine, nicotine or saline ................................................................................ 98 
 
Figure 3.3.  Retention in the Morris water maze behavioral task in rats treated with 
galantamine, nicotine or saline ...................................................................................... 100 
 
Figure 3.4.  Cortical tissue sparing analysis was performed on nissl stained sections from 
rats treated with galantamine, nicotine or saline ............................................................ 102 
 
Figure 3.5.  Representative nissl stained sections are shown from the cortical sparing 
analysis in rats following CCI ........................................................................................ 103 
 
Figure 3.6.  Body mass following TBI in rats treated with galantamine at three different 
time intervals or saline ................................................................................................... 104 
 
Figure 3.7.  Acquisition training in the Morris water maze behavioral task in rats treated 
with galantamine at three different time intervals or saline ........................................... 105 
 
Figure 3.8.  Fourth trial of acquisition training in the Morris water maze in rats treated 
with galantamine at three different time intervals or saline ........................................... 107 
 
Figure 3.9.  Retention in the Morris water maze behavioral task in rats treated with 
galantamine at three different time intervals or saline ................................................... 108 
 
Figure 3.10.  Cortical tissue sparing analysis was performed on nissl stained sections 
from rats treated with galantamine at three different time intervals or saline ............... 110 
 
Figure 3.11.  Representative nissl stained sections are shown from the cortical sparing 
analysis evaluating galantamine treatment following TBI ............................................ 111 
 

viii 
 



ix 
 

Figure 4.1.  α7 nAChR mRNA and protein is reduced in hippocampal regions following 
TBI ................................................................................................................................. 134 
 
Figure 4.2.  α4 nAChR mRNA is reduced in thalamic nuclei following TBI ............... 135 
 
Figure 4.3.  Correlation analysis of α7 nAChR density and α7 nAChR mRNA in brain 
regions demonstrating alterations in rats 48 hours following TBI ................................ 136 
 
Figure 4.4.  Upregulation of α7 mRNA occurs in the auditory cortex, layers 5-6 
following TBI................................................................................................................. 138 
 
      



Chapter 1:  Introduction to Alzheimer’s Disease and Traumatic Brain Injury; 

Statement of the Research Problem and Plan  

 

Neuronal Nicotinic Receptors  

Neuronal nicotinic acetylcholine receptors (nAChRs) are the focus of extensive 

research due to their involvement in numerous important physiological processes such as 

cognitive learning and memory, synaptic plasticity, and neuroprotection (Levin and 

Simon, 1998; Paterson and Nordberg, 2000; Levin et al., 2002).  Furthermore, nAChRs 

are involved in arousal, cerebral blood flow and metabolism, inflammation, and 

presynaptic regulation of neurotransmitter release, and nAChR expression is altered in 

several pathophysiological conditions.  Nicotinic acetylcholine receptors (nAChRs) are 

one of two classes of receptors involved in cholinergic neurotransmission in the central 

nervous system (CNS) (Cooper et al., 2003).  Cholinergic neurotransmission first 

involves the production of the neurochemical mediator, acetylcholine (ACh), in 

presynaptic cholinergic neurons by the synthetic activity of choline acetyltransferase 

(ChAT).  For this process, an acetyl group from mitochondrial-derived acetyl-coenzyme 

A is transferred to choline, a dietary nutrient, which undergoes uptake into the 

presynaptic neuron by the rate-limiting, sodium dependent, high-affinity choline uptake 

(HACU).  ACh is stored in vesicles located near the synaptic terminal and upon 

depolarization, calcium dependent release occurs.  Synaptic ACh may then bind to 

postsynaptic ACh receptors, or may regulate its own release via interactions with 

presynaptic receptors.  Unbound ACh in the synapse is hydrolyzed by 

acetylcholinesterase (AChE) present on pre- and postsynaptic cell membranes.  

Following activation of postsynaptic receptors, ACh is released from receptors and 

degraded by AChE to acetate and choline, which is then recycled in the synthetic process.  

Major CNS cholinergic pathways in the rodent brain include two projections 

(Butcher and Woolf, 1986; Woolf and Butcher, 1989; Cooper et al., 2003).  The first of 

which arises from the basal forebrain which includes the medial septal nucleus, diagonal 

band nuclei, substantia innominata, magnocellular preoptic field area, and nucleus basalis 

projecting to the neocortex.  The second arises from pendunuclopontine and laterodorsal 
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tegmental nuclei and projects to the thalamus and other diencephalic loci, pontine and 

medullary reticular formations, deep cerebellar and vestibular nuclei, and cranial nerve 

nuclei.  There are also cholinergic interneurons (short-projections) located in regions of 

the basal ganglia (caudate-putamen nucleus, nucleus accumbens), the olfactory tubercle, 

and the granule cells therein called the Islands of Calleja.  Human pathways are similar 

and are outlined in detail elsewhere (Arciniegas, 2003; Salmond et al., 2005). 

The neurotransmitter ACh interacts with two distinct cholinergic receptor 

subtypes, nicotinic and muscarinic (Cooper et al., 2003).  While muscarinic acetylcholine 

receptors (mAChRs) are metabotropic receptors coupled to G-proteins (guanine 

nucleotide binding regulatory proteins) eliciting inhibitory or excitatory responses, 

nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels in which 

activation results in increased cellular sodium and calcium permeability as well as 

depolarization and excitation.  Muscarinic receptors were first discovered through the 

agonistic properties of the mushroom toxin, muscarine, within the parasympathetic 

nervous system (Albuquerque et al., 2009).  Muscarinic receptors exist as five subtypes 

designated as M1-M5.  Muscarinic M1, M3, and M5 subtypes bind to the Gq /G11 type of 

G-proteins and modulate phosphatidylinositol signaling, whereas M2 and M4 bind to the 

Gi type and are mainly inhibitory acting through ion channels and cyclic adenosine 

monophosphate (cAMP) (Cooper et al., 2003).  Receptor and subsequent G-protein 

activation in turn has various effects on signal transduction pathways within the cell. 

 Neuronal nAChRs are made up of five glycosylated polypeptide chain subunits 

known as α and β unlike excitatory muscular nAChRs that contain postsynaptic 

heteropentamers containing γ and δ (or ε in the fetal brain) subunits in addition to α and β 

(Cooper et al., 2003).  The discovery of nicotinic receptors began with the original 

description of the stimulatory effect of the tobacco plant alkaloid, nicotine, on autonomic 

ganglia (Langley and Dickinson, 1889; Taylor, 1996; Albuquerque et al., 2009).  The 

nAChR was further characterized through studies of the electric ray fish, containing high 

levels of nAChRs and the ability to impair prey with an electric pulse  and studies of the 

venom of the krait snake, containing α-bungarotoxin, which induces paralysis 

(Albuquerque et al., 2009).   
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Brain nAChRs are comprised of α2-α10 and β2-β4 subunits.  These subunits 

typically assemble in a 2α3β stoichiometry (Conroy et al., 1992) or as a single subtype 

homopentamer consisting of α7, α8, or α9 subunits (Couturier et al., 1990) that span the 

membrane and surround a central pore or ion channel (Cartaud et al., 1973; Paterson and 

Nordberg, 2000).  Detailed reviews of nicotinic receptors can be found in the following 

references (Changeux et al., 1998; Paterson and Nordberg, 2000; Albuquerque et al., 

2009).  Two major classes of nAChRs exist in the CNS referred to as α-bungarotoxin 

(BTX), derived from a snake venom toxin that blocks muscular nAChRs, sensitive and 

BTX insensitive designated as α7 and non-α7, respectively (Marks and Collins, 1982; 

Paterson and Nordberg, 2000).  The most common non-α7 nAChR found in mammalian 

CNS is the α4β2 nAChR (Paterson and Nordberg, 2000).  The α4β2 subtype is also 

described as the high-affinity [3H]-nicotine binding site, and the α7 subtype is referred to 

as the high-affinity [125I]-BTX binding site (Clarke et al., 1985; Harfstrand et al., 1988; 

Changeux et al., 1998).  Two ligand binding sites are present in heteropentamers like the 

α4β2 subtype and five binding sites exist on homopentamers such as in the α7 subtype 

(Alkondon and Albuquerque, 1993; Wang et al., 1996; Paterson and Nordberg, 2000; 

Albuquerque et al., 2009).  The binding site is located on the α subunit at the interface 

between α and β in the α4β2 subtype and at the interface between two α subunits for the 

case of the α7 subtype.  Two sites must be occupied to activate the channel in the α4β2 

subtype.  In addition, an allosteric binding site is located on the α subunit upon which 

binding modulates channel opening and ion conductance (Pereira et al., 1993). 

  Nicotinic receptors are located pre- or postsynaptically as well as on sites outside 

the synapse and act to regulate neuronal function (Lindstrom, 1997).  Presynaptic 

nAChRs are involved in regulating the release of neurotransmitters to modify other 

neurochemical systems.  For example, primarily non-α7 nAChRs modulate the release of 

striatal dopamine and hippocampal norepinephrine, and glutamate release may be 

modulated by the α7 nAChR (Wonnacott et al., 1990; Dajas-Bailador and Wonnacott, 

2004; Wonnacott et al., 2006).  Neuronal nicotinic receptors exist in four conformational 

states including a resting state, a low-affinity ligand activated state, and two desensitized 

closed channel states, which are nevertheless associated with high-affinity ligand binding 
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(Katz and Thesleff, 1957; Galzi and Changeux, 1995).  Nicotinic receptors undergo a 

time and concentration dependent desensitization (Katz and Thesleff, 1957; Wang and 

Sun, 2005) which is a decrease in response to nicotine or other agonists upon increasing 

exposure time.  In contrast to traditional pharmacological adaptations in which repeated 

agonist exposure results in a compensatory decrease in receptor density, the neuronal 

nicotinic receptor is upregulated by chronic nicotine exposure in rodents (Marks et al., 

1983; Schwartz and Kellar, 1983) and in the postmortem brains of smokers (Benwell et 

al., 1988; Nyback et al., 1989; Wonnacott, 1990; Breese et al., 1997a).  Furthermore, the 

well documented neuroprotective actions of nicotine are theorized by many to be the 

result of receptor upregulation (Jonnala and Buccafusco, 2001).  Many support the view 

that the paradoxical upregulation caused by chronic stimulation of nAChRs is due to 

increases in receptor number through post-translational modifications (Wonnacott, 1990; 

Marks et al., 1992; Peng et al., 1994; Pauly et al., 1996; Perry et al., 1999; Gentry and 

Lukas, 2002).  However, a recent report using heterologous expression of rat α4β2 in a 

human cell line suggested changes in function rather than receptor number occurs 

following chronic nicotine exposure in which stabilization of the high-affinity state and 

subsequent increases in binding and response to binding occurs (Vallejo et al., 2005).  

Additionally, the functional properties of upregulated nAChRs are a topic of debate.  

Functional loss has been documented in nAChRs and may be a result of desensitization 

which occurs both as a rapid onset, quickly reversible form and a slower persistent 

inactivation that delays recovery (Lukas et al., 1996; Gentry and Lukas, 2002).  However, 

loss of function may not be associated with upregulation (Gentry and Lukas, 2002), and 

other studies, in particular electrophysiological analyses, have concluded that increased 

nAChRs are functional (Albuquerque et al., 2009).   

Pharmacologic tools for studying cholinergic transmission in vivo involve the 

evaluation of presynaptic markers such as ChAT and AChE activity, ACh synthesis and 

HACU in human and animal tissues.  Postsynaptic receptor expression is studied with 

immunohistochemical techniques using antibodies against the receptor protein or by the 

use of autoradiography, which employs a selective radioligand to measure receptor 

density and/or affinity in specific brain locations using tissue slices or homogenates.  The 

measurement of nicotinic receptors by radioligands is a method used by many of the 
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studies discussed in this chapter and is a method employed in the dissertation research.  

Additionally, in vitro receptor expression systems are used to address mechanistic 

questions.  Synaptic terminal preparations known as synaptosomes and 

electrophysiologic techniques are often used to study neurotransmitter release and 

receptor function.   

 In the rat, α7 nAChRs are expressed throughout the brain with the highest 

concentrations of transcripts in the olfactory regions, hippocampus, amygdala, and 

hypothalamus, which comprise the limbic system (Seguela et al., 1993).  In an 

autoradiographic analysis of cholinergic receptors in the mouse brain, α7 nAChRs were 

most concentrated in the hippocampus, caudate putamen, inferior and superior colliculi, 

hypothalamus, and hindbrain (Pauly et al., 1989).  Of note, α7 nAChRs are unique in that 

they are localized in high concentrations in the hippocampus and are highly permeability 

to calcium (Seguela et al., 1993).  Non-α7 nAChRs are most highly localized in thalamic 

nuclei, the superior colliculus, and the interpeduncular nucleus (Pauly et al., 1989).  By 

comparison, muscarinic receptor subtypes are more evenly distributed in the CNS with 

the highest levels in hippocampus, cerebral cortex, and colliculi. 

Alzheimer’s Disease 

Background 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease 

characterized by diminished cognitive abilities, memory loss, and neuropsychiatric 

disturbances.  Dementia is defined by impairments in memory and cognition that 

interfere with the activities of daily living (Alzheimer's Association, 2009), and AD is the 

most common form of dementia occurring in 13 percent of individuals over the age of 65.  

In 2000, it was estimated that 4.5 million people suffered from AD in the United States 

and this figure was expected to rise to 13.2 million by the year 2050 (Hebert et al., 2003).  

According to a recent report, 5.3 million Americans are currently living with AD 

(Alzheimer's Association, 2009).  In addition, numerous studies have concluded that 

more women develop AD because of their longer life expectancy compared to men, and 

the more years of education one receives, the lower the risk of AD.  
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Patients with Alzheimer’s disease often present with loss of memory, in particular 

difficulties in remembering new information, in the initial stages of disease (NIA, 2005; 

Alzheimer's Association, 2009).  AD patients develop confusion and cognitive 

dysfunction that results in impaired judgment, decision making, orientation, and language 

skills, as well as alterations in personality and behavior.  Eventually, patients can no 

longer perform the activities of daily living.  The clinical diagnosis of Alzheimer’s 

disease includes a study of the patient’s medical history, clinical presentation, and 

neurological and psychiatric examinations (Blennow et al., 2006).  Extensive laboratory 

analyses are performed to determine if coexisting medical conditions are present that may 

cause dementia, and neuroimaging with computed tomography (CT) or magnetic 

resonance imaging (MRI) is used to rule out brain tumors, brain injury, or 

cerebrovascular disease (Cummings, 2004; Blennow et al., 2006).  Diagnosis also 

involves use of the National Institute of Neurological and Communicative Disease and 

Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) criteria (McKhann et al., 1984) in order to establish a probable or possible 

diagnosis.  However, a diagnosis of definite AD is only made with concomitant 

neuropathological findings at autopsy (Cummings, 2004; Blennow et al., 2006).  

Synaptic loss is a defining feature in AD (Selkoe, 2002).  Neuroimaging studies 

have shown that the medial temporal lobe including the entorhinal cortex and 

hippocampus undergoes early neurodegeneration in which atrophy is detectable, and as 

the disease progresses, the Alzheimer’s brain displays pervasive cortical atrophy with 

ventricular enlargement due to further synaptic degeneration and neuronal death 

(Cummings, 2004; Mattson, 2004; Blennow et al., 2006).  The pathogenesis of 

Alzheimer’s disease includes the presence of two neuropathological hallmarks,  

intracellular neurofibrillary tangles made up of the hyperphosphorylated form of the 

microtubule protein, tau, and extracellular neuritic (amyloid) plaques made up of 

dystrophic neurons surrounding a dense core comprised of the β-amyloid (amyloid-β or 

Aβ) peptide (Hardy and Selkoe, 2002; Selkoe, 2005).  A prevailing theory known as “the 

amyloid cascade hypothesis” states that Alzheimer’s disease results from the increased 

production or reduced clearance of Aβ (Hardy and Selkoe, 2002; Querfurth and LaFerla, 

2010).   
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The majority of AD patients have a sporadic type, but approximately five percent 

of cases are inherited, familial forms of AD, in which patients present with an earlier (as 

young as 30 years of age), more aggressive course (St George-Hyslop, 2000; Alzheimer's 

Association, 2009).  Familial Alzheimer’s disease (FAD) can be caused by mutations in 

the amyloid precursor protein (APP) or the presenilins (PS1, PS2), both resulting in 

altered expression of Aβ.  One such mutation is the Swedish double mutation (K670N, 

M671L, often referred to as APPswe) in the APP gene located on chromosome 21 

(Mullan et al., 1992).  APP is a glycosylated cell-surface protein 770 amino acids in its 

longest form (Weidemann et al., 1989; Esch et al., 1990; Oltersdorf et al., 1990; Sisodia 

et al., 1990).  APP constitutively undergoes processing through a secretory pathway in 

which α-secretase cleavage within the sequence containing the Aβ peptide results in the 

secretion of a soluble extracellular domain precluding Aβ formation.  Alternatively, via a 

lysosomal pathway, Aβ is formed predominately as the 40 amino acid peptide, Aβ40, 

through the actions of β-secretase (also known as β-site APP-cleaving enzyme 1, 

BACE1) and γ-secretase (Haass et al., 1992; Blennow et al., 2006; Walsh and Selkoe, 

2007; Querfurth and LaFerla, 2010).  Additionally a longer peptide is formed, Aβ42/43, 

to a lesser extent.  Furthermore, mutations in APP or the presenilins, the catalytic 

component of γ-secretase, increase the production of Aβ in general or increase the larger 

peptide, Aβ42/43, that develops into an insoluble form involved in self-aggregation, 

oligomerization, and plaque formation (Selkoe, 1994, 2001, 2002; Mattson, 2004; Selkoe, 

2005).  However, the culmination of many studies has led to the belief that soluble 

oligomeric Aβ, preceding plaque formation, is a significant mediator of neurotoxicity 

(Walsh and Selkoe, 2007; Tomic et al., 2009; Querfurth and LaFerla, 2010).  Soluble Aβ 

is presented in further detail in the Chapter 2 discussion section.  

Cholinergic dysfunction in Alzheimer’s disease 

Although cognitive impairment in AD is undoubtedly a multifactorial process, 

many studies have shown that Alzheimer’s disease causes a selective degeneration of 

basal forebrain cholinergic neurons resulting in the loss of cholinergic innervation to the 

cortex and hippocampus; therefore, the cognitive impairment seen in AD patients has 

often been correlated with deficits in CNS cholinergic neurotransmission (Bartus et al., 
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1982; Bartus, 2000).  Postmortem research has shown reductions in choline 

acetyltransferase (ChAT) (Davies and Maloney, 1976; Flynn and Mash, 1986; Araujo et 

al., 1988; Aubert et al., 1992; Bierer et al., 1995; Sihver et al., 1999) and 

acetylcholinesterase (AChE) (Davies and Maloney, 1976; Bierer et al., 1995; Perry et al., 

2000) activities in various brain regions such as the cerebral cortex, amygdala, and 

hippocampus.  One report showed ChAT activity as well as acetylcholine (ACh) 

synthesis and choline uptake, all markers of presynaptic terminals, were decreased by 40 

percent or more in the frontal and temporal cortical lobes (Sims et al., 1983); 

furthermore, vesicular ACh transport was also diminished (Sihver et al., 1999).  In 

addition, a 75 percent neurodegeneration of the nucleus basalis of Meynert (nbM), part of 

the basal forebrain which contains cholinergic cell bodies projecting to the cortex, was 

also identified (Whitehouse et al., 1982).   

Deficits in ChAT activity in AD cortex have been shown to correlate with clinical 

dementia (Bierer et al., 1995), and ChAT and AChE activities have been shown to 

decrease significantly with increasing plaque load, while ChAT activity correlated with 

cognitive impairment in patients with dementia (Perry et al., 1978).  However, one 

postmortem study of elderly nursing home residents showed cholinergic markers are not 

associated with early AD; instead, diminished ChAT and AChE activities were associated 

with severe clinical dementia ratings indicative of cognitive and functional status late in 

the progression of disease, and ChAT was found to be correlated with neurofibrillary 

tangles and neuritic plaque severity (Davis et al., 1999).   

In addition to changes in traditional presynaptic markers, changes in nicotinic and 

muscarinic receptor expression have been reported in postmortem AD tissue.  Nicotinic 

cholinergic receptor (nAChR) expression is consistently reduced in cortical and 

hippocampal brain samples obtained at autopsy and is the subject of several review 

articles (Pauly, 1999; Court et al., 2001; Nordberg, 2001).  Many studies employing 

immunological detection methods or radioligand binding assays to characterize nAChR 

expression in AD have been conducted.  Table 1.1 summarizes the regional changes in 

nAChRs determined by these studies and compares the detection techniques used.  A few 

specific study findings not included in the summary table are discussed below.   
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Several studies demonstrated overall reductions in nAChR receptor numbers 

assessed by the binding of high affinity radiolabeled ligands.  Of interest, the binding of 

epibatidine (EPI) and nicotine in the cerebral cortex was downregulated in AD patients 

with the Swedish double mutation as well as the sporadic type (Marutle et al., 1999).  

One report noted that a 50 percent decrease in nicotine binding in temporal cortex was 

accompanied by a sparing of postsynaptic nAChRs in frontal cortex, yet diminished 

ChAT activity in both regions indicated loss of presynaptic terminals (Flynn and Mash, 

1986).  Of note, the validity of the BTX studies reviewed in the summary table should be 

considered in light of the data suggesting up to 70 percent of receptor binding is due to 

non-specific binding when autoradiography of α7 nAChRs in human brain tissue is 

employed using BTX (Breese et al., 1997b; Spurden et al., 1997; Court et al., 2001).  

Decreases in EPI binding in the temporal cortex correlated with worsening dementia, 

increased Aβ42 levels, and reduced AChE activity (Perry et al., 2000).  Increased Aβ 

containing plaques were not correlated with diminished EPI binding, but instead were 

correlated with reductions in nicotine binding in the entorhinal cortex and α4 protein 

expression in the temporal cortex.  In contrast, increased BTX binding correlated with 

plaques in the entorhinal cortex.  Positron emission tomography (PET) imaging has 

allowed for the assessment of nAChR densities in vivo.  In vivo nicotine binding assessed 

by PET has demonstrated reductions in nAChR densities in cerebral cortex and 

hippocampus in patients with AD (Nordberg et al., 1990; Nordberg et al., 1995; Nordberg 

et al., 1997).   

Reductions in α4 and α7 nAChR protein have been found in the hippocampus 

and temporal cortex of patients with both sporadic AD and patients with the FAD related 

Swedish double mutation (Yu et al., 2005).  One study showed the reduction in α7 

nAChR protein was accompanied by neuronal loss (Banerjee et al., 2000).  A localized 

deficiency or near absence in cortical α4 and α7 mRNA was detected in neurons that 

were densely labeled with hyperphosphorylated tau (Wevers et al., 1999).  α7 mRNA 

was upregulated in cholinergic neurons of the nucleus basalis in mild to moderate AD 

compared to patients with MCI or no impairments in cognition (Counts et al., 2007).  

Moreover, in AD patients who smoked tobacco, the α4 nAChR was upregulated in the 

temporal cortex compared to non-smokers with AD, but the α4, α7 and α3 nAChR levels 

9 
 



were all significantly lower than non-smoking controls (Mousavi et al., 2003).  

Interestingly, AD patients as well as controls who smoked have lower levels of brain 

Aβ40 and Aβ42 than controls (Hellstrom-Lindahl et al., 2004a). 

In summary, both immunological detection methods and receptor binding studies 

have demonstrated deficits in nAChRs in AD that occur in multiple cortical and 

hippocampal brain regions without a consistent downregulation of nAChR mRNA. 

Importantly, these changes have been observed in mostly late stage disease and do not 

provide insight into the early mechanisms of disease pathogenesis. 

There are inconsistent findings regarding the effect of AD on muscarinic 

cholinergic receptor (mAChR) expression.  There is evidence of decreased mAChRs in 

AD, but this change is not consistent, is restricted to particular subtypes, and is less 

widespread compared to nAChRs.  Table 1.2 summarizes the muscarinic cholinergic 

receptor changes present in AD.  It is important to note that for studies of nAChR and 

mAChR changes in AD, several factors may contribute to differences found in brain 

regions analyzed, detection methods employed, and between the various published 

studies.  Differences in patients from which brain tissues were obtained such as the 

demographics, the presence of other disease states, and the severity of disease may be a 

factor.  Additionally, postmortem interval for tissue collection and techniques used may 

also account for some differences.   

As a result of decades of research suggesting a link between cognitive impairment 

and cholinergic dysfunction, enhancement of the cholinergic system to combat the 

cognitive deficits of AD is employed through the use of (acetyl)cholinesterase inhibitors.  

The acetylcholinesterase inhibitors (AChEIs) were the first Food and Drug 

Administration (FDA) approved medications for the treatment of AD.  Donepezil, 

rivastigmine, and galantamine, are examples that are currently in clinical use providing a 

modest symptomatic benefit (Nordberg and Svensson, 1998; Grutzendler and Morris, 

2001; Cummings, 2004; Wilkinson et al., 2004), while the first approved agent, tacrine, is 

less often used due to its risk of hepatotoxicity (Watkins et al., 1994).  By contrast, 

memantine, the newest drug approved for moderate to severe AD, acts as an antagonist at 

the N-methyl-D-aspartate (NMDA) receptor to target excitotoxic mechanisms theorized 

in the pathogenesis of neurodegenerative disease (Cummings, 2004; Parsons et al., 2007).  
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There is preclinical evidence that memantine also acts as an antagonist at α7 nAChRs 

(Aracava et al., 2005).  Excitotoxicity is further discussed in the traumatic brain injury 

section of this chapter.  Additionally, psychotropic medications including antidepressants 

and atypical antipsychotics are sometimes used to help treat AD related symptomatology 

(Cummings, 2004). 

Cholinergic markers in early AD 

Studies of the cholinergic system in subjects prior to the development of cognitive 

dysfunction and in patients with early AD are required in order to elucidate the series of 

pathogenic events causing dementia in AD and identify targets for therapeutic 

intervention.  Mild cognitive impairment in humans occurs as a transitional period 

between normal aging and early AD in which patients exhibit memory impairment 

without dementia, disruptions in general cognitive function, or interference with the 

activities of daily living (Petersen et al., 2001).  Interestingly, studies have shown 

preservation (Gilmor et al., 1999) or even upregulation of presynaptic markers such as 

ChAT in the hippocampus and frontal cortex in mild cognitive impairment (DeKosky et 

al., 2002; Ikonomovic et al., 2003).  However, researchers found a loss of 

immunoreactivity to the nerve growth factor receptor located on cholinergic basal 

forebrain neurons known as P75NTR, which is vital for cholinergic neuron survival, in 

patients with MCI similar to that of patients with early AD, and this correlates with 

performance on cognitive scales (Mufson et al., 2002).  A clinical trial recently conducted 

detected no loss of nAChRs through PET scans of patients with early AD using a 

radiotracer containing A-85380 selective for β2-containing subunits (Ellis et al., 2008).  

Nevertheless, another group found this radiotracer, which measures predominately α4β2 

receptors, to be reduced in both MCI and AD patients (Sabri et al., 2008).  Interestingly, 

α7nAChRs, as measured by [3H]-methyllycaconitine (MLA), demonstrated a non-

significant elevation in patients with mild to moderate AD compared to patients with 

MCI or patients without cognitive impairment.  Patients with whom a diagnosis of AD 

was confirmed by neuropathological analysis demonstrated elevated MLA binding and 

Aβ levels (Ikonomovic et al., 2009).  
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Cholinergic impairments in transgenic mouse models of Alzheimer’s disease 

Extensive research has been conducted using transgenic mouse models aimed at 

elucidating mechanisms involved in AD related neuropathology.  In addition, this allows 

researchers to better study early markers of disease instead of relying on tissue indicative 

of end-stage disease in order to better target therapeutic strategies.  Several studies have 

demonstrated alterations in cholinergic function in transgenic animal models that express 

human genes containing APP mutations such as APPswe alone or in combination with 

PS1 mutations.  Many of the transgenic models engineered contain the Swedish double 

mutation on chromosome 21 in which an asparagine at amino acid 670 is substituted for a 

lysine, and at position 671, a leucine is substituted for a methionine.  This mutation was 

named for a Swedish family in which many suffered from FAD (Mullan et al., 1992).  

Such models display elevated levels of Aβ expression including increased concentrations 

of soluble and insoluble Aβ and subsequent plaque deposition.  Studies assessing 

cholinergic neuronal and synaptic markers have shown that prior to amyloid deposition, 

eight month old Tg2576 mice display a significant increase in the density of cortical 

cholinergic synapses as measured by vesicular acetylcholine transporter (VAChT) 

immunoreactivity (Wong et al., 1999; Hu et al., 2003) compared to wild-type mice.  

Tg2576, one of the most widely used AD mouse models, has a six fold higher expression 

of human APP than endogenous mouse APP.  This results in a 14 fold increase in 

Aβ42/43, a five fold increase in Aβ40, and subsequent amyloid deposition around nine to 

ten months of age (Hsiao et al., 1996; Pedersen et al., 1999).  Eight month old mice 

expressing both APPswe and PS1 (M146L) transgenes had severe amyloidosis, loss of 

cholinergic synapses in the neocortex and hippocampus (Wong et al., 1999) and 

decreased cortical VAChT expression (Hu et al., 2003).  Twelve month old Tg2576 mice 

demonstrated enhanced p75 nerve growth factor receptor immunoreactivity in medial 

septal neurons indicating higher numbers of cholinergic basal forebrain neurons 

compared to non-transgenic mice as well as mice with both the APPswe and PS1 

transgenes (Jaffar et al., 2001).  Cortical sections of 19 month old Tg2576 mice showed a 

degeneration of ChAT immunoreactive fibers located near amyloid plaques and activated 

glia (Luth et al., 2003).  In addition, the presence of amyloid was associated with small 

decreases in AChE concentration in vivo as measured by microdialysis in 15 to 27 month 
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old mice expressing two different APP mutations including the Swedish mutation as well 

as a PS1 mutation (Hartmann et al., 2004).  A study of the APP23 transgenic mouse 

reported a loss of neocortical ChAT and cholinergic fibers, a non-significant reduction in 

AChE, but no loss in cholinergic basal forebrain neurons in 24 month old transgenic mice 

(Boncristiano et al., 2002).  There was also a decrease in cholinergic fiber length with 

aging in the mutant mice.  Twelve month old APP23 mice also displayed losses in 

cholinergic fibers and AChE (Sturchler-Pierrat et al., 1997).  These mice express the 

Swedish double mutation leading to a seven fold increase in APP production and the 

presence of amyloid deposition at six to eight months of age (Sturchler-Pierrat et al., 

1997; Boncristiano et al., 2002; Boncristiano et al., 2005).     

A number of studies have investigated changes in cholinergic receptor expression 

in mouse models of AD.  Tg2576 mice demonstrated a reduction in cortical 3H-cytisine 

binding representative of α4β2 nAChR expression in 19 month old mutants (Apelt et al., 

2002).  Mice expressing APPswe, PS1 and a tau mutation (3xTg-AD), displayed 

decreased BTX binding in the hippocampus, retrosplenial cortex, parietal cortex, and 

thalamus of six month old transgenic compared to non-transgenic mice.  By six months 

of age, these transgenic mice display deficits in long term potentiation and synaptic 

dysfunction before plaque formation in the hippocampus (Oddo et al., 2003).  Binding 

deficits in these regions were present along with intraneuronal accumulation of Aβ42.  

Interestingly, in the auditory cortex, where no intraneuronal Aβ was detected, there was 

no downregulation in BTX binding.  Conversely, no changes were found in non-α7 

nAChRs, as measured by EPI binding, except for an upregulation in the thalamus of 

transgenic mice (Oddo et al., 2005).  Another report showed a reduction in M1 mAChR 

binding as well as diminished HACU binding in five month old Tg2576 mice prior to the 

presence of amyloid deposition, but aged mice showed elevated cortical VAChT binding 

along with the deficits in choline uptake (Klingner et al., 2003).  Cortical membrane 

preparations from three month old Tg2576 mice have shown downregulation of α4 

nAChR mRNA, but no change in the mRNA of α7 or α3 receptor subunits (Mousavi et 

al., 2004).  

In contrast, no change was found in α7 or α4β2 nAChRs as measured by BTX 

and cytisine binding, respectively, in the parietal cortex and hippocampus of three week 
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to 17 month old APPswe and PS1 double transgenic mice (Marutle et al., 2002).  

Furthermore, one group found no differences in cholinergic markers, such as ChAT and 

AChE activities and HACU and VAChT binding assays, in Tg2576 mice compared to 

littermates at 14, 18 and 23 months of age (Gau et al., 2002). 

Surprisingly, further studies have reported an elevation in the expression of the α7 

nAChR in Tg2576 mice.  An upregulation in α7 nAChR protein expression in the 

hippocampal field CA1 and dentate gyrus with age, beginning at four months in the 

dentate, was found in Tg2576 mice compared to wild-type mice, but no such 

upregulation in α4 nAChR expression was apparent (Dineley et al., 2001).  This group 

also reported an increase in hippocampal α7 nAChR protein expression in five month old 

Tg2576 mice, prior to Aβ deposition, as well as in an AD mouse model that contained the 

APP plus PS1 (A246E) gene mutations resulting in accelerated amyloid deposition 

around six to seven months of age (Dineley et al., 2002b) .  This finding was 

accompanied by deficits in the contextual fear learning behavioral task which examines 

hippocampal impairment.  Furthermore, an increase in α7 nAChRs as measured by BTX 

binding was demonstrated in the cerebral cortex, hippocampus, caudate, and cerebellum 

of four month old Tg2576 mice preceding Aβ plaque formation and behavioral changes 

(Bednar et al., 2002).  A similar upregulation was found in α4β2 nAChRs as measured 

by cytisine binding but only in older mice, and no change was found in mAChR binding.  

Enhanced nicotinic receptor binding occurred along with an upregulation in the mRNA 

levels of both α7 and α4 receptor subunits.  Tg2576 mice aged 14.5 months displayed 

increased BTX binding in cortex compared to wild-type mice (Hellstrom-Lindahl et al., 

2004b).  A group of transgenic mice treated chronically with nicotine for 5.5 months did 

not display this elevation in BTX binding (Hellstrom-Lindahl et al., 2004b) but, 

interestingly, showed a reduction in Aβ42 immunopositive plaques by 80 percent 

(Nordberg et al., 2002; Hellstrom-Lindahl et al., 2004b).  Further, with chronic treatment 

(Nordberg et al., 2002) and a shorter ten day treatment administered by the subcutaneous 

route (Hellstrom-Lindahl et al., 2004b), a decrease in insoluble Aβ40 and Aβ42 levels 

were noted.  Conversely, in one month old mice expressing APPswe, PS1 and a tau 

mutation (3xTg-AD), five months of nicotine exposure in the drinking water caused an 

14 
 



increase in EPI binding in both transgenic and wild-type mice but no change in BTX 

(Oddo et al., 2005).  Nicotine did not affect amyloid, but appears to have exacerbated 

hyperphosphorylated tau related pathology.  Finally, electrophysiologic studies 

performed on hippocampal slices from seven month old mice that express both APPswe 

and PS1 mutations (M146V called TASTPM), in which Aβ deposition is accelerated and 

occurs at three months of age (Howlett et al., 2004), showed this model maintains 

functional α7 nAChRs located on GABAergic interneurons (Spencer et al., 2005). 

To summarize, initial studies in several transgenic mouse models of AD mostly 

showed deficits in nAChRs and other cholinergic indices; however, presynaptic markers 

were found to be upregulated prior to the presence of amyloid deposition.  Further studies 

revealed upregulation or a sparing of nAChR in various models depending on brain 

region, nAChR subtype, and age; in particular, this occurs in younger mice prior to the 

development of Aβ neuropathology.  Therefore, inconsistencies in the alterations of 

nAChR density in AD related models may be due to differences in the transgenic models, 

the techniques employed for the assessment of AChRs, the brain regions evaluated, or the 

age of the animals relative to the development of pathology.  

The relationship between cholinergic neurotransmission and Aβ 

The Aβ-nAChR interaction.  Recently, a direct pharmacological interaction 

between Aβ and the α7 nAChR has been established.  In the brains of patients with AD, 

immunoprecipitation studies have shown that Aβ42 and the α7 nAChR, but not the α4 or 

other subunits, are co-localized in neuritic plaques as well as in cortical and hippocampal 

neurons in which they interact with high affinity and form stable complexes (Wang et al., 

2000b).  This interaction has also been demonstrated in human and rodent cell culture 

models.  Further experiments in human neuroblastoma, SK-N-MC, cells transfected with 

the α7 nAChR showed that BTX and methyllycaconitine (MLA), both selective α7 

nAChR antagonists, inhibited the binding of Aβ40 with an IC50 of 1pM and 4pM, 

respectively, for the higher affinity of two binding sites, and Aβ42 bound with an affinity 

in the low femtomolar range (IC50 of 8fM).  Aβ binding resulted in cytotoxicity which 

was attenuated by nicotinic agonists suggesting this ligand-receptor interaction may be 

important in the pathogenesis of AD.  This interaction was further confirmed in rat 
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synaptic membranes in which selectivity for the α7 receptor subtype was demonstrated 

(Aβ42 inhibition of MLA and cytisine binding, respectively:  Ki of 4.1 pM for α7 and Ki 

of 30 nM for α4β2) (Wang et al., 2000a). 

