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Abstract 

 

Inhibition of protein-protein interactions is a promising therapeutic strategy for 

targeting non-enzymatic proteins.  One strategy to inhibit protein-protein interactions is 

to design inhibitors specifically toward the protein-protein interaction interface.  To 

achieve this objective using structure-aided design, knowledge of the structure of the 

interface of the protein-protein interaction is needed.  Augmenting the utility of NMR to 

determine the structure of larger proteins, and of protein complexes, than is currently 

achieved with conventional approaches, expands structure-aided design and to 

evaluate protein-protein interactions for target proteins relevant to human disease such 

as cancer.  A second approach to bring new therapies to the clinic is to identify lead 

molecules using high-throughput screening.  High-throughput screening (HTS) offers 

the potential to more rapidly and less expensively identify promising molecules that may 

inhibit a specific protein-protein interaction. 

To improve efforts at structure-aided design, we hypothesize that we can expand 

the utility of fluorescence- and NMR-based approaches to monitor protein-protein 

interactions by incorporating fluorescent or paramagnetic labels, site-specifically, into a 

protein of interest.  This technology will provide much more structural detail regarding 

the binding site of a candidate small molecule protein-protein interaction inhibitor.  This 

structural information can then be used in downstream medicinal chemistry efforts to 

improve inhibitor affinity and specificity.  Additionally, site-specific fluorescent and 

paramagnetic labels can be used in sensitive HTS assays for protein-protein interaction 

inhibitors. 
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The lanthanide series of elements, which possess intriguing spectroscopic and 

paramagnetic properties, was chosen to accomplish these efforts.  Lanthanides exhibit 

luminescence and have excitation and emission maxima unique from biological 

fluorophores, broad Stokes shifts, and narrow emission bands.  In the context of NMR, 

some lanthanides impart long-range perturbations in the form of paramagnetic 

relaxation enhancements, pseudocontact chemical shifts, and residual dipolar 

couplings, which are used to facilitate protein structure determination. Site-specific 

labeling of the protein of interest was achieved using site-directed mutagenesis, 

incorporation of the unnatural amino acid paF, followed by copper-free click chemistry 

with a cyclooctyne-containing lanthanide chelator.  Synthesis of the small-molecule 

lanthanide chelator amenable to copper-free click chemistry-mediated incorporation is 

described herein.   

To improve efforts at identification of candidate protein-protein interaction 

inhibitors, we hypothesized that a high-throughput fluorescence polarization screening 

assay could be established.  Inhibitors identified in this assay would be further 

characterized using the lanthanide labeled Survivin protein.  A recently-identified cancer 

target, the Survivin protein, was evaluated using the methodologies described herein. 

The results demonstrate we were able to fluorescently label the Survivin protein site-

specifically using a click chemistry approach.  In addition, preliminary fluorescence 

results indicate that synthesis of a clickable lanthanide chelator was also successful.   

Finally, a high-throughput fluorescence polarization-based screening platform for 

analyzing Survivin protein-peptide interactions was evaluated.   
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Taken together, the methodologies described herein attempt to augment efforts 

at structure-aided drug design as well as to produce new technologies to identify 

promising protein-protein interaction inhibitors, with the ultimate goal of improving our 

understanding of protein-protein interactions implicated in many human diseases, 

including cancer. 
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1.1 Incidence of Cancer 

According to the American Cancer Society, more than 1.6 million new cases of 

cancer will be diagnosed in 2015 in the United States [American Cancer Society, 2015]. 

Of these, more than 589,000 are expected to be fatal, which corresponds to 1620 

people per day.  Nearly 1 in 4 deaths in the U.S. is from cancer with heart disease being 

the only cause of death more prevalent.  In 2009, the National Institutes of Health (NIH) 

reported that the annual healthcare burden was more than $216 billion from all cancers 

[American Cancer Society, 2015].  Finally, although for most cancers, the one- and five-

year survival rates are increasing, some cancers remain exceedingly difficult to treat, 

and exhibit very high mortality rates [American Cancer Society, 2015].  These 

staggering statistics indicate that in spite of decades of efforts and many breakthroughs, 

the need for additional anti-cancer therapies is still pressing.  A protein that is being 

pursued for anti-cancer therapy is Survivin [Ambrosini, et al., 1997, reviewed in Altieri, 

2008, Condon, 2011]. 

  

1.2 Survivin 

 1.2.1 Survivin Prevents Apoptosis 

Survivin is a 142-amino acid, 16.5 kDa protein expressed predominately in fetal 

tissues; it is undetectable in terminally-differentiated adult tissues [Ambrosini, et al., 

1997, Reed, 2001, Salvesen and Duckett, 2002, Sah, et al. 2006] except during mitosis 

[Giodini, et al., 2002].  In vivo, it is normally found as a homodimer with each monomer 

consisting of both a globular and a single long α-helical domain [Chantalat, et al., 2000, 

Muchmore, et al., 2000, Verdecia, et al., 2000, Jeyaprakash, et al., 2007].  Survivin is 
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unusual in that it participates in multiple protein-protein interactions in the cell that are 

critical to survival and proliferation, while being spatially and temporally distinct.  These 

qualities have made it an attractive drug target. 

Initially characterized as a member of the inhibitor of apoptosis protein (IAP) 

family [Ambrosini, et al., 1997], Survivin is thought to prevent apoptosis by binding 

caspases, such as caspase-9 [Deveraux, et al., 1998, Chai, et al., 2000, Du, et al., 

2000, Liu, et al., 2000, Wu, et al., 2000].  When the cell receives a pro-apoptotic signal, 

second mitochondria-activator of caspases/direct IAP binding protein with low pI 

(Smac/DIABLO) is released from the mitochondria [Du, et al., 2000; Verhagen, et al., 

2000, Adrain, et al., 2001].  Through an incompletely-characterized series of events, 

Smac/DIABLO competes with caspases for Survivin binding [Sun, et al., 2005, Condon, 

2011] at Survivin’s baculoviral inhibitor of apoptosis repeat (BIR) domain, which is 

comprised of amino acids 11 to 80.  Survivin sequestration by Smac/DIABLO releases 

the activator caspases to elicit apoptosis.   

 

1.2.2 Survivin Is Required for Mitosis 

Although initially characterized as an IAP, Survivin also binds tubulin and 

stabilizes growing microtubules [Li, et al., 1998, Giodini, et al., 2002].  Additionally, 

Survivin is imperative for chromosomal segregation [Skoufias, et al., 2000, Uren, et al., 

2000, Jiang, et al., 2001, Wheatley, et al., 2001].  Within the dividing cell, the proteins 

aurora B, borealin, inner centromere protein (INCENP), and Survivin congregate at the 

centromere of the chromosome to facilitate proper segregation, ensuring that each 

daughter cell receives the correct number of chromosomes.  The structure of Survivin 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125329/#cde673c13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125329/#cde673c43
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125329/#cde673c43
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within this complex, the chromosomal passenger complex (CPC), has been solved by x-

ray crystallography [Jeyaprakash, et al., 2007, Niedzialkowska, et al., 2012].  Recent 

evidence suggests that the CPC is assembled within the cytosol and then transported 

into the nucleus via the nuclear pore complex [Zhang and Wang, 2012].  Finally, a 

contemporary report described the interaction between histone-3 and the BIR domain of 

Survivin [Jeyaprakash, et al., 2011, Niedzialkowska, et al., 2012], demonstrating that 

this region binds the nucleosome and facilitates proper chromosomal segregation 

during division.  Thus, the number and variety of Survivin protein-protein interactions 

represent many possibilities for therapeutic intervention. 

 

1.2.3 Obstacles to Effective Survivin Inhibition 

Survivin is upregulated more than 40 fold over healthy tissue in numerous types 

of cancers [Ambrosini, et al., 1997, Altieri and Marchisio, 1999, Velculescu, et al., 1999].   

Consequently, Survivin was identified as a new cancer drug target as early as 1997 

[Ambrosini, et al., 1997, reviewed in Altieri, 2008, Condon, 2011] and strategies for 

Survivin inhibition have included peptide vaccines, an antisense oligonucleotide, Smac 

mimetics, small-molecule transcriptional repressors, and protein-protein interaction 

inhibitors [Nakahara, et al., 2007, reviewed in Groner and Weiss, 2014].  Current 

strategies, however, lack efficacy, giving rise to only moderate outcomes [Giaccone, et 

al., 2009, reviewed in Groner and Weiss, 2014] and generate different outcomes 

especially when used in conjunction with other therapies [Carvalho, et al., 2003, 

Cheung, et al., 2009, reviewed in Groner and Weiss, 2014].   
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One challenge to inhibiting Survivin function is that it is non-enzymatic; as a 

consequence, traditional strategies of enzyme inhibition do not apply.  In addition, 

because it lacks a traditional hydrophobic pocket amenable to small-molecule binding, 

Survivin is considered to be “non-druggable“ [reviewed in Groner and Weiss, 2014].  

One strategy to overcome these obstacles is to target Survivin‘s protein-protein 

interactions, a strategy that is gaining ground in the treatment of many diseases 

including cancer [Oikawa, et al., 2010], human papilloma virus infection, and hepatitis C 

virus infection [Zhu, et al., 2010, D’Abramo and Archambault, 2011, Kota, et al., 2012].  

To evaluate the consequences of protein partner binding on the protein of 

interest, fluorescence-based approaches may be utilized.  One advantage of 

fluorescence-based analyses relative to x-ray crystallography and NMR spectroscopy is 

that fluorescence-based approaches tend to be more sensitive, thereby requiring lower 

protein concentrations.  To study proteins that have a tendency to aggregate at high 

concentration and/or where over-expression of the protein in high yield is difficult, the 

improved sensitivity of fluorescence-based analyses is appealing. 

 

1.3 Strategies to Identify or Develop Potential Survivin Protein-Protein Interaction 

Inhibitors 

1.3.1 High-Throughput Chemical Compound Screening to Identify Potential 

Protein-Protein Interaction Inhibitors 

High throughput screening (HTS) of hundreds to thousands of chemical 

compounds against a target protein or protein-protein interaction is gaining appeal for its 

efficiency and reduced costs compared to traditional methods [reviewed in Lea and 
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Simeonov, 2011].  These platforms are advantageous for non-enzymatic protein targets 

where direct analysis of protein function is difficult [Liu, et al., 2000, Glover, et al., 2003, 

Nikolovska-Coleska, et al., 2004, Nikolovska-Coleska, et al., 2008].  While enzymatic 

assays can quantify metabolite production or reactant consumption, proteins that are 

not enzymes are not amenable to these types of “direct” quantifications.  Alternative 

measures of protein function, such as caspase activity assays, may be utilized for 

evaluating the activity of certain proteins involved in apoptosis [Hristov, et al., 2014], 

however, for proteins that are involved in multiple intracellular pathways, ascertaining 

the consequences of disrupting that protein’s function may be inconclusive, i.e., Survivin 

function in apoptosis, but not mitosis, may be altered.  These approaches may require 

numerous components [reviewed Lea and Simeonov, 2011], making the experimental 

setup cumbersome and unwieldy.  Finally, as increasing interest has developed in 

targeting and disrupting protein-protein interactions [Arkin, et al., 2004, Oikawa, et al., 

2010, Zhu, et al., 2010, D’Abramo and Archambault, 2011, Kota, et al., 2012], 

alternative strategies have been sought to evaluate the consequences of disrupting 

target protein function in order to identify inhibitors of protein-protein interactions 

[reviewed in Lea and Simeonov, 2011].  One high-throughput screening platform to 

identify protein-protein interaction inhibitors is fluorescence polarization [reviewed in Lea 

and Simeonov, 2011]. 

 

  Fluorescence Polarization-based High-Throughput Screening 

Fluorescence anisotropy refers to the extent to which a fluorophore is able 

to freely tumble in the analyzed system [Perrin, 1926].  Fluorescence polarization, P, is 
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defined as the ratio of the linearly polarized component’s intensity divided by the natural 

light intensity [Lakowicz, 1999]. Anisotropy, r, is a similar ratio, however, it incorporates 

the total light component’s intensity [Lakowicz, 1999]. 

Briefly, the concept of fluorescence polarization-based HTS, as applied to 

Survivin as a target, is as follows [reviewed in Lea and Simeonov, 2011]: a small (~<20-

mer) synthetic peptide is fluorescently labeled and added to a solution containing 

Survivin.  When the fluorescently-labeled peptide is freely tumbling in solution, i.e. 

unbound, the resulting fluorescence anisotropy or polarization signal is near zero 

because the ratio of the parallel and perpendicular fluorescence intensities is averaged 

out.  As an increasing proportion of the fluorescently-labeled peptide binds Survivin 

protein, the fluorescence anisotropy begins to increase because the rate of fluorophore 

tumbling slows and thus imparts an average fluorescence polarization that can be 

measured.  When all available fluorescently-labeled peptide is bound to the target 

protein Survivin, the fluorescence anisotropy signal becomes saturated (100%) because 

the fluorophore tumbling is at its slowest rate and the largest ratio of vertically to 

horizontally polarized fluorescence intensity is achieved.  A relatively small (<~20-amino 

acids) peptide is used because if the peptide is too large, then it imparts its own 

fluorescence polarization even when unbound to a binding partner. 

To identify candidate inhibitors of a specific protein-protein interaction, 

protein and fluorescently-labeled peptide are combined at fixed concentrations, then 

fluorescence anisotropy or polarization is measured.  Small molecule inhibitors will 

disrupt the protein:peptide binding interaction, eliciting a decrease in the observed 

fluorescence anisotropy or polarization signal as fluorescently-labeled peptide is 
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displaced and freely tumbles.  Promising small molecule candidate inibitors that elicit 

decreased fluorescence anisotropy or polarization are then screened for 

autofluorescence and quenching [Gribbon and Sewing, 2003], two factors that may alter 

the fluorescence polarization or anisotropy signal independent of disruption of the 

protein-protein interaction. 

   

1.3.2 Structure-Aided Inhibitor Design 

Once a lead candidate has been identified from a HTS assay, structure-aided 

drug design can be employed to improve the compound’s affinity and specificity for its 

target [reviewed in Madsen, et al., 2002].  This strategy relies on structural information 

of the 1) target protein small molecule binding pocket or 2) site of a target protein-

protein interaction.  NMR spectroscopy and x-ray crystallography are well-validated 

approaches that yield bond distance and atomic arrangements, which are used to 

determine a protein’s structure in dynamic or static conformations, respectively 

[Wüthrich, 1990, Branden and Tooze, 1998, Wang, et al., 2000, Jorgensen, 2004, 

Schneider and Fechner, 2005].  If the bond distances and atomic arrangements of the 

protein of interest are known, small molecules may be engineered to precisely, and with 

high affinity, bind a therapeutically-relevant pocket of a target protein [He, et al., 2005, 

reviewed in Madsen, et al., 2002], when the target protein contains such a pocket.  As a 

consequence, the high-resolution 3-dimensional structure of the protein facilitates 

structure-aided design of molecules to the specific protein target, an example of which 

is AMN107, an imatinib analog that was designed to overcome imatinib resistance 
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based on point mutations in the tyrosine kinase implicated in chronic myelogenous 

leukemia [Weisberg, et al., 2005].  

1.4 Limitations of Protein Structure Determination Methods 

 Although it is sometimes possible to obtain very high resolution structural 

information, one limitation of x-ray crystallography is that the resulting image represents 

the crystal structure rather than the solution structure.  In comparison, efforts are 

ongoing to expand the utility of NMR spectroscopy to study protein dynamics, protein-

protein interactions, and to resolve “lowly-populated states” [Iwahara and Clore, 2006], 

states not easily observed using conventional NMR spectroscopy approaches.  

Understanding conformational dynamics is important to drug development because 

many times the lowly-populated conformational substates are relevant to a desired 

pharmacological effect [Lampe, et al., 2010]. 

 

1.5 Utility of Lanthanides in Structural Biology 

Lanthanides are a series of rare earth metals, most of which carry a +3 charge.  

Lanthanides have recently found utility in structural biology applications, such as 

analyzing protein dynamics, because of their unique spectroscopic [Nitz, et al., 2004] 

and paramagnetic properties, which can be utilized in fluorescence-based approaches 

and NMR [Su, et al., 2006, Otting, 2008, Allen and Imperiali, 2010, Su and Otting, 

2010]. 

 

1.5.1 Lanthanide Fluorescence and Biological Utility 
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Lanthanides exhibit fluorescent properties when the lanthanide ion is chelated in 

a specific chemical microenvironment.  When a chelating group binds and interacts with 

most of the lanthanide’s nine possible coordination sites, the lanthanide is also shielded 

from any solvent quenching effects that may reduce luminescence [Pietraszkiewicz, et 

al., 1993].  Lanthanides are relatively insensitive to photobleaching [Pandya, 2006] and 

have broad Stokes shifts and narrow emission bands [Murphy and Barton, 1993].  

Excitation promotes an electron to the triplet excited state [Hemmila, 2005], which is 

thought to lead to prolonged fluorescence lifetime.  The lanthanide terbium generates a 

millisecond-long lifetime decay [Nitz, et al., 2004], which is orders of magnitude longer 

than those of other fluorescent entities, enabling time-resolved lifetime analyses and 

time-resolved distance measurements (via Förster resonance energy transfer (FRET)) 

between donor and acceptor molecules [Allen, et al., 2006, Sandtner, et al., 2007, 

Rajapakse, et al., 2009, Hagan and Zuchner, 2011].  In addition, excitation and 

emission occur at wavelengths in the near infrared range, separate from naturally-

occurring biological fluorophores [Werts, et al., 1997, 2000, Hebbink, et al., 2003].  

These attributes of lanthanides permit monitoring of the lanthanide-labeled protein in a 

variety of biological matrices that may contain interfering fluorophores.  In addition, 

FRET distance measurements using lanthanides may be amongst the longest 

measured [Mathis, 1993], enabling the analysis of longer-range donor-acceptor 

distances than those using other FRET partners. 

Although fluorescence analyses may be performed using tryptophans that are 

already in the protein of interest [Allen and McLendon, 2006], site-specific introduction 

of an exogenous fluorophore into the protein of interest may be beneficial.  Site-specific 
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incorporation confers the ability to probe a specific region of the protein of interest 

where a tryptophan may not exist.  Fluorescein and the lanthanide terbium meet many 

of the aforementioned criteria [Brannon and Magde, 1978, Ge, et al., 2004, Rajapaske, 

et al., 2009], making them ideal probes for evaluating in vitro protein-protein 

interactions. 

 

1.5.2 Utility of Lanthanides in NMR 

Lanthanides are also useful biomolecular NMR probes due to their ability to 

induce local paramagnetic relaxation enhancement (PRE), pseudocontact chemical 

shifts (PCS), and residual dipolar couplings (RDC) [reviewed in Clore and Iwahara, 

2009].  PRE arises from the paramagnetic center’s ability to elicit a local perturbation of 

the applied magnetic field; PRE is an enhanced relaxation as the proton re-orients its 

spin in the direction transverse (T2) to that of the applied magnetic field.  PCS result 

when the paramagnetic center’s unpaired electrons relax in the magnetic field and 

impact neighboring nuclear spins, which are manifest in a chemical shift observed in the 

NMR spectrum.  RDC is a frequency component of the relaxing proton where the 

dipolar coupling between two spins is incompletely averaged, yielding a residual dipolar 

coupling, a frequency that can be converted to distance from the paramagnetic center 

[Saupe and Englert, 1963]. 

Lanthanide-induced PRE and RDC can yield peak shifts on the order of 4 or 

more nanometers (nm) [Otting, 2008].  Some lanthanides can induce local and long-

range PRE and PCS [Iwahara and Clore, 2006, Otting, 2008, Madl, et al., 2009].  

Therefore, PRE, PCS, and RDC facilitate elucidation of dynamics of relatively larger 



12 

 

proteins as well as the role of amino acids involved in a specific protein-protein 

interaction in NMR [Clore and Iwahara, 2009].  Finally, PRE, RDC, and PCS are 

determined relative to the paramagnetic center [Solomon, 1955, Bloembergen and 

Morgan, 1961, Guéron, 1975, Bertini, et al., 2002], therefore, the lanthanide needs to be 

site-specifically incorporated into the protein of interest. 

 

1.5.3 Small Molecule Lanthanide Chelators 

Small  molecule lanthanide chelators such as ethylenediaminetetraacetic acid 

(EDTA) and its derivatives 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid 

(DOTA) and diethylenetriaminepentaacetic acid (DTPA), (Figure 1.1) have been used 

for decades for their attomolar lanthanide binding affinity [Cacheris, et al., 1987] and for 

the superior luminescence intensities of their lanthanide complexes [Brittain, et al., 

1976, Horrocks, 1993]. 

Thiol-reactive derivatives of small molecule lanthanide chelators such as 

dipicolinic acid, DOTA, and their derivatives have been employed to react with a 

protein’s available cysteines [Poupart, et al., 2006, Su, et al., 2008, Häussinger, et al., 

2009, Almeida, et al., 2011, Zhang, et al., 2011].  Where only one reactive cysteine is 

present, lanthanide chelation for NMR can generate chemical shifts of substantial 

magnitude and facilitate deconvolution of spectra to yield structural information [Otting, 

et al., 2008].  In most cases, however, the protein of interest contains multiple cysteines 

and/or they are critically involved in disulfide bond formation, or other secondary 

structure stabilizing events and thus cannot be mutated to other amino acids to reduce 

non-specific incorporation.  Additionally, because PRE, RDC, and PCS are determined 
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relative to the paramagnetic center [Solomon, 1955, Bloembergen and Morgan, 1961, 

Guéron, 1975, Bertini, et al., 2002], lanthanide chelators that are amine- or carboxyl- 

reactive do not confer sufficient site-specificity to determine accurate PRE, RDC, and 

PCS.  Survivin is a cancer drug target which is thought to lack a traditional hydrophobic 

drug pocket; the utility of site-specific lanthanide incorporation to elucidate lowly-

populated states that Survivin adopts upon binding its protein partners such as histone-

3 may reveal druggable pockets amenable to therapeutic intervention. 

Small-molecule lanthanide chelators have been synthesized, however, the 

syntheses required numerous steps, were performed under organic, not aqueous 

conditions, and only yielded chelators that were thiol-reactive [Saha, et al., 1993, Ge 

and Selvin, 2003, Ge, et al., 2004, Häussinger, et al., 2009].  Synthesis of a small 

molecule chelator amenable to click chemistry (described below) was demonstrated 

[Martin, et al., 2010], however, the synthesis required many steps and utilized organic 

reagents; in addition, the chelator was clicked into a synthetic azide-containing peptide 

rather than an azide-containing protein target.  To overcome these current limitations, 

we proposed to synthesize, using aqueous conditions, in two steps, a small-molecule 

lanthanide chelator amenable to click chemistry-mediated, site-specific incorporation 

into the target protein, Survivin.  

