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DISSERTATION ABSTRACT

Nirmal Raj

Doctor of Philosophy

Department of Physics

June 2015

Title: Dark Matter and Supersymmetry in the LHC Era

We report investigations of physical possibilities beyond the Standard Model,

performed in the years between Runs I and II of the Large Hadron Collider (LHC).

First, we explore the feasibility of using a hadron collider to unmask hidden

sectors by means of a novel signal, the “monocline”. Dilepton production provides

the cleanest channel to anticipate a monocline. A compelling sector to seek is dark

matter with scalar messengers coupling it to standard fermions. We present current

bounds from dilepton spectrum measurements at the LHC and make predictions

for sensitivities at Run II of the LHC as well as at a future 100 TeV collider.

Second, we corner the space of parameters of supersymmetric frameworks with

an appreciable Yukawa coupling between the Higgs fields and a gauge singlet, the

so-called Fat Higgs and λ-SUSY models, in the context of the discovery of the

125 GeV Higgs particle. These models are motivated by their alleviation of the

electroweak fine-tuning that supersymmetry breaking entails, via raising the tree-
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level quartic coupling Higgs boson. Heavy Higgs scalars that couple strongly to

the standard Higgs boson induce large radiative corrections to the Higgs quartic

coupling, which is crucial to phenomenology; in particular, a very large ratio of the

Higgs VEVs (tan β), that was previously presumed unfavorable in these models,

becomes viable and can be probed by future experiments. In such regions, the

most stringent limits come from dark matter constraints on the lightest neutralino.

Finally, we place limits on colored scalar production at the LHC in supersymmetric

models where gauginos acquire both Dirac and Majorana masses, that we call

“mixed gauginos”. While it was known that purely Dirac gluinos were less

constrained by LHC searches than their purely Majorana counterparts, we find

that the constraints further weaken or strengthen depending on which of the

“mixed” colored fermions acquires a Majorana mass. Also explored are the effects

on squark production of turning on Majorana masses for electroweak gauginos.

This dissertation consists of previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

The discovery of the long-awaited Higgs boson at the Large Hadron Collider

(LHC) in 2012 is a spectacular triumph of science. It sealed the Standard Model

(SM) of particle physics as a robust framework for accurately describing all

microscopic phenomena observed to date.

Yet the Standard Model cannot be the final theory of Nature. Tellingly, it

does not explain the mechanism behind electroweak symmetry breaking (EWSB),

the very phenomenon that motivated the SM’s original formulation [1]. The SM

only succeeds in providing a renormalizable theory for EWSB at low energies (long

distances). As we shall see soon, this is one of the numerous instances of the SM

being a descriptive theory of effects at long distances as opposed to a predictive

theory of causes at short distances – in short, the SM is an effective theory.

Furthermore, it fails to accommodate some simple empirical observations:

• Dark matter. It is by now well-established that four-fifths of the universe’s

matter content is uncharged, uncolored and non-baryonic. The SM does not

provide a candidate for dark matter consistent with its known properties.

• Matter-antimatter asymmetry. There is an enormous imbalance in the number

of baryons and antibaryons in the observable universe. If this asymmetry was
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triggered primordially by a process of baryogenesis, the SM accounts for it

very inadequately.

• Flavor puzzle. Matter comes in three generations with peculiar patterns of

masses and mixings. Neutrinos are severely light. The origin of CP-violation

is unknown. It is not observed in the strong sector, though theoretically

allowed. The SM does not inform the reasons behind these.

These shortcomings alone warrant the need for new physics beyond the Standard

Model (BSM). The energy scales at which we tend to look for BSM physics is

suggested by yet another problem with the SM, a psychological one:

• Hierarchy problem. Chiral symmetries and gauge invariances forbid fermions

and vectors respectively from acquiring masses in the unbroken electroweak

phase. No such forbidding symmetry exists for the scalar Higgs field.

Consequently, it is unprotected against quantum corrections from new scales

of physics. Denoting such a cutoff scale by ΛNP and assuming the Higgs

couples to some fermion with strength λ ∼ O(1), the correction to the bare

Higss mass, by simple dimensional analysis, is

µ2
obs = µ2

bare +
λ2

16π2
Λ2

NP . (I.1)

Hence we say that the Higgs mass is quadratically sensitive to high cutoff

scales. In the SM, the largest corrections come from the top quark, with

λ ≃ 1. The observation of the physical Higgs boson at 125 GeV fixes µ2
obs =
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−(89 GeV)2. If the EWSB scale is separated by many orders from ΛNP, µ
2
bare

must be extraordinarily fine-tuned against it to give the right size of µ2
obs (for

instance, if ΛNP is the Planck scale, this fine-tuning is one part in 1034). It

then offends the principle of naturalness [2] — the vast hierarchy between the

electroweak and the high cutoff scales appears to be maintained by unnatural

means [3, 4, 5, 6].

Short of accepting this fine-tuning as a fundamental construct of reality

and/or invoking the anthropic principle, one could potentially explain it by

two arguments. One, it might be that there are no new scales of physics. This

is to say that couplings in the ultraviolet may be scale-invariant and gravity

at the Planck scale may be described by something other than quantum

fields. Two, some sort of symmetry protects the Higgs mass in the ultraviolet.

This automatically necessitates an extension of the SM to accommodate new

partner fields. µ2
bare is now quadratically sensitive to the scale at which these

parners lie. To keep the fine-tuning to acceptable values, say 1-10%, their

masses must be of the order of a TeV.

The TeV scale, also called the weak scale (since it separates the unbroken and

broken regimes of electroweak symmetry), is capable of addressing several issues of

particle physics simultaneously. Fortunately, it is within the reach of present-day

and near-future colliders. And thereby hang the hopes of a major discovery inside

our lifetimes.
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This dissertation considers BSM models that deal with dark matter, mentioned

above, and with supersymmetry, a remedy for many of the Standard Model’s ills.

The rest of the introduction provides a brief survey of these two themes and will

motivate their searches at the weak scale.

Dark Matter

There is growing evidence that roughly 80% of the matter content of the

universe, accounting for a quarter of its energy budget, is non-luminous and

non-absorptive, viz., dark. Therefore, its constituent particles are most likely

electrically neutral. Since all the testimony to its existence (as we shall outline

shortly) is gravitational in nature, we understand it has mass. And since no decay

of dark matter has been observed, it must be stable on cosmological timescales.

It is unlikely that dark matter is built of baryons. We infer so from three

disparate observations: (1) measurements of the cosmic microwave bacground

(CMB) indicate that dark matter has little non-gravitational interaction with

visible matter and radiation [7], (2) the negative results of searches for gravitational

microlensing from dark compact objects hint that they can make up only a small

fraction of the dark matter in our galaxy [8, 9, 10], (3) the large-scale structure

of the universe implies that its matter density is 30% of the critical density [11];

however, Big Bang nucleosynthesis predicts that baryons make up only 5% of the

same [12].

4



The large-scale structure is an indicant of the velocity dispersion of dark

particles. Simulations with O(109) of them suggest that, to be consistent with the

observed structures, these particles must be non-relativistic [13]. For this reason,

and because most theoretical candidates are naturally non-relativistic in the early

universe, cold dark matter is the best studied and searched-for model of dark

matter.

Despite this accumulation of knowledge of dark matter’s character, its

microstructure is a mystery. Physicists have constructed a myriad of models

satisfying its conditions, with candidates ranging from Weakly Interacting Massive

Particles (WIMPs), axions, sterile neutrinos to primordial black holes, to name a

few. There have also been alternative theories to explain early anomalies, most

notably modifications of gravity such as Modified Newtonian Dynamics (MOND).

These models have suffered considerable disadvantage since experimental cosmology

entered its era of precision in the 1990s. This section, and Chapters II and III, will

focus on a particulate explanation – WIMPs.

The rest of this section is organized as follows. We first enumerate the evidences

for dark matter, followed by a discussion of thermal relics, in particular WIMPs.

We then conclude with a presentation of the experimental status of WIMP searches.

Evidence

All the evidence amassed in favor of the existence of dark matter has been
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Figure 1.1.: Angular power spectrum of the CMB anisotropies measured by Planck

(Fig. 1 from Ref. [7]). The heights and locations of the peaks provide information

about cosmological parameters. The best theoretical fit is provided by a model

with cold dark matter and the cosmological constant, known as ΛCDM.

through its gravitational interaction with ordinary matter. We collect some salient

ones here, not necessarily in historical order.

• In increasing order of precision, the COBE, WMAP and Planck satellites

measured the angular power spectrum of thermal anisotropies in the CMB

to extract information about the early universe. Fig. 1.1. shows the latest

results by Planck. The relative amplitudes of the peaks and their locations
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are used to fit the parameters of specific models of cosmology. The best fit

overwhelmingly favors cold dark matter.

• Gravitational lensing effects by galaxy clusters enable the observation of

objects that would otherwise be hidden in the background. From multiple

images near the cluster core (strong lensing) and shape distortions at the

outer edges (weak lensing), several cluster masses have been measured. These

measurements demonstrate that clusters contain far more invisible mass than

the mass of the visible galaxies and gas .

• In the high-velocity merger of the Bullet Cluster 1E0657-56, it is observed

that X-ray-emitting hot gas lags behind the subcluster galaxies. This is

inferred from weak-lensing maps, which reveal that most of the mass has

passed through the collision and now lies ahead of the gas (which is being

slowed down by electromagnetic forces). This empirical observation is often

touted as the best current evidence of dark matter and rules out many popular

models of MOND. As of March 2015, a total of 72 colliding galaxy clusters

have been observed with the above features. See [14].

• The existence of dark matter was historically inferred from anomalous speeds

of luminous objects in the sky such as globular clusters, galaxies, gas clouds

and stars. Galactic rotation curves are a celebrated example of this category.

The rotational velocity v of an object orbiting the centre of a galaxy at a
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Figure 1.2.: A typical galaxy rotation curve. The dashed curve is what one would

expect from Keplerian dynamics, as explained in the text. The solid curve is what

is usually observed, suggesting that most of the galaxy’s mass in invisible and

contained in a halo. This figure is taken from https : //goo.gl/HBqv3l.

radius r, with a galactic mass M(r) inside the orbit, is v(r) ∼
√
M(r)/r.

This should lead to the “Keplerian decline” tracked by the dashed curve in

Fig. 1.2., which shows the rotation speed of stars in a typical galaxy as a

function of orbital radius. Instead, measurements find that in most galaxies

v(r) scales as a constant at large r, as shown by the solid line, a “flat rotation

curve”. This suggests the existence of missing mass, packed in a dark halo of

mass density ρ(r) ∼ 1/r2.

Thermal Relics

We provide now a brief overview of some thermodynamical aspects of the

formation of relics from the Big Bang and the process of dark matter freezeout

in special relation to WIMPs.
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From a thermal point of view, primordial particle species may be classed in

two manners: (i) relativistic or hot and non-relativistic or cold, (ii) particles in

equilibrium and particles out of equilibrium. A species of mass m at a temperature

T is hot if T ≫ m and cold if T ≪ m. A species A is said to be in thermal

equilibrium if the rate of its forward reactions, say its annihilation into various

species Z in the thermal bath, AA → ZZ, matches the rate of the backward

reactions ZZ → AA. If for some reason the population of A dilutes, the forward

process grows rarer, and sustaining equilibrium may be unachievable. These

particles then decouple from the ambient plasma.

The rate of interaction of A is given by ΓA ∼ nA · σ · v, where nA is its number

density, σ its cross-section of interaction and v its typical velocity. The number

density falls with the expansion of the universe (nA ∼ 1/a3, where a is the scale

factor) and may eventually drop below the requirement for equilibrium; for instance,

the visible matter of today is no longer in equilibrium with the background plasma,

now made of CMB photons. Occasionally, though, a species may quit equilibrium

suddenly, a phenomenon called freezeout. This process we will inspect closer in the

non-relativistic regime, since it bears directly upon cold dark matter.

The evolution of the number density nχ of dark matter χ in the early universe

is governed by the Boltzmann equation

dnχ
dt

= −3Hnχ − 〈σannvrel〉(n2
χ − n2

eq), (I.2)

where H is the Hubble parameter, neq is the equilibrium number density, σann is the
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annihilation cross section of, and vrel the relative velocity between, two χ’s. The

angular brackets imply thermal averaging. From quantum statistics, one finds that

neq ∼ T 3 when χ is relativistic (T ≫ mχ). When non-relativistic (T < mχ), neq ∼

(mχT )
3/2 exp(−mχ/T ), reflecting that χ’s abundance is exponentially suppressed

with respect to other species, a consequence of the difficulty of producing χ pairs

from the thermal bath.

The evolution in I.2 can be understood in three regimes. (i) At T ≫ mχ,

nχ follows neq closely: χ is in equilibrium with the visible sector through χχ →

ff , where f denotes any Standard Model field. (ii) Once the temperature drops

below mχ, the population density plummets exponentially but χ manages to stay

in equilibrium. (iii) The rate of expansion of the universe eventually exceeds the

interaction rate of χ, at which point it goes out of equilibrium, its abundance

freezing out to a fixed value. These three regimes are depicted in Fig. 1.3., which

plots the co-moving number density of χ against X ≡ mχ/T , a measure of time.

The solid curve traces the equilibrium number density. The dashed lines depict the

number density of the thermal relic that is frozen out, with increasing cross sections

resulting in smaller abundances.

The exact point of freezeout can be obtained from the full solution to the

Boltzmann equation, which requires numerical integration. However, we can gain a

qualitative, albeit accurate, understanding by the following approximation. First,

recognizing that in the radiation-dominated era the energy density of the universe
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Figure 1.3.: An illustration of dark matter freezeout (Fig. 5 in Ref. [17]). The

solid curve depicts the equilibrium number density. The dashed curves depict the

number density of the thermal relic, with increasing cross sections resulting in

smaller abundances.

scaled as ρ ∼ T 4, we obtain the Hubble constant from the Friedmann equation as

H ∼
√
ρ

MPl

∼ T 2

MPl

, (I.3)

where MPl is the Planck scale. We then solve for Xf ≡ mχ/Tf at freezeout by

equating the interaction rate of χ with the expansion rate of the universe:

Γann ∼ H

⇒ nχ〈σannvrel〉 ∼
T 2
f

MPl

⇒
(
m2
χ

Xf

)3/2

e−xf 〈σannvrel〉 ∼
m2
χ

X2
fMPl

⇒ Xf ∼ log
(
mχ〈σannvrel〉MPl

√
Xf

)
(I.4)
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Xf is seen only to be logarithmically sensitive to the properties of χ. Plugging

in typical values for mχ (∼ 100 GeV) and 〈σannvrel〉 (∼ 10−26cm3/s), one simply

obtains Xf ≃ 25, which clearly shows that dark matter emerges already cold/

non-relativistic at the point of decoupling from the plasma.

The current mass abundance of the thermal relic χ, usually given as a fraction

of the critical density ρχ/ρcrit, is given by

ΩDMh
2 ≃ const.

T 3
today

M3
Pl

≃ 0.1
3 · 10−26cm3/s

〈σannvrel〉
(I.5)

where Ttoday is the current CMB temperature. Roughly, σann ∼ g4χ/m
2
χ by

dimensional analysis, where gχ is the interaction strength of dark matter. If DM

is a freezeout particle, we must have 〈σannvrel〉 ∼ 3 · 10−26 cm3/s to obtain the

observed relic abundance, ΩDMh
2 ≃ 0.1.

Theoretical efforts to understand weak interactions (like supersymmetry or

Little Higgs models) typically introduce new states at the weak scale, with

interactions of electroweak strength. These states are referred to as Weakly

Interacting Massive Particles (WIMPs). Strikingly, if we admit dark matter to be

part of the WIMP program, with mχ ∈ [10, 1000] GeV and gχ ∈ [0.1, 1], we obtain

〈σannvrel〉 ∼ 3 · 10−26 cm3/s. This is the same figure obtained from Eq. I.5, with

the quantities Ttoday and MPl! Therefore, WIMPs gratify both particle physics and

cosmology, and direct both to the same meeting point of dynamics (couplings) and

kinematics (masses) for discovery prospects, a coincidence known in the literature
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as the “WIMP miracle”. The lightest neutralino of a supersymmetric model is the

quintessential WIMP.

WIMP Searches

Searches for WIMPs proceed on three broad fronts – direct, indirect and collider

searches 1. These can be roughly depicted by the diagram in Fig. 1.4.. The principle

of direct searches is to let WIMPs scatter off SM particles, generally nucleons, and

study the resultant recoil. These experiments will be used to constrain the models

discussed in Chapters II and III, and will be the focus of this section. Indirect

searches avail the present-day annihilation of WIMP pairs to measure the energy

spectra of such end-products as gamma rays, neutrinos, anti-electrons and anti-

protons. Collaborations in this line include Fermi LAT (γ), SuperKamiokande and

IceCube (ν), and PAMELA and AMS02 (e+, p+). Collider searches work in the

opposite direction. Dark matter is created from SM particles and its properties

sought with signatures involving large missing energy in events. The current best

limits are provided by the two LHC collaborations, ATLAS [15] and CMS [16]. In

general, the above three strategies probe the parameter space of WIMP models in

complementary regions.

The typical velocity v of WIMPs inhabiting the Milky Way orbiting the galactic

center is 0.75 × 10−3c near the Solar System. If they scatter off atomic nuclei,

the nuclear recoil energy m⊙
χ v

2/2 (where m⊙
χ is the WIMP-nucleus reduced mass)

1These are sometimes referred to as “shake it, break it, make it”.
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Figure 1.4.: A rough depiction of WIMP searches. The three strategies usually

complement each other in WIMP parameter space. This picture is taken from a

talk by Pearl Sandick at PHENO 2014.

would be of order [10−6, 10−4] GeV for WIMP masses ∈ [10, 104] GeV. Direct

searches are geared to detect WIMPS in this range of recoil energies. Detectors

are conventionally made of pure semiconductor or a heavy noble gas. To minimize

backgrounds from cosmic rays and natural radioactivity on the Earth’s surface, the

experiment is carried out in a subterranean laboratory.

The rate of WIMP-nucleon interaction is

ΓχN = cross section · local WIMP flux

= σχN · nχv

=

(
σχN
mχ

)
ρχv (I.6)

The mass density ρχ is 0.39 GeV cm−3 and v is predicted by taking a Maxwellian
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distribution of WIMP velocities. The limits are then presented as contours in a

σχN−mχ plane, assuming elastic scattering and that WIMPs interact with protons

and neutrons roughly equally. Since the WIMPs are non-relativistic, spin must

be factored in; spin-dependent and spin-independent WIMP currents lead to very

different nuclear responses and hence distinguished.

At low WIMP masses, small recoil energies cut down the number of events

that pass detector thresholds. At high WIMP masses, we see from Eq. I.6 that

ΓχN ∝ m−1
χ (from which one expects σχN to scale as mχ in the exclusion contours).

Both these factors weaken the sensitivity of a search. The maximum sensitivity is

achieved for mχ ≃ mass of the nucleus. These features are reflected in Fig. 1.5. that

shows the 90% C.L. exclusion limits provided by LUX [18], who set the current best

bounds on spin-independent direct searches at the end of 85.3 live-days. Similar

features are seen in the results of earlier collaborations.

We close with a final remark on direct detection experiments. The techniques

above cannot be continued arbitrarily, as they may eventually encounter an

irreducible neutrino-induced background (the “neutrino floor”). It has been

computed that these experiments, thanks to this background, become insensitive

to WIMPs scattering below a cross-section of [10−45, 10−49] cm3/s for mχ ∈

[10, 100] GeV[19].

15



m
WIMP

 (GeV/c
2
)

W
IM

P
−

n
u
c
le

o
n
 c

ro
s
s
 s

e
c
ti
o
n
 (

c
m

2
)

10
1

10
2

10
3

10
−45

10
−44

 6 8 10 12

10
−44

10
−42

10
−40

Figure 1.5.: The latest bounds on WIMP detection provided by LUX (Fig. 5 from

Ref. [18]), indicated by the blue curve. Also shown are earlier limits set by other

collaborations. The shape of the curves is explained in the text.

Supersymmetry

Coleman and Mandula [20] in 1967 reported and proved a series of no-go

theorems that forbade fields from having their spacetime coordinates and internal

quantum numbers transformed simultaneously. That is, a symmetry group SG of

the S-matrix can only be a direct product of the Poincaré group and an internal

symmetry group. This statement presumed that particle statistics was preserved

in the transformation under SG. Six years later, Wess and Zumino [21] identified

a Lagrangian that respected what they named supergauge invariance, a symmetry

that provided a link between the fermions and bosons of the theory. The next year,
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Haag, Lopuszański and Sohnius [22] generalized the Coleman-Mandula theorem to

include supergauge invariance, which had by then been renamed supersymmetry.

Supersymmetry (SUSY) was initially pursued by theorists for its aesthetic value.

In time, it was discovered to carry powerful phenomenological merits as well. Chief

among them are –

• Its symmetry serves as a custodian of the electroweak scale against corrections

from large UV cutoffs, greatly mitigating the fine-tuning discussed earlier

[23, 24, 25, 26, 27].

• Sometimes advertised as an indirect evidence of weak scale supersymmetry,

it provides the right number of new degrees of freedom (superpartners) to

redirect the running of the three gauge couplings and successfully enable their

unification at a high scale [28, 26, 29, 30, 31].

• A class of models that conserves R-parity can provide a viable candidate for

cold dark matter that may be discovered at the weak scale [32, 33].

While it settles some hefty issues, SUSY may be accompanied by problems of its

own. The simplest supersymmetric extensions of the Standard Model reintroduce a

residual fine-tuning between the electroweak and superpartner scales; they predict

a Higgs boson mass that is too low at tree level; they generically predict rapid

decays of protons and large flavor-changing neutral currents, both of which are not
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observed. For a more detailed discussion of the problems of supersymmetry, see

[140].

In the rest of this section, we present the essentials of building a supersymmetric

model, making use of the language of superfields. This is followed by a discussion of

soft SUSY-breaking. Next, we apply these two topics to a minimal supersymmetric

extension of the SM. We then conclude with the current status of searches for

superpartners.

Lagrangians

For a pedagogical review of SUSYmodel-building, I recommend A Supersymmetry

Primer by S. Martin [140] – who also enlarged on it in his TASI 2011 lectures

[35] – and the textbooks Weak Scale Supersymmetry by X. Tata and H. Baer, and

Theory and Phenomenology of Sparticles by M. Drees, R. M. Godbole and P. Roy.

A supersymmetric transformation continuously transmutes the fermions and

bosons of a theory, and a supersymmetric theory is one in which the transformation

leaves the action invariant. Implicit in this statement is the assumption that

the fermionic and bosonic degrees of freedom (DOFs) are equinumerous — an

assumption worth testing.

Imagine a simple theory with a complex scalar φ(x) and a Weyl fermion ψa(x),

both massless. The index a (= 1, 2) is a left-handed spinor index; in the following,

a dotted index would denote a right-handed spinor index. When off-shell, φ(x)

has two DOFs, a count that does not change when the scalar goes off-shell, with
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the DOFs now associated with the polarization states. On the other hand, as

it is complex and contains two components, ψa(x) has four DOFs off-shell. On-

shell, its canonical conjugate momentum π(x) ∼ ψ†
ȧ(x), eliminating two DOFs. In

summary, the number of fermionic and bosonic DOFs are equal on-shell but not

off-shell. Fortunately, we may mend this mismatch by introducing a scalar field, F ,

such that it has the customary two DOFs off-shell, but has no dynamical evolution

so that it vanishes on-shell: F = 0. Such a non-propagating field – an auxiliary

field – is an essential ingredient of all supersymmetric theories and is paramount to

our (limited) understanding of supersymmetry breaking mechanisms, an instance

of which occurs in the introductory passages of Chapter IV.

The Lagrangian for our simple theory, known as the Wess-Zumino model [21]

can now be written as

L = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F. (I.7)

One then imposes the following set of supersymmetric transformations mapping

bosonic fields to fermionic, and vice-versa:

δφ = ǫψ, δφ∗ = ψ†ǫ†;

δψα = −i(σµǫ†)α∂µφ+ ǫαF, δψ†
α̇ = i(ǫσµ)α̇∂µφ

∗ + ǫ†α̇F
∗;

δF = −iǫ†σµ∂µψ, δF ∗ = i∂µψ
†σµǫ. (I.8)

Here, ǫα, the infinitesimal parametrizer of the continuous transfomations above, is a

Weyl spinor – the hallmark of supersymmetry. It can be seen that applying Eq. I.8
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to Eq. I.7 fetches us an infinitesimal shift in the Lagrangian given by

δL = −∂µ
(
ǫσνσµψ ∂νφ

∗ + ǫψ ∂µφ∗ + ǫ†ψ† ∂µφ
)
, (I.9)

which, being a total derivative, gives a vanishing surface integral in the action S =
∫
d4x L. Therefore, the shift in the action δS = 0; in words, the supersymmetric

transformations have left the action invariant under them. A set of fields {φ, ψ, F}

whose SUSY transformations leave the action thus invariant is known as a chiral

supermultiplet. Similarly, a vector supermultiplet is one that contains a vector

boson, its fermionic superpartner and a corresponding auxiliary field for matching

their off-shell DOFs.

The Lie algebra of a supersymmetry contains anticommutators in addition to

the usual commutators. The supersymmetric algebra is

{Qα, Qβ} = 0, {Q†
α̇, Q

†

β̇
} = 0,

{Qα, Q
†
α̇} = −2σµαα̇Pµ,

[Qα, Pµ] = 0,
[
Q†
α̇, Pµ

]
= 0 (I.10)

where Qα and Q†
α̇ are (spinorial) generators of supersymmetry transformations.

From the last line of the algebra it can be seen that

[Qα, P
2] = [Q†

α̇, P
2] = 0 (I.11)

It then follows that the component particles of a supermultiplet must have the same

mass.
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Our discussion has hitherto been confined to a free theory. Interactions quickly

complicate the picture. It can be rigorously shown that for an ensemble of chiral

supermultiplets (distinguished by the label i), the only masses and interactions that

preserve supersymmetry are

L = −1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j − 1

2
λijkφiψjψk −

1

2
λ∗ijkφ

∗iψ†jψ†k − V (φ, φ∗);

V (φ, φ∗) =M∗
ikM

kjφ∗iφj +
1

2
M inλ∗jknφiφ

∗jφ∗k

+
1

2
M∗

inλ
jknφ∗iφjφk +

1

4
λijnλ∗klnφiφjφ

∗kφ∗l, (I.12)

where one has eliminated the auxiliary fields Fi for dynamical fields. Notice

that the fermion-fermion-scalar coupling strengths reappear in the scalar trilinear

and quartic couplings in the scalar potential V (φ, φ∗). It is always true that,

in a supersymmetric theory, the scalar potential is determined entirely by the

interactions outside it. This is a feature unique to supersymmetry – it arranges

relations between fermions and bosons not only in their masses, but also in their

interactions.