Controversy exists as to whether Aβ is acting as an agonist or antagonist at the α7 

nAChR; however, Aβ may elicit varying responses depending on factors such as Aβ 

concentrations and the level of disease progression (Dineley et al., 2002a; Hernandez et 

al., 2010; Jurgensen and Ferreira, 2010).  Several studies have demonstrated Aβ’s 

agonist-like behavior.  In hippocampal slices prepared from mice containing the 

desensitization resistant mutant (L250T) α7 nAChR, nicotine produced activation of the 

mitogen-activated protein kinase (MAPK) cascade, involved in learning and memory, 

followed by downregulation or desensitization (Dineley et al., 2001).  Stimulation of this 

pathway was blocked by the selective α7 antagonist, MLA.  In cultured rat hippocampal 

neurons, Aβ42 at physiologic concentrations activated the MAPK pathway and prevented 

the stimulatory effects of nicotine, suggesting that Aβ and nicotine may act at a common 

receptor.  The selective α7 antagonists, MLA and BTX, inhibited Aβ’s actions which 

were also dependent on Ca2+ suggesting the involvement of the α7 receptor and its 

necessary function since this receptor is highly permeable to Ca2+.  Electrophysiology 

studies showed that rat Aβ42 in a soluble, non-aggregated form activates rat α7 nAChR 

expressed in Xenopus oocytes causing inward currents and Ca2+ influx while Aβ40 

produced a similar effect but to a lesser degree, and MLA blocked this effect (Dineley et 

al., 2002a).  Addition of the L250T mutation showed that Aβ acts as an agonist at the α7 

nAChR at low (pM) concentrations activating the receptor with subsequent 

desensitization to Aβ but not nicotine, and at higher concentrations (nM) Aβ produces 

inactivation with cross desensitization to nicotine.  In rat hippocampal and neocortical 

isolated presynaptic terminals, Aβ42 activated nAChRs causing increases in presynaptic 

Ca2+ (Dougherty et al., 2003).  The α7 receptor was activated at picomolar concentrations 

and non-α7 receptors became activated at nM concentrations.  Aβ inhibited nicotine 

activation of presynaptic nAChRs and Aβ’s effect was blocked by other antagonists 

suggesting Aβ binds competitively (Dougherty et al., 2003), whereas others have 
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suggested Aβ binds to two different binding sites (Wang et al., 2000b; Wang et al., 

2000a; Dineley et al., 2002a) or binds non-competitively (Liu et al., 2001).   

Additionally, Aβ binds to non-α7 nAChRs, which in the mammalian brain are 

mainly comprised of the α4β2 subtype, but with much lower affinity (Wang et al., 

2000a).  However, soluble Aβ42 and Aβ25-35 have been shown to act as ligands at non-

α7 nAChRs in rat basal forebrain neurons at low doses (fM to pM), and patch-clamp 

recordings show activation of this subtype on postsynaptic neurons of the diagonal band 

of Broca within the basal forebrain (Fu and Jhamandas, 2003). 

In contrast, there is also evidence that Aβ acts as an antagonist at the nAChR.  

This is supported by studies showing an overall deficit in cholinergic neurotransmission 

as described above or through direct antagonist properties at receptors.  Non-aggregated 

Aβ42 at nanomolar concentrations was shown to reversibly block the function of the α7 

receptor without displacing BTX binding in rat hippocampal pyramidal neurons (Liu et 

al., 2001).  Voltage clamp studies in Xenopus oocytes expressing human wild-type and 

mutated α7, the L248T mutation which gives agonist activity to antagonists, showed 

Aβ42 blocked ACh-evoked currents in wild-type α7 nAChRs but activated the mutant 

receptors (Grassi et al., 2003).  Most recently, patch clamp electrophysiology studies 

documented the partially reversible α7 antagonist properties of Aβ42 in a rat pituitary 

tumor cell line expressing either human or mouse α7 receptors (Spencer et al., 2005).  In 

rat frontal cortical synaptosomes, Aβ reduced K+-stimulated ACh release and nicotine 

induced calcium influx by 75 percent.  Aβ42 decreased the function of α7 in an 

irreversible manner whereas Aβ40 produced a milder, reversible inhibition (Lee and 

Wang, 2003).  Nanomolar concentrations of Aβ40 inhibited K+-evoked ACh release in 

hippocampal slices from young and aged rats, and aged rats demonstrating cognitive 

impairments, measured by Morris water maze performance, showed greater sensitivity to 

this effect (Vaucher et al., 2001).  Intracerebroventricular injection of Aβ42 resulted in 

antagonism of α7 nAChRs, as the peptide blocked a hemodynamic response elicited by 

brain injection of the selective α7 agonist, choline, confirming Aβ’s actions in vivo (Li 

and Buccafusco, 2004).   

17 
 



Aβ42 at nanomolar concentrations blocked both postsynaptic α7 and to a greater 

degree non-α7 nAChR currents on hippocampal interneuron slice preparations (Pettit et 

al., 2001).  Aβ40 and 42 inhibit whole cell membrane currents of α4β2 and to a lesser 

extent α7 nAChRs expressed in Xenopus oocytes as well as in the Torpedo electric organ 

model of muscular nAChRs (Tozaki et al., 2002).  Patch clamp studies in SH-EP1 cells 

heterologously expressing α4β2 nAChRs revealed that Aβ42 inhibits function with much 

higher affinity for the α4β2 receptor than α7 receptors in a non-competitive manner (Wu 

et al., 2004).  In addition, in rat cortical neurons, Aβ impaired muscarinic receptor 

activity by the inhibition of G-protein coupling to M1, M3, and M5 mAChRs.  Aβ caused 

impaired carbachol induced GTPase activity, inositol phosphate accumulation, and Ca2+ 

release from intracellular stores, all without toxicity to neurons (Kelly et al., 1996). 

The contradictory properties of Aβ at nAChRs may be due to differences in the 

tissue models, experimental conditions such as Aβ concentrations, or detection methods 

employed.  Notably, in a recent report a unique nAChR subtype, α7β2, was discovered in 

rat basal forebrain cholinergic neurons, and Aβ demonstrated high affinity binding to this 

subtype and functional inhibition (Liu et al., 2009).  

Aβ  modulates cholinergic receptor expression and neurotransmission in vitro.  In 

vitro studies have shown alterations in nAChR expression following Aβ exposure.  

Exposure of cultured rat hippocampal slices with Aβ42 caused a two fold increase in α7 

nAChR expression (Dineley et al., 2001).  By contrast, in PC12 cells that do not express 

the α4 nAChR, both Aβ40 and Aβ25-35 treatment resulted in a decrease in α3 and α7 

nAChR protein, EPI and BTX binding (Guan et al., 2001; Guan et al., 2003), and a 

decrease in α3 and α4 nAChR mRNA. Further, β2 nAChR protein expression was 

reduced; however, only the Aβ25-35 fragment resulted in a reduction in β2 mRNA. 

(Guan et al., 2001).  The disparity in nAChR expression between models may be due to 

the difference in cell type or the use of aged or aggregated Aβ peptide.  The latter group 

used this method by which Aβ was heated to 37°C for a period of time forming soluble 

oligomers.  In rat primary hippocampal cells, aged Aβ42 caused no change in BTX 

binding in areas where fibrils were detected, although this resulted in toxicity including 

retraction of dendrites, cell body shrinkage, but no change in neuronal number (Lain et 
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al., 2005).  In primary rat cortical and hippocampal astrocytes, aged Aβ42 exposure for 

48 hours caused an upregulation in α7, α4, and β2 mRNA and protein expression (Xiu et 

al., 2005). 

The Aβ peptide is implicated in the dysfunction of cholinergic neurotransmission.  

In cortical and hippocampal rat brain slices, non-aggregated Aβ peptides inhibited K+ -

mediated ACh release (Kar et al., 1996; Kar et al., 1998), and in synaptosomes from the 

hippocampus, frontal cortex, and striatum, decreased high affinity choline uptake 

(HACU) without altering ChAT (Kar et al., 1998).  In addition, Aβ42 inhibits K+-evoked 

ACh release from rat cortical synaptosomes (Wang et al., 1999a) and 

electrophysiological studies in acutely dissociated rat cholinergic basal forebrain neurons 

from the diagonal band of broca, showed that Aβ (40 and 25-35) decreased K+ channel 

currents and increased depolarization.  RT-PCR showed this effect to be selective to 

cholinergic neurons (Jhamandas et al., 2001).  In immortal rat cell lines expressing a 

cholinergic phenotype, Aβ resulted in a dose dependent inhibition of mitochondrial 

function while cells expressing a serotonergic phenotype were not affected by this 

toxicity (Olesen et al., 1998).  In primary rat septal neurons, aggregated Aβ40 and 25-35 

caused neurotoxicity and up to a 60 percent decrease in ChAT activity (Zheng et al., 

2002).  In addition, aggregated Aβ42, but not fresh Aβ40 or Aβ42, has been shown to 

increase AChE activity by up to 35 percent in mouse primary cortical neurons without 

eliciting toxicity.  This effect was enhanced by α7 nAChR agonists and blocked by 

antagonists (Fodero et al., 2004).  In the SN56 mouse cell line model of basal forebrain 

cholinergic neurons, non-aged Aβ peptides under non-toxic conditions caused reduced 

ACh content, ChAT activity, but no change in AChE activity (Pedersen et al., 1996).  

This finding was confirmed in primary rat septal and basal forebrain cholinergic neurons 

in which non-aged Aβ42, but not Aβ40 at physiologic concentrations of 10nM 

suppressed intracellular ACh levels and ACh synthesis rate, and 100nM caused a 

decrease in pyruvate dehydrogenase (PDH) activity, an enzyme that converts pyruvate to 

acetyl-CoA needed for ACh synthesis.  In these cells, Aβ42 was not cytotoxic and caused 

no change in choline uptake, AChE activity or staining, or ChAT activity (Hoshi et al., 

1997).   
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Exogenous Aβ disrupts cholinergic function and cognitive behavior in rodents.  

An alternative to the use of transgenic mice for the study of Alzheimer pathophysiology 

involves direct Aβ administration into the brains of rodents.  Exogenous delivery of Aβ 

through intracerebroventricular (i.c.v.) administration, either by single injection or 

osmotic mini-pump infusion impairs cholinergic neurotransmission and behavioral 

indices of memory and cognition.  Intracerebroventricular administration of the Aβ 

peptide in rats resulted in a decrease in cortical and hippocampal ChAT activity 

(Nabeshima and Nitta, 1994; Nitta et al., 1994), a decrease in nicotine-evoked nAChR 

depolarization and release of ACh in the frontal cortex and hippocampus (Itoh et al., 

1996; Olariu et al., 2001; Tran et al., 2001; Tran et al., 2003), but no change in AChE 

(Nabeshima and Nitta, 1994).  Impairments in cognitive assessments including Morris 

water maze (Nabeshima and Nitta, 1994; Nitta et al., 1994; Olariu et al., 2001), passive 

avoidance (Nabeshima and Nitta, 1994; Olariu et al., 2001), and radial eight arm maze 

tasks (Tran et al., 2001) were observed in addition to an increase in anxiety (Olariu et al., 

2001) .  However, injection of Aβ directly into the cortical and hippocampal parenchyma 

revealed toxicity confined to the site of injection which was not selective to cholinergic 

neurons (Emre et al., 1992).  When injected into the medial septum of rats, Aβ caused a 

decrease in basal and K+-evoked ACh release and a decrease in septal ChAT 

immunoreactive neurons (Harkany et al., 1995) with no change in septal or cortical 

ChAT activity (Abe et al., 1994).  Aged Aβ injected into the nucleus basalis resulted in a 

fibril deposit along with decreases in basal and K+-stimulated ACh release in the parietal 

cortex, ChAT immunoreactivity, and performance in the object recognition task of 

cognition (Giovannelli et al., 1995).  In mice, i.c.v. injection of the APP cleavage 

product, the carboxy-terminal fragment (CT105), which is the peptide produced from the 

actions of β-secretase before γ-secretase acts to release the Aβ peptide, resulted in a 

decrease in hippocampal and cortical ACh levels.  PDH activity was reduced after 

exposure to either CT105 or the Aβ peptide following i.c.v injection, but there was no 

change in ChAT or AChE activities.  In addition, spatial memory performance in the 

Morris water maze and the Y-maze task was impaired more severely in the CT105 treated 

mice compared to Aβ treated mice (Choi et al., 2001). 

20 
 



Cholinergic neurotransmission regulates APP processing.  Neuronal activity, in 

particular cholinergic neurotransmission, has been implicated in the regulation of APP 

processing.  So not only does the interplay between the cholinergic system and amyloid 

pathology in AD involve Aβ’s effect on cholinergic neurotransmission, the loss of 

cholinergic innervation leads to aberrant APP processing which may exacerbate 

pathology.  This is demonstrated in animal models of cholinergic deafferentation.  

Selective immunolesions of the rat basal forebrain with unilateral cerebroventricular 

injection of 192 IgG-saporin conjugated to the low affinity growth factor receptor 

specific to cholinergic neurons caused a bilateral loss (90-95 percent) of ChAT positive 

cholinergic neurons of the basal forebrain (Leanza, 1998; Lin et al., 1999), and 

cholinergic denervation as measured by AChE staining (Leanza, 1998; Lin et al., 1998; 

Lin et al., 1999).  A decrease in AChE staining occurred in the nbM, septal nucleus 

(horizontal limb of the diagonal band) (Lin et al., 1998), frontal cortex, and hippocampus 

(Lin et al., 1998; Lin et al., 1999).  This lesion also caused APP expression increases of 

20 percent in the frontal cortex and 30 percent in the CA3 subfield of the hippocampus 

(Lin et al., 1998), and one study showed an increase in expression of up to 70 percent in 

the cortex and hippocampus (Leanza, 1998).  In this model, downregulation of AChE 

expression in the frontal cortex and CA3 correlated with enhanced APP expression and 

greater impairments in Morris water maze performance (Lin et al., 1998).  In rabbits, this 

method led to Aβ deposition and increases in cortical Aβ40 and Aβ42 (Beach et al., 

2000).  Excitotoxic lesions of the rat nbM with N-methyl-D-aspartic acid, resulting in 

decreased ChAT and AChE activities, caused an increase in cortical APP measured in ex 

vivo polysomal systems (Wallace et al., 1991) due to an increase in mRNA synthesis 

(Wallace et al., 1993).  But, this laboratory found that serotonergic and noradrenergic 

lesions also caused enhanced APP expression (Wallace et al., 1993; Wallace et al., 1995).  

In addition, cholinergic and serotonergic lesions caused enhanced secretion of APP in 

CSF, and this effect was most pronounced in aged nbM lesioned rats (Wallace et al., 

1995).  The elevated CSF levels of secreted APP in cholinergic lesioned rats was a 

soluble form of APP that did not contain the cytoplasmic carboxy-terminal fragment, but 

a significant portion contained amino acid residues 1-28 of the Aβ peptide, while low Aβ 

peptide was detected.  There was also an increase in the carboxy-terminal fragment in the 
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cerebral cortex (Wallace et al., 1995).  Fimbria-fornix transection, a functional 

hippocampal lesion, resulted in accumulation of APP immunoreactivity near cholinergic 

fiber degeneration in the hippocampus of rats (Beeson et al., 1994); however, in mice 

overexpressing both human APP and PS1, the lesion did not alter the processing or 

expression of APP when tested out to 18 months of age (Liu et al., 2002b; Liu et al., 

2002a).  Nevertheless, Morris water maze impairments were noted in lesioned and 

transgenic mice (Liu et al., 2002b).  In contrast, the application of current flow to produce 

cholinergic denervation in mice overexpressing human APP (the APP23 model) resulted 

in reduced Aβ levels in the lesioned hemisphere (Boncristiano et al., 2002).   

Combining the MCI findings, the data indicating an early elevation in nAChR 

expression in AD mouse models, and the data demonstrating the interaction of α7 

nAChRs and Aβ suggest the α7 nAChR protein may be an early target in Alzheimer’s 

disease.  Our laboratory was interested in determining if nAChR changes occur as an 

early event prior to the development of neuropathology or if receptor alterations occur as 

a late consequence of disease.  This leads to the first research question addressed by the 

dissertation:  Are changes in the α7 nicotinic acetylcholine receptor an early marker or a 

late consequence in experimental Alzheimer’s disease?  Transgenic mouse models may 

be used for mechanistic studies to investigate the cause and effect relationship between 

dementia and nAChR loss.  Loss of nAChRs early in the disease process may be the 

cause of dementia or dementia and the associated neuropathological processes may be the 

cause of the loss of nAChR expression.  An early loss of nAChRs would suggest a 

possibility for therapeutic benefit through pharmacological interventions targeting 

nAChRs. 

Traumatic Brain Injury 

Alzheimer’s disease and traumatic brain injury are linked 

The study of Alzheimer’s disease and traumatic brain injury (TBI) is invariably 

linked through a similarity in pathophysiological mechanisms, a shared disruption in 

cognitive function, and a potential causal relationship.  Alzheimer’s disease and traumatic 

brain injury share common pathophysiological processes that contribute to neuronal 

dysfunction and cell death.  For example the immune response following TBI and in the 

22 
 



presence of AD is a significant focus of research.  Inflammatory mediators including 

proinflammatory cytokines, prostaglandins, free radicals, complement, and the 

subsequent activation of microglia, are involved in disease progression (Sheng et al., 

1998; Aisen et al., 2003; Lucas et al., 2006).  Mitochondrial dysfunction and further 

oxidative stress also occurs (Querfurth and LaFerla, 2010).  There has been an extensive 

investigation of the role of excitotoxicity in which most of the attention has focused on 

enhanced glutamate neurotransmission.  Excitotoxic mechanisms involve intracellular 

calcium ion accumulation resulting in oxidative damage of lipids and proteins (Mattson, 

2003; Arundine and Tymianski, 2004; Mattson, 2007; Forder and Tymianski, 2009).  

Research in experimental models has been successful and invaluable in contributing to an 

understanding of the mechanisms involved.  However, most of these therapeutic 

modalities have not been proven to be beneficial in the clinical setting with the exception 

of memantine targeting excitotoxicity for the treatment of AD. 

Similarly to the symptomatology of AD, individuals living with TBI experience 

alterations in learning, memory, and behavior.  Because of its involvement in synaptic 

plasticity, deficits in the cholinergic system, have been shown to mediate decrements in 

cognitive processes (Levin and Simon, 1998; Paterson and Nordberg, 2000).  A loss of 

glutamate activity, a key mediator of synaptic plasticity, also contributes to cognitive 

impairments (Schaeffer and Gattaz, 2008).  Reductions in glutamate neurotransmission in 

early Alzheimer’s disease are thought to cause deficits in synaptic transmission.  The 

seemingly contradictory mechanisms of neurotransmitter deficits and excitotoxic 

processes underscore the complexity of these disease states.      

Many studies have been done to ascertain the association between a history of 

TBI and the development of AD.  Evidence has been derived from histopathological 

studies utilizing tissues from head injury cases, retrospective analyses, and cohort studies; 

extensive reviews of these data can be found in the following references (Lye and Shores, 

2000; Van Den Heuvel et al., 2007).  The first case report was documented in 1982 in 

which a 38 year old male presented with early onset AD 16 years after experiencing a 

severe TBI (Rudelli et al., 1982).  A retrospective analysis showing a positive link 

between head injury and dementia of the Alzheimer type followed soon thereafter 
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(French et al., 1985).  Since then, numerous epidemiological studies have confirmed this 

association while other studies could not establish a correlation.   

Pathologic changes reminiscent of AD have been observed following TBI.  Some 

studies have demonstrated the presence of Aβ deposition, while in other studies Aβ 

deposition has been limited and was not present in younger individuals (Van Den Heuvel 

et al., 2007).  TBI is associated with APP accumulation in damaged axons (Gentleman et 

al., 1993), and the colocalization of Aβ within axons has also been observed (Smith et al., 

2003)  and may lead to the formation of extracellular plaques.  In patients with severe 

TBI and the presence of diffuse axonal injury, Aβ42 and APP was significantly elevated 

in the CSF, but not in the plasma, within days of the injury (Olsson et al., 2004).  In 

patients sustaining a severe TBI, surgical resection of the lesioned temporal cortex 

demonstrated diffuse Aβ deposits in a third of the cases within hours following injury 

(Ikonomovic et al., 2004).  In a similar design, patients who demonstrated the presence of 

diffuse Aβ plaques (Aβ immunoreactivity in the extracellular space) in excised temporal 

lobe displayed greater concentrations of Aβ42, but not Aβ40, compared to patient tissues 

without plaques.  In addition, tissues with plaques showed a higher Aβ42 to Aβ40 ratio, 

and one half displayed the apolipoprotein E4 (APOE ε4) allele, a susceptibility factor for 

developing AD (DeKosky et al., 2007).  By contrast, one study found an absence of Aβ 

plaques but instead long term axonal deposition of Aβ in autopsied brains of patients who 

survived up to 3 years past injury.  The authors postulated that Aβ deposition 

immediately after injury may be removed through catabolic processes involving an Aβ 

degradation enzyme called neprilysin and that this process may be hindered by aging 

(Chen et al., 2009).   

The APOE ε4 allele is associated with Aβ deposition following TBI and has been 

associated with a poor outcome following TBI (Teasdale et al., 1997; Van Den Heuvel et 

al., 2007).  In addition, patients possessing the APOE ε4 allele had a ten fold greater risk 

of being diagnosed with AD after sustaining a TBI (Mayeux et al., 1995; Van Den 

Heuvel et al., 2007).  This evidence is not conclusive, for other studies have not shown an 

influence on outcome following TBI or an association with the development of AD 

(Jellinger, 2004; Mauri et al., 2006; Van Den Heuvel et al., 2007).  Lastly, in vivo models 
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have been employed to investigate the effects of TBI on the development of AD-like 

pathology and behavior.  For example, repetitive mild brain trauma (two controlled 

cortical injuries 24 hours apart) hastens Aβ accumulation and increases Aβ42 and Aβ40 

concentrations in nine month old Tg2576 mice compared to a single injury (Uryu et al., 

2002). 

Recently sports related TBI, namely concussion, among players in the national 

football league (NFL) has gained awareness.  An NFL sponsored telephone study of 1063 

retired NFL players showed that players under 50 years of age had a 19 fold increase in 

AD or other memory impairments after experiencing concussion (Weir et al., 2009).  In a 

previous study of retired NFL players, multiple concussions were directly related to the 

diagnosis of mild cognitive impairment and self-reported memory impairment, and 

retired players had an earlier onset of AD (Guskiewicz et al., 2005).  Athletes who have 

experienced concussion and subconcussive injuries and display behavioral and cognitive 

symptoms later in life have what is known as chronic traumatic encephalopathy (CTE).  

CTE was originally termed dementia pugilistica and was first demonstrated in boxers 

who developed memory impairments, parkinsonism, and behavioral and mood 

alterations.  CTE has a slow progression, as the brain displays atrophy and neurofibrillary 

tangles staining positive for tau protein.  However, diffuse Aβ plaques are much less 

common (McKee et al., 2009).  Considering the recent findings in the study of sports 

related TBI, collectively, the literature is supportive of TBI predisposing one to the 

development of dementia like syndromes or AD.   

Traumatic brain injury background  

Each year in the U.S. about 1.4 million individuals sustain a traumatic brain injury 

(TBI) leading to 50,000 deaths and 235,000 hospitalizations (Langlois et al., 2006).  

Traumatic brain injury frequently occurs in males ages 15-24, children ages five and 

younger, and senior citizens ages 75 and older (NINDS, 2002).   TBI is most commonly 

caused by motor vehicle accidents, as well as pedestrian and bicycle accidents, violence, 

and falls (in the elderly) (NINDS, 2002; Langlois et al., 2006).   Traumatic brain injury is 

classified as mild, moderate, or severe using the Glasgow Coma Scale (Teasdale and 

Jennett, 1974) that evaluates coma and impairments in consciousness by assessing eye 
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opening, motor response, and verbal response.  A score of 13-15 classifies a patient as 

having a mild form of injury.  A score of 9-12 indicates a moderate injury.  A score of 3-

8 and below classifies a patient with severe TBI.  (Saatman et al., 2008) (NINDS, 2002).   

Mild traumatic brain injury is the most common form of head injury occurring in 

about 75 percent of cases and is also known as concussion (NCIPC, 2003).  Concussion 

occurs when an impact to or forceful motion of the head causes a brief alteration in 

mental status or loss of consciousness.  Mild TBI may also present as headache, 

dizziness, confusion, blurred vision, tinnitus, changes in mood and behavior, and 

difficulties with memory, attention and thinking.  In the past few years, TBI has received 

an increase in awareness due to its prevalence in combat in the wars in Iraq and 

Afghanistan, as TBI has been referred to as the “signature injury” of the war (Hoge et al., 

2008).  Combat related mild traumatic brain injuries, many of which are characterized as 

blast injuries, are associated with post-traumatic stress disorder, depression, and other 

health concerns.  In addition, mild TBI is receiving more attention as athletes and school 

children participating in sports are afflicted.   

Moderate to severe injuries can include skull fractures, which may cause 

contusions or bruising of the brain parenchyma (NINDS, 2002).  A penetrating injury 

occurs when a foreign object breaks through the skull and causes damage to brain tissue 

including cavitation of the tissue if traveling at a high velocity (Chesnut, 2007; Ling and 

Marshall, 2008).  This type of injury occurs in only 10 percent of cases, almost all due to 

firearms, but is 90 percent fatal (Thurman et al., 1999).  Conversely, a depressed skull 

fracture may result in contusion without a penetrating wound (Chesnut, 2007).  Most 

injuries are referred to as non-penetrating or closed injuries.  For example, the coup and 

contrecoup injuries are caused by movement of the brain within the skull resulting in 

contusions at the point of impact and distal to the impact area, respectively (NINDS, 

2002; Gaetz, 2004).  Additionally, diffuse axonal injury occurs from a rotation or 

stretching (shearing in the most severe cases) of the white matter, and a less diffuse, 

limited form is known as traumatic axonal injury (LaPlaca et al., 2007; Saatman et al., 

2008).  Furthermore, hematomas may present as bleeds within the brain parenchyma 

called intracerebral hematomas or within the meninges, known as epidural and subdural 

hematomas (NINDS, 2002).  In addition to clinical severity of injury and causal factors 

26 
 



for the injury, traumatic brain injury can be classified by four pathoanatomic outcomes 

based on imaging and autopsy findings.  These include contusions, subarachnoid 

hemorrhage, hematomas and diffuse axonal injury (Saatman et al., 2008).   Glasgow 

coma scale score, age, pupillary diameter and light reflex, hypotension, and 

pathoanatomy are early predictors of outcome in severe TBI (Marion, 2006). 

TBIs are also defined as either focal or diffuse in order to describe mechanisms 

involved in pathophysiology and investigate potential interventions.  A focal injury is due 

to an impact (loading) force and includes skull fractures, epidural hematomas, and brain 

contusions.  A diffuse injury is due to an inertial force and includes concussion, subdural 

hematoma, and diffuse axonal injury (LaPlaca et al., 2007; Saatman et al., 2008).  In vivo 

models of experimental TBI include both focal and diffuse methodologies (LaPlaca et al., 

2007).  Two widely used methods of focal injury resulting in a contusion injury are the 

controlled cortical impact (Lighthall, 1988; Dixon et al., 1991; Goodman et al., 1994) and 

the fluid percussion injury (Dixon et al., 1987), which displays elements of a diffuse 

injury as well.  Other paradigms include the weight drop model of focal injury and the 

impact acceleration (Marmarou et al., 1994) and rotational acceleration models (Smith et 

al., 2000) of diffuse injury.  Common animal models employed in experimental TBI are 

reviewed by Cernak (2005).  

  Traumatic brain injury involves two pathophysiological processes.  The primary 

injury occurs at the moment of impact with mechanical damage to cell membranes 

affecting neuronal cell bodies, axons and blood vessels (Bramlett and Dietrich, 2007).  In 

just hours following injury, the cerebral cortex, hippocampus, thalamus and substantia 

nigra are susceptible to neural impairment and cell death (McIntosh et al., 1998).  

Further, a secondary injury follows involving a number of pathophysiological processes 

varying in onset and duration, some acute and some chronic, lasting up to one year.  This 

process occurs in more severe injuries, as a mild TBI would be less likely to generate the 

full scope of secondary injury mechanisms.  This secondary injury includes ischemia, 

calcium mediated excitotoxicity, mitochondrial dysfunction, free radical production, 

altered cerebral blood flow, edema, intracranial hypertension, cell death, and 

inflammation (Bramlett and Dietrich, 2007; Greve and Zink, 2009).   Early disruptions in 

the blood brain barrier and decreased cerebral blood flow occur.  Cerebral blood flow 
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falls due to reductions in cerebral perfusion pressure which leads to ischemia and altered 

metabolism as well as vasogenic and cytotoxic edema resulting in neuronal death due to 

necrosis.  The presence of edema and hematoma causes elevations in intracranial pressure 

and further decreased cerebral blood flow. 

 Excitotoxicity has been the focus of extensive study (Mattson, 2003).  The most 

widely studied mediator has been glutamate and its activation of NMDA receptors 

(Arundine and Tymianski, 2004).  Other receptor systems highly permeable to calcium 

such as the α7 nAChR may be involved, as an increase in cholinergic activity measured 

by elevated ACh has been documented immediately following experimental injury (Saija 

et al., 1988).  However, Biegon et al. (2004) found a 50 percent loss in glutamate NMDA 

receptors in a mouse model of closed head injury by one hour following injury, and 

agonist stimulation of the NMDA receptor 24 and 48 hours following injury provided 

cognitive improvement out to 14 days of testing.  Thus, the authors concluded there is a 

short window of hyperexcitability for treatment with antagonist.  The excitotoxic process 

is initiated by a massive neuronal depolarization and release of excitatory amino acid 

neurotransmitters following TBI (Greve and Zink, 2009).  Depolarization of neurons, 

glia, and vascular endothelial cells causes excessive glutamate release and NMDA 

receptor stimulation associated with calcium influx.  Overactivity of intracellular calcium 

ion causes protein phosphorylation and mitochondrial dysfunction (Sullivan et al., 2005) 

thereby increasing reactive oxygen species, lipid degradation, proteolysis, ATP 

dysfunction, and apoptosis (McIntosh et al., 1998; Greve and Zink, 2009).  In addition, 

NMDA receptor activation causes nitric oxide production and further generation of 

peroxynitrite through reaction with mitochondrial superoxide anions contributing to DNA 

fragmentation, lipid peroxidation and amino acid breakdown (Greve and Zink, 2009).  

Additional oxidative damage occurs through hydrogen peroxide formed by 

catecholamine degradation and calcium induced arachidonic acid formation and 

subsequent free radical production.  Excess iron concentrations due to hemorrhage are 

available for catalysis of free radical products (Greve and Zink, 2009).  Further, the 

calcium dependent proteases, calpains, induce cytoskeletal degradation and impaired 

axonal transport.  
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Chronic inflammation involves upregulation of the proinflammatory cytokines, 

interleukin-1, interleukin-6, and tumor necrosis factor.  This in turn, results in receptor 

expression inducing microglial activation and inflammatory cell signaling cascades 

which are associated with programmed cell death (Bramlett and Dietrich, 2007).   While 

preclinical investigations have been successful, NMDA receptor antagonists targeting 

glutamate excitotoxicity and steroids aimed at reducing inflammation have not 

demonstrated clinical benefit (Hatton, 2001; Narayan et al., 2002). 

Treatments targeting the mediators of secondary injury have been studied, but to 

date, no drugs are clinically approved for neuroprotection or enhancement of functional 

recovery in TBI patients.  The mainstay of treatment continues to be structured clinical 

management of the patient with supportive care such as cerebral hemodynamic care and 

prevention of infections, seizures, and deep vein thrombosis which all may occur in the 

hospitalized TBI patient (Hatton, 2001).   Clinical guidelines for the treatment of severe 

TBI have been formulated using evidence based medicine (Marion, 2006; Chesnut, 2007; 

Ling and Marshall, 2008).  Resuscitation, intubation, and cardiac life support are first 

employed.  Computed tomography (CT) imaging is used to characterize the injury and 

direct treatment.  Oxygenation can be achieved by use of supplemental oxygen or 

endotracheal intubation.  Fluid infusion can be used to resuscitate blood pressure, and 

cerebral perfusion pressure (CPP) must be maintained to prevent tissue damage.    CPP 

can be raised by elevating the mean arterial pressure or lowering the intracranial pressure.  

An intracranial pressure (ICP) monitor is inserted, ICP and CPP are monitored, and 

treatment of intracranial hypertension is initiated if needed.  ICP is managed through the 

use of mannitol, CSF drainage, hyperventilation induced vasoconstriction, surgical 

resection of the lesion, or decompressive craniectomy.  Nutritional support and routine 

ICU care are also employed.   Seizure prophylaxis within seven days of the TBI with 

phenytoin or valproic acid is initiated (Bratton et al., 2007d).  Prevention of deep vein 

thrombosis with compression stockings or use of low molecular weight heparin or 

unfractionated heparin (Bratton et al., 2007b) is also employed.  The use of jugular 

venous saturation or brain tissue oxygen monitoring for the measurement of cerebral 

oxygenation (Bratton et al., 2007a) is now recommended.  Lastly, the use of hypothermia 

may improve outcome (Bratton et al., 2007c). 
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Approximately 5.3 million Americans are living with long term functional 

changes in thinking, sensation, language, and emotion as a result of TBI (Thurman et al., 

1999; NINDS, 2002).  In 2005, it was estimated that approximately one percent of the US 

civilian population suffers from long term disabilities due to TBI (Zaloshnja et al., 2008).  

Characterized by deficits in arousal, attention, memory, and executive functioning, 

impairments in cognition are among the neurobehavioral/neuropsychiatric sequelae of 

TBI (Rao and Lyketsos, 2000; Arciniegas, 2003).  Executive function is defined as the 

ability to initiate, prepare, and make goals, know the consequences of those goals, and 

adapt to the outcomes (NINDS, 2002; Warden et al., 2006; Tsaousides and Gordon, 

2009).  It involves organizing, problem solving, and abstract reasoning (NINDS, 2002; 

Warden et al., 2006; Tsaousides and Gordon, 2009). 

Arciniegas and McAllister (2008) reviewed the neurobehavioral symptoms that 

can occur following TBI, known as posttraumatic encephalopathy, with a focus on more 

severe injuries.  Injuries to the entorhinal cortex and hippocampus can result in deficits in 

attention, working (short term), and declarative (pertaining to facts) memory.  When the 

amygdala is affected, emotional and social behavior abnormalities occur.  In particular, 

damage to the ventral forebrain disrupts cholinergic inputs to the neocortex and medial 

temporal lobe resulting in cognitive dysfunction including difficulties with attention, 

memory, and executive function.  When the reticular formation within the brain stem is 

involved, neurotransmission is disrupted including ACh tracts as well as dopamine, 

norepinephrine, serotonin, glutamate, and GABA (γ-aminobutyric acid) pathways 

between the cortex, thalamus, and spinal cord causing impaired consciousness, arousal, 

and attention.  Injury to the thalamus results in dysfunction of sensory and motor 

processing.  In the hypothalamus, lesions result in autonomic dysfunction of 

thermoregulation and feeding, endocrine impairments, and sleep-wake aberrations.   In 

the frontal cortex, involvement of specific subregions may lead to disinhibition, 

irritability and aggression, impaired executive function and working memory, or apathy.  

White matter involvement causes a disruption in information processes regarding 

emotion, cognition, and behavior.  Silver and coworkers (2009) reviewed these 

relationships similarly and noted that some individuals with mild TBI may be affected in 

the same manner. 
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   Patients with TBI of all severity levels may experience neurobehavioral 

symptoms including cognitive disorders, altered personality, major depression, anxiety 

disorders including post traumatic stress disorder, substance abuse, headache, dizziness, 

nausea, fatigue, sleep disturbances, and seizures that may be addressed 

pharmacotherapeutically (Riggio and Wong, 2009).  Depression and cognitive 

impairment are most common following mild TBI; depression can be treated with the 

SSRIs, citalopram and sertraline, and cognitive impairment has been treated with the 

AChEIs, rivastigmine and donepezil, and the psychostimulant, methylphenidate (Silver et 

al., 2009).   Current therapeutic approaches are reviewed by the neurobehavioral 

guidelines working group (Warden et al., 2006).   The use of AChEIs in TBI is discussed 

in greater detail later in this chapter. 

Cholinergic abnormalities in human and experimental traumatic brain injury 

Similar to AD, both clinical and experimental investigations have demonstrated a 

disruption in cholinergic neurotransmission following TBI.  Functional neurologic 

recovery from experimental brain injury in rats inducing motor dysfunction, has been 

shown to involve the basal forebrain cholinergic system and cholinergic mediated cortical 

plasticity and motor learning (Conner et al., 2005).  In a clinical study, imaging and 

neuropsychological examinations linked the cognitive sequelae of TBI to the basal 

forebrain (Salmond et al., 2005).  Postmortem brain studies of individuals with fatal head 

injuries showed deficits in cortical and cingulate gyrus ChAT activity and cingulate 

synaptophysin immunoreactivity, a measure of synapses, both indicative of presynaptic 

cholinergic deficits following TBI (Murdoch et al., 1998). In addition, cortical 

cholinergic innervation was disrupted due to damage of the nucleus basalis of Meynert 

(Murdoch et al., 2002).  Compared to control brains, however, [3H]-nicotine binding sites 

measuring nAChRs were unaltered (Murdoch et al., 1998).  Another report showed 

temporal cortical ChAT activity decreased by 50 percent in the postmortem brains of 

patients with fatal head injuries, but M1 and M2 mAChR binding was unaltered (Dewar 

and Graham, 1996). 