 

1.6 Click Chemistry  

The reaction between an azide and a terminal alkyne to generate a 

cycloadducted product was first described as a 1,3-dipolar cycloaddition in 1961 

[Huisgen, 1961].  More recently, the 1,3-dipolar cycloaddition has been optimized as a 
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DTPA (diethylenetriaminepentaacetic acid)EDTA (ethylenediaminetetraacetic acid)

DOTA (1,4,7,10-tetraazacyclo-dodecane-

1,4,7,10-tetraacetic acid)

 

 

 

Figure 1.1: Chemical structures of small-molecule lanthanide chelators 
ethylenediaminetetraacetic acid (EDTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-
tetraacetic acid (DOTA), and diethyelentriaminepentaacetic acid (DTPA). 
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Figure 1.2: Schematic of a general copper-free click chemistry reaction between an 
azide-containing molecule and a cyclooctyne-containing molecule to generate a 1,4-
disubstituted triazole-containing molecule. 
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“click chemistry” reaction [Kolb, et al., 2001], because it utilizes relatively straightforward 

facile reaction conditions to generate single products under mild reaction conditions and 

in high yields using common reagents.  One drawback to this approach, however, is that 

this click chemistry reaction between a terminal alkyne and an azide requires high 

amounts of copper to catalyze the formation of the triazole-containing cycloadduct.  

Copper-mediated click chemistry has been performed in vitro to evaluate the in 

vivo activities of proteins of interest [Speers & Cravatt, 2004].  The millimolar copper 

concentration required, however, gave rise to relatively harsh experimental conditions 

that were not conducive to mimicking physiologically-relevant settings and, because 

cells contain no free copper, copper may initiate redox cycling, which may cause cell 

death [Kim, et al., 2008].  Therefore, copper-free click chemistry reactions may be 

preferred over those requiring high copper concentrations [Jewett and Bertozzi, 2010], 

to evaluate proteins in vitro and in vivo.   

Because of their ring strain and the energy contained within the carbon-carbon 

triple bond, cyclooctynes exhibit excellent reactivity towards azides to specifically form 

triazole cycloadducts in the absence of a copper catalyst [Gordon, et al., 2012], as 

depicted in Figure 1.2.  Due to their superior reactivity over terminal alkynes, 

cyclooctynes have become useful tools for completing copper-free click chemistry 

reactions under physiologically-relevant reaction conditions (Gordon, et al., 2012).    

Consequently, copper-free click chemistry has been pursued to chelate a lanthanide 

site-specifically within the target protein (chapter 4). 

One advantage of a click chemistry reaction is that the azide or alkyne moiety 

can be on the reporter molecule and its complementary reactive group can exist in a 
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specific site within a protein of interest.  Through tRNA synthetase cloning and 

mutagenesis strategies, Archaea bacterial expression systems have been optimized to 

recognize and incorporate unnatural amino acids [Xie, et al., 2007, Chin, et al., 2002, 

Deiters and Schultz, 2005, Brustad et al., 2008, Young and Schultz, 2010], such as the 

phenylalanine analog para-azidophenylalanine (paF). The unnatural amino acyl tRNA 

synthetase charges a tRNA with paF for site-specific incorporation into the protein at the 

amber stop codon [Chin, et al., 2002].  The result is a protein with a reactive azide in a 

specific position within the protein, which can undergo click chemistry-mediated 

incorporation with an alkyne-containing reporter molecule.  The protein can then be site-

specifically labeled, using click chemistry, with a fluorescent and/or paramagnetic label.  

Site-specific incorporation may be determined using mass spectrometry approaches.  

The fluorescently- or paramagnetically-labeled protein can then be utilized in protein-

protein interaction studies using fluorescence- and/or NMR-based approaches.  

Fluorescence-based analyses may include monitoring steady-state fluorescence 

intensity, fluorescence lifetime, and/or FRET; NMR-based analyses may include protein 

structure determination and analyzing the conformational changes the protein adopts as 

its protein binding partner is added. 

 

1.7 Objectives of the Efforts Described in this Dissertation 

Considering the advantages conferred upon lanthanide chelation to augment 

NMR-mediated protein structure determination, and the utility of fluorescence-based 

approaches to facilitate monitoring of protein-protein interactions, the central hypothesis 

of the efforts described in chapters 3 and 4 of this dissertation was that site-specific 



18 

 

labeling of the protein of interest, Survivin, with a fluorescent or paramagnetic tag may 

be used to monitor protein-protein interactions. 

The central hypothesis of the efforts described in chapter 5 of this dissertation 

was that high-throughput screening using fluorescence polarization is a viable platform 

to identify candidate molecules of a specific non-enzymatic protein-peptide interaction, 

Survivin-histone-3. 
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1.8 Statement of Purpose 

 

One strategy to bring therapies to the clinic is to use structure-aided design to 

synthesize a small molecule inhibitor of the protein target’s function.  This strategy may 

be particularly advantageous for inhibiting assembly of non-enzymatic proteins and/or 

architectural/scaffold proteins.  To facilitate this, it is attractive to expand the utility of x-

ray crystallography, NMR, or fluorescence-based structure determination methods.  

One strategy to achieve this is to incorporate a lanthanide into the protein of interest.  

Lanthanides have unique fluorescence and paramagnetic properties that can be 

harnessed to expand structure determination methods, which may improve efforts at 

structure-aided drug design.  The efforts of this research aimed to merge site-directed 

mutagenesis and copper-free click chemistry to label the protein of interest (Survivin, in 

this case) with a fluorophore or lanthanide chelator, with the purpose of augmenting 

efforts at structure-aided drug design. 

A strategy to identify small molecule leads that may be suitable for structure-

aided drug design is to screen small molecule libraries containing candidate molecules 

that may have suitable pharmacological properties.  In this regard, our research 

objective was to establish a fluorescence polarization-based platform to identify 

inhibitors of a specific protein-peptide interaction, namely the Survivin-histone-3 protein-

peptide interaction.  
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1.9 Specific Aims 

 

Working under the hypothesis that site-specific labeling of the Survivin protein with a 

fluorescent tag may be accomplished using copper-free click chemistry and unnatural 

amino acid incorporation, the specific aim of the experiments described in chapter 3 

was to evaluate the utility of click chemistry to label the Survivin protein with a 

fluorophore in order to monitor protein-protein interactions of Survivin with its protein 

binding partners. 

 

Working under the hypothesis that site-specific labeling of the Survivin protein with a 

paramagnetic tag may be accomplished using copper-free click chemistry and unnatural 

amino acid incorporation, the specific aim of the experiments described in chapter 4 

was to synthesize a small molecule lanthanide chelator amenable to copper-free click 

chemistry in order to perform NMR-based structural analyses of Survivin with its protein 

binding partners. 

 

Working under the hypothesis that high-throughput fluorescence polarization-based 

screening of chemical compound libraries may serve as a platform to identify candidate 

molecules of specific protein-protein interactions, the specific aim of the experiments 

described in chapter 5 was to design a fluorescence polarization assay to rapidly screen 

chemical libraries in order to identify candidate inhibitors of the Survivin-histone-3 

protein-protein interaction. 
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Chapter 2. Materials and Methods 
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2.1 Chemicals 

Europium trichloride (EuCl3), lanthanum trichloride (LaCl3), terbium trichloride 

(TbCl3), ytterbium trichloride (YbCl3), ethylenediaminetetraacetic acid (EDTA), 

diethylenetriaminepentaacetic acid (DTPA), and 1-ethyl-3-(3-dimethylamino-propyl)-

carbodiimide (EDC) were procured from Sigma (St. Louis, MO); dibenzylcyclooctyne 

(DBCO) conjugated to fluorescein (DBCO488) and DBCO-amine were purchased from 

Click Chemistry Tools (Scottsdale, AZ).  Para-azidophenylalanine (paF) (Bachem, 

Torrance, CA) was dissolved in 100% acetic acid prior to the addition of water to 

achieve 80% (v/v) acetic acid and 100 mM paF.  All other reagents were of the highest 

grade commercially available. 

 

2.2 Determination of Fluorescence Excitation and Emission Maxima or Steady-

State Fluorescence Intensities 

Excitation and emission maxima and/or steady-state fluorescence intensities of 

the following compounds were determined at room temperature (22f°C) using a quartz 

cuvette and a Fluoromax4 Fluoro-Hub spectrofluorometer (HORIBA Jobin Yvon, 

Edison, NJ), with the Origin FluorEssenceTM software package (HORIBA Jobin Yvon): 

A) 1 µM Survivin1-120 labeled at the extreme C-terminus with DBCO488 

(DBCO488-CtermpaFsurv1-120) in 50 mM Tris, pH 7.46 at 22˚C, 500 

mM sodium chloride, 2 mM β-mercaptoethanol. 

B) 10 mM DTPA, 40 mM terbium chloride, and 10 mM metallated DTPA in 

100 mM MES, pH 5.5. 

C) 193.5 µM DBCO-amine in 3.2% (v/v) DMSO in 100 mM MES, pH 5.5. 
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D) 10 mM clickable chelator in 100 mM MES, pH 5.5. 

E) Fractions (3.5 mL) collected from the anion exchange chromatographic 

separation of the metallation reaction, using an excitation of 350 nm.  

Emission was monitored from 400-800 nm.   

F) G10 Sephadex chromatography fractions (~4 mL) collected from the 

amide coupling reaction using two different experimental conditions.  

Terbium emission was monitored from 400-800 nm using an excitation 

of 350 nm.  DBCO-amine emission was monitored from 300-800 nm 

using an excitation of 259 nm.   

G) 100 nM carboxyfluorescein-labeled histone-3 (H3*) peptide in 100 mM 

potassium phosphate, pH 7.5.  The excitation scan was from 300 to 

500 nm and the emission scan was from 520 to 750 nm. 

 

2.3 Synthetic Peptides 

The following peptides were synthesized (Kansas State University, Jon Tomich 

laboratory); fam refers to carboxyfluorescein: 

Histone-3 (abbreviated H3): Ac-ARTKQTARKS-CONH2 

Fluorescently-labeled Histone-3 (abbreviated H3*): Ac-ARTKQTARKS-K(fam)-

CONH2 

Peptides were synthesized on an ABI Model 431 peptide synthesizer (Applied 

Biosystems, Foster City, CA) on a 0.1 mmol scale using solid phase peptide chemistry 

on 4-(2,4-dimethoxyphenyl-Fmoc-aminomethyl) phenoxyacetyl-norleucyl-cross-Linked 

Ethoxylate Acrylate Resin (Peptides International Inc., Louisville, KY) using Fmoc (N-(9-
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fluorenyl)methoxycarbonyl)/tert-butyl chemistry [Kempe and Barany, 1996].  The 

carboxyamide is yielded at the C-terminus using this resin.  Fmoc amino acids were 

obtained from Anaspec, Inc. (Fremont, CA).  The peptides’ N-termini were acetylated on 

the resin and subsequently cleaved using trifluoroacetic acid as previously described 

[Sukthankar, et al., 2013].   Then, the released peptide product was washed with diethyl 

ether, re-dissolved in deionized, reverse osmosis-treated and distilled water, and then 

lyophilized. For the fluorescein incorporating variants, N-α-Fmoc-N-ε-(5-

carboxyfluorescein)-L-lysine was manually coupled to the resin using HOBt/HBTU 

chemistry before automating the synthesis as before [Iwamoto, et al., 1994].  Peptides 

were dried in vacuo and characterized on a Bruker Ultraflex III matrix-assisted laser 

desorption ionization time of flight mass spectrometer (MALDI TOF/TOF) (Bruker 

Daltonics, Billerica, MA) using 2,5-dihydroxybenzoic acid matrix (Sigma).  

Variable masses of fluorescently-labeled histone 3 peptide (H3*) were 

reconstituted in 100 mM potassium phosphate, pH 7.5, containing 100 µg/mL bovine 

gamma globulin and 0.02% (w/v) sodium azide. Variable masses of unlabeled histone-3 

peptide were reconstituted in 100 mM potassium phosphate, pH 7.5, devoid of bovine 

gamma globulin and sodium azide.   

 

2.4 Synthesis of Survivin Protein Comprised of Amino Acids 1 – 120 

Survivin1-120 Cloning, Transformation, and Over-Expression 

Full-length Survivin (amino acids 1 – 142) contains a hydrophobic C-terminal 

domain spanning amino acids 121 – 142 [Chantalat, et al., 2000]; consequently, a 

Survivin construct comprised of amino acids 1 – 120 was generated as follows: the 



25 

 

cDNA of Birc5, the gene encoding full-length wild type human Survivin, was obtained 

from OriGene, in the pCMV6-XL4 vector (OriGene, Rockville, MD).  An NdeI restriction 

site was cloned into the Birc5 gene upstream of the 5’ ATG nucleotide; a XhoI 

restriction site was cloned into the Birc5 gene after Survivin amino acid 120.  Using the 

NdeI and XhoI restriction sites, Birc5 was cloned into the pET-15b vector (Novagen, 

Billerica, MA).  The construct was confirmed by sequencing.  The encoded His6 tag and 

thrombin cleavage site (LVPRGS) immediately upstream of the Survivin gene’s start 

site were utilized for protein purification.  Plasmid containing the Survivin gene 

encoding amino acids 1-120 was transformed into BL21*DE3 E. coli competent cells 

according to manufacturer’s specifications (Invitrogen).  Transformed cells were plated 

on Luria-Bertani (LB) agar containing 100 µg/mL ampicillin and were grown overnight 

at 37°C.  The next day, a single colony was picked to inoculate a starter culture (~70 

mL) of LB broth containing 100 µg/mL ampicillin, which was then incubated overnight 

at 37°C with shaking at 225 revolutions per minute (rpm).  The next day, the starter 

culture was transferred to Terrific Broth (TB) supplemented with 8 mL of 100% glycerol 

per liter and 100 µg/mL ampicillin, and incubated at 37°C with shaking at 225 rpm until 

an absorbance of 0.6-0.8 at 600 nm was achieved (~5 hours’ incubation).  The culture 

was induced with 1 mM IPTG and incubation resumed at 25°C at 160 rpm for 18-24 

hours.  After incubation, cells were collected by centrifugation at 6000xg for 10 minutes 

at 4°C; cell pellets were stored at -80°C until protein purification was performed.   

Purification by Fast-Phase Liquid Chromatography - Survivin1-120 

Purification of Survivin1-120 was conducted as for all Survivin1-120 mutants 

(described in a subsequent section) with the following additional steps: after imidazole-
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mediated elution of His6-Survivin1-120 from the nickel-NTA column, fractions containing 

His6-Survivin1-120 were pooled and dialyzed against 100 mM potassium phosphate, pH 

7.5, with gentle stirring, at 2-8˚C, for a minimum of 2 hours per buffer exchange.  

Dialysis was performed until an imidazole concentration of 1 mM or lower was achieved, 

a concentration of imidazole that is thought not to interfere with thrombin enzyme 

activity (Novagen). After dialysis, thrombin cleavage was performed according to 

manufacturer’s specifications (biotinylated thrombin from Novagen, NeutrAvidin from 

Thermo Fisher, Waltham, MA).  Following thrombin cleavage, the sample, in 100 mM 

potassium phosphate, pH 7.5, was applied at a flow of 0.1-0.25 mL/min to an 

equilibrated HisTrap FF 5 mL nickel column (GE Healthcare) to separate the thrombin-

cleaved Survivin1-120 from uncleaved Survivin1-120 and/or the His6 tag.  Cleaved Survivin1-

120, which no longer binds the nickel column, was collected in the column wash, in 9-mL 

fractions.  Fractions exhibiting absorbance at 280 nm in the column wash were 

subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

separation followed by staining with Coomassie, then concentrated.   

Survivin1-120 was concentrated using either 15-mL Amicon Ultra centrifugal filters 

(Ultracel 3000 MWCO, Millipore) spun with successive cycles at 6000xg for 10 minutes 

at 4˚C or with a 400-mL stirred cell concentrator at 75 pounds per square inch (psi) with 

a 3000 molecular weight cutoff (MWCO) filter, at 2-8˚C, according to manufacturer’s 

specifications (EMD Millipore).  Survivin1-120 concentration was determined using a 

NanoDrop 1000 spectrophotometer (Thermo Fisher) controlled by ND-1000 software 

(version 3.8.1, Thermo Fisher).  A molar extinction of 16500 M-1cm-1 (ProtParam Tools, 
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ExPASy, Swiss Institute of Bioinformatics) was used.  Survivin1-120 was stored at -80˚C 

until analysis. 

 

Purification by Manual Column Application and Elution – Survivin1-120 

An approximately 100-mL HisPurTM nickel-NTA resin column was poured 

according to manufacturer’s specifications (Thermo Fisher) and contained within an 

enclosed cold cabinet (2-8˚C).  The column was equilibrated with loading buffer prior to 

the addition, by gravity, of the aforementioned supernatant from the ultracentrifugation 

step containing His6-Survivin1-120.  The column was washed with loading buffer (50 mM 

Tris, pH 8.0 at 4°C, 500 mM sodium chloride, 2 mM β-mercaptoethanol) for 

approximately 20 column volumes, during which time fractions were not collected.  After 

washing, elution of His6-Survivin1-120 was achieved using a gradient maker containing 

500 mL loading buffer in chamber A and 500 mL loading buffer containing 400 mM 

imidazole in chamber B.  The gradient was carried out with gentle stirring at 2-8°C, at a 

flow of 1.0 mL/min during which time approximately ~9-mL fractions were collected.  

Fractions exhibiting absorbance at 280 nm in the elution phase of the method were 

analyzed for Survivin presence by SDS-PAGE separation followed by Coomassie 

staining.  Fractions containing Survivin were pooled and dialyzed, and thrombin 

cleavage, purification, and concentration were performed as for the Fast-Phase Liquid 

Chromatography-mediated purification.    

2.5 SDS-PAGE, Coomassie Staining, Western Blotting, UV Illumination 

FPLC fractions exhibiting absorbance at 280 and/or 500 nm were prepared for 

SDS-PAGE separation by combining 20:1 Laemmli Sample Buffer (Bio-Rad, Hercules, 
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CA):β-mercaptoethanol and sample in a 1:1 ratio, heating to 95°C for 5 minutes, and 

then spinning briefly prior to adding to 4-15% gel (Bio-Rad 456-1084) or homemade 15, 

18, or 20% resolving gel with a 4% stacking gel.  Running buffer comprised of 1x 

Tris/Glycine/SDS was prepared from a 10x stock Tris/Glycine/SDS Buffer (Bio-Rad).   

For Coomassie analysis after SDS-PAGE separation, the gel was gently washed 

3 times on a rotating platform at room temperature for 5 minutes per wash with MilliQ 

water, then stained with 0.05% (w/v) Coomassie R-250 (Thermo Fisher Scientific) in 

4:5:1 methanol:water:acetic acid for 45-60 minutes with gentle agitation on a rotating 

platform at room temperature.  Stain was decanted and the gel destained with 30% (v/v) 

methanol, 10% (v/v) acetic acid in water with gentle agitation on a rotating platform at 

room temperature.   

For western blotting after SDS-PAGE separation, the gel was transferred onto a 

0.2-µm nitrocellulose membrane (Bio-Rad) and electrophoresed for 60 minutes at 100 V 

prior to blocking with 5% (w/v) milk in 1x Tris-buffered saline (TBS) for 60 minutes with 

gentle rocking.  Three 5-minute washes were performed in 1xTBS-T (TBS with 0.1% 

(v/v) Tween-20) at room temperature, with gentle rotation on a rotating platform.  

Subsequently, mouse α-human Survivin primary antibody (Catalog number 2802S, Cell 

Signaling, Danvers, MA) at 1:1000 dilution was applied in 5% (w/v) milk in 1xTBS-T and 

incubated at 2-8°C with gentle rocking for a minimum of an overnight.  Three 5-minute 

washes were performed in 1xTBS-T at room temperature, with gentle rotation on a 

rotating platform.  Then, horseradish peroxidase (HRP)-conjugated goat α-mouse 

secondary antibody (Thermo Fisher Scientific) was applied at 1:10000 dilution in 5% 

(w/v) milk in 1xTBS-T and incubated at room temperature with gentle rocking for 60 
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minutes.  Subsequently, the blot was incubated in Enhanced Chemiluminescent (ECL) 

reagent (Pierce, Rockford, IL) for 5 minutes with gentle rocking, at room temperature, 

protected from light.  Blots were exposed to radiography film (BlueBasic AutoRad Film, 

BioExpress, Kaysville, UT) and developed using a film processor (SRX-101A, Konica 

Minolta, Wayne, NJ). 

For analysis of fluorescence after SDS-PAGE separation, the gel was transferred 

to an 8-watt, 0.4 Amp, 100-115V-60 Hertz Benchtop 3UV™ Transilluminator (UVP, 

Upland, CA) and exposed to an excitation wavelength of 254 nm. 

 

2.6 Whole-peptide Mass Spectrometry 

For protein mass measurement, 10 microliters of 0.4 mg/mL thrombin-cleaved 

Survivin1-120 protein solution were desalted on a C8 reversed phase column (ZC-GU-

C8SBW 320S guard column 1 cm x 0.32 mm, Micro-Tech Scientific, Vista, CA). After 

washing the column with 0.1% (v/v) formic acid for 20 minutes at a flow rate of 0.5 

mL/min, the flow of the column was diverted to the stage of a Linear Trap Quadrupole – 

Fourier Transform (LTQ FT) mass spectrometer and the protein was eluted using a 0-

70% (v/v) acetonitrile gradient in 0.1% (v/v) formic acid at a flow rate of 300 nL/min. The 

mass spectrometer was operated in the positive ion mode, to acquire in full mass scan 

in the m/z range of 400 to 2000 atomic mass units (amu).  For mass measurement, the 

spectrum was deconvoluted using the Biomass deconvolution algorithm provided in the 

Xcalibur (Thermo Fisher Scientific) software set of applications.  
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2.7 Synthesis of paF-containing Survivin1-120 Proteins 

Mutagenesis of the Survivin Gene for the Synthesis of paF-containing 

Survivin1-120 Proteins 

The pET-15b-His6-LVPRGS-Birc51-120 construct was used as the template to 

generate paF-containing Survivin1-120 mutants as follows: primers for site-directed 

mutagenesis were designed according to the recommendations in the Stratagene site-

directed mutagenesis protocol.  The codon for the amber stop (tag) replaced the 

existing codon wherever paF was inserted as depicted in Figure 2.1, using primers 

shown in Table 2.1.  Seven Survivin mutants were generated (Figure 2.1) by performing 

site-directed mutagenesis with pET-15b-His6-LVPRGS-Birc51-120 as template.  After 

polymerase chain reaction (PCR), DpnI digestion was performed and putative mutant 

plasmids were purified by gel extraction from an ethidium bromide-containing 0.8% 

(w/v) agarose gel in 1x Tris-acetate-EDTA (Sigma) or 1x Tris-borate-EDTA (Sigma).  

Putative mutant plasmids were transformed into XL1Blue competent cells (Invitrogen, 

Grand Island, NY) according to manufacturer’s recommendations.  Transformed cells 

were plated on LB agar containing 100 µg/mL ampicillin and grown overnight at 37°C.  