Given a set of fields and internal symmetries (both global and local) of a theory,

it can become cumbersome to employ Eq. I.12 to determine all its supersymmetric

interactions. The situation only complicates when it is necessary to identify

interactions allowed by gauge invariances. It would be exceedingly convenient to

have a formalism by which the components of a supermultiplet can be grouped

together into a single object such that SUSY transformations are implicitly taken

21



care of. In other words, one should like to characterize a supermultiplet in a

manifestly supersymmetric fashion.

A superfield is just such an entity. A chiral superfield, for example, is one in

which the components of a chiral supermultiplet are embedded:

Φ = φ +
√
2θψ + θθF ,

Φ∗ = φ∗ +
√
2θ†ψ† + θ†θ†F, (I.13)

where θα, θ
†
α̇ are constant Weyl spinors of mass dimension -1/2, constituting the

fermionic coordinates of a manifold called superspace. The bosonic coordinates of

superspace are the usual spacetime coordinates xµ. A translation in superspace

amounts to a supersymmetry transformation, and hence this formalism gives the

concept of supersymmetry a simple geometric interpretation, reminiscent of Wilson

lines and Wilson loops vis-a-vis gauge transformations.

A vector superfield is defined simply as a superfield that is real. In the Wess-

Zumino gauge, a general vector superfield can be written as

V (x, θ, θ†) = θ†σµθAµ(x) + θ†θ†θλ(x) + θθθ†λ†(x) +
1

2
θθθ†θ†D(x), (I.14)

where Aµ(x) is a vector field, λ(x) is its superpartner fermion and D is an auxiliary

field required to match the number of off-shell DOFs of Aµ(x) and λ(x).

If the theory is gauged, could one embed quantities invariant under the gauge

transformations in a field strength superfield? Consider the components of V in

Eq. I.14 in a simple Abelian theory. The gauge-invariants one can construct from
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them are the usual field strength F µν , the quantity (σµ∂µλ
†)α, and the fermion λα

and the scalar D by themselves. One can collect them in a field strength superfield

as

Wα = λα + θαD +
i

2
(σµσνθ)αFµν + iθθ(σµ∂µλ

†)α,

W†
α̇ = λ†α̇ + θ†α̇D − i

2
(σµσνθ†)α̇Fµν + iθ†θ†(σµ∂µλ)α̇ (I.15)

Observe that Wα is a chiral superfield. The mass dimensions of Φ, V and Wα

can be read off as 1, 0 and 3/2 respectively.

One now has all the ingredients for setting down a general supersymmetric

Lagrangian. Given a set of fundamental superfields, one first constructs all possible

composites with them. For instance, owing to the anticommuting nature of θα and

θ†α̇, any holomorphic function of a chiral superfield is in itself a chiral superfield.

Also, a vector superfield can be built from a chiral superfield Φ and its conjugate

Φ∗, e.g., Φ∗Φ.

Next, one notes that the F terms of chiral superfields and D terms of vector

superfields transform as a total derivative under SUSY transformations, leaving

the action invariant under them. These terms are therefore the only candidates for

inclusion in a SUSY Lagrangian.

Putting the above remarks together, one may now write the most general

Lagrangian in a supersymmetric gauged (Abelian) theory as

LSUSY =

(
[W (Φi)]F +

1

4
([WαWα]F + c.c.

)
+
[
Φ∗
i e

2gqiVΦi

]
D
, (I.16)
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where V is the Lagrangian density on superspace, given by

A =

∫
d4x

∫
d2θd2θ† V, (I.17)

W (Φi) is the most general holomorphic polynomial obtainable from the chiral

superfields Φi:

W (Φi) = LiΦi +
1

2
MijΦiΦj +

1

6
ΦiΦjΦk. (I.18)

The subscripts in Eq. I.16 denote the corresponding F and D terms, which may be

extracted by the following superspace integrals:

[Sχ]F =

∫
d2θ Sχ,

[SV ]D =

∫
d2θ d2θ† SV . (I.19)

Ignoring the brackets in Eq. I.16, the first term is known as the superpotential, and

the last term the Kähler potential. These are not field theoretic potentials in the

usual sense – their mass dimensions are 3 and 2 respectively, as opposed to 4 – but

are useful artefacts from which supersymmetric mass and interaction terms can

be derived. The superpotential generates the masses and interactions presented in

Eq. I.12. The Kähler potential produces the following terms:

S ⊃
∫
d4x

[
Φ∗ie2gqiVΦi

]
D

=

∫
d4x (F ∗iFi −∇µφ

∗i∇µφi + iψ†iσµ∇µψi

−
√
2gqi(φ

∗iψiλ+ λ†ψ†iφi) + gqiφ
∗iφiD), (I.20)

where ∇µ is the usual gauge-covariant derivative.
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The second term in Eq. I.16 (ignoring brackets) is called the gauge kinetic

function. The terms obtained from it are

S ⊃
∫
d4x [WαWα]F =

∫
d4x

(
1

2
D2 + iλ†σµ∂µλ− 1

4
F µνFµν

)
(I.21)

Breaking

If Nature is supersymmetric, experiments must have observed superpartners

degenerate with the known Standard Model particles. Since this is untrue, SUSY

must be a broken symmetry. The mechanism of the symmetry-breaking in the

ultraviolet is unknown; nevertheless, one could parametrize it in the infrared by

documenting a set of explicit symmetry breaking terms. In so doing, one usually

refrains from including terms with dimensionless couplings. Such terms upset the

SUSY-dictated relationship between the coupling strengths of the interactions of a

given scalar, a relationship crucial for the delicate cancellation of the quadratic

divergence of the scalar’s mass. Hence these terms would run counter to our

wish of having supersymmetry kill an unnatural hierarchy between the electroweak

and high cutoff scales. The terms that remain – those with couplings of positive

dimension – are, on the other hand, still capable of keeping the scalar masses from

exploding and hence constitute soft supersymmetry breaking. The authors of [36]

rigorously determined the various terms that are allowed in this kind of SUSY-
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breaking, and these are given by

Lsoft = −1

2
Maλ

aλa − 1

2
[bij φiφj +m2

ij φ
∗
iφj]−

1

6
Aijk φiφjφk − ξi φi + c.c.

(I.22)

The first term gives masses to the fermions of the vector supermultiplets (gauginos)

for each gauge group, the second and third scalar squared masses, the fourth scalar

trilinear couplings, and the last tadpole couplings. Lsoft confers masses to all the

scalars and gauginos of a theory even if its gauge bosons and the fermions of the

chiral supermultiplets are massless. In supersymmetric extensions of the Standard

Model, in the band of energy scales where electroweak symmetry is unbroken

but supersymmetry is not, all SM fermions and vectors are massless while their

superpartners are not.

The MSSM

The best-studied model of supersymmetry applied to the real world is a simple

SUSY extension of the SU(3)c × SU(2)W × U(1)Y gauge symmetries with flavor

structure, known as the Minimal Supersymmetric Standard Model (MSSM). Its

most general superpotential is given by

WMSSM = Yu
ijHuQiuj −Yd

ijHdQidj −Ye
ijHdLiej + µHuHd +WBLV;

WBLV = λijk1 uidjdk + λijk2 LiLjek + λijk3 LiQjdk + µi∗LiHu, (I.23)

where i, j, k = {1, 2, 3} are family indices. WMSSM begets the Yukawa couplings of
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the theory and a supersymmetric mass for the Higgs superfields, along with some

interactions violating B and L that are collected in WBLV.

Unconstrained couplings inWBLV can in general lead to dangerous proton decay

processes. One could fix this simply by making the WBLV term vanish. But forcing

the B and L violating couplings to go to zero may seem ad hoc: after all, in the

Standard Model the conservation of baryon and lepton numbers was an accidental

fallout of the gauge structure. One may wish to retain B and L conservation in

supersymmetric models with similar elegance. To that end, the authors of [37]

imposed a new discrete symmetry called matter parity, a multiplicative quantum

number assigned to each superfield, defined by

Mp = (−1)3B+L (I.24)

Then, all the quark and lepton superfields haveMp = −1 and the Higgs (and gauge)

superfields have Mp = +1. If Mp is conserved, WBLV automatically vanishes while

the rest of WMSSM survives. We can apply matter parity to each individual particle

of spin s, and define R-parity as

Rp ≡ (−1)2sMp (I.25)

Supersymmetry always commutes with internal symmetries. Therefore, in

unbroken SUSY, the only dissimilarity in the quantum numbers of a supermultiplet’s

components is in the spin. However, if the fermionic co-ordinates θα, θ
†
α̇ themselves

transform under some continuous symmetry, the particles embedded in a superfield
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are forced to carry different charges under it. The invariance accommodating

this is called an R symmetry. From this name comes the misnomer “R-parity”.

The “R ” is fictitious here since Rp merely distinguishes between the spins of a

supermultiplet. But since it is multiplied by Mp, it has a momentous consequence:

it renders Rp = −1 for scalar quarks (squarks), scalar leptons (sleptons), higgs

fermions (higgsinos) and gauginos, and Rp = +1 for quarks, leptons, Higgs and

gauge bosons. Put differently, Rp separates Standard Model particles from their

superpartners!

A very weighy repercussion of that statement is that, if a SUSY model of the

world has R-parity built into it, the decay products of a superparticle must always

contain an odd number of superparticles. As a consequence, should these particles

be produced in an energetic environment (a collider or a young universe), they

would undergo a cascade of decays until only the lightest supersymmetric partner

(LSP) is left – which will remain stable! If the LSP is electrically neutral, as is

the case for the lightest neutralino, it can very well be a dark matter candidate.

Moreover, the stability of the LSP will enable it to escape a detector unnoticed2,

carrying with it missing energy. Consequently, a large missing transverse energy

(MET) is an important component of the signature of many collider searches for

SUSY.

2One assumes, reasonably, that the interaction cross-section of dark matter with the detector
material of a collider is negligible.
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Status

Complete evidence for supersymmetry in Nature would constitute the discovery

of all the superpartners in whatever model SUSY is realized in, the establishment

of coupling constant relationships decreed by supersymmetry and the revelation of

the exact mechanism of supersymmetry breaking. Of these, the latter is a highly

unlikely prospect since most models put the scale of SUSY-breaking several decades

of energy above the electroweak scale. Nevertheless, a glimpse of the spectrum

and interaction behaviour of superpartners at lower scales would go a long way in

advancing our understanding of how supersymmetry is realized in Nature.

The presence of superpartners can be inferred either directly by producing them

at colliders or indirectly by studying their effects on low energy processes, e.g.,

through loops. If the principle of naturalness is to serve as a guide, the soft masses,

collectively denoted by mSUSY, must be O(TeV) in order to mitigate fine-tuning

between the electroweak scale v and mSUSY. Encouraged by the fact that the

TeV scale is within the current reach of technology, collider experiments over the

past three decades have undertaken the task of discovery through direct sparticle

production.

At the time of writing, no conclusive evidence for the existence of supersymmetric

particles has emerged yet. The LHC collaborations ATLAS and CMS have set

several limits on sparticle production, chiefly in the Constrained MSSM with R-

parity. Many of these bounds are presented in the language of “simplified models”,
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

q̃q̃γ, q̃→qχ̃
0
1 (compressed) 1 γ 0-1 jet Yes 20.3 m(q̃)-m(χ̃

0
1 ) = m(c) 1411.1559250 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃

0
1

1 e, µ 3-6 jets Yes 20 m(χ̃
0
1)<300 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) 1501.035551.2 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20 m(χ̃
0
1)=0 GeV 1501.035551.32 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
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1 0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
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0
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0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ

LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′
311

=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃
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√
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ATLAS SUSY Searches* - 95% CL Lower Limits
Status: Feb 2015

ATLAS Preliminary
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s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Figure 1.6.: Status of searches for supersymmetric particles by the ATLAS

collaboration (figure taken from https://goo.gl/7Hvka). A similar plot is published

by CMS that can found in their public results website.

in which only particles specific to a certain search are taken into account and

the rest of the SUSY spectrum is decoupled. The most recent results of searches

conducted by ATLAS are summarized in Fig. 1.6.. A similar summary of CMS

searches can be found at [38].

30



Outline

The theme of this dissertation is colliders probing the TeV scale in search of

BSM models in relation to dark matter and supersymmetry. Roughly speeaking,

Chapter II concerns the first without reference to the second, Chapter III combines

the two topics and Chapter IV separates them again to deal with the second.

Specifically, Chapter II explores a simple dark matter model that can be discovered

or constrained at hadron colliders, such as at the Run II of the LHC or a future 100

TeV proton-proton collider; Chapter III investigates, in light of the Higgs discovery

at 125 GeV, the phenomenology of a supersymmetric model with large Yukawa

couplings between the Higgses and a gauge singlet, with emphasis on neutralino

dark matter searches; Chapter IV discusses the LHC signals of the production

of colored superpartner fermions in a non-minimal model where the breaking of

supersymmetry bequeaths gauge superpartners with both Dirac and Majorana

masses.

Chapter II contains previously published material co-authored with

W. Altmannshofer, P. J. Fox, R. Harnik and G. D. Kribs; Chapter III contains

unpublished material co-authored with A. Menon; Chapter IV contains previously

published material co-authored with G. D. Kribs.
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CHAPTER II

DARK MATTER IN DILEPTONS

This work has appeared as a pre-print at http://arxiv.org/abs/1411.6743.

Wolfgang Altmannshofer, Patrick Fox, Roni Harnik and Graham Kribs initiated

the project; Nirmal Raj performed the calculations and produced the plots and

tables in this chapter.

Now that the Higgs has been discovered, one of the highest priorities for the

LHC in the next run is to find (or place strong bounds on) particle dark matter. The

standard approach is to look for dark matter pair production as missing transverse

momentum (MET) in association with some initial state radiation. Processes of

that type could arise from effective operators [39, 40, 41, 42, 43, 44, 45, 46, 47] or

UV-complete simplified models involving various types of mediators [42, 44, 46, 48,

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. One of the principal results from these

works is that there is complementarity between the bounds from direct detection

and the bounds from the various types of LHC searches for evidence of dark matter

and its mediators.

The simplest models contain only a few parameters: the dark matter mass,

the mediator mass(es), and the coupling(s) of the dark matter to one (or more)

Standard Model (SM) field(s). Consider the case where the dark matter is a fermion,
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the mediator is a scalar (but with the SU(3) × SU(2) × U(1) quantum numbers

of a Standard Model quark), and there is a renormalizable interaction between a

light quark, the dark fermion, and the scalar mediator. While there are several

constraints, the dominant ones are [50]:

(i) direct detection for small mass splittings between the dark fermion and scalar

mediator;

(ii) jets + MET constraints from LHC for large mass splittings caused by scalar

mediator production and decay to dark fermions and jets.

These constraints tend to push the dark fermion and scalar mediator masses to

larger values with moderate mass splittings. However, the dark matter annihilation

cross section, that sets the thermal relic abundance, scales with positive powers

of the coupling multiplying negative powers of the dark fermion mass (or scalar

mediator mass – it doesn’t matter since their mass scales are highly correlated).

The downward march of the experimental bounds must therefore be accompanied

by an upward march of the coupling constant(s), which in some cases, can now be

& 1 [50].

Couplings & 1 provide a potential new avenue for exploration and discovery

at collider experiments. Namely, they open up the possibility of experimentally

measurable radiative corrections of dark fermions and mediators to Standard Model

processes. There are several types of radiative corrections that we could consider.
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(Earlier work that has considered radiative corrections of dark matter include [60,

61, 62]) In this chapter, we focus on the radiative corrections to dilepton production

at hadron colliders. For the model, we assume there is a dark fermion (that can

acquire Dirac and Majorana masses) as well as scalar messengers: scalar quarks

that couple to light quarks and the dark fermion with coupling strength λq̃, and

scalar leptons that couple to leptons and the dark fermion with coupling strength

λℓ̃.

Dilepton production is well known to be a harbinger for new physics (NP).

New gauge bosons (Z ′s), extra dimensions, and effective operators are well known

examples that have already been bounded by ATLAS [63, 64] and CMS [65, 66]

using the shape and normalization of dilepton production as a function of the

dilepton invariant mass,
√
ŝ = mℓℓ. Our primary interest is the new dark sector

“box” contributions to qq̄ → ℓ+ℓ−, that are proportional to λ2q̃λ
2
ℓ̃
/(16π2) in the

amplitude, interfering with the usual Drell-Yan contribution from the Standard

Model. New kinematical features in the dilepton invariant mass spectrum arise at

invariant masses of twice the dark matter mass,
√
ŝ ≃ 2mχ, from both the real

part of the new physics box amplitude as well as an imaginary part for
√
ŝ > 2mχ.

Unlike a Z ′ search, however, the box contribution does not look anything like a

resonance. In fact, there can be both constructive and destructive interference

effects that depend on the model and the strength of the couplings. At large, but

still perturbative couplings (roughly λq̃, λℓ̃ & 1.4), we find that the |box amplitude|2
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contribution dominates. This leads to a unique monocline1 feature in the dilepton

invariant mass. Standard “bump-hunter” approaches are not appropriate, and

could miss an otherwise observable feature in the spectrum. Like a Z ′ or extra

dimension search, nontrivial contributions to the forward backward asymmetry AFB

are also present. Unlike a Z ′ or extra dimension search, there is further nontrivial

angular dependence that can potentially be uncovered using strategies implemented

in searches for the new physics contributions to the dijet angular distribution [68].2

All of these features arise from the box function contribution to the amplitude

that, we stress, cannot be captured by effective four-fermion operators. Instead, it

is crucial to “scan” over finite
√
ŝ = mℓℓ to uncover the dominant features of the

box contribution that appear for
√
ŝ & 2mχ. Given that we expect the mediator

masses larger than but of the order of the dark matter mass (to obtain the correct

relic abundance with non-perturbative couplings), there is no regime where the

dark matter or the mediator can be “integrated out” while leaving a finite signal.

Indeed, one of our most important results is that themass scale of the dark fermions

appears as a kinematical feature in the radiatively corrected dilepton invariant mass

distribution. This is a completely distinct approach to measuring a putative dark

matter particle mass at a collider.

We say “putative” since we still have no collider probe of the stability of the

1In geology, a step-like feature in rock strata consisting of rapid rise and a gentle falloff. A
common example is the Waterpocket fold in Capitol Reef National Park, Utah, USA [67].

2We thank G. Perez for pointing this out to us.
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dark matter. Indeed, we should emphasize that the signal we propose to look for,

namely kinematical features in the dilepton invariant mass spectrum and angular

distributions consistent with radiative corrections from a new “dark” sector, could

arise from other new physics sectors that have nothing to do with dark matter. In

this work we focus on one concrete dark matter model.

We have organized the chapter as follows. First, we present the model in

Sec. II.1. Next, we discuss the dark sector box contributions to the dilepton

invariant mass distribution in Sec. II.2, with angular distributions discussed in

Sec. II.2.4. In Sec. II.3 we consider constraints on the model from collider searches,

dark matter direct detection experiments, and the dark matter relic abundance.

Then, we compare the sensitivity of the dilepton signal with these other constraints

on the parameter space in Secs. II.4 and II.5. Specifically, we find that the 20 fb−1

8 TeV dataset from LHC experiments could constrain a modest region of parameter

space that, in some cases, is not yet excluded by other constraints. Once the LHC

goes up to 14 TeV with larger luminosity, a much more substantial region of the

parameter space can be probed. In addition to our projected sensitivities at 14

TeV, we also briefly consider the impact of a 100 TeV collider, finding that it has

excellent sensitivity.

The Model: Mixed (Pseudo-Dirac) Fermionic Dark Matter

The model we propose consists of two SM singlet fermions χ1,2, as well as colored
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Field Spin SU(3)c ⊗ SU(2)W ⊗ U(1)Y Z2

χ1, χ2 1/2 (1,1,0) −1

ũ 0 (3,1,
2

3
) −1

d̃ 0 (3,1,−1

3
) −1

ℓ̃ = ẽ, µ̃ 0 (1,1,−1) −1

Table 2.1.: The field content of our model and the corresponding quantum

numbers. To ensure the stability of the dark matter candidate, the Lagrangian

is assumed to be invariant under a Z2 parity.

and uncolored scalars ũ, d̃ and ℓ̃ for mediating the interactions between the singlet

fermions and the SM fermions. The field content along with their quantum numbers

is summarized in Table 2.1.. We impose a Z2 parity under which the dark matter

fermions as well as the mediators are odd, while all SM fields are even. In this

way, the lighter SM singlet fermion is stable and therefore a dark matter candidate.

We describe the singlet fermions with two two-component (Weyl) spinors χA and

χB. We allow for both Dirac and Majorana masses, a scenario that we refer to as

“mixed” dark matter (recently discussed by two of us in a supersymmetric context

in [69]). In the case where the Majorana mass is small compared to the Dirac mass,

such a scenario is also referred to as pseudo-Dirac dark matter [182, 196]. The
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Lagrangian is given in two-component language by

L = iχ†
Aσ̄

µ∂µχA + iχ†
Bσ̄

µ∂µχB + LDMmass (II.1)

−
∑

q=u,d

|Dµq̃|2 −M2
q̃ q̃q̃

∗ − (
√
2 λq̃ q̃

∗χ†
Bq

†
R + h.c.)

−
∑

ℓ=e,µ

|Dµℓ̃|2 −M2
ℓ̃
ℓ̃ℓ̃∗ − (

√
2 λℓ̃ℓ̃

∗χ†
Bℓ

†
R + h.c.) ,

where q†R and ℓ†R are the right-handed components of the SM quarks and leptons

respectively that are SU(2)W singlets, ũ, d̃ and ℓ̃ are the colored and uncolored

scalar mediators and Mũ, Md̃ and Mℓ̃ are their masses. In the Lagrangian we

omitted quartic couplings involving the scalar mediators since they have negligible

impact on the phenomenology we discuss below.

We make four assumptions about the model:

1. We assume χB interacts with the SM fermions through the mediators, while

χA does not. This type of interaction is loosely inspired by “mixed” gaugino

supersymmetric models [69] where the gaugino interacts with the quarks and

squarks, while the fermionic Dirac partner does not. Having said this, we

do not assume the interactions or masses are otherwise supersymmetrizable.

This can be parameterized in the context of dimensionless supersymmetry

breaking [72]. Taking the alternate route of allowing couplings for χA would

tend to reshuffle the effective strength of the couplings, and this does not

change the qualitative results. The only exception to this is the possibility of

additional CP-violating phases in the couplings. However, we do not consider
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any of the couplings within the model to violate CP in this work, so this does

not add anything to our discussion.

2. We assume the hidden sector couples only to one or both of uR and dR. It is

crucial that we have couplings to the light fermions, though the handedness

and isospin is not particularly important. We could also generalize to

couplings with all flavors of quarks and leptons, i.e. the mediator couplings

λũi , λd̃i and λℓ̃i could be non-zero for all SM flavors i. This is strongly

constrained by flavor changing neutral current processes. For the purposes

of this dissertation we assume that the mediator couplings are aligned with

the SM Yukawa couplings such that the colored mediators couple only to

the first generation of right-handed quarks.3 We choose right-handed quarks

to allow us to separate the effects of a up-type mediator from a down-type

mediator. Moreover, due to SU(2)W invariance, an exact alignment would

not be possible for couplings to the left-handed SM quark doublets.

3. We assume the hidden sector couples only to right-handed electrons and

muons, eR and µR, through their respective mediators ẽ and µ̃ with no

flavor-violating couplings. This could be trivially extended to include τR, but

3An alternative approach to control flavor changing neutral currents would be to introduce 3
generations of mediators. This would allow to implement a minimal flavor violation structure,
such that the mediator couplings are diagonal in flavor space and each generation of mediators
couples to only one generation of SM fermions. Yet another possibility which we do not explore
would be to assume that dark matter carries flavor [73, 74, 75, 76, 77].
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since di-tau production is considerably more difficult to measure accurately

compared with di-electron or di-muon production, we only consider the latter.

4. Finally, we assume there are no CP violating phases in the mass and coupling

parameters.

The mass Lagrangian for the dark matter sector, LDMmass, is given in two-

component notation by

LDMmass =

(
χA χB

)


∆M Md

Md ∆M ′






χA

χB


+ h.c. , (II.2)

where Md is a Dirac mass and ∆M and ∆M ′ are Majorana masses. Although

our fourth assumption above makes all mass terms real, we first, for completeness,

present general results for the mass eigenstates. From the mixing of χA and χB,

the mass matrix above gets diagonalized by some unitary matrix U , and we obtain

eigenmasses given by

M̄2
1 =

1

2

[
|∆M |2 + |∆M ′|2 + 2|Md|2

−
√

4|∆MM∗
d +∆M ′∗Md|2 + (|∆M |2 − |∆M ′|2)2)

]

M̄2
2 =

1

2

[
|∆M |2 + |∆M ′|2 + 2|Md|2

+
√

4|∆MM∗
d +∆M ′∗Md|2 + (|∆M |2 − |∆M ′|2)2)

]

Given our assumption that the physical phase in the mass Lagrangian vanishes,
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the mass eigenstates are



χ1

χ2


 =




cos θ sin θ

− sin θ cos θ






χA

χB


 , (II.3)

with mixing angle given by

cos θ =
1√
2

(
1 +

∆M ′ −∆M√
(∆M ′ −∆M)2 + 4M2

d

)1/2

. (II.4)

Given that only one dark fermion χB couples to the SM, we can further simplify

these expressions. Specifically, we can take ∆M ′ = 0, which implies the heavier

eigenstate χ2 ≃ χA is the one that decouples from the SM. This gives the correct

Majorana limit, i.e., the lightest dark fermion is the one that maximally couples

to the SM. This was explored previously in the context of “mixed gauginos” in

supersymmetry [69]. The mass eigenvalues simplify to

M̄2
1 = M2

d +
∆M2

2
−∆M

√
M2

d +
∆M2

4

M̄2
2 = M2

d +
∆M2

2
+ ∆M

√
M2

d +
∆M2

4
. (II.5)

Note that in this limit |M̄2|− |M̄1| = ∆M , and with our choice of mixing matrix in

Eq. (IV.8) without any additional phases, M̄1 < 0 and M̄2 > 0. In order to avoid the

frequent use of minus signs in the following, we define M1 ≡ −M̄1, M2 ≡ M̄2 such

thatM1,M2 > 0. By holding the lighter eigenmassM1 constant, we can interpolate

between the Dirac and Majorana limits by using ∆M as a control parameter. In

particular, ∆M = 0 gives us the pure Dirac limit with cos θ = 1/
√
2, and ∆M → ∞

corresponds to the pure Majorana limit with cos θ = 0. We will see shortly that this
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method of interpolation is most useful for studying the phenomenology of pseudo-

Dirac dark matter.

Simplified Models

In addition to the four assumptions about the structure of the model, we will

further simplify the parameter space in order to capture the main results of the

chapter. We do this using “simplified models”, which take the model from the

previous section, and consider several distinct simplifying assumptions about the

parameters. This is analogous to what is regularly done by the LHC collaborations

to examine the impact of their experimental searches on, for example, low energy

supersymmetry.

