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1. Introduction

In the fields of medicine and biomechanics, human motion 
analysis is used to extract quantitative and objective data to 
characterize a movement. Human motion analysis is now 
mainly based on optoelectronic systems measuring 3D coor-
dinates of reflective markers. But such systems suffer from 
two main drawbacks:

(1)  They are heavy systems, difficult to move to dif-
ferent places of experimentation.

(2)  Measurement is restricted to camera’s field of 
vision.

In this context, inertial measurement units (IMU) are a 
promising way to perform human motion analysis out of the 
lab, with no need for external devices.

However, IMUs do not measure directly the orientation 
but only acceleration, rotation rate, and magnetic field. These 
data have thus to be converted in order to estimate the orien-
tation. Moreover, IMUs designed for human motion analysis 
are based on MEMS technology which allows sensors to be 
cheap and small but which also induces noise and bias over 
the measurement.

In the literature, Kalman filtering is recognized as one of 
the best tool to perform data fusion from noised measure-
ment. The main idea is to combine the sensors measurement 
with a dynamic model that translates the time-behaviour of 
the state to be estimated.

However, there is no consensus on the structure of the 
algorithm and its settings. A critical point when implement-
ing a Kalman filter is the definition of the two covariance 
matrices that characterize mismodelling and input error 
from noisy sensors. There is no consensus in the literature 
on a method to define these covariance matrices, even if it 
is crucial since it can lead to inaccurate estimation as well as 
divergence and stability problems (Foxlin 1996).

The aim of this study is to provide a solution to identify 
input parameters that optimize orientation estimation.

2. Methods

In order to identify the optimal set of parameters for inertial 
measurement, we used an optoelectronic system as a refer-
ence. Both systems recorded simultaneously the orientation 
of an object moved by hand.

2.1. IMU processing

In this study, the orientation was successively computed from 
three IMUs (Opal sensors, APDM, Portland, OR). Sensors 
data (triaxial accelerometers, gyroscopes and magnetome-
ters) were collected at 128 Hz and fused in a custom Kalman 
filter.

As the measurement model that relates sensors data to the 
orientation (expressed as a quaternion) is non-linear, we built 
an Extended Kalman Filter (EKF). To facilitate quaternion com-
putation and to lighten the state vector, we privileged a mul-
tiplicative indirect Kalman structure (Trawny & Roumeliotis 
2005). The state vector was augmented with gyroscopes bias 
whose behaviour was modelled as a random walk. Rates of 
rotation were thus corrected before the numerical integration.

2.2. Gold standard measurement

In order to assess the accuracy of IMU estimation, we used an 
optoelectronic measurement (VICON system, 20 cameras, 
250 Hz) considered as the gold standard in biomechanics. 
The object of interest, initially equipped with an IMU, was 
thus fitted with five reflective markers (Figure 1).

2.3. Imposed movements

As the parameters to be identified characterise sensor errors 
that are not taken into account by calibration (like non-line-
arity, hysteresis or g-sensitivity), it can be envisaged that their 
values depend on the nature of the movement. In this study, 
movements were imposed by hand at three different levels 
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law that link the optimal values for these two parameters. 
Then, when looking at the influence of magnetometers, the 
surface leads generally to an optimal point.

Figure 2 shows that a bad parameter choice can induce 
a huge error (up to 60° for this movement), the proposed 
protocol is thus essential. For the three tested sensors, the 
optimal parameters lead to errors of about 1.5°, 3° and 13.5° 
for slow, intermediate and rapid movements respectively.

It should be kept in mind that the rapid movement cor-
responds to the worse conditions that could be faced in a 
real human task: very intensive motion with no rest period. 
Common movements are generally a mix of accelerations 
and rest periods (like stance and swing phases during gait) 
which allows gyroscopes bias to be frequently corrected. 
These results are thus acceptable for most of the studied 
human motions.

4. Conclusions

The presented method gives a solution to identify the optimal 
covariance matrices values for Kalman filtering. Moreover, 
the proposed visualization of the error allow to better ‘see’ 
many parameters influence on the algorithm behaviour.
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of intensity during ten minutes. The Table 1 lists the main 
kinematic characteristics of these three imposed movements.

2.4. Parameters identification

The 3 IMUs were tested at the 3 levels of intensity previously 
defined. The experimentation was repeated 3 times during 
3 consecutive days.

The process Q and measurement R covariance matrices 
can be defined as follows:

 

 

From this assumption, σg, σa and σm, that denote respectively 
the gyroscopes, accelerometers and magnetometers measure-
ment error, are the three parameters to be identified.

After selecting a set of ten values per parameter, the orien-
tation were computed by the Kalman filter for the thousand 
possible combinations. Each time, the RMS of the error cal-
culated with respect to the optoelectronic measurement was 
calculated as follows:

 

 

The error can thus be represented on a graph as a surface 
against σg and σa. Then, the effect of the magnetometers on 
the error can be seen by scrolling the graph for the different 
values of σm. Finally, the optimal set of parameters can be 
identified at the minimal error point.

3. Results and discussion

Common results lead to a valley when representing the error 
against σg and σa (Figure 2). There is thus a proportionality 
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Figure 1. object equipped with both an imu and five reflective 
markers.

Table 1.  main kinematic characteristics of the imposed move-
ments.

Intensity Slow Inter. Rapid
acceleration (g) 0.03 ± 0.02 0.7 ± 0.5 4 ± 2
rate of rotation (deg/s) 40 ± 20 300 ± 150 700 ± 400 Figure 2.  rms of the error against accelerometers and 

magnetometers uncertainties.
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