A single colony from each mutant was picked and grown in LB broth containing 100 

µg/mL ampicillin overnight at 37°C with shaking at 225 rpm.  Plasmid preparation was 

performed according to manufacturer’s specifications (Qiagen, Valencia, CA).  Aliquots 

of plasmids were sent for sequencing (ACGT, Wheeling, IL).  Sequences were analyzed 

using Bio-  
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W10

F101 F93G99

W67

position 121

N-termini

Modified from PDB: 1E31 [Chantalat, et al., 2000]

 
Figure 2.1: Full-length Survivin, amino acids 1-142, in its homodimeric conformation, 
modeled in Chimera [University of California – San Francisco], modified from the 
Protein Data Bank entry 1E31 [Chantalat, et al., 2000].  Positions of paF insertion or 
substitution into the Survivin protein are depicted.  paF insertions were at the extreme 
N- (position 0) and C-termini (position 121); paF substitutions were of tryptophans 10 
and 67, phenylalanines 93 and 101, and glycine 99. 
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F 5'-ggc agc cat atg tag atg ggt gcc cc-3'

R 5'-gg ggc acc cat cta cat atg gct gcc-3'

F 5'-g ccc cct gcc tag cag ccc ttt ctc-3'

R 5'-gag aaa ggg ctg cta ggc agg ggg c-3'

F 5'-g ctg gaa ggc tag gag cca gat gac g-3'

R 5'-c gtc atc tgg ctc cta gcc ttc cag c-3'

F 5'-ctt tct gtc aag aag cag tag gaa gaa tta acc ctt gg-3'

R 5'-cc aag ggt taa ttc ttc cta ctg ctt ctt gac aga aag-3'

F 5'-cag ttt gaa gaa tta acc ctt tag gaa ttt ttg aaa ctg gac aga g-3'

R 5'-c tct gtc cag ttt caa aaa ttc cta aag ggt taa ttc ttc aaa ctg-3'

F 5'-tta acc ctt ggt gaa tag ttg aaa ctg gac aga gaa-3'

R 5'-ttc tct gtc cag ttt caa cta ttc acc aag ggt taa-3'

F 5'-acc aac aat aag tag gga tcc ggc tgc taa c-3'

R 5'-g tta gca gcc gga tcc cta ctt att gtt ggt-3'

G99paF

F101paF

paF at C-terminus

paF at N-terminus

W10paF

W67paF

F93paF

 
 
 
Table 2.1: Primer sequences for site-directed mutagenesis of the Survivin gene 
encoding amino acids 1-120, to insert (at the extreme N- and C- termini) or substitute 
(at positions 10, 67, 93, 99, and 101) paF at the amber stop codon (tag) into pET-15b-
His6-LVPRGS-Birc51-120. F: Forward primer sequence; R: Reverse primer sequence. 
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Edit Sequence Alignment Editor (version 7.1.3.0, Ibis Biosciences, Carlsbad, CA).  The 

remaining plasmid stocks were stored at -20°C.  

 

Unnatural tRNA Synthetase Plasmid Preparation 

The plasmid containing the Methanococcus jannaschii (also referred to as 

Methanocaldococcus jannaschii) tRNA synthetase that recognizes paF (Ryu and 

Schultz, 2006) was procured from Peter Schultz’s laboratory and transformed into 

Top10 cells (Invitrogen) according to manufacturer’s specifications (Invitrogen).  

Transformed cells were plated on LB agar containing 20 µg/mL chloramphenicol and 

grown overnight at 37°C.  A single colony was picked and grown in LB broth containing 

20 µg/mL chloramphenicol overnight at 37°C with shaking at 225 rpm.  Plasmid 

preparation was performed according to manufacturer’s specifications (Qiagen) and 

DNA concentration determined.  Plasmid was sent for sequencing (ACGT).  Sequences 

were analyzed using BioEdit; the remaining plasmid stock was stored at -20°C.  

 

Preparation of Competent Cells Encoding Unnatural tRNA Synthetase 

To incorporate the unnatural amino acid paF into the amber stop codon during 

translation of the Survivin mRNA, the plasmid that encodes the amber stop codon tRNA 

and the unnatural amino acyl tRNA synthetase that recognizes the unnatural amino 

acid, is transformed into competent cells.  Subsequently, the plasmid encoding the 

Survivin gene containing the amber stop is transformed into these competent cells that 

encode the amber suppressor tRNA and unnatural amino acyl tRNA synthetase. 
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Although DH10B E. coli were originally used to incorporate the unnatural amino 

acyl tRNA synthetase plasmid into the host chromosome, DH10B cells express the 

unnatural tRNA synthetase gene under a constitutive promoter.  Compared to 

BL21*DE3 E. coli cells, DH10B E. coli confers inferior protein yield.  Although 

BL21*DE3 E. coli cells may confer improved yield compared to DH10B cells, BL21*DE3 

E. coli can aberrantly recognize and insert arginine into the amber stop codon, yielding 

protein that contains arginine in place of the unnatural amino acid paF, which may result 

in improperly folded protein and/or protein that cannot participate in a copper-free click 

chemistry reaction.   

Methanococcus jannaschii tRNA and tRNA synthetase-containing plasmid was 

transformed into BL21*DE3 E. coli competent cells (Invitrogen) for the preparation of 

amber suppressor tRNA and tRNA synthetase-containing competent cells according to 

the Sambrook and Russell protocol for the preparation of E. coli competent cells using 

calcium chloride (Sambrook & Russell, Molecular Cloning, 3rd Edition, volume 1, 

protocol 25).  Competent cells were stored at -80°C. 

Transformation and Over-Expression - Survivin1-120 Mutants 

  Plasmids encoding mutant Survivin proteins containing paF were 

transformed into BL21*DE3 E. coli competent cells containing the amber suppressor 

tRNA and unnatural amino acyl tRNA synthetase using the same transformation 

protocol as commercially-available BL21*DE3 E. coli competent cells (Invitrogen). 

Transformed cells were plated on LB agar containing 100 µg/mL ampicillin and 20 

µg/mL chloramphenicol and were grown overnight at 37°C.  The next day, a single 

colony was picked to inoculate a 70-mL starter culture of LB broth containing 100 µg/mL 
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ampicillin and 20 µg/mL chloramphenicol, which was then incubated overnight at 37°C 

with shaking at 225 rpm.  The next day, the starter culture was transferred to 1L of LB 

broth containing 100 µg/mL ampicillin and 20 µg/mL chloramphenicol and incubated at 

37°C with shaking at 225 rpm until an absorbance of 0.6-0.8 at 600 nm was achieved 

(~5 hours’ incubation).  The culture was simultaneously induced with 1 mM IPTG, 

protected from UV exposure using aluminum foil to reduce azide activation, and 100 µM 

paF was added.  Incubation resumed at 25°C at 160 rpm for 18-24 hours, protected 

from light.  After incubation, cells were collected by centrifugation at 6000xg for 10 

minutes at 4°C, protected from light. Cell pellets were stored at -80°C until protein 

purification was performed.  A negative control sample was executed identically in the 

absence of paF to evaluate the fidelity with which paF is incorporated at the amber stop 

codon. 

  

Purification - Survivin1-120 Mutants 

Cell pellets were placed on ice, protected from light, and gently stirred until 

thawed in the presence of lysis buffer (50 mM Tris, pH 8.0 at 4°C, 500 mM sodium 

chloride, 2 mM β-mercaptoethanol, and 1 mM phenylmethylsulfonyl fluoride (PMSF)) at 

5 mL lysis buffer per gram cell pellet; lysis was achieved by sonication (Ultrasonic 

Processor) and cellular debris removed by ultracentrifugation at 100,000xg for 60 

minutes at 4°C in an Optima L-100 XP Ultracentrifuge and 70 Ti rotor (Beckman 

Coulter).  The supernatant was retained and protected from light for subsequent 

chromatographic purification.   
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An ÄKTA Purifier 100 / 10 FPLC controlled by UNICORN software (version 5.20 

General Electric Healthcare, Piscataway, NJ), was used for protein purification in an 

enclosed cold cabinet (2-8˚C).  Protein was shielded from light throughout the 

purification.  For all chromatographic steps, columns were equilibrated with a sufficient 

volume of loading buffer required to achieve stable baseline, as monitored by 

absorbance in the UNICORN program.  The aforementioned supernatant was filtered 

through an Acrodisc® 32 mm syringe filter with 0.2 µm Supor® non-pyrogenic 

membrane (Pall Corporation, Cornwall, United Kingdom) prior to applying the filtrate to 

an equilibrated HisTrap FF 5 mL nickel column, used in conjunction with loading buffer.  

The protein was loaded at 0.1 – 0.25 mL/min.  Unbound protein was removed by 

washing the column with 20-30 column volumes of loading buffer.  Elution of His6-

tagged mutant Survivin1-120 was achieved using 0-100% loading buffer containing 400 

mM imidazole; the gradient was carried out over 10 column volumes during which time 

9-mL fractions were collected.  Fractions exhibiting absorbance at 280 nm in the elution 

phase of the method were separated by SDS-PAGE then analyzed for Survivin 

presence by Coomassie staining and western blotting.     

Mutant Survivin1-120 proteins were concentrated and the concentrations 

determined as described above.  Mutant Survivin1-120 proteins were stored at -80˚C until 

analysis. 

 

2.8 Copper-free Small Molecule Click Chemistry 

Absorbance scans of 100 mM paF in  80% (v/v) acetic acid, 1 mM DBCO488 in 

100% DMSO, and 1 µM DBCO488-labeled Survivin1-120 at the extreme N-terminus 
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(DBCO488-NtermpaF-Survivin1-120) in loading buffer were carried out at slow speed 

(200 nm/min), at room temperature, using a quartz cuvette and the appropriate blanking 

solutions from 800-200 nm in a Cary50 Bio UV-Vis Spectrophotometer (Varian, Agilent 

Technologies, Santa Clara, CA), under control of Varian UV software, version 3.00(303) 

(Agilent Technologies).   

After determining the absorbance maxima of 100 mM paF in 80% (v/v) acetic 

acid and 1 mM DBCO488 in 100% DMSO, copper-free click chemistry reactions to 

generate a cycloadducted product (Figure 2.2) were performed using paF (azide) and 

DBCO488 (alkyne) as indicated in Table 2.2.  Copper-free click chemistry reactions 

were also performed using the small molecule unnatural amino acid paF and the 

clickable chelator (DBCO-DTPA:Tb) as indicated in Table 2.2, in a 200 µL total final 

volume, with 100 mM MES, pH 5.5, as diluent.  Reactions were gently rocked, protected 

from light with aluminum foil, for 24 hours at room temperature.  Reactions were allowed 

to proceed to completion prior to analyzing 50-µL aliquots of each reaction by high-

performance liquid chromatography (HPLC).  

 

HPLC Separation of Copper-free Click Chemistry Reactions of Small 

Molecules paF and DBCO488 or DBCO-DTPA:Tb 

A Shimadzu HPLC with Shimadzu SPD-M20A diode array detector and CLASS 

VP software (LabSolutions Lite, version 5.52, Shimadzu, Kansas City, MO) and Supelco 

15 cm x 4.6 mm x 5 µm Supelcosil-LC18 column (Sigma) were used.   
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Figure 2.2: Schematic representation of the small molecule copper-free click chemistry  
reaction of para-azidophenylalanine (paF, azide) and DBCO488 (fluorescent, alkyne) to 
generate the triazole-containing fluorescent paF-DBCO488 cycloadduct (one product 
shown). 
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Molar stoichiometry 

of alkyne:azide

Final concentration 

(µM)

1:1   500, 500

  10:1 500, 50

  1:10     500, 5000

 

 
 
 
 
 
 
 
Table 2.2: Click chemistry reaction conditions between para-azidophenylalanine (azide) 
and DBCO488 (alkyne) in 100 µL or between para-azidophenylalanine (azide) and 
clickable chelator (alkyne) in a 200 µL total final volume.  Left panel: molar 
stoichiometries of alkyne and azide.  Right panel: final concentration of alkyne (left 
value) and azide (right value) in reaction. 
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  paF and DBCO488 

Mobile phases to separate copper-free click chemistry reactions between 

DBCO488 and paF consisted of A: 0.1% (v/v) trifluoroacetic acid (TFA) in water, B: 

100% acetonitrile (ACN).  The flow was 1.5 mL/min; the gradient was 10-90% B from 1-

9 minutes, 90% B from 9-15 minutes, 90-0% B from 15-16 minutes, 0% B from 16 to 22 

minutes.  During each HPLC separation of the click chemistry reactions, 1-mL fractions 

were collected.  To confirm the identity of the HPLC peaks that correspond to the 

cycloadducted product paF-DBCO488, fractions that exhibited absorbance at 280 and 

310 nm (absorbance maxima for paF) and 454 (absorbance maximum for DBCO488 in 

DMSO) were collected and dried under gentle nitrogen sparge then reconstituted in 

40% TFA in water (0.1% (v/v)): 60% acetonitrile (100%) for small-molecule mass 

spectrometry.   

paF and DBCO-DTPA:Tb 

Mobile phases to separate copper-free click chemistry reactions between 

DBCO-DTPA:Tb and paF consisted of A: 0.1% (v/v) TFA in water, B: 100% ACN.  Flow 

was 0.75 mL/min; the gradient was 0-1 min, 0% B, 1-10 min, 0-100% B, 10-16 min, 

100% B, 16-17 min, 100-0% B, 17-22 min, 0% B.  1-mL fractions that exhibited 

absorbance and retention times of the clickable chelator (DBCO-DTPA:Tb) and the 

clicked clickable chelator (the product of the click chemistry reaction between the 

clickable chelator (DBCO-DTPA:Tb) and paF) were collected. 

 

Small-molecule Mass Spectrometry of paF-DBCO488 Cycloadduct 
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An Acquity Ultra Performance Liquid Chromatograph (Waters, Milford, MA) 

controlled by MassLynx (version 4.1, Waters) was used with mobile phases A: 0.1% 

(v/v) formic acid and B: 0.1% (v/v) formic acid in 100% ACN, with a linear gradient from 

0-100% over 20 minutes, using a 2.1 x 100 mm, 1.7 µm Acquity UPLC BEH C18 

column (Waters).   

A QTOFMS (SYNAPT G1 HDMS, Waters) was operated in positive ion mode 

with electrospray ionization.  The source and desolvation temperatures were set at 

120°C and 350°C, respectively.  Nitrogen was applied as the cone gas (10 L/hr) and 

desolvation gas (700 L/hr).  TOFMS was calibrated with sodium formate and monitored 

by the intermittent injection of lock mass leucine enkeophalin in real time, generating a 

reference ion at m/z 556.2771.  The capillary voltage and cone voltage were set at 3.5 

kV and 35V, respectively.  

 

2.9 Copper-free Click Chemistry with Azide-containing Survivin 

A copper-free click chemistry reaction between Survivin1-120 labeled at the 

extreme N-terminus with paF (NtermpaF-surv1-120) and DBCO488 was performed by 

combining approximately 1 mg of NtermpaF-surv1-120 with 1.015 mg DBCO488 in 100% 

DMSO, to yield an estimated molar stoichiometry of 1:26.9; the resulting DMSO 

concentration was 2%.  The reaction was gently rocked at 2-8°C, in loading buffer, 

protected from light with aluminum foil, for 24 hours until reaction was applied to an 

equilibrated HiLoad 26/60 Superdex 200 prep grade size-exclusion column (GE 

Healthcare).  The reaction was allowed to proceed to completion.     



42 

 

A copper-free click chemistry reaction between Survivin1-120 labeled at the 

extreme C-terminus with paF (CtermpaFsurv1-120) and DBCO488 was performed by 

combining approximately 0.5 mg of CtermpaFsurv1-120 with 0.564 mg DBCO488 in 

100% DMSO (100%) to yield an estimated molar stoichiometry of 1:29.9; the resulting 

DMSO concentration was 2%.  The reaction was gently rocked at 2-8°C in loading 

buffer, protected from light with aluminum foil, for 24 hours until reaction was applied to 

an equilibrated HiLoad 26/60 Superdex 200 prep grade size-exclusion column (GE 

Healthcare).  The reaction was allowed to proceed to completion.  

 

Size-exclusion Chromatography 

An aliquot of the copper-free click chemistry reaction mix containing DBCO488 

and NtermpaF-surv1-120 in loading buffer was applied to a HiLoad 26/60 Superdex 200 

prep grade size-exclusion column (GE Healthcare) equilibrated with loading buffer, at a 

rate of 0.1 – 0.25 mL/min.  An ÄKTA Purifier 100 / 10 FPLC was used.  One and a half 

column volumes (495 mL) of loading buffer were passed over the size-exclusion column 

during which time 9-mL fractions were collected.  Absorbance was monitored at 280 

and 500 nm (the absorbance maximum of DBCO488-labeled Survivin1-120).  Fractions 

exhibiting absorbance at 280 and 500 nm were separated by SDS-PAGE and analyzed 

by Coomassie, western blotting, and UV gel illumination. 

 

2.10 Time-Domain Fluorescence Lifetime Determination  

Time-correlated single-photon counting (TCSPC) experiments utilized a 451 nm 

NanoLED (HORIBA Jobin Yvon) excitation source and emission monitoring at 520 nm.  
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The Prompt (instrument response) was established by preparing a 1:10 dilution of 

precisely 1 drop (~100 µL) of 34% (w/v) LUDOX (Sigma) into 3 mL MilliQ H2O. 

Excitation Source Repetition Rate was 1 MHz.  Bandpass was 1.1 nm, Alpha Value 

≤2.0%, and Sync Delay 30 ns.  Measurement Range was 200 ns.  The RT Preset was 0 

seconds; the Peak Preset was 10000 counts.  Lifetime determinations were performed 

on 1 µM DBCO488 and on 1 µM uncleaved CtermpaF-DBCO488-surv1-120 in loading 

buffer.  Data were processed using DataStation Analysis Software (HORIBA Jobin 

Yvon). 

  

2.11 Metallation of Diethylenetriaminepentaacetic acid (DTPA) 

Dissolution of 10 mM DTPA in 100 mM MES, pH 5.5, was achieved by incubation 

at 75˚C for 5-10 minutes.  Metallation of DTPA with terbium was achieved by incubating 

40 mM TbCl3 and 10 mM DTPA at 75˚C for 8.25 hours in 100 mM MES, pH 5.5.  

Samples were cooled to room temperature prior to fluorescence analysis using an 

excitation of 350 nm. 

 

1D NMR Analysis of Metallated DTPA 

1D NMR analysis of the following was performed at 298K on a 600 MHz Bruker 

(Billerica, MA) NMR magnet:  

10 mM DTPA in 100 mM ammonium acetate, pH 5.5, containing 10% (v/v) D2O 

40 mM TbCl3 in 100 mM ammonium acetate, pH 5.5, containing 10% (v/v) D2O 

10 mM DTPA, 40 mM TbCl3 in 100 mM ammonium acetate, pH 5.5, containing 

10% (v/v) D2O before and after metallation incubation 
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 Anion Exchange Purification of Metallated DTPA 

Separation of metallated DTPA (hereafter denoted DTPA:Tb) from excess 

terbium trichloride was achieved using anion exchange chromatography.  The 

metallation incubation reaction (4 mL) was filtered through an Acrodisc® 32 mm syringe 

filter with 0.2 µm Supor® non-pyrogenic membrane.  An ÄKTA Purifier 100 / 10 FPLC 

was used in conjunction with a HiTrap Q FF 5 mL (GE Healthcare) anion exchange 

column, equilibrated with at least five column volumes (25 mL) of 100 mM MES, pH 5.5, 

prior to addition of the filtered metallation reaction.  After application of the metallation 

reaction (4 mL), the SuperLoop® injector column was protected from light with 

aluminum foil.  Three column volumes (15 mL) of 100 mM MES, pH 5.5, were applied to 

the HiTrap Q FF anion exchange column, during which time 3.5-mL fractions were 

collected.  Elution of metallated DTPA was achieved using 0-100% loading buffer 

containing 1 M sodium chloride; the gradient was carried out over 8 column volumes 

during which time 3.5-mL fractions were collected.  The Frac-920 carousel fraction 

collector and fraction collection tubes were protected from light with aluminum foil for 

the duration of the purification.   

 

2.12 Amide Coupling to Synthesize Clickable Chelator 

Amide coupling was performed as follows: DTPA:Tb from anion exchange 

chromatography separation was estimated to be 10 mM based on the initial 

concentration of DTPA used in the metallation experiment (10 mM) and the 1D NMR 

data that suggested the reaction went to completion; DBCO-amine in 8.33% (v/v) 

DMSO in 100 mM MES, pH 5.5, was added to achieve a final concentration of 50 mM 
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DBCO-amine.  Amide coupling reagent 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide 

(EDC) was added to 50 mM to facilitate the amide coupling reaction.  The amide 

coupling reaction was performed at room temperature, protected from light with 

aluminum foil, with gentle rocking, for 120 minutes, prior to applying approximately 1000 

µL of the reaction mix to an equilibrated G10 Sephadex size-exclusion column.    

 

Size-Exclusion Column Chromatography Separation of Amide Coupling 

Reaction 

A 3.5-mL Sephadex G10 column was poured according to manufacturer’s 

specifications (GE Healthcare) into a 10 cm x 1 cm glass Econo-column low-pressure 

chromatography column with a cross-sectional area of 0.79 cm2 with translucent 

polypropylene end fittings (Bio-Rad) and low-pressure tubing (Bio-Rad).  The column 

was shielded from light with aluminum foil.  Separation of the product (the clickable 

chelator (DBCO-DTPA:Tb)) and reactants (DBCO-amine and metallated DTPA 

(DTPA:Tb)) from the amide coupling reaction mix was achieved by addition of 12-14 

column volumes (42 – 49 mL) of 100 mM MES, pH 5.5, during which time approximately 

4 mL fractions were collected, protected from light with aluminum foil, at room 

temperature. 

 

2.13 Fluorescence Anisotropy or Polarization 

Cuvette Fluorometer 

Fluorescence anisotropy experiments were initiated using the Fluoromax4 

Fluoro-Hub.  The experimental setup for preliminary binding assays utilized a 3-mL 
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quartz cuvette, 100 nM fluorescently-labeled histone-3 peptide (H3*) of sequence Ac-

ARTKQTARKS-K(fam)-CONH2, and variable concentration of purified uncleaved or 

thrombin-cleaved Survivin1-120 in 100 mM potassium phosphate, pH 7.5, 100 µg/mL 

bovine gamma globulin (BGG), 0.02% (w/v) sodium azide.  Different maximum 

concentrations of cleaved and uncleaved Survivin were obtained during protein 

purifications of cleaved and uncleaved Survivin.  These different maximum Survivin 

concentrations were used in serial dilutions of Survivin for fluorescence anisotropy 

experiments.  For the experiment evaluating thrombin-cleaved Survivin1-120, the 

following final concentrations (µM) were used: 0, 0.16, 0.36, 0.66, 1.32, 2.63, 5.26, 

10.53, and 21.05.  For the experiment evaluating uncleaved His6-Survivin1-120, the 

following final concentrations (µM) were used: 0, 0.02, 0.04, 0.07, 0.14, 0.28, 0.56, 1.13, 

2.25, 4.5, 9.0, 18.0, and 36.0.  Survivin1-120 and 100 nM H3* (total final volume of 2.5 

mL) were incubated for 30 minutes at 37°C with gentle stirring, protected from light, then 

read at 37°C in a pre-warmed cuvette holder using an excitation of 493 nm monitoring 

emission at 522 nm.  Instrument output was in percent anisotropy (%r) or percent 

polarization (%P).   