We consider three simplified models which are summarized in Table 2.2.. The

difference among these models are:

• Model U has χ coupling exclusively to right-handed up quarks,

• Model D has χ coupling exclusively to right-handed down quarks, and

• Model UD has χ coupling to both right-handed quarks of the first generation.

In all three models, the colored and uncolored scalar mediators are taken degenerate

with mass Mφ, and all fermion-scalar-dark matter couplings are assumed equal,

denoted by λ. The mass of the lighter dark fermion state is denoted by Mχ in all

three simplified models. The mass of the heavier dark fermion state is given by

Mχ +∆M .
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Model Couplings Mediator masses

U λ ≡ λℓ̃ = λũ , Mφ ≡Mℓ̃ =Mũ

λd̃ = 0

D λ ≡ λℓ̃ = λd̃ , Mφ ≡Mℓ̃ =Md̃

λũ = 0

UD λ ≡ λℓ̃ = λũ = λd̃ Mφ ≡Mℓ̃ =Mũ =Md̃

Table 2.2.: The simplified models considered in the chapter.

q ℓ−

γ/Z

q̄ ℓ+

q
χi

ℓ−

q̃ ℓ̃

q̄
χj

ℓ+

q ×

χi

ℓ−

q̃ ℓ̃

q̄ ×

χj

ℓ+

Figure 2.1.: Feynman diagrams of the most important processes that contribute to

dilepton production in our model. The tree-level s-channel photon-mediated and

Z-mediated diagrams in the SM (left) interfere with the standard box diagrams

(center) and the crossed box diagrams (right). The indices on the dark fermions

are i = 1, 2 and j = 1, 2, thus making four combinations each of standard and

crossed box diagram.

Dilepton Signatures

Overview

At the LHC, dilepton production, pp → ℓ+ℓ−, is dominated by the Drell-Yan

process, qq̄ → ℓ+ℓ−, with subdominant contributions from the production of tops,

43



dibosons, dijets and W+jet. Since our interest is in new physics contributions that

interfere with Drell-Yan, we neglect these subdominant processes when computing

Standard Model rates. This is a good approximation for at least LHC energies.

We also do not incorporate QCD or electroweak NLO corrections, since consistency

would require also incorporating these corrections to the new physics contribution,

and this is beyond the scope of this dissertation. Hence, Standard Model dilepton

production is approximated solely by the tree-level s−channel photon– and Z–

mediated contributions shown in the left diagram of Fig. 2.1.. (At least some of

the NLO corrections would be common to both Drell-Yan and our new physics

contribution, dropping out of the ratio.) We also evaluate the couplings at a fixed

scale in perturbation theory. RG improvement is straightforward to incorporate,

but does not significantly affect our results other than redefining the new physics

couplings λq̃, λℓ̃ relative to the modest RG evolution of the electroweak couplings.

At the one-loop level of our model, the dark fermions and mediators give

corrections to dilepton production pp → ℓ+ℓ− through self-energy corrections,

vertex corrections and box diagrams. The box diagram is enhanced relative to the

self energies and the vertex corrections by a factor λ2/g2, where g is an electro-weak

coupling. As we will see below, in the interesting regions of parameter space that

can be probed at current and future hadron colliders, the coupling λ is considerably

larger than the electroweak couplings g, g′. Self-energy and vertex correction

amplitudes can be safely neglected. The gauge boson self-energy diagrams would
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contribute to the running of the electroweak coupling at scales above the masses of

the dark states. Ref. [78] discusses methods to probe hidden sectors at high energy

scales by measuring deviations of the electroweak running from the SM at lower

energies. Our approach, by taking only the box diagrams into account, probes the

new physics sector directly at the mass scales of the particles involved. This is

done by means of examining threshold effects, i.e., new terms in the amplitude that

appear when states running in the loop go on-shell. We briefly review some salient

aspects of these effects here. For a comprehensive review of dispersion relations in

Feynman amplitudes, see [79].

Consider a general one-particle irreducible one-loop diagram of a 2 → 2

scattering process. Let the masses of the propagator states that connect the

initial and final states be Mn. The amplitude develops an imaginary part for

√
s >

∑

n

|Mn|, where s is the Mandelstam variable. This imaginary part is given

by the optical theorem, which states that

2 ImM(in → out) =

∑

n

∫
dΠnM∗(out → n)M(in → n) , (II.6)

where in and out are the initial and final states respectively, n denotes the

intermediate on-shell states and

∫
dΠn is the integral over the phase space of n.

When applied to the box diagram shown in the center of Fig. 2.1., the imaginary
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part appears in the amplitude for
√
s > Mχi

+Mχj
and Eq. (II.6) becomes

2 ImM(qq̄ → ℓ+ℓ−) =

∑

χ

∫
dΠχχM∗(ℓ+ℓ− → χχ)M(qq̄ → χχ) . (II.7)

In addition to the turn-on of ImM,4 the real part of the amplitude, ReM, undergoes

a continuous but sharp rise as well, a consequence of the dispersion relations that

follow from the unitarity of the S-matrix [79].

Since the couplings of our model are only to right-handed SM fermions, the

new physics amplitude interferes only with that part of the SM amplitude involving

right-handed external fermions. That is, if we denote the Standard Model amplitude

by,

MSM = MLL
SM +MLR

SM +MRL
SM +MRR

SM , (II.8)

where the first (second) letter of each superscript denotes the chirality of the

initial state quark (final state lepton), then only MRR
SM interferes with the new

physics contributions given our assumptions about how the new fermions couple

in the model. Including the corresponding “left-handed” mediators would allow

interference with all of the terms above.

Dilepton Rates: Dirac Case

We now discuss the role of interferences and threshold effects in generating the

4Note that even if we allowed the masses ∆M,∆M ′,Md and couplings λq̃, λℓ̃ in Eq. (II.2) to
be complex, no extra phase would appear in Mbox, as only absolute values of these quantities
enter: Mbox ∝ |λq̃|2|λℓ̃|2.
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various signatures of our model. We first consider the simple case of a dark matter

candidate that is a Dirac fermion.

The only box diagram that contributes in this case is shown in the center of

Fig. 2.1.. We can then write the total amplitude at the parton level as

Mtotal = MSM +Mbox , (II.9)

where the Standard Model amplitude MSM corresponds to the sum of the s-channel

photon- and Z-mediated tree-level amplitudes with all polarizations shown in the

left diagram of Fig. 2.1.,

MSM = Mphoton +MZ . (II.10)

Neglecting the masses of the quarks and leptons, we can write the double differential

parton level qq̄ → ℓ+ℓ− cross section as

dσtotal ≡ d2σtotal
d cos θdmℓℓ

= dσSM + dσint + dσRe
box + dσIm

box . (II.11)

Here, θ is the angle between the outgoing dilepton axis and incoming diquark axis

in the center-of momentum frame. The terms in Eq. (II.11) are given by

dσSM =
1

32πs
|MSM|2 , (II.12)

dσint =
1

32πs
2Re(MRR

SMM∗
box), (II.13)

dσRe
box =

1

32πs
|ReMbox|2 , (II.14)

dσIm
box =

1

32πs
|ImMbox|2 , (II.15)
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Figure 2.2.: The differential pp→ ℓ+ℓ− cross sections as a function of the dilepton

invariant mass in Model U with ∆M = 0 (pure Dirac limit), λ = 1.8 and Mχ =

Mφ = 500 GeV. Here, blue: dσSM, brown: dσ
Re
box, green: dσ

Im
box, magenta: dσint, red:

dσtotal, where these quantities are defined in Eqs. (II.11) and (II.12) - (II.15).

where MRR
SM is defined in Eq. (II.8). Our analytic results for the box contributions

to the parton level cross section are collected in Appendix A.

As we vary the dilepton invariant mass mℓℓ, we expect, for mℓℓ ≪ 2Mχ, dσtotal

to mimic the behavior of a non-resonant process generated by a higher-dimensional

contact operator. The effects of such contact operators in dilepton production are

being searched for by CMS [66] and ATLAS [63]. As we approach the kinematic

threshold, mℓℓ = 2Mχ, the contact operator description breaks down and a

“monocline” feature arises from the contributions to:

(i) dσint, due to threshold effects in ReMbox,
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(ii) dσRe
box, which for sizeable couplings λ can dominate over dσint due to its

containing eight powers of the coupling against four, and

(iii) dσIm
box, which turns on at mℓℓ ≥ 2Mχ.

We illustrate this behavior with an example in Fig. 2.2., which shows the differential

pp → ℓ+ℓ− cross section integrated over cos θ for Model U at the LHC with

8 TeV center of mass energy. To obtain the proton level pp → ℓ+ℓ− cross section,

throughout this work, we convolute the parton level results from Appendix A with

MSTW2008NNLO parton distribution functions [80]. In the plot we set the mass

splitting of the dark fermions to ∆M = 0, corresponding to the pure Dirac limit.

The mediator couplings are set to λ = 1.8 and we chose the masses of the dark

fermions and the mediators asMχ =Mφ = 500 GeV. The various curves correspond

to σSM (blue); σRe
box (brown); σIm

box (green); σint (magenta); σtotal (red); where these

quantities are defined in Eqs. (II.11) and (II.12) - (II.15).

Note that the example point shown in Fig. 2.2. falls in a region of parameter

space where the new physics signal is dominated by dσbox ∝ |Mbox|2. At lower

couplings, the dominant contribution to the signal becomes the interference term

dσint as defined in Eqs. (II.13). Numerically, we find that these two regimes are

separated by λ ≃ 1.4 in the presence of a pure Dirac fermion. This comes into

consideration when we deal with constraints on our model from dilepton spectrum

measurements and in projecting results for future colliders.

The blue, magenta and brown curves in Fig. 2.2. (corresponding to dσSM, dσint,
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and dσRe
box respectively) appear to intersect at mℓℓ ∼ 950 GeV and mℓℓ ∼ 1150 GeV.

This intersection is a coincidence for the parameters presented and not a physical

effect of our model. It arises from the difference in which initial states contribute to

MSM and Mbox. Since both up and down quarks contribute to MSM, both these

PDFs are convolved with the partonic level rates to obtain dσSM. In Model U,

only the up quark contributes to Mbox, hence its PDF alone is convolved with the

partonic rates to obtain dσint and dσ
Re
box. Therefore, the apparent intersection seen

here would be absent if we had presented partonic level rates, or used Model D or

Model UD for illustration in Fig. 2.2.. Furthermore, with model U if the coupling

is increased (decreased) the point where magenta and brown curves intersect moves

up (down), and will not lie on the SM curve. Similarly, if Mφ is altered the triple

intersection would go away.

Dilepton Rates: Mixed (Pseudo-Dirac) Case

Since a mixed dark matter candidate can be written as two Majorana

eigenstates, we first begin with a brief discussion of the Majorana limit, that

will be useful in understanding the pseudo-Dirac case. In addition to the standard

box diagram, Majorana fermions have a “crossed box” diagram (with clashing

fermion flow arrows) contributing at one-loop order, as shown by the right diagram

in Fig. 2.1.. The total amplitude becomes the sum

Mtotal = MSM +Mbox +Mxbox , (II.16)

where Mxbox is the amplitude for the crossed box diagram. Importantly, Mxbox
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comes with a minus sign relative to Mbox due to the different ordering of the

external spinors. Thus, the direct and crossed box diagrams interfere destructively,

and we expect the new physics effects in the cross section to be much less

pronounced in the Majorana case than in the Dirac case. In particular, we find

that over large parts of the parameter space the “monocline” feature noticed in

the Dirac scenario is washed out by the destructive interference. Even for sizeable

couplings λ & 1.4, the largest contribution to the deviation from the Standard

Model cross section comes typically from the interference term between the tree

and box amplitudes, which carries only four powers of the coupling λ.

We now turn to the most general case of mixed (pseudo-Dirac) dark matter.

Four contributions arise from direct box diagrams and four additional contributions

from the crossed box diagrams, corresponding to the four combinations of χ1 and

χ2 in the loop, as shown in Fig. 2.1.. The total amplitude is now given by

Mtotal = MSM +
∑

i=1,2

∑

j=1,2

(Mij
box +Mij

xbox) , (II.17)

where Mij
(x)box is the (crossed) box amplitude with χi in the upper fermion

propagator and χj in the lower fermion propagator. It is illustrative to inspect the
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analytical form of the direct and crossed box amplitudes:

Mij
box ∝ [ū(p4)γµPRu(p1)][v̄(p2)γνPRv(p3)]

×
∫

d4q

(2π)4
qµ(q + p1 + p2)

ν

Dij

, (II.18a)

Mij
xbox ∝ [ū(p3)PRu(p1)][v̄(p2)PLv(p4)]

×
∫

d4q

(2π)4
M̄iM̄j

Dij

, (II.18b)

where p1, p2, p3, and p4 are the momenta of the incoming quark, incoming anti-

quark, outgoing positron, and outgoing electron, respectively, andDij is the product

of the denominators of the propagators in the loop; finally, M̄1 = −M1 and M̄2 =

M2 (see Eq. (IV.10)). The chirality projection operators in the Feynman amplitude

pick out the /p terms in the propagators of the standard box, and the mass terms in

those of the crossed box, which is also indicated by the mass insertions in the right

diagram of Fig. 2.1..

In the summation in Eq. (II.17), the combinations with the same dark fermion

in the upper and lower propagatorM11
box+M11

xbox andM22
box+M22

xbox, are suppressed

due to destructive interference as discussed above. This leaves us with (M12
box +

M12
xbox) + (M21

box +M21
xbox).

From Eq. (II.18b), we see that the crossed box diagrams with two different dark

fermions in the upper and lower propagator come with a relative minus sign with

respect to the crossed box diagrams that contain only one dark fermion species (the

numerators are M̄1M̄2 = −Mχ(Mχ +∆M), and M̄2
1 =M2

χ or M̄2
2 = (Mχ +∆M)2,
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Figure 2.3.: The differential pp→ ℓ+ℓ− cross section as a function of the dilepton

invariant mass for a mixed dark matter particle χ, in Model U. Here, λ = 1.8 and

Mχ = Mφ = 500 GeV. The color code is – blue: σSM, red: ∆M = 0 (pure Dirac),

green dashed: ∆M = 5 GeV, grey: ∆M = 50 GeV, magenta: ∆M = 200 GeV,

orange: ∆M → ∞ (pure Majorana).

respectively). Therefore, M12
box = M21

box interferes constructively with M12
xbox =

M21
xbox. Consequently, in the mixed dark matter case we expect that the monocline

feature in the cross section appears at a dilepton invariant mass ofmℓℓ ≃M1+M2 =

2Mχ +∆M .

The pure Dirac and Majorana limits discussed above can now be more readily

understood. When ∆M = 0 (Dirac limit), the monocline feature appears at mℓℓ ≃

2Mχ, as seen in Fig. 2.2.. When ∆M → ∞ (Majorana limit), the monocline

feature is at mℓℓ → ∞ and is not observed. As an illustration, we provide in

Fig. 2.3. the dilepton invariant mass distribution in Model U with λ = 1.8 and
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Figure 2.4.: The differential pp→ ℓ+ℓ− cross section as a function of the dilepton

invariant mass in Model U. Shown here are the effects of variation in λ keeping

Mχ = 500 GeV fixed, with Mφ = Mχ and ∆M = 0. Here, red: λ = 1.8, green:

λ = 1.4, blue: SM.

Mχ =Mφ = 500 GeV for intermediate values of the dark fermion mass splitting ∆M

= 5, 50 and 200 GeV, given by green dashed, grey and magenta curves respectively.

The monocline is featured at mℓℓ ≃ 1005, 1050 and 1200 GeV, respectively. For

comparison, Fig. 2.3. also shows the pure Dirac (red) and pure Majorana limits

(orange). We observe that a splitting of ∆M = 5 GeV, a value that corresponds

to the pseudo-Dirac case, results in nearly identical behavior to that of pure Dirac

dark matter. To summarize, introducing two Weyl fields in the dark matter sector

with the two eigenstates split by a small mass – a scenario called pseudo-Dirac dark

matter – can give a dilepton invariant mass distribution that has almost exactly

the same features as a pure Dirac dark matter particle in dilepton production.

We end this section by discussing aspects of the dependence of the monocline
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Figure 2.5.: Upper plot: The differential pp → ℓ+ℓ− cross section as a function

of the dilepton invariant mass. Lower plot: the ratio dσtot/dσSM as a function of

mℓℓ. We set λ = 1 and Mχ = 300 GeV, with Mφ = Mχ and ∆M = 0. Here red:

Model U, green: Model D, blue: SM.

feature on the mediator coupling λ and the dark matter mass. The change in the

size of the monocline feature for several values of the coupling λ is shown in Fig. 2.4.,

where we fix Mχ = 500 GeV and ∆M = 0. The red curve corresponds to λ = 1.8

and the green curve to λ = 1.4, with the blue curve depicting the Standard Model

LO value. As one would expect, the deviations from SM become less significant as

the coupling is decreased.

In Fig. 2.5., we show the behavior of dilepton spectrum in the regime where

the new physics signal is dominated by the interference term dσint. For illustration,

we have taken λ = 1 and Mχ = 300 GeV. The upper and lower plots indicate
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Figure 2.6.: The differential pp→ ℓ+ℓ− cross section as a function of the dilepton

invariant mass in Model U. Shown here are the effects of variation in Mχ and Mφ

holding λ = 1.8 fixed and ∆M = 0. Here, red: Mχ = Mφ = 500 GeV, green:

Mχ =Mφ = 300 GeV, brown: Mχ = 300 GeV, Mφ = 500 GeV, blue: SM.

the distribution dσ/dmℓℓ and the ratio dσtot/dσSM respectively. The red and green

curves in both plots represent Model U and D respectively, with the blue curve in

the upper plot denoting the SM at LO. As expected, due to the smaller couplings

the new physics effect on the dilepton rate is much smaller. Also seen are the

interesting effects of destructive interference with the SM amplitude. In Model U,

we see a reduction of the dilepton rate with respect to the SM (dσtot/dσSM < 1)

for invariant masses considerably above the kinematic threshold mℓℓ & 1300 GeV.

In Model D on the other hand, destructive interference is present below and near

the threshold, while for large invariant masses mℓℓ & 850 GeV, the interference

becomes again constructive. Note that in both models the new physics amplitudes
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have the same sign, while the sign of the SM amplitude differs due to the differing

electric charge of the initial state quarks.

The variation of the signature as a function of the masses is seen in Fig. 2.6.,

where the coupling is fixed at λ = 1.8 and ∆M = 0. The green and red curves

take Mχ = Mφ for two values, 300 and 500 GeV respectively. Notice that even

though the location of the monocline is different for different Mχ’s, the size of the

deviation from the Standard Model is approximately independent of Mχ. This is

because when the new physics contribution is dominated by |Mbox|2 and |Mxbox|2,

as is the case for λ & 1.4, for a fixed ratio of mediator to dark matter mass,Mφ/Mχ,

the ratio dσtotal/dσLO is determined mainly by the coupling. We also show the effect

of splitting Mφ from Mχ in the brown curve. Notice that the sharp monocline rise

is less pronounced near mℓℓ = 2Mχ (compared with the green curve), and the size

of the effect for
√
ŝ > 2Mφ slowly asymptotes to the green and red curves.

Angular Distribution

The loop corrections in the model also leave their imprint in the angular

distribution of the rates d2σ/dmℓℓdcθ, where cθ ≡ cos θ with the angle θ already

introduced in Eq. (II.11). In general, the angular distribution d2σ/dmℓℓdcθ can be

written as

d2σ

dmℓℓdcθ
=

∞∑

n=0

anc
n
θ , an ∈ R . (II.19)

In general, the an coefficients are functions of mll. For an s-channel–mediated

process (including the SM Drell-Yan process at tree level), a0 = a2 and an≥3 = 0.

57



Hence we can write [81]

d2σs−chan.

dmℓℓdcθ
∝ 3

8
(1 + c2θ) + AFB(mℓℓ) cθ , (II.20)

where AFB(mℓℓ) is the forward-backward asymmetry. Therefore, the measurement

of the forward-backward asymmetry AFB(mℓℓ) characterizes the shape of the

differential distribution for an s-channel–mediated process. For a general

distribution as given in Eq. (II.19), more observables must be measured to

determine the coefficients an.

The forward-backward asymmetry can be formally obtained as:

AFB(mℓℓ) ≡
∫ 1

0
dcθ(d

2σ/dmℓℓdcθ)−
∫ 0

−1
dcθ(d

2σ/dmℓℓdcθ)∫ 1

−1
dcθ(d2σ/dmℓℓdcθ)

=
(dσ/dmℓℓ)F − (dσ/dmℓℓ)B

(dσ/dmℓℓ)tot
. (II.21)

The AFB(mℓℓ) computed at partonic level in Model U is illustrated in the plot on

the left-hand side of Fig. 2.7.. The red curve corresponds to λ = 1.8 and the green

curve to λ = 1.4, with Mχ = Mφ = 500 GeV with ∆M = 0 for both curves. The

blue line denotes the Standard Model prediction at LO. We notice a significant

increase of AFB at the threshold, which is the result of three different effects at

mℓℓ ≃ 2Mχ:

(a) an increase in [(dσ/dmℓℓ)
box
F − (dσ/dmℓℓ)

box
B ]/ (dσ/dmℓℓ)tot due to a huge

increase in σFwd
box ,

(b) a slight increase in [(dσ/dmℓℓ)
int
F − (dσ/dmℓℓ)

int
B ]/ (dσ/dmℓℓ)tot, and
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Figure 2.7.: LEFT: The forward-backward asymmetry as defined in Eq. (II.21) as

a function of the dilepton invariant mass; RIGHT: Fχ(mℓℓ) as defined in Eq. (II.22)

as a function of the dilepton invariant mass. In both plots, Model U is used and

masses are set to Mχ =Mφ = 500 GeV and ∆M = 0. Here, blue: Standard Model

at LO (λ = 0), green: λ = 1.4, red: λ = 1.8. All curves are commuted at the the

partonic level.

(c) a decrease in [(dσ/dmℓℓ)
LO
F − (dσ/dmℓℓ)

LO
B ]/ (dσ/dmℓℓ)tot, due to the increase

in (dσ/dmℓℓ)tot.

A search for new physics in dilepton production using AFB has been carried out

by the ATLAS collaboration in [63] using 20 fb−1 of 8 TeV data. Due to the

inherent uncertainties in the direction of the initial (anti)quark and the transverse

momenta of the partons in a proton-proton collider, events are reconstructed by

first boosting along a longitudinal direction and identifying the dilepton center-

of-momentum frame. The quark, due to its predominantly valence nature, is then

assumed to have originated in the direction of the boost. The details of constructing
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the angle of scattering θ∗ in this so-called Collins-Soper (CS) frame [82] are provided

in [63]. The inevitable misidentification of quarks (antiquarks) that comes with

this procedure leads to “mistagging” a fraction of forward (backward) events as

backward (forward), thus diluting the asymmetry. Higher order QCD corrections

to the differential Standard Model cross section further symmetrize the forward-

backward events. As a result, the mℓℓ-dependent Standard Model values for AFB

shown in [63] are smaller than the ones in Fig. 2.7. by a factor of 1.5 – 3. A full

fledged angular analysis that uses the CS frame and takes into account higher order

corrections is beyond the scope of this work.

A complementary way to probe the angular distribution are observables that

quantify the preference of dilepton events in a predefined central region of the

detector over events in the outer region. Measuring such observables does not

require knowledge of the direction of the initial parton, making them potentially

advantageous at a proton-proton collider. An example of this is the ATLAS

measurement of the observable Fχ(mjj) in dijet distributions at
√
s = 7 TeV [68].

It is defined as Fχ ≡ Ncentral/Ntotal, where Ntotal is the total number of events, and

Ncentral is the number of dijet events in a central region defined by χ ≡ exp(2|y|) <

χmax, where y is the rapidity of each jet in the dijet CM frame. In the ATLAS

analysis, the observable Fχ is used to distinguish between isotropic new physics

processes and QCD backgrounds, that prefer the forward direction. As a simple
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illustration of their applicability to our model, we compute the quantity,

Fχ(mℓℓ) ≡
∫ a
−a
(dσ/dcθ)dcθ∫ 1

−1
(dσ/dcθ)dcθ

, (II.22)

where the central region is defined by −a ≤ cθ ≤ a. Choosing a = 1/2 (which

corresponds to χ = 3), we plot Fχ(mℓℓ) at the partonic level in Model U with

Mχ = Mφ = 500 GeV and ∆M = 0 on the right-hand side of Fig. 2.7.. The red

curve corresponds to λ = 1.8, the green curve to λ = 1.4, and the blue curve depicts

the Standard Model at LO.

The SM curve appears flat which can be understood as follows. One sees

from Eq. (II.20) that for a given mℓℓ, the angular distribution can be written

as dσ/dcθ(mℓℓ, cθ) = f(mℓℓ)[
3

8
(1 + c2θ) + AFB(mℓℓ)cθ]. From the left-hand plot in

Fig. 2.7., we see that in the SM AFB is largely insensitive to mℓℓ for the range

considered because all SM states can be taken as massless for this range and there

is no mass scale in the problem. Thus dσ/dcθ(mℓℓ, cθ) can be approximately written

as f(mℓℓ)[
3

8
(1+c2θ)+AFBcθ]. Therefore, to a good approximation, f(mℓℓ) drops out

of Fχ(mℓℓ). In general no such approximate factorization can be made for the new

physics effects in our model. We find that the new physics box amplitude tends to

slightly favor the outer regions over the central region. The values for Fχ(mℓℓ) in our

model are therefore always smaller than the Standard Model’s unless interference

effects lead to a deficit in rates with respect to the SM. The preference for the outer

regions gets more pronounced for mℓℓ & 2Mχ, where also the imaginary part in the

amplitude turns on. This behavior is reflected in the red curve by a kink at ∼ 1000
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GeV on the right-hand-side plot in Fig. 2.7., to the right of which the distribution

falls steeper.

Dilepton Spectrum Constraints

We can compare the predicted dilepton spectra of our model to measurements

by the LHC collaborations [64, 65] by conducting a shape analysis. The dominant

Standard Model background in these searches is the Drell-Yan process, which

at tree-level is s−channel photon– and Z–mediated as shown in Fig. 2.1..

Subdominant backgrounds come from the production of tops, dibosons, dijets

and W+jet. Both ATLAS and CMS find their observed dilepton spectra are

consistent with the Standard Model.

ATLAS has dilepton events with invariant masses as high as ∼ 1600 GeV (1800

GeV) for mee (mµµ), whereas CMS has events up to ∼ 1750 GeV (1850 GeV). The

ATLAS and CMS measurements can be translated into constraints of our model.

In our analysis we only consider mℓℓ bins that are far from the Z-resonance given

the dark fermion masses we consider. In order to generate signal spectra, we first

analytically compute the pp → ℓ+ℓ− cross section ratios dσtotal/dσSM bin by bin

using the MSTW2008NNLO parton distribution functions, where dσtotal and dσSM

are as defined in Eq. (II.11). We choose the squared factorization scale and Q2 to

be m2
ll. We then scale the experimentally provided Drell-Yan NNLO backgrounds

by these ratios. We do not consider the subdominant backgrounds.