In experimental traumatic brain injury, VAChT immunostaining was enhanced in 

the hippocampus and cortex, and M2 mAChR immunoreactivity was decreased in the 
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hippocampus one year following a 2.5 mm controlled cortical impact (CCI) (Dixon et al., 

1999).  Further studies showed this effect as early as two weeks in the hippocampus 

(Ciallella et al., 1998) with no change in mRNA (Shao et al., 1999).  Binding of [3H]-

vesamicol, indicative of VAChT, density was decreased as much as 50 percent 

immediately following CCI (Donat et al., 2008).  Using a more diffuse model of TBI, 

fluid percussion resulted in memory deficits and decreases in ChAT activity in the dorsal 

hippocampus and frontal and temporal cortices one hour post injury (Gorman et al., 

1996).  However, this was accompanied by an increase in ChAT activity in the parietal 

cortex and a delayed increase in the medial septal area.  Fluid percussion injury also 

caused a decrease in hippocampal M2 mAChR binding 24 hours following injury with no 

change in the M1 mAChR (DeAngelis et al., 1994).  In contrast, enhanced binding of 

total mAChR sites was reported 15 days post injury in the hippocampus and neocortex 

(Jiang et al., 1994), but no change was found at one or 24 hours following injury and 

mAChR affinity was increased at one hour in the hippocampus (Lyeth et al., 1994).  And 

most recently, mAChR was shown to be diminished at 24 and 72 hours following 

controlled cortical impact in various brain regions (Donat et al., 2008).  Taken together, 

deficits in cholinergic neurotransmission occur following TBI presynaptically.  Studies of 

the nAChR have been limited, but mAChRs show varying responses.  It is possible that 

upregulation may be a result of compensatory mechanisms due to diminished ACh.  

Inconsistent findings for cholinergic receptors and other markers may be due to 

differences in experimental methodologies employed, extent of injury severity, brain 

region, and time period following TBI in which assessments were made. 

Nicotinic AChR changes in experimental TBI 

Previous studies from our laboratory have shown that experimental traumatic 

brain injury causes a widespread and significant loss of α7 nAChR binding in 

hippocampal and cortical brain regions (Verbois et al., 2000).  α7 nAChR down-

regulation occurs rapidly following TBI (within one hour), and persists for at least 21 

days in some brain regions.  Forty-eight hours after rats were subjected to a mild 1 mm 

CCI, there were significant decreases in multiple cortical and hippocampal brain regions 

in BTX binding, representing α7 nAChR density, in both the injured and uninjured sides 
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of the brain compared to sham-operated animals.  Deficits were found in auditory cortex, 

CA1, CA2 and CA3 subfields of the hippocampus, dentate gyrus, stratum oriens, 

subiculum and superior colliculus.  In rats receiving a moderate 2 mm injury, many 

regions on the contralateral side of the brain showed a significant decrease in α7 nAChR 

densities compared to sham, but hippocampal BTX binding was even further reduced on 

the injured side including some subfields demonstrating a 50 percent reduction compared 

to sham.  Conversely, EPI binding, measuring non-α7 nAChRs, was not diminished and 

was found to be significantly elevated in the auditory cortex following mild or moderate 

TBI.  In addition to the inconsistent effects on non-α7 nAChRs by region, enhanced 

mAChR binding, measured by [3H]-quinuclidinyl benzilate (QNB), occurred following 

mild injury and reduced expression was noted following moderate injury.  These results 

were less robust suggesting TBI related deficits were selective for α7 nAChRs.   

In a time course study, 2 mm injury caused persistent deficits in α7 nAChR 

binding in the stratum oriens, lateral blade of the dentate gyrus, and CA2 subfield of the 

hippocampus at one hour following TBI through 21 days, the last time point tested 

(Verbois et al., 2002) .  Hippocampal CA1 deficits occurred at one hour but returned to 

baseline by the third day.  Deficits in the subiculum and cortex occurred by one day but 

were transient only lasting 72 hours.  The CA3 hippocampal subfield and superior 

colliculus showed deficits by one day and 72 hours, respectively, but continued during 

the 21 day period of testing.  Deficits in EPI binding were delayed, with some regions 

showing transient changes in expression including the auditory cortex, a thalamic 

subregion, and the subiculum.  Other regions such as the medial geniculate nucleus, 

dentate gyrus, superior colliculus, and another thalamic subregion were more persistent.  

We postulate nAChR deficits following experimental TBI may contribute to long term 

cognitive deficits in a variety of tests.  Moreover, TBI is associated with cognitive 

impairment demonstrated in the Morris water maze task of learning and memory, and 

treatment with nicotine (Verbois et al., 2003b; Verbois et al., 2003a) attenuates this 

deficit, and nAChR selective ligands such as choline (Guseva et al., 2008) and others 

(unpublished data) may provide benefit.  Thus, we hypothesize that α7 nAChRs are 

important mediators of cell death and survival pathways in the hippocampus and cortex, 
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and the pharmacological modulation of α7 nAChRs may be a promising treatment 

modality.   

Galantamine as a possible pharmacotherapy in TBI 

AChEIs used for the treatment of Alzheimer’s disease, including galantamine, 

may have the potential to improve the cognitive dysfunction associated with traumatic 

brain injury and are the subject on ongoing research.  Galantamine hydrobromide is 

marketed as Razadyne® ER (extended release) and Razadyne® (formerly Reminyl®) 

and is also available in generic form (Robinson and Plosker, 2006; Ortho-McNeil 

Neurologics, 2008).  Galantamine is FDA approved to improve cognition and activities of 

daily living and slow the progression of cognitive symptoms in patients with mild to 

moderate Alzheimer’s disease.  Along with the NMDA receptor antagonist, memantine 

(Namenda®), galantamine and three other AChEIs, donepezil (Aricept®), rivastigmine 

(Exelon®), and tacrine (Cognex®) are the only FDA approved drugs employed for the 

treatment of AD.  Tacrine was the first approved AChEI; however, its use is limited due 

to hepatotoxicity (Watkins et al., 1994; Cummings, 2004).  In clinical trials, AChEIs 

demonstrate cognitive improvement compared to baseline while placebo groups show 

decline, with long term benefits in global function and cognition.  In a one year study of 

donepezil treatment in AD, patients’ cognitive status remained close to their baseline for 

one year while the placebo group significantly worsened (Winblad et al., 2001).  In 

addition, AChEIs allow function and behavior to be maintained for longer periods and 

provide reductions in caregiver burden (Wilkinson et al., 2004).  In one clinical trial 

studying galantamine, patients treated for three years experienced an 18-month period 

without cognitive decline (Raskind et al., 2004). 

Galantamine (Robinson and Plosker, 2006; Ortho-McNeil Neurologics, 2008) is 

administered with an initial dose of 8 mg/day followed by a dose escalation after four 

week intervals of the previous dose, depending on patient tolerability up to 16-24 

mg/day.  Extended release galantamine (Razadyne® ER) is administered once daily (in 

the morning with food) while the daily dose of the immediate release form of 

galantamine is divided twice daily.  An oral solution is also available.  Adverse reactions 

may include nausea, vomiting, dizziness, depression, anorexia, and weight loss.  
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Galantamine has an elimination half-life of 7-8 hours; it undergoes hepatic metabolism 

by cytochrome P450 (CYP) isoforms CYP2D6 and CYP3A4, and is also glucuronidated 

and excreted unchanged in the urine.   

Both clinical and experimental investigations have demonstrated a disruption in 

cholinergic neurotransmission following TBI.  For example, the cognitive sequelae of 

TBI has been linked to the basal forebrain (Salmond et al., 2005).  In this study, imaging 

was performed by MRI scans and voxel-based morphometry, a technique that was used to 

detect decreases in grey matter density in the basal forebrain region containing ACh cell 

bodies and in cortical and hippocampal regions containing ACh projections.  Attempts 

have been made to treat the cognitive sequelae of TBI with cholinergic enhancing drugs.  

Patients with AD and TBI may exhibit similar memory dysfunction and other cognitive 

impairments.  There are several reports of the clinical evaluation (clinical trials or clinical 

experience) of AChEIs following TBI, most of which have been conducted with 

donepezil (Aricept®), tacrine, or physostigmine resulting in cognitive improvement 

(Levin et al., 1986; Cardenas et al., 1994; Pike et al., 1997; Taverni et al., 1998; Masanic 

et al., 2001; Zhang et al., 2004; Khateb et al., 2005).  In one report following AChEI use 

in patients with TBI related chronic impairments including target symptoms such as poor 

memory, patients treated with long term galantamine for 6-33 months as well as those 

treated with other AChEIs expressed benefits in functioning (Tenovuo, 2005).  

Furthermore, one case report showed galantamine in combination with the atypical 

antipsychotic, risperidone, improved cognitive deficits in a patient experiencing 

schizophrenia-like psychosis as a result of severe TBI  (Bennouna et al., 2005).  

However, according to another case report, galantamine was not beneficial in improving 

cognitive and behavioral symptoms following a severe TBI (Johnson et al., 2007).  

In animal models, galantamine induces upregulation of nAChRs.  Galantamine 

administration caused an upregulation in [3H]-cytisine binding in hippocampus and [125I]-

BTX binding in the cortex of FVB/N (control) mice (Svedberg et al., 2004).  Rabbits 

treated with galantamine also showed enhanced nAChR expression and improved 

learning and memory (Woodruff-Pak and Santos, 2000; Woodruff-Pak et al., 2001).  

Galantamine has also been shown to reverse cognitive impairment caused by the non-

competitive nAChR antagonist, mecamylamine (Woodruff-Pak et al., 2003). 
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The efficacy of AChEIs does not necessarily correlate with the degree of enzyme 

inhibition.  Galantamine is a long acting, centrally active, selective, competitive and 

reversible AChEI.  While galantamine is only a modest AChEI, it acts as an allosteric 

potentiating ligand for the nicotinic receptor, and studies have shown that galantamine 

may elicit a neuroprotective effect through its actions on nAChRs (Coyle et al., 2007; 

Wang et al., 2007).  While donepezil (Taverni et al., 1998; Khateb et al., 2005) has 

demonstrated improvements in cognitive measures, the strong APL activity of 

galantamine suggests its ability to enhance nicotinic receptor activation is involved in its 

neuroprotective effects.  

Allosteric potentiating ligands (APLs) (Schrattenholz et al., 1996; Maelicke et al., 

2001) , which are also known as positive allosteric modulators (PAMs) (Faghih et al., 

2007), of the nicotinic receptor are sensitizing agents that elicit their actions through 

interactions with a binding site other than the classical pharmacophore upon which ACh, 

and other antagonists and agonists, are thought to bind (Pereira et al., 1993; Pereira et al., 

1994; Schrattenholz et al., 1996).  Exposure to these drugs alone does not cause receptor 

desensitization or compensatory changes in neurotransmitter expression.  There are both 

positive and negative APL sites located on the α subunit of nAChRs that modulate 

channel opening and ion conductance (Pereira et al., 1993).  The AChEIs, physostigmine, 

tacrine, and galantamine all display positive APL activity (Svensson and Nordberg, 

1996).  Electrophysiological studies show galantamine is an APL at both α4β2 nAChRs 

(Samochocki et al., 2000) and α7 nAChRs (Maelicke et al., 2001).   

APLs may act by sensitizing nicotinic receptors by producing enhanced channel 

opening.  In electrophysiological studies of human embryonic kidney cells expressing 

human α4β2 nAChR, galantamine potentiates acetylcholine mediated whole-cell 

responses (increased peak amplitude).  Galantamine also shifts the dose response curve to 

the left thereby enhancing affinity to α4β2, and in a cell line expressing chimeric α7 this 

was evident to a greater degree for α7 (Maelicke et al., 2001).  Galantamine acts as an 

APL at lower concentrations (0.8µM -5µM) and at higher concentrations is a direct 

channel blocker like other AChEIs, specifically tacrine (Maelicke et al., 2001).  APLs 

facilitate synaptic neurotransmission (Santos et al., 2002).  Galantamine enhanced 

nAChR mediated GABAergic and glutamatergic transmission in rat hippocampal and 
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human cortical slices (Santos et al., 2002), and at a very specific time point (3 hour 

pretreatment) in rats galantamine can enhance nicotine mediated, norepinephrine release 

in the hippocampus (involving cognition) but not dopamine from the nucleus accumbens 

(Sharp et al., 2004).  And recently, galantamine has been shown to attenuate the cognitive 

deficits caused by the intracerebroventricular injection of Aβ in mice due to 

galantamine’s APL actions resulting in enhanced dopamine neurotransmission (Wang et 

al., 2007). 

The neuroprotective properties of galantamine treatment have been demonstrated 

in several in vitro models.  Galantamine prevented neurotoxicity in oxygen and glucose 

deprived rat hippocampal slices as measured by lactate dehydrogenase release when 

given before and after (Sobrado et al., 2004) the insult.  Galantamine treatment of SH-

SY5Y human neuroblastoma cells and bovine chromaffin cells both expressing nAChRs 

(Arias et al., 2004) protected cells against soluble Aβ and the Ca2+ depleting, 

thapsigargin, both causing apoptotic induced toxicity.  This effect was reduced by BTX 

and caused upregulation of α7 receptors and expression of the anti-apoptotic protein, Bcl-

2.  By contrast, tacrine was not neuroprotective (Arias et al., 2004).  In fetal rat cortical 

primary cultures, galantamine has been shown to ameliorate neurotoxicity produced by 

the cotreatment of glutamate and Aβ (which enhances glutamate toxicity), and this was 

partially blocked by the α7 nAChR antagonists, MLA and BTX but not the α4β2 

receptor antagonists, DHβE, suggesting an allosteric site.  Galantamine was also shown 

to enhance the neuroprotective effect of nicotine against glutamate induced toxicity in a 

study in which either treatment alone did not (Kihara et al., 2004) .  The authors 

concluded the response was due to actions on nAChR downstream signaling cascades 

involved with phosphatidylinositol 3-kinase (PI3K) directly or through promoting 

nicotine’s effect on nAChRs.   

Due to the combination of AChEI activity and APL properties at nAChRs, the 

study of galantamine in a model of TBI may better characterize galantamine’s 

modulatory properties at nAChRs and potential cognitive benefit.  The second research 

question is then addressed in the dissertation:  Does galantamine, a commonly used 

pharmacotherapy for functional improvement in AD patients, target nicotinic receptor 

deficits to improve cognitive impairment following experimental brain injury?   
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The regulation of nAChRs is of particular interest in that pharmacological 

modulation of receptor density does not involve transcriptional mechanisms.  For 

example, when mice were chronically treated with nicotine resulting in nAChR 

upregulation throughout the brain demonstrated by [3H]-nicotine binding (Marks et al., 

1983; Marks et al., 1985; Marks et al., 1992; Robinson et al., 1996), there was no 

upregulation of α4 or β2 mRNA.  Chronic corticosterone treatment caused 

downregulation of the α7 nAChR in mice as demonstrated by [125I]-BTX binding (Pauly 

and Collins, 1993; Robinson et al., 1996), and this occurred with no change in mRNA 

(Pauly and Collins, unpublished data).  In Alzheimer’s disease, decrements in nAChRs 

do not appear to correlate with deficits in mRNA expression.  Thus, the third research 

question addressed in the dissertation is:  Are α7 nicotinic acetylcholine receptor protein 

deficits accompanied by deficits in mRNA expression following experimental traumatic 

brain injury? 
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 Statement of the Research Problem and Research Plan 

Neuronal nicotinic cholinergic receptors (nAChRs) are important mediators of 

cognitive function including learning and memory processes in the brain (Levin and 

Simon, 1998; Paterson and Nordberg, 2000).  The first reports of deficient cholinergic 

activity in autopsy brains of patients with Alzheimer’s disease (AD) related cognitive 

impairment (Davies and Maloney, 1976; Perry et al., 1978) occurred over thirty years ago 

and led to “the cholinergic hypothesis of geriatric memory dysfunction” described by 

Bartus soon thereafter (Bartus et al., 1982).  Since then, extensive research has been 

conducted in order to understand the role of the cholinergic system in learning and 

memory in healthy individuals as well as the role of an altered cholinergic system in 

diseases involving cognitive impairment.   

AD is a progressive neurodegenerative disease resulting in memory loss, 

diminished cognition, and neurobehavioral disturbances.  A deficit in cholinergic 

neurotransmission, particularly involving the downregulation of nAChR density (Pauly, 

1999; Court et al., 2001; Nordberg, 2001), is associated with the symptomatology of 

Alzheimer’s disease, and correcting the cholinergic deficit has been the focus of current 

therapeutics and ongoing research.  Similarly, traumatic brain injury (TBI) may involve 

persistent neuropsychiatric sequelae characterized by impairments in cognition 

(Arciniegas, 2003).  Investigations have revealed a dysfunction of cholinergic 

neurotransmission following fatal traumatic brain injury (Murdoch et al., 1998) and in 

individuals with cognitive sequelae related to a past brain injury (Salmond et al., 2005).   

Using experimental models of Alzheimer’s disease and traumatic brain injury as 

paradigms for neurodegeneration, the research herein seeks to evaluate changes in 

nicotinic cholinergic receptors in both disease states, understand how these changes are 

regulated, and investigate how treatment with a modulator of nicotinic receptors affects 

these changes.  A summary of AD and TBI similarities and the models employed in the 

dissertation research is found in table 1.3.  The following research questions are 

addressed in three studies included in the dissertation:   

1.  Is the α7 nicotinic acetylcholine receptor an early marker in experimental Alzheimer’s 

disease? 
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2.  Does galantamine, a commonly used pharmacotherapy for functional improvement in 

AD patients, target nicotinic receptor deficits and improve cognitive impairment 

following experimental brain injury?  

3.  Are α7 nicotinic acetylcholine receptor protein deficits accompanied by deficits in 

messenger RNA (mRNA) expression following experimental traumatic brain injury? 

Hypotheses and Specific Aims  

The purpose of this dissertation was to investigate changes in α7 nAChR 

expression in models of neurodegenerative disease and test the hypothesis that allosteric 

modulators of the α7 nAChR exert neuroprotective properties or enhance functional 

recovery following experimental brain injury.  The experimental models employed 

include a transgenic mouse model of Alzheimer’s disease (APPswe mice) and the 

controlled cortical impact injury model of TBI in rats.  Three specific hypotheses were 

evaluated. 

 

Hypothesis 1:  Young APPswe mice display a significant upregulation in α7 nicotinic 

receptor expression throughout the brain as a result of Aβ functioning as an agonist at the 

α7 nAChR, while aged APPswe mice demonstrate reduced expression.  

Specific Aim 1: To investigate the effects of aging in APPswe and wild-type mice 

on α7 nAChRs as measured by BTX binding  

Specific Aim 2:  To compare alterations in BTX binding in APPswe and wild-

type mice with non-α7 nAChRs and non-nicotinic receptors 

Hypothesis 2:  Galantamine, an acetylcholinesterase inhibitor and allosteric potentiating 

ligand for nAChRs, facilitates neuroprotection and cognitive enhancement in an 

experimental model of traumatic brain injury  

Specific Aim 1: To evaluate the effects of the nicotinic receptor modulator, 

galantamine, on acquisition and retention tests using the Morris water maze task 

of spatial memory following TBI 

Specific Aim 2:  To investigate the neuroprotective effects of galantamine as 

evidenced by cortical tissue sparing following TBI   
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Specific Aim 3:  To characterize galantamine mediated alterations in α7 nAChR 

receptor expression using quantitative nicotinic receptor autoradiography in 

experimental TBI 

Hypothesis 3:  Deficits in α7 nAChR expression two days following experimental 

traumatic brain injury are due to reduced expression of α7 nAChR mRNA  

Specific Aim 1: To determine if decrements in α7 nAChR receptor expression as 

measured by BTX binding correlate with changes in mRNA expression measured 

by in situ hybridization following experimental TBI 

Specific Aim 2:  To compare the changes in α7 nAChRs following TBI with the 

expression and regulation of non-α7 nAChRs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

Table 1.1.  A summary of the nicotinic cholinergic receptor changes in AD measured with radioligands or by immunological 
detection. 
 
Detection Method Subtype Selectivity Regional Changes in AD 

 
References 

Radioligand    
3H-Nicotine Non-selective agonist 

(non-α7) 
↓ temporal, infratemporal, frontal, parietal, 
occipital CTX, Hipp (including dentate granular 
layer, stratum lacunosum), entorhinal CTX, 
presubiculum, parahippocampal gyrus, nbM, 
caudate, putamen;   
↔ frontal CTX, hippocampal CA1/2 (stratum 
lacunosum), CA2/3, dentate gyrus, subiculum  

(Flynn and Mash, 1986; Shimohama et al., 1986; 
Whitehouse et al., 1986; Whitehouse et al., 1988b; 
Whitehouse et al., 1988a; Rinne et al., 1991; 
Aubert et al., 1992; Perry et al., 1995; Warpman 
and Nordberg, 1995; Hellstrom-Lindahl et al., 
1999; Marutle et al., 1999; Sihver et al., 1999; 
Perry et al., 2000) 

    
3H-Epibatidine 
 

 Non-α7 agonist ↓ temporal, frontal, parietal, occipital CTX, Hipp, 
thalamus, putamen 

(Warpman and Nordberg, 1995; Hellstrom-
Lindahl et al., 1999; Martin-Ruiz et al., 1999; 
Marutle et al., 1999; Sihver et al., 1999; Perry et 
al., 2000) 

    
3H-Cytisine β2 agonist (α4β2) ↓ temporal CTX (Sihver et al., 1999) 
    
ABT-418 α4β2 agonist ↓ temporal CTX (Warpman and Nordberg, 1995) 
    
5-125I-A-85380 α4β2 agonist ↓ entorhinal CTX, caudate; 

↔ thalamus  
(Pimlott et al., 2004) 
 

    
3H-N-methyl-
carbamylcholine 

Non-selective agonist ↓ frontal, temporal, parietal, occipital CTX, Hipp;  
↔ subcortical (striatum, globus pallidus, thalamus, 
nbM) regions 

(Araujo et al., 1988) 
 

    
125I- α-bungarotoxin α7 antagonist ↓ Hipp; 

↔ entorhinal CTX, hippocampal subfields 
(stratum lacunosum, CA2/3, dentate gyrus), 
subiculum 

(Hellstrom-Lindahl et al., 1999; Perry et al., 2000) 
 
 

Continued 
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Table 1.1 (Continued)    
 
Detection Method Subtype Selectivity Regional Changes in AD 

 
References 

Immunological    
α4 subunit protein  ↓ frontal, temporal CTX, entorhinal CTX, Hipp (Sparks et al., 1998; Martin-Ruiz et al., 1999; 

Wevers et al., 1999; Burghaus et al., 2000; Guan et 
al., 2000; Perry et al., 2000; Wevers et al., 2000; 
Yu et al., 2003; Teaktong et al., 2004; Yu et al., 
2005) 

    
β2  subunit protein  ↓, ↔ temporal CTX;  

↔ Hipp 
(Sparks et al., 1998; Guan et al., 2000) 
 

    
α7 subunit protein  ↓ frontal, temporal CTX, Hipp;  

↑  entorhinal cortex, subiculum, and some 
hippocampal subfields (CA3/4 and stratum 
granulosum);  
↔temporal CTX 

(Martin-Ruiz et al., 1999; Wevers et al., 1999; 
Banerjee et al., 2000; Burghaus et al., 2000; Guan 
et al., 2000; Wevers et al., 2000; Teaktong et al., 
2004; Yu et al., 2005) 

    
α3 subunit protein  ↓,↔ temporal CTX; 

↓Hipp 
(Martin-Ruiz et al., 1999; Guan et al., 2000) 
 

    
mRNA    
α4 
 

 ↔CTX, Hipp (Hellstrom-Lindahl et al., 1999; Wevers et al., 
1999; Wevers et al., 2000) 

    
α7  ↔CTX, temporal CTX;  

↑Hipp, nbM 
(Hellstrom-Lindahl et al., 1999; Wevers et al., 
1999; Wevers et al., 2000; Counts et al., 2007)  

    
α3  ↔ temporal CTX, entorhinal CTX, Hipp, thalamus (Terzano et al., 1998; Hellstrom-Lindahl et al., 

1999)
Abbreviations:  CTX, (cerebral) cortex; Hipp, hippocampus; nbM, nucleus basalis of Meynert; ↓, decrease; ↔, no change; ↑, increase



 

Table 1.2.  A summary of the muscarinic cholinergic receptor changes in AD measured with radioligands or by immunological 
detection. 
 
Detection Method Regional Changes in AD References 
Radioligand  Selectivity*   
M3  
 

↓ entorhinal CTX, Hipp 
↔ CTX, nbM, Hipp, striatum 

(Flynn et al., 1995; Rodriguez-Puertas et al., 
1997) 

M1-M5 
 

↓ CTX, frontal, visual CTX, Hipp, nbM, 
entorhinal CTX 

(Shimohama et al., 1986; Rodriguez-Puertas et 
al., 1997) 

M1 
 
 

↓ frontal, visual CTX entorhinal CTX, Hipp; 
↔ CTX, Hipp; 
↑ Hipp, striatum 

(Mash et al., 1985; Araujo et al., 1988; Aubert et 
al., 1992; Rodriguez-Puertas et al., 1997) 

M2  ↓ CTX, Hipp; 
 ↔ subcortical regions; 
 ↑ striatum 

(Mash et al., 1985; Araujo et al., 1988; Aubert et 
al., 1992; Rodriguez-Puertas et al., 1997) 
 

Immunological   
M1 ↓ CTX, Hipp (Flynn et al., 1995) 
M2 ↓ CTX, Hipp;  

↔ nbM 
(Flynn et al., 1995; Mufson et al., 1998) 

M4 ↑ CTX;  
↔ CTX, Hipp, striatum 

(Flynn et al., 1995; Rodriguez-Puertas et al., 
1997) 

M5 ↔ CTX, subcortical regions (Flynn et al., 1995) 
mRNA   
M1 ↓ temporal CTX; 

↑ temporal CTX 
(Harrison et al., 1991; Wang et al., 1992) 
 

M2 ↔ temporal CTX (Wang et al., 1992) 
M3 ↔ temporal CTX (Wang et al., 1992) 
M4 ↔ temporal CTX (Wang et al., 1992) 
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* Studies employed the use of multiple radioligands, as this method is needed to measure some muscarinic subtypes selectively 
Abbreviations:  CTX, (cerebral) cortex; Hipp, hippocampus; nbM, nucleus basalis of Meynert; ↓, decrease; ↔, no change; ↑, increase 
      

 



 

Table 1.3.  The study of Alzheimer’s disease and traumatic brain injury as paradigms for 
neurodegenerative disease:  a review of the similarities and models employed in the 
dissertation research. 
 

Alzheimer’s Disease Traumatic Brain Injury 
 
Similar pathophysiological mechanisms:  excitotoxicity (chronic in AD, acute in TBI), 
inflammation, mitochondrial damage, and oxidative stress 
 
Parallel cognitive impairments:  cholinergic (nicotinic in AD) and glutamatergic system 
dysfunction leads to alterations in learning, memory, and behavior 
 
Concurrent neuropathologies: 

• Soluble oligomeric Aβ, neuritic 
plaques and neurofibrillary tangles 

• May result in APP and Aβ 
accumulation in axons, diffuse Aβ 
deposits, neurofibrillary tangles 

 
Other relevant comparisons: 

 

• Age related in most cases • All ages, age may increase the risk of 
AD related neuropathologies  

 • Repetitive mild TBI accelerates 
neuropathology in a preclinical model 

• Apolipoprotein E4 allele increases the 
risk of developing AD 

• Apolipoprotein E4 increases the risk 
of Aβ related neuropathology and AD 

• MCI may develop into AD • NFL players with repeated mild TBI 
have an increased risk for MCI and 
AD 

• Athletes may develop behavioral and 
cognitive symptoms following mild 
TBI, known as CTE, displaying brain 
atrophy and neurofibrillary tangles 

 
Models used to conduct the dissertation research: 

• APPswe mice, a transgenic mouse 
model overexpressing APP 

• CCI injury in rats resulting in 
contusion 

• Large age range examined (models 
can vary in severity based on onset of 
pathology) 

• mild and moderate injury severities 
examined  

• AD pathophysiology targets selective 
areas of the brain but may better 
correspond to a diffuse injury  

• CCI is representative of a focal injury 

• Disease process is chronic • Disease process is acute to chronic 
Abbreviations:  AD, Alzheimer’s disease; TBI, traumatic brain injury; Aβ, beta-amyloid peptide; 
APP, amyloid precursor protein; MCI, mild cognitive impairment; CTE, chronic traumatic 
encephalopathy; APPswe, APP mice expressing the Swedish double mutation; CCI, controlled 
cortical impact 
 

 
Copyright © Christina Margaret Charriez 2010 
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Chapter 2:  Upregulation of Hippocampal α7 nAChRs in a Transgenic Mouse 

Model of Alzheimer’s Disease 

 

Introduction  

Alzheimer’s disease (AD) is an age related, progressive neurodegenerative 

disease (Alzheimer's Association, 2009).  AD is the most common form of dementia and 

involves memory loss, cognitive dysfunction, and alterations in behavior and personality 

that ultimately disrupt or prevent the activities of daily living.  As of 2009, it was 

estimated that 5.3 million Americans were living with AD, and the prevalence is 

expected to rise considerably as the population ages (NIA, 2005; Alzheimer's 

Association, 2009).  

Synaptic loss is an important characteristic defining Alzheimer’s disease (Selkoe, 

2002).  Two neuropathological hallmarks are implicated in the pathogenesis of AD, 

neuritic plaques and neurofibrillary tangles (Hardy and Selkoe, 2002; Selkoe, 2005).  

Extracellular neuritic plaques are made up of dystrophic neurons surrounding a dense 

core containing the β-amyloid (Aβ) peptide.  Intracellular neurofibrillary tangles contain 

the hyperphosphorylated form of the microtubule protein, tau (Hardy and Selkoe, 2002; 

Selkoe, 2005).  Aβ is formed by enzymatic cleavage of the amyloid precursor protein 

(APP).  APP undergoes cleavage through the actions of β- and γ-secretase to form Aβ40 

and Aβ42/43, to a lesser extent; moreover, mutations in APP or the presenilins, the 

catalytic component of γ-secretase, lead to increased formation of the larger peptide, 

Aβ42/43, involved in self-aggregation, oligomerization, and plaque formation (Blennow 

et al., 2006; Walsh and Selkoe, 2007; Querfurth and LaFerla, 2010).  Five percent of 

patients with AD have an inherited form of the disease known as Familial Alzheimer’s 

disease (FAD) (St George-Hyslop, 2000).  In FAD, patients present with an earlier, more 

aggressive course caused by the presence of mutations in the amyloid precursor protein 

(APP) or the presenilins (PS1, PS2), both resulting in altered forms of Aβ, including the 

Swedish double mutation (K670N, M671L, often referred to as APPswe) in the APP gene 

(Mullan et al., 1992). 
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Postmortem research has demonstrated that Alzheimer’s disease is associated 

with degeneration of basal forebrain cholinergic neurons resulting in the loss of 

cholinergic innervation to the cortex and hippocampus (Davies and Maloney, 1976; Perry 

et al., 1978) suggesting that cognitive impairment seen in AD patients is correlated with 

deficits in CNS cholinergic neurotransmission (Bartus et al., 1982; Bartus, 2000).   

Studies of postmortem AD tissue also demonstrate changes in nicotinic 

cholinergic receptor expression.  Reductions in nicotinic acetylcholine receptor (nAChR) 

densities measured by radioligand binding using nicotine, epibatidine (EPI), cytisine, the 

latter two selective for α4β2 subtypes, and others are consistently documented in AD in 

several cortical and hippocampal regions (Flynn and Mash, 1986; Whitehouse et al., 

1986; Whitehouse et al., 1988b; Whitehouse et al., 1988a; Rinne et al., 1991; Aubert et 

al., 1992; Perry et al., 1995; Warpman and Nordberg, 1995; Hellstrom-Lindahl et al., 

1999; Martin-Ruiz et al., 1999; Marutle et al., 1999; Sihver et al., 1999; Perry et al., 

2000).  Furthermore, in vivo nicotine binding assessed by PET has demonstrated 

reductions in nAChR densities in the cerebral cortex and hippocampus of AD patients 

(Nordberg et al., 1990; Nordberg et al., 1995; Nordberg et al., 1997).   

However, studies of mild cognitive impairment (MCI) (Gilmor et al., 1999; 

DeKosky et al., 2002) and early AD suggest a sparing of cholinergic neurotransmission.   

No loss of nAChRs was detected through PET scanning of patients with early AD (Ellis 

et al., 2008).   Interestingly, α7nAChRs, as measured by [3H]-methyllycaconitine (MLA), 

demonstrated a non-significant elevation in patients with mild to moderate AD compared 

to patients with MCI or patients without cognitive impairment.  Patients with whom a 

diagnosis of AD was confirmed by neuropathological analysis demonstrated elevated 

MLA binding and Aβ levels (Ikonomovic et al., 2009). 

Changes in cholinergic neurotransmission have been demonstrated in transgenic 

mouse models of AD containing APP mutations such as APPswe alone (most notably the 

Tg2576 model) or in combination with PS1 mutations.  Several studies have reported 

reductions in nAChRs.  Tg2576 mice demonstrated a reduction in cortical [3H]-cytisine 

binding in aged mice (Apelt et al., 2002); however, young mice prior to Aβ deposition 

showed a downregulation of cortical α4 nAChR mRNA, but no change in the mRNA of 

α7 or α3 receptor subunits (Mousavi et al., 2004). 
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In mice expressing APPswe, PS1 and a tau mutation (3xTg-AD), decreased BTX 

binding was detected at an age showing intraneuronal accumulation of Aβ42 but prior to 

Aβ deposition in the cortex, hippocampus, and thalamus (Oddo et al., 2003), and EPI 

binding was upregulated in the thalamus (Oddo et al., 2005).  A study including multiple 

ages and the progression of Aβ pathology showed no change in α7 or α4β2 nAChRs, as 

measured by BTX and cytisine binding, respectively, in the parietal cortex and 

hippocampus of three week to 17 month old APPswe and PS1 double transgenic mice 

(Marutle et al., 2002).   

Recent studies have found an elevation in α7 nAChR expression in Tg2576 mice 

in the hippocampus and dentate gyrus with age, beginning at four months in the dentate, 

compared to wild-type mice, but no change in α4 nAChR expression (Dineley et al., 

2001).  Further analysis showed upregulated hippocampal α7 nAChR protein expression 

in five month old Tg2576 mice, prior to Aβ deposition, that accompanied deficits in the 

contextual fear learning behavioral task indicating hippocampal impairment (Dineley et 

al., 2002b).  Furthermore, an increase in α7 nAChRs as measured by BTX binding was 

demonstrated in the cerebral cortex, hippocampus, caudate, and cerebellum of four month 

old Tg2576 mice preceding Aβ plaque formation and behavioral changes.  A similar 

upregulation was found in α4β2 nAChRs as measured by cytisine binding but only in 

older mice, and no change was found in mAChR binding.  Enhanced nAChR binding 

occurred along with an upregulation in the mRNA levels of both α7 and α4 receptor 

subunits (Bednar et al., 2002).  In addition, older Tg2576 mice, aged 14.5 months, 

displayed increased BTX binding in cortex compared to wild-type mice (Hellstrom-

Lindahl et al., 2004b).  An electrophysiologic analysis showed transgenic models 

overexpressing Aβ retain functional α7 nAChRs (Howlett et al., 2004; Spencer et al., 

2005). 

Along with the evidence that the nAChR may be differentially affected in early 

and late stage disease, a selective interaction between the nAChR and Aβ has been well 

documented.  Furthermore, data suggest that Aβ binds with high affinity to α7 nAChRs 

(Wang et al., 2000b; Wang et al., 2000a).  There are conflicting reports regarding the 

pharmacologic properties of Aβ at this receptor and the physiologic consequences of this 
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interaction (Dineley et al., 2001; Liu et al., 2001; Pettit et al., 2001; Vaucher et al., 2001; 

Dineley et al., 2002a; Tozaki et al., 2002; Dougherty et al., 2003; Grassi et al., 2003; Lee 

and Wang, 2003; Li and Buccafusco, 2004; Wu et al., 2004; Spencer et al., 2005).  

However, several studies suggest Aβ displays agonist properties at the nAChR, and these 

studies are reviewed in the following references (Dineley, 2007; Jurgensen and Ferreira, 

2010).  There is evidence that Aβ’s pharmacological properties are related to 

concentrations and disease progression, as the agonist behavior appears to be an early 

event (Hernandez et al., 2010).   