 

Plate Fluorometer 

 Determination of Dissociation Constant 

To determine the dissociation constant of carboxyfluorescein-labeled histone-3 

peptide (H3*) for Survivin1-120, a black, flat-bottom 96-well plate (Costar, Corning, 

Tewksbury, MA), 1 µM H3*, and 0 – 152 µM uncleaved Survivin1-120 in 100 mM 

potassium phosphate, pH 7.5, were used.  Samples were analyzed in triplicate.  
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((IVVsample – IVVblank) – (IVHsample – IVHblank))

((IVVsample – IVVblank) + (IVHsample – IVHblank))
P=

Uncleaved His6-Survivin1-120 and 1 µM H3* (total final volume of 100 µL) were incubated 

for 30 minutes at 37°C, protected from light, with occasional gentle mixing, then read at 

37°C in a pre-warmed BioTek Synergy 2 (BioTek, Winooski, VT) plate reader using 

Gen5 software, version 1.11.5 (BioTek), using the tungsten-halogen lamp.  Excitation 

and emission wavelengths were 485 and 528 nm, respectively.   

For all plate fluorometer experiments, instrument output was in parallel 

fluorescence intensity and perpendicular fluorescence intensity; data were processed 

using Excel.  Fluorescence polarization values (P) (in fluorescence polarization units) 

were determined using the following equation: 

 

 

 

 

Where IVV is the parallel fluorescence intensity (excitation and emission polarizers are 

both oriented vertically) and IVH is the perpendicular fluorescence intensity (excitation 

polarizer is oriented vertically and emission polarizer is oriented horizontally). 

 

Evaluation of Binding Specificity 

To evaluate specificity of the His6-Survivin1-120:H3* binding interaction, unlabeled 

histone 3 (H3) peptide was titrated into wells containing 30 µM His6-Survivin1-120 and 1 

µM H3* in 100 mM potassium phosphate, pH 7.5.  The assay was performed one time 

and included samples in triplicate.  His6-Survivin1-120 and H3* (total final volume of 100 

µL) were incubated for 30 minutes at 37°C, with occasional gentle mixing, then read at 
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37°C in a pre-warmed plate reader.  Then, unlabeled histone-3 peptide was added to 

each well and the plate incubated at 37°C for 5 minutes, after which time the plate was 

read.  Excitation and emission wavelengths were 485 and 528 nm, respectively. 
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Chapter 3: Utility of Copper-Free Click Chemistry to Site-Specifically 

Fluorescently Label the Survivin Protein for Protein-Protein Interaction Studies 
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3.1 Introduction  

Steady-state fluorescence intensity measurements, FRET, and fluorescence 

lifetime have been successfully used to evaluate protein dynamics [Beechem and 

Brand, 1985, Lim, et al., 1995, Kuppens, et al., 2003, Poupart, et al., 2006, Hou, et al., 

2007, Serrano, et al., 2012, Lemos and Hungerford, 2013]. Information about the 

fluorophore environment such as changes in viscosity, polarity, pH, and/or solvation, 

shape and size of molecules examined, and molecular interactions may be gleaned 

from fluorescence lifetime determination [reviewed in Berezin and Achilefu, 2010].  

Although fluorescence analyses may be performed using endogenous tryptophans in 

the protein of interest [Allen and McLendon, 2006], site-specific introduction of an 

exogenous fluorophore into the protein of interest may be preferable in many cases.  

Site-specific incorporation confers the ability to probe a specific region of the protein of 

interest where a tryptophan may not exist.  In addition, relative to endogenous 

fluorophores, the exogenous fluorophore may exhibit excitation and emission 

wavelengths disparate from many naturally-occurring fluorophores, allowing for 

selective monitoring of the fluorescence signal.  Typically, exogenous fluorophores have 

a higher quantum yield, a higher molar extinction coefficient, a broader Stokes shift, 

narrower emission bands (narrow full-width at half maximum emission peak), and longer 

fluorescence lifetimes.  Fluorescein and the lanthanide terbium are examples of 

fluorophores that meet many of these criteria [Brannon and Magde, 1978, Ge, et al., 

2004, Rajapaske, et al., 2009], making them ideal probes for evaluating in vitro protein-

protein interactions.   
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Survivin binds one of its partners, histone-3, via the involvement of specific 

amino acids within Survivin’s baculoviral IAP repeat (BIR) domain [Jeyaprakash, et al., 

2011].  Because the structure of the Survivin-histone-3 complex has been solved 

[Jeyaprakash, et al., 2011], Survivin was chosen to provide proof-of-concept for the 

fluorescence-based analyses described herein.  Consequently, we hypothesized that 

site-specific labeling of the Survivin protein with a fluorescent tag may be accomplished 

using copper-free click chemistry and unnatural amino acid incorporation.  The aim, 

thus, was to evaluate the utility of click chemistry to site-specifically label the Survivin 

protein with a fluorophore using copper-free click chemistry in order to monitor protein-

protein interactions of Survivin with its protein binding partners by steady-state 

fluorescence, FRET, and fluorescence lifetime analysis.  Specifically, a FRET pair 

amenable to these analyses is proposed in a subsequent section.  

 

3.2 Results and Discussion 

Rationale for Selecting Positions for Para-azidophenylalanine Insertion 

In order to glean information about specific amino acids involved in a particular 

protein-protein interaction, the specific placement of the fluorophore within the protein of 

interest should be considered.  An additional factor is physical accessibility of the 

introduced unnatural amino acid (paF) with regard to the click chemistry reaction to 

introduce the fluorophore.  The impact of the paF and the azide on secondary and 

tertiary structure(s) of the protein should be considered as well.  To try to address each 

of these considerations, several mutants were made.  In two separate mutants, 

phenylalanines at positions 93 and 101 were mutated to paF as conservative amino 
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acid substitutions to evaluate the impact of the azide on Survivin protein structure, 

function, and partner binding interactions.  In three separate mutants, tryptophans in 

positions 10 and 67 and glycine in position 99 were mutated to paF due to the fact that 

amino acids 10, 67, and 99 reside within suvivin’s baculoviral IAP repeat (BIR) domain, 

which is involved in binding protein partners along Survivin’s apoptotic and mitotic 

pathways.  Finally, paF was inserted at Survivin’s extreme N- (position 0) and C-termini 

(position 121), in two separate mutants, to evaluate the consequences of paF insertion 

at locations disparate from Survivin’s BIR domain.  Click chemistry-mediated 

incorporation of a fluorophore with paF in each of these positions confers the 

opportunity to obtain information about Survivin protein binding interactions relative to 

each of these positions. 

 

Para-azidophenylalanine-containing Survivin1-120 Protein Purification  

All seven mutant Survivin plasmid sequences encoding the amber stop codon 

where paF was inserted were correct.  As shown in Figure 3.1, western blotting of all 

seven paF-containing Survivin1-120 mutants yielded band density at the molecular weight 

corresponding to the Survivin1-120 dimer.  The N-terminal paF-containing Survivin mutant 

was selected for initial copper-free click chemistry with DBCO488. 

 

Copper-free Click Chemistry Reactions with Small Molecules 

To analyze HPLC separation of the triazole-containing cycloadducted click 
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W10paF   W67paF    F93paF      F101paF    G99paF  NtermpaF CtermpaF wt

37 kD

50 kD

25 kD

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Western blot of paF-containing His6-Survivin1-120 mutant proteins W10paF, 
W67paF, F93paF, F101paF, G99paF, NtermpaF, and CtermpaF(dimers ~32 kD, 
monomers at ~16 kD), with Survivin1-120 control. 
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chemistry product, an HPLC method for a triazole-containing small molecule 

ketoconazole (data not shown), was employed.  Subsequently, the small molecules paF 

and DBCO488 were individually evaluated by HPLC.  The small molecule paF was used 

in preliminary attempts at performing copper-free click chemistry with DBCO488 prior to 

utilizing paF-containing Survivin1-120 protein, due to the limited availability of the latter.  

The copper-free click chemistry reactions using small molecules paF and DBCO488, 

described in the Materials and Methods chapter, were evaluated by HPLC. As shown in 

Figure 3.2, 100 mM paF in 80% (v/v) acetic acid exhibited absorbance at 280 and 310 

nm and eluted from the column at precisely 4 minutes.  As shown in Figure 3.3, 354 µM 

DBCO488 in 100% DMSO exhibited absorbance at 454 nm and eluted at 7 minutes 

(Figure 3.4).  These results established the absorbance maxima that correlated with 

paF and DBCO488, which were subsequently used as a starting point for analyzing 

small molecule click chemistry reaction success by HPLC. As shown in Figures 3.5, 3.6, 

and 3.7, HPLC analysis of the 1:1, 10:1, and 1:10 alkyne:azide copper-free click 

chemistry reactions, respectively, yielded the following: paF generated a peak at the 

expected retention time (4 minutes) and with absorbance at 280 and 310 nm.  

DBCO488 generated a peak at the expected retention time (7 minutes) and with 

absorbance at 454 nm.  The paF-DBCO488 cycloadducted product generated a single 

peak that exhibited absorbance of paF and DBCO488 (280, 310, and 454 nm).  In other 

words, a single peak in the HPLC spectrum exhibited absorbance at the same unique 

wavelengths of paF and DBCO488 (280, 310, and 454 nm).  This suggested that the 

new peak contains paF, which absorbs at 280 and 310 nm, and DBCO488, which 

absorbs at 454 nm.  In addition, the paF-DBCO488 cyclo- 



55 

 

 

Minutes

0 5 10 15 20 25

m
A

u

0

2000

4000

m
A

u

0

2000

4000

Minutes

0 5 10 15 20 25

m
A

u

0

1000

2000

m
A

u

0

1000

2000

280 nm

310 nm

A
b

so
rb

an
ce

 (
m

A
U

)
%

B
100

50

0

50

100

0

4000

2000

0

2000

1000

0

%B

paF

paF

Retention time (minutes)

Retention time (minutes)

 

Figure 3.2: HPLC separation of 50 µL of 100 mM para-azidophenylalanine (paF) in 80% 
(v/v) acetic acid.  Absorbance (milli Absorbance Units (mAU)) is depicted on the left y-
axis, retention time (minutes) on the x-axis, and %B (light gray trace) on the right y-axis. 
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Figure 3.3: Absorbance scan of 50 µL of 354 µM DBCO488 (DBCO488 trace) in 100% 
DMSO relative to DMSO (Blank trace).  Absorbance (Abs) is on the y-axis and 
wavelength (nm) on the x-axis. 
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Figure 3.4: HPLC separation of 50 µL of 1 mM DBCO488 in 100% DMSO.  Absorbance 
(mAU) is depicted on the left y-axis, retention time (minutes) on the x-axis, and %B 
(light gray trace) on the right y-axis.  Absorbance was monitored at 454 nm. 
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adducted product eluted at 6 minutes, as shown in Figures 3.5, 3.6, and 3.7 for the 1:1 

alkyne:azide, 10:1 alkyne:azide, and 1:10 alkyne:azide reactions, respectively.  This 

unique retention time of the paF-DBCO488 is expected as the addition of the paF to the 

DBCO488 makes DBCO488 slightly more hydrophilic.  The unique retention times and 

absorbance character of the reactants and products suggested that these molar 

stoichiometries generated the desired paF-DBCO488 cycloadduct.  Interestingly, the 

presence of two DBCO488 peaks in Figure 3.6 may suggest that stereoisomers of 

DBCO488 are present.  Multiple DBCO488 conformers may be present that exhibit 

differential retention on the C18 column matrix.  This suggestion is corroborated by 

evaluating the rendering of the chemical structure provided by the DBCO488 supplier 

(Click Chemistry Tools), where the representation of the covalent bond joining the 

amide bond to the fluorescein moiety is drawn to the center of the phenyl ring, not to 

one specific carbon on the phenyl ring.  Interestingly, under conditions of excess alkyne, 

the copper-free click chemistry reaction appears to yield two product peaks (Figure 3.6, 

at 6.05 and 6.2 minutes), which may suggest that the parent conformers are equally 

able to react with paF when excess alkyne is present.  Notably, the mass of alkyne was 

kept constant in all reactions, using variable azide to yield the different molar 

stoichiometries tested. 

To confirm the identity of the HPLC peaks that correspond to the cycloadducted 

product paF-DBCO488, small molecule mass spectrometry of the putative paF-

DBCO488 cycloadducted product from the HPLC-mediated separation of the 1:1 

alkyne:azide click chemistry reaction (fraction 6 minutes) was performed.  As shown in 

Figure 3.8, mass spectrometry analysis of an aliquot of the 6-minute HPLC fraction 
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showed a single, sharp peak that corresponded to the theoretical mass of the 

cycloadduct, 841.26 Da.   

Collectively, these results suggest that the copper-free click chemistry reactions 

were successful using the small molecules paF and DBCO488.  Thus, the next step 

was to attempt copper-free click chemistry with the azide-containing protein 

NtermpaFsurv1-120 and the fluorescent cyclooctyne, DBCO488.  

 

Copper-free Click Chemistry Reaction with Azide-containing Survivin1-120 

As was shown in Figure 3.3, 354 µM DBCO488 in 100% DMSO yielded an 

absorbance maximum of 454 nm.  As shown in Figure 3.9, however, DBCO488 bound 

to NtermpaFSurvivin1-120 exhibited an absorbance maximum of 500.5 nm.  This shift is 

due to solvatochromism, i.e. the property of a compound’s change in absorbance 

character depending on the solvent in which it is dissolved. Therefore, size exclusion 

analyses monitored absorbance at 280 and 500 nm.  

As shown in Figure 3.10, size-exclusion chromatography results indicated that 

NtermpaF-DBCO488-Survivin1-120 size exclusion chromatography fractions possessed 

dual absorbance at 280 nm and 500 nm.  This result suggested that the protein and 

fluorophore co-eluted.  Because unbound DBCO488 would have eluted much later in 

the size exclusion column compared to protein, due to its small size when unbound to 

protein, the FPLC A280 and A500 traces’ overlap suggests that Survivin1-120 protein and 

DBCO488 bound each other.  This suggested that the copper-free click chemistry 

reaction between DBCO488 and paF-containing Survivin1-120 was successful.  Thus, the 

next step was to separate select fractions by SDS-PAGE, then analyze them by UV ill- 
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Figure 3.5: HPLC separation of 50 µL of 1:1 alkyne:azide copper-free click chemistry 
reaction of reactants para-azidophenylalanine (paF) and DBCO488 in loading buffer, 
and product, paF-DBCO488.  Absorbance (mAU) is depicted on the left y-axis, retention 
time (minutes) on the x-axis, and %B (light gray trace) on the right y-axis. 
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Figure 3.6: HPLC separation of 50 µL of 10:1 alkyne:azide copper-free click chemistry 
reaction of reactants para-azidophenylalanine (paF) and DBCO488 in loading buffer, 
and product, paF-DBCO488.  Absorbance (mAU) is depicted on the left y-axis, retention 
time (minutes) on the x-axis, and %B (light gray trace) on the right y-axis. 
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Figure 3.7: HPLC separation of 50 µL of 1:10 alkyne:azide copper-free click chemistry 
reaction of reactants para-azidophenylalanine (paF) and DBCO488 in loading buffer, 
and product, paF-DBCO488.  Absorbance (mAU) is depicted on the left y-axis, retention 
time (minutes) on the x-axis, and %B (light gray trace) on the right y-axis. 
 
 
 

 
 

  



63 

 

Steph_2

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

100

Steph_08202012_13 1: TOF MS ES+ 
841.264 0.50Da

880

4.85

4.78

2

paF-DBCO488

 
Figure 3.8: TOF electrospray mass spectrometry in positive ion mode detection of 
cycloadducted product, paF-DBCO488, inset, of the copper-free click chemistry reaction 
of para-azidophenylalanine and DBCO488.  Expected monoisotopic mass: 840.26 Da.  
The y-axis depicts the percent relative abundance; the x-axis depicts the retention time 
in minutes. 
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Figure 3.9: Absorbance scan of NtermpaF-DBCO488-Survivin1-120 (DBCO488 trace) in 
loading buffer (Blank trace).  Absorbance (Abs) is on the y-axis and wavelength (nm) on 
the x-axis. 
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Figure 3.10: Chromatograph of NtermpaF-DBCO488-Survivin1-120 separated by HiLoad 
26/60 Superdex 200 preparative-grade size-exclusion column.  The y-axis depicts 
absorbance (mAU) and the x-axis indicates the volume (mL) of mobile phase passed 
over the column.  The 280, 500, and 310 nm traces are as indicated. 
 

 

 

 

 

 

 



66 

 

A B C

50 kD

25 kD

15 kD

+paF -paF Survivin1-120

Survivin1-120

25 kD

15 kD

50 kD

Survivin1-120

*Survivin1-120 *Survivin1-120

50 kD

25 kD

15 kD

*Survivin1-120

Survivin1-120

 

Figure 3.11: A: Fluorescence of SDS-PAGE-resolved fractions containing NtermpaF-
DBCO488-Survivin1-120 (denoted *Survivin1-120) or Survivin1-120.  B: Western blot of SDS-
PAGE-resolved NtermpaF-DBCO488-Survivin1-120 with and without paF (denoted +paF 
and –paF, respectively) included in the overexpression medium, or Survivin1-120.  C: 
Coomassie stained gel of SDS-PAGE-resolved NtermpaF-DBCO488-Survivin1-120 
(denoted *Survivin1-120) or Survivin1-120.  
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umination, Coomassie staining, and western blotting to evaluate click chemistry reaction 

success. 

As shown in Figure 3.11A, SDS-PAGE separation followed by UV gel illumination 

to monitor fluorescence revealed discrete fluorescent bands.  This suggested that 

DBCO488 had been specifically incorporated into a protein that can oligomerize; 

Survivin1-120 molecular weights are 15 kD (monomer), ~30 kD (dimer), and ~45 kD 

(trimer).  Therefore, the fluorescence result suggests that DBCO488 bound a protein 

that exhibited nearly identical molecular weights of Survivin1-120 monomer, dimer, and 

trimer. 

As shown in Figure 3.11B, western blot analysis of Survivin1-120 yielded 

substantial band density at 15 kD in the +paF and Survivin1-120 lanes.  In the wild type 

Survivin1-120 control (Figure 3.11B), band density is evident at ~15 and ~30 kD, 

corresponding to Survivin monomer and dimer, respectively.  Band density that would 

correspond to Survivin trimer (~45 kD) is not present in the Survivin1-120 control.  These 

results suggest that Survivin1-120 does not adopt a trimeric association or that the 

conformational antibody does not recognize and bind Survivin in its trimeric 

conformation.  These results may also mean that the modification yields a trimeric 

aggregate, in addition to the monomer and dimer.  The immunogen used for Survivin 

antibody generation is a synthetic peptide that corresponds to the amino terminal of the 

Survivin protein (Cell Signaling product information, catalog number 2802S).  Our 

results suggest that this antibody can recognize and bind the N-terminus of Survivin1-120 

when it adopts both its monomeric and dimeric conformations.  A Coomassie stain of 

pure Survivin1-120 indicated the presence of protein at ~15 kD (Figure 5.1); a Coomassie 
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stain and western blotting of pure DBCO-labeled NtermpaFSurvivin1-120 could be used to 

determine the presence of dimeric and/or trimeric Survivin1-120 or contaminants. 

As shown in Figure 3.11 panels A and B, the western blot band density at 15 kD 

in the +paF lane overlaps the fluorescent band near 15 kD in the NtermpaF-DBCO488-

Survivin1-120 lane.  This suggests that the fluorescence at 15 kD corresponds to 

fluorophore incorporation into Survivin1-120.  The presence of multiple fluorescent bands 

in the NtermpaF-DBCO488-Survivin1-120 lanes suggest that the fluorophore was 

incorporated into protein that is present at ~15, ~30, and ~45 kD.  Interestingly, 

however, band density in the western blot +paF lane is only present at ~15 kD.  That 

very faint band density in the NtermpaF-DBCO488-Survivin1-120 lane was detected at 

~30 and virtually none was detected at ~45 kD by western blotting suggests that protein 

is present at these positions.  Given that the antibody recognizes the amino terminal of 

Survivin, it is possible that the fluorophore at the extreme N-terminus of the protein may 

interfere with antibody recognition and binding of the dimeric conformation of the 

NtermpaF-DBCO488-Survivin1-120 construct.  Although highly unlikely, an alternative 

possibility is that the protein present at ~30 and ~45 kD by fluorescence is not Survivin. 

As shown in Figure 3.11 panel C, Coomassie-staining of these same samples 

yields many bands, which suggest that the preparation is quite impure. While this is 

undesirable regarding sample purity and further purification was necessary (and 

subsequently achieved (Figure 3.12)), this is still a promising result when the 

fluorescence and Coomassie outcomes are considered simultaneously.  The 

Coomassie result suggests that many proteins are present within the lane.  The 

fluorescence result, however, indicates that fluorescence is only associated with three 
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discrete bands.  This result suggests that only some of the proteins present in the lane 

impart a signal by fluorescence.  The conclusion based on this result is that the 

fluorophore was specifically incorporated into only some proteins in the lane.  If the 

fluorophore was non-specifically incorporated into all of the proteins present in the lane, 

as indicated by the Coomassie, then the fluorescence signal would also have been 

smeared and would have correlated with the entire height of the lane.  Taken together, 

we believe that these results demonstrate the ability to introduce a fluorophore site-

specifically into the protein of interest using click chemistry.  

To address BL21*DE3 E. coli expressing the unnatural amino acyl tRNA 

synthetase to insert arginine at the amber stop codon, over-expression, purification, and 

western blot analysis of the –paF negative control was performed.  Western blot 

analysis (Figure 3.11B) revealed a faint band at ~15 kD, which suggested that only a 

small fraction of Survivin translation resulted in putative arginine incorporation at the 

amber stop codon.  A repeat of this analysis with optimal concentrations of loaded 

protein would clarify whether or not the faint band in the –paF lane was inadvertent 

contamination from the neighboring Survivin1-120 control lane. 

After we demonstrated the ability to fluorescently label the N-terminal paF-

containing Survivin1-120 protein, we subsequently performed copper-free click chemistry 

on the C-terminal paF-containing Survivin1-120 protein.  The labeled Survivin protein was 

purified using size-exclusion chromatography, as shown in Figure 3.12.  Distinct band 

density is evident at 15 kD, the expected size of uncleaved Survivin1-120 protein.  The C-

terminally-labeled protein did not appear to aggregate, as suggested by the presence of 
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a single band at 15 kD.  This purified protein was utilized in the fluorescence lifetime 

determination. 