Bounds on the model parameter space can be set by comparing the dilepton
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spectra of our model with the Standard Model predictions, by computing ∆χ2 =

χ2
NP − χ2

SM, where

χ2
NP =

Nbins∑

i=1

(N i
obs −N i

NP)
2

N i
NP + σ2

SM

, (II.23)

χ2
SM =

Nbins∑

i=1

(N i
obs −N i

SM)
2

N i
SM + σ2

SM

, (II.24)

with N i
NP the number of events expected by our model, N i

SM the number of events

predicted by the SM, N i
obs the number of events observed and σSM is the background

systematic uncertainty. By setting ∆χ2 = 5.99, we obtain a 95% C.L. exclusion

limit in the λ−Mχ plane with respect to the Standard Model. In the following, we

compare the model with the ATLAS results [64]. ATLAS and CMS have comparable

sensitivities and their results are in good agreement with each other. Therefore,

using the CMS results [65] would lead to very similar exclusion limits. We do not

attempt a statistical combination of the ATLAS and CMS results.

As one would expect, in general the shape of the dilepton spectrum is sensitive to

λ. For instance, depending on the Model (U, D or UD) used for setting constraints,

it is possible to obtain also a slight deficit in model events with respect to the

background, due to interference effects for dilepton invariant masses below the

kinematic threshold (see also [83] for a recent study of destructive interference

effects at colliders.). This typically occurs at λ . 1. We will find, however, that

our ∆χ2 analysis at
√
s = 8 TeV is only sensitive to λ & 1.4, where the signal

is dominated by dσbox ∝ |Mbox|2. Thus, the nature of the model spectrum is as
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Figure 2.8.: Example Feynman diagrams with the highest contribution to the pair

production of the colored mediator, resulting in jets+MET signals.

discussed in Subsection II.2.3. It then follows that the largest contributions to ∆χ2

comes from the contribution near mℓℓ ≃ M1 +M2, where the monocline feature

leads to the largest signal over background.

We will discuss the results of the χ2 analysis in Sec. II.4 along with additional

constraints on our parameter space from dedicated dark matter searches at the

LHC, from direct detection experiments and from the dark matter relic abundance.

Related Constraints

The primary focus of our dissertation is on the new signals of radiative

corrections of dark matter on the dilepton kinematical and angular distributions.

There are, of course, several correlated implications, from LHC predictions, the

thermal relic density, to the predictions for the scattering rates in direct detection
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experiments. In this section we consider the constraints that these correlated

implications place on the parameter space of the simplified models that we

consider. We consider the bounds set by jets + MET searches at the LHC [84, 85],

the bounds from nucleon-dark matter scattering in direct detection experiments

[86, 18, 87], and the dark matter thermal relic abundance (now best determined

by Planck [88]). Additional constraints can arise from the anomalous magnetic

moment of the muon [89] as well as from LEP results on four-lepton contact

interactions [90]. In this section we step through each of these, detailing the

various mechanisms behind each probe and how they place constraints on the

model. A summary of all constraints and a comparison to the dilepton signal will

be presented in Sec. II.4.

LHC constraints

While searches for dark matter signals in the form of missing transverse energy

(MET)+initial state radiation, the so-called mono-X signatures, are ongoing, the

strongest constraints on our model come from recasted supersymmetry searches for

jets+MET signatures from ATLAS and CMS [84, 85]. Indeed, pair production of

the colored mediators, followed by the decay of the mediators into dark matter and a

light quark contribute to the jets+MET signal. Some important diagrams are shown

in Fig. 2.8.. For recasting, we use the CMS T2qq simplified model in [84], where the

gluino is assumed decoupled and squark pair production is followed by prompt decay

to a pair of LSPs with a branching ratio of 100%. Contours of the exclusion cross-
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Figure 2.9.: Example dark matter annihilation diagrams that set the thermal relic

abundance.

sections in the plane of LSP mass and squark mass are provided, which we compare

with our signal cross-sections generated at leading order using MadGraph5 [217]

with CTEQ6L1 parton distribution functions [92]. We will present the results of

the numerical analysis in Sec. II.4, where we also compare the bounds with those

obtained from the dilepton spectra.

Note that the supersymmetry search assumes the squarks are pair-produced

predominantly via an s-channel gluon whereas the dominant production channel

in our model is t-channel exchange of χ1 and χ2. While in principle this leads to

different detector acceptances for the two processes, in practice we find that these

two acceptances are similar within a few percent, validating our use of the CMS

bounds for constraining our model.

Relic Abundance

If χ is a thermal relic of freeze-out, the diagrams in Fig. 2.9. contribute to its

annihilation into SM fermions in the early universe. We can then calculate the relic

abundance as a function of the masses and couplings in our model by solving the
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Figure 2.10.: Feynman diagrams contributing to direct detection signatures.

Boltzmann equation under the freeze-out condition. For the case of a pseudo-Dirac

dark matter candidate (i.e. for small mass splitting between the two dark fermion

states χ1 and χ2), coannihilations between the two eigenstates (χ1χ2 → ff̄ and

χ2χ2 → ff̄) play an important role in setting the abundance. We incorporate

these effects through an effective cross-section [152]

σeff(x) =
σ11 + 2σ12(1 + δ)3/2e−xδ + σ22(1 + δ)3e−2xδ

(1 + (1 + δ)3/2e−xδ)2
, (II.25)

where x ≡ T/Mχ is the ratio of temperature and dark matter mass and δ ≡ ∆M/Mχ

is the fractional mass splitting between the dark matter states. For a splitting less

than or comparable to the freeze-out temperature (∆M/Mχ . 1/xF ), efficient

s−wave annihilation of the σ12 term in Eq. (II.25) leads to small relic abundances

that do not overproduce dark matter for large ranges of parameters in our model.

For (∆M/Mχ ≫ 1/xF ), exponential suppression of the coannihilation terms in

Eq. (II.25) implies σeff ≈ σ11, whose s−wave component is chirality-suppressed by

a factor of (mf/Mχ)
2. The dominant component in that case is p-wave suppressed,

leading to larger relic abundances. While there is potentially a sub-dominant

contribution from coannihilation between the scalar mediators and dark matter for
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Mφ/Mχ . 1.1. We neglect these effects in setting our bounds, since, as discussed

below, we will find that constraints from direct detection are typically stronger than

constraints from the dilepton spectrum in these regions of parameter space.

The relic abundance is given by

Ωχh
2 ≈ 1.07× 109 GeV−1

MPl

xF√
g∗

1

Ia + 3Ib/xF
, (II.26)

where the freezeout temperature xF can be determined through

exF =
5

4

√
45

8

M1MPl(Ia + 6Ib/xF )

π3
√
g∗
√
xF

. (II.27)

The terms Ia and Ib quantify the integration over thermal history of the annihilating

species before freeze-out, and are given by

Ia = xF

∫ ∞

xF

dx

x2
aeff , Ib = 2x2F

∫ ∞

xF

dx

x3
beff , (II.28)

where 〈σeffvrel〉 = aeff + beffv
2
rel. Expressions for aeff and beff in our model are given

in Appendix B.

The constraints on the model parameter space from the relic abundance will be

shown in Sec. II.4.

Direct Detection

Dark matter is also constrained by underground experiments studying the

recoil spectra of local galactic dark matter scattering off nuclei of heavy elements.

Fig. 2.10. shows the dominant diagrams in our model contributing to the scattering

cross-section.
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The current best bounds for spin-independent scattering are set by results of the

85.3 day-run of the Large Underground Xenon (LUX) experiment [18] and those for

spin-dependent scattering by the XENON100 experiment [87]. The energy transfer

in these scattering experiments is O(10 keV), hence for a sufficiently large splitting

in the eigenmasses of pseudo-Dirac dark matter, only the lighter eigenstate takes

part in the scattering. Such a scenario emulates a Majorana dark matter candidate

scattering off the nucleus. In the Majorana case, the leading contribution to spin-

independent scattering comes from a quark twist-2 operator, which is suppressed by

1/M8
φ. Therefore one only obtains modest bounds from spin-independent scattering.

Constraints from spin-dependent scattering are typically comparable.

On the other hand, in the pure Dirac limit (∆M = 0) and in the pseudo-

Dirac case with a sufficiently small splitting in the dark fermion masses, the spin-

independent scattering cross-section is dominated by the vector-vector interaction

operator (which is absent for a Majorana fermion). These cases are subject to

very stringent limits by spin-independent direct detection. Constraints from spin-

dependent scattering of Dirac dark matter (where one finds a cross-section that is

four times smaller than in the Majorana case) are however not relevant.

Following [50], the direct detection cross sections spin-independent scattering

σSI and spin-dependent scattering σSD predicted by our model can be calculated

using the formulae given in Appendix C.
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LEP Constraints

LEP analyses of four lepton contact interactions that contribute to e+e− →

ℓ+ℓ− can also be used to place constraints on the parameter space of our model.

Box diagrams with dark fermions and lepton mediators will generate four fermion

interactions of the type (ēγµPRe)
2. However, in agreement with [61] we find that

the LEP results collected in [90] give only mild constraints on our scenario. In

particular, couplings λ . 2 are only constrained for very light dark matter masses

of Mχ . 250 GeV.

Anomalous Magnetic Moment of the Muon

One additional constraint in the case the dark fermions of our model interact

with muons comes in principle from the anomalous magnetic moment of the muon,

(g − 2)µ. Indeed, loops with dark fermions and scalar mediators can contribute

to (g − 2)µ. The sign of the contribution to (g − 2)µ is fixed, and turns out to

increase the longstanding discrepancy of the observed value with respect to the

theory prediction [89, 94]. Requiring that the model prediction for (g − 2)µ does

not deviate by more than 5σ from the measured value, we find constraints only in

extreme corners of parameter space with λµ & 2 and Mχ ∼Mφ . 200 GeV.

Summary of all Constraints

We can now combine all the constraints discussed in the sections above.

Figs. 2.11., 2.12. and 2.13. depict the regions of parameter space in the plane of
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Figure 2.11.: Constraints in the plane of dark matter mass Mχ vs. coupling λ

in Model U. LEFT: ∆M/Mχ = 0.1 (Dirac-like at freeze-out), RIGHT: ∆M/Mχ =

0.5 (Majorana-like at freezeout). The first, second and third rows correspond,

respectively, toMφ/Mχ = 1.1, 1.5 and 2. The color scheme is explained in the text.
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Figure 2.12.: Constraints in the plane of dark matter mass Mχ vs. coupling λ in

Model D. Plots and color coding as in Fig. 2.11..
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Figure 2.13.: Constraints in the plane of dark matter mass Mχ vs. coupling λ in

Model UD. Plots and color coding as in Fig. 2.11..
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mediator coupling λ and dark matter massMχ that are allowed by all experimental

bounds for Models U, D and UD respectively. In all three figures, the plots on

the left-hand side correspond to a mass splitting between the dark matter states

of ∆M/Mχ = 0.1 (to represent a χ that is Dirac-like at freeze-out). The plots

on the right-hand side correspond to ∆M/Mχ = 0.5 (Majorana-like at freeze-

out). The rows correspond to ratios of mediator mass to dark matter mass of

Mφ/Mχ = 1.1, 1.5 and 2 respectively. The blue curves show the 95% C.L. exclusion

limit for a comparison between our model and the dilepton spectrum measured

by the ATLAS collaboration at 8 TeV [64]. The dotted magenta curves depict

the jets+MET bounds, recast from the CMS search for supersymmetry [84].

In the shaded red region the model overcloses the universe at freeze-out, with

Ωχh
2 & 0.12. Along the red curves the local dark matter density predicted by our

model saturates the experimental value, i.e., Ωmodelh
2 = 0.12.

The solid and dashed green curves are, respectively, bounds from the 90%

C.L. exclusion limits set by LUX [18] for spin-independent cross-sections and

XENON100 [87] for spin-dependent cross-sections assuming the canonical local

dark matter density of ρχ ≃ 0.3 GeV/cm3. For a purely thermal origin of the

dark fermions, this bound only applies at the crossing of the green curves with

the red curve. Above the red curve, the green lines correspond to the constraint

on the parameter space assuming there is some other origin of the dark fermion

abundance that makes up the correct cosmological density (and thus local density)
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that we observe today. The shaded green region, by contrast, is ruled out even if the

abundance of the dark fermions is the predicted (subdominant) thermal abundance

associated with those parameters. In this case, even if there were another (inert)

component of dark matter to make up the difference in relic density, the small

thermal abundance of the dark fermions (∝ 1/λ4) is compensated by an enhanced

direct detection scattering cross section (∝ λ4).

In the following we remark on the various features of the constraints in

Figs. 2.11., 2.12. and 2.13..

We first note that the dilepton spectrum constraints are generically tighter for

Models U and UD than for Model D. This follows from the PDFs of the initial state

up quarks in comparison to initial state down quarks, leading to higher production

rates when the former are present in the new physics process. Note that the

constraints from the dilepton spectrum lie in the region where the new physics

signal is dominated by |Mbox|2, hence the largest contributions to the significance

arise from the region around mℓℓ ≃ M1 +M2. For the set of parameters spanned

by the blue curve, this does not give rise to a significant difference between the

∆M/Mχ = 0.1 and ∆M/Mχ = 0.5 cases in all three models, as can be observed

comparing the left- and right-hand sides of the figures.

We also note that the dilepton spectrum constraints are stronger when the

mass splitting of the mediator and dark matter is small. This is because the

monocline is sharper for a degenerate spectrum as demonstrated in Fig. 2.6.. A

75



mass splitting between φ and χ causes a transition from an SM-like spectrum in the

IR to the parallel SM+DM-like spectrum in the UV over a larger mass interval. In

contrast, searches for mediator pair production in jets+MET events become weaker

for smaller Mφ/Mχ due to the reduced amount of missing transverse energy. This

demonstrates the complementarity of our dilepton spectrum observables to existing

DM searches.

In all three models, one finds the jets+MET constraints slightly stronger for

∆M/Mχ = 0.5 than ∆M/Mχ = 0.1. The reasons for this behavior are outlined in

detail in [69], but we summarize it here as follows. Same-handed squark production,

such as in the first Feynman diagram in Fig. 2.8., is absent in the pure Dirac limit,

but turns on gradually as we approach the Majorana limit, contributing to the

production rates. Hence the jets+MET bounds tighten as we increase ∆M/Mχ.

Once again due to PDF effects this search sets tighter constraints on Model UD than

Model U, which in turn are tighter than in Model D. The cuts used in the search

get more efficient when the scalar mediator and the LSP are more split in mass.

This dependence on the acceptance gives rise to the strengthening of the bounds

observed as Mφ/Mχ increases. For Model D, the acceptance for a near-degenerate

spectrum is poor enough to set no bounds at all in our chosen range of λ forMφ/Mχ.

In all the plots, we have assumed that the production of both χ1 and χ2 contributes

to the MET, while realistically χ2 would undergo a decay to χ1 and SM states.

The direct detection limits contain several interesting features. First, the bounds
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are identical for either splitting, ∆M/Mχ = 0.1, 0.5, since for a splitting of more

than O(100 keV), there is insufficient kinetic energy in the nonrelativistic collisions

to excite to the heavier state χ2. Hence, χ1 behaves entirely Majorana-like for

direct detection searches. Next, the spin-independent (SI) scattering bounds (solid

green curves) are very similar for Model U and D, but stronger for Model UD since

more partons are involved in the scattering in the latter. The spin-dependent (SD)

bounds (dashed green curves) differ across all three Models due to the difference in

nucleon matrix elements, which are large for down quarks in a neutron and small

for up quarks in a neutron (see Appendix C). Moreover, the SI constraints weaken

much more rapidly than the SD bounds as we increase in Mφ/Mχ (and disappear

forMφ/Mχ = 2 in the range of our parameter space). This is due to the dominance

of the twist-2 operator in SI scattering that scales as 1/M8
φ, as opposed to the

1/M4
φ-dependence of SD scattering. This interplay between the dimensionality of

the operator and the relative strengths of the nucleon matrix elements determines

whether the SI or the SD direct detection results sets the stronger bounds, that in

turn depends on the choice of the Model and Mφ/Mχ. In Model U, the SI bounds

are stronger than the SD bounds up toMχ ∼ 1100 GeV forMφ/Mχ = 1.1 and up to

Mχ ∼ 500 GeV for Mφ/Mχ = 1.2; for Mφ/Mχ ≥ 1.3, the SD bounds are stronger.

In Model D, the SI bound is stronger up to Mχ ∼ 600 GeV for Mφ/Mχ = 1.1,

and the SD bound is uniformly stronger for Mφ/Mχ ≥ 1.2. In Model UD, the SI
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bounds are uniformly stronger for Mφ/Mχ ≤ 1.3, stronger than SD bounds up to

Mχ ∼ 400 GeV for Mφ/Mχ = 1.5 and weaker (here absent) for Mφ/Mχ = 2.

The relic density constraints are slightly weaker for Model UD than Models U

and D since a pair of χ’s can annihilate to two different flavors of quark final states.

As Mφ/Mχ is increased, the relic density bounds gradually increase in all three

Models. This is due to the weak dependence of 〈σeffvrel〉 on Mφ/Mχ, as can be seen

from Appendix B. The annihilation of Majorana dark matter happens without an

s-wave component due to chirality-suppression (see [50]) and hence is less efficient

than Dirac dark matter annihilation. For a mixed dark matter candidate like ours,

∆M/Mχ = 0.1 approximates the Dirac case and ∆M/Mχ = 0.5 approximates the

Majorana case during freeze-out. This is why the thermal relic bounds on the right-

hand-side of Figs. 2.11., 2.12. and 2.13. are stronger than those of the left-hand-side.

Finally, we remark on the striking complementarity of the various dark matter

probes applied to our model. While it is obvious that the relic constraints bound

Models U, D and UD in the low-λ regime, several competing factors determine

which of the other experiments – dilepton searches, jets+MET searches, direct

detection – set the strongest bound at higher couplings λ. In fact, depending on

the Model and choice of parameters, each of these three can give the best bounds in

some parameter regime. Since the dependence of each probe on the parameters has

been explained in this section, in the following we only briefly describe our findings,

as applicable to the high-λ, low-Mχ region.
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In Model U, for both ∆M/Mχ = 0.1 and 0.5, the tightest exclusions come

from direct detection for Mφ/Mχ ≤ 1.3, direct detection for Mχ . 450 GeV and

dilepton measurements for Mχ & 450 GeV at Mφ/Mχ = 1.5, and predominantly

jets+MET searches at Mφ/Mχ = 2. In Model D, the tightest exclusions are from

direct detection for all Mφ/Mχ. In Model UD, direct direction predominantly sets

the tightest limits for Mφ/Mχ ≤ 1.3; for Mφ/Mχ = 1.5, the best bounds are placed

by jets+MET searches at Mχ . 500 GeV for ∆M/Mχ = 0.1 and at Mχ . 600

GeV for ∆M/Mχ = 0.5, and by dilepton measurements at Mχ & 500 GeV for

∆M/Mχ = 0.1; for Mφ/Mχ = 2, the best bounds are placed by jets+MET searches

at Mχ . 500 GeV and dilepton measurements at Mχ & 500 GeV.

Future Projections

We provide in Fig. 2.14. our projections for the sensitivity of the LHC at
√
s =

14 TeV (left) and for a future proton-proton collider at
√
s = 100 TeV (right) in

the dilepton invariant mass spectrum. Here we have chosen Mφ/Mχ = 1.2 and

∆M/Mχ = 0.1 for Model U and Model D, for illustration. We expect other choices

of parameters to not qualitatively alter the results presented, as may be deduced

from the ∆χ2 bounds shown across various sets of parameters in Figs. 2.11., 2.12.

and 2.13.. The shaded red region corresponds to an overabundance of dark matter

(Ωχh
2 & 0.12) for ∆M/Mχ = 0.1. The dashed (solid) curves correspond to an
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Figure 2.14.: Projections for 95% C.L. sensitivity for the LHC running at

√
s =

14 TeV (left) and a future p− p collider at
√
s = 100 TeV (right). The red (black)

curves denote Model U (D). The dashed (solid) curves correspond to an integrated

luminosity of 100fb−1(3000fb−1).

integrated luminosity of 100 fb−1(3000 fb−1); the red (black) curves correspond to

Model U (D).

To obtain these plots, leading order cross-sections were computed using

MadGraph5 with CTEQ6L1 parton distribution functions and a global K-factor

of 1.25 was applied to obtain projected background events. Such a procedure may

not capture all the considerations that may go into computing the background

for a 100 TeV collider. For a full analysis, for instance, one would need to

compute the effects of the double logarithmic contributions of Sudakov electroweak

corrections [95], take into account the (modified) running of the standard model
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gauge couplings [78], etc. (For additional considerations of dark matter physics at

100 TeV, see for example [96, 97, 98].) Our objective here is to present sensitivity

projections that are indicative of what one might expect with extrapolations of

what has been done already at the LHC at
√
s = 8 TeV. In particular, a uniform,

uncorrelated systematic error of 6% was assumed across all bins. “Signal” events

were generated by running 100 pseudo-experiments, applying Poisson fluctuations

around the background events. A ∆χ2-fit, as defined in Eq. (II.24), was then

performed with each pseudo-experiment’s results and the arithmetic mean of the

∆χ2’s was obtained. 95% C.L. exclusion limits were then set on the λ−Mχ plane.

As one can see, the dilepton spectrum features are significantly more prominent

at the LHC at 14 TeV, and even more so at a 100 TeV future collider. This is

to be expected since the number of dilepton events increases considerably both

by the higher center-of-mass energy and the higher integrated luminosities, thus

improving the sensitivity of a shape-fit. For the same reason, the systematic

uncertainties, which were smaller than statistical uncertainties in the
√
s = 8 TeV

measurements and hence negligible in setting constraints, play a more important

role in determining the sensitivities of future colliders.

One also notices the difference in slope between the solid red curves and the

others in the left-hand plot, and between solid and dashed curves in the right-

hand plot. This is because the contributions to ∆χ2 come from a wider range near

mℓℓ ≃ 2Mχ.
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We do not attempt to make projections for jets+MET constraints on the

model.5 This is because the exclusion cross-sections obtained by recasting the

supersymmetry searches are extremely sensitive to the choice of cuts in the phase

space when the LSP and colored scalar are nearly degenerate in mass. We

anticipate some complementarity between the jets+MET sensitivity and dilepton

sensitivity: as Mφ/Mχ is increased, the dilepton monocline signal is suppressed,

while the jets+MET signal becomes more easily visible. Where the crossover

occurs is undoubtedly highly sensitive to the respective detection search strategies.

In summary, this chapter explored a new signal for detecting dark matter at

hadron colliders. In the next chapter, we will use the known properties of and

experimental limits on dark matter to constrain a supersymmetric extension of the

Standard Model, λ-SUSY.

5We are very grateful to Gavin Salam and Andreas Weiler for discussions about the applicability
(and difficulties) of using their (awesome) Collider Reach tool [99] for projections in this squeezed
scenario.
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CHAPTER III

THE 125 GeV FAT HIGGS

This work is previously unpublished material. Arjun Menon initiated the

project; Nirmal Raj performed the calculations and produced the plots and tables

in this chapter.

Introduction

Weak scale supersymmetry (SUSY) remains a popular and elegant solution to

the hierarchy problem of the Standard Model (SM) [100]. It provides a natural

means to stabilize the electroweak scale against large quadratic corrections from

higher scales. The fact that the Higgs boson was discovered to be light [101, 102],

in accordance with SUSY’s predictions, encourages us to continue our search for

signals of SUSY at the TeV scale.

In the Minimal Supersymmetric extension of the Standard Model (MSSM), the

tree-level Higgs quartic couplings are fixed to be the gauge couplings which leads

to the tree-level Higgs boson mass that is below that of the Z boson. Therefore, to

raise the Higgs boson mass to the observed value of 125 GeV at the LHC [101, 102]

requires large corrections due to a heavy stop sector [103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113]. However, heavy stops lead to large correction to the up-
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type soft SUSY breaking Higgs squared mass parameter which in turn leads to

a large correction to the electroweak symmetry breaking (EWSB) condition. A

delicate cancellation between these corrections and the Higgsino mass parameter is

needed to stabilize the electroweak scale, which is generally considered unnatural.

Therefore in the MSSM there exists a tension between the observed Higgs mass

and the requirement that the model is natural.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) is the

simplest extension of the MSSM that can address this tension. In the NMSSM,

the Higgs sector is enlarged to include an extra gauge singlet that couples to the

remaining MSSM Higgs doublets through a Yukawa coupling λ. λ contributes

to the Higgs quartic at tree-level, and for large enough values, can raise the

Higgs mass to the observed 125 GeV. Therefore the stops need not be too heavy,

thereby improving the naturalness of the model. Moreover, in the general NMSSM

(GNMSSM), an additional tadpole term for the gauge singlet can also facilitate

EWSB [114].

For λ & 0.7 at the weak scale, renormalization group (RG) evolution usually

leads to this coupling developing a Landau pole below the GUT scale. Refs. [115,

116, 117, 118, 119, 120] have provided explicit UV-completions for such low scale

models, which we collectively call Fat Higgs models. Refs. [121, 122, 123, 124,

125, 126, 127, 128, 129, 130, 131, 132, 133] have studied the phenomenological

implications of models with such large λ couplings, which we collectively call λ-
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SUSY models. For these models, they have found that the Higgs mass can easily

be raised to the observed value while still keeping the spectrum natural. These

studies have focused on a region of low tan β (tan β ≡ vu/vd where vu and vd are

the vacuum expectation values (VEVs) of the corresponding Higgs doublets) and

large λ because these regions were the most natural.

In this chapter, we study the possibility of raising the Higgs mass to 125

GeV in Fat Higgs/λ-SUSY models at large tan β. As the λ2-proportional tree-

level contribution to the Higgs quartic is suppressed at large tan β the one-loop

induced radiative corrections are crucial in raising the Higgs boson mass to its

observed value. Similar to the stop-induced corrections that are proportional to

y4t log(m
2
t̃/Q

2) (where yt is the top Yukawa and mt̃ is the stop mass scale), in

Fat Higgs/λ-SUSY models the dominant one-loop corrections are proportional to

λ4 log(M2
A/Q

2) (whereMA is the scale of the non-standard Higgs bosons). Therefore

these corrections are only relevant when λ & 1 and the non-standard Higgs bosons

are much heavier than the electroweak scale. The effect of radiative corrections

in the NMSSM Higgs sector have been considered before [128, 134]. Ref. [128]

focused on the most natural regions in the Scale-Invariant NMSSM, where it was

found that these radiative corrections made a negligible contribution. In contrast,

we show that at large tan β, the λ induced radiative corrections can significantly

modify the allowed regions of parameter space. Unlike Refs. [121, 128, 129], we also

emphasise that electroweak precision constraints do not put a limit on tan β. We
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point out that raising the Higgsino mass parameter µeff significantly weakens the

electroweak precision constraints because the Higgsino component in the lightest

neutralino is suppressed. The price of raising µeff is a slight increase in the tuning

of the EWSB condition. To illustrate these effects in regions of large tan β we

also impose constraints from Higgs decay properties, direct dark matter detection

experiments, the observed dark matter relic density and the invisible width of the

Z boson. In particular, we find that direct dark matter detection experiments place

strong limits on many regions of parameter space due to the large λ coupling. We

also show that these allowed pockets of parameter space are within the reach of the

XENON 1T experiment [135].