Combining the findings suggesting a sparing of cholinergic markers in MCI, the 

recent report of the preservation of nAChRs in vivo in early AD, the data indicating an 

early elevation in nAChR expression in AD mouse models, and the data demonstrating 

the interaction of α7 nAChRs and Aβ, the α7 nAChR may be an early target in 

Alzheimer’s disease.    Upregulation of presynaptic markers and nAChR may indicate 

short term compensation to help combat cognitive impairments.  Our laboratory was 

interested in determining if receptor changes occur as an early event prior to the 

development of neuropathology or if receptor alterations occur as a late consequence in 

experimental Alzheimer’s disease.  We hypothesize that young APPswe mice display a 

significant upregulation in α7 nAChR throughout the brain as a result of Aβ functioning 

as an agonist at the α7 nAChR.  Most investigators have limited the study of cholinergic 

receptor expression to cortical and hippocampal regions.  Our study was designed to 

evaluate the expression of nAChRs in brain regions throughout the brain in a mouse 

model of Alzheimer’s disease, which has never before been tested for cholinergic 

receptor indices.  Our results suggest that α7 changes in transgenic mice overexpressing 

APP are significantly more complex than previously suggested.  

Materials and Methods 

Animals and tissue preparation 

This longitudinal study of aging was performed using 45 to 558 day 

(approximately 1.5-18 months) old male mice.  Male mice were used to avoid any male 

or female related differences due to sex hormones.  The mice included 24 transgenic mice 
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(APPswe) expressing chimeric mouse/human APP 695 containing the Swedish double 

mutation (Lys 670 → Asn and Met 671 → Leu [using the APP 770 numbering]) and 24 

wild-type (B6C3F1) controls developed by Borchelt et al. (Borchelt et al., 1996).  

APPswe mice ranged in age from 45 to 533 days and wild-type mice ranged in age from 

45 to 558 days.  The mice were generously provided by Dr. Mark Mattson of the 

Laboratory of Neurosciences, National Institute on Aging.  All mice were housed in 

facilities at the National Institutes on Aging and were euthanatized over a two day period.  

Brains were excised, frozen in isopentane, and placed on dry ice for shipment to the 

University of Kentucky where they were stored at -80°C until further processing.  Brains 

were then sectioned 16 µm thick using a Leica CM50 cryostat (Nussloch, Germany) and 

were mounted onto slides coated with gelatin, chromium potassium sulfate and poly-L-

lysine in order to promote tissue adherence for autoradiographic analysis.  For 

immunohistochemistry, additional sections were collected on Superfrost Plus® slides 

(Fisher Scientific, Pittsburgh, PA) containing two sections per slide.  Sections were 

collected throughout the entire rostro-caudal axis of the mouse brain, beginning at 

approximately Figure 19 (interaural 5.22 mm, bregma 1.42 mm) and ending at 

approximately Figure 78 (interaural -1.88 mm, bregma -5.68 mm) according to Paxinos 

and Franklin’s mouse brain atlas (Paxinos and Franklin, 2001).  Serial sets of adjacent 

tissue sections were obtained in order to evaluate the binding of multiple radioligands in 

specific anatomical regions throughout the brain.  Brain sections were stored at -80°C 

until use at which time they were thawed and air dried prior to experimentation.  All 

reagents were purchased from either Sigma-Aldrich (St. Louis, MO) or Fisher Scientific 

(Pittsburgh, PA) unless otherwise noted. 

Cholinergic receptor autoradiography and image analysis 

Quantitative receptor autoradiography was performed to investigate cholinergic 

receptor binding in APPswe and wild-type mice.  All radioligands were purchased from 

PerkinElmer Life Sciences, Inc., Boston, MA.  Nicotinic cholinergic receptor 

autoradiography was employed using the radioligands, α-[125I]-bungarotoxin and [125I]-

epibatidine to measure α7 and non-α7 nAChR binding, respectively.  α-[125I]-

bungarotoxin (BTX) binding was carried out as previously described by Pauly and 
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Collins (Pauly and Collins, 1993).  The concentration of radioligand used was 2-3 fold 

greater than the affinity (Kd) for binding to the receptor to ensure the assay results are 

representative of changes in receptor number (Bmax) as opposed to alterations in affinity.  

In detail, brain sections were first pre-incubated in Krebs-Ringer HEPES (KRH) buffer, 

pH 7.5 (1180 mM NaCl, 48 mM KCl, 25 mM CaCl2, 12 mM MgSO4 (7H2O), 200 mM 

HEPES, and 100 mM NaOH) for 30 minutes at room temperature.  Next, 2.5 nM α-[125I]-

BTX (specific activity = 18 µCi/µg) was added to KRH buffer containing 0.5 mg/ml 

bovine serum albumin, to protect the radioligand from proteases and limit adherence to 

plastic or glass, in which sections were incubated for two hours at room temperature.  

This was followed by a series of washes (three x 20 minutes in KRH, one x 10 seconds in 

10% KRH, and one x 10 seconds in double deionized water [ddH20]) at 4°C.   

Non-α7 nAChR binding was determined through the use of [125I]-epibatidine 

(EPI), specific activity = 2200 Ci/mmol, according to the original method of Perry and 

Kellar in which tritiated EPI was employed (Perry and Kellar, 1995).  Due to the 

unavailability of tritium sensitive film at the time of experimentation, the iodinated 

radioisotope was used instead which provided an added advantage in that the exposure 

time was reduced from months to days.    [125I]-EPI possesses similar properties to the 

tritiated form such as a high affinity and low non-specific binding (Davila-Garcia et al., 

1997; Whiteaker et al., 2000).  However, due to a significantly higher specific activity of 

the iodinated form and limited resources, it was not possible to purchase the radioligand 

in sufficient concentration to conduct assays at saturation, so a concentration of EPI in 

the low pM range was used.   Brain sections were incubated with EPI in a pH 7.0 buffer 

containing 50 mM Tris HCl, 120 mM NaCl, 5 mM MgCl2, and 2.5 mM CaCl2 for 40 

minutes at room temperature. The incubation was followed by a number of washes at 4°C 

(two x 5 minutes in buffer, one x 10 seconds in 10% buffer, and one x 10 seconds in 

ddH20).  

Muscarinic cholinergic receptor autoradiography was performed using the 

radioligand, [3H]-quinuclidinyl benzilate (QNB; specific activity = 39 Ci/mmol) as 

previously described (Pauly et al., 1989; Verbois et al., 2000).  QNB binds to total (M1-

M5) mAChRs and a concentration of 1nM was used so that binding reflected a measure 

of total receptor number.  First, sections were pre-incubated in 50 mM Tris HCl at pH 7.4 
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buffer for 15 minutes at 4°C followed by an incubation containing QNB and pre-

incubation buffer for 90 minutes at room temperature.  The experiment was completely 

with several washes at 4°C (three x 4 minutes in buffer, one x 10 seconds in 10% buffer, 

and one x 10 seconds in ddH20).  

Once the washes were completed, sections were dried under a low speed fan and 

stored overnight under vacuum in a desiccator at room temperature.  The following day, 

sections from the BTX and EPI binding assays were exposed to Hyperfilm-βmax film 

and the QNB assay to Hyperfilm-3H film (Amersham, Arlington Heights, IL).  Exposures 

were stored in x-ray cassettes along with slides containing calibrated brain tissue paste 

standards with known amounts of either 125I or 3H depending on the radioligand used.  

Tissue standards were prepared as described elsewhere (Geary et al., 1985; Pauly and 

Collins, 1993).  Exposure times were 10 days and three days for the BTX, and QNB 

binding assays, respectively.  The EPI binding assay was exposed for 48 hours for all 

brain regions except the dentate which was exposed for seven days and processed with 

Kodak D-19 developer (Eastman Kodak Co., Rochester, NY).  

Brain images were digitized for quantification using a Power Macintosh 950 and 

NIH Image version 1.59 software, a Scion LG-3 frame grader/imaging board (Scion 

Corp, Baltimore, MD), Sony XC-77 CCD video camera (Sony, Towada, Japan), and a 

Northern Lights desktop illuminator (Model B95 Imaging Research, Ontario, Canada).  A 

tissue radioactivity versus optical density standard curve, fit to a third degree polynomial, 

or other best fit model, was generated to determine molar quantities of bound ligand, 

expressed as nCi/mg of wet tissue weight, from measured optical densities of the brain 

regions of interest.  Each structure was measured bilaterally in multiple sections.  

Previous studies investigating cholinergic receptor alterations in transgenic models of AD 

have typically focused on cortical and hippocampal regions due to the impact of AD 

pathology on these regions.  The present study evaluated changes in cholinergic receptor 

expression throughout the rostro-caudal axis of the brain beginning at regions just 

anterior to the level of the striatum and ending in the pons.   
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Aβ histochemistry 

Two approaches were used to evaluate Aβ deposition in the brains of animals 

used in this study.  Immunohistochemistry and thioflavin-S staining were performed to 

determine the presence and localization of Aβ protein deposits with relation to age in 

both transgenic and wild-type mice.  Immunohistochemistry was performed employing a 

modified version of the original methods presented by Hyman et al. (Hyman et al., 1992) 

using the mouse monoclonal human Aβ protein clone, 4G8, that reacts to the human Aβ 

peptide at amino acid residues 17-24 (Signet Laboratories, Inc. Dedham MA).  Briefly, 

reagents were applied to slides containing two brain slices each surrounded by a 

hydrophobic barrier using a PAP pen slide marker (Research Products International 

Corp., Mt. Prospect, IL).  Thawed sections were first fixed in 4% paraformaldehyde for 

10 minutes and rinsed fully in water.  Paraformaldehyde (4%) was made from 16% 

(Electron Microscopy Sciences, Ft. Washington , PA) diluted first 1:1 in ddH20 with the 

resulting 8% solution diluted further in equal parts 0.2 M Sorensen’s Phosphate buffer 

(37.74g Na2HPO4(7H20), 8.06g KH2PO4 q.s. 1L ddH20).  Next the following treatments 

were applied with ddH20 rinses in between each:  0.3% TBS (50mM Tris-ultra pure and 

150 mM NaCl, pH 7.4) containing 0.1% Triton-X (TTBS) for 10 minutes, 3% H2O2 in 

methanol for 30 minutes, and formic acid for 3 minutes.  Sections were again treated with 

TBS and TTBS for 5 minutes each.  The Mouse-to-Mouse detection system kit 

(Chemicon International, Temecula, CA) containing a pre- and post-antibody blocking 

solution,  Poly horseraddish peroxidase goat anti-mouse/rabbit IgG secondary antibody, 

and 3,3 diaminobenzidine (DAB) substrate was chosen in order to minimize interactions 

between the monoclonal primary antibody and non-specific mouse tissue epitopes.  

Sections were incubated with pre-antibody blocking solution for 60 minutes, rinsed in 

TTBS twice for 5 minutes and incubated with the primary antibody, 4G8 diluted 1:100 in 

TTBS overnight at 4°C in a humidity chamber.  The next morning sections were rinsed 

twice in TTBS for 10 minutes each, treated with the post-antibody blocking solution for 

10 minutes, followed by two more 5 minute TTBS rinses and application of the 

secondary antibody for 10 minutes followed by two TBS 5 minute rinses.  Last, the DAB 

solution was applied for 2-5 minutes followed by several 5 minute ddH20 rinses.  The 

sections were air dried, dehydrated (70%, 95%, 100% ethanol and xylene x 2 for each for 
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5 minutes), coversliped with Cytoseal 60 (Stephens Scientific, Kalamazoo, MI) and 

visualized with a light microscope.  Brain sections obtained from autopsies performed on 

AD patients were included as a positive control for both histochemistry methods.  Human 

brain tissues were obtained from postmortem examination at the University of Kentucky 

Alzheimer’s Disease Research Center for the purposes of this laboratory’s ongoing 

research.  Tissues were obtained without identifiers and in accordance with all IRB 

regulations.  

The thioflavin-S staining procedure was adapted from the method of Schwartz 

(1972).  Slides were dried and fixed in 4% paraformaldehyde for 10 minutes and fully 

rinsed with water followed by an incubation in ddH20 for 5 minutes.  Next, sections were 

stained with 1% aqueous thioflavin-S (ICN Biomedicals, Inc., Aurora, OH) in 50% 

ethanol for 4-10 minutes and placed in 80% ethanol for two 2 minute incubations 

followed by two 5 minute ddH20 washes.  The sections finally were dehydrated and 

coversliped.  Images were visualized by fluorescence microscopy utilizing a fluorescein 

filter.   

Statistical analysis 

The wide, continuous distribution in the age of mice used in this study prevented 

an analysis comparing specific age groups.  Therefore, a correlation analysis was 

employed to determine significant relationships between cholinergic receptor expression 

(measured by amount of ligand binding in nCi/mg wet tissue) and days of age in both 

mouse strains.  Correlations were performed by Pearson correlation analysis for normally 

distributed variables.  Due to the large number of regions analyzed, data are presented at 

a significance level of a more conservative α=0.01, as well as α=0.05.  For α-[125I]-BTX 

binding, a post hoc, unpaired, two-tailed Student’s t-test was performed to test for 

differences in genotype means (expressed as nCi/mg wet tissue) ignoring age for the 

hippocampal regions CA1, CA2, CA3 and posterior hippocampal layer CA3, as well as 

the zona incerta.  All statistical procedures were conducted using GraphPad Prism 4 (San 

Diego, CA). 
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Results 

Regional changes in α-[125I]-BTX binding in APPswe and wild-type mice with 

age were evaluated and can be found in Table 2.1.  Pearson correlation coefficients are 

presented for APPswe and wild-type mice for each of the brain regions investigated.  The 

effects of aging on α7 nAChR changes in this mouse model varied significantly between 

the brain regions analyzed.  α7 nAChR increased in some areas while decreasing in 

others and no change was seen in additional regions.  In detail, as APPswe mice aged, 

BTX binding increased in several brain regions including the bed nucleus of the stria 

terminalis and the medial preoptic area at p < 0.01.  Increased BTX binding in the 

somatosensory cortex layers 1-3, superior colliculus, substantia nigra, and medial 

interpeduncular nucleus demonstrated significance at p < 0.05.  In other brain regions, 

lateral caudate putamen, lateral hypothalamus, and red nucleus, aging was associated 

with a significant reduction in BTX binding in both transgenic and wild-type animals.  

However, decreases in the lateral caudate putamen of wild-type mice and in the red 

nucleus of APPswe mice showed the strongest correlations (p < 0.01).  BTX binding 

decreased with age in wild-type mice in the caudate putamen, the medial subregion of the 

caudate putamen (p < 0.01), and in the inferior colliculus, lateral lemniscus, and dorsal 

tegmental nucleus to a lesser extent (p < 0.05).  Among both strains, no changes in BTX 

binding were seen in the olfactory tubercle, some subregions of the cortex, basal ganglia, 

and diencephalon.  Surprisingly, no changes were detected in either mouse strain in the 

hippocampus or amygdala with increasing age.   Binding similar to background was 

found in the corpus callosum, a white matter structure lacking nAChR expression, which 

served as a negative control.     

The absence of changes in hippocampal BTX binding with age prompted 

additional analysis due to the significant role of the hippocampus in learning and memory 

and its involvement in the pathology of AD.  Because no age related changes were found, 

a post hoc Student’s t-test was performed to test for differences in genotype means 

ignoring age for the hippocampal regions CA1, CA2, CA3 and posterior hippocampal 

layer CA3, as well as the zona incerta.  APPswe mice exhibited an increase in α7 nAChR 

binding (nCi/mg wet tissue) compared to wild-type mice in the CA1 (t[46] = 2.68, p = 

0.0101), CA2 (t[46] = 2.96, p = 0.0048), CA3 of the posterior hippocampus (t[46] = 3.35, 
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p = 0.0016), and zona incerta (t[45] =2.16, p=0.0359) for all ages but not the CA3 

subfield at the anterior level of the hippocampus (Table 2.1 and Figure 2.1). 

The [125I]-EPI binding assay results for APPswe and wild-type mice during aging 

are shown in Table 2.2.  Decreases in non-α7 nAChR binding occurred in aged animals 

of both strains in the dorsolateral geniculate nucleus (p < 0.05) and superior colliculus (p 

< 0.01).  A reduction in binding in the ventrolateral geniculate occurred only in wild-type 

mice (p < 0.01).  No significant changes in non-α7 receptors were detected in the 

olfactory tubercle, neocortex, basal ganglia, or hippocampus of either strain.  Mouse 

genotype means for each region are also listed to illustrate the relative magnitude of 

binding density. 

Table 2.3 presents the results of the [3H]-QNB binding assay in APPswe and 

wild-type mice.  Wild-type mice demonstrated an increase in total mAChR binding in 

aging in multiple brain regions including the somatosensory cortex layers 1-3, olfactory 

cortex, and caudate putamen all significant at p < 0.05 and the nucleus accumbens and 

hippocampus subfield CA1 at a significance level of p < 0.01.  However, mAChR 

binding was not affected in APPswe mice in any of the brain regions tested including the 

neocortex, basal ganglia, and hippocampus.  Figure 2.2 depicts representative 

autoradiographs to demonstrate observed alterations in α7 and non-α7 nAChR and 

mAChR in APPswe and wild-type mice during aging.   

APPswe and wild-type mice from ages 1.5 to 18 months were evaluated for the 

presence of Aβ deposition.  Both immunohistochemical localization with the antibody, 

4G8, and thioflavin-S staining revealed no deposition of the Aβ peptide at any of the ages 

tested (Figure 2.3).  Sections obtained from clinically documented AD patients were run 

in parallel to the mouse sections.  A high incidence of β-amyloid immunoreactivity and 

staining was observed on the former sections demonstrating that the failure to detect Aβ 

in mouse sections was not due to a technical problem with the assays. 

Discussion 

The aim of the current study was to investigate the effects of aging on nicotinic 

cholinergic expression in a transgenic mouse model of Alzheimer’s disease.  This study 

demonstrated that during aging, nAChR regulation differs in mice that overexpress APP 

56 



 

compared to the wild-type strain indicative of normal aging.  Such cholinergic receptor 

changes noted in wild-type mice and not in APPswe mice suggest a non-amyloid based 

mechanism.  BTX and EPI bindings showed nAChRs decreased with aging in several 

brain regions of wild-type mice.   

Aging alone has been associated with changes in nicotinic receptors.  For 

example, in the human cortex, studies showed a loss of α4β2 and α7 nAChRs along with 

α4, β2, and α7 mRNA according to a detailed review (Perry et al., 2001).  In addition, 

β2-containing nAChRs were found to be inversely correlated with age in various brain 

regions of healthy human subjects in a single photon emission computed tomography 

(SPECT) study (Mitsis et al., 2008).  Results from other aging studies in animals vary, 

and the differences in rodent strains therein makes for a difficult comparison.  No change 

in BTX or EPI binding has been found in aged rats (Tribollet et al., 2004).  However, in 

two common mouse strains tested, the effects of aging on nAChR protein expression 

measured in the dorsal hippocampus was variable, and expression of the α4 protein was 

downregulated compared to younger adults in both strains but elevated in astrocytes in 

one strain.  The α7 nAChR was elevated with aging in one strain and the β4 subunit was 

diminished in one of the strains tested (Gahring et al., 2005).   

It is possible that presynaptic nAChRs are diminished due to synaptic loss during 

normal aging.  In addition, corticosterone levels could be elevated due to normal aging in 

the current model which could result in downregulation of nAChRs.  Decreases in 

nicotinic receptor density have been shown to be mediated by exogenous corticosteroids 

(Pauly and Collins, 1993; Robinson et al., 1996).  Therefore, it would have been optimal 

to measure glucocorticoids in this study to help decipher these changes.  Investigating 

possible alterations in mRNA expression would have also added to the analysis as well. 

Muscarinic receptors were examined using QNB binding mainly as a control and 

by which a means to compare nicotinic receptor binding results.  QNB binding revealed a 

significant increase in total mAChR binding in several regions tested in the wild-type 

mice.  A summary of the three binding results in wild-type and APPswe mice showing 

the number of brain regions analyzed and the percentage of regions demonstrating a 

significant correlation with aging (Pearson correlation, p < 0.05 and p < 0.01) can be 

found in Table 2.4.  The QNB assay displayed an upregulation in 89 percent of the brain 
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regions tested in the wild-type group, while the BTX and EPI binding assays were 

significant only in a small minority of regions.  

Other reports of muscarinic receptor changes during aging vary among rodent 

models.  In aged Long-Evans rats, there was a significant increase in M2 mAChR 

receptor binding in the cortex and dentate gyrus of aged Long-Evans rats deemed 

cognitively impaired by Morris water maze functioning compared to unimpaired rats as 

well as in the cortex of old compared to young rats, but no change was found in M1 

mAChR (Aubert et al., 1995).  In contrast, in the same rat strain of similar ages, a 

decrease in M2 binding was detected compared to young rats in the brainstem and the 

basal forebrain, which correlated with a Morris water maze spatial learning deficit (Gill 

and Gallagher, 1998).  Interestingly, hippocampal levels of Aβ40 were significantly 

higher in both cognitively impaired and unimpaired aged rats compared to young rats 

(Vaucher et al., 2001).  In autoradiography studies of mAChR receptor density in Fisher 

344 rat hippocampus, changes were subregion selective.  The M1 and M2 subtype 

densities were reduced in some layers of areas CA1 and CA3 in adult and aged rats 

compared to young rats, while in aging M5 was reduced, and M3 and M4 subtypes were 

enhanced in some hippocampal fields (Tayebati et al., 2002).  In the current study, loss of 

synaptic function occurring during aging may result in a compensatory muscarinic 

upregulation postsynaptically. 

The results herein show a significant increase in BTX binding in various regions 

in the APPswe mice with age compared to wild-type mice indicating a possible amyloid 

based mechanism.  Further, when examining genotype only, BTX binding was 

significantly elevated in hippocampal regions in APPswe mice.  BTX binding was 

elevated by approximately 17 percent in hippocampal layer CA1 and was increased by 13 

and 10 percent in the CA2 and posterior CA3, respectively.  These findings are consistent 

with other reports that demonstrate elevated α7 nAChR binding in transgenic mice that 

overexpress Aβ, such as the Tg2576 model, and may be due to agonist properties by Aβ 

at the α7 nAChR.   

Previous studies have shown that chronic nicotinic agonist treatment increases the 

expression of nAChRs in rodents (Marks et al., 1983; Schwartz and Kellar, 1983) and 

smoking upregulates nAChRs in the human brain (Benwell et al., 1988; Nyback et al., 
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1989; Wonnacott, 1990; Breese et al., 1997a).  The pharmacological interaction between 

Aβ and the α7 nAChR has been well documented.  In the brains of AD patients, Aβ42 

and the α7 nAChR, but not the α4 or other subunits, were co-localized in neuritic plaques 

as well as in cortical and hippocampal neurons in which they interacted with high affinity 

and form a stable complex (Wang et al., 2000b).  Furthermore, Aβ was shown to bind to 

the α7 nAChR with picomolar affinity (Wang et al., 2000b; Wang et al., 2000a).  

Additionally, Aβ also binds to non-α7 nAChRs (Wang et al., 2000a; Fu and Jhamandas, 

2003).  Several studies suggest Aβ elicits agonist-like behavior at the α7 nAChR in vitro. 

(Dineley et al., 2002a; Dougherty et al., 2003).  However, there is in vitro evidence that 

Aβ may inhibit the activity of α7 nAChRs and to a greater degree non-α7 nAChRs (Liu 

et al., 2001; Pettit et al., 2001; Vaucher et al., 2001; Tozaki et al., 2002; Grassi et al., 

2003; Lee and Wang, 2003; Wu et al., 2004; Spencer et al., 2005), and Aβ may also 

block the activity of mAChRs (Kelly et al., 1996)  Moreover, intracerebroventricular 

injection of Aβ42 resulted in antagonism of α7 nAChRs, as the peptide blocked a 

hemodynamic response elicited by brain injection of the selective α7 agonist, choline, 

confirming Aβ’s actions in vivo (Li and Buccafusco, 2004).  It is possible that the 

contradictory properties of Aβ at nAChRs may be due to differences in the tissue models, 

experimental conditions or detection methods employed in these studies.  Notably, in a 

recent report a unique nAChR subtype, α7β2, was discovered in rat basal forebrain 

cholinergic neurons, and Aβ demonstrated high affinity binding to this subtype and 

functional inhibition (Liu et al., 2009).  It is likely that lower concentrations of Aβ in the 

picomolar to nanomolar range display agonist properties while higher concentrations and 

further disease progression produces antagonist behavior (Hernandez et al., 2010).   

Moreover, Aβ binding to nAChRs would result in upregulation of nAChRs due to agonist 

or antagonist properties.  

Unfortunately, no amyloid deposits were detected in mice tested out to 18 months 

of age; thus, an evaluation of the effects of Aβ deposition on nAChRs could not be 

performed.  Amyloid deposition in APPswe mice may have been observed if ages greater 

than 18 months were tested.  Previous reports indicate APPswe mice express a two fold 

increase in APP compared to wild-type mice, but these reports (Borchelt et al., 1996; 
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Borchelt et al., 1997; Borchelt et al., 2002) show little or no Aβ deposition occurring in 

the age range examined in the current study.  However, it has been reported that the 

APPswe mice used in the current study exhibit elevations in Aβ40 and Aβ42 

concentrations , but only display Aβ deposition at ages greater than 20 months (Price et 

al., 1998).  

Because the current model is believed to have elevated levels of APP without 

amyloidosis, it is possible that this mouse model could serve as a paradigm for early AD.  

The upregulation of α7 nAChR density in the current study supports the possibility that 

changes in cholinergic neurotransmission and related cognition occurring early in the 

course of disease could be due to increased Aβ concentrations.  One would suspect that 

APPswe mice are exposed to higher soluble Aβ levels compared with normal aging.  

However, due to the tissue processing for the autoradiographic methods employed in our 

study, we were not able to perform investigations of the Aβ concentrations in these mice 

to confirm the previous report.   

Soluble Aβ may be a significant mediator in the pathogenesis of AD (Walsh and 

Selkoe, 2007).  Postmortem studies have shown that cortical levels of Aβ40 and Aβ42 

are elevated early in dementia and correlative with the progressive impairment in 

cognition experienced by AD patients (Naslund et al., 2000).  Alzheimer’s disease has 

been described as a disorder of “synaptic failure,” and the soluble, oligomeric form of 

Aβ, has been used as a predictor of synaptic change (Selkoe, 2002).  

  In human AD brain, there is a six fold greater concentration of water soluble 

oligomers of Aβ compared to controls, most of which are Aβ42 and are destined to form 

insoluble fibrils (Kuo et al., 1996).  Intracellular accumulation of Aβ42 immunoreactivity 

occurs before neurofibrillary tangles and Aβ deposition as an early event especially in the 

hippocampal and entorhinal cortex pyramidal neurons (Gouras et al., 2000).  

Furthermore, neurons that accumulate Aβ42 have a high expression of α7 nAChRs, 

providing evidence for the selective vulnerability of the cholinergic system in AD 

(Nagele et al., 2002).  Evidence suggests that amyloid plaques form from the cellular 

lysis of neurons accumulated with Aβ42 (D'Andrea et al., 2001).  In addition, in human 

neuroblastoma cells transfected with high levels of α7, the binding of Aβ42 (but not 
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Aβ40) and subsequent intracellular accumulation can be blocked by BTX (Nagele et al., 

2002).  However, another study found that while the soluble form of Aβ distinguishes 

between AD and normal aging, soluble levels of Aβ40 and Aβ42 are low but most 

common in normal aging, whereas insoluble levels are much greater in the AD brain.  

Soluble Aβ40 levels were ten fold higher than soluble Aβ42/43 levels in AD brains 

compared to the brains from patients that did not have dementia but showed AD-like 

pathology.  Insoluble Aβ40 levels were 20 fold higher in AD patients compared to the 

non-demented patients with AD-like pathology, and the insoluble Aβ42 species was only 

elevated by two fold (Wang et al., 1999b).  One report determined that soluble Aβ 

oligomers were found at higher levels in the frontal lobe of AD patients compared to 

controls and were concentrated at synaptic structures (Kokubo et al., 2005).  Levels of 

soluble Aβ increased three fold in AD patients and correlated with pathologic hallmarks 

of disease progression, while insoluble Aβ was not correlated with disease severity 

(McLean et al., 1999).  Most recently, the progression of cognitive impairment in AD has 

been correlated with soluble, fibrillar oligomers (Tomic et al., 2009). 

The effects of soluble Aβ have also been demonstrated in mouse models of AD.  

Mice expressing the APP (V717F) mutation linked to Indiana FAD displayed a loss of 

neurons, presynaptic nerve terminals, and impairments in synaptic transmission prior to 

plaque formation.  The same group also found that the addition of the APPswe mutation 

to these mice, leading to elevated levels of Aβ with a decrease in total APP, led to greater 

impairments in synaptic transmission in young mice before the presence of plaque 

formation (Hsia et al., 1999).  Total levels of Aβ42 in the hippocampus have been shown 

to correlate with Morris water maze task impairments in 12 month old APP plus PS1 

(Borchelt model) mice, when very little deposits were present in the hippocampus 

(Puolivali et al., 2002).  Tg2576 mice show impaired learning and memory at age nine to 

ten months while increased concentrations of Aβ40 and Aβ42 were found as early as two 

months of age, but the presence of amyloid plaques was not assessed until mice reached 

12 months of age (Hsiao et al., 1996).  Certain aspects of cognitive testing showed gender 

related impairments in three and nine month old Tg2576 mice well before amyloid 

deposition (King et al., 1999).  Memory impairment assessed by Morris water maze was 
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found in an AD model expressing wild-type human APP that only forms diffuse deposits 

but no plaques (Koistinaho et al., 2001).  Further, a 56-kDa Aβ soluble oligomer was 

found to accumulate extracellularly in the brains of middle aged Tg2576 mice.  These 

middle aged mice 6-14 months old displayed no neuronal dysfunction or plaque 

accumulation while demonstrating memory impairments in a modified Morris water 

maze task (Lesne et al., 2006).  Finally, through studies of α7 nAChR genetic deletion in 

Tg2576 mice, Hernandez and colleagues have proposed that soluble, oligomeric Aβ 

activation of α7 nAChRs results in neuroprotection in early AD through preservation of 

cholinergic neurotransmission and sequestration of toxic Aβ (Hernandez et al., 2010).   

In contrast, a downregulation in BTX binding occurred in some brain regions in 

APPswe mice with age.  Thus, the relative changes in binding are region specific.  This is 

inconsistent with the possible agonistic properties of Aβ suggesting some brain regions 

may only be regulated by normal aging and the accompanying synaptic loss.  Due to the 

predominant presynaptic location of α7 nAChRs and widespread distribution throughout 

the CNS, it is also possible Aβ may affect this receptor differently depending on brain 

regions and local concentrations.  Downregulation may result from increased 

corticosteroids; however, it is unknown if corticosterone levels in these mice are elevated 

due to APP expression or normal aging.  In Tg2576 mice, abnormal elevations in 

glucocorticoids occur following restraint stress (Pedersen et al., 1999).  Thus, measuring 

plasma corticosterone levels in this study would provide further insight.  

Similarly, reductions were seen in EPI binding in APPswe mice.  For example, 

the reduction of EPI binding in the superior colliculus in APPswe mice with age may 

suggest a deficit occurs as an early event in AD possibly due to synaptic loss.  

Interestingly, a downregulation in EPI binding was recently reported in patients with 

MCI and AD through PET indicating a possible loss early in the disease (Sabri et al., 

2008).  While other studies have shown changes in α4β2 nAChRs in rodent models and 

in late stage disease in AD patients, the current results reinforce the selective 

vulnerability of α7 nAChRs in AD models demonstrated repeatedly in the literature.  The 

data herein suggest the α7 nAChR is a sensitive target for regulation by soluble Aβ in 

mice that overexpress APP.  No changes were found in muscarinic receptor density, as 
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measured by QNB, in APPswe mice.  In contrast to the upregulation seen in BTX 

binding, it is possible that mAChRs are not upregulated because soluble Aβ mediated 

increases in α7 nAChR may stabilize synaptic function and preclude any compensatory 

changes in muscarinic receptors. 

The initial objective of this study was to evaluate changes in α7 nAChR at 

various ages in the APPswe transgenic mouse model of AD in order to investigate the 

effects of Aβ deposition on nicotinic receptor expression.  The lack of Aβ deposition in 

this model was an obstacle that prevented the characterization of nAChR changes at 

various stages in the pathogenesis of AD.  Furthermore, measuring nAChR mRNA, Aβ 

levels, corticosterone, or additional biomarkers would have improved the study. 

In conclusion, this study has shown that cholinergic receptor expression was 

affected by age in APPswe and wild-type mice.   Changes in various brain regions 

suggest a differential regulation of receptor subtypes both by Aβ and the aging process.  

While α7 nAChR binding was enhanced in particular brain regions and diminished in 

others during the aging process, several hippocampal regions, as well as the subthalamic 

zona incerta, displayed an upregulation in α7 nAChR regardless of age in APPswe mice 

compared to wild-type controls. This indicates an association with elevated APP 

expression.  While soluble Aβ is expected to be augmented in the APPswe mice, 

amyloidosis was not present; this may explain regional differences in cholinergic 

alterations and nicotinic receptor effects that are of a lesser magnitude than previous 

studies.  The results of this study suggest the α7 nAChR is a sensitive target for 

regulation by aging and genotype in mice engineered to overexpress the amyloid 

precursor protein, and changes in α7 nAChR appear prior to amyloid pathology.  The 

mechanism by which APP overexpression affects α7 nAChR binding is yet to be fully 

determined.   

 



 

Table 2.1.  Modulation of the α7 nAChR, measured by α-[125I]-bungarotoxin (BTX) binding, with aging in APPswe and wild-type 
mice. Data presented are the Pearson correlation coefficient (p-value) for mice 45-558 days of age.  The mean ± standard deviation 
amount of binding (nCi/mg wet tissue) is also included to illustrate the relative magnitudes for each strain.   
 
 Pearson Coefficient (p-value)  Mean ± SD 

 
  

Brain Region Wild-type APPswe Strain Effect Wild-type APPswe   
Olfactory cortex        
Olfactory tubercle -0.191 (0.382) -0.044 (0.846)  6.98 ± 1.94 6.72 ± 1.80   
Neocortex        
Somatosensory cortex layers 1-3 0.156 (0.467) 0.456 (0.025)* ↑APPswe  2.63 ± 0.55 2.60 ± 0.58   
Somatosensory cortex layers 4-6 0.062 (0.772) 0.228 (0.285)  7.86 ± 1.30 8.11 ± 1.28   
2° somatosensory/insular cortex -0.148 (0.490) 0.197 (0.355)  2.37 ± 0.53 2.33 ± 0.51   
Corpus callosum -0.092 (0.669) -0.209 (0.327)  0.21 ± 0.04 0.20 ± 0.05   
Basal ganglia        
Diagonal band -0.187 (0.381) -0.025 (0.909)  2.22 ± 0.53 2.18 ± 0.45   
Caudate putamen (lateral) -0.556 (0.005)** -0.488 (0.016)* ↓Both  10.92 ± 2.08 11.07 ± 1.71   
Caudate putamen (medial) -0.545 (0.006)** -0.376 (0.071) ↓Wild-type  4.05 ± 0.96 4.19 ± 0.89   
Caudate putamen  -0.588 (0.003)** -0.398 (0.054) ↓Wild-type  5.09 ± 1.11 5.18 ± 1.02   
Ventral endopiriform -0.083 (0.702) -0.326 (0.120)  3.95 ± 0.80 4.35 ± 0.77   
Dorsal endopiriform -0.399 (0.054) -0.359 (0.085)  5.37 ± 1.38 5.46 ± 0.89   
Bed nucleus (stria terminalis) 0.203 (0.343) 0.601 (0.002)** ↑APPswe 4.58 ± 0.76 4.46 ± 0.87   
Diencephalon        
Medial preoptic area  0.080 (0.710) 0.532 (0.009)** ↑APPswe 11.60 ± 2.46 12.04 ± 2.40   
AV thalamic nucleus -0.361 (0.084) 0.220 (0.313)  8.95 ± 2.07 8.84 ± 1.56   
Lateral hypothalamus (anterior) 0.046 (0.833) 0.331 (0.123)  11.41 ± 1.59 12.15 ± 1.19   
Lateral hypothalamus (posterior) -0.478 (0.018)* -0.524 (0.010)* ↓Both 12.89 ± 2.22 13.03 ± 1.70   
Ventrolateral geniculate nucleus -0.152 (0.478) 0.021 (0.925)  13.01 ± 1.74 13.46 ± 1.25   
Premammillary nucleus -0.056 (0.795) -0.057 (0.791)  12.97 ± 2.47 13.74 ± 2.87   
Subthalamic nucleus -0.142 (0.508) -0.254 (0.243)  16.14 ± 1.96 16.59 ± 1.40   
Zona incerta -0.175 (0.414) -0.294 (0.173)  2.86 ± 0.53 3.17 ± 0.42   
Parafasicularis nucleus -0.160 (0.454) -0.071 (0.747)  24.40 ± 2.84 24.68 ± 2.39   
Posterior hypothalamic area 0.066 (0.764) 0.340 (0.113)  11.91 ± 1.46 12.00 ± 1.03  Continued  
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Table 2.1 (Continued)        
 Pearson Coefficient (p-value)  Mean ± SD 

 
  

Brain Region Wild-type APPswe Strain Effect Wild-type APPswe   
Anterior hippocampus        
CA1 layer 0.141 (0.512) 0.070 (0.744)  3.82 ± 0.69 4.48 ± 0.99   
CA2 layer -0.311 (0.140) -0.089 (0.679)  11.71 ± 1.96 13.18 ± 1.45   
CA3 layer -0.073 (0.733) -0.093 (0.666)  5.59 ± 0.97 5.91 ± 0.83   
Posterior hippocampus        
CA3 layer 0.039 (0.856) -0.234 (0.271)  15.60 ± 1.48 17.12 ± 1.68   
Dentate gyrus (molecular blade) -0.026 (0.903) 0.029 (0.894)  4.40 ± 1.13 4.97 ± 0.91   
Dentate gyrus (hilar blade)  0.222 (0.296) 0.275 (0.194)  26.62 ± 2.90 26.41 ± 2.08   
Amygdala        
Medial amygdale -0.149 (0.488) -0.227 (0.286)  26.82 ± 1.90 26.38 ± 2.83   
Mesencephalon        
Superior colliculus 0.106 (0.622) 0.472 (0.020)* ↑APPswe 21.42 ± 1.72 21.58 ± 1.50   
Substantia nigra 0.325 (0.130) 0.496 (0.019)* ↑APPswe 6.67 ± 1.09 6.79 ± 1.11   
Interpeduncular nucleus (medial) -0.032 (0.882) 0.465 (0.022)* ↑APPswe 16.36 ± 2.59 17.61 ± 2.13   
Interpeduncular nucleus (lateral) 0.218 (0.306) 0.360 (0.084)  19.83 ± 3.18 20.51 ± 2.51   
Interpeduncular nucleus (central) -0.264 (0.224) 0.205 (0.337)  0.96 ± 0.24 1.13 ± 0.41   
Red nucleus -0.422 (0.040)* -0.605 (0.002)** ↓Both 24.80 ± 2.73 24.11 ± 2.63   
Inferior colliculus -0.460 (0.027)* -0.193 (0.365) ↓Wild-type 29.26 ± 2.62 29.18 ± 1.65   
Pons        
Lateral lemniscus  -0.498 (0.013)* -0.182 (0.396) ↓Wild-type 18.13 ± 1.73 18.21 ± 2.71   
Dorsal tegmental nucleus -0.413 (0.045)* 0.027 (0.900) ↓Wild-type 34.37 ± 1.86 33.92 ± 4.12   

65 

*   denotes significance of p < 0.05 
** denote significance of p < 0.01 
Arrows designate direction of significant strain effect 

 



 

Table 2.2.  The effects of aging in APPswe and wild-type mice on non-α7 nAChR expression, measured by [125I]-epibatidine (EPI) 
binding.  Data presented are the Pearson correlation coefficient (p-value) for mice 45-558 days of age.  The mean ± standard deviation 
amount of binding (nCi/mg wet tissue) is also included to illustrate the relative magnitudes for each strain.   
 