 

DBCO488-labeled Survivin1-120  Excitation and Emission Maxima 

Survivin1-120 with the DBCO488 fluorophore adducted to the extreme C-terminus 

(CtermpaF-DBCO488-Survivin1-120) (1 µM) yielded an emission maximum of 520 nm 

using the Nano-LED excitation wavelength of 451 nm in 50 mM Tris, pH 7.46 at 22˚C, 

500 mM sodium chloride, 2 mM β-mercaptoethanol.  Emission was monitored at 520 nm 

for the time-correlated single photon counting (TCSPC) analyses. 

 

TCSPC Analyses of Fluorescently-Labeled Survivin Protein 

The pKa of the fluorescent moiety of DBCO488, fluorescein, is 6.4, so at pH 

7.01, the pH of this experiment, fluorescein fluctuates between neutral and negatively-

charged, unprotonated, species.  As shown in Figure 3.13, time-correlated single-

photon counting analysis of 1 µM CtermpaF-DBCO488-Survivin1-120 in 50 mM Tris, pH 

7.01 at 37˚C, 500 mM sodium chloride, 2 mM β-mercaptoethanol yielded a single-

exponent decay curve, random residuals, and an acceptable chi-squared <1.2, of 1.078.  

The calculated fluorescence lifetimes equaled 1.39 and 4.03 ns, which exactly 

recapitulated literature precedent for unprotonated fluorescein [Magde, et al., 1999].  

These data suggested that DBCO488-labeled at the C-terminus of Survivin1-120 protein 

exhibited the expected fluorescein fluorescence lifetimes. 

 

3.3 Conclusions 



71 

 

37 kD

50 kD

75 kD

25 kD

100 kD

150 kD

250 kD

15 kD

Ladder 10 ug

CtermpaF-

DBCO488-

survivin1-120

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.12: SDS-PAGE followed by Coomassie analysis of purified uncleaved 
CtermpaF-DBCO488-Survivin1-120. 
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Figure 3.13: Time-correlated single photon counting data of 1 µM CtermpaF-DBCO488-
Survivin1-120 (Experimental sample trace – red dots with green curve) in 50 mM Tris, pH 
7.01 at 37˚C, 500 mM sodium chloride, 2 mM β-mercaptoethanol, compared to the 
instrument response (Prompt trace – blue dots) to determine fluorescence lifetime of 
DBCO488-labeled Survivin1-120 protein.  The residuals plot (green trace) is depicted 
below.  Counts: counts per second of emitted photons.  Channels: 0.055 ns/channel.   
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Utility of Copper-Free Click Chemistry In Vitro 

The objective of these analyses was to site-specifically label Survivin1-120 with a 

fluorophore using click chemistry for analysis of protein-protein interactions.  Data 

obtained using HPLC and MS suggested that copper-free click chemistry reactions 

between small molecules paF and DBCO488 are promising, thereby providing 

precedent that the reaction might also work with azide-containing Survivin and other 

proteins.  Data obtained using Coomassie, western blot, fluorescence, and size 

exclusion chromatography suggested that the copper-free click chemistry reaction 

between DBCO488 and paF-containing Survivin1-120 was successful.  This suggested 

that further examination of the fluorescently-labeled Survivin1-120 protein, including 

characterizing the steady-state fluorescence and determining the fluorescence lifetime, 

was merited.  The results obtained supported the hypothesis that copper-free click 

chemistry may be used to site-specifically label azide-containing target proteins with 

fluorophores. 

Because of the sensitivity and versatility of the fluorescence-based approaches, 

including steady-state fluorescence intensity, FRET, and fluorescence lifetime analysis, 

improved technologies are needed to fully harness the utility of these methods.  

Endogenous fluorophores such as tryptophan may be used in certain fluorescence 

analyses, but advantages may be conferred by using exogenous fluorophores. Relative 

to tryptophan, the common fluorophore fluorescein exhibits a higher quantum yield, 

higher molar extinction coefficient, and excitation and emission maxima disparate from 

endogenous fluorophores.  The lanthanide terbium also possesses some of these 

optimal fluorescence characteristics, in addition to a much longer fluorescence lifetime.  
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For these reasons, exogenous fluorophores have gained appeal for performing steady-

state fluorescence intensity, FRET, and fluorescence lifetime analysis in studying 

proteins and protein-protein interactions.  Importantly, it may not be possible to 

incorporate exogenous fluorophores using the protein target’s endogenous cysteines.  

Therefore, an alternative approach using copper-free click chemistry may be utilized to 

site-specifically incorporate an exogenous fluorophore. 

Site-directed mutagenesis, click chemistry, and fluorescence techniques, used 

together, provide the ability to investigate the consequences of partner binding on a 

specific region of the protein of interest.  The ability to site-specifically introduce a 

fluorescent label into a protein of interest offers the possibility of identifying specific 

amino acids that are germane to a particular protein-protein interaction.  Click chemistry 

enables the introduction of these probes that can be monitored while a binding partner 

is titrated.  Steady-state fluorescence, FRET, and fluorescence lifetime analyses can 

provide insight into the consequences of partner binding, however, because the local 

environmental factors can impact fluorescence intensity, emission maxima, and 

fluorescence lifetime, data should be interpreted accordingly.  These environmental 

factors are described in the following sections. 

 

Utility of Steady-State Fluorescence Intensity Determination to Study 

Protein-Protein Interactions 

Steady-state fluorescence intensity is a quantitative output that yields information 

about the fluorophore environment.  Factors that can affect fluorescence intensity 
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include solvent quenching, buffer constituents, fluorophore concentration, and 

shielding/obstruction by protein partner binding.   

In the context of analyzing the consequences of protein partner binding, steady-

state fluorescence intensity can give information about protein folding and the degree to 

which a protein is in an unfolded or folded conformation.  When tryptophan is buried 

within a protein, tryptophan exhibits an emission maximum at 330 nm [reviewed in 

Ghisaidoobe and Chung, 2014].   When tryptophan is accessible to solvent, the 

emission is shifted to 340 – 350 nm [reviewed in Ghisaidoobe and Chung, 2014].  

Endogenous tryptophan fluorescence intensity may be quenched in an unfolded protein, 

but may increase as the protein folds, shielding tryptophans from solvent quenching, 

however, the polarity of the solvent may alter this trend [reviewed in Ghisaidoobe and 

Chung, 2014].   Additional considerations concern the quantum yield, as follows. 

The efficiency with which a molecule absorbs then emits a photon, the quantum 

yield (Ф), is expressed as the percent of emitted photons divided by the total number of 

absorbed photons [reviewed in Lakowicz, 1999].  Fluorescence quenching results from 

non-radiative decay of the energy of the photon to the system, thereby decreasing 

fluorescence intensity [reviewed in Lakowicz, 1999], a phenomenon called “collisional 

quenching”.  Sources of collisional quenching include interactions of the emitted photon 

with the solvent or with a neighboring small molecule or protein within the experimental 

system.  Quenching may be affected by choosing a different solvent [reviewed in 

Lakowicz, 1999].  Photobleaching, or photochemical destruction of the fluorophore, may 

be reduced by decreasing the time that the sample is exposed to the incident beam 

[reviewed in Lakowicz, 1999].  The fluorophore concentration may be increased to 
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compensate for photobleaching [reviewed in Lakowicz, 1999].  Another strategy is to 

reduce the frequency (and thus the photon energy) of the incident beam [reviewed in 

Lakowicz, 1999].  Finally, robust fluorophores less susceptible to photobleaching may 

also be utilized [reviewed in Lakowicz, 1999]. 

  

Utility of Fluorescence Lifetime Analyses for Monitoring Protein-Protein 

Interactions 

Fluorescein is one of the fluorescent moieties comprising the DBCO488 

molecule.  Fluorescein and other fluorophores may exhibit different fluorescence 

lifetimes based on protonation state [Martin and Lindqvist, 1975, Magde, 1999].  

Fluorescein’s pKa is 6.4 and when protonated, fluorescein exhibits a fluorescence 

lifetime of 3 ns; unprotonated, the fluorescence lifetime is 4 ns [Magde, 1999].  

Fluorescein fluorescence lifetime has therefore been used as a pH indicator [Hammer, 

et al., 2005].  In addition to protonation state, changes in solvent shielding may alter 

fluorescence lifetime.  Static and dynamic fluorescence quenching can decrease 

fluorescence lifetime because the fluorophore is prevented from achieving its excited 

state or returns to its lower energy state more readily than when quenching does not 

occur [Alcala, et al., 1987], respectively.  If the fluorophore is shielded from quenching, 

the fluorescence lifetime may be longer than if the fluorophore is accessible to the 

quenching solvent [Alcala, et al., 1987].  Fluorophore shielding may result from protein 

partner binding near the fluorophore.  Therefore, changes in fluorophore lifetime can 

provide insights into protein partner binding.  Importantly, if the purpose of the 

experiment is to obtain information about the protein binding interface, the location of 
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the fluorophore within the protein of interest should be known, i.e., site-specific.  

Survivin binds many partners including caspase-9 to inhibit apoptosis.  Inhibiting 

Survivin binding to caspase-9 may facilitate cancer cell apoptosis.  Identifying druggable 

binding interfaces of the Survivin-caspase-9 interaction may be achieved using the 

fluorescence-based approaches described herein.  Subsequently, the portion of the 

labeled Survivin found to interact with caspase-9 could be mimicked with a synthetic 

peptide and implemented in a high-throughput fluorescence polarization screening 

assay (chapters 1 and 5) to identify candidate small molecule inhibitors of the Survivin-

caspase-9 protein-protein interaction. 

Although the DBCO488-labeled Survivin1-120 construct recapitulated literature 

precedent for unprotonated fluorescein fluorescence lifetime (4.03 ns), the only 

conclusion that can be drawn from this single experiment is that the fluorescein moiety 

behaves, in this context, like free, unprotonated fluorescein with regard to fluorescence 

lifetime.  There are limitations to the interpretation of fluorescence lifetimes.  Although 

fluorescence lifetime can yield protein conformation information, lifetime measurements, 

alone, may provide only limited information given the complexity of the experimental 

setup and output interpretation.  A series of experiments are required for proper 

interpretation of the observed fluorescence lifetime.  In the context of fluorescein-

labeled Survivin1-120 binding histone-3, several interpretations may be possible.  Mixed 

populations of 3.0 and 4.0 ns lifetimes may be observed as a result of solvent 

accessibility or shielding.  Mixed populations may also arise because the side chain of 

histidine exhibits a pKa of 6.0, which is near that of fluorescein.  It is possible that 

protons may be exchanged between the fluorescein moiety of DBCO488 and Survivin’s 
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histidine 80.  Because a single fluorescence lifetime output has multiple interpretations, 

lifetime data interpretations are usually made in concert with outputs from other 

fluorescence-based approaches.  Steady-state fluorescence intensity, for example, 

gives information on the quantity of photons emitted and FRET analyses give 

information about donor-acceptor distance.  Consequently, in order to fully appreciate 

the consequences of titrating protein binding partner into protein of interest, the three 

methods together yield the most comprehensive information about the fluorophore 

environment. 

   

 Fluorophore Limitations 

   Fluorescein 

Fluorescence lifetime measurements, in tandem with additional 

fluorescence-based experiments, have been proposed to evaluate protein-protein 

interactions.  The fluorophore utilized in this chapter (dibenzylcyclooctyne-488, Click 

Chemistry Tools) was a fluorescein derivative amenable to copper-free click chemistry-

mediated incorporation into the protein of interest.  DBCO488 was also chosen because 

it is relatively small and lacks a long, flexible linker region between the DBCO- moiety 

and the fluorescein moiety.  Fluorescein has been widely used for fluorescence 

analyses because it elicits a quantum yield near unity, 94% [Brannon and Magde, 

1978].  It also can yield two different fluorescence lifetimes depending on whether or not 

the carboxylic acid is protonated  and has found utility as a pH indicator [Magde, et al., 

1999].  In the context of pH determination, that fluorescein exhibits different lifetimes 

based on protonation state is a benefit.  In the context of protein-protein interactions, 
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that fluorescein can exhibit multiple lifetimes based on protonation state may confound 

data interpretation.  Therefore, it is important to consider the sources of protonation 

state changes in experimental design and to interpret the data accordingly. 

 

   DBCO-Containing Fluorophores for TCSPC Analyses 

   A variety of commercially-available DBCO-containing fluorophores 

exist that may be site-specifically incorporated into the protein of interest including 

DBCO-carboxyrhodamine, DBCO-sulforhodamine, DBCO-Cy3, DBCO-Cy5, and DBCO-

Cy7 (Click Chemistry Tools).  Currently, however, there is a dearth of clickable 

fluorophores amenable to our analyses because we possess the 293, 335, and 451 nm 

Nano-LEDs, which is a specialized incident beam for performing time-correlated single-

photon counting fluorescence lifetime determinations.  DBCO-rhodamine has an 

excitation profile that overlaps 451 nm, however, 451 nm excitation would elicit only 

about 25% of the fluorescence intensity compared to maximal excitation wavelength.  In 

addition, the long, flexible linker region between the DBCO- moiety and the fluorophore 

may stymie data interpretation regarding the fluorophore environment and effects of 

solvent quenching, as it may rotate more freely in solution than a fluorophore devoid of 

a long, flexible linker. 

With few exceptions, the emitted photon exits the molecule with a 

unique, specific, and unchanging emission wavelength [Kasha, 1950].  That a molecule 

elicits a consistent emission profile may be beneficial for monitoring that molecule 

during processes such as chemical synthesis or in cases where excitation of an 

exogenous fluorophore overlaps that of an endogenous fluorophore, but the 
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fluorophores exhibit different emission maxima.   Therefore, one possible alternative to 

the commercially-available DBCO-containing fluorophores may be to utilize the 

fluorescence character of the dibenzylcyclooctyne moiety (described in more detail in 

chapter 4).  Briefly, upon excitation at 259 nm, DBCO-amine yielded a unique 

fluorescence emission with a peak at 383 nm as well as a broad emission band at 740 

nm.  It is possible that emission at 740 nm of this inflexible fluorescent moiety could be 

monitored in fluorescence lifetime determinations. 

 

Solvatochromism 

Solvatochromism, or a shift in a molecule’s absorbance maximum based 

on solvent polarity, should be considered when moving from control stock solution 

analysis to in situ analyses.  DBCO488 exhibited an absorbance maximum of 454 nm in 

100% DMSO and 500.5 nm when adducted to the Survivin1-120 protein in 50 mM Tris, 

pH 8.0, 500 mM sodium chloride, 2 mM β-mercaptoethanol.  This bathochromic shift, a 

shift to a longer wavelength with increasing solvent polarity (positive solvatochromism), 

may occur with other fluorophores that may be utilized for the studies described in this 

chapter.  Negative solvatochromism (hypsochromism), or a shift to a shorter wavelength 

with increasing solvent polarity, is also possible.   In some cases, maxima may shift 

several hundred nanometers [Brooker, et al., 1951, Morley, et al., 1997].  Therefore, it 

may be necessary to determine the absorbance maxima of the fluorophore in different 

solvent contexts to ascertain that the analytical conditions are most reflective of the 

experimental conditions. 
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Proposed Approach to Utilize Endogenous Tryptophan Fluorescence 

in FRET with the Lanthanide Terbium 

The lanthanide terbium has a moderate extinction coefficient but imparts 

substantial fluorescence emission intensity at wavelengths separate from endogenous 

fluorophores.  Interestingly, terbium excitation maximum is 350 nm, which is near the 

emission maximum of tryptophan.  One possible FRET experiment would include 

exciting the endogenous tryptophan in the target protein in the presence of terbium-

labeled partner. 

   

In summary, using site-directed mutagenesis coupled with copper-free click 

chemistry, we have demonstrated the ability to insert a fluorescent tag into the Survivin1-

120 protein and purify the labeled protein.  We recapitulated literature precedent 

regarding unprotonated fluorescein fluorescence lifetime in labeled Survivin1-120 protein.  

These approaches poise us for performing fluorescence analyses on Survivin1-120 with 

Survivin’s binding partners.   
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Chapter 4: Two-Step Aqueous Synthesis of a Clickable Lanthanide Chelator 
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4.1 Introduction 

Lanthanides, rare earth metal elements, are novel tools for fluorescence-based 

[Nitz, et al., 2004, Hagan and Zuchner, 2011], x-ray crystallographic [Hiruma, et al., 

2013], and NMR [Su, et al., 2006, Otting, 2008, Hiruma, et al., 2013] applications.  

Lanthanides have broad Stokes shifts [Horrocks, 1993], long fluorescence lifetimes 

[Hemmila, 2005], narrow emission bands (narrow full-width at half maximum (FWHM)) 

[Lakowicz, 1999], are relatively insensitive to photobleaching [Pandya, 2006], and have 

excitation and emission maxima disparate from tryptophan, phenylalanine, and tyrosine 

[Brittain, et al., 1976, Horrocks, 1993].  In the context of x-ray crystallography, 

lanthanides are used for anomalous dispersion experiments [Purdy, et al., 2002].  

Lanthanides’ unique paramagnetic properties may be utilized in NMR applications 

[Iwahara and Clore, 2006, Clore and Iwahara, 2009, Madl, et al., 2009].  These 

approaches can be used to evaluate protein dynamics and protein-peptide interactions, 

but incorporation of a suitable lanthanide chelator is required to fully harness 

lanthanides’ unique properties. 

Numerous strategies for the incorporation of lanthanide chelators have been 

employed including genetic or thiol-reactive insertion [Franz, et al., 2003, Hiruma, et al., 

2013] of a lanthanide binding tag (LBT) [Nitz, et al., 2004].  The LBT’s cumbersome size 

may interfere with proper folding of the target protein, prompting efforts to pursue small 

molecule lanthanide chelators.  Small molecule lanthanide chelators such as 

ethylenediaminetetraacetic acid (EDTA) and its derivatives 1,4,7,10-tetraazacyclo-

dodecane-1,4,7,10-tetraacetic acid (DOTA) and diethylenetriaminepentaacetic acid 

(DTPA) exhibit attomolar lanthanide binding affinity [Cacheris, et al., 1987] and have 
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been used for decades for their superior luminescence intensities [Brittain, et al., 1976, 

Horrocks, 1993] and, more recently, for NMR experiments [Almeida, et al., 2011].  

These small molecule lanthanide chelators and their analogs have been derived to react 

with a protein’s available cysteines [Su, et al., 2008, Häussinger, et al., 2009, Almeida, 

et al., 2011, Zhang, et al., 2011].  Where only one reactive cysteine is present, this can 

generate peak shifts of substantial magnitude and facilitate deconvolution of NMR 

spectra to yield structural information [Otting, 2008].  In most cases, however, the 

protein of interest contains multiple cysteines and/or they are critically involved in 

disulfide bond formation or other secondary structure stabilizing events, thereby 

precluding site-directed mutagenesis-mediated insertion or substitution of cysteine for 

site-specific insertion of a lanthanide chelator.  

Synthesis of small-molecule lanthanide chelators has been demonstrated, 

however, the syntheses published to date require numerous steps, are performed under 

organic, not aqueous conditions, and yield chelators that are thiol-reactive [Saha, et al., 

1993, Ge and Selvin, 2003, Ge, et al., 2004, Häussinger, et al., 2009].  Synthesis of a 

small molecule chelator amenable to click chemistry was demonstrated [Martin, et al., 

2010], however, the synthesis required many steps and utilized organic reagents; in 

addition, the chelator was clicked into a synthetic azide-containing peptide rather than 

an azide-containing protein target.   

To yield site-specific labeling of a protein of interest with a fluorescent or 

paramagnetic tag, I hypothesized that cyclooctyne-mediated copper-free click chemistry 

[Jewett and Bertozzi, 2010, Gordon, et al., 2012] may be coupled  with incorporation of 

an unnatural amino acid such as paF [Chin, et al., 2002] to yield a protein labeled with a 
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lanthanide chelator.  Therefore, I sought to synthesize a small-molecule lanthanide 

chelator amenable to copper-free click chemistry-mediated incorporation into the target, 

paF-containing protein, using aqueous conditions.  Consequently, the unprecedented 

two-step aqueous synthesis of a lanthanide chelator amenable to site-specific 

incorporation is herein described using dibenzylcyclooctyne-amine (DBCO-amine) and 

the small molecule lanthanide chelator diethylenetriaminepentaacetic acid (DTPA) 

(Figure 4.1).   

As its name implies, DTPA contains 5 carboxylic acid moieties (Figure 4.1, panel 

A).  Briefly, lanthanide was first chelated with DTPA to confer reaction specificity at 

DTPA’s central carboxylic acid prior to amide coupling with DBCO-amine.  Terbium, a 

paramagnetic lanthanide, was chosen for its unparalleled ability to induce 

pseudocontact shifts, large paramagnetic relaxation enhancements (PREs) [Otting, 

2008], attomolar DTPA binding affinity [Cacheris, et al., 1987], and ability to elicit 

substantial fluorescence intensity [Horrocks, 1993, Lakowicz, 1999].  The lanthanide, 

because of its attomolar affinity, remains chelated throughout synthesis and purification.  

The entire synthetic route is described in more detail, in the following section. 

Metallation of DTPA (molecule A, Figure 4.1) with terbium was performed to 

generate metallated DTPA (complex B), which conferred amide coupling reaction 

specificity at DTPA’s central carboxylic acid.  Metallated DTPA was then reacted with 

the cyclooctyne-containing molecule dibenzylcyclooctyne-amine (DBCO-amine (C)), 

which was applied to an amide coupling reaction to synthesize the clickable chelator 

(D).  Finally, in a copper-free click chemistry reaction, the clickable chelator (D) reacted 

with the unnatural amino acid paF (E), to generate the clicked clickable chelator (F).  
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The entire synthesis was performed in aqueous buffers under relatively mild conditions 

(~2-75˚C), with common reagents and commercially-available separation matrices (GE 

Healthcare).  Successful completion of the efforts described herein provides a new tool 

for expanding NMR and x-ray crystallography approaches to study relatively larger 

proteins and protein dynamics of complexes heretofore not facile.  Fluorescence and 

HPLC data indicated that the chelator synthesis was successful. 

 

4.2 Results and Discussion 

Metallation of DTPA 

The first step in the 2-step aqueous synthesis of the clickable lanthanide chelator 

was metallation of the chelator with terbium.  As shown in Figure 4.2, prior to metallation 

incubation, 350 nm excitation of 100 mM MES, pH 5.5, or 10 mM DTPA in 100 mM 

MES, pH 5.5, did not yield emissions between 400 and 800 nm save for the water 

Raman (702 nm).  Under the same experimental conditions, 40 mM terbium trichloride 

in 100 mM MES, pH 5.5, yielded four sharp emission peaks at 489, 544, 584, and 621 

nm, each of which exhibited substantial fluorescence intensity; the water Raman was 

evident at 702 nm.  Ten millimolar DTPA with 40 mM terbium trichloride in 100 mM 

MES, pH 5.5, yielded four sharp emission peaks at 489, 544, 584, and 621 nm, each of 

which exhibited greater fluorescence intensity than did 40 mM terbium trichloride, alone; 

the water Raman was evident at 702 nm.   