This chapter is organized as follows. In Sec. III.2, we set up the theoretical

aspects required for the phenomenology of our model. To motivate the sizes of

various terms in the Fat Higgs/λ-SUSY model, we present a “toy” high scale

model where the fields have canonical mass dimensions in the electric theory. In

addition, in this section we also compute the corrections to the Higgs quartic using

the one-loop effective potential formalism, discuss the Higgsino contributions to

electroweak precision constraints and naturalness in the large tan β regime of the

Fat Higgs/λ-SUSY model. In Sec. III.3, we illustrate the impact of the formalism

in Sec. III.2 by finding phenomenologically viable scenarios that can be probed at

future experiments.
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Theoretical Setup

In this section we first motivate the form taken by our superpotential by a

simple discussion of the sizes of various terms that can arise in Fat Higgs/λ-SUSY

models. In this discussion we assume that any exotic fields are much heavier than

the electroweak scale. For the superpotential thus obtained, we present the Higgs

potential at the tree level and analytically compute the one-loop corrections to

the mass of the SM-like Higgs boson due to heavy non-standard Higgs fields, with

special attention to the limit of large λ and tan β. In addition we discuss the

naturalness of the large tan β regions of the Fat Higgs/λ-SUSY models. We then

discuss the reduced couplings of the SM-like Higgs to SM particles, which are

constrained by LHC measurements of signal strengths. We end the section with

a brief discussion of the neutralino sector with particular attention to electroweak

precision observables.

Realizing Low Scale NMSSM with Large λ

The GNMSSM with a large λ at the weak scale implies that some of the Higgs

fields are composite states. For example, in the minimal Fat Higgs scenario of

Ref. [115], all of the Higgs sector fields are composite, while in Refs. [116, 120] the

MSSM Higgs fields are fundamental. For simplicity we will assume that at scales
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<∼10 TeV, the only fields present in the Higgs sector are the SU(2)L doublets Ĥu, Ĥd

and the gauge singlet Ŝ.1

The most general superpotential with this particle content (assuming R-parity)

has the form [139, 114]

WGNMSSM = WYukawa + λŜĤuĤd +
1

3
κŜ3 + µĤuĤd +

1

2
µ′Ŝ2 + ξF Ŝ, (III.1)

where λ, κ are dimensionless coupling strengths; µ, µ′ are supersymmetric mass

terms; ξF is a supersymmetric tadpole term of mass dimension 2, and WYukawa

contains the standard MSSM Yukawa superpotential terms. The corresponding

soft SUSY-breaking terms are

−Lsoft = −Lf̃soft +m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2 +
(
λAλHuHdS +

1

3
κAκS

3 +m2
3HuHd +

1

2
m′
S
2
S2 + ξSS + h.c.

)
,(III.2)

where Lf̃soft corresponds to the standard MSSM soft SUSY-breaking terms.

m2
Hu
,m2

Hd
,m2

S are the soft SUSY breaking Higgs squared mass terms and Aλ, Aκ

are the soft SUSY breaking trilinear terms. m2
3,m

′
S
2
are the CP-violating soft

SUSY breaking squared mass terms and ξS is the dimension-3 soft SUSY breaking

term corresponding to ξF .

A generic feature of most Fat Higgs/λ-SUSY models is that the Yukawa coupling

λ & 0.7 at the TeV scale.2 Due to its renormalization group (RG) evolution, λ

1For more exotic realizations of composite Higgs models, see [117, 118, 136, 137].

2For Fat Higgs models that provide an existence proof of gauge coupling unification, see [115,
116].
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becomes stronger at higher scales and develops a Landau pole at the compositeness

scale ΛH , where ΛH is assumed to be lower than the grand unification scale MGUT.

In the deep IR, much below ΛH , the magnetic theory of mesons (i.e. the Higgs

superfields) is described by the interactions in Eqs. (III.1) and (III.2). In the UV

above ΛH , some or all of the Higgs superfields are revealed to be composite states

made up fundamental quarks whose interactions are described by some electric

theory.

If the quarks in the electric theory have the canonical mass dimension and

all Higgs superfields are composite, then the κ, µ, µ′ terms in Eq. (III.1) and

their corresponding soft SUSY-breaking terms in Eq. (III.2) are generated by

marginal terms in the fundamental theory. For example, in the simplest Fat Higgs

model [115], the Higgs superfields in Eq. (III.1) are composite states of the quarks

Ti in the electric theory. These quarks are charged under a confining SU(2)H gauge

group, thereby leading to the identification

Ŝ ∼ T̂5T̂6;




Ĥ+
u

Ĥ0
u




∼




T̂1T̂3

T̂2T̂3




;




Ĥ0
d

Ĥ−
d




∼




T̂1T̂4

T̂2T̂4



. (III.3)

The λ term in Eq. (III.1) is dynamically generated by the Pfaffian of the

mesons in the magnetic theory. Naive dimensional analysis (NDA) and canonical
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normalization of the fields (〈TiTj〉 → (ΛH/4π)φij) lead to the relations

λ(ΛH) ∼ 4π; κ(ΛH) ∼
(

ΛH
4πΛ0

)3

µ ∼ Λ2
H

(4π)2Λ0

∼ µ′; ξF ∼ mΛH
4π

, (III.4)

where m and Λ0 are parameters in the electric superpotential given by

Welectric ≃ mT̂5T̂6 +
y

Λ0

(
T̂5T̂6

)2
+
y′

Λ0

[(
T̂1T̂3

)(
T̂2T̂4

)
−
(
T̂1T̂4

)(
T̂2T̂3

)]
+

y′′

Λ3
0

(T5T6)
3. (III.5)

The couplings y, y′, y′′, in the above equation, need not be O(1) numbers because

Λ0 is just a generic scale used to parameterize the mass dimension of each of these

operators.

Eq. III.4 gives us a definition of ΛH : it is the scale at which the size of λ is

4π. Using this definition, we can then estimate the size of the other parameters at

the weak scale from their RG evolution. In determining ΛH , we also account for

the effects of the SM Yukawa couplings using the renormalization group equations

(RGEs) in Ref. [139]. Having estimated the NMSSM parameters at the scale ΛH

using Eq. III.4, we run them down to the TeV scale by solving the RGEs and find

that they decrease with decreasing scale. This running behavior has two important

implications for our model:

1. Eq. (III.4) implies κ(ΛH) ≪ O(1). Run down to a renormalization scale

Q = O(TeV), we expect κ to be quickly suppressed due to the contribution of λ

to its running. This suppression is illustrated in Fig. 3.1.(a), where we plot κ at
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Figure 3.1.: (a): κ as a function of λ at the scale Q = MZ , obtained by fixing

κ at the scale ΛH and then evolving it down with RGEs. The red (green) curve

corresponds to κ(ΛH) = 1(0.5). (b): µ′ as a function of λ at the scale Q = MZ ,

obtained in a manner analogous to (a). The red (green) curve corresponds to

µ′(ΛH) = 1(0.5) TeV. In both plots we set tan β = 50. See text for details of their

behavior.

Q = MZ as a function of λ at Q = MZ , setting tan β = 50. These curves were

obtained by first running λ(Q =MZ) up to determine ΛH , then setting κ(Q = ΛH)

to different values ≤ 1, and finally running κ down to Q = MZ . We checked that

the running of λ is insensitive to κ for these sizes of κ. The red curve corresponds to

κ(ΛH) = 1 and the green curve to κ(ΛH) = 0.5. As expected from the RG running,

smaller values of κ(ΛH) result in smaller values of κ(Q =MZ).

A larger λ implies a Landau pole at a lower scale. Therefore, ΛH is closer to

the electroweak scale for larger values of λ, which in turn weakens the suppression

of κ as it runs down from ΛH to MZ . This is why κ is an increasing function of
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λ in Fig. 3.1.(a). From the plot, we infer that for κ(ΛH) ≤ 1, the size of κ at the

weak scale is suppressed by at least an order of magnitude. The implication of this

suppression is that we can consistently neglect the effects of κ in our TeV-scale

phenomenology. Therefore, for the rest of this chapter we will take κ = 0.

2. As compared to κ, µ′ is only suppressed by an O(1) number when it is run

down from Q = ΛH and Q = MZ . This difference between values of µ′ and κ can

be understood from their β-function dependences. Using their one-loop β-functions

in Ref. [139] we find

κ(Q)

κ(ΛH)
=

(
µ′(Q)

µ′(ΛH)

)3

. (III.6)

We check this by determining µ′(Q =MZ) as a function of λ(Q =MZ) in a manner

analogous to the determination of κ(Q = MZ) above. Our results are shown in

Fig. 3.1.(b), where the red (green) curve corresponds to µ′(ΛH) = 1(0.5) TeV, with

tan β = 50. We see that µ′(ΛH) is suppressed at the electroweak scale by at most a

factor of 5. Hence µ′(MZ) that can be of the size of the electoweak scale. Similarly,

the Higgsino mass parameter µ and the tadpole term ξ
1/2
F can also be the size of

the electroweak scale.

We can now write down our low energy superpotential below the scale ΛH :

Weff
NMSSM = WYukawa + λŜĤuĤd +

1

2
µ′Ŝ2 + ξF Ŝ (III.7)
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The associated soft-SUSY breaking potential is

−Leff
soft = −Lf̃soft +m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2

+

(
λAλSHuHd +m2

3HuHd +
1

2
m′2
S + ξSS + h.c.

)
. (III.8)

We have redefined the singlet chiral superfield, Ŝ → Ŝ − µ, to remove the µ term

in the superpotential. In general, the associated soft term m2
3 cannot be absorbed

into Aλ simultaneously. Eqs. (III.7) and Eq. (III.8) constitute all the parameters

treated in the rest of this article.

Higgs Sector

Tree level

At the tree level, the Higgs potential is given by

V tree
Higgs = VF + VD + VS (III.9)

where

VF =
∣∣λ
(
H+
u H

−
d −H0

uH
0
d

)
+ µ′S + ξF

∣∣2 + |λS|2 (|Hu|2 + |Hd|2),

VD =
g2

8

(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 −
∣∣H0

d

∣∣2 −
∣∣H−

d

∣∣2
)
+
g2

2
cos2 θW

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2 ,(III.10)

VS = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2 +

(λAλ(H
+
u H

−
d −H0

uH
0
d)S +m2

3(H
+
u H

−
d −H0

uH
0
d) +

1

2
m

′2
S S

2 + ξSS + h.c.),

Hu = (H+
u , H

0
u), Hd = (H0

d , H
−
d ), g

2 ≡ g21 + g22 and θW is the weak mixing angle.

After electroweak symmetry breaking we can expand the Higgs fields in terms of the
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CP-even fields (h0u, h
0
d, h

0
s), the CP-odd fields (A0

D, A
0
S), the charged Higgs bosons

H± and the Goldstone bosons (G±, G0):

Hu =




G+sβ +H+cβ

vsβ +
1√
2
[(h0u + i(G0sβ − A0

Dcβ)]



,

Hd =




vcβ +
1√
2
[(h0d + i(−G0cβ + A0

Dsβ)]

−G−cβ +H−sβ



,

S =
1√
2
(s+ h0s + iA0

S), (III.11)

where v ≃ 174 GeV is the VEV of EWSB, sβ ≡ sin β, cβ ≡ cos β and s ≡ 〈S〉.

Expanding the potential about the minimum at vi ≡ (vu, vd, s), we can find the

tree-level tadpole terms

T tree
j ≡

∂V tree
Higgs

∂φj

∣∣∣∣
{vi}

(III.12)

where φj = (H0
u, H

0
d , S). We can then solve for the soft squared masses

m2
Hu
,m2

Hd
,m2

S by setting each T tree
j = 0. Substituting these masses into the second

order derivatives of the Higgs potential and neglecting CP-violating effects, we

obtain the following tree-level CP-even Higgs mass matrix in the basis (h0u, h
0
d, h

0
s).

(
M2

H

)
11

=M2
Zs

2
β + r t−1

β ;
(
M2

H

)
12

= (2λ2v2 −M2
Z)sβcβ − r;

(
M2

H

)
22

=M2
Zc

2
β + r tβ;

(
M2

H

)
13

= λv(2µeffsβ − (Aλ + µ′)cβ);(III.13)

(
M2

H

)
23

= λv(2µeffcβ − (Aλ + µ′)sβ);
(
M2

H

)
33

=
(
λv2(Aλ + µ′)− (ξS + ξFµ

′)
)
/s,
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where µeff ≡ λs, tβ ≡ tan β and r ≡ µeff(Aλ + µ′) +m2
3 + λξF . The CP-odd Higgs

mass matrix in the basis (A0
D, A

0
S) is given by

(
M2

A

)
11

= 2r/s2β;
(
M2

A

)
12

= λv(Aλ − µ′);

(
M2

A

)
22

=
1

s

(
λv2(Aλ + µ′)sβcβ − (ξFµ

′ + ξS)
)
− 2m′2

S, (III.14)

and the charged Higgs mass is

M2
± = 2r/s2β − (λ2 − g22/2)v

2. (III.15)

We point out two features of the tree level masses that will be important in our

discussion of the one-loop corrected Higgs mass. The first feature is the correlation

among the scalar masses in the limit where Aλ and µ′ are small compared to the

heavy Higgs masses. This is best seen by setting
(
M2

A

)
12

= 0 in Eq. (III.14) (which

can be obtained by choosing Aλ = µ′). Then the CP-odd eigenmasses are identified

as M2
AD

=
(
M2

A

)
11

and M2
AS

=
(
M2

A

)
22
. In this limit, by inspecting the matrix

elements in Eqs. (III.13)–(III.15), we find that the CP-even, CP-odd and charged

Higgs eigenstates arising from the SU(2) doublet sector are nearly degenerate in

mass, a feature well-known in the MSSM. Their mass splittings ∼ v2. These three

fields then have a mass ∼MAD
in the limit M2

AD
≫ v2, A2

λ, µ
′2, where MAD

denotes

the corresponding CP-odd eigenmass. Likewise, the CP-even and CP-odd Higgs

eigenstates arising from the SU(2) singlet are nearly degenerate, with mass splitting

∼ s2. Therefore, these two fields have a mass ∼MAS
in the limitM2

AS
≫ s2, A2

λ, µ
′2.

The second feature is the decoupling of heavy states. Raising M2
AD

and M2
AS
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decreases their impact on the mass of the lightest CP-even state, effectively making

it more SM-like. A simple way to see this decoupling behavior is to rotate the

CP-even mass matrix into the basis

h0 = h0usβ + h0dcβ, H
0 = h0ucβ − h0dsβ, h

0
s = h0s (III.16)

which leads to the CP-even mass matrix

(
M2

H

)
hh

=M2
Zc

2
2β + λ2v2s22β;

(
M2

H

)
hH

= (λ2v2 −M2
Z)s4β/2;

(
M2

H

)
HH

=M2
AD

− (λ2v2 −M2
Z)s

2
2β;

(
M2

H

)
hS

= 2λv(µeff − Aλs2β); (III.17)

(
M2

H

)
HS

= −2λvAλc2β;
(
M2

H

)
SS

=M2
AS

+ 2m′
S
2
+
λ2v2

µeff

Aλ(2− s2βcβ),

Notice that ξF , ξS and m2
3 are absorbed into our definition of M2

AD
and M2

AS
. For

large tan β, M2
AD

and M2
AS

, h0 is identified with the SM Higgs, and H0 and h0s with

non-standard Higgs bosons. This decoupling feature should be preserved after the

inclusion of radiative corrections to the lightest CP-even Higgs mass, which is a

non-trivial check of this computation.

Radiative corrections

The mass of the lightest Higgs boson can be significantly modified by one-loop

corrections. The largest contributions to the Higgs potential at one-loop level are

from the Higgs bosons, third generation squarks, charginos and neutralinos. Thus

we have

∆V =
1

32π2

(
3∆V t̃ − 6∆V t −∆V χ± − 2∆V χ0

+
1

2
∆V H +

1

2
∆V A +∆V H±

)
,(III.18)
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where for the ath sector in the MS scheme,

∆V a =
∑

i

(
M2

ia(φk)
)2
(
log

M2
ia(φk)

Q2
− 3

2

)
≈

∑

i=heavy

(
M2

ia(φk)
)2
(
log

M2
ia

Q2
− 3

2

)
.(III.19)

M2
ia(φk) is the field-dependent mass eigenvalue for ith contribution, M2

ia is the

corresponding field-independent tree-level eigenvalue and the renormalization scale

Q ∼ mh = 125 GeV. The approximation in Eq. (III.19) holds because we are

interested in large corrections to the lightest Higgs mass due to states much

heavier than the electroweak scale. Also, the field dependences inside log terms

are neglected since they only induce higher order field-dependent terms.

The dominant contributions to ∆V in our scenario are due to heavy Higgs

scalars coupling to the light Higgs boson with strengths proportional to powers of

λ. The effects of the top quarks and the scalar tops on the Higgs potential have been

studied in great detail in Refs. [103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113].

To highlight the effect of large λ corrections, we suppress the contribution of scalar

tops to ∆V by choosing their masses close to the electroweak scale while still

being compatible with ATLAS and CMS bounds [143, 144, 145]. The contributions

of charginos and neutralinos to ∆V are typically small. The Higgs couples to

the bino and the wino triplet with electroweak strength, whereas the λ-dependent

coupling to the Higgsinos and singlino is typically suppressed due to neutralino

mixing. In addition, the masses of the Higgsinos and singlino <∼ 1 TeV in our

phenomenology while MA ∈ [4, 8] TeV. We therefore neglect corrections from the

chargino-neutralino sector in the remainder of this article.
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In order to compute the one-loop corrections to the Higgs potential in

Eq. (III.19) due to the heavy CP-even, CP-odd and charged Higgs bosons, we must

determine the field-dependent eigenvalues of each of the respective matrices. When

expressed in terms of the matrix elements these field-dependent eigenvalues can in

general be quite complicated. The calculation can nevertheless be simplified if we

expand the eigenvalues as a Taylor series in the tree-level masses:

M2
i (φk) =M2

i,tree + b̂i(φk) +
ĉi(φk)

M2
i,tree

+O
(

1

M4
i,tree

)
, (III.20)

where the coefficients b̂i(φk) and ĉi(φk) are at most quadratic and quartic in

the fields respectively. Furthermore, when evaluated at the tree-level VEVs, the

coefficients satisfy the condition b̂({vk}) = 0 = ĉ({vk}).

In practice, we expand the eigenvalues as a Taylor series in the pseudoscalar

masses M2
AD

and M2
AS

. Using these approximations the one-loop effective potential

due to the heavy Higgs scalars now evaluates to

∆V ∝
∑

i

[
aiM

4
A,i + 2biM

2
A,i + (b2i + 2ci)

](
log

M2
A,i

Q2
− 3

2

)
(III.21)

where ai are constants and the field-dependent coefficients bi and ci are obtained

from the hatted coefficients in Eq. (III.20). Reducing ∆V to this form considerably

simplifies the calculation of Higgs mass corrections. ∆V as presented here must

also ensure that the decoupling behavior discussed in the previous subsection is

preserved at one-loop order. This result is demonstrated in Appendix D.

The full details of our computation and the corresponding results are presented

98



in Appendix E, where two cases satisfying the condition
(
M2

A

)
12

= 0 in Eq. (III.14)

were considered. In the first case, which we call Case (A), we assume that the

one-loop corrections arise from a single heavy scaleMA =MAD
=MAS

. The results

from this case will be used in our discussion of phenomenology in Section III.3.

In the second case, which we call Case (B), we show the effect of splitting the

CP-odd Higgs masses, thereby obtaining corrections from two heavy scales. In this

case we set the terms Aλ, µ
′, Aκ,m3,m

′
S to zero for simplicity. Further, we ignored

corrections that depend on electroweak couplings since we are interested in the

limit λ ≫ g. It is important to note that Cases (A) and (B) pertain not only to

different limits of the mass spectra of the CP-odd scalars, but also to somewhat

different regions of the Lagrangian parameters. In Case (A), the parameters

Aλ, µ
′, Aκ,m3,m

′
S can be non-zero in general, with the condition

(
M2

A

)
12

= 0

imposing Aλ = µ′. On the other hand, Case (B) explicitly sets them all to zero.

For Case B, the one-loop corrections obtained in the basis (h0u, h
0
d, h

0
s) are

Π11 =
λ4v2

16π2
s2β

[
−(4c2β + c4β + 1) log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
,

Π12 =
2λ4v2

16π2
sβcβ(2 + c4β) log

(
M2

AD

M2
Z

)
,

Π22 =
λ4v2

16π2
c2β

[
−(−4c2β + c4β + 1) log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
,

Π13 =
λ3vµeff

16π2
sβ

[
−(1 + 3c2β) log

(
M2

AD

M2
Z

)
+ 4 log

(
M2

AS

M2
Z

)]
,

Π23 =
λ3vµeff

16π2
cβ

[
−(1− 3c2β) log

(
M2

AD

M2
Z

)
+ 4 log

(
M2

AS

M2
Z

)]
,

Π33 =
4λ2µ2

eff

16π2
log

(
M2

AD

M2
Z

)
.
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When these contributions are rotated into the basis of Eq. (III.16), we get the (1,

1) element of the self-energy corrections as

Πhh =
λ4v2sβ
16π2

[(
c2β(2 + c4β)− s2β(1 + c4β + 4c2β)

)
log

(
M2

AD

M2
Z

)
+ 2s2β log

(
M2

AS

M2
Z

)]
.

(III.22)

This is a good approximation for the Higgs mass correction when the mixing

between the SU(2) Higgs doublets and the singlet is negligible. At large tan β,

Eq. (III.22) further simplifies to

Πhh
large tanβ−−−−−→ λ4v2

16π2

[
2 log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
. (III.23)

We could gain an intuitive understanding of our results by qualitatively

estimating the size of the one-loop radiative corrections without recourse to the

effective potential. Such an estimate would serve as a useful cross-check of the

results obtained from ∆V . We do this by the following argument in our limit

of interest, tan β ≫ 1 and λ ≫ g. In this limit, we identify the real scalars

h0u → h, h0d → H, h0s → h0s, where h is the SM Higgs boson, and H and h0s are

non-standard Higgses. The Standard Model Higgs and the Goldstone bosons reside

mostly in Hu and the non-standard CP-even and CP-odd Higgses in Hd and S.

For λ≫ g, the most important quartic terms at tree-level are those proportional

to λ2. Before EWSB, we can read them off from Eq. (III.10) as the terms |H0
u|2|H0

d |2,

H0
uH

0
dH

+
u H

−
d , |H0

u|2|S|2 and |H0
d |2|S|2. After EWSB, we can expandHu, Hd, S using
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Figure 3.2.: (a): Tree level quartic vertices involving at least two h fields with

vertex factors ∝ λ2, in the limit tan β ≫ 1. In this limit, h0u → h, h0d → H, h0s → h0s.

No h4 quartic terms at formed at tree level. φi correspond to the heavy fields

H, h0s, A
0
D, A

0
S. (b): One-loop quartic vertices with four h legs, formed from the

tree level vertices in (a). These are ∝ λ4 and account for most of the radiative

corrections to the Higgs mass in our model.

Eq. (III.11) to obtain various quartic vertices in terms of the real and charged

scalars.

Fig. 3.2.(a) shows all the tree-level quartic vertices that involve at least two

h fields. Recall that the SM Higgs mass is set by the coupling strength of the

quartic term h4 in the scalar potential. The tree-level λ-dependent quartic h4

terms are suppressed at large tan β. However, using the vertices in Fig. 3.2.(a), we

can construct four one-loop level quartic vertices proportional to h4, as shown in

Fig. 3.2.(b)3. Each of these diagrams is proportional to λ4 log(M2
Ai
/M2

Z), where

3We could also construct one-loop box diagrams with four external h fields using tree
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M2
Ai

is the mass scale of the heavy field running in the loop. Two diagrams

each correspond to M2
AD

and M2
AS

respectively. Since the internal propagators

are identical, each diagram comes with a factor of 2. Canonical normalization of

the mass term of a real scalar implies an additional factor of 1/2. Finally, including

the loop factor 1/16π2, we find the approximate correction to the lightest CP-even

eigenstate to be

Πhh ≈
1

2
· 2 · 2 · λ

4

16π2

[
log

(
M2

AD

M2
Z

)
+ log

(
M2

AS

M2
Z

)]
, (III.24)

which agrees with Eq. (III.23).

It would be interesting to compare the Higgs mass corrections obtained from

the heavy Higgs fields and those obtained from top squarks. For simplicity, let us

set the pseudoscalar masses equal, MA =MAD
=MAS

, and obtain

Πhiggs
hh =

λ4

4π2
v2 log

(
M2

A

M2
Z

)
. (III.25)

Again for simplicity, we can assume the top squarks are degenerate (mt̃ = mt̃1 =

mt̃2). Then we obtain [139]

Πstops
hh =

3y4t
4π2

v2 log

(
m2
t̃

M2
Z

)
. (III.26)

The factor of 3 arises from the three QCD colors. If the pseudoscalars and the

top squark are degenerate (MA = mt̃), we find from Eqs. (III.25) and (III.26) that

Πhiggs
hh & Πstops

hh for λ & 31/4yt. Since yt = mt/v ≃ 1, we have Πhiggs
hh & Πstops

hh for

λ & 1.3.

level trilinear vertices, but these evaluate to finite amplitudes and do not contribute to the
renormalization of the Higgs mass.
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Figure 3.3.: Discrepancies between the Higss mass radiative corrections obtained

from our one-loop effective potential in Eq. (III.22) and those obtained by other

means, as a function of the mass MA of degenerate pseudoscalars. The blue,

dashed red and magenta curves represent corrections obtained from Eq. (III.22),

Eq. (III.24) and Ref. [134] respectively. (a) corresponds to tan β = 2, (b)

corresponds to tan β = 50. See text for details of the behavior of the curves.

In the discussion of our model’s phenomenology, we set mt̃ = 800 GeV while

MA ranges between 4 TeV and 8 TeV; therefore, the one-loop corrections from the

Higgs sector dominate those from the stops. Hence, throughout our analysis, the

effect of the top squark correction to the SM Higgs mass is neglected.

We can now quantify the discrepancies between the results obtained by a full

one-loop effective potential calculation and those obtained by other means. To

do so, first we compute the correction to the Higgs squared mass obtained from

Eq. (III.22), and denote it by ∆m2
h. For the same set of parameters, we compute

(∆m2
h)i for each alternative approximation labelled by i. We then take the difference
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and normalize it to ∆m2
h and define the discrepancy as

δ(∆m2
h) =

(∆m2
h)i −∆m2

h

∆m2
h

, (III.27)

which is then expressed as a percentage. This approach eliminates the λ-dependence

of the discrepancies and allows us to focus on their behavior with respect to tan β

and the heavy (pseudo)scalar masses.