 Pearson Coefficient (p-value)  Mean ± SD 
 

Brain Region Wild-type APPswe Strain Effect Wild-type APPswe 
Olfactory cortex      
Olfactory tubercle -0.249 (0.240) -0.165 (0.464)  3.9 ± 0.7 4.1 ± 0.8 
Neocortex      
Somatosensory cortex layers 1-3 -0.320 (0.127) 0.014 (0.949)  3.8 ± 0.7 3.9 ± 0.6 
Somatosensory cortex layers 4-6 -0.043 (0.843) -0.150 (0.494)  2.4 ± 0.1 2.4 ± 0.1 
Basal ganglia      
Caudate putamen -0.337 (0.107) 0.019 (0.932)  5.2 ± 0.9 5.6 ± 1.0 
Diencephalon      
Anterior thalamus -0.391 (0.065) -0.134 (0.551)  20.5 ± 1.9 20.6 ± 2.3 
Dorsolateral geniculate nucleus -0.479 (0.018)* -0.454 (0.034)* ↓Both 20.7 ± 1.8 21.0 ± 2.2 
Ventrolateral geniculate nucleus -0.578 (0.003)** -0.338 (0.124) ↓Wild-type 19.6 ± 1.8 20.1 ± 2.4 
Zona incerta -0.197 (0.356) -0.321 (0.145)  6.2 ± 1.2 6.5 ± 1.4 
Hippocampus      
Dentate gyrus (lateral blade) -0.115 (0.592) -0.132 (0.538)  3.5 ± 0.3 3.6 ± 0.3 
Dentate gyrus (medial blade) -0.220 (0.302) -0.218 (0.305)  3.4 ± 0.4 3.5 ± 0.3 
Subiculum -0.055 (0.799) -0.080 (0.715)  9.2 ± 1.3 9.5 ± 1.8 
Mesencephalon      
Superior colliculus -0.701 (0.0002)** -0.602 (0.002)** ↓Both 21.6 ± 1.8 21.4 ± 2.4 
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*   denotes significance of p < 0.05 
** denote significance of p < 0.01 
Arrows designate direction of significant strain effect 
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Table 2.3.  The effects of aging in APPswe and wild-type mice on mAChR expression, measured by [3H]-quinuclidinyl benzilate 
(QNB) binding.  Data presented are the Pearson correlation coefficient (p-value) for mice 45-558 days of age.  The mean ± standard 
deviation amount of binding (nCi/mg wet tissue) is also included to illustrate the relative magnitudes for each strain.   
 

 Pearson Coefficient (p-value)  Mean ± SD 
 

Brain Region Wild-type APPswe Strain Effect Wild-type APPswe 
Olfactory cortex      
Olfactory tubercle 0.450 (0.046)* 0.358 (0.122) ↑Wild-type 6.9 ± 0.9 6.7 ± 1.1 
Neocortex      
Somatosensory cortex layers 1-3 0.516 (0.017)* 0.0312 (0.893) ↑Wild-type 5.4 ± 0.7 5.2 ± 0.7 
Somatosensory cortex layers 4-6 0.387 (0.083) -0.262 (0.252)  3.6 ± 0.4 3.5 ± 0.5 
Basal ganglia      
Caudate putamen 0.437 (0.047)* -0.003 (0.990) ↑Wild-type 5.2 ± 0.8 5.1 ± 0.9 
Nucleus accumbens 0.676 (0.001)** 0.216 (0.361) ↑Wild-type 6.4 ± 1.1 6.0 ± 1.0 
Hippocampus      
Layer CA1 0.543 (0.009)** 0.060 (0.796) ↑Wild-type 6.6 ± 1.1 6.3 ± 1.5 
Layers CA2 and CA3  0.455 (0.033)* -0.002 (0.993) ↑Wild-type 4.3 ± 0.5 4.1 ± 0.7 
Dentate gyrus (lateral blade) 0.454 (0.034)* -0.022 (0.925) ↑Wild-type 6.0 ± 0.9 5.6 ± 1.4 
Dentate gyrus (medial blade) 0.414 (0.056)* -0.062 (0.789) ↑Wild-type 6.9 ± 0.8 6.4 ± 1.2 

*   denotes significance of p < 0.05 
** denote significance of p < 0.01 
Arrows designate direction of significant strain effect 

 
 



 

Table 2.4.  A summary of the binding results in APPswe and wild-type mice shows the 
number of brain regions analyzed for each of three binding studies and the number of 
regions displaying a significant change with aging determined by Pearson correlation 
analysis (p < 0.05 and p < 0.01). 
 
 

  Wild-type APPswe 
Binding 
Study 

Regions Increase Decrease Increase Decrease 

BTX 38 0 8 (21%) 6 (16%) 3 (8%) 
 

EPI 
 

12 
 

0 
 

3 (25%) 
 

0 
 

2 (17%) 
 

QNB 
 

9 
 

8 (89%) 
 

0 
 

0 
 

0 
Abbreviations:  BTX, α-[125I]-bungarotoxin; EPI, [125I]-epibatidine; QNB, [3H]-quinuclidinyl benzilate 
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Figure 2.1.  Enhanced α7 nAChR expression in APPswe mice compared to wild-type 
controls.  Correlation analysis demonstrated no difference in BTX binding as a function 
of age in the hippocampus of both mouse strains; however, a difference between APPswe 
and wild-type strains was apparent without considering age.  Therefore, a post hoc 
Student’s t-test was performed to test for differences in genotype means disregarding age 
for the hippocampal regions CA1, CA2, CA3 and posterior hippocampal layer CA3, as 
well as the zona incerta.  APPswe mice exhibited an increase in α7 nAChR binding 
compared to wild-type mice in the CA1 (t[46] = 2.68, p = 0.0101), CA2 (t[46] = 2.96, p = 
0.0048), CA3 of the posterior hippocampus (t[46] = 3.35, p = 0.0016), and zona incerta 
(t[45] =2.16, p=0.0359) for all ages but not the anterior subfield CA3 of the anterior 
hippocampus. 
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Figure 2.2.  Representative autoradiographs demonstrate cholinergic receptor binding in 
APPswe and wild-type mice in the aging study.  Panel A shows the significant decrease 
in α7 nAChR binding in the caudate putamen in young wild-type (left) compared to aged 
wild-type (right) mice.  In Panel B, a significant increase in α7 nAChR binding in 
hippocampal CA1 and CA2 is demonstrated in APPswe (left) compared to wild-type 
(right) mice regardless of age (p < 0.05, Student’s t-test).  Panel C shows the significant 
increase in total mAChR binding in the hippocampus of young wild-type (left) compared 
to aged wild-type (right) mice.  Panel D displays the significant decrease in non-α7 
nAChR binding in the superior colliculus in young APPswe (left) compared to aged 
APPswe (right) mice.  Abbreviations: CPu: caudate putamen; SC: superior colliculus 
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Figure 2.3.  β-amyloid histochemistry was employed for the detection of Aβ deposition 
in APPswe mice.   Both immunohistochemistry and staining techniques revealed no Aβ 
peptide deposition in the APPswe mice used in the current study.  The top panels 
represent immunohistochemical localization with the monoclonal antibody, 4G8.  An 18 
month old APPswe mouse is depicted in panel A.  For comparison, panel B shows Aβ 
containing neuritic plaques in postmortem brain tissue from a patient with Alzheimer’s 
disease.  The bottom panels show thioflavin-S staining for Aβ in an aged APPswe mouse 
(C) and a human Alzheimer brain (D). 
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Chapter 3:  Galantamine Treatment Following Traumatic Brain Injury in Rats:  

Effects on Cognition and nAChR Expression 

 

Introduction 

Each year in the U.S., about 1.4 million individuals suffer from traumatic brain 

injury (TBI) (Langlois et al., 2006), and approximately 5.3 million Americans are living 

with long-term functional changes in thinking, sensation, language, and emotion as a 

result of TBI (Thurman et al., 1999; NINDS, 2002).  Characterized by deficits in arousal, 

attention, memory, and executive functioning, impairments in cognition are among the 

most persistent and debilitating neuropsychiatric sequelae of TBI (Arciniegas, 2003).   

Both clinical and experimental investigations have demonstrated a disruption in 

cholinergic neurotransmission following TBI.  In a clinical study, imaging and 

neuropsychological examinations linked the cognitive sequelae of TBI to the ACh 

containing regions of the basal forebrain as evidenced by reduced grey matter densities 

(Salmond et al., 2005).  Attempts have been made to treat the cognitive sequelae of TBI 

with cholinergic enhancing drugs just as in Alzheimer’s disease.  Patients with AD or 

TBI may exhibit similar memory dysfunction and other cognitive impairments.  There are 

several reports of the clinical evaluation, through clinical trials or clinical experience, of 

AChEIs following TBI, most of which have been conducted with donepezil (Aricept®), 

tacrine (Cognex®), or physostigmine resulting in cognitive improvement (Levin et al., 

1986; Cardenas et al., 1994; Pike et al., 1997; Taverni et al., 1998; Masanic et al., 2001; 

Zhang et al., 2004; Khateb et al., 2005).   

Acetylcholinesterase inhibitors (AChEIs), including galantamine, are a class of 

drugs used in the treatment of Alzheimer’s disease and are the subject of ongoing 

research.  Galantamine hydrobromide, marketed as Razadyne® ER (extended release) 

and Razadyne®, formerly Reminyl®, is FDA approved to improve cognition and 

activities of daily living and slow the progression of cognitive symptoms in patients with 

mild to moderate Alzheimer’s disease (Robinson and Plosker, 2006).  In one clinical trial 

in Alzheimer’s patients, long term treatment with galantamine resulted in an 18 month 

period without cognitive decline (Raskind et al., 2004).  Likewise, in a study that 
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followed AChEI use in patients with TBI related chronic impairments including target 

symptoms such as poor memory, patients treated with long term galantamine for 6-33 

months as well as those treated with other AChEIs expressed benefits in functioning 

(Tenovuo, 2005).  

Some studies have shown that the efficacy of AChEIs for cognitive enhancement 

does not necessarily correlate with the potency of enzyme inhibition.  Galantamine is a 

long acting, centrally active, selective, competitive and reversible AChEI.  While 

galantamine is only a modest AChEI, it acts as an allosteric potentiating ligand (APL) for 

both α7 and α4β2 nicotinic receptor (nAChR) subtypes.  Studies have shown that 

galantamine may elicit a neuroprotective effect directly through its actions on nAChRs 

(Coyle et al., 2007; Wang et al., 2007).  Other cholinesterase inhibitors such as donepezil 

and physostigmine have demonstrated cognitive improvement; however, the strong APL 

activity of galantamine suggests its ability to enhance nicotinic receptor activation may 

be prominently involved in its neuroprotective effects. 

APLs (Schrattenholz et al., 1996; Maelicke et al., 2001), also known as positive 

allosteric modulators (PAMs)  are receptor sensitizing agents that elicit their actions 

through the interaction on a binding site other than the classical agonist binding 

pharmacophore.  Ligand gated ion channel receptors commonly express multiple binding 

sites for APLs, one such example is the GABAA receptor.  As a result of APL activity, 

nAChRs do not undergo compensatory changes such as receptor desensitization or 

changes in expression or density (Pereira et al., 1993; Pereira et al., 1994; Schrattenholz 

et al., 1996).  The α7 nicotinic acetylcholine receptor (nAChR) is a homomeric ligand 

gated ion channel prominently located in hippocampal and cortical regions of the rodent 

brain. The high calcium permeability of the α7 nAChR (Seguela et al., 1993) makes it 

unique among nicotinic receptor subtypes.  Although the endogenous functions of α7 

receptors are not clearly understood, previous studies have implicated these proteins in 

processes including learning and memory, synaptic plasticity, neuroprotection, 

inflammation and presynaptic regulation of neurotransmitter release (Levin et al., 2002).  

Clinical conditions that may be related to alterations in α7 nAChR density and/or 

function include Alzheimer's disease and schizophrenia. 
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Previous studies from our laboratory have shown that experimental traumatic 

brain injury causes a widespread and significant loss of α7 nAChR binding in 

hippocampal and cortical brain regions (Verbois et al., 2000; Verbois et al., 2002).  α7 

receptor downregulation occurs rapidly following TBI (within one hour), and persists for 

at least 21 days in some brain regions.  Moreover, TBI is associated with cognitive 

impairment demonstrated in the Morris water maze task of learning and memory, and 

treatment with nicotine (Verbois et al., 2003b; Verbois et al., 2003a) partially attenuates 

this deficit.   

Our laboratory has previously studied the effects of the pharmacological 

modulation of nAChRs as a means to improve neurological outcomes following 

experimental TBI.  Nicotine 0.3mg/kg administered intraperitoneally twice daily for 11 

days following a mild to moderate 1.5 mm CCI to the somatosensory cortex partially 

attenuated deficits in the training phase (distance traveled to the platform) but fully 

attenuated deficits in the retention probe test.  In addition, cognitive improvements were 

accompanied by enhanced non-α7 nAChR binding in the cerebral cortex and striatum, 

regions which showed reductions following CCI.  Upregulation of α7 nAChRs was not 

demonstrated in the hippocampal and cortical regions in which TBI related deficits were 

noted (Verbois et al., 2003b).  However, when chronic nicotine was continuously 

administered by osmotic mini-pump for seven days, there was an attenuation of α7 

nAChR deficits in several hippocampal regions such as the CA2, CA3, and hilar and 

lateral blades of the dentate gyrus (Verbois et al., 2003a).  No cortical tissue sparing 

ability of nicotine was apparent when given intermittently; however, continuous infusion 

of 0.125 or 0.25 mg/kg/hour resulted in a significant sparing effect.  In addition, a study 

of the α7 nAChR selective ligand, choline, was performed in the CCI model of 

experimental TBI.  Choline administered in the diet for two weeks prior to injury and just 

under two weeks following injury resulting in significant cortical tissue sparing indicative 

of neuroprotection and some improvement in spatial memory impairments evaluated 

using the Morris water maze task.  In the superior colliculus and the CA1 subfield of the 

hippocampus, choline attenuated deficits in BTX binding associated with the injury 

(Guseva et al., 2008). 
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Hence, our studies have shown deficits in α7 nAChR expression that may 

contribute to cognitive dysfunction induced by TBI, and pharmacologic modulation of α7 

nAChRs may result in some functional improvement.  We hypothesized that galantamine, 

an AChEI and APL for nAChRs, facilitates neuroprotection and cognitive enhancement 

in an experimental model of traumatic brain injury.  The purpose of this study was to 

evaluate the effects of the nAChR modulator, galantamine, on cognition and nAChR 

expression in rats following experimental brain injury.  

Materials and Methods 

Animal surgeries and study design 

Rats were housed in a temperature controlled room on a 12 hour light/dark cycle 

at the University of Kentucky for at least one week prior to surgeries and were allowed 

unlimited access to food and water.  All procedures were done in accordance with the 

University of Kentucky IACUC guidelines.  Adult male Sprague-Dawley rats (mean 

weight = 308 g) were randomly assigned to receive a mild to moderate 1.5 mm controlled 

cortical impact (CCI) brain injury or sham craniotomy surgery (Scheff et al., 1997; 

Scheff and Sullivan, 1999; Scheff et al., 2005).  Rats were anaesthetized with 4% 

isoflurane and immobilized in a Kopf stereotaxic frame. Craniotomy (6 mm) was 

performed using a Michele trephine (Miltex, Lake Success, NY)  midway between 

bregma and lambda above the somatosensory cortex (bregma –2.8 mm, 2.5 mm lateral), 

and the skull cap was carefully removed.  An electronically controlled nitrogen driven 

piston (TBI-0300 Impactor, Precision Systems and Instrumentation, LLC) was then 

placed on the surface of the exposed brain and used to administer a 1.5 mm cortical 

deformation 5 mm in diameter at a target velocity of 3.5 m/s. Sham animals underwent 

identical procedures without impaction.  After the skull cap was replaced, surgiseal 

(Johnson & Johnson, Arlington, TX), dental acrylic, and staples were applied, and rats 

were placed back in their cages.   

Study 1.  Twenty-four hours following injury, rats were randomized into three 

treatment groups to receive twice daily intraperitoneal (i.p.) injections of 3.3 mg/kg 

galantamine (n = 7), 0.3 mg/kg nicotine free base (n = 7) or 0.9% (normal) saline vehicle 

(n = 7).  All drug treatments were continued throughout the duration of the study 
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including the cognitive evaluation portion, totaling 15 days, and sham operated animals 

(n = 7) received only saline.  Galantamine hydrobromide 3.3 mg/ml (Tocris Bioscience, 

Ellisville, MO) and nicotine free base 0.3mg/ml were prepared as stock dosing solutions 

in normal saline, pH 7.4, sterile filtered, aliquoted and stored according to manufacturers’ 

recommendations.  Rats were weighed each morning and drugs were administered at 8 

am and 6 pm on the treatments days in volumes based on their morning weight.  For 

example, a rat weighing 300 g would receive an i.p. injection of 0.3 ml.  On the morning 

of the eleventh day post-injury, the Morris water maze behavioral task was commenced 

to assess spatial memory.   

 Study 2.  The same methods as in study 1 were employed in a second study to 

evaluate the efficacy of various different galantamine exposure regimens.  Galantamine 

3.3 mg/kg was administered twice daily intraperitoneally (a) 30 minutes post-injury, 

again that evening, and twice daily on the day after surgery (GAL1-2, n = 6), (b) 

beginning 24 hours after injury and continuing on days 2-6 following surgery (GAL2-6, n 

= 6), or (c) on days 7-11 at which time the Morris water maze testing was conducted 

(GAL7-11, n = 4).  Normal saline twice daily was given on days 1-11 (n = 6).  

Morris water maze behavioral task   

 The Morris water maze spatial navigation task evaluating learning and memory is 

described in detail elsewhere (Morris, 1984) and was employed using specifications listed 

previously (Scheff et al., 1997; Verbois et al., 2003b).  The task consisted of four trials 

each on five consecutive days in which rats were given 60 seconds to find a hidden 

escape platform (13.5 cm) in a circular pool of water (127 cm diameter by 56 cm height).  

Black tempera paint was added to the pool in order to conceal the platform.  Each of the 

four walls displayed spatial cues.  The rats were placed in the pool from a different 

quadrant on each of the four separate trials with a five minute interval between trials.  If 

the rat failed to find the platform, the rat was placed on the platform at the end of the 60 

second trial.  Three hours after the last trial on day five, the rats were placed in the pool 

for a 60 second memory retention test in which the hidden platform was removed.  Only 

the first 15 seconds was used in the retention analysis.  All tests were video recorded 

from above and a video motion analyzer (Videomex V, Columbus Instruments, 
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Columbus, OH) with Videomex-ONE software was used to assess the swim strategy and 

speed.     

Tissue preparation and nissl staining 

For both studies, immediately following completion of five days of behavioral 

testing, animals were euthanatized by decapitation and brains were excised, snap frozen 

in isopentane, and sectioned 16 microns thick using a Leica CM50 cryostat (Nussloch, 

Germany).  Tissues were then mounted onto slides coated with gelatin, chromium 

potassium sulfate and poly-L-lysine to promote tissue adherence.  Serial sets of adjacent 

tissue sections were collected throughout the entire rostro-caudal axis of the rat brain, 

beginning at approximately plate 15 (bregma 0.70 mm) and ending at approximately 

plate 44 (bregma -6.72 mm) according to Paxinos and Watson’s rat brain atlas (Paxinos 

and Watson, 1986).  Serial sets were obtained to evaluate nAChR radioligand binding 

focusing on cortical and hippocampal brain regions as well as nissl staining for cortical 

sparing analysis.  Sections were stored at -80°C until use at which time they were thawed 

and air dried.  All reagents were purchased from either Sigma-Aldrich (St. Louis, MO) or 

Fisher-Scientific (Pittsburgh, PA) unless otherwise stated. 

Nissl staining of the smooth endoplasmic reticulum, was performed for cortical 

sparing analysis of the treatments employed.  Cresyl violet stain was made by combining 

6% aqueous cresyl violet stock with 0.2 M acetic acid, 0.2 M sodium acetate and ddH20 

and was filtered twice.  Next, the samples were submerged two minutes in each of the 

following:  100% ETOH, xylene, 100% ETOH, 95% ETOH, 70 % ETOH, ddh20.  This 

was followed by an incubation in the cresyl violet stain for 10 minutes.  Next, samples 

were dipped three times each in 70% ETOH, 95% ETOH, 100% ETOH and then for 30 

seconds in 100% ETOH.  The process was completed by submerging the samples in 

Citrisolv Fisherbrand ® (substituted for xylene) for 2 minutes and once again for at least 

another 2 minutes.  Coverslips were then applied with Cytoseal. 

Cholinergic receptor autoradiography 

Quantitative receptor autoradiography was performed to investigate nicotinic 

receptor binding using the radioligands, α-[125I]-bungarotoxin and [125I]-epibatidine, 

selective for the binding of α7 nAChRs and non-α7 nAChRs, respectively.  All 
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radioligands were purchased from PerkinElmer Life Sciences, Inc., Boston, MA.  α-

[125I]-bungarotoxin (BTX) binding was carried out as previously described by Pauly and 

Collins (1993).  The concentration of radioligand used was 2-3 fold greater than the 

affinity (Kd) for receptor binding to ensure the assay results are representative of changes 

in receptor number (Bmax) as opposed to alterations in affinity.  In detail, brain sections 

were first pre-incubated in Krebs-Ringer HEPES (KRH) buffer, pH 7.5 (1180 mM NaCl, 

48 mM KCl, 25 mM CaCl2, 12 mM MgSO4 (7H2O), 200 mM HEPES, and 100 mM 

NaOH) for 30 minutes at room temperature.  Next, 2.5 nM α-[125I] -BTX (specific 

activity = 154.0 Ci/mmol) was added to KRH buffer containing 0.5 mg/ml bovine serum 

albumin, to protect the radioligand from proteases and limit adherence to plastic or glass, 

in which sections were incubated for two hours at room temperature.  This was followed 

by a series of washes (three x 20 minutes in KRH, one x 10 seconds in 10% KRH, and 

one x 10 seconds in double deionized water [ddH20]) at 4°C.   

Non-α7 nAChR binding was determined through the use of [125I]-epibatidine 

(EPI), specific activity = 2200 Ci/mmol, according to the method of Perry and Kellar 

employing tritiated EPI (Perry and Kellar, 1995).  [125I]-EPI possesses similar properties 

to the tritiated form such as a high affinity and low non-specific binding (Davila-Garcia 

et al., 1997; Whiteaker et al., 2000).  However, due to a significantly higher specific 

activity of the iodinated form and limited resources, it was not possible to purchase the 

radioligand in sufficient concentration to conduct assays at saturation.  Therefore, the 

saturating concentration of 400pM was obtained by adding a sufficient amount of cold 

EPI (5mg vial, FW 281.6; adding amount of EPI needed to increase hot EPI amount to 

400pM ).  Brain sections were incubated with EPI in a pH 7.0 buffer containing 50 mM 

Tris HCl, 120 mM NaCl, 5 mM MgCl2, and 2.5 mM CaCl2 for 40 minutes at room 

temperature. The incubation was followed by a number of washes at 4°C (two x 5 

minutes in buffer, one x 10 seconds in 10% buffer, and one x 10 seconds in ddH20).  

Once the washes were completed, sections were dried under a low speed fan and 

stored overnight under vacuum in a desiccator at room temperature.  The following day, 

sections from the BTX and EPI binding assays were exposed to Kodak Biomax MR film.  

Exposures were stored in x-ray cassettes along with slides containing calibrated brain 

tissue paste standards with known amounts of 125I for six days or three weeks (19 days) 
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for BTX and EPI binding assays, respectively.  Tissue standards were prepared as 

described elsewhere (Geary et al., 1985; Pauly and Collins, 1993).  Films were processed 

with Kodak GBX developer and Photoflo 200 solution (Eastman Kodak Co., Rochester, 

NY).  

Image analysis of radioligand binding and cortical sparing and statistics 

 Brain images were illuminated with a Northern Lights desktop illuminator (Model 

B95 Imaging Research, Ontario, Canada).  Binding films and nissl stained sections were 

analyzed using NIH image v1.59 software on a Power Macintosh connected to a Sony 

XC-77 CCD camera via a Scion LG-3 frame-grabber or using ImageJ v1.34j software on 

an iMac employing a Scion CFW-1310M digital camera.  For radioligand binding data, a 

tissue radioactivity versus optical density standard curve, fit to a third degree polynomial, 

was generated to determine molar quantities of bound ligand, expressed as nCi/mg of wet 

tissue weight, from measured optical densities of the brain regions of interest.  Each brain 

structure was measured on the ipsilateral and contralateral sides separately in multiple 

consecutive brain sections.  Cortical sparing analysis was conducted as previously 

described (Scheff and Sullivan, 1999).  Eleven (study 1) or nine (study 2) equally spaced 

nissl stained cryosections through the injured area were used from each animal.  A 

standard office ruler was used to measure the number of pixels contained in a specified 

millimeter distance.  Cortical area was then measured on each side of the brain separately 

using the corpus callosum and lamina 1 as boundaries.  The percentage of cortical tissue 

spared was calculated by dividing the mean cortical area for the ipsilateral hemisphere by 

the mean cortical area for the contralateral side of the brain, multiplied by 100.   

Statistical analysis was performed using a two-way (treatment, side), repeated 

measures, analysis of variance (ANOVA) followed by a Tukey-Kramer multiple 

comparisons test (GBSTAT software) for quantitative autoradiography of nAChRs.  A 

two-way (treatment, day), repeated measures, ANOVA followed by a Tukey-Kramer 

multiple comparisons test was used to analyze the body weight and the Morris water 

maze acquisition data.  A one-way analysis of variance was used for all other 

comparisons of the Morris water maze and cortical sparing data (GBSTAT software or 
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Graphpad Prism 5.01, San Diego, CA).  Statistical significance was determined at an 

alpha level of 0.05. 

Results  

Study 1. The body mass following TBI in rats treated with galantamine, nicotine 

or saline is shown in figure 3.1.  Rats were first weighed immediately before receiving a 

1.5 mm CCI and again each morning before receiving study drugs for the next 15 days.  

The body mass was obtained in order to determine the volume of drug to be given in each 

dose.  Two-way repeated measures ANOVA demonstrated a significant effect of day, 

F(15, 360) = 54.35, p < 0.0001.  In all treatment groups, rats lost weight the day 

following surgery.  Body mass was significantly lower by day 2 in galantamine and 

saline treated rats, and by day 3 the nicotine treated rats weighed significantly less.  Body 

mass in the sham group during the initial days following injury was not significantly 

different compared to baseline.  After the initial drop in weight on the day following TBI, 

Galantamine and nicotine treated rats gained weight throughout the study, but their body 

mass was not statistically different on the final study day compared to the first study day.  

In comparison, the body mass of the sham group was significantly elevated on day 9 until 

the end of the study.  Likewise, the saline treated rats displayed an elevated body mass 

beginning on day 13 compared to day 1.  Nevertheless, ANOVA revealed no treatment 

group effect; thus, there was no differences in body mass between groups at the end of 

the study.  

The Morris water maze behavioral task of spatial learning and memory was 

performed in rats receiving galantamine, nicotine, or saline following CCI.  Results of the 

acquisition phase of testing are presented in Figure 3.2.  Panel A shows the training phase 

of the Morris water maze, in which each rat performed four swim trials on five 

consecutive days.  The path length traveled to find the platform was used for analysis 

instead of latency to platform goal, as differences in swim speed would affect this 

parameter.  Two-way repeated measures ANOVA for path length revealed a significant 

effect of treatment group F(3, 432) = 8.54, p < 0.0001, day F(4, 432) = 9.12, p < 0.0001, 

and interaction F(12, 432) = 2.15, p = 0.0135. 

81 



 

When compared to the first day of training, the Tukey-Kramer multiple 

comparisons test revealed only the sham group demonstrated a statistically significant 

improvement in ability to locate the platform goal by the end of the five training days.  

Nicotine did not provide rats with any benefit in the training phase and rats tended to 

perform worse than the other groups by the fourth day.  The Tukey-Kramer multiple 

comparisons test showed that on day 5, nicotine treated rats swam a significantly longer 

distance than sham operated and saline treated rats. 

Panel B shows the acquisition data from the 20 trials combined examined post 

hoc.  When collapsing the data to treatment group only, galantamine, nicotine and saline 

treated rats did not perform as well as sham operated rats, as one-way ANOVA revealed 

a significant effect of treatment group F(3, 552) = 14.01, p < 0.0001.  However, 

galantamine had the lowest path length of the three treatment groups.  Furthermore, rats 

treated with nicotine performed significantly worse than rats treated with galantamine. 

The retention phase data for the Morris water maze behavioral task are presented 

in figure 3.3.  Approximately three hours following the completion of the fifth training 

day, the hidden platform was removed and animals were given 60 seconds to swim.  All 

measurements were taken from the first 15 seconds of the swim.  There were no 

significant differences in path length or total distance traveled, swim speed, number of 

entries into the target quadrant, time spent in the target quadrant, distance traveled within 

the target quadrant, or number of crosses over the platform area.   

Cortical tissue sparing analysis was performed on nissl stained brain sections.  

Nissl staining allows for the visualization of neuronal cell bodies protected from injury.  

Figure 3.4 shows the results of the tissue sparing analysis when comparing galantamine, 

nicotine, and saline following TBI.  The percent cortex spared (mean ± standard 

deviation) of the sham operated rats was 104.9 ± 4.3.  A value of approximately 100 

percent was expected; however, the current value slightly greater than 100 percent could 

be explained due to misshaping of the brain upon removal.  Percent cortical sparing for 

the treatment groups undergoing CCI included: saline 80.31 ± 5.40, galantamine 88.34 ± 

8.89, and nicotine 79.34 ± 10.30.  One-way ANOVA revealed a significant effect of 

treatment group F(3, 20) = 14.44, p < 0.0001.  Saline, galantamine, and nicotine 

treatment following CCI resulted in a significant decrease in percent cortex spared 
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compared to sham operated rats (Tukey-Kramer multiple comparisons test, p < 0.05).  

Individual rat data are shown in Figure 3.4 to illustrate the variability within each group, 

which may have accounted for the lack of significant benefit with galantamine treatment.  

Representative nissl stained sections showing the CCI to the ipsilateral (left) 

somatosensory cortex are presented for each treatment group (Figure 3.5).  Because rats 

demonstrated high variability within treatment groups, brain sections are representative 

of rats demonstrating the most cortical sparing for the treatment groups employed.  

Quantitative receptor autoradiography was performed in rats administered 

galantamine, nicotine, or saline for 15 days following TBI.  The results for the BTX 

binding of α7 nAChRs in cortical and hippocampal regions are outlined in Table 3.1.  

First of all, there was no statistical difference when comparing the ipsilateral side of the 

brain to the contralateral side of the brain in sham operated rats.   Animals subjected to 

TBI  and treated with saline experienced non-significant decreases in BTX binding on the 

ipsilateral side of the brain compared to the contralateral side of the brain for some 

regions, and a significant decrease occurred in the hilar layer of the dentate gyrus, F(1, 

24) = 44.40, p < 0.0001.  Following galantamine treatment, no difference was found in 

ipsilateral BTX binding in any of the hippocampal or cortical regions analyzed compared 

to the contralateral side of the brain or compared to the ipsilateral brain of sham or saline 

rats.  Moreover, BTX binding in the ipsilateral hilar layer was significantly reduced 

following TBI with nicotine treatment compared to the contralateral side, F(1, 24) = 

44.40, p < 0.0001.   

The results for the EPI binding of non-α7 nAChRs are presented in Tables 3.2.  

Comparisons presented are limited to side differences within a treatment group and 

ipsilateral differences compared to sham or saline treatment groups, unless otherwise 

noted.  There was no difference in EPI binding between the ipsilateral and contralateral 

sides in sham operated rats for any of the regions tested.  TBI demonstrated a significant 

ipsilateral decrease compared to sham operated rats in the auditory cortex layers 2-3, F(3, 

24) = 6.89, p = 0.0017, auditory cortex layers 4-6, F(3, 24) = 16.77, p < 0.0001, lateral 

blade of the dentate gyrus, F(3, 24) = 9.74, p = 0.0002, medial blade of the dentate gyrus, 

F(3, 24) = 6.43, p = 0.0024, caudate putamen, F(3, 24) = 7.51, p = 0.001, thalamus, F(3, 

24) = 5.66, p = 0.0044, anterodorsal thalamic nucleus/dorsal geniculate nucleus 
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(ADN/DGN), F(3, 24) = 4.71, p < 0.0101, and superior colliculus, F(3, 24) = 10.65, p = 

0.0001.  The auditory cortex layers 2-3, F(1, 24) = 122.26, p < 0.0001, lateral blade of the 

dentate gyrus, F(1, 24) = 96.60, p < 0.0001, medial blade of the dentate gyrus, F(1, 24) = 

56.08, p < 0.0001, thalamus, F(1, 24) = 64.22, p < 0.0001, ADN/DGN, F(1, 24) = 

243.25, p < 0.0001, and superior colliculus, F(1, 24) = 87.06, p < 0.0001, also displayed 

significant reductions compared to the contralateral side of the brain.  

TBI caused a significant reduction in non-α7 nAChR binding in galantamine 

treated rats.  Following 15 days of galantamine treatment, EPI binding was significantly 

reduced in the ipsilateral side compared to the contralateral side of the brain in the 

auditory cortex layers 2-3, F(1, 24) = 122.26, p < 0.0001, lateral blade of the dentate 

gyrus, F(1, 24) = 96.60, p < 0.0001, medial blade of the dentate gyrus, F(1, 24) = 56.08, 

p < 0.0001, thalamus, F(1, 24) = 64.22, p < 0.0001, ADN/DGN, F(1, 24) = 243.25, p < 

0.0001, and superior colliculus, F(1, 24) = 87.06, p < 0.0001.  In the ipsilateral auditory 

cortex layers 2-3, F(3, 24) = 6.89, p = 0.0017, lateral blade of the dentate gyrus, F(3, 24) 

= 9.74, p = 0.0002, medial blade of the dentate gyrus, F(3, 24) = 6.43, p = 0.0024, 

ADN/DGN, F(3, 24) = 4.71, p < 0.010, and the superior colliculus, F(3, 24) = 10.65, p = 

0.0001, EPI was downregulated compared to the ipsilateral side in sham operated rats.  

No upregulation in non-α7 nAChRs was apparent, as non-α7 nAChR binding in the 

contralateral side of the brain was no different than binding in the uninjured side of the 

brain in saline and sham rats.   