These fluorescence data demonstrated that DTPA chelated terbium and 

imparted substantial fluorescence emission at specific wavelengths: 489, 544, 584, and 

621 nm.  Because 1) DTPA was devoid of pi electrons and did not impart substantial 
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Figure 4.1: Synthetic route of Clickable Chelator and Clicked Clickable Chelator.  
Metallation of DTPA (A) with terbium (Tb+3) to form metallated DTPA (DTPA:Tb) (B).  
Amide coupling of metallated DTPA (DTPA:Tb) (B) to dibenzylcyclooctyne-amine 
(DBCO-amine) (C) to synthesize the clickable chelator (D).  Copper-free click chemistry 
reaction between the clickable chelator (D) and para-azidophenylalanine (paF) (E) to 
generate the clicked clickable chelator (F).  Single product shown. 
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fluorescence emission and 2) terbium imparted emissions at 489, 544, 584, and 621 

nm, demonstrated that the observed emission of metallated DTPA (DTPA:Tb) resulted 

from terbium fluorescence, not from DTPA.  Increased fluorescence intensity of the 

metallated DTPA relative to terbium, alone, indicated that DTPA chelates terbium. 

Based on efforts of Häussinger and coworkers [2009], it was thought that 

incubation at 75˚C would be required to facilitate metallation of terbium with DTPA.  We 

observed, however, that metallation incubation at 75˚C for 8.25 hours failed to increase 

the intensity of the fluorescence emissions for 10 mM DTPA with 40 mM terbium 

trichloride in 100 mM MES, pH 5.5.  This suggested that metallation of DTPA with 

terbium may be achieved with the thermal energy required to dissolve 10 mM DTPA in 

100 mM MES, pH 5.5. 

Compared to 10 mM DTPA in 100 mM ammonium acetate, pH 5.5 and 40 mM 

terbium in 100 mM ammonium acetate, pH 5.5, 1D NMR analysis of DTPA:Tb yielded 

broadened DTPA peaks, indicating complex formation or metal coordination of terbium 

with DTPA (Figure 4.3).  A new peak at ~14.0 ppm most likely corresponded to a 

coordinated water molecule.  As with the fluorescence results, the 1D NMR +/-

incubation spectra were nearly identical, suggesting that metallation of terbium 

trichloride by DTPA was achieved using incubation at 75˚C (the temperature used to 

dissolve 10 mM DTPA (chapter 2)), for 8.25 hours, although incubation did not appear 

to be mandatory to metallate DTPA with terbium.  In addition, these data suggested 

that, in the presence of a 4-fold molar excess of terbium, the reaction went to 

completion.  Consequently, all 10 mM DTPA was metallated with terbium. 
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Figure 4.2: Spectrum of fluorescence intensity (counts per second (cps)) of emission of 
100 mM MES, pH 5.5 (blue trace), 10 mM DTPA in 100 mM MES, pH 5.5 (black trace), 
40 mM terbium (Tb) in 100 mM MES, pH 5.5 (green trace), and metallated DTPA 
(DTPA:Tb) (red trace) in 100 mM MES, pH 5.5 upon excitation at 350 nm.  Peaks at 
489, 544, 584, and 621 nm correspond to terbium. The peak at 702 nm corresponds to 
the water Raman. 
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The fluorescence and 1D NMR data corroborated the conclusions that DTPA 

chelated terbium, the reaction went to completion, incubation was not required if DTPA 

dissolution was achieved with heat, and DTPA:Tb imparted unique and substantial 

fluorescence emission peaks at specific wavelengths 489, 544, 584, and 621 nm. 

 

Metallated DTPA Purified by Anion Exchange Chromatography 

Anion exchange chromatography was used to separate excess, positively-

charged terbium from negatively charged metallated DTPA.  Excess unmetallated 

positively-charged terbium eluted in the column void volume.  Because the metallation 

incubation included 4-fold molar excess of terbium, the fluorescence intensity 

associated with free, excess terbium should be greater than that of metallated DTPA.  

As expected, substantial fluorescence intensity at 489, 544, 584, and 621 nm was 

observed in anion exchange fractions 1-4 (Figure 4.4), which corresponded to the 

excess unchelated terbium present in the DTPA metallation incubation.   

Metallated DTPA contained a single carboxylic acid that associated with the 

column matrix’s positive charge.  Addition of sodium chloride displaced metallated 

DTPA from the column resin; consequently, fluorescence emission corresponding to the 

terbium in metallated DTPA is expected in fractions from the sodium chloride gradient.  

As expected, elution with sodium chloride elicited fluorescence intensity at emission  
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Figure 4.4: Cumulative fluorescence intensity in counts per second (cps) (left y-axis) of 
emissions at 489, 544, 584, and 621 nm of 3.5-mL fractions collected during anion 
exchange chromatography separation of metallation reaction.  Excitation was at 350 
nm.  The x-axis depicts the anion exchange fraction number; the right y-axis depicts the 
1M sodium chloride (NaCl) gradient (black dashed line). 
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wavelengths 489, 544, 584, and 621 nm in fractions 10, 11, and 12, which 

corresponded to terbium-metallated DTPA.  In addition, the cumulative fluorescence 

intensity of the free, excess terbium (Fractions 1-4) was greater than that of metallated 

DTPA (Fractions 10-12).  These results indicated that metallated DTPA may be 

separated from excess terbium.  Fraction 11 was used for amide coupling.  

 

DBCO-amine Fluorescence Excitation and Emission Maxima 

As shown in Figure 4.5, fluorescence excitation and emission maxima were 

determined on 193.5 µM DBCO-amine in 3.2% (v/v) DMSO in 100 mM MES, pH 5.5.  A 

moderately sharp emission peak, with maximum at 383 nm and a broad emission band 

with a maximum at 740 nm was observed.  The excitation maximum was 259 nm.  The 

water Raman was evident at 519 nm.  Based on the aromatic character of the 

dibenzylcyclooctyne moiety, this was most likely the region of the molecule, not the free 

amine, which imparted the observed fluorescence. 

 

Fluorescence of G10 Fractions 

The second step in the 2-step aqueous synthesis of the clickable lanthanide 

chelator was amide coupling.  Reactants for amide coupling, metallated DTPA and 

DBCO-amine, which were 548 and 276 Da, respectively, were retained within the G10 

Sephadex matrix.  In contrast, the amide coupling reaction product, the clickable 

chelator, at 802 Da, was excluded from the matrix and eluted in the void volume.  

Because metallated DTPA, DBCO-amine, and the clickable chelator each imparted  
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Figure 4.5: Spectra of fluorescence emission (Panel A) and excitation (Panel B) scans 
of 193.5 µM DBCO-amine in 3.2% (v/v) DMSO in 100 mM MES, pH 5.5, with Panel C 
depicting the excitation reference scan.   The water Raman is evident at 519 nm in the 
emission scan (Panel A).  The emission and excitation maxima were determined to be 
383 and 259 nm, respectively.  Wavelength (nm) is depicted on each x-axis; intensity in 
counts per second (cps) is depicted on panels A and B y-axes while intensity in 
MicroAmps is depicted on Panel C y-axis. 
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unique and substantial fluorescence signatures, fluorescence analysis of the fractions 

collected from G10 Sephadex would indicate the presence of these molecules in each 

fraction.   

Upon excitation at 350 nm, the first collected fraction from the G10 Sephadex 

column yielded emission peaks at 489, 544, 584, and 621 nm (Figure 4.6).  Because 

terbium emits at 489, 544, 584, and 621 nm, the fluorescence intensity of G10 Fraction 1 

is imparted by terbium.  In addition, G10 Fraction 1 exhibited substantial fluorescence 

intensity at an emission of 429 nm.  Based on the structure of the dibenzylcyclooctyne 

moiety and the fluorescence character of DBCO-amine alone (Figure 4.5), the 

fluorescence emission at 429 nm most likely corresponded to the DBCO- moiety.  No 

other collected G10 Sephadex fractions exhibited dual emissions from terbium and 

DBCO although several subsequent fractions exhibited fluorescence associated with 

excess DBCO present in the amide coupling reaction (data not shown).  That a single 

fraction 1) possessed fluorescence character that corresponded to DBCO- and to 

metallated DTPA and 2) eluted in the void volume demonstrated that both DBCO- and 

metallated DTPA were present in one entity that is larger than 700 Da.  Therefore, this 

data indicated that synthesis of the clickable chelator was successful.  

 

HPLC Analysis of G10 Fraction 1 Yields Single Peak 

HPLC analysis of G10 Fraction 1 yielded a single, sharp peak with a retention 

time of approximately 7 minutes (Figure 4.7).  This fraction may be collected for small-

molecule mass spectrometry to determine the nature of the molecule(s) that yielded the 

single HPLC peak. If the mass spectrometry data indicate that one product is present, 
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Figure 4.6: Emission scan of Fraction 1 collected from G10 Sephadex separation.  
Arrows correspond to emission wavelengths 429, 489, 544, 584, and 621 nm.  The 
water Raman was evident at 702 nm.  Excitation was at 350 nm.  The x-axis depicts 
wavelength (nm) and the y-axis the fluorescence intensity (cps). 
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Figure 4.7: HPLC analysis of Fraction 1 collected from G10 Sephadex purification of the 
amide coupling reaction.  Absorbance (mAU) is depicted on the left y-axis, retention 
time (minutes) on the x-axis, and %B (light blue trace) on the right y-axis. 
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these data suggest that the amide coupling yielded a single product that eluted in the 

void volume of the G10 Sephadex matrix. 

 

Fluorescence Analysis of Clickable Chelator Yields Distinct Maxima 

Excitation maximum of the clickable chelator was 322 nm; the emission 

maximum was 429 nm.  An excitation wavelength of 322 nm did not yield discernible 

terbium fluorescence peaks and likely corresponded to fluorescence associated with the 

dibenzylcyclooctyne- moiety in the clickable chelator.  Excitation of the clickable 

chelator at 350 nm yielded terbium-associated emission peaks at the predicted 

wavelengths of 489, 544, 584, and 621 nm.  These data demonstrated that the clickable 

chelator possessed unique fluorescence properties, which originated from its dual 

DBCO- and terbium constituents.  

 

Copper-free Click Chemistry Reaction with Clickable Lanthanide Chelator 

Para-azidophenylalanine (azide) eluted from a C18 stationary phase in a single 

peak at 5.5 minutes (Figure 4.8); clickable chelator (alkyne) eluted in a single peak at 7 

minutes.  HPLC separation of an aliquot of the 10:1 alkyne:azide yielded two sharp 

peaks, the first at 6 minutes, which corresponded to the copper-free click chemistry 

reaction product, the clicked clickable chelator, and the second at 7 minutes, which 

corresponded to the excess alkyne, the clickable chelator.  The peak at 6 minutes 

exhibits a retention time unique from that of the reactants paF (5.5 minutes) and the 

clickable chelator (7 minutes).  This result indicated that the copper-free click chemistry 

reaction yielded a product with a unique retention time.   
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Figure 4.8: HPLC analysis of the reactant paF and the 10:1 alkyne: azide copper-free 
(cu-free) click chemistry reaction between paF (azide) and the clickable chelator to 
generate a clicked clickable chelator.  Absorbance (mAU) is depicted on the left y-axis, 
retention time (minutes) on the x-axis, and %B (light blue trace) on the right y-axis. 

 



100 

 

Mass Spectrometry of Clickable Chelator  

Select HPLC fractions from the copper-free click chemistry reactions were 

analyzed by MALDI mass spectrometry, however, the presence of additional peaks in 

the experimental and control spectra stymied data interpretation.  Additional small-

molecule mass spectrometry analyses of the clickable chelator and the clicked clickable 

chelator would ascertain peak assignments, and are discussed in more detail in chapter 

6. 

 

4.3 Conclusions 

Lanthanide incorporation is a promising strategy to expand the utility of structural 

biology approaches NMR and x-ray crystallography, offering the ability to evaluate 

protein dynamics, conformational changes, and interactions of larger proteins than have 

previously been studied.  The requirement for site-specific incorporation, however, 

coupled with the need for aqueous synthesis of a small-molecule chelator, has limited 

lanthanide use with these approaches.  A new approach for site-specific lanthanide 

incorporation is articulated herein whereby a 2-step aqueous synthesis of a small 

molecule lanthanide chelator amenable to copper-free click chemistry is described using 

diethylenetriaminepentaacetic acid, terbium trichloride, and dibenzylcyclooctyne-amine.   

 

Metallation of DTPA 

The first step in the synthesis of a small-molecule lanthanide chelator amenable 

to copper-free click chemistry-mediated site-specific incorporation into the protein of 

interest was to metallate the chelator with the lanthanide of interest.  For these studies, 



101 

 

diethylenetriaminepentaacetic acid (DTPA) and the lanthanide terbium were chosen.  

Metallation of DTPA with terbium was achieved first using 100 mM ammonium acetate, 

pH 5.5, using conditions that had already been utilized for similar objectives 

[Häussinger, et al., 2009].  Subsequently, metallation of DTPA with terbium was 

achieved using a buffer devoid of free amines, 100 mM MES, pH 5.5.  Notably, the use 

of buffers containing free amines, such as ammonium acetate, should be avoided for 

the metallation incubation, as the free amines in the buffer may react with the carboxylic 

acid of the chelator during the amide coupling reaction.  Although it is possible to 

perform buffer exchange between the metalation and amide coupling steps, the use of 

an appropriate buffer for the metallation incubation should be considered for efficiency.  

While buffer exchange may be facilitated during anion exchange separation of the 

metallation reaction, the use of one buffer for metallation and anion exchange 

separation also prevents the need to optimize buffer exchange. 

Metallation of DTPA with terbium was performed at a 1:4 molar stoichiometry of 

DTPA:TbCl3 and metallated DTPA was purified from excess terbium using anion 

exchange chromatography.  We thereby demonstrated the ability to metallate DTPA 

with terbium; it is expected that metallation of other chelators with a variety of other 

lanthanides may also be achieved. 

 

Clickable Chelator Synthesized 

Metallation of DTPA with terbium electrostatically engaged DTPA’s peripheral 

four carboxylic acids with terbium’s positive charge, leaving the central carboxylic acid 

of DTPA available to react with a cyclooctyne-containing molecule, dibenzyl-
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cyclooctyne-amine (DBCO-amine), for synthesis of the clickable chelator by amide 

coupling.  A room temperature, 120-minute amide coupling reaction of DTPA metallated 

with terbium was performed with an estimated 5-fold molar excess of DBCO-amine in 

the presence of the amide coupling reagent 1-ethyl-3-(3-dimethylamino-propyl)-

carbodiimide (EDC).  Separation of reactants DTPA:Tb and DBCO-amine and the 

product, DBCO-DTPA:Tb, was achieved by size-exclusion chromatography.  

Subsequently, fluorescence and HPLC analyses of the size-exclusion chromatography 

fractions demonstrated that the synthesis yielded a single product that elicited 

fluorescence emission corresponding to both the dibenzylcyclooctyne moiety and 

terbium.  The next step was to perform a copper-free click chemistry reaction between 

the small molecules paF and DBCO-DTPA:Tb.  

 

Copper-free Click Chemistry Reaction 

In order to evaluate whether or not the clickable chelator contained a cyclooctyne 

amenable to copper-free click chemistry, a reaction was performed between the 

clickable chelator and the small molecule unnatural amino acid paF.  HPLC analysis of 

the click chemistry reaction yielded a distinct, single peak with a slightly earlier retention 

time compared to the peak that corresponded to the clickable chelator.  This result 

suggested that the copper-free click chemistry reaction yielded a new product; because 

of the reactivity of the azide and cyclooctyne molecules, the most likely conclusion from 

these data was that the cyclooctyne was present in the clickable chelator and it reacted 

with the unnatural amino acid paF. The next step is to administer the DBCO-DTPA:Tb 

(the clickable chelator) to paF-containing Survivin protein.  Once that is accomplished, 



103 

 

15N-backbone-labeled paF-containing Survivin protein will be generated; the clickable 

chelator will be added in a copper-free click chemistry reaction.  After purification of the 

labeled Survivin protein, NMR analyses will be performed on Survivin with its binding 

partners. 

 

In summary, the synthesis of a small-molecule lanthanide chelator amenable to 

copper-free click chemistry-mediated incorporation into a protein of interest is herein 

described using relatively mild reaction conditions and common reagents, with aqueous 

buffers, and two very straightforward purification steps that require common, 

commercially-available matrices and buffers.  This is the first description of a 2-step 

synthesis of a small-molecule lanthanide chelator amenable to copper-free click 

chemistry-mediated incorporation into the protein of interest, using aqueous conditions.  

The synthesis yields a small-molecule lanthanide chelator that may be utilized in a 

variety of NMR- and fluorescence-based experiments that monitor protein-protein 

interactions. 
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Chapter 5: A High-Throughput Fluorescence Polarization Small-Molecule 

Screening Assay for Identification of Inhibitors of the Survivin-Histone-3 Protein-

Peptide Interaction 
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5.1 Introduction 

Efforts are ongoing to identify novel lead compounds that may serve as structural 

scaffolds which may be further altered chemically to produce drugs that exhibit a 

therapeutic effect on a relevant target.  Hence, an abundance of high-throughput 

screening (HTS) platforms have been optimized for the identification of promising lead 

candidate compounds for use as therapies in many different diseases.  

High-throughput screening can be conducted using a variety of chemical 

compound libraries.  The Prestwick Chemical Library® [www.prestwick.com] is 

comprised of 1280 small molecules drugs approved by the Food and Drug 

Administration (FDA) and European Medicines Agency (EMA).  The Prestwick Chemical 

Library® compounds exhibit high pharmacological and chemical diversity; their safety, 

bioavailability, and pharmacokinetic profiles in humans are known.  The ZINC (ZINC is 

not commercial) library [Irwin and Shoichet, 2005] contains 727,842 commercially-

available small molecules.  ZINC is a virtual library produced for facile computational 

screening.   

Each library is designed to facilitate the most efficient transition from in vitro 

screening to clinical utility.  Thus, parameters such as oral bioavailability, compliance 

with Lipinski’s rules, solubility, and safety, when available, are considered.  

One drawback to utilization of these chemical compound libraries is the vast size 

and consequent large expense incurred testing thousands of compounds without any 

initial information about how the compound(s) may bind the target protein.  Another 

drawback is that it may be difficult or cost-prohibitive to purify sufficient quantities of 
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target protein to screen hundreds or thousands of compounds, then follow-up with the 

requisite secondary analyses. 

In silico analyses can generate structural predictions about how small molecules 

might bind putative protein targets.  Such predictions may include hydrogen bonding 

interactions, electrostatics, and bond distance information, all of which can be used to 

determine whether or not the small molecule binding interaction observed in silico may 

have a likelihood of translating to an in vitro experimental observation.  One such in 

silico approach, developed by Karanicolas and coworkers, can model the structure of 

the protein target in the presence of a protein binding partner with different small 

molecule candidate inhibitors [Karanicolas and Kuhlman, 2009, Karanicolas, et al., 

2011, Sievers, et al., 2011, Johnson and Karanicolas, 2013].  This computational 

approach has the potential to identify promising candidates that may yield optimal in 

silico to in vitro translation; these select candidates can then be analyzed within the 

fluorescence polarization assay described below.  This “rational screening” approach 

may decrease the time and expense involved in identifying candidate inhibitors because 

only select candidates identified from the computational screen are analyzed by 

fluorescence polarization. 

The ratio of vertically- and horizontally-polarized fluorescence intensity yields the 

fluorescence polarization value (chapter 1).  To identify candidate inhibitors of a specific 

protein-protein interaction, protein and fluorescently-labeled peptide are combined at 

fixed concentrations, then fluorescence anisotropy or polarization is measured.  Small 

molecule inhibitors will disrupt the protein-peptide binding interaction, eliciting a 

decrease in the observed fluorescence anisotropy or polarization signal.  Promising 
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small molecule candidate inibitors that elicit decreased fluorescence anisotropy or 

polarization are then screened for autofluorescence and quenching [Gribbon and 

Sewing, 2003], two factors that may alter the fluorescence polarization or anisotropy 

signal independent of disruption of the protein-protein interaction, leading to false 

positives or false negatives.  Candidate molecules that are not false positives or 

negatives may then be tested further to determine IC50 for the protein-peptide 

interaction.  Candidates may then be subjected to additional screening such as two-

dimensional heteronuclear single quantum coherence (2D-HSQC) chemical shift 

perturbation NMR or x-ray co-crystallography, which may give information about the 

ability of the small molecule to displace the peptide from the target protein. 

Fluorescence polarization may be most useful when the protein target is non-

enzymatic and/or participates in many intracellular pathways.  The platform is amenable 

to high-throughput analysis in 96- or 384-well plate formats, and can accommodate 

relatively small (100-200 µL for 96-well format, for example) assay volumes, facilitates 

analysis of specific- and non-specific binding, is performed in solution rather than via 

attachment of the target protein or peptide to a rigid substratum or antibody, utilizes 

relatively common instrumentation (fluorescence plate reader with adjustable excitation 

and emission polarizers), and can be adapted to evaluate false positives and false 

negatives.  Depending on the fluorophore and fluorometer utilized, the method can be 

relatively sensitive.  Taken together, these advantages can facilitate relatively 

straightforward and rapid identification of candidate protein-protein interaction inhibitors. 

In previous studies, the HTS FP platform has been used to identify inhibitors of 

the X-linked Inhibitor of Apoptosis protein (XIAP) [Liu, et al., 2000, Nikolovska-Coleska, 
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et al., 2004, Nikolovska-Coleska, et al., 2008] and for identifying small molecule 

Smac/DIABLO mimics [Glover, et al., 2003].  HTS assays have been sought for the 

identification of inhibitors of Survivin’s protein-protein interactions, due to its important 

role in cancer cell survival and cell division.  However, finding the appropriate protein-

protein interaction to target among Survivin’s many protein partners has been 

challenging.   

Survivin binding histone-3 is a critical event in facilitating chromosomal 

passenger complex-mediated chromosomal segregation [reviewed in Carmena, et al., 

2012].  Therefore, inhibiting Survivin-histone-3 binding may disrupt chromosomal 

passenger complex assembly, resulting in G2/M arrest and cell death, an important 

outcome in cancer cells.  An efficacious, selective inhibitor of Survivin protein-protein 

interactions has thus far eluded researchers and no fluorescence polarization-based 

Survivin inhibitor screening assays have been established.  We hypothesize that high-

throughput screening of candidate Survivin-histone-3 protein-peptide inhibitors may be 

accomplished using the fluorescence polarization platform.  Successful completion of 

the work described herein will produce a validated assay to identify potential Survivin-

histone-3 protein-peptide inhibitors. 