Assuming for simplicity that the CP-odd scalars are degenerate, we depict in

Fig. 3.3. the discrepancies as a function ofMA. Figs. 3.3.(a) and 3.3.(b) correspond

to tan β = 2 and tan β = 50 respectively. The blue curve denotes (∆m2
h)i obtained

from the approximation in Eq. (III.22). Since this approximation neglects doublet-

singlet mixing, it tends to overestimate the correction, i.e., δ(∆m2
h) > 0 as observed

in the plot. The discrepancy is also seen to asymptote to zero at large MA, where

the CP-even singlet Higgs decouples from the SM Higgs. The dashed red curve is

(∆m2
h)i obtained from our qualitative diagrammatic estimate (Eq. (III.23)). Since

the estimate is designed for large tan β it disagrees with the blue curve at tan β = 2,

but coincides with it very well at tan β = 50. The magenta curve depicts (∆m2
h)i

obtained from NMSSMTools 4.5.1 [134, 139], which also computes the one-loop

radiative corrections from the effective potential, albeit under a different set of

approximations. We find an interesting discrepancy here, to which we now turn.

The eigenvalues of the CP-odd mass matrix in Eq. (III.14) are given by

E2
± =

1

2

(
T ±

√
T 2 − 4D

)
, (III.28)
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where T =
(
M2

A

)
11

+
(
M2

A

)
22

is the trace and D =
(
M2

A

)
11

(
M2

A

)
22

−
(
M2

A

)2
12

is

the determinant of the mass matrix. In Ref. [134], it is assumed that D ≪ T 2,

so that the eigenmasses are obtained as E2
+ ≃ T, E2

− ≃ D/T . This always leads

to a hierarchy between the pseudoscalar masses. In contrast, our approach sets

the off-diagonal element
(
M2

A

)
12

to zero so that the eigenmasses are E2
+ = M2

AD
=

(
M2

A

)
11
, E2

− = M2
AS

=
(
M2

A

)
22
. Therefore, our approach allows for a variety of

mass splittings. Hence the discrepancy between us and Ref. [134] is expected to

be maximum when the CP-odd Higgses are degenerate, and minimum when these

masses are well split. We illustrate this effect in Fig. 3.4.. Since
(
M2

A

)
12

= 0 in our

approach, we set
(
M2

A

)
12

to zero in the expression of Ref. [134] as well, in order

to make an “apples-to-apples” comparison. We then plot δ(∆m2
h) as a function of

MAD
/MAS

, where we have taken λ = 1.25, tan β = 50 and µeff = 110 GeV. The red

and blue curves depict MAS
= 1 TeV and MAS

= 2 TeV respectively. As expected,

we find the discrepancy at its greatest at MAD
/MAS

= 1, which can reach upto

∼ 15%. Observe also that δ(∆m2
h) < 0, implying that Ref. [134] underestimates

the one-loop contribution to the Higgs mass in the region around MAD
/MAS

= 1.

As we raise MAD
/MAS

, the discrepancy drops quickly and our results concur.

The results of Ref. [134] were originally used in the code of NMSSMTools 4.5.1

[139]. Since our phenomenology in Section III.3 assumes MAD
=MAS

, we replaced

the code in NMSSMTools 4.5.1 with the expressions that we derived in Appendix E.
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Figure 3.4.: The discrepancy between Higgs mass corrections obtained by

Ref. [134] (which were used in the original code of NMSSMTools 4.5.1) and by us,

as a function of the ratio of the heavy CP-odd Higgs masses. The red (blue) curve

corresponds to MAS
= 1(2) TeV. The discrepancy arises due to an approximation

assumed by Ref. [134], namely, that a hierarchy exists in the pseudoscalar spectrum.

It is seen that our results agree when there is indeed a hierarchy. See text for more

details.

Stability of the electroweak scale

The minimization conditions of the tree level Higgs potential in Eq. (III.9) lead

to the same relation between the electroweak scale and the SUSY parameters seen

in the MSSM. In particular, the EWSB condition is [140]

M2
Z =

t2β + 1

t2β − 1

(
m2
Hd

−m2
Hu

)
−
(
m2
Hu

+m2
Hd

)
− 2 |µeff|2 , (III.29)

which at large tan β reduces to

1

2
M2

Z ≈ −m2
Hu

− |µeff|2 , (III.30)
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where the m2
Hd

terms are suppressed by t−1
β . With this result we can now quantify

the relative importance of different contributions (denoted by a) to the EWSB scale

(M2
Z/2) as

∆(a2) =

∣∣∣∣
a2

M2
Z/2

∣∣∣∣ . (III.31)

The tree-level and one-loop corrections are the same as in the MSSM and are well-

known [141]. For instance, the tree-level contribution due to µeff
<∼ 350 GeV is

equivalent to the one-loop contribution of stops at mt̃
<∼ 800 GeV [142]. Hence the

regions we are considering in this article are typically as tuned as regions of the

MSSM with a light stop.

Higgs couplings to SM particles

LHC measurements of signal strengths (production rate × branching ratio) can

potentially constrain the properties of the Higgs sector. Mixing among the Higgs

fields can in principle alter the lightest Higgs boson’s SM-like behavior. We follow

the analysis of Ref. [129] to apply the relevant limits.

After including the one-loop self-energy corrections, we rotate the Higgs fields

(h0u, h
0
d, h

0
s) into the mass eigenbasis (h1, h2, h3) and identify the lightest scalar as

h1 = (−h0u sinα + h0d cosα) cos γ + h0s sin γ, (III.32)

where the angles α is the usual MSSM CP-even mixing angle that characterizes

doublet-doublet mixing and γ characterizes the doublet-singlet mixing. We can
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then write down the reduced couplings of h1 to pairs of fermions and vector bosons

as

gtth1
gtthSM

= cos γ

(
cos δ +

sin δ

tan β

)
,

gbbh1
gbbhSM

= cos γ(cos δ − sin δ tan β),

gV V h1
gV V hSM

= cos γ cos δ, (III.33)

where δ = α− β + π/2.

If we inspect the off-diagonal entries of Eq. (III.17), we see that for Aλ ≪ MA

and large tan β,
(
M2

H

)
hH

<
(
M2

H

)
hS
. Thus as we raiseMA, the heavy doublet Higgs

(identified as h3) generally decouples faster than the heavy singlet (identified as h2),

as noted by Refs. [124, 130] In dealing with the phenomenological consequences of

our model, we focus exactly on the region of Aλ ≪MA and large tan β. Therefore

for the rest of this analysis we assume h3 is decoupled from the spectrum and h2 is

not. In this limit, the mixing angle γ is given by

sin2 γ =
m2
hh −m2

h1

m2
h2

−m2
h1

, (III.34)

where m2
hh = λ2v2 sin2 2β +M2

Z cos
2 2β, and the Higgs couplings to fermions and

vector bosons become

gtth1
gtthSM

=
gbbh1
gbbhSM

=
gV V h1
gV V hSM

= cos γ. (III.35)

Using these relations Ref. [129] performed a universal fit on the LHC signal

strength measurements and found that sin2 γ ≤ 0.23 at 95% C.L. This result was
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obtained using tree level relations for the reduced couplings. When we include our

one-loop corrections, we find that the reduced couplings are modified by less than

1%. Therefore, in the discussion of our model’s phenomenology in Section III.3 we

will simply use the results of Ref. [129] to constrain the Higgs couplings with LHC

measurements.

Neutralino Sector

The composition of the lightest neutralino and its couplings to the Higgs sector

is central to the dark matter phenomenology of our model. The neutralino mass

matrix in the basis (B̃, W̃ , ψ̃0
d, ψ̃

0
u, ψ̃

0
s) is given by

Mneut =




M1 0 −g1v cos β/
√
2 g1v sin β/

√
2 0

0 M2 g2v cos β/
√
2 −g2v sin β/

√
2 0

−g1v cos β/
√
2 g2v cos β/

√
2 0 −µeff −λv sin β

g1v sin β/
√
2 −g2v sin β/

√
2 −µeff 0 −λv cos β

0 0 −λv sin β −λv cos β µ′




(III.36)

Notice that when µ′ ≪ M1,M2, µeff, large λ couplings imply a large Higgsino

component in the lightest neutralino. This feature has many unique consequences

for the dark matter phenomenology discussed in Sec. III.3. As we shall see, the

Higgs-χ̃0
1-χ̃

0
1 coupling strengh plays an important role in constraining our model
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with dark matter experiments. This coupling, denoted hereafter by ghχχ, is obtained

as

ghχχ =
λ√
2
(ζHu

Nψ̃0

d
Nψ̃0

s
+ ζHd

Nψ̃0
u
Nψ̃0

s
+ ζSNψ̃0

u
Nψ̃0

d
)− g1

2
NB̃(ζHu

Nψ̃0

d
− ζHd

Nψ̃0
u
),

(III.37)

where the Ni and ζj are the appropriate components of the lightest neutralino and

the SM-like Higgs respectively. In terms of the rotation angles in Eq. (III.32), we

can read off

ζHu
= − sinα cos γ, ζHd

= cosα cos γ, ζS = sin γ.

The dominant channel for χ̃0
1-nucleon scattering is through a t-channel Higgs.

Therefore, dark matter direct detection experiments, as well as limits on the

invisible decay width of the Higgs, apply strong contraints on the coupling ghχχ.

A suppressed ghχχ can occur in our model either when the Higgsino content is

suppressed or when there is a delicate cancellation between the various terms in

Eq. III.37. We illustrate this point in more detail in Sec. III.3.

Electroweak precision limits

Due to mixing between the Higgsinos and the singlino induced by large λ in

certain regions, constraints from electroweak precision experiments can be strong

in Fat Higgs/λ-SUSY models [121, 123]. In particular, the T parameter can get

large contributions from the neutralino sector, denoted hereafter by Tχ. This
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Figure 3.5.: Limits from electroweak precision parameter T on the neutralino

sector of our model. The shaded regions are where Tχ > 0.15 and therefore

excluded at 95% C.L. Regions shaded gray correspond to the wino decoupled from

the spectrum (MW̃ = 10 TeV) and regions shaded red to MW̃ = 200 GeV. In (a),

λ = 1.25 and tan β = 5 and in (b), µeff = µ′ = 300 GeV. See text for details of the

behavior of these curves.

phenomenon is understood easily in the limit where the electroweak gauginos B̃

and W̃ decouple from the spectrum, i.e., M1,M2 are very large. This leaves us with

three mass scales µeff, µ
′ and λv, which set the mass of the lightest neutralino, Mχ̃0

1
.

The lightest chargino is mostly Higgsino with a mass µeff. In this limit, Tχ is large

when Mχ̃±

1

−Mχ̃0
1
is large and when there is as a significant Higgsino component in

χ̃0
1. For simplicity, let us work in the limit where tan β is large. Then the neutralino
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mass matrix in Eq. (III.36) is simply

Mneut ∼




0 −µeff −λv

−µeff 0 0

−λv 0 µ′




. (III.38)

Tχ is suppressed either when µ′ ∼ µeff ∼ λv, where Mχ̃±

1

−Mχ̃0
1
is small, or when

µeff ≫ µ′ ∼ λv, where the Higgsino component in χ̃0
1 is suppressed. For µ

′ ≪ µeff ∼

λv, where bothMχ̃±

1

−Mχ̃0
1
and the Higgsino component in χ̃0

1 are large, constraints

from Tχ can be strong.

Lowering the mass of the wino triplet M2 to ∼ µeff ∼ λv can have a significant

impact on Tχ. This is because the wino would mix with the light neutralinos and

charginos. Lowering the bino mass M1, on the other hand, gives only a negligible

contribution to Tχ. This is because the bino mixing with the rest of the neutralinos

is only proportional to g1.
4

In Fig. 3.5. we present the T -parameter contributions from the charginos

and neutralinos, which were computed using the general expressions provided

in Ref. [146]. In Fig. 3.5.(a), we take λ = 1.25 and tan β = 5 and show our

results in the µeff − µ′ plane. The shaded regions denote where Tχ is not within

the 95% C.L range [−.01, 0.15] set by the Particle Data Group [147]. The gray

4It must be remembered that relative minus signs between µeff, µ
′ and MW̃ would introduce

quantitative changes in the picture owing to new phases in the neutralino mixing angles. We will
not include these relative signs in our discussion.
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region corresponds to large gaugino masses (M1,M2) = (10 TeV, 10 TeV) while

the red region corresponds to a light wino with (M1,M2) = (10 TeV, 0.2 TeV). As

discussed above, lowering the wino mass can lead to a larger Tχ. For small µ′, Tχ

decreases as µeff increases due to a reduction in the Higgsino component of the

lightest neutralino. Similarly, raising µ′ has the effect of reducing the splittings

between the neutralinos and charginos which also leads to a smaller Tχ.

The effects of varying λ and tan β on Tχ are presented in Fig. 3.5.(b). Here

we fix µeff = µ′ = 300 GeV. The colored regions have the same definition as those

in Fig. 3.5.(a). Since the elements of Mneut quickly asymptote to fixed values

as a function of tan β, it can be seen that Tχ is insensitive to large tan β. This

insensitivity to large tan β is clear in the relation derived in Ref. [121]

Tχ ≈
(
t2β − 1

t2β + 1

)2

F (µeff , µ
′, λ), (III.39)

where F (µeff , µ
′, λ) is some function of these variables. This relation also shows

that Tχ is suppressed as tβ approaches 1, thereby allowing for larger values

of λ. As stated before, lowering M2 typically increases the neutralino and

chargino contributions to the T -parameter. However, it is important to emphasize

that increasing either µeff or µ′ can significantly lower the electroweak precision

constraints even for large tan β. A large µeff comes at the cost of a slight increase

in electroweak fine-tuning, but can greatly weaken T -parameter constraints.

Finally, we make two remarks. First, the S-parameter was not discussed here.

This is because the contributions of our model to S are very small in our regions of
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interest and hence the constraints are much weaker than those on the T -parameter.

Second, the T -parameter receives a stop-sbottom contribution, as discussed in

Ref. [121]. In the limit of zero left-right mixing, this is given by

Tst−sb ≈ 0.05

(
500 GeV

mt̃L

)2

(III.40)

In our phenomenological discussions, we will choose mt̃L
= 800 GeV to suppress

this contribution.

Phenomenology

In this section we study the phenomenological constraints on the large tan β

regions of the Fat Higgs/λ-SUSY models. In addition to the constraints arising

from Higgs corrections discussed in the previous section, we also include limits from

dark matter experiments, most importantly those set by the LUX experiment [18].

In particular, the mass and couplings of the lightest neutralino χ̃0
1 can put strong

constraints on our parameter space.

In order find phenomenologically viable regions, we modified NMSSMTools

4.5.1 [139] to include the Higgs mass corrections we computed in Sec. III.2.2. We

then made the following simplifying assumptions:

• In the Higgs sector, we take the pseudoscalars to be degenerate, with MAD
=

MAS
= MA. Furthermore we assume that m′

S = m3 = 0, so that the heavy

CP-even Higgs bosons are also (nearly) degenerate. The condition that the
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CP-odd masses are degenerate requires that
(
M2

A

)
12

= 0 in Eq. III.14, which

implies Aλ = µ′. Therefore, both µ′ and µeff control the amount of doublet-

singlet mixing in Eq. (III.13). The only independent parameters in the Higgs

sector are then: λ, µeff, µ
′, tan β and MA.

• In order to be safe from electroweak precision bounds, we decouple the winos

atM2 = 10 TeV, leading to an effective theory for the neutralino system with

five free parameters : M1, µeff, µ
′, λ and tan β.

• We require µeff > 104 GeV to evade the LEP II bound on charged Higgsinos

[148].

• The sleptons and the first two generations of squarks are decoupled from

the low energy phenomenology and their masses set at 5 TeV, unless stated

otherwise. The top squark parameters are set at mQ̃3
= mŨ3

= 800 GeV and

At = 0, thereby making the stop contributions to the Higgs mass and the

electroweak symmetry breaking condition in Eq. (III.30) small. This choice

of stop masses also avoids constraints from collider searches [143, 144, 145]

and, as mentioned in Sec. III.2.3, from electroweak precision tests.

• We choose to require the conventional upper limit tan β ≤ 60, so that yb ≤ 1

at the weak scale. Larger values of yb may be allowed as long they do not

develop a Landau pole at a scale below that of λ.
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These assumptions reduce the number of independent SUSY parameters to

λ, tan β, MA, µeff, µ
′, M1 .

As discussed in Sec. III.2.3, precision electroweak constraints are weak when either

the Higgsinos decouple (µ′, µeff & λv) at any value of tan β, or when µ′ ≪ λv ∼ µeff

at low tan β. In these regions, ghχχ (as defined in Eq. III.37) is suppressed in the

following two scenarios that lead to suppressed rates of DM-nucleon scattering.

(a) Large tan β and µ′ ∼ λv ∼ µeff.

χ̃0
1 is an admixture of singlino and bino, such that the Higgsino content is

suppressed [126]. We will show that, when the one-loop Higgs mass corrections are

taken into account, this dark matter scenario is compatible with all constraints for

tan β ≤ 60, thus opening the window to viable pockets of parameter space at very

large tan β. The focus of this section will be on this case.

(b) Low tan β and µ′ ≪ λv ∼ µeff.

χ̃0
1 is an admixture of bino, Higgsino and singlino. This is an example of the well-

known “well-tempered” dark matter [150], which works in our model for tan β <∼ 3.

Since the emphasis of this chapter is on opening up large tan β, we discuss this case

only briefly.

In each of these regions, constraints from the Higgs boson mass, direct detection

experiments, the dark matter relic abundance and the invisible decay width of the

Z and Higgs boson are crucial in determining viable parametric scenarios.
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Large tan β and µ′ ∼ λv ∼ µeff: Bino and Singlino Dark Matter

Large λ and large tan β are a new region of parameter space that have not been

emphasized in the literature before. We showed in Sec. III.2.2 that this region can

be compatible with the mass of the SM Higgs boson because one-loop radiative

corrections to the Higgs mass are insensitive to tan β at large values, and are set

solely by λ and MA. We also showed that precision electroweak constraints can

be weak in this region. We now show that this region is also compatible with

constraints from dark matter.

As mentioned in Sec. III.2.3, it can be seen from Eq. (III.37) that ghχχ is

suppressed when χ̃0
1 is an admixture of bino and singlino such that N2

B̃
+N2

ψ̃0
s

≃ 1.

This is possible whenM1 and/or µ
′ are small relative to the other mass parameters.

For simplicity, we illustrate this scenario for a bino-like (N2
B̃
≃ 1) or singlino-like

(N2
ψ̃0
s

≃ 1) dark matter candidate. The self-annihilation of χ̃0
1 into SM fields in

the early universe is generally inefficient, since its tiny Higgsino content suppresses

both the Z- and h-mediated channels. This typically leads to the model predicting

relic abundances that exceed the observed value, Ωχh
2 ≃ 0.12. However, a viable

relic abundance of Ωχh
2 ≤ 0.12 can be accomplished by means of two exceptions to

the standard freeze-out mechanism resonant annihilation and co-annihilation [152].
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Figure 3.6.: Scenarios where resonant annihilation in the early universe leads

to Ωχh
2 ≤ 0.12. (a): Relic abundance as a function of µ′ ≃ Mχ̃0

1
for singlino

dark matter. The dips at µ′ ≃ 45 GeV and µ′ ≃ 62 GeV correspond to resonant

annihilation via an s-channel Z and h respectively. (b): Contours of DM-nucleon

scattering cross-section for singlino DM in units of σ0 = 10−45 cm2, fixing µ′ = 62.5

GeV. The region shaded red is excluded by LUX and the region shaded green

corresponds to 120 GeV < mh < 130 GeV. The dashed lines are contours of Tχ.

(c) and (d) are the same as (a) and (b), but for bino dark matter.
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Resonant Annihilation Region

If Mχ̃0
1
happens to be close to mh/2, it can undergo resonant annihilation

through an s-channel Higgs. Fig. 3.6. illustrates this scenario. Fig. 3.6.(a) shows

Ωχh
2 as a function of µ′ ≃ Mχ̃0

1
for a singlino-like LSP, where we decouple the

Higgsinos and the bino by setting µeff = 800 GeV and M1 = 1 TeV, and obtain

mh = 125 GeV by setting λ = 1.25, tan β = 50 and MA = 4 TeV. We notice two

dips at µ′ ≃ 45 GeV and µ′ ≃ 62 GeV, corresponding to resonant annihilation

through an s-channel Z and h respectively. The dip near µ′ ≃ 62 GeV falls below

Ωχh
2 = 0.12, making it a cosmologically viable region. The orange curves in

Fig. 3.6.(b) depict contours of the LSP-nucleon scattering rates, σSI (in units of

σ0 = 10−45 cm2), in the λ− µeff plane. Here we fix µ′ = 62.5 GeV while the rest of

the parameters are as in Fig. 3.6.(a). Regions shaded red are excluded by LUX at

90% C.L., and the band shaded green corresponds to 120 GeV ≤ mh ≤ 130 GeV.

Contours of Tχ are denoted by dashed curves. Figs. 3.6.(c) and 3.6.(d) depict the

same features as Figs. 3.6.(a) and 3.6.(b) respectively, but for a bino-like LSP. All

the parameters are the same as before, but with M1 ↔ µ′.

In both Figs. 3.6.(b) and 3.6.(d), the dark matter-nucleon scattering rates are

seen to decrease as we decouple the Higgsinos by increasing µeff. In Fig. 3.6.(b),

Tχ is observed to rise with increasing λ due to an increase in mixing between

the Higgsinos and singlino. The region around mh ∼ 125 GeV corresponds to

Tχ ∼ 0.05, safe from electroweak precision constraints. In contrast to singlino
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dark matter, Tχ ∼ 0 for bino dark matter throughout the plot in Fig. 3.6.(b), a

result of decoupling both the singlino and the Higgsinos. The regions described in

Figs. 3.6.(b) and 3.6.(d) are also safe from invisible Higgs decay bounds since the

process h→ χ̃0
1χ̃

0
1 is phase space suppressed.

Co-annihilation Region

If the mass spectrum is such that one or more sleptons are nearly degenerate

with χ̃0
1, dark matter annihilation could be assisted by the sleptons through co-

annihilation effects, leading to a small relic abundance. Bounds from LEP on

charged sleptons [149] would then imply that Mχ̃0
1
> 104 GeV.

We investigate this in Fig. 3.7.. Shown with orange curves in Fig. 3.7.(a) are

contours of σSI (in units of σ0 = 10−45 cm2) on the µeff −µ′ plane, for singlino dark

matter at λ = 1.25 and tan β = 50. Here we have taken M1 = 1 TeV and MA = 8

TeV. The region shaded red is excluded by LUX at 90% C.L. The vertical bands

capture mh ∈ [120, 130] GeV, where the band shaded green (gray) corresponds to

λ = 1.1(1.25). The effect of varying λ on σSI is not shown since the scattering cross-

section is insensitive to it due to the large values of µeff. Fig. 3.7.(b) represents a

similar scenario for bino dark matter, with blue curves depicting contours of σSI in

units of σ0 = 10−45 cm2. All parameters are the same as before, but with M1 ↔ µ′.

In both plots in Fig. 3.7., we find a decrease in σSI with µeff, which is an effect

of decoupling the Higgsinos that results in the diminution of ghχχ. We also find an
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increase in σSI with µ
′ or M1, which is the opposite effect. Raising µ′ or M1 leads

to more mixing with the Higgsinos, thereby bolstering ghχχ. Comparing across the

plots, we immediately notice that σSI is greater for singlino DM than for bino DM

for the same Mχ̃0
1
(set by µ′ and M1 respectively). This is of course because the

singlino mixes with the Higgsinos more than the bino does, as can be inferred from

the corresponding off-diagonal entries in Eq. (III.36).

The relatively large size of µeff and µ′ here suppress the Higgsino sector

contributions to the T parameter. For regions where mh ∼ 125GeV, we find that

Tχ < 0.03 for singlino dark matter and Tχ ∼ 0 for bino dark matter.

Future prospects

In this region (large tan β with µ′ ∼ λv ∼ µeff), the non-standard Higgs scalars

are heavy with MA between 4−8 TeV. Therefore the doublet-singlet mixing in the

Higgs sector is very small leading to a 1% deviation in the Higgs signal strengths

from the SM. Such deviations are much below the sensitivity of the LHC at present

and future runs, and can only be tested at a future “Higgs factory”. However,

this region can be probed by future dark matter direct detection experiments. In

particular, the projected reach of the XENON1T experiment [135] corresponds to

σSI ≈ 10−47 − 10−46 cm2 for dark matter masses between 50 GeV and 500 GeV.

Since the DM-nucleon scattering cross-sections in our viable regions in Figs. 3.6.
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Figure 3.7.: Scenarios where co-annihilation with sleptons leads to Ωχh
2 ≤ 0.12.

(a): Singlino dark matter, with orange curves depicting contours of LSP-nucleon

scattering cross-section in units of σ0 = 10−45 cm2. The region shaded red is

excluded by LUX. (b): Bino dark matter, with blue curves depicting contours of

LSP-nucleon scattering cross-section in units of σ0 = 10−45cm2. In both plots, the

green and gray shaded regions correspond to 120 GeV < mh < 130 GeV for λ = 1.1

and λ = 1.25 respectively. More details are presented in the text.

and 3.7. vary from ∼ 10−46− 10−45 cm2, these regions can be completely probed at

the XENON1T experiment.

Low tan β and µ′ ≪ λv ∼ µeff: Well-tempered Dark Matter

In the limit where µ′ ≪ µeff,M1, precision electroweak contraints can be

evaded by raising µeff and decoupling the Higgsinos. However, this would

introduce constraints from limits on the invisible decay of the Z boson. We

can see this by inspecting the mass of the lightest neutralino in this limit,
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Figure 3.8.: The well-tempered scenario at low tan β, with χ̃0
1 an admixture of

bino, Higgsino and singlino. In (a), λ = 0.75, tan β = 1.5 and in (b), λ =

0.9, tan β = 2.5. The heavy Higgs states are decoupled at MA = 5 TeV. This

choice of parameters fixes mh ∼ 125 GeV. Regions shaded red are excluded by

LUX at 90% C.L., blue by h → χ̃0
1 χ̃

0
1 bounds and gray by Z → χ̃0

1 χ̃
0
1 bounds.

These constraints leave a small patch of parameter space that are still viable, the

“blind spots”. The dashed lines are contours of Mχ̃0
1
in GeV. More details are

presented in the text.

Mχ̃0
1
≈ µ′ + λ2v2µeffs2β/(µ

2
eff + λ2v2). Raising µeff has the effect of lowering Mχ̃0

1
,

which may push it below MZ/2. We also see that large tan β can lower Mχ̃0
1
and

bring the Z → invisible limits into play. Therefore, for this scenario to be viable,

we require µeff ∼ λv and small tan β. In this region, ghχχ is supppressed when χ̃0
1 is

an admixture of B̃, ψ̃0
u, and ψ̃

0
s such that they lead to “blind spots” in parameter
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space [138] – regions that are compatible with current experiment. For illustration,

we have consistently set µ′ = 0 in this section.