A significant decrease in EPI binding was associated with TBI and concomitant 

nicotine treatment.  EPI binding following nicotine treatment was reduced on the 

ipsilateral side compared to the contralateral side of the brain in auditory cortex layers 2-

3, F(1, 24) = 122.26, p < 0.0001, auditory cortex layers 4-6, F(1, 24) = 37.15, p < 0.0001, 

lateral blade of the dentate gyrus, F(1, 24) = 96.60, p < 0.0001, medial blade of the 

dentate gyrus, F(1, 24) = 56.08, p < 0.0001, caudate putamen, F(1, 24) = 32.37, p < 

0.0001, thalamus, F(1, 24) = 64.22, p < 0.0001, ADN/DGN, F(1, 24) = 243.25, p < 

0.0001, and superior colliculus, F(1, 24) = 87.06, p < 0.0001.   In the ipsilateral auditory 

cortex layers 4-6, F(3, 24) = 16.77, p < 0.0001, ADN/DGN, F(3, 24) = 4.71, p < 0.010, 

and superior colliculus, F(3, 24) = 10.65, p = 0.0001, EPI was downregulated compared 

to ipsilateral shams.   
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Despite the impaired upregulation in multiple brain regions, in the ipsilateral 

auditory cortex layers 4-6, F(3, 24) = 16.77, p < 0.0001, EPI was upregulated compared 

to shams operated rats.  Likewise, EPI binding in the ipsilateral caudate putamen 

remained significantly higher than in the ipsilateral side of saline treated rats as well as 

the ipsilateral side of sham operated rats, F(3, 24) = 7.51, p = 0.001.  Furthermore, EPI 

demonstrated higher binding in the ipsilateral auditory cortex layers 2-3, F(3, 24) = 6.89, 

p = 0.0017, auditory cortex layers 4-6, F(3, 24) = 16.77, p < 0.0001, and lateral blade of 

the dentate gyrus, F(3, 24) = 9.74, p = 0.0002 compared to saline treated rats undergoing 

TBI, in which EPI had been diminished.   

In addition, nicotine treatment significantly enhanced non-α7 nAChR binding in 

contralateral brain regions tested indicating nicotine’s ability to upregulation nAChRs in 

uninjured brain.  EPI binding in the contralateral auditory cortex layers 2-3, F(3, 24) = 

6.89, p = 0.0017, auditory cortex layers 4-6, F(3, 24) = 16.77, p < 0.0001, lateral blade of 

the dentate gyrus, F(3, 24) = 9.74, p = 0.0002, and caudate putamen, F(3, 24) = 7.51, p = 

0.001, was significantly elevated compared to the contralateral side of sham operated 

rats.   

Study 2.  The body mass following TBI in rats treated with galantamine at three 

different time intervals or saline is shown in figure 3.6.  Rats were first weighed 

immediately prior to receiving a 1.5 mm CCI and again each morning for the next 10 

days.  Two-way repeated measures ANOVA showed a significant effect of treatment 

group F(3, 180) = 4.02, p < 0.0237, day F(10, 180) = 72.32, p < 0.0001, and interaction 

F(30, 180) = 4.78, p < 0.0001.  All treatment groups initially lost weight; body mass was 

significantly reduced on the day following TBI compared to the first study day.  This 

reduction continued through day 6 in the saline treated group and rats treated with 

galantamine on days 1-2 (GAL1-2).  In rats treated with galantamine on days 2-6 (GAL2-

6) the weight reduction occurred through study day 7.  By contrast, rats treated with 

galantamine on days 7-11 (GAL7-11) no longer displayed a reduction in body mass on 

day 4, earlier than the other groups.  Of note, baseline weights were elevated in the 

GAL2-6 and GAL7-11 groups compared to saline treated rats.    On study day 7 in which 

Morris water maze testing began, the GAL7-11 group had an increased body mass 
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compared to all other groups.  In addition, on the last study day, the GAL2-6 and GAL7-

11 groups weighed more than saline treated rats. 

The results of the acquisition training in the Morris water maze behavioral task 

for rats treated with galantamine at different time intervals following CCI is presented in 

figure 3.7.  Panel A shows the training phase of the Morris water maze task.   Each rat 

performed four swim trials on each of the five test days.  The path length traveled to find 

the platform was used for analysis instead of latency to platform goal to avoid differences 

in swim speed.  For comparative purposes, data from a sham operated group of rats (from 

the previous study) was included in the analysis.  Two-way repeated measures, ANOVA 

revealed a significant effect of treatment group F(4, 444) = 4.61, p = 0.0018.  The Tukey-

Kramer multiple comparisons test demonstrated on days 1, 4 and 5, there were no 

differences between groups.  On day 2, the saline and GAL7-11 groups swam farther than 

the sham operated rats.  By day 3, the saline and GAL1-2 groups swam farther than sham 

operated rats.  There was also a significant effect of day F(4, 444) = 28.62, p < 0.0001.  

The GAL2-6, saline, and sham operated groups all performed better by day five, but the 

GAL1-2 and GAL7-11 groups did not improve by the end of the training phase compared 

to the first day of the trial.   

Panel B shows the acquisition data from the 20 trials combined. When collapsing 

the data to compare treatment group only, one-way ANOVA revealed a significant effect 

of treatment group F(4, 569) = 7.65, p < 0.0001.  The GAL1-2 and saline groups 

demonstrated a significantly longer path length compared to sham operated rats.  

 A further post hoc analysis of Morris water maze performance examined the 

fourth daily trial of training, as each day of learning contained four separate trials in 

which variability may be high (figure 3.8).  Data shown are the path lengths traveled to 

find the hidden platform from the fourth trial of days 1-5.  Data from a sham operated 

group of rats (from the previous study) was included in the analysis.  The GAL2-6 group 

displayed the lowest mean path length with the exception of the sham group. 

The retention phase data for the Morris water maze behavioral task are presented 

in figure 3.9.  Approximately three hours following the completion of the fifth training 

day, the hidden platform was removed and animals were given 60 seconds to swim.  All 

measurements were taken from the first 15 seconds of the swim.  One-way ANOVA and 
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the Tukey-Kramer procedure revealed a significant effect of treatment group for total 

distance traveled F(4, 24) = 12.88, p < 0.0001 and speed F(4, 24) = 12.95, p < 0.0001.  

All treatment groups traveled a shorter distance and swam slower than the sham group 

(Figure 3.9A, B).  A significant treatment effect was demonstrated for the distance 

traveled within the target quadrant F(4, 24) = 5.71, p = 0.0022.  The GAL7-11 and saline 

groups swam a significantly shorter distance within the target quadrant compared to sham 

operated rats.  The GAL2-6 group displayed the highest group mean only second to sham 

rats (Figure 3.9E). There were no significant differences in number of entries into the 

target quadrant, time spent in the target quadrant, or number of crosses over the platform 

area.  

The results of the cortical tissue sparing analysis are reported in Figure 3.10.  

When comparing galantamine at various dosing intervals following TBI, The GAL1-2, 

GAL2-6, and GAL7-11 groups all showed increased tissue sparing compared to saline 

treated rats, but none of these protective effects was statistically significant.  The percent 

cortex spared values (mean ± standard deviation) were 89.89 ± 8.58, 92.73 ± 10.05, 91.02 

± 11.06, 89.35 ± 11.15 for the saline, GAL1-2, GAL2-6, and GAL7-11 groups, 

respectively.  The remaining variability and low sample size were limitations of this 

analysis.  Representative nissl stained sections showing the CCI to the ipsilateral (left) 

somatosensory cortex are presented for each treatment group (Figure 3.11).  Brain 

sections are representative of rats demonstrating the most cortical sparing for the 

treatment groups employed. 

 

Discussion 

Ongoing research has suggested galantamine’s facilitative actions as an APL at 

nAChRs may lead to its potential neuroprotective effects.  Due to findings from our 

laboratory in experimental TBI and the abundance of literature supporting the association 

between cognitive impairment and deficits in nAChR expression, namely in AD, we 

hypothesized that nAChRs are important mediators of cell death and survival pathways in 

the hippocampus and cortex.  An evaluation of the effects of galantamine on nAChR 
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expression and cognition in rats following experimental brain injury was conducted 

herein. 

Quantitative receptor autoradiography was performed to determine the effects of 

galantamine treatment on α7 and non-α7 nAChR densities following TBI.  The results of 

the binding analyses show that pharmacological modulation of nAChRs with either 

galantamine or nicotine was unable to reduce the TBI induced deficit in non- α7nAChR 

density in the current paradigm.  A summary of the binding results shows the number of 

ipsilateral brain regions significantly altered following experimental TBI (Table 3.3).     

In the saline treated group, a significant decrease was seen in the hilar layer of the 

dentate gyrus as previous studies have shown (Verbois et al., 2000; Verbois et al., 2002).  

BTX binding in the ipsilateral hilar layer was significantly reduced following nicotine 

treatment compared to the contralateral side as well.  This result is also consistent with 

previous research in that nicotine does not upregulate α7 nAChRs at the current dose 

(Verbois et al., 2003b).  

Results from this receptor binding analysis suggest that nicotine and galantamine 

affect non-α7 receptors to a greater degree than α7 receptors at least when used in the 

current treatment paradigm.  The results of the EPI binding analysis demonstrate a mild 

to moderate form of experimental TBI impairs the ability of agonist induced receptor 

upregulation.  Following TBI and saline treatment, decreases were found in all brain 

regions.  Galantamine treatment resulted in significant reductions and did not result in 

increases in EPI binding in the contralateral brain as expected.  Nicotine treatment was 

associated with a downregulation in ipsilateral EPI binding.  In addition, nicotine 

treatment significantly enhanced non-α7 nAChR binding in some contralateral brain 

regions tested indicating nicotine’s ability to upregulation nAChRs in uninjured brain.  

These finding suggests that upregulation of non-α7 nAChR by galantamine and nicotine 

is altered by TBI.   

Upregulation of nAChRs following agonist stimulation has been well 

documented.  Chronic nicotine exposure in rodents (Marks et al., 1983; Schwartz and 

Kellar, 1983) and in the postmortem brains of smokers (Benwell et al., 1988; Nyback et 

al., 1989; Wonnacott, 1990; Breese et al., 1997a) results in the upregulation of nAChRs, 

and agonist induced nAChR upregulation is thought  to be due to post-translational 
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mechanisms (Marks et al., 1992; Pauly et al., 1996; Gentry and Lukas, 2002).  

Additionally, the pattern of upregulation by nicotine has been shown to depend on 

receptor subtype.  For example, α6β4 nAChRs upregulate at different doses and exposure 

times compared to α4β2 nAChRs (Walsh et al., 2008).  Recently, rats receiving a choline 

supplemented diet for two weeks demonstrated a selective upregulation in α7 nAChRs in 

cortical and hippocampal brain regions (Guseva et al., 2006).  Physiologic changes 

occurring in TBI such as altered cerebral blood flow could affect the concentration, 

distribution, and pharmacodynamic properties of nAChR agonists within various brain 

regions.  TBI may interfere with any one of the processes involved in nAChR 

upregulation including transcription, receptor subunit assembly, post-translational 

modifications or desensitization.  Evaluation of mRNA expression would help to 

characterize TBIs effect on upregulation in this model.   

For the current study, the dose of 3.3 mg/kg twice daily was chosen based on the 

pharmacokinetic and pharmacodynamic literature, behavioral observations following 

dosing in preliminary studies, and the previous use of twice daily dosing regimens by our 

laboratory.  Within minutes of dosing, rats displayed several physical indicators that the 

drug reached the systemic circulation and distributed into the brain including salivation, 

lip smacking, and yawning.   Yawning has been used as an indicator of AChEI activity 

within the CNS (Ogura et al., 2001).  A subcutaneous dose of 3 mg/kg in rats results in 

peak brain concentrations of greater than 1µM within one hour in which galantamine acts 

as an open channel blocker (Sharp et al., 2004).  A narrow therapeutic window occurs 

following dosing when concentrations fall into a range that is optimal for APL activity 

(Geerts et al., 2005).   

Galantamine is metabolized by a number of mechanisms including hepatic 

metabolism through cytochrome P450, glucuronidation, and renal excretion of the 

unchanged parent compound (Mannens et al., 2002).  Cytochrome P450 isoforms 

CYP2D6 and CYP3A4 are involved in galantamine’s metabolism in humans (Ortho-

McNeil Neurologics, 2008) and animals undergo similar metabolic pathways (Mannens 

et al., 2002).  In humans (Shedlofsky et al., 1994) and in rats (Roe et al., 1998), 

exogenous administration of lipopolysaccharide induces an acute phase response 

characterized by inflammation producing fever and elevated cytokines that results in 
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depressed cytochrome P450 activity.  Studies have shown that cytochrome P450 

expression is altered following experimental TBI in the rat.  In one study, a cerebral 

percussive injury resulted in a downregulation of CYP3A mRNA at 24 hours, without 

changes in protein levels or enzyme activity at 24 or 48 hours post injury (Toler et al., 

1993).  In another study (Kalsotra et al., 2003), rats subjected to a controlled cortical 

impact (at a higher severity level than in the study herein) demonstrated a reduction in 

total hepatic cytochrome P450 content at 24 hours followed by an induction two weeks 

later.  In this study, TBI did not alter CYP3A protein levels but rather enhanced activity 

24 hours after injury and increased both protein expression and activity two weeks 

following injury; no change was found in the CYP2D isoform.  Any alterations in drug 

metabolism may affect galantamine’s brain concentrations, but since galantamine 

undergoes multiple routes of elimination, the full impact of this is unknown.  

Furthermore, the elimination half-life of galantamine is only 40-50 minutes in rats 

(Mihailova and Yamboliev, 1986).  Therefore, twice daily dosing should not result in 

steady-state concentrations; thus, small increases or decreases in the concentration would 

not prevent achievement of the target concentration after each dose.  It is presumed that 

brain concentrations reached the target levels to facilitate APL activity in this study; 

however, dosing more often than twice daily may improve the study design.  Hence, the 

dosing regimen ideal for studies assessing galantamine’s modulatory affect on nAChRs 

following TBI may require further consideration and validation through measurement of 

brain concentrations.    

In other models, galantamine induced upregulation of nAChRs has been 

described.  A mouse model that overexpresses acetylcholinesterase (Svedberg et al., 

2004) is used to study the effects of compensatory mechanisms resulting from reduced 

acetylcholine in the synapse which causes upregulation of acetylcholine receptors and 

deficits in spatial learning and memory.  This model can be used to study situations in 

which cholinergic transmission is deficient.  Galantamine 2 mg/kg given subcutaneously 

twice daily for 10 days caused an upregulation in [3H]-cytisine binding in hippocampus 

and BTX binding in the cortex of control mice but not AChE overexpressing mice (in 

which receptor expression was already upregulated) (Svedberg et al., 2004).  Rabbits 

treated with galantamine also showed enhanced nAChR expression and improved 
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learning and memory in young (Woodruff-Pak et al., 2001) and old (Woodruff-Pak and 

Santos, 2000; Woodruff-Pak et al., 2001) individuals.  Donepezil also demonstrated this 

benefit but only in old rabbits.  When tested in the young, no change in EPI binding was 

determined; however, galantamine and donepezil could reverse the cognitive impairment 

caused by mecamylamine, a non-competitive nAChR antagonist (Woodruff-Pak et al., 

2003).  A positron emission tomography study of galantamine treatment, 16-24 mg/day, 

in AD patients displayed a 30-40 percent inhibition of AChE and no changes in [11C]-

nicotine binding in the cortex from three weeks to 12 months of treatment (Kadir et al., 

2008).  However, the authors found a correlation of increasing galantamine 

concentrations in the plasma and cortical [11C]-nicotine binding. 

Galantamine’s cognitive enhancing effects have been evaluated in both in vitro 

and in vivo models.  In mice receiving a lesion to the nucleus basalis magnocellularis 

which results in cholinergic dysfunction, galantamine i.p. four hours before testing 

attenuated deficits in a passive avoidance and modified Morris water maze tests (3.0 

mg/kg and 2.0 mg/kg were optimal doses, respectively).  But galantamine impaired 

performance in sham mice (Sweeney et al., 1990).  In C57B1/10 mice galantamine 

enhanced Morris water maze performance when given at low doses (0.1-1.0 mg/kg), 30 

minutes prior to testing (Vincent et al., 1988).  Galantamine when given in a single i.p. 

dose following reperfusion after transient forebrain ischemia (carotid artery occlusion) to 

rats resulted in improved learning ability using an active avoidance task called the 

shuttle-box test (Iliev et al., 2000). 

Older F344 rats 22 months of age receiving continuous infusions of galantamine 

(0.277 mg/day resulting in 60 percent AChE inhibition) demonstrated enhanced nicotine 

nAChR upregulation in cortex and hippocampus but no change in the spatial working 

memory task in the radial arm maze; donepezil, an AChEI without APL activity, showed 

the same results (Barnes et al., 2000).  In aged Fisher 344 rats 15 days of subcutaneous 

galantamine upregulated cortical nAChRs demonstrated by EPI binding and improved 

spatial learning in the Morris water maze and light/dark box tasks.  However, donepezil 

caused the same result (Hernandez et al., 2006). 

In the current study, galantamine’s potential cognitive enhancing properties were 

evaluated in experimental brain injury.  Unfortunately, galantamine did not enhance 
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cognition as we expected.  The first time galantamine treatment following TBI was tested 

in the Morris water maze, rats appeared to perform better than the saline and nicotine 

treated animals on the first two days of the acquisition phase.  However, this effect did 

not continue throughout the learning trials in which galantamine treated rats learned 

similar to saline treated rats.  When combining all trials, galantamine demonstrated the 

lowest path length, but this was not statistically significant.   

Because of the lack of statistically significant improvements in cognitive function, 

galantamine was tested at different time intervals following TBI in order to attempt to 

optimize outcomes, as one in vitro study concluded that a longer exposure to galantamine 

resulted in diminished function in the nAChR (Barik et al., 2005).  In the examination of 

galantamine treatment administered at different time periods following TBI, those rats in 

the GAL2-6 group performed better than any other group although this was not 

statistically significant.  Furthermore, this group did not receive galantamine on the 

Morris water maze testing days.  In the first galantamine study, dosing was continued 

throughout the behavioral testing days.  The test should be repeated so that dosing is 

ended before the initiation of behavioral testing as this may improve outcomes.  

Galantamine did not show any benefit in the probe trial.  This may be due to the short 

duration between completing the learning phase and initiating the retention aspect of the 

task.  In addition, only the first 15 seconds of a total of 60 seconds available for the rat to 

search for the platform in the probe trial was analyzed.  This was due to the belief that 

learned rats will not continue to search for the platform in its presumed location if it is 

not there; however, this strategy did not show significant results.  The lack of statistical 

significance in the behavioral testing may be remedied by increasing the sample size as 

there was considerable variability in the data for this task.  In addition, saline treated rats 

and sham operated rats demonstrated increases in body weight compared to baseline 

during the behavioral trial of the first galantamine treatment study and this may have 

affected the results.  In the second galantamine analysis, the GAL7-11 group displayed an 

increase in body mass.  This factor probably did not influence the acquisition portion of 

the Morris water maze behavioral task which used the distance traveled as the outcome 

measure which does not depend on swim speed.  However, this may have impacted the 

probe analyses.   
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No significant increases in cortical tissue sparing were detected.  Due to a high 

variability in sham subjects as well as the large treatment group variability, a larger 

sample size may have been warranted to produce statistically significant results.  Further 

studies with galantamine including pretreatment and dose adjustments may help to 

elucidate galantamine’s full potential benefit.  

In a previous study, nicotine administered i.p. twice daily for 11 days following 

TBI partially attenuated deficits in the training phase (distance traveled to the platform) 

of the Morris water maze behavioral task.  Nicotine treated rats performed as well as 

sham operated rats on days 1, 2, and 3 of 5 days of testing as well as in a retention probe 

test in the Morris water maze behavioral task (Verbois et al., 2003b).  In the current 

study, nicotine did not enhance cognition as our laboratory has previously shown.  The 

lack of effect is likely due to the known psychostimulant properties of nicotine 

administration which was continued on the days of behavioral testing in this study unlike 

the previous study.  Such behavioral effects may impede the animals’ ability to perform 

optimally.   

In summary, the analysis of galantamine following mild to moderate TBI suggests 

brain injury interferes with the pharmacologically mediated upregulation of nAChRs.  

Galantamine and nicotine administration did not result in significant and widespread 

elevations in non-α7 nAChRs that would be expected following agonist stimulation.  The 

mechanism by which TBI is involved is unknown but may involve the regulation of 

mRNA expression, and thus, investigations into the transcriptional regulation of nAChRs 

in TBI are needed.  Since galantamine partially remediated TBI induced cognitive 

declines at early, but not later stages of acquisition testing, the kinetics and timing of drug 

delivery may require additional considerations including the testing of galantamine in a 

pretreatment paradigm.  Further studies are needed to fully elucidate galantamine’s 

potential benefit in traumatic brain injury and other models of cholinergic dysfunction. 



 

Table 3.1.  α7 nAChR density, as measured by α-[125I]-bungarotoxin (BTX) binding, in hippocampal and cortical brain regions 
following TBI and 15 days of drug treatment.  Data shown are the amount of binding (nCi/mg wet tissue) group means ± standard 
deviation. 
 

 Sham, Saline CCI, Saline CCI, Galantamine CCI, Nicotine 
Brain Region Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral 
Neocortex         
CTX (1-4)  0.38 ± 0.05 0.38 ± 0.05 0.36 ± 0.06 0.34 ± 0.08 0.35 ± 0.06 0.38 ± 0.07 0.39 ± 0.09 0.39 ± 0.10 
CTX (5-6) 0.71 ± 0.09 0.70 ± 0.08 0.67 ± 0.07 0.67 ± 0.15 0.63 ± 0.09 0.67 ± 0.12 0.73 ± 0.11 0.74 ± 0.13 
Hippocampus         
Stratum Oriens 0.73 ± 0.12 0.75 ± 0.10 0.77 ± 0.16 0.75 ± 0.13 0.70 ± 0.14 0.65 ± 0.09 0.78 ± 0.17 0.71 ± 0.18 
CA1 layer 0.25 ± 0.06 0.23 ± 0.04 0.26 ± 0.05 0.26 ± 0.05 0.26 ± 0.05 0.25 ± 0.06 0.29 ± 0.08 0.27 ± 0.06 
CA3 layer 0.54 ± 0.10 0.54 ± 0.11 0.62 ± 0.12 0.50 ± 0.07 0.58 ± 0.06 0.53 ± 0.10 0.66 ± 0.14 0.58 ± 0.15 
DG (lateral) 0.50 ± 0.05 0.48 ± 0.07   0.50 ± 0.06 0.43 ± 0.04 0.51 ± 0.05 0.45 ± 0.04 0.49 ± 0.11 0.44 ± 0.07 
DG (hilar)  1.39 ± 0.10 1.36 ± 0.12 1.43 ± 0.11 1.30 ± 0.06* 1.48 ± 0.08 1.40 ± 0.06 1.50 ± 0.08 1.37 ± 0.12* 
* denotes significantly different from the contralateral side  94 Statistical significance determined at α = 0.05 
Abbreviations:  CTX, auditory cortex layers 1-4 or 5-6; DG, lateral or hilar blade of the dentate gyrus 
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Table 3.2.  The effects of traumatic brain injury and nicotinic receptor drug treatment on non-α7 nAChRs throughout the brain 
following TBI.  Non-α7 nAChR expression was measured by [125I]-epibatidine (EPI) binding.  Data shown are the amount of binding 
(nCi/mg wet tissue) group means  ± standard deviation. 
 

 Sham, Saline CCI, Saline CCI, Galantamine CCI, Nicotine 
Brain Region Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral 

Neocortex         
CTX (2-3) 0.19 ± 0.03 0.18 ± 0.02 0.18 ± 0.02 0.13 ± 0.03*Ψ 0.19 ± 0.03 0.15 ± 0.02*Ψ 0.25 ± 0.02# 0.18 ± 0.05*† 
CTX (4-6) 0.14 ± 0.02 0.13 ± 0.01 0.13 ± 0.02 0.11 ± 0.02 Ψ 0.13 ± 0.01 0.12 ± 0.01 0.20 ± 0.02# 0.17 ± 0.04*†Ψ 
Basal ganglia         
Caudate putamen 0.20 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.17 ± 0.02Ψ 0.20 ± 0.02 0.19 ± 0.02 0.24 ± 0.02#  0.22 ± 0.03*†Ψ 
Diencephalon         
Thalamus (AV/VL) 0.63 ± 0.02 0.60 ± 0.07 0.62 ± 0.04 0.45 ± 0.08*Ψ 0.61 ± 0.05 0.47 ± 0.07* 0.72 ± 0.07  0.53 ± 0.10* 
ADN/DGN 1.07 ± 0.08 1.05 ± 0.05 1.09 ± 0.03 0.88 ± 0.04*Ψ 1.06 ± 0.07 0.82 ± 0.12*Ψ 1.09 ± 0.05  0.83 ± 0.07*Ψ 
Hippocampus         
DG (lateral) 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.05 ± 0.01*Ψ 0.06 ± 0.01 0.05 ± 0.01*Ψ 0.08 ± 0.01# 0.06 ± 0.01*† 
DG (medial) 0.13 ± 0.01 0.13 ± 0.02 0.11 ± 0.01 0.08 ± 0.01*Ψ 0.12 ± 0.03 0.09 ± 0.03*Ψ 0.15 ± 0.02 0.11 ± 0.02* 
Mesencephalon          
Superior colliculus 0.69 ± 0.07 0.70 ± 0.05 0.68 ± 0.04 0.52 ± 0.07*Ψ 0.61 ± 0.05 0.49 ± 0.05*Ψ 0.69 ± 0.05  0.54 ± 0.08*Ψ 
* denotes significantly different from the contralateral side  
† denotes significantly different from the ipsilateral side of CCI, saline rats  
Ψ denotes significantly different from the ipsilateral side of sham operated rats 
# denotes significantly different from the contralateral side of sham operated rats 
Statistical significance determined at α = 0.05 
Abbreviations:  CTX, auditory cortex layers 1-4 or 5-6; AV, anteroventral thalamic nucleus; VL, ventrolateral thalamic nucleus; ADN, Anterodorsal thalamic 
nucleus; DGN, dorsal geniculate nucleus; DG, lateral or hilar blade of the dentate gyrus 
 
 
 



 

Table 3.3.  A summary of the binding results shows the number of ipsilateral brain regions significantly altered following 
experimental TBI.  Decrease columns represent the number of regions displaying significant reductions when comparing the 
ipsilateral side to the contralateral side of the brain and/or the ipsilateral brain of sham rats.  Increase columns represent the number of 
regions displaying significant elevations when comparing the ipsilateral side to the saline and/or sham group.  A total of seven and 
eight brain regions were analyzed in the BTX and EPI binding studies, respectively. 
 
 

Binding Sham, Saline CCI, Saline CCI, Galantamine CCI, Nicotine 
Study Decrease Increase Decrease Increase Decrease Increase Decrease* Increase 
BTX 0/7 0/7 1/7 0/7 0/7 0/7 1/7 0/7 

         
EPI 0/8 0/8 8/8 0/8 6/8 0/8 8/8 4/8 

* EPI binding in the nicotine treatment group resulted in upregulation on the contralateral side in 4 of the 8 brain regions showing an ipsilateral decrease above 
Abbreviations:  BTX, α-[125I]-bungarotoxin; EPI, [125I]-epibatidine 
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Figure 3.1.  Body mass following TBI in rats treated with galantamine, nicotine or saline.  
Rats were first weighed immediately before receiving a 1.5 mm controlled cortical 
impact (CCI), the morning of study day 1.  Rats were weighed again each morning before 
receiving the study drugs (beginning on day 2) for the next 15 days.  Drug treatments 
included twice daily intraperitoneal injections of 3.3 mg/kg galantamine (n=7), 0.3 mg/kg 
nicotine (n=7), or normal saline vehicle (n=7).  The sham surgery group (n=7) was 
administered saline.  Symbols and bars represent group means, weight in grams (g), and 
standard deviation for each day.  Data were analyzed with a two-way (treatment group x 
day) repeated measures ANOVA, followed by a Tukey-Kramer multiple comparison test.  
A significant effect of day F(15, 360) = 54.35, p<0.0001 was detected. 
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Figure 3.2.  Acquisition training in the Morris water maze behavioral task in rats treated 
with galantamine, nicotine or saline.  Panel A shows the training phase of the Morris 
water maze, performed on five consecutive days, beginning eleven days following injury 
or sham operation (study day 12).  Animals were given 60 seconds to find the hidden 
platform.  The path length, in centimeters, traveled to find the platform was recorded.  If 
the rat did not find the platform, the path length for the 60 second swim was obtained.   
Each rat performed four swim trials on each of the five test days.  Drug treatments were 
administered 24 hours following injury and continued through the behavioral task for a 
total of 15 days.  Two-way repeated measures ANOVA revealed a significant effect of 
treatment group F(3, 432) = 8.54, p<0.0001, day F(4, 432) = 9.12, p<0.0001, and 
interaction F(12, 432) = 2.15, p=0.0135.  Panel B shows the acquisition data from the 20 
trials combined.  One-way ANOVA revealed a significant effect of treatment group F(3, 
552) = 14.01, p<0.0001.  Data are expressed as mean and standard deviation.  * denotes a 
significant difference compared to sham operated rats; ** denote a significant difference 
compared to the CCI, galantamine group and sham operated rats (Tukey-Kramer multiple 
comparisons test, p<0.05).  
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Figure 3.3.  Retention in the Morris water maze behavioral task in rats treated with 
galantamine, nicotine or saline.  Approximately three hours following the completion of 
the fifth training day, the hidden platform was removed and animals were given 60 
seconds to swim.  All measurements were taken from the first 15 seconds of the swim.  
Data are as follows:  A, path length or total distance traveled (cm); B, swim speed 
(cm/sec); C, number of entries into the target quadrant; D, distance traveled within the 
target quadrant (cm); E, number of crosses over the platform area; F, time spent over the 
platform area (sec).  Data are expressed as mean and standard deviation.  Abbreviations: 
cm, centimeters; sec, seconds 
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Figure 3.4.  Cortical tissue sparing analysis was performed on eleven equally spaced 
brain sections following nissl staining.  The cortical area was measured on each side of 
the brain separately.  The percentage of cortical tissue spared was calculated by dividing 
the mean cortical area for the ipsilateral hemisphere by the mean cortical area for the 
contralateral side of the brain, multiplied by 100.  One-way ANOVA revealed a 
significant effect of treatment group F(3, 20) = 14.44, p<0.0001.  Individual data are 
shown for each group; bars represent the group mean.  * denotes a significant difference 
compared to sham operated rats (Tukey-Kramer multiple comparisons test, p<0.05). 
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Figure 3.5.  Representative nissl stained sections are shown from the cortical sparing 
analysis (Figure 3.4) in rats following CCI.  Note the cortical cavitation present on the 
ipsilateral (left) somatosensory cortex of the CCI, saline rat.   
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Figure 3.6.  Body mass following TBI in rats treated with galantamine at three different 
time intervals or saline.  Rats were first weighed immediately prior to receiving a 1.5 mm 
controlled cortical impact (CCI) on the morning of study day 1.  Rats were weighed again 
each morning for the next 10 days.  Drug treatment groups included twice daily 
intraperitoneal injections of galantamine 3.3 mg/kg on days 1-2 (n=6), days 2-6 (n=6), 
days 7-11 (n=4), or saline days 1-11 (n=6).  Rats randomized to the galantamine days 1-2 
group received their first injection 30 minutes following CCI.    Symbols and bars 
represent group means, weight in grams (g), and standard deviation for each day.  Data 
were analyzed with a two-way (treatment group x day) repeated measures ANOVA, 
followed by a Tukey-Kramer multiple comparison test.  A significant effect of treatment 
group F(3, 180) = 4.02, p=0.0237, day F(10, 180) = 72.32, p<0.0001, and interaction 
F(30, 180) = 4.78, p<0.0001 was detected.  Abbreviation: GAL, galantamine 
 

104 



 

 

 
 
 
 
 
 
 
 

105 



 

Figure 3.7.  Acquisition training in the Morris water maze behavioral task in rats treated 
with galantamine at three different time intervals or saline.  Panel A shows the training 
phase of the Morris water maze task which was performed on five consecutive days, 
beginning six days following injury (study day 7).  Animals were given 60 seconds to 
find the hidden platform.  The path length, in centimeters, traveled to find the platform 
was recorded.  If the rat did not find the platform, the path length for the 60 second swim 
was obtained.   Each rat performed four swim trials on each of the five test days.  Two 
groups of rats received drug treatments during the five days of behavior testing, rats 
receiving galantamine on days 7-11 and saline treated rats.  Data from a sham operated 
group of rats (from a previous study) were included in the analysis.  Two-way repeated 
measures ANOVA revealed a significant effect of treatment group F(4, 444) = 4.61, 
p=0.0018 and day F(4, 444) = 28.62, p<0.0001.  Panel B shows the acquisition data from 
the 20 trials combined.  One-way ANOVA revealed a significant effect of treatment 
group F(4, 569) = 7.65, p<0.0001.  Data are expressed as mean and standard deviation. * 
denotes a significant difference compared to sham operated rats (Tukey-Kramer multiple 
comparisons test, p<0.05).  Abbreviation: GAL, galantamine 
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Figure 3.8.  Fourth trial of acquisition training in the Morris water maze in rats treated 
with galantamine at three different time intervals or saline.  The training phase of the 
Morris water maze task was performed on five consecutive days, beginning six days 
following injury (study day 7).  Each rat performed four swim trials on each of the five 
test days.  Data presented are path length (mean and standard deviation in centimeters) 
traveled to find the hidden platform from the fourth trial on days 1-5.  Two groups of rats 
received drug treatments during the five days of behavior testing, rats receiving 
galantamine on days 7-11 and saline treated rats.  Data from a sham operated group of 
rats (from a previous study) were included in the analysis.  Abbreviation: GAL, 
galantamine 
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Figure 3.9.  Retention in the Morris water maze behavioral task in rats treated with 
galantamine at three different time intervals or saline.  Approximately three hours 
following the completion of the fifth training day, the hidden platform was removed and 
animals were given 60 seconds to swim.  All measurements were taken from the first 15 
seconds of the swim.  Data are as follows:  A, path length or total distance traveled (cm); 
B, swim speed (cm/sec); C, number of entries into the target quadrant; D, distance 
traveled within the target quadrant (cm); E, number of crosses over the platform area; F, 
time spent over the platform area (sec).  Data from a sham operated group of rats (from a 
previous study) were included in the analysis.  Data are expressed as mean and standard 
deviation.  One-way ANOVA revealed a significant effect of treatment group for total 
distance traveled F(4, 24) = 12.88, p<0.0001, speed F(4, 24) = 12.95, p<0.0001, and 
distance traveled within the target quadrant F(4, 24) = 5.71, p=0.0022.  Data are 
expressed as mean and standard deviation. * denotes a significant difference compared to 
sham operated rats (Tukey-Kramer, multiple comparisons test, p<0.05).  Abbreviations: 
GAL, galantamine; cm, centimeters; sec, seconds   
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Figure 3.10.  Cortical tissue sparing analysis was performed on nissl stained sections.  
The area of intact cortex was measured on each side of the brain separately using nine 
equally spaced brain sections.  The percentage of cortical tissue spared was calculated by 
dividing the mean cortical area for the ipsilateral hemisphere by the mean cortical area 
for the contralateral side of the brain, multiplied by 100.  Individual data are shown for 
each group; bars represent the group mean.  Abbreviation: GAL, galantamine 
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Figure 3.11.  Representative nissl stained sections are shown from the cortical sparing 
analysis (Figure 3.10) evaluating galantamine treatment following TBI.  The injured 
cortex is shown on the left.   
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Chapter 4:  Experimental Traumatic Brain Injury Reduces the Expression of 

Hippocampal α7 nAChR mRNA 

 

Introduction 

Each year in the U.S., about 1.4 million individuals suffer from traumatic brain 

injury (TBI) (Langlois et al., 2006), and approximately 5.3 million Americans are living 

with long term functional changes in thinking, sensation, language, and emotion as a 

result of TBI (Thurman et al., 1999; NINDS, 2002).  Many patients experience 

neurobehavioral sequelae following TBI characterized by cognitive impairment involving 

deficits in arousal, attention, memory, and executive functioning (Rao and Lyketsos, 

2000; Arciniegas, 2003).  Studies suggest that such long term changes significantly 

impact quality of life and may occur in mild TBI as well as more severe forms of injury 

(Ashman et al., 2006; Silver et al., 2009).  TBI induced alterations in brain 

neurotransmitter systems could contribute to some of the changes in cognitive and 

behavioral function following TBI. 

Clinical investigations have demonstrated a disruption in cholinergic 

neurotransmission following TBI.  In a clinical study, imaging and neuropsychological 

examinations linked the cognitive sequelae of TBI to the basal forebrain (Salmond et al., 

2005).  Postmortem brain studies of individuals with fatal head injuries showed deficits in 

cortical and cingulate gyrus choline acetyltransferase activity (ChAT) and cingulate 

synaptophysin immunoreactivity, a measure of synapses, both indicative of presynaptic 

cholinergic deficits following TBI (Murdoch et al., 1998). In addition, cortical 

cholinergic innervation was disrupted due to damage of the nucleus basalis of Meynert 

(Murdoch et al., 2002).  Compared to control brains, however, [3H]-nicotine binding 

sites, were unaltered (Murdoch et al., 1998).  Another report showed temporal cortical 

ChAT activity decreased by 50 percent in the postmortem brain of patients with fatal 

head injuries, but M1 and M2 muscarinic acetylcholine (mAChR) receptor binding was 

unaltered (Dewar and Graham, 1996). 