 

5.2 Results and Discussion 

 Survivin1-120 was over-expressed, purified, cleaved with thrombin, and analyzed 

by Coomassie, silver stain, and whole-peptide mass spectrometry.  Uncleaved and 

thrombin-cleaved Survivin1-120 yielded a sharp, dense, single band at the molecular 

weights that corresponds to uncleaved (~15 kD) and thrombin-cleaved Survivin1-120 (14 
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kD) (Figure 5.1).  Coomassie and silver stain results were corroborated by whole-

peptide mass spectrometry, which yielded a sharp peak near the theoretical mass of 

thrombin-cleaved Survivin1-120 (14095.9 Da) at 14094.4 Da (Figure 5.2).  These data 

suggest that cleavage and purification of Survivin1-120 was successful. 

 

Histone-3 Peptide Binds Thrombin-Cleaved Survivin1-120 

As shown in Figure 5.3, excitation and emission maxima of carboxyfluorescein-

labeled histone-3* (H3*) were determined to be 493 and 522 nm, respectively.   

In order to determine if H3* bound thrombin-cleaved Survivin1-120, 100 nM H3* 

was titrated with increasing amounts of thrombin-cleaved Survivin1-120.   As shown in 

Figure 5.4, increasing amounts of thrombin-cleaved Survivin1-120 yielded a higher 

percent fluorescence polarization and percent fluorescence anisotropy.  H3* binding 

appeared to approach saturation as the concentration of thrombin-cleaved Survivin1-120 

reached 20 µM.  The experimental design was such that the amount of bovine gamma 

globulin (BGG) was constant in each experiment, to maintain viscosity of the 

experimental sample, thus, this result suggested that H3* bound thrombin-cleaved 

Survivin1-120, not BGG.   

In order to determine if H3* bound uncleaved Survivin1-120, 100 nM H3* was 

titrated with increasing amounts of uncleaved Survivin1-120.   As shown in Figure 5.5, 

increased thrombin-cleaved Survivin1-120 yielded a higher percent fluorescence 

polarization and percent fluorescence anisotropy.  H3* binding did not approach 

saturation as the concentration of thrombin-cleaved  Survivin1-120 reached



110 

 

25 kD

37 kD

50 kD

75 kD

100 kD

15 kD

MW 

Ladder

His6-surv1-120

(2 ug)A

15 kD

10 kD

20 kD

25 kD

37 kD

50 kD

75 kD

MW 

Ladder

surv1-120

(10 ug)B

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1: SDS-PAGE separation followed by Coomassie staining of Survivin1-120 (~15 
kD) before (Panel A) and after (Panel B) thrombin cleavage and purification. 
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36 µM.  The experimental design was such that the amount of bovine gamma globulin 

(BGG) was constant in each experiment, as above.  The linear increase in percent 

fluorescence polarization and percent fluorescence anisotropy may have corresponded 

to non-specific binding of H3* to uncleaved Survivin1-120.  One possible source of non-

specific binding may be uncleaved Survivin1-120 aggregates: improperly folded 

uncleaved Survivin1-120 may present non-specific binding opportunities to H3*, giving 

rise to the observed increase in percent fluorescence polarization and anisotropy 

(Figure 5.5).   

Because the His6- tag was at the extreme N-terminus of Survivin and histone-3 

binds Survivin’s BIR domain, the presumption was that the His6-tag would not interfere 

with histone-3 peptide binding.  The data presented in Figure 5.5, however, possibly 

suggests that uncleaved Survivin1-120 did not adopt or retain its properly-folded tertiary 

conformation that facilitates specific H3* binding.  Subsequent experiments utilized 

uncleaved His6-Survivin1-120, however, cleaved Survivin1-120 would likely have yielded 

more reliable results. 

 

Analysis of Survivin-Histone-3 Binding Specificity 

The specificity of the Survivin:H3* binding interaction was evaluated by titrating 

unlabeled histone-3 peptide into 30 µM His6-Survivin1-120 and 1 µM H3* in 100 mM 

potassium phosphate, pH 7.5; as shown in Figure 5.6, the addition of an increasing 

amount of H3 decreased fluorescence polarization, however, a large standard deviation 

of 42% in the 0 nM H3 sample introduced question about the validity of the data.  It is  
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Figure 5.3: Emission scan (Panel A) and excitation scan (Panel B) of 100 nM 
carboxyfluorescein-labeled histone-3 (H3*) peptide in 100 mM potassium phosphate, 
pH 7.5, with excitation reference scan (Panel C).  The emission and excitation maxima 
were 522 nm and 493 nm, respectively.  Wavelength (nm) is depicted on each x-axis; 
intensity in counts per second (cps) is depicted on panels A and B y-axes while intensity 
in MicroAmps is depicted on Panel C y-axis. 
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Figure 5.4: Percent fluorescence anisotropy (%r) (Panel A) and percent fluorescence 
polarization (%P) (Panel B) of thrombin-cleaved Survivin1-120, in the presence of 100 nM 
fluorescein-labeled histone 3 peptide (H3*) in 100 mM potassium phosphate, pH 7.5, 
100 µg/mL bovine gamma globulin, 0.02% (w/v) sodium azide.  A: Percent fluorescence 
anisotropy (%r) with increasing concentration of thrombin-cleaved Survivin1-120.  B: 
Percent fluorescence polarization (%P) with increasing concentration of thrombin-
cleaved Survivin1-120.  Fitted line is shown for reference only. 
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Figure 5.5: Percent fluorescence anisotropy (%r) (Panel A) and percent fluorescence 
polarization (%P) (Panel B) of uncleaved His6-Survivin1-120, in the presence of 100 nM 
fluorescein-labeled histone 3 peptide (H3*) in 100 mM potassium phosphate, pH 7.5, 
100 µg/mL bovine gamma globulin, 0.02% (w/v) sodium azide.  A: Percent fluorescence 
anisotropy (%r) with increasing concentration of uncleaved Survivin1-120.  B: Percent 
fluorescence polarization (%P) with increasing concentration of uncleaved Survivin1-120.  
Line is only shown for reference purposes. 
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difficult to see a compelling trend of decreased fluorescence polarization with the 

addition of increased H3.  In addition, the experiment included uncleaved Survivin1-120, 

and as discussed previously, H3* may non-specifically bind uncleaved Survivin1-120. 

Therefore, the conclusion that can be made from these results is that the experiment 

should be repeated using thrombin-cleaved Survivin1-120.   

 

Computational Screen Identifies Promising Survivin-Histone-3 Inhibitors 

Computational screening of several hundred compounds using a Survivin 

conformation that binds histone-3 peptide was performed (Karanicolas Laboratory, 

University of Kansas, Lawrence, Kansas).  Numerous compounds (Figure 5.7) were 

identified that bound Survivin at the Survivin-histone-3 binding interface.  These 

compounds will be evaluated using the fluorescence polarization assay to determine if 

they displace histone-3 peptide from Survivin1-120. 

 

Identifying False Positives by Analyzing Candidate Inhibitor Propensity to 

Quench Fluorescence Polarization 

As was described in chapter 1, the fluorescence polarization quantity is 

calculated using the instrument outputs of vertical and horizontal fluorescence 

intensities.  Therefore, changes in fluorescence intensity, due to quenching, can alter 

the fluorescence polarization value.  Quenching of fluorescence intensity can occur by a 

variety of processes.  Non-radiative decay of the excited photon to the surrounding 

media can decrease fluorescence intensity.  Because decreased fluorescence 

polarization can also result from disrupted protein-peptide binding, any compounds that 
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Figure 5.6: Fluorescence polarization (y-axis) as a function of increasing amounts of 
unlabeled histone-3 peptide (log nM, x-axis) added to 1 µM H3* and 30 µM uncleaved 
Survivin1-120 to evaluate binding specificity of H3* for uncleaved Survivin1-120. 
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Alias Chemical name

JK15 5-[(1,3-benzothiazol-2-ylmethyl)sulfanyl]-4H-1,2,4-triazol-3-amine

JK16 1-[(1-phenyl-1,2,3,4-tetrazol-5-yl)methyl]-1,2,4-triazole-3-carbonitrile

JK18 1-methyl-4-[(3-phenyl-1H-pyrazol-4-yl)methyl]piperazine

JK19 2-amino-5-(4-chlorophenyl)-1,3-thiazole-4-carbohydrazide

JK20 4-(((3-(2-furyl)-5-mercapto-4H-1,2,4-triazol-4-yl)imino)methyl)phenol

JK21 6-[2-(1H-imidazol-4-yl)ethyl]-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one

JK15

JK16 JK18JK15

JK19

JK20

JK21

  

Figure 5.7: Candidate Survivin-histone-3 protein-protein interaction inhibitors identified 
by computational screening performed in the Karanicolas laboratory. 
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yield a decreased fluorescence signal would need to be evaluated for both their 

propensity to quench the fluorescence signal and their ability to disrupt protein-peptide 

binding, which may be completed in a secondary assay. Application of candidate 

inhibitors to the Survivin-histone-3 protein-peptide interaction may elicit decreased 

fluorescence polarization.  Two interpretations of this outcome are possible.  First, the 

candidate inhibitor displaces fluorescently-labeled histone-3 peptide from Survivin.  

Displaced fluorescently-labeled histone-3 peptide tumbles quickly and yields virtually no 

fluorescence polarization.  Alternatively, the candidate inhibitor does not displace 

fluorescently-labeled histone-3 peptide from Survivin.  Rather, the candidate inhibitor 

quenches the fluorescence signal of the fluorescently-labeled histone-3 peptide while it 

remains bound to Survivin protein.  Consequently, the observed vertically and 

horizontally polarized fluorescence intensities are reduced and the ratio, the calculated 

fluorescence polarization value, approaches zero.  This scenario represents the false 

positive, where the candidate did not displace the fluorescently-labeled peptide but the 

fluorescence polarization result suggested that the fluorescently-labeled histone-3 

peptide was displaced from the Survivin protein.  To rule out false positives, the 

candidate inhibitor is evaluated for its propensity to quench the fluorescence intensity of 

the fluorescently-labeled histone-3 labeled peptide, in the absence of Survivin.  The 

experiment is performed by titrating increasing candidate inhibitor into a constant 

amount of fluorescently-labeled histone-3 peptide and monitoring fluorescence intensity 

of the labeled peptide.  To evaluate the contribution of both vertically- and horizontally-

polarized emission on the output of fluorescence polarization, it may be helpful to 
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determine the steady-state fluorescence intensities of the labeled peptide and candidate 

inhibitor, as well as the intensities using vertically- and horizontally-polarized light.  

Identifying False Negatives by Analyzing Candidate Inhibitor 

Autofluorescence 

In fluorescence polarization HTS, the drug candidate is tested at various 

concentrations.  If the candidate does not decrease the observed percent fluorescence 

polarization, two explanations are possible.  First, the candidate did not displace H3* 

from the Survivin protein, so the observed percent fluorescence polarization arises from 

the slowly tumbling, intact complex of H3* and Survivin.  As an alternative, the 

candidate displaced H3* from the Survivin protein, but the candidate’s fluorescence 

emission spectrum overlaps that of the monitored emission spectrum of H3*, so the 

observed percent fluorescence polarization arises from slowly tumbling candidate-

bound Survivin protein.  The second scenario represents the false negative where the 

candidate displaced H3*, but the fluorescence polarization result suggested that H3* still 

bound the Survivin protein.  To analyze candidates for autofluorescence, the candidate 

compound’s excitation and emission maxima should be determined in an experiment 

independent of the fluorescence polarization assay.   It also may be beneficial to titrate 

increasing amounts of inhibitor to Survivin, alone, to evaluate increased percent 

fluorescence polarization in the absence of H3*. 

  

Determination of Candidate Inhibitor IC50 

Candidates that 1) decrease fluorescence polarization 2) do not autofluoresce, 

and 3) do not quench H3* fluorescence will be further screened for their ability to disrupt 
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the Survivin:H3* binding interaction.  The concentration of inhibitor that elicits half-

maximal protein-peptide dissociation, IC50, will be determined by titration of candidate 

inhibitor into constant Survivin-histone-3* using the fluorescence polarization screening 

assay.   

 

Secondary Screen 

To structurally characterize candidate molecule inhibition of His6-Survivin1-

120:histone-3 peptide binding, nuclear magnetic resonance spectroscopy or x-ray 

crystallography experiments may be performed on 15N-backbone-labeled thrombin-

cleaved Survivin1-120 or unlabeled thrombin-cleaved Survivin1-120, respectively, with 

unlabeled histone 3 peptide, in the presence of the candidate inhibitor. 

 

Our preliminary analyses using a cuvette-based fluorescence polarization 

platform indicated that H3* bound thrombin-cleaved Survivin1-120, however a dissociation 

contant should be determined from additional experiments with thrombin-cleaved 

Survivin1-120.  H3* bound uncleaved Survivin1-120 apparently non-specifically.  This 

cuvette-based finding regarding uncleaved Survivin1-120 was corroborated in the plate 

fluorometer platform, where the polarization increased linearly with increased uncleaved 

Survivin1-120 concentration.  For this reason, conclusions made on histone-3 binding to 

uncleaved Survivin1-120 regarding pH dependence, temperature, and DMSO content 

cannot be interpreted.  Prior to screening to identify candidate inhibitors, these analyses 

will need to be repeated using thrombin-cleaved Survivin1-120. 
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5.3  Conclusions 

 Fluorescence polarization-based screening presents advantages over other 

approaches for the identification of protein-protein interaction inhibitors, especially for 

non-enzymatic protein targets.  The protein and peptide binding partner are combined in 

solution, rather than on a rigid substratum or via antibody-mediated recognition.  In 

addition, the 96-well plate format utilizes relatively small sample volumes and relatively 

low protein concentrations compared to NMR or x-ray crystallography approaches, may 

be completed in a short period of time, can be optimized to yield sufficient signal:noise 

ratio, and can be performed at a variety of incubation temperatures as well as excitation 

and emission wavelengths different from those of naturally-occurring fluorophores.  

Several limitations and caveats, however, should be considered for the most 

conservative data interpretation, including that of non-specific fluorescently-labeled 

peptide binding and improper target protein folding within the experimental matrix.  

When considering these limitations and ruling out false positives and negatives, 

fluorescence polarization may be a useful method to identify candidate protein-peptide 

interaction inhibitors, presenting yet another avenue to bring therapeutics to the clinic 

for many human diseases.  

Our objective was to establish a screening assay to identify inhibitors of the 

Survivin-histone-3 protein-peptide binding interaction.  Herein is described the 

foundation for a fluorescence polarization assay for Survivin1-120 and histone-3 peptide 

that can be used to evaluate candidate inhibitors identified by an in silico screen 

performed in the Karanicolas laboratory. 
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Chapter 6: Conclusions and Future Prospects 
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6.1 Introduction 

Chapter 3 described efforts to utilize click chemistry to site-specifically label the 

Survivin protein with a fluorophore, with the ultimate goal of facilitating fluorescence-

based protein-protein interaction studies of Survivin with its protein binding partners.  

Although the data described therein suggested that the fluorophore was adducted to the 

Survivin protein, additional analysis such as whole-protein mass spectrometry and 

tryptic digest followed by peptide mass spectrometry, could have augmented the data 

described in chapter 3.  These and other suggestions are the subject of subsequent 

sections of this chapter. 

 Chapter 4 described efforts to synthesize a lanthanide chelator amenable to 

copper-free click chemistry, the ultimate goal of which was to expand the utility of 

protein structure-determination methods such as x-ray crystallography and nuclear 

magnetic resonance spectroscopy.  Although fluorescence- and HPLC-based data 

described within chapter 4 suggest that synthesis of a clickable lanthanide chelator was 

successful, additional analyses that would corroborate this conclusion are described in 

subsequent sections of this chapter. 

 Chapter 5 concerned efforts to establish a fluorescence polarization assay to 

rapidly screen chemical libraries for the identification of candidate inhibitors of Survivin 

protein-protein interactions.  Additional analyses may be considered as an alternative to 

the approaches described therein.  

Collectively, although the methods described in chapters 3-5 may facilitate the 

development, through structure-aided design, or identification of small molecule inhibitor 

leads of selected protein targets, the proposed methods have limitations.  The following 
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chapter will address whether or not the objectives of each specific aim were obtained, 

the limitations of the approaches proposed in preceding chapters, and additional 

strategies to overcome the methodological limitations of the proposed approaches. 

 

6.2 Analyses to Evaluate Copper-free Click Chemistry Reaction Success with the 

Mutant Survivin Protein 

 Strategies to Confirm Mutant Survivin Protein Synthesis 

Regarding the utility of copper-free click chemistry to site-specifically incorporate 

a fluorescent probe into the Survivin protein, DNA sequences of all seven plasmids 

encoding mutant Survivin genes with the amber stop codon were correct and all seven 

mutants yielded Survivin protein, as observed by western blotting (chapter 3, Figure 

3.1).  These results suggest that the translated Survivin1-120 contained the unnatural 

amino acid paF, however, these results do not confirm inclusion of paF, nor do they 

provide information about the site of paF incorporation.  Mass spectrometry could 

confirm that: 1) the Survivin protein contained the unnatural amino acid paF and 2) the 

copper-free click chemistry-mediated adduction of DBCO488 fluorophore to paF was 

site-specific. 

 The molecular weight of His6-Survivin1-120 (uncleaved Survivin) is 15978.0 Da and 

the cleaved product (14094.4 Da) was easily detected using Linear Trap Quadrupole-

Fourier Transform (LTQ FT) mass spectrometry (chapter 5, Figure 5.2).  Therefore, 

mass spectrometry could also be used to confirm that the Survivin1-120 protein contained 

the unnatural amino acid paF.  The seven paF-containing Survivin1-120 mutants have 

following masses, and differences from the His6-Survivin1-120 mass, as outlined in Table 
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6.1.  Insertions of paF at the N- and C-termini and mutations F93paF, F101paF, and 

G99paF elicit changes in mass that could be detected using LTQ FT mass 

spectrometry.  The difference in mass of His6-Survivin1-120 and W10paF and W67paF, 

+1.975 Da, however, is more subtle.  Using Thermo Electron Corporation’s Finnegan 

LTQ FT instrument, which yields maximum resolution of 500,000 (FWHM) [Thermo 

Electron, 2003], it should be possible to detect a difference of 1.975 Da between 

tryptophan and paF, especially when evaluating peptide fragments instead of the whole 

protein mass spectrum shift.  Therefore, tryptic digest may be performed on whole-

protein W10paF or W67paF Survivin, and the resulting fragments evaluated to ascertain 

that positions 10 and 67 contain paF instead of tryptophan.  These analyses could 

confirm site-specific incorporation of paF into the His6-Survivin1-120 protein.   

 As was described in chapter 2, BL21*DE3 E. coli expressing the unnatural amino 

acyl tRNA synthetase may occasionally insert arginine at the amber stop codon; 

compared to paF, arginine insertion would yield the following masses, which are smaller 

than the intended mutant mass by -32.0 Da (the difference between paF and arginine) 

(Table 6.2).  As was discussed in chapter 2, this was the basis for selecting DH10B 

(TopTen) E. coli rather than BL21*DE3 E. coli.  
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Mutant Mass (Da)
Difference from His6-

survivin1-120 mass (Da)

NtermpaF, CtermpaF 16166.20 206.20

W10paF, W67paF 15979.98 1.98

F93paF, F101paF 16019.01 41.01

G99paF 15902.93 -75.07

 

 

 

 

 

 

Table 6.1: Masses of paF-containing His6-Survivin1-120 mutant proteins and differences 
from His6-Survivin1-120 mass. 
 
 
 
 

 

 

 

 

Table 6.2: Mass differences between paF-containing His6-Survivin1-120 mutant proteins 
with arginine, rather than paF, incorporated at the amber stop codon. 
 
 
 
 
 
 
 
 

 

Mutant Mass (Da)

paFNtermR, paFCtermR 16134.20

paF10R, paF67R 15947.98

paF93R, paF101R 15987.01

paF99R 15870.93
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A mass difference of 32.0 Daltons is detectable using LTQ FT mass 

spectrometry, and could be used to determine if arginine, instead of paF, was 

incorporated at the amber stop codon.  The aforementioned approaches may address 

whether or not paF or arginine had been incorporated into the Survivin protein, in a site-

specific manner. 

 

Strategies to Confirm Copper-free Click Chemistry Reaction Success with 

Azide-Containing Survivin Protein 

FPLC and fluorescence data suggested that the copper-free click chemistry 

reaction between N-terminal paF-containing His6-Survivin1-120 and DBCO488 was 

successful.  To corroborate those data and to confirm that paF-containing His6-

Survivin1-120 had been adducted with DBCO488, an aliquot of pure (Figure 3.12) 

uncleaved CtermpaF-DBCO488-Survivin1-120 was submitted for mass spectrometry 

analysis (MS Bioworks, Ann Arbor, MI).  Despite adequate sample purity, concentration, 

and preparation, satisfactory whole-protein mass spectrometry data were not obtained.  

Specifically, the MS Bioworks analyst had diluted the sample with 0.1% trifluoroacetic 

acid, which can suppress ionization [Balogh, 2009] and then indicated that the sample 

was of inadequate concentration and contained detergents and impurities, which was 

inconsistent with the sample preparation performed prior to shipment.  In addition, the 

MS Bioworks analyst indicated that the sample was allowed to thaw at room 

temperature for 30 minutes, exposed to UV illumination, prior to analysis.  These steps 

may have led to decomposition of the sample and/or photodestruction of the fluorophore 

prior to analysis.  Therefore, LTQ FT mass spectrometry could be repeated using a 
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different collaborator or resource.  The fluorescently-labeled construct would have a 

mass of 16818.26 Da, a difference of 840.26 Da from His6-Survivin1-120.  Site-specific 

incorporation could be confirmed using tryptic digest followed by LTQ FT mass 

spectrometry.  

Taken together, although the current findings indicate that Survivin gene 

sequences for insertion of paF were correct, Survivin protein was overexpressed, 

arginine incorporation was minimal, and fluorescence data suggest that a protein had 

been fluorescently labeled, the objectives of chapter 3, to site-specifically fluorescently 

label the Survivin protein, remain unconfirmed.  Ascertaining that these objectives had 

been met would enable steady-state fluorescence intensity measurements of Survivin 

with histone-3 and fluorescence lifetime determinations of Survivin with histone-3 with 

more confidence than with the existing set of data and interpretations. 

 

6.3 General Considerations for the Utility of Fluorescence-based Approaches to 

Evaluate Survivin Protein-Protein Interactions 

 As was described in chapter 3, fluorescence-based approaches including steady-

state intensity, FRET, and fluorescence lifetime may be used to evaluate protein-protein 

interactions.  Depending on the objective of the experiment, it may or may not be 

necessary to site-specifically fluorescently-label the protein of interest.  When it is 

important to know the exact location of the fluorophore, site-specific labeling techniques 

such as genetic encoding or site-directed mutagenesis with unnatural amino acid 

incorporation followed by click chemistry may be utilized.  Because the protein of 

interest is labeled with a fluorophore, considerations should be made in the placement 
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and size of the fluorophore, as well as of the excitation and emission maxima of 

endogenous fluorophores in the protein of interest, the fluorophore, and of any other 

fluorophores that may be present in the experimental assay buffer or biological matrix.  