We illustrate these blind spots in Fig. 3.8., which shows constraints on the LSP

in the M1 − µeff plane. Fig. 3.8.(a) corresponds to tan β = 1.5 and Fig. 3.8.(b) to

tan β = 2.5. To fix mh ∼ 125 GeV, we take λ = 0.75 and λ = 0.9 respectively

and decouple the heavy Higgses with MA = 5 TeV. The regions shaded red are

excluded by LUX at 90% C.L. Regions shaded blue are excluded by the latest

limit on the invisible decay of the Higgs, B.R.(h → χ̃0
1χ̃

0
1) < 0.4 [151]. The gray

region is excluded by limits from the invisible decay of the Z. The dashed curves

represent contours ofMχ̃0
1
in GeV. This range of parameters is cosmologically viable

with Ωχh
2 < 0.12, where the dominant primordial annihilation of χ̃0

1 is through an

s-channel Z.

A comparison across the plots informs us that an increase in tan β strengthens

the constraints from Z, h→ χ̃0
1χ̃

0
1, which is due to the decrease inMχ̃0

1
, as discussed

earlier. We also notice that the LUX constraints are consistently stronger than h→

χ̃0
1χ̃

0
1 bounds. Therefore, the blind spots (unshaded regions) are determined in this

case by limits from LUX and invisible Z decays alone. As mentioned in Sec. III.2.3,

larger values of λ contribute more to Tχ. For Fig. 3.8.(a) and Fig. 3.8.(b), Tχ < 0.02

(completely safe) and Tχ < 0.11 (marginally safe) in the blind spots. Unlike the

large µ′ scenario, the future dark matter detection experiment XENON1T will only
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be able to probe some of the allowed regions because ghχχ in this scenario can be

arbitrarily small.

In summary, this chapter investigated the viability of a supersymmetric

extension of the Standard Model, λ-SUSY. In the next chapter, we will continue

our study of such supersymmetric extensions. Specifically, we will inspect the

production of colored scalars under a certain assumption of supersymmetry

breaking, to wit, one that gives both Dirac and Majorana masses to gauge

superpartners.
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CHAPTER IV

MIXED GAUGINOS

This work was published in Volume 86 of Physical Review D in March 2014.

Graham Kribs initiated the project; Nirmal Raj performed the calculations and

produced the plots and tables in this chapter.

Introduction

The strongest constraints on weak scale supersymmetry from the LHC are

on first generation squarks and the gluino [157, 158]. First generation squark

production proceeds through pp → q̃q̃ that is dominated by t-channel exchange

of a gluino that acquires a Majorana mass (“Majorana gluino”) using valence

quarks from the proton. Not surprisingly, the largest contributions come from

sub-processes involving a chirality flip in the t-channel gluino exchange diagram

which is a comparatively unsuppressed dimension-5 interaction. The bounds on first

generation squarks, typically combined with the second generation in a simplified

model involving Mq̃ and Mg̃, are currently Mq̃ > 1.8 TeV for Mg̃ ≃Mq̃ [157].

The authors of [159] showed that the presence of a gluino that acquires a

Dirac mass (referred to as a “Dirac gluino”) – instead of a Majorana mass –

significantly weakens these collider constraints. This was due to three reasons:
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first, a Dirac gluino can be significantly heavier than a Majorana gluino, with

respect to fine-tuning of the electroweak symmetry-breaking scale. This is because

a Dirac gluino yields one-loop finite contributions to squark masses [160]. Second,

no “chirality-flipping” Dirac gluino t-channel exchange diagrams exist, and thus

several subprocesses for squark production simply vanish. Third, the remaining

squark production subprocess amplitudes are suppressed by |p|/M2
g̃ , where |p| is

the typical momentum exchanged through the Dirac gluino. For a heavier Dirac

gluino (Mg̃ & 2-3 TeV), this significantly suppresses t-channel gluino exchange to

the point where it is subdominant to the gluino-independent squark–anti-squark

production processes [159].

Dirac gaugino masses have been considered long ago [161, 162, 163] and have

inspired more recent model building [160, 164, 165, 166, 167, 168, 169, 170, 171,

172, 173, 174, 175, 176, 177, 178, 179, 180] and phenomenology [181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 198, 200, 201,

202, 203, 204, 205, 159, 206, 207, 208, 209, 210, 211, 212, 213, 214]. As beautiful

as Dirac gauginos may be, there are two objections that are sometimes raised:

• Supersymmetry-breaking sectors do not generically have F -terms much

smaller than D-terms. In the absence of a specialized mediation sector

that sequesters the F -term contributions [165], we might expect both Dirac

and Majorana masses to be generated (for example, [175]). Moreover, even
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if F -term mediation is sequestered, gauginos do acquire Majorana masses

through anomaly-mediation [215, 216].

• In the presence of a pure Dirac wino and bino, the usual tree-level D-term

quartic coupling for the Higgs potential is not generated [160]. This requires

additional couplings to regenerate the quartic coupling. While there are

mechanisms to generate a quartic in models with a pure Dirac gaugino mass

(see [207] in the context of R-symmetric supersymmetry), it is obviously of

interest to understand the impact of electroweak gauginos acquiring Majorana

masses on squark production cross section limits.

In this context, we consider two generalizations of Ref. [159]: (i) models with a

“Mixed Gluino” that acquires both Dirac and Majorana masses, and (ii) models in

which the electroweak gauginos acquire purely Majorana masses, and contribute to

squark production. As we will see, both cases have surprising outcomes.

Our primary interest is to compare squark production cross sections with

mixed gauginos against the pure Dirac and pure Majorana cases. Mixed gauginos

were also considered in [185], where the main emphasis was on distinguishing

the different types of gaugino masses well before the strong bounds on colored

superpartner production were set by the LHC collaborations. Our interest in

this chapter is largely orthogonal, examining in detail the modifications to squark

production when the gaugino is heavy. We used MadGraph5 [217] to simulate

squark production at leading order (LO) for the LHC operating at a center-
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of-mass energy of 8 TeV and 14 TeV using the CTEQ6L1 parton distribution

functions (PDFs). We modified the existing minimal supersymmetric standard

model (MSSM) model files to incorporate the effects of mixed gluinos. We did

not, however, incorporate next-to-leading-order (NLO) corrections in our cross

sections, for several reasons: first, in some cases there is a large range of scales

between the squark mass and the gaugino mass, and unfortunately existing codes

(Prospino 2.1 [218] and [219]) are not designed to handle this. Second, to the best

of our knowledge, the NLO corrections for a Dirac gaugino as well as a mixed

gaugino have not been computed. This is an important outstanding problem, but

it is not the primary interest of this chapter. In much of the results presented

below, we consider ratios of production cross sections, where most of the large

NLO corrections are expected to cancel. We do show some LO cross sections as a

function of gaugino mass, to better explain our results, however, in these cases we

are generally interested in the trend as a function of the gaugino mass rather than

the precise cross section values. The full NLO calculation would be interesting to

compute, but it is beyond the scope of this dissertation.

Mixed Gauginos

“Mixed Gauginos” are, by definition, the Majorana mass eigenstates of gauginos

that acquire both a Dirac mass with an adjoint fermion partner as well as

Majorana masses for the gluino, the adjoint fermion, or both. This occurs when
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the supersymmetry-breaking hidden sector contains superfields that acquire both

F -type and D-type supersymmetry-breaking vacuum expectation values. Let us

first write the operators that lead to these contributions to the gaugino masses,

using the spurions X ≡ Fθ2 and W ′
α ≡ D′θα. A Majorana mass arises from the

usual operator

cm

∫
d2θ

X

M
W αWα (IV.1)

and a Dirac mass from [160]

cd

∫
d2θ

√
2
W ′
α

M
W α
j Aj , (IV.2)

where M is the mediation scale and Aj is a chiral superfield in the adjoint

representation of the relevant gauge group of the Standard Model. Whether a

gaugino acquires a Dirac mass obviously depends on the existence of a chiral

adjoint to pair up with. There are additional operators that can contribute to

gaugino masses. The chiral adjoint can acquire a Majorana mass through

cm′

∫
d4θ

1

2

X†

M
trAjAj + h.c. , (IV.3)

familiar from the Giudice-Masiero mechanism for generating µ in the MSSM. Here

we are assuming that the adjoint fermion only acquires mass after supersymmetry

breaking, i.e., there is no “bare” contribution to its mass in the superpotential.

Scalar masses can be generated by contact interactions

∫
d4θ

X†X

M2
Q†Q ,
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at the messenger scale, as well as the “soft” and “supersoft” contributions from

Majorana and Dirac gauginos, respectively. In this chapter, we neglect flavor mixing

among the squarks, since the existence of sizable Majorana masses means we do

not have R-symmetry to protect us against flavor-changing neutral currents [170].

Renormalization group evolution from the messenger scale to the weak scale

affects the relative size of the Dirac and Majorana masses. Let us first define the

Dirac mass, the Majorana gaugino mass, and the Majorana adjoint mass as

Md = cd〈D′〉/M

Mm = cm〈F 〉/M (IV.4)

M ′
m = cm′〈F †〉/M .

All of these quantities are generated at the messenger scale (possibly with additional

hidden sector renormalization [220]). For a gauge group i with beta function

coefficient bi and quadratic Casimir of the adjoint ci, the Dirac operator receives

significant RG effects (neglecting Yukawa couplings) [160, 175]

Md(µ) =Md(M)×





( µ
M

)−ciαi/(2π)

for bi = 0

(
αi(µ)

αi(M)

)(bi−2ci)/(2bi)

for bi 6= 0 .

(IV.5)

We calculated the RG evolution of the Majorana adjoint mass to be (again
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neglecting Yukawa couplings)

Mm′(µ) =Mm′(M)×





( µ
M

)−ciαi/π

for bi = 0

(
αi(µ)

αi(M)

)−2ci/bi

for bi 6= 0

(IV.6)

which can be obtained directly from the wavefunction renormalization of the

superpotential (and agrees with resuming the RG equation given in Ref. [221]

without Yukawa couplings). The size of the RG evolution can be substantial [175],

but depends heavily on several assumptions about the mediation as well as the

particle content of the model above the electroweak scale. These “ultraviolet”

(UV) issues will not be discussed further in this chapter.

Mixed Gluino

Let us now specialize our discussion to a gluino that acquires a Dirac and

Majorana mass. All of what we say below can also be straightforwardly applied

to the electroweak gauginos.1 Using Eq. (IV.4), the resulting mass terms for the

gaugino and adjoint superfield are (in 2-component language)

Lg̃mass =



g ψ







Mm Md

Md M ′
m







g

ψ




+ h.c. (IV.7)

1There is an amusing subtlety involving charginos that acquire “Dirac” masses (by this we
mean charginos that acquire Dirac masses by pairing up with additional fermions in the triplet
representation of SU(2)W ), that we relegate to App. G.
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where we have suppressed the SU(3)c color indices on the fields. The relative size

of the Dirac and Majorana contributions are set by the coefficients of the operators

(evaluated at the weak scale). While we take the coefficients to be arbitrary, our

main phenomenological interest is the range Md ≫Mm,M
′
m to Md &Mm,M

′
m.

From Eq. (IV.7), the 2-component fermions g and ψ mix, giving us the mass

eigenstates of the gluino




g1

g2




=




cos θg̃ sin θg̃

− sin θg̃ cos θg̃







ψ

g



, (IV.8)

where the mixing angle is given by

cos θg̃ =

√
1

2

(
1 +

Mm −M ′
m√

(Mm −M ′
m)

2 + 4M2
d

)1/2

. (IV.9)

Diagonalizing the Lagrangian, Eq. (IV.7), gives the two eigenvalues that we write

as −Mg̃1 and Mg̃2 respectively,

−Mg̃1 =
1

2

(
Mm +M ′

m −
√

(Mm −M ′
m)

2 + 4M2
d

)

Mg̃2 =
1

2

(
Mm +M ′

m +
√

(Mm −M ′
m)

2 + 4M2
d

)
(IV.10)

We have chosen to define Mg̃1 to be the negative of the eigenvalue of the mass

matrix so that whenM2
d > MmM

′
m, bothMg̃1 andMg̃2 are positive. We could have

instead redefined the eigenstates to absorb this sign, however this would lead to

proliferation of i’s in the following, that we prefer to avoid.
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The two familiar limits of these equations are now evident: For a pure Dirac

gluino (Mm = M ′
m = 0), Mg̃1 = Mg̃2 = Md, the mixing angle θg̃ = π/4, and then

the gluino eigenstates are g1,2 = (g±ψ)/
√
2. For a pure Majorana gluino (Md = 0),

the mixing angle θg̃ = 0, which means the gluino and its adjoint fermion partner

do not mix, i.e., g1 = g, g2 = ψ. Consequently, Mg̃1 =Mm and Mg̃2 =M ′
m.

The quark-gluino-squark interactions are given by

Lint =

−
√
2gs
(
ũ∗L,i t

a ga uL,i + d̃∗L,i t
a ga dL,i

− ũ∗R,i t
a gauR,i − d̃∗R,i t

a ga dR,i
)
+ h.c. (IV.11)

where gs is the strong coupling and ta’s are the SU(3) generators. The index i

runs over each quark generation and the squark color indices have been suppressed.

Expanding using Eq. (IV.8), this becomes

−Lint/
√
2gs =

+ ũ∗L,i t
a g1,a cos θg̃ uL,i + ũ∗L,i t

a g2,a sin θg̃ uL,i

+ d̃∗L,i t
a g1,a cos θg̃ dL,i + d̃∗L,i t

a g2,a sin θg̃ dL,i

− ũ∗R,i t
a g1,a cos θg̃ uR,i − ũ∗R,i t

a g2,a sin θg̃ uR,i

− d̃∗R,i t
a g1,a cos θg̃ dR,i − d̃∗R,i t

a g2,a sin θg̃ dR,i

+ h.c. (IV.12)

This is the form of the interaction Lagrangian most useful for our phenomenological

study.
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In order to understand the implications of a mixed gluino arising from both a

Dirac and a Majorana mass, we first need to parameterize the mixing in a way

relevant to our collider study. There are two distinct effects when simultaneously

varyingMd,Mm, andM
′
m: the coupling constants to the squarks and quarks change,

according to Eq. (IV.12), and the masses of the gluino eigenstates change, according

to Eq. (IV.10). This leads to changes in both the dynamics (the coupling constants)

and the kinematics (the gluino masses) of the squark production cross sections. We

are interested in separating these effects, to the extent possible.

Review of Pure Dirac Gluinos

Before embarking on our study of mixed gluinos, we first want to review the

effects of a pure Dirac gluino on the various squark production processes. The

relevant squark production processes include2 pp → q̃L,Rq̃L,R and pp → q̃L,Rq̃
∗
L,R.

Fig. 4.1. shows the relative contributions of these two production modes for different

(pure Dirac) gluino masses, depicted by the solid curves. The dominant effects of t-

channel gluino exchange impact just the first generation of squarks. However, since

a common simplified model that ATLAS and CMS use in quoting bounds is to sum

over all squarks of the first two generations assuming the flavors and chiralities are

degenerate in mass, we do this also. The lightest supersymmetric particle (LSP) is

taken to be a neutral particle odd under R-parity. The gravitino is one possibility,

though as we will see, a Majorana bino is another distinct possibility.

2The third combination, antisquark-antisquark production, can be ignored since its rate is
highly suppressed by PDFs.

135



1 2 3 4 5
10-5

10-4

0.001

0.01

0.1

1

Mg1
é HTeVL

s
Hp
b
L

(a) Mq̃ = 400 GeV

1 2 3 4 5
10-5

10-4

0.001

0.01

0.1

1

Mg1
é HTeVL

s
Hp
b
L

(b) Mq̃ = 800 GeV

1 2 3 4 5
10-5

10-4

0.001

0.01

0.1

1

Mg1
é HTeVL

s
Hp
b
L

(c) Mq̃ = 1200 GeV

Figure 4.1.: Comparing the squark pair production cross section (red) against

squark–anti-squark production cross section (green) summing over the first two

generations of squarks with masses of 400, 800 and 1200 GeV. The solid lines

denote the case in which the Majorana masses vanish (Mm = M ′
m = 0), so the

x-axis corresponds to a pure Dirac gluino mass. At low squark masses, squark-anti-

squark production through an s-channel gluon that dominates over the t-channel

gluino-mediated squark-squark production. However, for mq̃ = 800, 1200 GeV we

find that squark-squark production dominates up to Md ≃ 2, 3.5 TeV. The dotted

lines depict the behavior when the Dirac mass vanishes (Md = 0), with the x-axis

corresponding to a pure Majorana mass. Only at a very low squark mass of 400 GeV

does squark–anti-squark production dominate. For higher squark masses 800 and

1200 GeV, squark pair production dominates for all gluino masses. This is due to

t-channel mediated same-handed squark production, which was absent in the case

of a pure Dirac gluino.
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At low squark masses, 400 GeV (Fig. 4.1.a), the production cross section is

heavily dominated by squark-antisquark production with quarks or gluons in the

initial state. This is because squark pair production through t-channel (Dirac)

gluino exchange can only yield pp→ q̃Lq̃R; the other processes (LL,RR) are absent.

As the squark mass is increased, the modes q̃L/R, q̃
∗
L/R and q̃L, q̃R become comparable

to each other. ForMq̃ = 800 GeV, this occurs for Dirac gluino masses near ≃ 2 TeV,

as shown in Fig. 4.1.b. In other words, the gluino t-channel exchange diagrams

of squark pair production are not as suppressed in this range. Considering even

larger squark masses, Mq̃ = 1200 GeV, we find squark pair production becomes

comparable to squark–anti-squark production for a (Dirac) gluino mass ≃ 4 TeV,

shown in Fig. 4.1.c.

The dashed lines in Fig. 4.1. depict the two production modes for a pure

Majorana gluino. At a low squark mass of 400 GeV, squark–anti-squark production

dominates the cross section for gluino masses greater than ∼ 2 TeV, while for

Mq̃ = 800 GeV and Mq̃ = 1200 GeV, squark pair production dominates for all

gluino masses shown in the figures. This is because t-channel production of same-

handed squark production is the dominant production mode for these masses and

energies with a Majorana gluino.

Case I: M ′
m = 0

First, we consider the scenarioM ′
m = 0,Mm

<∼Md. In this Case, we can simplify
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Mg̃1 = Mg̃2
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Mixed, M ′
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(a)

Mg̃1 = Mg̃2

= Md

Mg̃2

Md

Mg̃1

Mm = M ′
m

Mm,M
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m = 0

Dirac
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Mixed, Mm = M ′
m

(b)

Mg̃1 = Mg̃2

= Md

Mg̃2

Md

Mg̃1

M ′
m

Mm,M
′
m = 0

Dirac

M ′
m/Md "= 0

Mixed, Mm = 0

(c)

Figure 4.2.: The method we employ for adding Majorana masses Mm,M
′
m to the

supersoft Dirac mass Md of a gaugino. The lower eigenvalue Mg̃1 is kept constant

as Mm/Md or M
′
m/Md is varied.

the expressions for the masses and mixing angle of the mixed gluino:

−Mg̃1 =
1

2

(
Mm −

√
M2

m + 4M2
d

)
(IV.13)

Mg̃2 =
1

2

(
Mm +

√
M2

m + 4M2
d

)
(IV.14)

cos θg̃ =

√
Mg̃2

Mg̃2 +Mg̃1

. (IV.15)

Next, to separate the “kinematics” from the “dynamics”, we take the

parameterization where we hold the mass eigenvalue of the lightest gluino, Mg̃1,

fixed, while varying the ratio x ≡ Mm/Md. This gives two Majorana gluinos with

masses Mg̃1 and Mg̃2 with mass difference given by Mg̃2 −Mg̃1 = Mm. In the case

x < 1, the mixing angle is in the range 1/
√
2 < cos θg̃

<∼ 0.85. The mass spectrum

is illustrated in Fig. 4.2.a.

To explore a wider range of mixing angles, 0.85 <∼ cos θg̃ ≤ 1, the parameter
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x ≫ 1, that corresponds to Mm ≫ Md. In this regime, we get the usual see-

saw formula, familiar from neutrino physics, for the mass of the lightest gluino

eigenstate, ≃ M2
d/Mm. Here, however, the lighter mass eigenstate decouples from

squarks and quarks, while it is the heavier nearly pure Majorana gluino eigenstate

that maximally couples. Without adjusting our basic premise – hold the kinematics

constant – there is no way to enter this regime of parameters without taking the

Majorana mass for the gluino unnaturally large.

Cross sections across parameter space

Our first foray into the behavior of the squark cross sections is shown in Fig. 4.3.

that contains contour plots in the (Mg̃1, x (= Mm/Md)) space. On the x-axis is the

eigenvalue of the lighter of the gluino eigenstates, and on the y-axis is the mixed

nature of the gauginos, parameterized by Mm/Md. The contours on the right

show the production cross sections summing over all combinations of squarks and

antisquarks of the first and second generations, and the contours on the left show

the ratios of these cross sections to their equivalents in the scenario of a Majorana

gluino with the same mass as Mg̃1. To illustrate the differences as the squark mass

is increased, the three pairs of plots show three different squark masses: 400, 800

and 1200 GeV.

There are several interesting features shown in Fig. 4.3.. Holding the lightest

gluino eigenmass constant, we see that the squark production cross section decreases
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as a Majorana mass Mm is introduced. This we explore in detail below. Next, we

see distinctly different rates of variation in the cross sections across the three plots.

At Mq̃ = 1200 GeV (Fig. 4.3.f) the cross section falls by an order of magnitude

as Mg̃1 goes from 1 to 4 TeV, after which it is roughly constant, whereas for

squark masses 400 GeV (Fig. 4.3.b) and 800 GeV (Fig. 4.3.d) we find much less

variation: the cross section drops by a factor of a few as Mg̃1 is increased from 1

to 2 TeV, and then asymptotes to a fixed value. The larger variation is present

because, as we saw earlier, for larger squark masses, the s-channel squark—anti-

squark cross section becomes more competitive with the t-channel gluino exchange

induced squark-squark production processes. It is this competition between the two

leading modes for gluino masses below ∼ 4 TeV that results in the larger rate of

variation of the cross section in that region in Fig. 4.3.f. The domination of squark-

antisquark production for gluino masses above 4 TeV results in the constancy of

the cross section observed in the right end of the plot.

Figure 4.3.: (next page) Plots illustrating Case I. LEFT: Contours of the ratios of

the total production cross-section of the first two squark generations at LHC with

√
s = 8 TeV of our model to the cross-section in MSSM. RIGHT: Contours of the

cross sections themselves (at leading order), in pb, at LHC with
√
s = 8 TeV. The

details of the critical features are explained in the text.
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(c) Mq̃ = 800 GeV: ratios
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(d) Mq̃ = 800 GeV: dσ
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(e) Mq̃ = 1200 GeV: ratios
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(f) Mq̃ = 1200 GeV: dσ
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We now turn our attention to the plots on the left, depicting contours of the

ratios of the corresponding cross sections on the right to those of a pure Majorana

gluino with a mass the same as Mg̃1. To understand the features of these plots,

we will have to consider the competition between three different modes: squark–

anti-squark production, same-handed squark pair production and opposite-handed

squark pair production. Two distinctive features seen here are (i) at a low squark

mass of 400 GeV, the ratio increases as we move horizontally to the right, as shown

in Fig. 4.3.a, (ii) at higher squark masses of 800 and 1200 GeV, the ratio first

decreases and then increases as we move in the horizontal direction, with the local

minimum shifting to the right as Mq̃ is increased, as shown in Figs. 4.3.c and 4.3.e.

The first feature is a result of the same mechanism that results in the lack of

variation in Fig. 4.3.b. The squark–anti-squark production dominates over squark-

squark production for a large range of gluino masses at Mq̃ = 400 GeV, and as Mg̃1

is increased, this domination increases for both a Majorana and a mixed gluino

(with the domination in the Majorana case weaker) as we saw earlier in Fig. 4.1.a.

Hence we observe a uniform increase in the ratio, seen to approach unity. The

second feature can be understood in terms of Figs. 4.1.b and 4.1.c. In Fig. 4.1.b,

we notice that near Mg̃1 ∼ 1 TeV, the Majorana rate is dominated by squark pair

production and the Dirac rate gets comparable contributions from both squark–

anti-squark and squark pair production.

Near the right extreme (Mg̃1 ∼ 5 TeV), the dominant mode of Majorana cross
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section has fallen and the total cross section has near-equal contributions from both

modes, while the Dirac cross section, dominated strongly by squark–anti-squark

production, is now comparable to either mode of the Majorana case. At either

extreme, the total Dirac cross section is able to catch up to an extent with the

total Majorana cross section, for different reasons. In the intermediary mass range,

however, the Dirac cross section, dominated by only squark–anti-squark production,

is much smaller than the Majorana case. This argument can be extended to mixed

gluinos as well, and hence the local minimum observed in Fig. 4.3.c. The above

discussion applies also to Fig. 4.3.e, except that, as seen in Fig. 4.1.c, the Dirac

cross section catches up with the Majorana at even higher gluino masses. This

results in the rightward shift compared to the Mq̃ = 800 GeV case in the local

minimum.

If we now move vertically anywhere in Fig. 4.3.f, or for gluino masses below

2 TeV in Figs. 4.3.b and 4.3.d, we observe a drop in cross section. We notice the

same for the contours of the ratios of cross sections, i.e., Figs. 4.3.a, 4.3.c and 4.3.e.

This may seem counter to what we would expect when increasing the Majorana

content of the model. The reasons for the reduction would become clear were we

to investigate the physics of each individual subprocess separately.
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Individual modes

Let us now consider primarily the gluino t-channel pair-production of squarks

with quarks in the initial state. A Feynman diagram depicting this channel is shown

in Fig. 4.4.. No arrows and labels are shown, which allows us to keep the discussion

as generic as possible at this point. Let us first divide pair production into six

g2

+

g1

Figure 4.4.: General Feynman diagrams (without arrows) for t-channel gluino-

mediated squark production. The solid lines (initial state) may be labeled with all

combinations from the quark fields qL, q
†
L, qR, q

†
R, and the dashed lines (final state)

with the corresponding squark fields q̃L, q̃
∗
L, q̃R, q̃

∗
R.
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distinct possibilities:

(i) q̃L, q̃L or q̃R, q̃R

(ii) q̃∗L, q̃L or q̃∗R, q̃R

(iii) q̃∗L, q̃
∗
L or q̃∗Rq̃

∗
R

(iv) q̃L, q̃R

(v) q̃L, q̃
∗
R or q̃R, q̃

∗
L

(vi) q̃∗L, q̃
∗
R

In Fig. 4.5., we illustrate the physics behind each of these modes with a single

flavor: up squarks. Here the squark mass is taken as 1200 GeV and the absolute

mass of the lighter gluino eigenstate |Mg̃1| = 5 TeV while the heavier eigenvalue,

Mg̃2, is varied. These are illustrative values, to gain intuition for the effects

of varying x = Mm/Md on the cross sections of the individual modes. In this

section, we state the results obtained, leaving the detailed behavior of the analytic

expressions of certain amplitudes to App. F.