In experimental traumatic brain injury, vesicular acetylcholine transporter 

immunostaining was enhanced in the hippocampus and cortex, and M2 mAChR 
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immunoreactivity was decreased in the hippocampus one year following a controlled 

cortical impact (CCI) (Dixon et al., 1999).  Further studies showed this effect as early as 

two weeks in the hippocampus (Ciallella et al., 1998) with no change in mRNA (Shao et 

al., 1999).  Using an alternative model of TBI, fluid percussion resulted in memory 

deficits and decreases in ChAT activity in the dorsal hippocampus and frontal and 

temporal cortices one hour post injury.  However, this was accompanied by an increase in 

ChAT activity in the parietal cortex and a delayed increase in the medial septal area 

(Gorman et al., 1996).  Fluid percussion injury also caused a decrease in hippocampal M2 

mAChR binding 24 hours following injury with no change in the M1 mAChR 

(DeAngelis et al., 1994).  In contrast, enhanced binding of total mAChR sites was 

reported 15 days post injury in the hippocampus and neocortex (Jiang et al., 1994), but no 

change was found at one or 24 hours following injury, and mAChR affinity was 

increased at one hour in the hippocampus (Lyeth et al., 1994).  In summary, inconsistent 

changes in presynaptic cholinergic markers and muscarinic receptors have been 

demonstrated following TBI.  

The α7 nicotinic acetylcholine receptor (nAChR) is a homomeric ligand gated ion 

channel located in hippocampal and cortical regions of the rodent brain, and the high 

calcium permeability of the α7 nAChR (Seguela et al., 1993) makes it unique among 

nicotinic receptor subtypes.  Although the endogenous functions of α7 receptors are not 

clearly understood, previous studies have implicated these proteins in processes including 

learning and memory, synaptic plasticity, neuroprotection, inflammation, and presynaptic 

regulation of neurotransmitter release (Levin et al., 2002). 

Previous studies from our laboratory have shown that experimental traumatic 

brain injury causes a widespread and significant loss of α7 binding in hippocampal and 

cortical brain regions (Verbois et al., 2000).  α7 receptor downregulation occurs rapidly 

following a cortical contusion impact (CCI) injury (within one hour), and persists for at 

least 21 days in some brain regions.  Deficits in α7 nAChR expression are dependent on 

the severity of injury, with more severe damage causing greater downregulation of 

receptor expression.  Forty-eight hours after rats were subjected to a mild CCI, there were 

significant decreases in multiple cortical and hippocampal brain regions in BTX binding, 

representing α7 receptor density, in both the injured and uninjured sides of the brain 
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compared to sham-operated animals.  Deficits were found in auditory cortex, CA1, CA2 

and CA3 subfields of the hippocampus, dentate gyrus, stratum oriens, subiculum and 

superior colliculus.  In rats receiving a moderate, 2 mm injury, many regions on the 

contralateral side of the brain showed a significant decrease in α7 nAChR densities 

compared to sham, but hippocampal BTX binding was even further reduced on the 

injured side including some subfields demonstrating a 50 percent reduction compared to 

sham.  Conversely, EPI binding, measuring non-α7 nAChRs, was not diminished and 

was found to be significantly elevated in the auditory cortex in both levels of injury.  

These results suggest that changes in α7 nAChR expression following TBI could 

contribute to impaired cognition or neurobehavioral disorders following TBI.   

In a time course study, 2 mm injury caused persistent deficits in α7 nAChR 

binding in the stratum oriens, lateral blade of the dentate gyrus, and CA2 subfield of the 

hippocampus at one hour following TBI through 21 days, the last time point tested.  

Hippocampal CA1 deficits occurred at one hour but returned to baseline by the third day.  

Deficits in the subiculum and cortex occurred by one day but were transient only lasting 

72 hours.  The CA3 hippocampal subfield and superior colliculus showed deficits by one 

day and 72 hours, respectively, but continued during the 21 day period of testing.  

Changes in EPI binding were delayed, some transient and some persistent (Verbois et al., 

2002). 

Moreover, TBI is associated with cognitive impairment demonstrated in the 

Morris water maze task of learning and memory, and treatment with nicotine (Verbois et 

al., 2003b; Verbois et al., 2003a) and the α7 nAChR selective ligand, choline, (Guseva et 

al., 2008) attenuate this deficit; thus, α7 nAChRs may be important mediators of cell 

death and survival pathways in the hippocampus and cortex.  The results presented in 

Chapter 3, however, demonstrated an impairment in agonist induced upregulation 

following TBI.  Hence, the purpose of this study was to obtain mechanistic information 

regarding the plasticity of α7 and non-α7 nAChR expression following TBI.  Previous 

studies have shown that pharmacologically mediated changes in nAChR receptor protein 

expression (Marks et al., 1992) (Pauly and Collins, unpublished data) occur independent 

of transcriptional mechanisms.   However, transcriptional mechanisms may be involved 

in TBI induced changes in α7 nAChR expression.  We hypothesized that deficits in α7 
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nAChR expression two days following experimental traumatic brain injury are due to 

reduced expression of α7 nAChR mRNA.  To date, this is the first analysis to employ in 

situ hybridization techniques in order to ascertain possible mechanisms of α7 nAChR 

downregulation following experimental TBI. 

Materials and Methods 

Animals and tissue preparation 

Rats were housed in a temperature controlled room on a 12 hour light/dark cycle 

at the University of Kentucky for at least one week prior to surgeries and were allowed 

unlimited access to food and water.  All procedures were done in accordance with the 

University of Kentucky IACUC guidelines.  Nineteen adult male Sprague-Dawley rats 

were randomly assigned to receive a 1 mm (n = 7) or 2 mm (n = 7) controlled cortical 

impact (CCI) brain injury or sham craniotomy surgery (n = 5).  Each rat was 

anaesthetized with 4% isoflurane and immobilized in a Kopf stereotaxic frame. A 

craniotomy (6 mm) was performed using a Michele trephine (Miltex, Lake Success, NY) 

midway between bregma and lambda above the somatosensory cortex (bregma –2.8 mm, 

2.5 mm lateral), and the skull cap was carefully removed.  An electronically controlled 

nitrogen driven piston (TBI-0300 Impactor, Precision Systems and Instrumentation, 

LLC) was then placed on the surface of the exposed brain and used to administer a 1 mm 

(mild) or 2 mm (moderate) cortical deformation 5 mm in diameter at a target velocity of 

3.5 m/s. Sham animals underwent identical procedures without impaction.  After the skull 

cap was replaced, surgiseal (Johnson & Johnson, Arlington, TX), dental acrylic, and 

staples were applied and rats were placed back in their cages.  Surgeries and instruments 

are described in detail elsewhere (Scheff et al., 1997; Scheff and Sullivan, 1999).  

Animals were euthanatized 48 hours following surgery and brains were excised, frozen in 

isopentane, and sectioned 16 microns thick using a Leica CM50 cryostat (Nussloch, 

Germany).  Tissues were then mounted onto slides coated with gelatin, chromium 

potassium sulfate and poly-L-lysine to promote tissue adherence.  Serial sets of slides 

were collected throughout the entire rostro-caudal axis of the rat brain, beginning at 

approximately plate 15 (bregma 0.70 mm) and ending at approximately plate 44 (bregma 

-6.72 mm) according to Paxinos and Watson’s rat brain atlas (Paxinos and Watson, 
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1986).  Sections were made for mRNA and protein studies and were stored at -80°C until 

use at which time they were thawed and air dried.  All reagents were purchased from 

either Sigma-Aldrich (St. Louis, MO) or Fisher-Scientific (Pittsburgh, PA) unless 

otherwise stated. 

Nicotinic receptor autoradiography 

Receptor autoradiography was performed to investigate nicotinic receptor binding 

using the radioligands, α-[125I]-bungarotoxin and [125I]-epibatidine, selective for the 

binding of α7 nAChRs and non-α7 nAChRs, respectively.  All radioligands were 

purchased from PerkinElmer Life Sciences, Inc., Boston, MA.  α-[125I]-bungarotoxin 

(BTX) binding was carried out as previously described by Pauly and Collins (1993).  The 

concentration of radioligand used was 2-3 fold greater than the affinity (Kd) for binding 

to the receptor to ensure the assay results are representative of changes in receptor 

number (Bmax) as opposed to alterations in affinity.  In detail, brain sections were first 

pre-incubated in Krebs-Ringer HEPES (KRH) buffer, pH 7.5 (1180 mM NaCl, 48 mM 

KCl, 25 mM CaCl2, 12 mM MgSO4 (7H2O), 200 mM HEPES, and 100 mM NaOH) for 

30 minutes at room temperature.  Next, 2.5 nM α-[125I] -BTX (specific activity = 84.0 

Ci/mmol) was added to KRH buffer containing 0.5 mg/ml bovine serum albumin, to 

protect the radioligand from proteases and limit adherence to plastic or glass, in which 

sections were incubated for two hours at room temperature.  This was followed by a 

series of washes (three x 20 minutes in KRH, one x 10 seconds in 10% KRH, and one x 

10 seconds in double deionized water [ddH20]) at 4°C.   

Non-α7 nAChR binding was determined through the use of [125I]-epibatidine 

(EPI), specific activity = 2200 Ci/mmol, according to the method of Perry and Kellar 

(Perry and Kellar, 1995).  Optimally, 800 pM of tritiated EPI is employed for the 

detection of non-α7 nAChR binding, but due to the unavailability of film at the time of 

experimentation, the iodinated radioisotope was used instead.  [125I]-EPI possesses 

similar properties to the tritiated form such as a high affinity and low non-specific 

binding (Davila-Garcia et al., 1997; Whiteaker et al., 2000).  However, due to a 

significantly higher specific activity of the iodinated form and limited resources, it was 

not possible to purchase the radioligand in sufficient concentration to conduct assays at 
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saturation.  Therefore, 1 nM was obtained by adding a sufficient amount of cold EPI (5 

mg vial, FW 281.6; adding amount of EPI needed to increase hot EPI amount to 1 nM).  

Brain sections were incubated with EPI in a pH 7.0 buffer containing 50 mM Tris HCl, 

120 mM NaCl, 5 mM MgCl2, and 2.5 mM CaCl2 for 40 minutes at room temperature. 

The incubation was followed by a number of washes at 4°C (two x 5 minutes in buffer, 

one x 10 seconds in 10% buffer, and one x 10 seconds in ddH20).  

Once the washes were completed, sections were dried under a low speed fan and 

stored overnight under vacuum in a desiccator at room temperature.  The following day, 

sections from the BTX and EPI binding assays were exposed to Kodak Biomax MR film.  

Exposures were stored in x-ray cassettes for eight days or three weeks for BTX and EPI 

binding assays, respectively.  Films were processed with Kodak GBX developer and 

Photoflo 200 solution (Eastman Kodak Co., Rochester, NY).  

Nicotinic receptor mRNA in situ hybridization.   

 In situ RNA hybridization was performed using riboprobes as previously 

described and validated (Marks et al., 1992; Marks et al., 1996) and is a modification of 

earlier published procedures (Simmons et al., 1989; Wada et al., 1989).  α-[35S]-

radiolabeled-cRNA probes specific for the α7 and α4 nicotinic receptor subunits, 

respectively, were used to study nAChR mRNA.  All procedures were performed with 

collaborators located at the University of Colorado, Boulder.  Using α-[35S]UTP (1.0 

mCi, Perkin Elmer NEG-039C), probes were made using in vitro transcription.  For α7 

mRNA, a cRNA probe was prepared using the HIP306s construct (approximately 500 

base pairs at the 5’-end of the rat α7 gene) kindly provided originally by Dr. Jim Boulter 

of UCLA, Los Angeles, CA.  The construct was cloned in Bluescript, the plasmid was 

linearized with EcoRI, and the cRNA was synthesized with T3 RNA polymerase.  

Constructs for probe synthesis for α4 mRNA included: clone pHYA-23-1E(2), cloned in 

pSP64 (also originally provided by Dr. Boulter), linearized with EcoRI (Promega, 

Madison, WI), and synthesized using SP6 RNA polymerase (Promega, Madison, WI).  

The cRNA was stored at -20°C as a precipitate in 70% ethanol.  

In detail, for the [35S]-RNA probe synthesis:  150 µCi of [35S]-UTP was added to 

a sterile 1.5 ml eppendorf  tube and evaporated to dryness.  Next the following were 
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added with a vortex after each addition:  1 µl 5X reaction buffer (Promega, Madison, 

WI), 0.5 µl 1M dithiothreitol (DTT, a reducing agent to help protect the label), 1 µl 

adenosine triphosphate, cytosine triphosphate, and guanosine triphosphate 

(CTP/ATP/GTP mixture, Boehringer-Mannheim, Indianapolis, IN), and 1 µl linearized 

template.  Then 0.5 µl RNaseIN and 1 µl SP6 RNA polymerase were each added 

followed by gentle mixing after each addition.  Next the tube was incubated at 37°C for 

at least one hour.  A DNA hydrolysis step followed:  25 µl of 50 mM Tris/10 mM MgCl2 

was added with a vortex and 0.75 µl RQ DNase and 0.25 µl RNaseIN (Promega, 

Madison, WI) were added with a gentle mix after each.  The tube was then incubated at 

37°C for 30 minutes.  The last step involves precipitation:  2.5 µl 10 mg/ml tRNA, 10µl 

10 M NH4OAc, and 80 µl absolute ETOH were added with a vortex after each followed 

by incubation at -20°C for one hour.  Next the mixture was centrifuged for 10 minutes at 

about 25,000 rpm in a cold room and the supernatant was removed.  The pellet was then 

resuspended in 50 µl diethylpyrocarbonate (DEPC) treated water (1 ml/L ddH20 

incubated for one hour at 37°C and then autoclaved) and 1 µl of 1 M DTT was added 

followed by a vortex.  Cpm/µl was determined by counting the probe solution. 

For the following hybridization procedures, up to the ribonuclease (RNase) 

treatment step, glassware was baked at 200°C for two hours and RNase free equipment 

and utensils were used.  All regents were made using DEPC treated water.  To begin the 

hybridization procedures, slides were removed from the freezer, let warm to room 

temperature under vacuum and sections were pulse fixed for 15 minutes with 4% 

paraformaldehyde in phosphate buffered saline (PBS: 137 mM NaCl, 2.5 mM KCl, 16 

mM, Na2HPO4, and 4 mM NaH2PO4, pH = 7.4) and washed three times for five minutes 

each in PBS and then air dried.   

Next sections were acetylated by incubation in 15 mM acetic anhydride and 0.1M 

triethanolamine, pH = 8.0, for 10 minutes and rinsed for two minutes in 2X standard 

saline citrate (SSC, 1X SSC: 150 mM NaCl, 15 mM trisodium citrate, pH to 7.0 with 

HCl) and dehydrated with a series of graded ETOH solutions (three minutes each: 50, 70, 

95, 100 and 100%). Samples were air dried and stored under vacuum in a desiccator for 

at least two hours to remove all ETOH for hybridizations that same day.   

118 



 

  For the α4 probe only, a hydrolysis procedure was performed using the method of 

Cox et al. (1984) to provide an average probe size of approximately 500 bases.  The 

cRNA probe was placed in a 60°C water bath with the addition of 50 µl carbonate mix 

(83mM NaHCO3, 180 mM Na2CO3, q.s. 5 ml DEPC water) for 15 minutes.  The reaction 

was stopped by adding 8 µl of acetate stop (1.15 M NaOH, 2.2M HOAc, q.s. 10 ml 

DEPC water) followed by 220 µl absolute ethanol with an incubation of 30 minutes at -

20°C.  Next the tube was centrifuged for five minutes and the supernatant removed 

followed by resuspension in 100 µl DEPC water.  

For the hybridization step, [35S]-radiolabeled cRNA probes were dissolved in 

hybridization buffer (50% formamide, 10% dextran sulfate, 300 mM NaCl, 10 mM Tris, 

1 mM ethylenediamine tetra acetate [EDTA], 500 µg/ml yeast tRNA, 10 mM DTT, 1X 

Denhardt’s solution, pH = 8.0) with a final concentration of 5 x 106 cpm/ml in DEPC.  

Next the solution was vortexed and incubated for 10 minutes at 60°C.  To initiate the 

hybridization, the solution was added to a glass microscope slide coverslip (24 mm x 60 

mm) and this was attached to the samples by turning the slides containing tissue sections 

face down.  The microscope slide and coverslip edges were sealed using DPX (BDH, 

Poole, England), and tissues were incubated at 58°C in a dry oven for 12-18 hours.   

Finally, a wash protocol was performed in which all water used was ddH20, not 

DEPC treated water.  First, DPX was removed and coverslips were prepared for removal 

by washing in 4X SSC for 15 minutes with agitation.  Then the slides were washed four 

more times for five minutes each in 4X SSC.  Then samples were incubated in a 

ribonuclease-containing buffer (20 µg/ml RNaseA, 500 mM NaCl, 10 mM Tris [pH = 

8.0], 1 mM EDTA) at 37°C for 30 minutes to digest non-hybridized, single-stranded 

RNA.  Sections were washed and desalted by incubation (5 minutes each) in 2X SSC 

three sequential times, then 1X SSC, and 0.5X SSC (all containing 1 mM DTT to prevent 

oxidation).  This was followed by a 30 minute high stringency wash with incubation in 

0.1X SSC plus 1 mM DTT at 60°C.  Samples were then transferred to an identical SSC, 

DTT solution and cooled for 10 minutes and then dehydrated by the ethanol series 

described earlier.  The slides were air dried and exposed to Kodak Biomax MR film for 

21 days or 12 hours for α7 and α4 mRNA, respectively, and developed as described for 

the receptor autoradiography studies. 
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Image analysis and statistics 

All binding and hybridization data were analyzed using NIH image v1.59 on a 

Power Macintosh connected to a Sony XC-77 CCD camera via a Scion LG-3 frame-

grabber.  Nicotinic receptor binding determinations and in situ hybridization data were 

obtained as uncalibrated optical density measurements.  Statistical analysis was 

performed using a two-way (injury, side), repeated measures, analysis of variance 

(ANOVA) followed by a Tukey-Kramer multiple comparisons test (GBSTAT software) 

for the autoradiography studies.  Due to apparent variations in the degree of α4 probe 

hybridization within each microscope slide and between films, each brain slice was used 

as its own control.  Data from the nAChR in situ hybridization studies were analyzed as 

the calculated percent change in optical density from control, 

(ipsilateral/contralateral)*100, for each rat using a one-way ANOVA followed by a 

Tukey-Kramer multiple comparison test.  For consistency, both α7 and α4 mRNA data 

were analyzed and presented herein using this method.  In addition, the α7 nAChR 

mRNA ipsilateral and contralateral measurements and analysis can be found in the 

appendix, as this data was used for a correlation analysis.  Lastly, Pearson correlation 

analysis was employed to examine the relationship between α7 nAChR density and α7 

mRNA using GraphPad Prism version 5.01 (San Diego, CA).  Significance was set at α = 

0.05 for all statistical procedures. 

Results  

Receptor autoradiography was performed in order to measure α7 nAChR density 

in rats undergoing sham surgery, 1 mm CCI or 2 mm CCI.  The BTX binding analysis in 

multiple brain areas including cortical, thalamic, and hippocampal regions is presented in 

Table 4.1.  Due to the multiplicity of repeated measures comparisons and difficulty of 

interpretation thereof, only significant results directly comparing the ipsilateral and 

contralateral side of the brain within the same level of injury (side effect) and significant 

results comparing the ipsilateral side of the brain between the three injury groups (injury 

effect) will be presented.  For all studies conducted herein, when comparisons between 

the ipsilateral and contralateral sides of sham operated rats were made, no significant 

differences were detected.    
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In rats subjected to a 1 mm CCI, BTX binding was significantly increased in the 

ipsilateral auditory cortex layers 1-4 compared to the contralateral side, F(1,16) = 8.81, p 

= 0.0091.  Following a 1 mm CCI, the lateral blade of the dentate gyrus (anterior 

hippocampus) displayed reduced BTX binding ipsilaterally compared to sham, F(2,16) = 

15.82, p = 0.0002.   

In rats that received a 2 mm CCI, BTX binding was significantly decreased in the 

ipsilateral stratum oriens, F(1,16) = 26.56, p < 0.0001, hilar blade of the dentate gyrus, 

F(1,16) = 12.33, p = 0.0029, ventrolateral geniculate nucleus, F(1,16) = 11.26, p = 0.004, 

and superior colliculus, F(1,16) = 12.82, p = 0.0025, compared to the contralateral side.  

Following 2 mm CCI, there was also a significant reduction in the ipsilateral auditory 

cortex layers 1-4, F(2,16) = 8.27, p = 0.0034, auditory cortex layers 5-6, F(2,16) = 7.57, 

p = 0.0048, stratum oriens, F(2,16) = 4.67, p = 0.0253, lateral blade of the dentate gyrus 

(anterior hippocampus), F(2,16) = 15.82, p = 0.0002, and superior colliculus, F(2,16) = 

6.13, p = 0.0106, compared to the ipsilateral side of the brain in 1 mm CCI and sham 

operated rats.   

Lastly, a non-significant trend toward a reduction was detected following 2 mm 

CCI in the ipsilateral hilar blade measured at the level of the posterior hippocampus 

compared to the ipsilateral side in 1 mm CCI and sham groups, F(2,16) = 3.62, p = 

0.0504 (borderline ANOVA, Tukey-Kramer, p < 0.01).   

In situ hybridization followed by semi-quantitative autoradiographic analysis was 

performed to detect α7 nAChR mRNA levels in rats undergoing sham surgery, 1 mm 

CCI or 2 mm CCI.  Table 4.2 shows α7 nAChR mRNA expression in multiple areas 

throughout the brain including several hippocampal and cortical regions.  Group mean 

data are obtained from calculating the percent change from control as follows:  ipsilateral 

optical density divided by the contralateral optical density, multiplied by 100 for each rat.  

Data are expressed in this manner in order to be consistent with the α4 data in which 

technical issues with the experiment were noted and warranted this approach.  For 

completeness and comparison with the BTX binding data, the ipsilateral and contralateral 

data are presented in Appendix I.   

Following a 1 mm CCI, there was a significant reduction in α7 mRNA only in the 

lateral blade of the dentate gyrus, F(2, 16) = 11.95, p = 0.0007, compared to sham 
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operated rats.  This reduction was also present in this brain region following a 2 mm CCI.  

Expression of α7 mRNA following 2 mm CCI was also significantly reduced in the CA2 

layer of the hippocampus, F(2, 16) = 15.79, p = 0.0002, the CA3 layer of the 

hippocampus, F(2, 16) = 11.38, p = 0.0008, and the hilar blade of the dentate gyrus, F(2, 

16) = 18.66, p < 0.0001.  Significant reductions were found when compared to both sham 

and 1 mm CCI rats.  Furthermore, there was a significant downregulation of α7 mRNA in 

the superior colliculus following 2 mm CCI compared to sham operated rats F(2, 16) = 

7.22, p = 0.0058.  By contrast, a slight elevation in α7 mRNA was noted in the inner 

layers of the auditory cortex (layers 5-6) in the 2 mm CCI group; however, this 

upregulation was not statistically significant.  Deficits in α7 mRNA expression correlate 

well with the reductions in α7 nAChR binding obtained from previous studies by our 

group and the study herein as well as support the literature on cholinergic 

neurotransmission alterations in TBI. 

Figure 4.1 includes representative autoradiographs demonstrating reductions in 

hippocampal regions in both BTX binding and α7 mRNA expression.  

The results of the EPI binding analysis measuring non-α7 nAChR receptor 

density are presented in Table 4.3 in which several cortical regions and thalamic nuclei 

were examined.  In order to simply complex comparisons, only significant results directly 

comparing the ipsilateral and contralateral side within an injury treatment group and 

significant results comparing the ipsilateral side of the brain among the three injury 

groups will be presented.  

There were no significant changes in EPI binding following a 1 mm CCI.  

However, EPI binding was significantly reduced following 2 mm CCI on the ipsilateral 

side of the brain compared to the contralateral side of the brain in auditory cortex layers 

4-6, F(1, 16) = 4.80, p = 0.0437, and auditory cortex layers 2-3, F(1, 16) = 24.16, p = 

0.0002.  The ipsilateral auditory cortex layers 2-3 was also reduced when compared to the 

injured side of the brain in 1 mm CCI and sham operated rats F(2, 16) = 3.94, p = 0.0407.   

In the anterodorsal thalamic nucleus/dorsal geniculate nucleus, EPI was significantly 

decreased on the ipsilateral side of the brain in rats receiving a 2 mm CCI compared to 

the contralateral side of the brain F(1, 16) = 6.20, p = 0.0242.  Of note, the ipsilateral side 

of 2 mm CCI rats showed the lowest mean for all regions except for the ventrolateral 
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geniculate and medial geniculate nuclei.  These regions were difficult to measure, in 

particular the medial geniculate, because in several cases, multiple sections containing 

this region were not available. 

The α4 nAChR in situ hybridization data are presented in Table 4.4  Interestingly, 

2 mm CCI significantly reduced α4 nAChR mRNA in the thalamus, F(2,16) = 7.70, p = 

0.0045, and dorsal geniculate nucleus, F(2,16) = 25.00, p < 0.0001, compared to 1 mm 

CCI treated rats and sham operated rats.  In addition, α4 nAChR mRNA was 

significantly reduced following 2 mm CCI in the medial geniculate nucleus, F(2,16) = 

6.27, p = 0.0098, compared to 1 mm CCI treated rats.  Because the contralateral 

measurement for each brain section was used as a control to generate individual rat brain 

optical density measurements, ANOVA was used to verify the measurements were not 

affected by the CCI.  ANOVA of the contralateral optical density means revealed no 

significant differences between groups.  Figure 4.2 includes representative 

autoradiographs demonstrating α4 mRNA and EPI binding in thalamic nuclei. 

Correlation analysis was performed to further describe the results of the BTX and 

α7 mRNA analyses in rats following TBI.  Pearson correlation was used to determine the 

relationship between α7 nAChR density and α7 mRNA in ipsilateral brain regions 

previously determined in the current study to be significantly altered 48 hours following 

TBI.  These regions include auditory cortical layers 1-4 and 5-6, hippocampal subfields 

CA1 and CA3, the lateral and hilar blades of the dentate gyrus, and the superior 

colliculus (Figure 4.3).  Two of the seven correlations were statistically significant.  The 

α7 nAChR density and mRNA were significantly positively correlated in the auditory 

cortex layers 1-4 (r=0.4911, p=0.0328) and the lateral blade of the dentate gyrus 

(r=0.6001, p=0.006).  Contrary to all other relationships shown, the superior colliculus 

demonstrated an inverse relationship; as the α7 nAChR density increased, the α7 mRNA 

is downregulated.  However, this relationship did not reach statistical significance.   

  

Discussion 

Previously our laboratory demonstrated significant reductions in hippocampal and 

cortical α7 nicotinic receptor binding in rats subjected to CCI.  In the current study, in 
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situ hybridization was performed to investigate one possible mechanism involved in α7 

nAChR expression deficits following traumatic brain injury.  The results of this study are 

the first to show downregulation of α7 mRNA accompanying reductions in α7 nAChR 

binding in rats 48 hours following CCI.  Multiple regions throughout the brain were 

analyzed, with emphasis on cortical and hippocampal regions important in cognition and 

memory.   

A summary of the results from the nAChR determinations displays the number of 

ipsilateral brain regions significantly altered following 1 or 2 mm CCI (Table 4.5).  TBI 

caused a significant reduction in α7 mRNA in the lateral and hilar blades the dentate 

gyrus, the CA2 and CA3 subfields of the hippocampus, and the superior colliculus, which 

is a midbrain nucleus involved in visual processing.   

Analysis of α7 nAChR density as measured by BTX binding correlated well with 

our laboratory’s previous studies (Verbois et al., 2000).  Saturation analysis of BTX 

binding in an identical experimental paradigm of TBI showed results were attributed to 

changes in binding sites or receptor density and not affinity for the receptor (Verbois et 

al., 2002).  In the current study, TBI resulted in decreases in BTX binding in regions of 

the hippocampus, thalamus, and brain stem.  Importantly, nicotinic receptor mRNA is 

present mostly in the cell body of neurons and nAChRs are located predominantly on 

presynaptic nerve terminals.  Thus, there may be some discrepancies between regions 

analyzed for mRNA measurements and those analyzed for receptor densities. 

 A correlation analysis was performed to further characterize the relationship 

between BTX binding and α7 mRNA.  The auditory cortex layers 1-4 and the lateral 

blade of the dentate gyrus showed significant correlations which helps to confirm that the 

changes in the expression of α7 nAChR are due to transcriptional mechanisms in these 

regions.  A non-significant inverse correlation was found in the superior colliculus, which 

may suggest that nAChRs are regulated differently based on cell type and location.  

Depending on cell type, the presence of cellular mediators have been shown to regulate 

transcription and subsequent cell surface receptor assembly differently (Albuquerque et 

al., 2009).  Transcriptional factors such as the upstream stimulatory factor 1 (USF-1), 

early growth response 1 (Egr-1), specificity protein 1 (Sp1), and specificity protein 3 

(Sp3) have been shown to regulate the rat α7 promoter (Nagavarapu et al., 2001).  It is 
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not known how neurochemical changes following TBI might affect the α7 promoter and 

the transcription of the nAChR.    

In contrast to the downregulation in nAChRs, rats displayed elevated α7 mRNA 

in the inner layers (layers 5-6) of the auditory cortex two days following TBI.  There was 

also a non-significant trend toward an increase in BTX binding following a 1 mm CCI 

(Figure 5.1).  These results are further evidence that nAChRs may be regulated 

differently based on location.  It is possible that regional differences reflect compensatory 

changes.  It is also possible that the presence of pathophysiological mediators including 

APP or Aβ could contribute to these alterations.   

In this model of TBI, the CCI does not physically penetrate the hippocampus, but 

studies employing this method of experimental injury show that there is cell death and 

increased neuroinflammation in portions of the rat hippocampus following CCI (Scheff et 

al., 1997).  Rats subjected to a 1 mm CCI had no or mild damage to the hilus and CA3 

subfield of the hippocampus and rats undergoing a 2 mm CCI had mostly severe damage 

to the aforementioned subfields at least seven days after injury.  Further analysis by this 

group using an optical dissector method showed that ipsilateral CA3 cell loss occurred as 

early as one hour following injury and decreased to 41% of control by one day after 

injury (Baldwin et al., 1997).  While the neuronal loss affects the interpretation of the 

binding results in the hilus and hippocampal subfield CA3 at the most severe injury level, 

the deficits in α7 mRNA and α7 nAChR are widespread and other receptor subtypes such 

as mAChR (Verbois et al., 2000) do not appear to be as sensitive to the effects of TBI.  

Changes in non-α7 nAChR expression were also evaluated following TBI in 

order to determine if diminished nicotinic receptor binding following TBI is selective to 

the α7 receptor.  Therefore, α4 mRNA was evaluated by in situ hybridization and non-α7 

nAChRs were measured by autoradiography with EPI, which binds to non-α7 nAChRs 

(the most abundant being the α4β2 subtype).  α4 mRNA was not detectable in the 

hippocampal formation, but instead was measured in regions of the diencephalon, 

rhinencephalon and mesencephalon, in particular cortical and thalamic nuclei.  Likewise, 

EPI binding was minimal in the hippocampal formation except for a low level of 

expression in the lateral blade of the dentate gyrus.  Following TBI, α4 mRNA was 

significantly reduced in the thalamus and two regions of the metathalamus, the dorsal 
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geniculate and medial geniculate nuclei.  The reduction of α4 mRNA in brain regions of 

the diencephalon was also seen in EPI binding, for EPI binding was decreased in the 

dorsal geniculate nucleus.  In addition, contrary to previous studies from our laboratory 

that showed upregulation in the auditory cortex, EPI binding was also diminished in the 

auditory cortex, which was not detected in α4 mRNA.  Of note, measurements of the 

auditory cortex were obtained including all layers for mRNA analysis instead of 

separating layers as was done for EPI analysis.  Furthermore, the contribution of the β2 

subunit which generally is co-localized with α4 containing receptors may explain this 

difference.  β2 mRNA was not measured in the present study and would be useful in 

future studies to enhance the understanding of nicotinic receptor involvement in TBI.    

 The cellular mechanisms that regulate expression of nicotinic receptor subtypes 

are still largely unknown.  Chronic treatment with nAChR agonists or antagonists is well 

known to cause an increase in the density of both α7 and non-α7 nAChR subtypes.  Mice 

chronically treated with nicotine for 10 days displayed significant increases in nicotinic 

receptor binding in many regions throughout the brain, as measured by [3H]-nicotine 

binding (Marks et al., 1983; Marks et al., 1985; Marks et al., 1992; Robinson et al., 1996) 

and to a lesser extent by α-[125I]-BTX (Marks et al., 1983; Pauly et al., 1991), but this did 

not correlate with a significant upregulation in α4 or β2 subunit mRNA detected by in 

situ hybridization (Marks et al., 1992).  Furthermore, rats infused with nicotine for two 

weeks demonstrated upregulated [3H]-methyllycaconitine binding of α7 nAChRs but no 

change in α7 and α6 mRNA (Mugnaini et al., 2002).  As nicotinic receptor up-regulation 

does not appear to require changes in steady state mRNA expression in these models, this 

suggests  post translational changes in receptor assembly, insertion or turnover may be 

involved (Gentry and Lukas, 2002; Gaimarri et al., 2007).  Additionally, protein tyrosine 

dephosphorylation may also be involved in nAChR regulation, as inhibition of protein 

tyrosine kinases has been shown to cause upregulation of receptor density and function 

(Cho et al., 2005).  The results presented in Chapter 3 suggest that TBI impairs nAChR 

upregulation, and this may be due to the loss of nAChR mRNA following TBI 

demonstrated in the current study.  Lower concentrations of pre-formed RNA pools 

would prevent levels of upregulation expected with treatment of nAChR agonists.  
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Nicotinic receptors have also been shown to be regulated by corticosteroids.  In 

contrast to the effects of nicotinic agonists and antagonists, corticosteroid treatment 

decreases α7 nAChR protein expression in mouse brain.  Chronic corticosterone for 

seven or nine days resulted in a widespread significant decrease in α-[125I]-BTX binding 

(Pauly and Collins, 1993; Robinson et al., 1996), and [3H]- nicotinic binding sites were 

less sensitive to this effect (Pauly and Collins, 1993).  Furthermore, no change in 

nicotinic mRNA was detected following corticosterone treatment (Pauly and Collins, 

unpublished data).  Conversely, one in vitro study reported α7 nAChR expressed in 

bovine chromaffin cells displayed an activation in transcription following dexamethasone 

treatment (Carrasco-Serrano and Criado, 2004).  And in PC12 cells, nicotine upregulated 

nAChRs but decreased α3 mRNA and only slightly decreased β2 subunit indicating 

upregulation due to a non-transcriptional mechanism (Madhok et al., 1995).  The 

disparity in results may be due to differences in in vitro models compared to 

physiologically intact, whole animal studies.  Due to the reductions in mRNA 

demonstrated in the current study, enhanced corticosteroid concentrations may not 

contribute significantly to changes in nAChR expression following TBI.    

Recently, peripheral nAChRs have been implicated in an anti-inflammatory 

pathway in which vagus nerve stimulation activates nAChRs located on macrophages and 

results in the inhibition of proinflammatory cytokines including tumor necrosis factor α 

(TNF), interleukin 1 (IL-1), and high mobility group box 1 (HMGB1) (Ulloa, 2005).   

Furthermore, the α7 nAChR has been shown to be present on microglia and regulates 

microglial activation and inflammatory response; thus, decreases in nAChR receptor 

activity could play a role in promoting inflammation and therefore neuronal damage 

(Wang et al., 2003; Shytle et al., 2004).  Moreover, nicotine displays immunosuppressive 

effects through the α7 nAChR receptor (Yoshikawa et al., 2006).  One week following 

CCI, mice displayed increased inflammation in ipsilateral thalamic nuclei as measured by 

[3H]-PK11195 binding to activated microglia (Kelso et al., 2006).  While the α4 nAChR 

has not specifically been implicated in the regulation of inflammatory processes, a recent 

report indicated a possible link between anti-inflammatory signaling pathways and the 

presence of multiple nicotinic subtypes on monocytes including α4 (Blanchet et al., 

2006).  It is unknown whether inflammation is involved in the alteration in nAChR 
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expression in thalamic nuclei demonstrated in the current study, and further research is 

needed to elucidate the cause and effect relationship between nAChRs and inflammation. 

Moreover, modulators of nAChRs have been shown to modify the deleterious 

effects of inflammation.  In mice treated with lipopolysaccharide, galantamine 

pretreatment reduced serum TNF concentrations and protected mice from the deleterious 

effects of sepsis, and galantamine mediated suppression of TNF levels did not occur in 

α7 nAChR knock out mice (Pavlov et al., 2009).  Likewise, pretreatment with the α7 

nAChR selective ligand, choline, also demonstrated anti-inflammatory effects in LPS 

treated mice.  Choline treated mice demonstrated an increase in survival and reduced 

TNF and HMGB1 levels (Parrish et al., 2008).  Studies in α7 nAChR knock out mice 

showed the effect was mediated through the α7 nAChR.  It is unknown if this peripheral 

reduction in inflammation will also attenuate central nervous system inflammation to 

impact neuropathology in neurodegenerative disease.  Consequently, deficits in nAChR 

following TBI may result in a number of pathological mechanisms underlying functional 

outcome. 