If a relatively large fluorophore such as green fluorescent protein (GFP) is used, this 

may alter the conformation of the protein to which it is fused, which may prevent proper 

association of the target protein with its binding partner(s).   

Additional considerations when selecting the fluorophore include fluorophore 

solubility, quantum yield, extinction coefficient, Stokes shift, factors that may affect its 

fluorescence lifetime (protonation state), and spectral overlap with potential donors and 

acceptors. 

 

6.4 Label-Free Approaches to Evaluate Protein-Protein Interactions 

Bio-Layer Interferometry 

 An alternative to fluorescence-based approaches to monitor protein-protein 

interactions is Bio-Layer Interferometry (BLI). This method relies on changes that occur 

in the interference pattern of white light upon protein binding.  Briefly, target protein is 

immobilized on a biosensor tip; molecules that bind the target protein will cause a 

change in the interference pattern.  These changes can be monitored as a wavelength 

shift.  Some advantages of BLI are that measurements and output are in delivered real-

time.  Although labeling of the protein of interest is not a prerequisite for BLI 

experiments, a variety of different biosensor tips are available including nickel-NTA tips 

for analyzing His-tagged proteins.  Each analysis uses a 4 microliter volume and 

because the platform rotates at 2000 rpm, the method is insensitive to changes in flow 
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rate and changes in the refractive index of the sample buffer.  In addition, the sample 

may not be irreversibly damaged during analysis.  A variety of analyses may be 

completed including identification of protein partner binding, identification of candidate 

protein-protein interaction inhibitors, and protein partner binding affinity.  Given the 

difficulty obtaining sufficient quantities of thrombin-cleaved Survivin protein and the 

advantages with BLI, it may be worthwhile to pursue BLI for the high-throughput 

screening of candidate Survivin-histone-3 protein-protein interaction inhibitors. 

Limitations of BLI include that the protein of interest may bind the tip in a 

conformation that is not physiologically relevant.  This could be assessed using a variety 

of different BLI tips and considering the use of a labeled protein target (such as a His6- 

tag and nickel-NTA BLI tip), positioning the label such that it would not hamper the 

target protein’s folding and conformation, and altering the concentrations of target 

protein used in each experiment.  In addition, non-specific binding of proteins to the BLI 

tip is also possible.  To evaluate the specificity of protein target binding to the tip, 

antibodies against the protein target may be applied, the specificity of which should 

already be known (evaluated by western blotting, for example): binding of the antibody 

to the protein on the BLI tip will elicit a shift in the interference pattern.  If the antibody 

does not bind the tip, this may suggest that the protein of interest is not bound to the BLI 

tip.  An alternative interpretation is that the antibody does not recognize the protein in 

the conformation that binds the tip, either because the target protein is improperly folded 

or the interface to which the antibody binds is obscured by a tag or by binding to the BLI 

tip.  Regarding the experimental conditions, the amount of salt and/or detergent should 

be considered in the buffer.  For protein-protein interactions that are governed by 
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electrostatics, such as that between Survivin, borealin, and inner centromere protein 

(INCENP) [Jeyaprakash, et al., 2007], salt content similar to that found in the 

intracellular mileu, ~150 mM [Lodish, 1999], would be ideal.  Excess salt within the 

buffer would likely interfere with Survivin binding borealin and INCENP. 

 

6.5 Analyses to Evaluate Clickable Chelator Synthesis 

Chapter 4 described efforts to synthesize a small molecule clickable lanthanide 

chelator.  Fluorescence-based and HPLC approaches yielded preliminary data that 

suggested that synthesis was successful, however, additional analyses are warranted.  

Specifically, small-molecule mass spectrometry data yielded peaks that corresponded 

to the clickable chelator as well as to the product of the copper-free click chemistry 

reaction between the clickable chelator and paF, the clicked chelator, however, the data 

contained many unassigned fragment peaks as well as substantial peaks from the 

matrix blanks, which precluded unequivocal assignment of the matrix and experimental 

sample peaks.  In order to obtain more reliable small-molecule mass spectrometry data, 

several strategies could be pursued, as described below. 

The current HPLC separation method utilized trifluoroacetic acid, which can 

suppress ionization [Balogh, 2009].  Potentially, replacement of trifluoroacetic acid with 

formic acid in the HPLC separation may improve mass spectrometry detection of the 

clickable chelator.  In addition, using the C18 stationary phase and the existing method 

(chapter 2), the clicked chelator exhibited a retention time of approximately 6 minutes 

and the clickable chelator exhibited a retention time of approximately 7 minutes.  

Increasing the difference between these two species’ retention times could improve 
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collection of single fractions containing each species; fractions submitted for mass 

spectrometry would then contain single species.  Strategies to increase the difference 

between these two species’ retention times may include varying the gradient, using a 

stepwise gradient, and/or altering the composition of the mobile phases used for 

separation.  If satisfactory separation is not achieved using the C18 stationary phase, it 

may be possible to utilize a different stationary phase such as phenyl (Ascentis, Sigma). 

In addition to modifications in the HPLC separation and fraction collection 

techniques, alternatives may be pursued in the choice of small-molecule mass 

spectrometry used. Compared to matrix-assisted laser desorption/ionization (MALDI), 

electrospray ionization (ESI) is more sensitive for studying molecules ~1 kD and 

smaller.  Therefore, it may be beneficial to analyze the submitted fractions and samples 

by ESI. 

An additional piece of information that would improve peak assignment of the 

clickable chelator is the mass spectra of DTPA and metallated DTPA.  Using MALDI, 

terbium-metallated DTPA yielded convoluted mass spectrometry data, with multiple 

peaks present and uncertainty regarding whether or not terbium remained chelated 

during analysis.  ESI mass spectrometry analysis of DTPA with and without terbium 

may yield improved mass spectrometry data.  In addition, mass spectrometry data 

obtained on DTPA metallated with different lanthanides may yield fragmentation 

patterns that provide insight on whether or not DTPA remains metallated during 

analysis.  The peak assignments that would result from these experiments may help 

peak assignments from analysis of the clickable chelator.  Possible outcomes of mass 
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spectrometry analysis of DTPA:lanthanide are based on the protonation state of DTPA 

and the masses of the chelated lanthanides:  

Unmetallated DTPA has a single pKa, at 1.8 [Moeller and Thompson, 1962].  

DTPA chelates lanthanide at a 1:1 molar stoichiometry [Moeller and Thompson, 1962] 

and metallation of DTPA with lanthanide yields 5 distinct pKa, 1.80, 2.55, 4.33, 8.60, 

and 10.58 [Moeller and Thompson, 1962].  At a pH of 5.5, at which the metallation and 

syntheses were performed (chapter 4), metallated DTPA would fluctuate between two 

species, carrying -3 or -4 charge.  The mass of fully protonated DTPA is 393.35 Da, so 

the masses of DTPA-3 and DTPA-4 are 390.35 and 389.35 Da, respectively.  The mass 

of terbium is 158.93 Da.  Therefore, the mass of metallated DTPA would be 552.28 Da 

(Table 6.3).  If terbium becomes dissociated during analysis and DTPA accepts a 

proton, other combinations of masses may be possible, as indicated.  If mass 

spectrometry yields a peak at 549.28 Da, this may suggest that the DTPA:Tb complex is 

intact.  If the mass spectrometry yields peaks at 158.93 Da and 390.35 Da, this may 

suggest that the lanthanide became unbound during ionization.  The mass of europium 

is 151.96 Da, so metallation of DTPA-3 with europium would yield a mass of 542.31 Da.  

If mass spectrometry of europium-metallated DTPA yields peaks at 151.96 Da and 

390.35 Da, this would corroborate the conclusion with terbium-metallated DTPA that the 

lanthanide becomes unbound during analysis.  A fragmentation event within the DTPA 

molecule may also yield peaks of different masses depending on whether or not the 

lanthanide remains chelated during analysis.  These and other interpretations should be 

considered if additional mass spectrometry analyses are performed.  Ultimately, it will 

be important to fully utilize the available mass spectrometry opportunities to determine 
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whether or not the synthesis of the clickable chelator and clicked chelator were 

successful.  

In addition, NMR analyses to evaluate the structure of the clickable chelator in a 

paF-containing 15N-backbone-labeled Survivin1-120 protein may provide additional 

information on copper-free click chemistry reaction success between the clickable 

chelator and paF-containing Survivin1-120.   

Taken together, the objectives of the efforts described in chapter 4 aimed to 

synthesize, using a two-step, aqueous synthesis, a small-molecule lanthanide chelator 

amenable to copper-free click chemistry-mediated incorporation into the target protein.   

Although the fluorescence and HPLC data suggested that the small-molecule chelator 

was synthesized and that the copper-free click chemistry reaction between the clickable 

chelator and the small-molecule paF were successful, the small-molecule mass 

spectrometry data were inconclusive.  In addition, the clickable chelator has yet to be 

incorporated into a paF-containing Survivin1-120 protein and NMR experiments are 

remaining, therefore the objectives of the aims described in chapter 4 were unmet. 
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Table 6.3: Masses of uncharged and charged DTPA species, terbium, europium, and of 
different DTPA species metallated with terbium or europium. 

DTPA
Mass 

(Da)

Terbium 

Mass (Da)

Complex 

Mass (Da)

Europium 

Mass (Da)

Complex 

Mass (Da)

uncharged 393.35 158.93 552.28 151.96 545.31

DTPA
-1 392.35 158.93 551.28 151.96 544.31

DTPA
-2 391.35 158.93 550.28 151.96 543.31

DTPA
-3 390.35 158.93 549.28 151.96 542.31

DTPA
-4 389.35 158.93 548.28 151.96 541.31
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6.6 Considerations for the Utility of Lanthanide Chelation in NMR Structure 

Determination 

 Optimizing Lanthanide Chelator Insertion 

Chapter 3 describes the use of the unnatural amino acyl tRNA synthetase to 

facilitate site-specific incorporation of the unnatural amino acid paF.  Optimization of the 

Methanococcus jannaschii (Chapter 2) bacterium, which encodes the tRNA synthetase, 

to modify unnatural amino acid recognition and retrieval has already been demonstrated 

for over seventy unnatural amino acids [Wang, et al., 2006, Xie, et al., 2007, Brustad, et 

al., 2008, Lee and Schultz, 2008].  Therefore, it may be possible to optimize insertion of 

the clicked lanthanide chelator (clicked chelator) into the protein of interest.  First, the 

clicked chelator synthesis and purification is completed ex vivo.  Next, translation of the 

protein of interest is performed in an Escherichia coli culture in the presence of the M. 

jannaschii tRNA synthetase that retrieves the clicked chelator, with clicked chelator 

added to the incubation medium.  This yields a protein with site-specific incorporation of 

the lanthanide chelator.  Using this strategy negates the need to perform copper-free 

click chemistry on the protein of interest, minimizing the risk of non-specific 

incorporation of the chelator to the protein.  If the tRNA synthetase can differentially 

select one stereoisoform of the clicked chelator, an additional advantage could also be 

that only one stereoisomer of the clicked chelator is retrieved for incorporation into the 

growing polypeptide chain.  To determine whether or not the clicked chelator may cross 

the bacterial membrane, fluorescence analyses may be performed on lysed bacterium 

to ascertain the presence of the clicked chelator, which possesses fluorescence 

emission unique from that of the culture medium and bacterium. 
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One drawback to this proposed genetic incorporation of the clicked chelator, 

however, is that the clicked chelator is approximately 1 kD and contains an 

incompressible moiety in the DTPA chelation of terbium, so the ribosome peptidyl 

transferase center and amino acyl tRNA synthetase would need to be large enough to 

accommodate the clicked chelator.  The risk of this approach is that many antibiotics 

including erythromycin (733.93 g/mol), telithromycin (812.03 g/mol), clindamycin 

(504.96 g/mol), and chloramphenicol (323.13 g/mol) are small molecules that block 

nascent polypeptide translocation through the bacterial ribosomal peptidyl transferase 

center or block the exit tunnel of the 50S ribosomal subunit [Dunkle, et al., 2010].  Using 

ChemDraw, the clicked chelator structure was rendered using correct bond angles and 

lengths (Figure 4.1); the approximate length of the clicked chelator that extends 

perpendicularly from the polypeptide backbone is 13 Å.  The approximate length from 

the central nitrogen in the triazole moiety to the carboxylic acids chelating the terbium is 

24.5 Å.  The approximate circumference of the chelated terbium is 33.8 Å.  Because the 

chelator moiety of the 1 kD clicked chelator is incompressible, the clicked chelator may 

not traverse the peptidyl transferase center without inhibiting polypeptide synthesis.   

Another consideration for this proposed approach is that it is not yet known 

whether or not the tRNA synthetase active site could accommodate the 1 kD size of the 

clicked chelator.  Optimization of the tRNA synthetase using degenerate primers and 

efforts used to incorporate the over seventy unnatural amino acids already published 

[Wang, et al., 2006, Xie, et al., 2007, Brustad, et al., 2008, Lee and Schultz, 2008] may 

be applied to optimization of the tRNA synthetase to accommodate the large size of the 

clicked chelator, however 1 kD may be beyond the capacity of the synthetase to 
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simultaneously 1) recognize and recruit the clicked chelator while 2) retaining ATP-

mediated charging of the tRNA with the clicked chelator.  For these reasons, it may be 

prudent to consider incorporation of a smaller unnatural amino acid. 

It is appealing to consider truncating the clicked chelator to a smaller molecule 

that still retains the ability to 1) chelate lanthanide and 2) be incorporated site-

specifically into the protein backbone.  This may be accomplished by incorporating a 

portion of the clicked chelator as an unnatural amino acid.  In this context, the smallest 

possible unit may be DTPA:Tb with the central carboxylic acid modified to an amide 

bond; this would facilitate incorporation into the growing polypeptide chain as the amino 

acid side chain is the DTPA:Tb construct.  This amidated DTPA:Tb construct thus 

becomes an unnatural amino acid.  Subsequently, tRNA synthetase optimization is 

performed using degenerate primers, as has been previously done with other unnatural 

amino acids [reviewed in Liu and Schultz, 2010] to generate a tRNA that retrieves the 

amidated DTPA:Tb lanthanide chelator for ribosomal insertion into the growing 

polypeptide chain. 

Regarding the possibility of unnatural amino acid-mediated direct incorporation of 

the lanthanide chelator into the target protein during translation, our analyses indicate 

that the clickable chelator retains terbium fluorescence during purification, suggesting 

that terbium remains chelated during synthesis and purification.  It is not known, yet, if 

terbium would remain chelated during protein translation or if it would be toxic to the 

bacterial culture.  Analysis of the fluorescence of the protein after overexpression and 

purification would yield information about whether or not terbium remained chelated 

during translation.  In addition, fluorescence and mass spectrometry analyses of the 
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resulting protein could yield information about whether or not the chelator had been 

incorporated with and without terbium.  

These two strategies facilitate direct incorporation of a small-molecule lanthanide 

chelator into the protein of interest.  They also negate the need to perform copper-free 

click chemistry on the protein of interest. 

 

Optimizing Chelator Rigidity  

Regarding lanthanide chelation, for NMR-based analyses, it is critical for the 

chelator to rigidly chelate the lanthanide to orient pseudocontact chemical shifts.  One 

strategy to facilitate rigid chelation is that of “caged” lanthanide incorporation, as was 

demonstrated with a DTPA derivative and cysteine reactivity [Prudêncio, et al., 2004].  

This approach, however, does not address the issue of non-specific cysteine reactivity 

and the potential consequences of cysteine insertion or mutation on the target protein’s 

tertiary structure.  Therefore, it may be beneficial to consider other alternatives. 

One strategy to incorporate a rigid chelator is to synthesize a chelator that 

contains bonds with low degrees of rotation.  To date, such a molecule does not yet 

exist that can be site-specifically incorporated into the protein of interest.  To fully 

harness lanthanide chelation and the pseudocontact chemical shift perturbation for 

structure determination, incorporation of a rigid small molecule lanthanide chelator 

without perturbing protein backbone or secondary structure is necessary; these 

properties may be mutually exclusive. 

The aforementioned strategies describe optimization of lanthanide incorporation 

for NMR-based structural analyses.  Lanthanides may also be employed for 
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fluorescence-based analyses.  The potential utility of lanthanide chelation in high-

throughput rational screening may also be considered. 

 

6.7 Lanthanide Chelation for Fluorescence Polarization-based Rational Screening 

Chapter 5 described the utility of fluorescence polarization-based rational 

screening to identify promising therapeutic candidates.  Currently, peptide binding 

partners of the protein target may be commercially synthesized and may include 

fluorophores such as carboxyfluorescein.  An alternative approach would be to 

synthesize peptides containing the unnatural amino acid paF, then perform copper-free 

click chemistry to adduct the clickable chelator to the peptide.  This process would yield 

a peptide containing site-specific lanthanide incorporation, which could then be utilized 

in fluorescence polarization-based screening analyses.  An additional application would 

be NMR-based protein-protein interaction studies where the lanthanide-labeled peptide 

is titrated into the 15N-backbone-labeled protein of interest to evaluate consequences of 

titration of peptide on target protein structure; these complementary approaches, 

fluorescence polarization and NMR, would yield valuable information with streamlined 

effort because the same proteins could be evaluated in multiple approaches.  Candidate 

molecules identified using fluorescence polarization may be applied to the protein in 

NMR-based structural analyses.  These NMR analyses could provide structural 

information about candidate inhibitor binding to disrupt the protein-peptide interaction 

from the fluorescence polarization screen.   
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Limitations of Fluorescence Polarization to Identify Candidate Protein-

Peptide Interaction Inhibitors 

Although fluorescence polarization-based analyses can be utilized to identify 

candidate protein-peptide interaction inhibitors and offers many advantages to 

alternative approaches, the methodology is not without limitation.  In addition to 

correcting for false positives and negatives, which add additional samples and expense, 

it may be difficult to procure pure protein in a physiologically-relevant conformation, in 

concentrations amenable to optimal signal:noise ratio of the experiment.  In addition, 

although it may be possible to monitor fluorescence of endogenous amino acids such 

as tryptophan, tyrosine, or phenylalanine in the peptide binding partner, these amino 

acids are likely present in the protein target as well, thereby precluding use of these 

amino acids’ fluorescence properties in fluorescence polarization.  An alternative to 

endogenous fluorophores in fluorescence polarization is exogenous fluorophores such 

as carboxyfluorescein, which can be incorporated during synthesis of synthetic 

peptides.  Peptide synthesis with and without fluorophore labeling can be quite 

expensive, costing thousands of dollars for approximately 15-amino acid-long peptides.  

As with other techniques that require labels, insertion or incorporation of a fluorophore 

into the peptide sequence may interfere with binding of the peptide to the protein target, 

so it is important to consider the location of the fluorophore within the peptide during 

synthesis and the potential consequences of peptide binding the protein target. 

Finally, the objectives of the experiments described in chapter 5, to establish a 

fluorescence-polarization-based high-throughput screening assay of candidate Survivin-

histone-3 protein-protein inhibitors, were unmet.  Specifically, analyses described in 
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chapter 5 to determine fluorescently-labled histone-3 peptide dissociation constant, 

binding specificity, and effect of DMSO, temperature, and pH used His6-Survivin1-120, but 

it was determined that fluorescently-labeled histone-3 peptide bound His6-Survivin1-120 

non-specifically.  It will also be important to evaluate the incubation time of the assay.  

In order to establish the HTS platform, the experiments may be performed using 

thrombin-cleaved Survivin1-120. 

 

6.8 Summary and Conclusions 

Fluorescence-based approaches including steady-state intensity, FRET, and 

fluorescence lifetime analyses to evaluate protein-protein interactions are useful 

indicators of local fluorophore environment.  An appreciation for each approach’s 

limitations and advantages is imperative for proper data interpretation; used correctly, 

fluorescent labeling of a protein of interest can be a useful technology that facilitates 

study of protein-protein interactions.  To this end, fluorescent labeling of the Survivin 

protein, an important anti-cancer target, was achieved coupling site-directed 

mutagenesis, unnatural amino acid insertion, and copper-free click chemistry.  These 

low-resolution fluorescence-based approaches may provide information about the 

fluorophore local environment that may complement structure determination methods 

such as x-ray crystallography and nuclear magnetic resonance spectroscopy.   

Expanding the utility of x-ray crystallography and NMR using lanthanide chelation 

is promising.  Current small-molecule lanthanide chelators originate from multi-step- 

organic syntheses that yield cysteine-reactive and other types of chelators that may or 

may not be site-specifically incorporated into the protein of interest.  Described in 



144 

 

chapter 4 is the 2-step aqueous synthesis of a small-molecule lanthanide chelator 

amenable to copper-free click chemistry-mediated site-specific incorporation into the 

Survivin protein.  Described within chapter 5 is a fluorescence polarization-based 

platform amenable to high-throughput screening of candidate protein-peptide interaction 

inhibitors. 

 The efforts of the experiments described in chapter 3 aimed to site-specifically 

label the Survivin protein with a fluorescent tag using copper-free click chemistry.  

Outstanding analyses include confirming synthesis of the paF-containing Survivin 

protein and the fluorescently-labeled Survivin protein using mass spectrometry.  Also 

outstanding are experiments determining the steady-state fluorescence intensity and 

fluorescence lifetimes of fluorescently-labeled Survivin with its binding partners.  The 

efforts of the experiments described in chapter 4 aimed to synthesize, using two steps 

and aqueous conditions, a small-molecule lanthanide chelator amenable to site-specific 

copper-free click chemistry-mediated incorporation into the Survivin protein.  The goals 

of the aim were unmet as the small-molecule mass spectrometry experiments need to 

be repeated to confirm synthesis of the chelator.  Additional outstanding experiments 

include clicking the chelator into a paF-containing Survivin protein and performing NMR 

experiments on Survivin with its binding partners.  Finally, the goals of the experiments 

described in chapter 5 aimed to establish a high-throughput fluorescence polarization 

screening assay to identify putative inhibitors of the Survivin-histone-3 protein-protein 

interaction.  The goals were unmet as the outstanding experiments include establishing 

fluorescence polarization assay robustness using thrombin-cleaved Survivin1-120 then 

performing the screening experiments. 
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Collectively, the efforts described herein were undertaken to springboard 

improved structure-aided drug design and rapid identification of therapeutic candidate 

molecules.  Although the protein target described within this dissertation, Survivin, is a 

promising anti-cancer target, the efforts to evaluate protein-protein interactions using 

these approaches could be applied to many different protein targets.  Targeting protein-

protein interactions is a promising strategy to expand therapeutic opportunities against 

proteins that are non-enzymatic and involved in many different intracellular pathways.  

Therefore, the efforts described herein have potential to expand therapeutic targeting 

beyond those of conventional approaches, offering hope for treatment of many human 

and animal diseases. 
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