In summary, moderate TBI demonstrated a pronounced effect on nAChR density 

and mRNA expression, whereas mild TBI produced only a minor effect.  TBI resulted in 

a significant reduction in hippocampal α7 nAChR binding that was associated with 

reduced α7 mRNA expression.  Reductions in BTX binding were significantly correlated 

with diminished α7 mRNA expression in the auditory cortex and dentate gyrus.  In 

addition, decreased α4 nAChR binding in the thalamus was accompanied by decreases in 

EPI binding.  These results suggest that TBI has a direct inhibitory effect on the 

transcriptional regulation of nAChRs 48 hours following injury.  Further research is 

needed to fully elucidate the role of nAChRs in the pathogenesis and treatment of the 

cognitive dysfunction associated with TBI. 



 

Table 4.1.  Alterations in α7 nAChR density, as measured by α-[125I]-bungarotoxin (BTX) binding, throughout the brain following 
TBI in rats.  Data are expressed as group mean ± standard deviation optical density. 
 

 Sham 1 mm CCI 2 mm CCI 
Brain Region Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral 

Neocortex       
Auditory cortex layers 1-4 56.16 ± 4.47 57.84 ± 4.40 51.79 ± 6.83 59.41 ± 3.47* 48.18 ± 4.95 47.76 ± 3.03†Ψ 
Auditory cortex layers 5-6 70.91 ± 5.51 73.34 ± 4.09 68.82 ± 4.93 72.58 ± 5.11 62.07 ± 5.31 61.69 ± 6.27†Ψ 
Basal ganglia       
Endopiriform 97.93 ± 4.92 96.53 ± 11.04 94.25 ± 5.74 96.27 ± 7.15 94.97 ± 5.37 81.28 ± 14.36 
Diencephalon       
Ventrolateral geniculate n. 109.81 ± 1.96 109.55 ± 2.38 109.74 ± 4.78 106.87 ± 3.05 109.33 ± 6.26 101.27 ± 6.35* 
Subthalamic nucleus 122.83 ± 9.17 126.42 ± 10.33 123.55 ± 2.80 123.47 ± 4.94 121.18 ± 7.73 122.53 ± 6.50 
Posterior hypothalamic area 110.53 ± 7.50 108.07 ± 5.14 108.25 ± 4.21 108.10 ± 5.20 110.14 ± 4.54 106.08 ± 4.89 
Anterior hippocampus       
Stratum Oriens 72.81 ± 4.72 73.22 ± 2.95 73.00 ± 6.23 70.26 ± 7.67 70.80 ± 4.15 59.13 ± 3.94*†Ψ 
CA1 layer 47.10 ± 3.90 48.02 ± 4.60 44.18 ± 3.88 45.43 ± 5.14 43.37 ± 3.13 45.04 ± 2.37 
CA3 layer 65.08 ± 5.65 67.84 ± 3.67 64.81 ± 6.01 66.55 ± 5.41 63.03 ± 3.45 61.73 ± 2.56 
Dentate gyrus, lateral blade 60.77 ± 3.57 62.41 ± 4.87 57.40 ± 4.71 56.30 ± 4.10† 50.46 ± 4.45 47.85 ± 2.15†Ψ 
Dentate gyrus, hilar blade 106.67 ± 3.39 105.65 ± 2.73 109.36 ± 8.37 109.70 ± 10.56 104.78 ± 6.25 94.64 ± 7.11* 
Posterior hippocampus       
CA3 layer/dentate gyrus 82.34 ± 2.98 86.41 ± 3.08 79.01 ± 6.61 81.46 ± 5.92 77.71 ± 7.30 78.70 ± 7.55 
Dentate gyrus, hilar blade  122.51 ± 11.05 124.36 ± 9.45 123.99 ± 8.83 123.16 ± 10.66 117.78 ± 5.66 105.74 ± 11.83 
Amygdala       
Medial amygdale 121.24 ± 9.04 119.88 ± 15.33 119.09 ± 6.10 115.61 ± 5.69 118.57 ± 9.18 111.21 ± 14.57 
Mesencephalon       
Superior colliculus 128.23 ± 3.49 128.08 ± 4.25 127.99 ± 4.69 125.23 ± 3.86 122.72 ± 6.62 117.20 ± 4.02*†Ψ 
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* denotes significantly different from the contralateral side  
† denotes significantly different from the ipsilateral side of sham operated rats  
Ψ denotes significantly different from the ipsilateral side of 1 mm CCI rats 
Statistical significance:  α = 0.05 
Abbreviation:  n, nucleus 
 
 
 

 



 

Table 4.2.  Changes in α7 nAChR mRNA following TBI in rats measured by in situ hybridization.  Data are expressed as group mean 
± standard deviation optical density; mean data are obtained from the calculated percent change from control, 
(ipsilateral/contralateral)*100, optical density for each rat.  
 

 Sham 1 mm CCI 2 mm CCI 
Brain Region % Control % Control % Control 

Neocortex    
Auditory cortex layers 1-4 99.70 ± 5.07 100.84 ± 3.68 98.21 ± 6.31 
Auditory cortex layers 5-6 103.88 ± 3.86 103.56 ± 3.03 107.87 ± 5.51 
Basal ganglia    
Endopiriform 104.37 ± 6.84 100.68 ± 7.46 103.38 ± 6.72 
Anterior hippocampus    
CA1 layer 98.70 ± 2.77 96.11 ± 4.83 93.53 ± 4.47 
CA2 layer 102.45 ± 1.82 100.95 ± 1.52 96.27 ± 2.55†Ψ 
CA3 layer 101.07 ± 5.36 98.90 ± 4.89 84.84 ± 8.63†Ψ 
Dentate gyrus, lateral blade 98.07 ± 2.30 91.00 ± 2.62† 86.75 ± 5.60† 
Dentate gyrus, hilar blade 96.78 ± 2.20 94.75 ± 3.77 84.15 ± 4.98†Ψ 
Posterior hippocampus    
Dentate gyrus, hilar blade  100.02 ± 0.82 100.09 ± 4.46 97.68 ± 4.77 
Mesencephalon    
Superior colliculus 100.54 ± 2.08 98.57 ± 1.85 96.59 ± 1.48†   
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† denotes significantly different from sham operated rats  
Ψ denotes significantly different from 1 mm CCI rats 
Statistical significance:  α = 0.05 
 
 
 
 
 
 
 
 
 

 



 

Table 4.3.  Reductions in non-α7 nAChR expression, measured by [125I]-epibatidine (EPI) binding, following TBI in rats.  Data are 
expressed as group mean ± standard deviation optical density. 
 

 Sham 1 mm CCI 2 mm CCI 
Brain Region Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral 

Neocortex       
Auditory cortex layers 2-3 54.67 ± 3.33 56.29 ± 5.86 55.23 ± 6.68 54.54 ± 5.47 54.98 ± 3.46 42.84 ± 2.86*†Ψ 
Auditory cortex layers 4-6 45.02 ± 3.42 47.34 ± 5.06 44.52 ± 5.87 45.01 ± 5.43 44.65 ± 2.80 38.85 ± 2.55* 
Diencephalon       
Thalamus (AV/VL) 100.01 ± 5.30 100.19 ± 2.73 98.03 ± 8.85 99.87 ± 7.43 97.95 ± 3.79 92.34 ± 5.21 
Anterodorsal thalamic n./ 
Dorsal geniculate n. 

140.33 ± 3.31 140.93 ± 3.64 139.42 ± 6.04 138.03 ± 5.49 140.09 ± 7.45 133.84 ± 6.62* 

Ventrolateral geniculate 
nucleus 

118.47 ± 10.55 119.12 ± 14.88 109.34 ± 8.45 112.47 ± 9.53 108.86 ± 6.12 108.78 ± 8.93 

Medial geniculate nucleus 105.43 ± 22.46 105.61 ± 24.09 94.57 ± 8.68 94.83 ± 10.55 104.55 ± 16.86 101.24 ± 14.51 
* denotes significantly different from the contralateral side  131 † denotes significantly different from the ipsilateral side of sham operated rats  
Ψ denotes significantly different from the ipsilateral side of 1 mm CCI rats 
Statistical significance:  α = 0.05 
Abbreviations:  AV, anteroventral thalamic nucleus; VL, ventrolateral thalamic nucleus; n, nucleus 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

Table 4.4.  Diminished levels of thalamic α4 nAChR mRNA as measured by in situ hybridization following TBI in rats.  Data are 
expressed as group mean ± standard deviation optical density; mean data are obtained from the calculated percent change from 
control, (ipsilateral/contralateral)*100, optical density for each rat.  
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 Sham 1 mm CCI 2 mm CCI 

Brain Region % Control % Control % Control 
Neocortex    
Auditory cortex  99.03 ± 6.61 97.44 ± 7.89 102.00 ± 16.52 
Retrosplenial cortex 99.90 ± 2.47 95.41 ± 9.79 89.48 ± 7.27 
Diencephalon    
Anterodorsal thalamic nucleus 102.42 ± 7.30 90.85 ± 9.49 70.03 ± 7.08†Ψ 
Thalamus (AV/VL) 100.55 ± 6.28 96.46 ± 6.63 86.08 ± 7.07†Ψ 
Ventromedial hypothalamic 
nucleus 

98.58 ± 2.80 104.81 ± 9.30 97.72 ± 6.44 

Medial geniculate nucleus 99.27 ± 5.21 103.29 ± 14.57 81.77 ± 12.24Ψ 
Rhinencephalon    
Subiculum 95.79 ± 3.54 97.17 ± 19.36 93.20 ± 10.71 
Mesencephalon    
Substantia nigra 104.13 ± 4.64 104.35 ± 10.02 98.15 ± 11.21 

† denotes significantly different from sham operated rats  
Ψ denotes significantly different from 1 mm CCI rats 
Statistical significance:  α = 0.05 
Abbreviations:  AV, anteroventral thalamic nucleus; VL, ventrolateral  thalamic nucleus 

 
 
 
 



 

Table 4.5.  A summary of the results from the nAChR determinations displays the number of ipsilateral brain regions significantly 
altered following 1 or 2 mm CCI as presented in the results section.  The number of significantly altered regions is expressed as a 
fraction of the number of brain regions analyzed in each assay.   
 

 Sham 1 mm CCI 2 mm CCI 
Assay Decrease Increase Decrease Increase Decrease Increase 
BTX 0/15 0/15 1/15 1/15 7/15 0/15 

       
α7 mRNA 0/10 0/10 1/10 0/10 5/10 0/10 

       
EPI 0/6 0/6 0/6 0/6 3/6 0/6 

       
α4 mRNA 0/8 0/8 0/8 0/8 2/8 0/8 

Abbreviations:  BTX, α-[125I]-bungarotoxin; EPI, [125I]-epibatidine 
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Figure 4.1.  α7 nAChR mRNA and protein is reduced in hippocampal regions following TBI.   Representative autoradiographs 
demonstrate α7 mRNA as measured by in situ hybridization and α7 nAChR density determined by α-[125I]-BTX binding.  The left 
side of the brain shown is the ipsilateral side.  Abbreviations:  SO, stratum oriens; CA1, CA2, and CA3, fields of the hippocampus; 
DG, dentate gyrus, lateral blade; Hilus, dentate gyrus, hilar blade 
 

 



 

 

 
Figure 4.2.  α4 nAChR mRNA is reduced in thalamic nuclei following TBI.   Representative autoradiographs demonstrate α4 mRNA 
as measured by in situ hybridization and non-α7 nAChR density determined by [125I]-EPI binding.  The left side of the brain shown is 
the ipsilateral side.  Abbreviations: ADN, anterodorsal thalamic nucleus; AV, anteroventral thalamic nucleus; VL, ventrolateral 
thalamic nucleus.  Note that the contralateral side was used as a control for each brain section in order to account for differences in 
background density visible herein.

135 



 

 

 
 
 
 
 

136 



 

137 

 

 
Figure 4.3.  Correlation analysis of α7 nAChR density and α7 nAChR mRNA in brain 
regions demonstrating alterations in rats 48 hours following TBI.  Data used for the 
correlation are measurements taken from the ipsilateral side of the brain from rats in the 2 
mm CCI, 1 mm CCI, and sham operated groups.  Pearson correlation results are as 
follows:  
 
Auditory cortex layers 1-4:  r=0.4911, p=0.0328* 
Auditory cortex layers 5-6:  r=0.2384, p=0.3257 
Hippocampus, layer CA1:  r=0.1616, p=0.5088 
Hippocampus, layer CA3:  r=0.3595, p=0.1306 
Dentate gyrus, lateral blade:  r=0.6001, p=0.006* 
Dentate gyrus, hilar blade:  r=0.3166, p=0.1867 
Superior colliculus:  r=-0.1780, p=0.4661 
*denotes significant Pearson correlation coefficient (r) 



 

 

Figure 4.4.  Upregulation of α7 mRNA occurs in the auditory cortex, layers 5-6 
following TBI.  Panel A includes the results of the BTX binding analysis from the study 
of galantamine following TBI (Chapter 3) for comparison and Panel B shows the results 
of the BTX binding and α7 in situ hybridization studies 48 hours following TBI.  The 
ipsilateral and contralateral measurements for the α7 in situ hybridization analysis where 
not presented in the current chapter but can be found in Appendix I.  Two-way repeated 
measures ANOVA revealed a significant effect of side in the Auditory cortex layers 5-6, 
F(1,16) = 25.85 , p < 0.0001, for α7 mRNA (Panel B, right).  
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Chapter 5:  Summary and Conclusions 

 

In the dissertation, Alpha7 Nicotinic Acetylcholine Receptor Regulation in 

Experimental Neurodegenerative Disease, experimental models of Alzheimer’s disease 

and traumatic brain injury were employed in order to evaluate alterations in nicotinic 

receptors in neurodegenerative disease states involving common neurobiological 

processes.  The research herein also investigated the effects of nAChR modulation on 

changes associated with neurodegeneration and the regulation thereof.  Three separate 

research questions were investigated in the dissertation:   

1.  Is an increase in the density of α7 nicotinic acetylcholine receptor an early marker in 

an experimental mouse model of Alzheimer’s disease? 

2.  Does galantamine, a commonly used pharmacotherapy for functional improvement in 

AD patients, target nicotinic receptor deficits to improve cognitive impairment following 

experimental brain injury?  

3.  Are α7 nicotinic acetylcholine receptor protein deficits accompanied by deficits in 

mRNA expression following experimental traumatic brain injury? 

The objective of the first research study, “Upregulation of hippocampal α7 

nAChRs in a transgenic mouse model of Alzheimer’s disease” was to investigate 

alterations in cholinergic receptor expression in an Alzheimer’s mouse model as a 

function of age and Aβ deposition.  In this study, nAChR and mAChR expression was 

evaluated using quantitative receptor autoradiography in a transgenic mouse model that 

overexpresses APP.  This study is the first to use a longitudinal approach to 

comprehensively assess cholinergic receptor changes and map these changes throughout 

the brain with the use of autoradiography.   

The original objective to correlate Aβ deposition with changes in nAChR was not 

possible because unexpectedly, no amyloid deposits were found in mice tested out to 18 

months of age. However, we presumed that these mice were exposed to higher than 

normal soluble Aβ levels, as previous studies showed a two fold increase in APP 

expression (Borchelt et al., 1996; Borchelt et al., 1997; Borchelt et al., 2002) and elevated 

Aβ levels (Price et al., 1998).  Thus, changes in nAChR density in APPswe mice suggest 
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an amyloid based mechanism and are probably due to elevated soluble Aβ in this strain 

compared to wild-type mice.  

This study showed a significant increase in BTX binding in various regions in 

APPswe mice with age compared to wild-type mice.  These findings are consistent with 

our hypothesis and other reports (Dineley et al., 2001; Bednar et al., 2002; Dineley et al., 

2002b; Hellstrom-Lindahl et al., 2004b) that demonstrate elevated α7 binding in 

Alzheimer’s mice and may be due to agonist properties of Aβ acting at the α7 nAChR 

(Dineley et al., 2002a; Dougherty et al., 2003).  When examining genotype only, BTX 

binding was significantly elevated in hippocampal regions in APPswe mice, including 

anterior hippocampal layers CA1, CA2, and posterior hippocampal layer CA3.  These 

findings are consistent with previous studies that suggest a sparing or elevation in 

cholinergic neurotransmission occurring early in the course of disease (Gilmor et al., 

1999; DeKosky et al., 2002; Ellis et al., 2008; Ikonomovic et al., 2009).  This is 

therapeutically significant because the preservation of receptors early in the disease 

process may allow for pharmacological interventions targeted at the α7 nAChR.  Once 

receptors are lost, the presumption of neuronal cell death precludes the use of 

pharmacotherapeutic strategies aimed at enhancing cholinergic neurotransmission.  

Interestingly, in the Tg2576 mouse model of AD, enhanced nicotinic receptor binding 

occurred in conjunction with an upregulation in the mRNA levels of both α7 and α4 

receptor subunits (Bednar et al., 2002), and in patients with mild to moderate AD, α7 

mRNA was upregulated in one report (Counts et al., 2007).  This suggests that the agonist 

properties of Aβ at nAChRs may involve transcriptional mechanisms.  Evaluation of 

mRNA expression by in situ hybridization of α7 and α4 in APPswe and wild-type mice 

would be beneficial in further characterizing the effects of AD on nAChR changes. 

It is possible that the increase in soluble Aβ as seen in animal models of AD and 

in early AD causes changes in neurotransmitter receptor expression.  In normal brain 

physiology, Aβ42, in picomolar concentrations, is involved in synaptic plasticity and has 

recently been shown to involve the α7 nAChR (Puzzo et al., 2008).  In early Alzheimer’s 

disease, as Aβ concentrations begin to elevate, nAChRs may upregulate as a short term 

compensatory mechanism to counter a loss of cholinergic innervation that contributes to 
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cognitive impairment.  The increased levels of soluble Aβ elicit agonist properties at the 

α7 and possibly non α7 nAChRs which in turn causes upregulation of nAChR.  It is 

possible that upregulation of nAChRs is a mechanism by which enhanced cholinergic 

neurotransmission may facilitate the regulation of APP processing.  Moreover, 

upregulation may be a means to promote neuroprotection (Jonnala and Buccafusco, 

2001).  To date, it is not known if upregulation results in functional receptors or elevated 

levels of inactive receptors, as some studies demonstrate neuroprotection due to the 

activation of nAChRs (Dajas-Bailador et al., 2000).  Other reports have shown that 

blockade may provide this benefit, namely deletion of the α7 nAChR gene in aged APP 

overexpressing mice (PDAPP) resulting in cognitive improvement in the Morris water 

maze and maintained synaptic integrity (Dziewczapolski et al., 2009).  Additionally, Aβ 

activation of nAChRs may cause enhanced Ca2+ influx and Ca2+ dysregulation as well as 

the accumulation of intracellular Aβ.  Both of these effects further the cholinergic 

derangement as seen by changes in nAChR and mAChR expression, decreases in 

cholinergic activity, and the selective loss of cholinergic neurons in AD and AD models.  

Hence, there is no simple answer as to how Aβ modulates the nicotinic receptor. 

  A new hypothesis proposed by Hernandez and colleagues (2010) states soluble, 

oligomeric Aβ activation of α7 nAChRs results in neuroprotection in early AD through 

preservation of cholinergic neurotransmission and prevention of further toxic effects of 

Aβ.   This supposition is supported by results from studies employing an α7 nAChR gene 

deletion in Tg2576 mice.  Tg2576 mice lacking the α7 gene display greater cognitive 

impairment and cholinergic dysfunction and elevated soluble Aβ levels compared to mice 

with an intact α7 nAChR at 5 months of age when cognitive decline begins (Hernandez 

et al., 2010).  Activation of α7 nAChRs leads to Ca2+ and ERK MAPK activation 

promoting learning and memory (Dineley et al., 2001; Hernandez et al., 2010).  The 

authors also propose that with the accumulation of Aβ and subsequent progression of 

disease, Aβ and α7 nAChRs bind irreversibly resulting in α7nAChR inactivation, 

synaptic dysfunction, and a worsening of disease features (Hernandez et al., 2010).  By 

preventing the association of Aβ with nAChR, the use of a nAChR partial agonist, S 

24795, has demonstrated enhanced α7nAChR function and synaptic plasticity in studies 

141 



 

using postmortem brain tissue from AD patients (Wang et al., 2009).  S 24795 also 

improved α7 nAChR function and reduced tau phosphorylation and Aβ accumulation in 

rodent brain tissue exposed to Aβ (Wang et al., 2010). 

Furthermore, a downregulation in BTX binding occurred in APPswe in other 

brain regions.  Thus, the relative changes in binding are region specific.  Due to the 

predominant presynaptic location of α7 nAChRs and widespread distribution throughout 

the CNS, it is possible that Aβ may affect this receptor differently depending on brain 

regions and local concentrations.  Minimal changes were seen in EPI binding 

demonstrated by slight decreases in some regions.  The downregulation in EPI binding 

seen in some regions as well as that seen from BTX binding may be the result of a loss of 

cholinergic innervation. While other studies have shown decreases in α4β2 nAChRs 

(Apelt et al., 2002) as well as in α4 mRNA (Mousavi et al., 2004), the current results 

reinforce the selective vulnerability of α7 nAChRs in AD models demonstrated 

repeatedly in the literature.  The data herein suggest the α7 nAChR is a sensitive target 

for regulation by Aβ in mice that overexpress APP. 

The ability to draw definitive conclusions from this study would have been 

strengthened by the measurement of soluble Aβ in the brains of these mice to better 

correlate the cholinergic receptor changes with disease progression as well as in the 

studies in experimental TBI.  In addition, assessing cognition in the AD model using 

behavioral tasks, such as the Morris water maze or passive avoidance, could help 

characterize this model at various ages when compared to nicotinic receptor alterations.  

Other studies that would be useful include in situ hybridization for nicotinic receptor 

mRNA and functional receptor studies to assess the activity of altered receptors.  The 

measurement of ChAT activity may help to compare changes in this model to early 

changes occurring in MCI.  Also, evaluation of corticosterone levels could help explain 

deficits in nAChR expression noted in some regions.  Lastly, the widely employed 

Tg2576 Alzheimer model could be used to further assess nicotinic receptor changes at 

early ages and nicotinic receptor targeted therapies.  Additionally, longitudinal studies 

using Tg2576 mice lacking the α7 nAChR could be used to determine when the 
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transition occurs between the neuroprotective upregulation of α7 nAChRs and the loss of 

function and/or density that is found in late stage AD patients. 

The potential clinical relevance of these findings deserves further examination.  A 

complete characterization of the neuropathological processes in AD and how they impact 

cognitive function, beginning in the earliest stages through end stage disease is 

warranted.   A longitudinal study involving PET analysis of presynaptic cholinergic 

markers, nAChRs, and Aβ concentrations investigating healthy individuals, patients with 

MCI, and patients with early, mild AD would be highly valuable in terms of assessing 

cause and effect relationships.  Patients would be followed long term and changes in 

cholinergic neurotransmission could be determined as patients age normally, patients 

with MCI show progression to AD or do not, and as patients with mild AD progress to 

more severe forms of disease.  These measurements would then be compared with the 

results of psychometric examinations to assess cognition.  Similar methods have 

previously been employed; however, each study has addressed patients at a static time 

point in the progression of AD (Nordberg et al., 1997; Ellis et al., 2008).  These 

methodologies have also been employed to evaluate the effects of AChEIs in the 

treatment of AD (Kadir et al., 2008) and could be employed longitudinally to assess a 

more extensive range of nAChR modulation strategies. 

A further investigation of nAChR regulation in neurodegenerative disease was 

employed using experimental TBI because of similarities in the pathophysiology with 

Alzheimer’s disease and the well documented association between TBI and AD.  The 

purpose of the second research study, “Galantamine treatment following traumatic brain 

injury in rats:  effects on cognition and nAChR expression” was to evaluate the effects of 

the nAChR positive allosteric modulator, galantamine, on cognition and nicotinic 

receptor expression in rats following TBI.  This study evaluated the effects of 

galantamine treatment following CCI on the Morris water maze behavioral task and on 

nicotinic receptor expression assessed by quantitative autoradiography.  The first study 

tested a 15 day regimen of galantamine, while the second study investigated galantamine 

treatment effects on the Morris water maze swim task at different time points following 

TBI. 
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Interestingly, the results of the EPI binding analysis demonstrate mild to moderate 

experimental TBI impairs the ability of nAChR modulation to induce receptor 

upregulation.  Galantamine treated rats displayed significant reductions in EPI binding 

and did not show increases in the contralateral brain as expected.  Interestingly, while 

nicotine treated rats showed upregulation of EPI binding contralaterally compared to 

sham operated rats in some brain regions, indicating the ability to upregulate the 

uninjured brain, some brain regions demonstrated deficits on the injured side of the brain.  

These results suggest that TBI may interfere with galantamine and nicotine mediated 

upregulation. 

In one study, administration of galantamine 2 mg/kg twice daily subcutaneously 

for 10 days caused an upregulation in [3H]-cytisine binding in hippocampus and BTX 

binding in the cortex of mice (Svedberg et al., 2004), but a PET study of AD patients 

treated with galantamine showed no changes in [11C]-nicotine binding in the cortex 

(Kadir et al., 2008).  In rodents, chronic nicotine exposure caused an upregulation in 

nAChRs (Marks et al., 1983; Schwartz and Kellar, 1983), and rats receiving a choline 

supplemented diet for two weeks demonstrated a selective upregulation in α7 nAChRs in 

cortical and hippocampal brain regions (Guseva et al., 2006).  Additionally, the pattern of 

upregulation by nicotine has been shown to depend on receptor subtype.  For example, 

α6β4 nAChRs upregulate at different doses and exposure times compared to α4β2 

nAChRs (Walsh et al., 2008).  Physiologic changes occurring in TBI such as altered 

cerebral blood flow could affect the concentration, distribution, and pharmacodynamic 

properties of nAChR agonists within various brain regions.  TBI may interfere with any 

one of the processes involved in nAChR upregulation including transcription, receptor 

subunit assembly, post-translational modifications or desensitization; therefore, 

evaluation of mRNA expression would help to characterize alterations in upregulation 

following TBI.   

  Previous studies from our laboratory showed that a choline supplemented diet 

attenuated α7 nAChR deficits following CCI and provided significant cortical tissue 

sparing but not a substantial improvement in Morris water maze performance (Guseva et 

al., 2008).  Galantamine’s potential cognitive enhancing properties were evaluated in 

experimental brain injury.  However, galantamine did not provide a significant 
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improvement in the Morris water maze or the cortical sparing analysis with the dosing 

regimen tested.  Further studies with larger sample sizes may be needed to determine if 

facilitation of neurological recovery following experimental TBI can be demonstrated by 

galantamine.   

The possible utility of galantamine in the clinical setting is dependent on a 

risk/benefit assessment of drug administration in patients with mild to moderate TBI.  

Adverse reactions of galantamine include nausea, vomiting, dizziness, depression, 

anorexia, and weight loss (Defilippi and Crismon, 2003; Robinson and Plosker, 2006; 

Ortho-McNeil Neurologics, 2008).  Additionally, due to its cholinomimetic properties, 

galantamine may cause bradycardia, atrioventricular block, and seizures, which is of 

concern due to the elevated risk of seizure disorder following moderate and severe TBI.  

As galantamine is partially metabolized by CYP2D6 and CYP3A4, drug interactions may 

occur with other medications employed in this setting.  For example, TBI induced 

depression treated with paroxetine may raise galantamine concentrations exacerbating 

adverse effects by inhibiting CYP metabolism (Defilippi and Crismon, 2003; Blennow et 

al., 2006).  Additionally, it is possible that elevated galantamine concentrations may also 

occur due to depressed cytochrome P450 activity following TBI, depending on severity, 

as decreases in drug metabolism have been demonstrated in human subjects following an 

acute phase response (Shedlofsky et al., 1994).  By contrast, one study showed enhanced 

clearance of cyclosporine A, primarily metabolized by CYP3A4, in patients with severe 

TBI (Empey et al., 2006).  It is not known how these changes would affect galantamine 

treatment of milder forms of TBI.  Of note, in 2005 the FDA issued an alert regarding 

two clinical trials in MCI patients assessing galantamine’s ability to slow the progression 

to AD.  These trials resulted in a greater number of deaths in the MCI group compared to 

the placebo group.  After a review process, the FDA did not find enough evidence to alter 

galantamine prescribing, but did note that galantamine is only approved for use in 

patients with mild to moderate AD (FDA, 2005).  The benefits of galantamine have been 

reviewed in detail herein.  Galantamine’s preclinical neuroprotective and anti-

inflammatory properties and clinical efficacy in the treatment of AD symptomatology 

support a potential clinical benefit in TBI.  Additional studies are needed to determine if 

the benefits outweigh the risks in the evaluation of galantamine for treatment in TBI.  
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Likewise, continuing research of other nicotinic receptor modifying drugs as possible 

pharmacotherapies for cognitive impairment following TBI is warranted. 

Furthermore, the addition of galantamine brain concentrations and the 

determination of acetylcholinesterase inhibition may improve future dosing regimens and 

pharmacodynamic correlations.  Possible dose and timing issues require further 

exploration, as the dose used herein was chosen based on the literature in which 

differences in rat strains and experimental conditions may hinder a correct selection.  

Additionally, performing the Morris water maze or other behavioral task on naïve rats 

treated with galantamine or the inclusion of a sham operated, galantamine treated group 

would allow for a baseline cognitive effect by which to assess treatment.  Furthermore, a 

galantamine pretreatment regimen causing upregulation of receptors prior to a CCI injury 

may help elucidate the effect that TBI has on nAChR upregulation.  The mechanism by 

which TBI interferes with upregulation is unknown but may involve the regulation of 

mRNA expression, and thus, investigations into the transcriptional regulation of nAChRs 

in TBI are needed.  It is possible that a reduction in mRNA in TBI leads to fewer 

receptors available to desensitize and undergo upregulation.  Because of galantamine’s 

therapeutic benefit in patients with AD, continuing research is necessary to determine if 

this drug or other modulators of nAChRs can benefit those patients with lasting cognitive 

impairments due to traumatic brain injury. 

The aim of the third research study, “Experimental traumatic brain injury reduces 

the expression of hippocampal α7 nicotinic receptor mRNA,” was to determine if 

decrements in α7 nAChR expression correlate with changes in mRNA expression 

following TBI.  Additionally, we were interested in obtaining further mechanistic 

information needed to explain the impaired plasticity of non-α7 nAChRs demonstrated in 

the previous examination of galantamine following experimental TBI.  In this study, in 

situ hybridization and receptor autoradiography with semi-quantitative analysis were 

performed to evaluate α7 and α4 nAChR mRNA expression two days following 

experimental TBI, a time when previous studies observed consistent decreases in nAChR 

expression.    

Previously our laboratory demonstrated significant reductions in hippocampal and 

cortical α7 nicotinic receptor binding in rats subjected to CCI (Verbois et al., 2000).  The 
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results of this study are the first to show downregulation of α7 mRNA accompanying 

reductions in α7 nAChR binding in rats 48 hours following a moderate CCI.  Deficits in 

α7 mRNA occurred along with reductions in BTX binding in multiple brain regions 

including several hippocampal subfields, the dentate gyrus, and superior colliculus.  In 

addition, α4 mRNA was reduced in the thalamus, and deficits occurred along with 

diminished EPI binding in the metathalamus.  The β2 subunit was not assayed in this 

study, and including it in the analysis would be useful in the future to further characterize 

the effect of TBI on nAChRs as most non-α7 nAChR in the mammalian brain are of the 

α4β2 subtype.  It is possible that loss of receptors and mRNA are due to the excitotoxic 

processes involved in TBI including abnormal Ca2+ signaling, mitochondrial dysfunction, 

free radical damage, and resulting neurotoxicity.  But evidence from the numerous 

studies of nAChR changes in neurodegenerative disease suggests a selective targeting of 

this receptor type.  Further studies of the mRNA expression in other types of 

neurotransmitter systems would be useful. 

TBI results in a secondary delayed injury involving ischemia, Ca2+ mediated 

excitotoxicity, mitochondrial dysfunction, free radical production, cell death, and 

inflammation (Bramlett and Dietrich, 2007; Greve and Zink, 2009).  Additionally, several 

studies have demonstrated elevations in Aβ following TBI (Gentleman et al., 1993; 

Olsson et al., 2004) and repetitive mild brain trauma hastens Aβ accumulation and 

increases Aβ42 and Aβ40 concentrations in nine month old Tg2576 mice compared to a 

single injury (Uryu et al., 2002).  The presence of elevated levels of Aβ following TBI 

may result in upregulated α7 mRNA and α7 nAChR in localized brain regions, as α7 

mRNA was elevated in the inner layers of the cortex in the current study.  There are 

reports of upregulated mRNA in the hippocampus (Hellstrom-Lindahl et al., 1999) and 

nucleus basalis (Counts et al., 2007) in AD.  In theory, it is also possible that the presence 

of elevated Aβ following TBI could compete with nAChRs administered exogenously.  

In the evaluation of galantamine and nicotine following TBI, the impairment of 

upregulation could in part be due to the presence of relatively low concentrations of Aβ 

acting at nAChRs preventing the expected upregulation of nAChRs following agonist 

administration.  A time course of mRNA expression, Aβ concentrations, and nicotinic 
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receptor functional studies following TBI may provide additional insight into the 

mechanisms involved in TBI related nAChRs changes.   

Our laboratory previously found no significant effect of the α7 nAChR gene 

deletion on cortical tissue sparing or a marker of brain inflammation following TBI in 

studies using α7 nAChR knock out mice (Kelso et al., 2006).  Given the recent finding in 

Tg2576 mice lacking the α7 nAChR gene purporting  soluble, oligomeric Aβ activation 

of α7 nAChRs resulting in neuroprotection in early AD (Hernandez et al., 2010),   a 

further study is proposed involving experimental TBI in this model.  In this study, CCI 

performed at early and late time points in AD related disease pathology could help 

elucidate the expression and function of nAChRs as well as their effect on functional 

improvement.  In this design, elevated soluble Aβ may regulate nAChR plasticity and 

effect on functional outcome differently depending on age.   

In conclusion, two models of neurodegenerative disease, experimental 

Alzheimer’s disease and traumatic brain injury, display regional dependent changes in α7 

nAChRs.  AD and TBI may involve complex but parallel processes contributing to the 

regulation of α7 nAChRs.  Further studies are needed to better comprehend the intricate 

mechanisms involved in neurodegenerative disease and to guide the development of 

pharmacotherapies in the clinical setting.  The research in this dissertation may contribute 

to the overall understanding of nAChR regulation in diseases involving 

neurodegenerative processes.  
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Appendix  

Alterations in α7 nAChR mRNA following TBI in rats measured by in situ hybridization. Data are expressed as group mean ± 
standard deviation optical density. 
 

 Sham 1 mm CCI 2 mm CCI 
Brain Region Contralateral Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral 

Neocortex       
Auditory cortex layers 1-4 76.80 ± 1.96 76.57 ± 4.14 78.79 ± 7.84 79.41 ± 7.75 78.10 ± 7.23 76.42 ± 4.89 
Auditory cortex layers 5-6 87.41 ± 2.01 90.75 ± 1.88 88.27 ± 8.22 91.42 ± 8.93 87.65 ± 7.22 94.38 ± 6.96* 
Basal ganglia       
Endopiriform 97.34 ± 3.39 101.44 ± 4.08 97.25 ± 7.58 97.94 ± 11.00 104.25 ± 11.67 107.83 ± 14.55 
Anterior hippocampus       
CA1 layer 91.77 ± 4.47 90.65 ± 6.55 93.53 ± 10.18 89.61 ± 7.29 94.65 ± 9.05 88.75 ± 11.89 
CA2 layer 67.82 ± 1.59 69.46 ± 0.85 69.63 ± 5.48 70.23 ± 4.81 70.89 ± 5.86 68.23 ± 5.45 
CA3 layer 116.25 ± 8.96 117.26 ± 7.01 121.76 ± 9.74 120.27 ± 8.79 124.38 ± 12.63 105.66 ± 16.28* 
Dentate gyrus, lateral blade 108.51 ± 9.07 106.46 ± 9.71 106.91 ± 8.18 97.26 ± 7.50* 105.32 ± 9.24 91.35 ± 10.03* 
Dentate gyrus, hilar blade 138.46 ± 10.94 133.95 ± 10.50 140.51 ± 11.24 133.00 ± 10.28* 145.81 ± 16.99 123.24 ± 20.92* 
Posterior hippocampus       
Dentate gyrus, hilar blade  157.34 ± 2.04 157.37 ± 2.81 157.80 ± 6.48 157.82 ± 6.69 159.33 ± 12.84 155.35 ± 10.52 
Mesencephalon       
Superior colliculus 83.02 ± 2.59 83.50 ± 4.03 87.61 ± 4.77 86.36 ± 4.89 91.25 ± 6.99 88.14 ± 6.78* 
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* denotes significantly different from the contralateral side  
Statistical analysis was performed using a two-way (injury, side), repeated measures, ANOVA followed by a Tukey-Kramer multiple comparisons test 
(GBSTAT software) ; significance was set at α = 0.05. 

Auditory cortex layers 5-6, F(1,16) = 25.85 , p < 0.0001  
CA3 layer, F(1,16) = 11.69, p = 0.0035 
Dentate gyrus, lateral blade, F(1,16) = 73.66, p < 0.0001 
Dentate gyrus, hilar blade, F(1,16) = 93.45 , p < 0.0001 
Superior colliculus, F(1,16) = 13.63 , p < 0.002 
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