(i) ũL, ũL

The cross section increases from zero and saturates at a value far below the

Majorana cross section as x = Mm/Md is increased, as shown in Fig. 4.5.a. The

amplitude is written in App. F, where we find that it is suppressed by p2/M3
g̃1 (times

a function of x that becomes just one power of x for small values), considerably

smaller than the naive result of 1/Mg̃1. Moreover, at larger x ≃ 1, the amplitude
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Figure 4.5.: Cross sections of the various unique modes that constitute up squark

production when M ′
m is set to zero. The blue curves show these as a function

x = Mm/Md, while the dashed red horizontal lines denote the corresponding cross

section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the

squark mass Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is

5 TeV.

is not scaling with x. This is due to the lightest gaugino eigenstate becoming

increasingly the adjoint fermion, which does not couple to quarks and squarks.

(ii) ũ∗L, ũL

The dominant contribution to this diagram is production via an s-channel gluon.

In Fig. 4.5.b we see a nearly unvarying cross section as we increase x as shown by
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the the blue line. Since the sub-dominant t-channel gluino diagram is negligible,

we find that the cross section values nearly coincides with the pure Majorana case.

(iii) ũ∗L, ũ
∗
L

The physical principles are the same as (i), hence the similar trends observed

in Fig. 4.5.c. However, the cross section values are much smaller since the PDF

effects of anti-up quarks cause to suppress this mode.

(iv) ũL, ũR

The amplitude, and hence the cross section, turns out to be numerically the

same for the cases of pure Majorana and pure Dirac gluinos. This is reflected in

Fig. 4.5.d, where the blue and red curves intersect at x = 0. As x is increased to 1,

however, the cross section decreases to roughly 1/13 of the cross section of the pure

Majorana case. This is evident in the form of the amplitude shown analytically in

App. F. As we will see shortly, this is important in understanding the features of

Fig. 4.3..

(v) ũL, ũ
∗
R

The physics here is identical to cases (i) and (iii), except for the suppressing

effect of excavating a sea antiquark from one of the protons. The effect is a decreased

cross section as reflected in Fig. 4.5.e.

(vi) ũ∗L, ũ
∗
R

Conceptually similar to case (iv), this production mode suffers from PDF
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suppression, resulting in the lowered cross sections seen in Fig. 4.5.f.

We can now answer the question posed at the end of Sec. IV.3.1, on why

the total cross section of squark production declines despite an addition of

Majorana content. We find that an increase in cross section of the pairs

(q̃L, q̃L), (q̃R, q̃R), (q̃L, q̃
∗
R), (q̃R, q̃

∗
L), (q̃

∗
L, q̃

∗
L), – as expected when departing from

a pure Dirac scenario – is less relevant in comparison to the decrease in the

cross section of (q̃L, q̃R), (q̃
∗
L, q̃

∗
R) and the approximately constant cross section of

(q̃L, q̃
∗
L), (q̃R, q̃

∗
R) – due to various kinds of kinematic suppression as discussed in

this section.

The analysis above shows that in addition to the suppression from the operator

dimension (relative dominance of dim-5 or dim-6) and the kinematics, the third

factor that is essential to determine the cross section trends is the PDFs. Thus

the trends for individual modes would be identical for down squarks except for

the effects of PDF suppression. As for the second generation of squarks, the far

smaller PDFs of the corresponding second generation quarks in the proton render

most modes negligible, with the only sizeable contribution coming from (q̃L, q̃
∗
L)

and (q̃R, q̃
∗
R), which proceed through an s-channel gluon. Therefore we see that

the principal difference between the first and second generations is that t-channel

gluino mediation exhibits non-trivial behavior in the former, while it is practically

absent in the latter.
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Case II: Mm =M ′
m, x = 2Mm/Md = 2M ′

m/Md

In this scenario (Fig. 4.2.b), the two gluino mass eigenstates have masses

−Mg̃1 = Mm − Md, Mg̃2 = Mm + Md, and the mixing between the states

is maximal (cos θg̃ = 1/
√
2) independent of Mm, M

′
m and Md. We consider

the modification resulting from the Majorana content of gluino in the same

way as the previous section, with the corresponding results shown in Fig. 4.6..

However, since both Majorana masses are nonzero, the difference between the

eigenvalues Mg̃2 −Mg̃1 = 2Mm (as opposed to just Mg̃2 −Mg̃1 =Mm in Case I and

Mg̃2−Mg̃1 =M ′
m in Case III). In order to make an direct comparison of the mixing

effects to Cases I and III, while holding the kinematics approximately equivalent,

we define x as x = 2Mm/Md = 2M ′
m/Md.

The features shown in Fig. 4.6. are in many ways similar to those of Case I. For

instance, in the cross section contours on the right, we see little variation moving

horizontally direction at high Mg̃1 for squark masses 400 and 800 GeV (Figs. 4.6.b

Figure 4.6.: (next page) Plots illustrating Case II. LEFT: Contours of the ratio

of the total production cross section of the first two generations of squarks at LHC

with
√
s = 8 TeV in our model to the cross sections in MSSM. RIGHT: Contours

of the cross sections themselves (at leading order), in pb, at LHC with
√
s = 8 TeV.

The critical features are explained in the text.
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(a) Mq̃ = 400 GeV: ratios
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(b) Mq̃ = 400 GeV: dσ
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(c) Mq̃ = 800 GeV: ratios
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(d) Mq̃ = 800 GeV: dσ
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(e) Mq̃ = 1200 GeV: ratios
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(f) Mq̃ = 1200 GeV: dσ
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and 4.6.d), for the same reasons as before. We also notice the local minimum in

Figs. 4.6.c and 4.6.e shifts to the right as we go from Mq̃ = 800 GeV to Mq̃ =

1200 GeV. Notice that, in all the plots, the values of the cross sections and ratios

are identical to Case I along x=0, since they correspond to a pure Dirac gluino in

either case.

The main differences between Cases I and II are seen when we move vertically

in the contour plots. Whereas previously the cross section was seen to uniformly

decrease as x = Mm/Md was increased, we now notice that it first decreases and

then increases, a trend particularly pronounced for Mq̃ = 800 GeV and 1200 GeV,

as seen in Figs. 4.6.c-4.6.f. This feature can again by understood in terms of the

individual subprocesses, which are given in the plots of Figs. 4.7..

In Case I, we saw that the subprocess setting the total cross section was the

production mode q̃Lq̃R, which decreased by roughly an order of magnitude as x

was increased from 0 to 1. Even though the modes (q̃Lq̃L, q̃Rq̃R, q̃Lq̃
∗
R) increased in

the same range, their values never caught up with the opposite-handed squark pair

production. This is not the situation here. Figs. 4.7.a and 4.7.e show that although

the same-handed modes begin at zero cross section, they overtake opposite-handed

modes at around x = 0.2, bolstering the total production.

Case III: Mm = 0, x′ =M ′
m/Md

Lastly, we consider the scenarioMm = 0,M ′
m
<∼Md (Fig. 4.2.c). In this Case, the

simplified expressions for the masses in Eqs. (IV.13)-(IV.14) carry over here with the
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∗
L

0 0.2 0.4 0.6 0.8 1
10-11

10-9

10-7

10-5

0.001

x = 2MmêMd = 2Mm'êMd

s
Hp
b
L

(c) ũ∗Lũ
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Figure 4.7.: Cross sections of the various unique modes that constitute up squark

production when M ′
m and Mm are set equal. The blue curves show these as a

function x = 2Mm/Md = 2M ′
m/Md, while the dashed red horizontal lines denote

the corresponding cross section for the case of a pure Majorana gluino of the same

mass as Mg̃1. Here the squark mass Mũ is 1200 GeV and the mass of the lighter

gluino eigenstate Mg̃1 is 5 TeV.

replacement Mm ↔ M ′
m, while the mixing angle is cos θg̃ =

√
Mg̃1/(Mg̃1 +Mg̃2).

This means that the relevant mixing angle ranges are switched, with cos θg̃ varying

from 1/
√
2 to 0.53 and sin θg̃ from 1/

√
2 to 0.85 as x′ = M ′

m/Md is varied from 0

to 1. Hence the lighter eigenstate is more of the gluino, and the heavier eigenstate

more of the adjoint fermion. If x′ were to be taken to infinity, cos θg̃ → 0 and the

heavier eigenstate decouples, recovering the MSSM pure Majorana gluino limit.
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Therefore, we expect the cross section to increase as x′ is increased from 0 to 1.

This is exactly the trend we notice in the plots of Fig. 4.8., corresponding to this

case. The features of the contours here are very similar to those of Case II when

we move horizontally across the plots, and the physical reasons are the same. The

difference is in the variation in the vertical direction; the cross sections uniformly

increase whereas previously there was a decrease followed by an increase.

Once again we may understand such a trend by inspecting the individual

production modes, shown in Fig. 4.9.. The same-handed squark pair production

modes catch up with and overtake their opposite-handed equivalents at small x′,

while the q̃Lq̃R cross section remains nearly constant.

Mixed Electroweak Gauginos

We now turn to the effects of electroweak gauginos on squark production. We

assume Higgsino-quark-squark couplings are negligible and thus can ignore

Figure 4.8.: (next page) Plots illustrating Case III. LEFT: Contours of the ratio

of the total production cross section of the first two generations of squarks at LHC

with
√
s = 8 TeV in our model to the cross sections in MSSM. RIGHT: Contours

of the cross sections themselves (at leading order), in pb, at LHC with
√
s = 8 TeV.

The critical features are explained in the text.
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(a) Mq̃ = 400 GeV: ratios
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(b) Mq̃ = 400 GeV: dσ
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(c) Mq̃ = 800 GeV: ratios
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(d) Mq̃ = 800 GeV: dσ
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(e) Mq̃ = 1200 GeV: ratios
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(f) Mq̃ = 1200 GeV: dσ
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Figure 4.9.: Cross sections of the various unique modes that constitute up squark

production when Mm is set to zero. The blue curves show these as a function

x = Mm/Md, while the dashed red horizontal lines denote the corresponding cross

section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the

squark mass Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is

5 TeV.

t-channel Higgsino mediation of squark production. This leaves us with only winos

and binos, specifically two neutralinos and one chargino. The particle content and

the effects on the squark cross sections depend on whether the electroweak gauginos

acquire Dirac, Majorana, or mixed gaugino masses.

With charged gauginos, there is one additional Feynman diagram (Fig. G.1) that

contributes to the squark production subprocess pp → ũLd̃L. Of course regardless
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of the “mixed” nature of the winos, the chargino is obviously a Dirac fermion. This

particular subprocess is absent in pure supersoft models, and we have provided a

discussion of this in App. G.

For general mixed (Dirac and Majorana) neutralinos and a mixed chargino,

there is a large parameter space that could be considered. In this section, we focus

on just the effects of electroweakinos, and assume the gluino is decoupled. For a

Dirac gluino, effective decoupling occurs once Mg̃ & 1-3.5 TeV for squark mass

400-1200 GeV, as shown in Fig. 4.1.. Earlier work on electroweak contributions

to squark production in the MSSM can be found in Ref. [223, 222], however

the benchmark spectra considered there included contributions from a (Majorana)

gluino comparable in mass to the squarks.

We further specialize to pure Majorana masses for the wino and bino. This is

for two reasons. First, we expect that purely Majorana electroweakino masses will

yield the largest effects on first generation squark production cross sections, and

thus bound what can happen in a general model. Second, as pointed out in [160],

if U(1) and SU(2) gauginos acquire pure Majorana masses, there is no suppression

of the quartic coupling of the Higgs potential. Generating this unusual spectrum

of gaugino masses is an interesting model-building issue, however the absence of

Dirac masses for the bino and wino occurs automatically if no chiral superfields in

the adjoint (triplet and singlet) representation exist in the low energy theory.

We are primarily interested in bino and/or wino masses at which there is a
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noticeable departure from the “QCD-only” (i.e., mediated by gluons) cross section,

σQCD. We characterize this by finding the total cross section for a given squark

mass within a range of bino and wino masses. We find that the largest effect

of electroweakinos on the total squark production cross section occurs when the

squark mass is near the Majorana electroweakino mass. The explanation becomes

apparent when we consider these two observations:

1. We expect t-channel exchange of Majorana electroweakinos will lead to

significant contributions to squark-squark production in the same kinematic

regime as occured for a mixed or pure Dirac gluino. That is, the dominant

contributions to total squark production change from qq̄, gg → q̃q̃∗ (s-channel

gluon-mediated processes) at lower squark masses to qq → q̃q̃ (t-channel

gaugino-mediated processes) at higher squark masses.

2. As we know from the discussion under (i) in Sec. IV.3.2, the coefficient of the

Weyl spinors in the amplitude for a t-channel exchange diagram for same-

handed squark production is

g2f
Mf

t−M2
f

where Mf and gf are the mass and chargino-squark-quark coupling of the

fermion (gaugino) respectively. One can see that, as a function of Mf , the

absolute value of this expression is at its maximum when M2
f = −t, where it
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becomes

g2f
−1

2
√
−t

Moreover, if β is an arbitrary real number, both Mf = β
√
−t and Mf =

β−1
√
−t are fermion masses that confer the same value to the amplitude,

g2f
β

1 + β2

−1√
−t

This leads to an effect on the cross section that is symmetric with respect to

Mf → 1/Mf , as we will see.

Opposite-handed squark production, however, has a different expression for the

co-efficient of the spinors in the amplitude:

g2f
p · σ
t−M2

f

where the spinor indices are suppressed. The maximum of this expression is

achieved when Mf → 0, at which point it tends to g2f (p · σ)/t.

One might be concerned about the possible existence of a t-channel pole if t

were to approach M2
f . However, upon integrating the total cross section between

−1 < cos θ < 1, corresponding to t over the range

t− < t < t+ (IV.16)

t± =
1

2

(
−s±

√
s2 − 4sM2

q̃

)
+M2

q̃ .

It is clear that t is negative definite, and moreover, approaches a small (negative)

value only when s is large. The required large s means there is substantial
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suppression of the integrated cross section in the integration region where t ≃ t+

is small. Hence, the case of Mf → 0 does not lead to a divergent contribution to

the squark production rate.

Now these observations can be put together when reflecting on what happens

when Majorana winos and/or binos are turned on. We define σQCD as the total

cross section when squark production is QCD-only and σQECD as the cross section

when it is mediated by winos, binos, and gluinos. Table 4.1. provides information

on the electroweakino mediation of the individual modes.

Maximal Electroweakino Impact (MEI)

The cross section for q̃Lq̃L production reaches its maximal value when the

wino, which couples only to left-handed squarks, has a mass MW̃ = Mq̃, since the

characteristic
√
−t of the t-channel subprocess is Mq̃. Similarly, the cross section

of q̃Rq̃R production reaches its maximal value when the mass of the bino is also at

MB̃ =Mq̃. If these sub-processes dominate over the QCD-only squark production,

we may have a significant increase in σQECD. We call this Maximal Electroweak

Impact (MEI). Indeed, these two individually overtake q̃Lq̃R production, which

is the leading sub-process at high squark masses in a QCD-only picture. The

enhancement to q̃Lq̃L is larger than q̃Rq̃R since the wino couples more strongly to

quarks and squarks than the bino.

In Fig. 4.10., we show the maximum deviation from σQCD, represented by

the ratio σQECD/σQCD, when both the bino and wino have masses at their Mq̃-
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Figure 4.10.: Impact of electroweakinos at their maximal electroweakino impact

(MEI) values, where the Majorana wino mass is equal to the squark mass.

The MEI value establishes the upper bound in cross section from the impact

of electroweakinos versus the QCD-only scenario (pure s-channel gluon-mediated

squark–anti-squark production). In this plot, green: both electroweakinos are at

their MEI values, red: the wino is pure Majorana with MW̃ = Mq̃, blue: the bino

is pure Majorana with MB̃ = Mq̃. These curves show that at the MEI values, the

wino is more responsible than the bino for maximizing the cross section by virtue

of its stronger couplings.

dependent MEI values. As expected, the greatest departures are observed at high

squark masses. Two other scenarios are also shown: (i) a Majorana bino at the

MEI value with a Dirac wino (blue), (ii) a Majorana wino at the MEI value with

a Dirac bino (red). From these we see that the wino, despite coupling only to

left-handed squarks, dominates the increase in the total cross section.

The contour plot in Fig. 4.11. shows ratios of the cross sections with and
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wino bino

ui,L; ũi,L g/
√
2 g′/3

√
2

di,L; d̃i,L −g/
√
2 g′/3

√
2

ui,R; ũi,R 0 −4g′/3
√
2

di,R; d̃i,R 0 2g′/3
√
2

Mode Wino Bino

q̃Lq̃L X X

q̃Rq̃R X X

q̃Lq̃
∗
L X X

q̃Rq̃
∗
R X X

q̃∗Lq̃
∗
L X X

q̃∗Rq̃
∗
R X X

q̃Lq̃R X X

q̃Lq̃
∗
R X X

q̃∗Lq̃R X X

q̃∗Lq̃
∗
R X X

Table 4.1.: (a) Quark-squark-electroweakino couplings of the wino and the bino

for different chiralities. The index i runs over quark generation; (b) Categorizing

the distinct individual subprocesses of squark production mediated by the wino and

bino. The wino participates in only the left-handed (anti-)squark production, yet

dominates the increase in the total cross section.

without electroweakino impact, σQECD/σQCD, and spans the parameter space in

its most interesting district, that is, where the masses of the bino and wino are

in the neighborhood of the squark mass. Specifically, we vary the neutralino

or chargino mass in the range {0.1Mq̃, 10Mq̃}. The symmetry spoken of in our

second observation, namely, the amplitudes for same-handed squark production

are identical when Mf/Mq̃ is the same as Mq̃/Mf , is reflected in the near-mirror

symmetry of the contours in Fig. 4.11..
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Figure 4.11.: Contours showing the impact of electroweak gauginos when both

the Majorana wino and Majorana bino masses are within an order of magnitude of

their MEI values. The peaks are values of σQECD/σQCD. The gluino mass here is

5 TeV.

Once again we perceive that the region where the squark mass is high and

the electroweak gaugino masses are close to the squark mass (by a factor of 2) is

where the colored superpartner production cross section is most enhanced compared

to a pure Dirac gluino. Different regions of the contour plot of Fig. 4.11. are

dominated in cross section by the production of different final states. Fig. 4.12.

is a representation of these relative effects. The ratio σ(mode)/σ(total) is plotted

against squark mass for three different kinds of final state modes: (i) same-handed

squark-antisquark (solid lines), (ii) same-handed squark-squark (dotted), and (iii)
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Figure 4.12.: Regions of domination: a different look at the plot in Fig. 4.11..

The ratio MW̃/Mq̃ = MB̃/Mq̃ is represented by the colors and the code is (green:

1; black: 0.5; blue: 0.2; red: 0.1). The final state of production is given by the

constitution of the line, the code being (solid: q̃i,L, q̃
∗
i,L and q̃i,R, q̃

∗
i,R; dotted: q̃i,L, q̃j,L

and q̃i,R, q̃j,R; dashed: q̃i,L, q̃j,R). The gluino mass here is 5 TeV.

opposite-handed squark-squark (dashed). The color code is (green, black, blue,

red) = (1, 0.5, 0.2, 0.1) where the numbers on the RHS are the ratios of the weak

gaugino mass to the squark mass. The green curves show that as the squark mass

exceeds a TeV, the contribution of the same-handed squark production surpasses

the same-handed squark-antisquark production. As MW̃ =MB̃ is lowered (that is,

as red is approached), the final states q̃Lq̃
∗
L and q̃Rq̃

∗
R dominate the cross section

irrespective of the squark mass. These subprocesses, as seen before, occur chiefly

through an s-channel gluon with the initial state as two gluons or a quark and an

antiquark.
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Recasting LHC Limits
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Figure 4.13.: The 8 TeV cross sections at leading order of scenarios with a pure

Dirac gluino (black) and electroweakinos at their MEI values (blue) intersect with

the exclusion cross section set by the multijet plus missing energy search (red) [158],

which gives us bounds on the squark mass. The gluino mass is taken as 5 TeV.

We now consider what our results imply for the supersymmetry search strategies

at LHC. The CMS collaboration has provided exclusion cross section limits on

pair-produced first and second generation squarks with the gluino decoupled at

√
s = 8 TeV with 19.5 fb−1 of data in their “T2qq” simplified model [158]. A similar

simplified model, with the gluino decoupled, has been subjected to a multijet plus

missing energy search analysis by the ATLAS collaboration [157] obtaining similar

bounds. We omit this from our discussion since the CMS results provided rate

bounds throughout the Mq̃-MLSP plane. Here we focus on the bounds when the

LSP is massless, to compare with our earlier results.

The various cross sections obtained in our model are compared against the
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Figure 4.14.: Constraints set by the multi-jet plus missing energy search on the

parameter space of our model. Since we find in Fig. 4.13. that that the bound is

set at Mq̃ ≈ 800 GeV at an exclusion cross section ≈ 0.02 pb (at leading order), we

have included the contour of that value for that squark mass. All three scenarios we

have considered are shown, using the appropriate contours from Figs. 4.3.d, 4.6.d

and 4.8.d, and the space to the left of each contour is excluded for the corresponding

scenario. Depending on the contour, the y-axis is interpreted as x = Mm/Md or

x = 2Mm/Md = 2M ′
m/Md or x

′ =M ′
m/Md.
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exclusion cross sections of CMS searches that were based on the search for new

physics in multijets and missing momentum final state at
√
s = 8 TeV and L =

19.5 fb−1 [158]. Note however that the CMS exclusion cross sections are computed

at NLO+NLL, while the cross sections computed here are at leading order.

The CMS “T2qq” simplified model exclusion cross section limits can be re-

interpreted to a model with a mixed gluino. Here we assume the gluino itself is

not pair-produced or produced in association with a squark, and only consider

its effects through modifications to squark production (since this is what can be

easily bounded using the CMS simplified model). We obtain Mq̃ ≥ 800 GeV for

a Dirac-gluino-only scenario and Mq̃ ≥ 925 GeV when both the electroweakinos

are at their MEI values, with the gluino mass taken as 5 TeV. Fig. 4.13. shows

the predictions for the leading order cross sections in these two cases, and the

bound we have extracted from [158]. We note that the bound we obtain for a

pure Dirac gluino is Mq̃ ≥ 800 GeV, whereas the CMS collaboration obtained

Mq̃ ≥ 840 GeV for a decoupled gluino. In principle these should match precisely,

though given the comparison is made in a plot spanning four orders of magnitude

(like Fig. 4.13.), we believe this difference is not significant, and represents the error

of our reinterpretation.

The pure Dirac gluino bound also enables us to set constraints on the parameter

space of mixed gluinos. Since the exclusion cross section at Mq̃ = 800 GeV is

∼ 0.02 pb (at leading order), we can overlay the contours of different mixed gluino
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scenarios corresponding to that cross section. Fig. 4.14. shows this superimposition,

and for each scenario the parameter space to the left of the corresponding contour

is excluded.
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CHAPTER V

CONCLUSIONS

In Chapter II, we presented a simple but realistic model of pseudo-Dirac

fermionic dark matter that results in a qualitatively new signal in the form of

kinematical and angular features in dilepton production at the LHC. The most

spectacular feature is the “monocline”, a step-like feature with a sharp rise in

the differential cross section for dilepton production occurring for a dilepton

invariant mass near the sum of the dark fermion masses, mℓℓ ∼ M1 +M2, with a

subsequent gradual falloff. If discovered, this signal provides an immediate target

of opportunity given that the putative dark matter particle’s mass is bounded

(namely, mDM
<∼ mℓℓ/2 for a monocline feature at mℓℓ). Of course observing the

feature consistent with a radiative correction from a box of new particles with

masses ∼ mℓℓ/2 does not immediately imply these particles are dark matter.

Nevertheless, knowing the scale is immensely useful when applied to direct and

indirect detection experiments, as well as traditional signals at colliders of both

the dark matter (e.g., mono-X + MET signals) as well as the scalar mediators

(e.g., jets + MET for the scalar mediator). We also note that our monocline signal

is most powerful when the spectrum of dark matter and its mediator is nearly

degenerate. This strategy is thus complementary to MET-based searches.
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Pseudo-Dirac dark matter, that we have shown leads to interesting signals in

dilepton production, is also well-motivated and predictive. Pseudo-Dirac fermions

could arise naturally when an accidental U(1) symmetry that gives a Dirac mass to

the fermions is broken at loop level [224]. Since a Dirac fermion can be thought of

as two degenerate Majorana eigenstates, the effect of the small Majorana mass is

to introduce a splitting in the eigenmasses. If the splitting is of the order of a few

GeV, we obtain several desirable features. Among these is that since the momentum

transfer scale of direct detection experiments is 10-100s of keV, such experiments

are only sensitive to the lighter eigenstate; thus, the pseudo-Dirac fermion with a

few-GeV-splitting can be treated as a Majorana fermion for direct detection. In

addition, efficient s-wave coannihilation between the two eigenstates would result

in a relic abundance that does not overclose the universe even for small couplings.

The heavier eigenstate produced in a collider can decay to the lighter one with a

displaced vertex that is measurable at the LHC. By studying the dilepton spectrum

in this decay, the mass splitting can be directly measured. The decay length can

also predict the mass of the lighter state if the model’s relic abundance is matched

with the observed value and if the mediators are heavy [196].

The model as presented is renormalizable, and thus in principle UV complete.

However, we have considered relatively large (though perturbative) λ couplings

between the dark fermion, the scalar mediator, and a Standard Model quark or

lepton. These couplings, when RG evolved to higher scales, may develop Landau
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poles. This is not in itself a concern for us since we have focused on the physics of

the new particles near to their threshold production at the LHC. Larger λ couplings

could arise from several sources. The most logical possibility is that there is a larger

set of scalar mediators, for instance scalar quark mediators that couple to the left-

handed quarks, that, when summed into the box contributions, masquerade as a

larger effective λ coupling with fewer mediators. Another possibility is that the

pseudo-Dirac fermionic partner χA couples to the scalar mediators and quarks, also

effectively increasing the strength of the λ couplings.

The model has unmistakable similarities to simplified supersymmetric models

with a bino or neutral wino as the dark matter, with the squarks and sleptons

are the scalar mediators. Indeed, the supersymmetric limit is interesting, since

several of our otherwise arbitrary assumptions (coupling of just χB to the scalar

mediator and quarks) could arise naturally in a supersymmetric context. The main

impediment is that an observable feature in dilepton production requires λ & g

by a factor of perhaps 1.5 – 3 times what would have otherwise been required by

(at least unbroken) supersymmetry. This is intriguingly reminiscent of the Higgs

quartic coupling, which is related to the electroweak couplings at tree-level, but in

fact must be significantly larger to accommodate the observed value of 125 GeV. An

interesting question for future exploration is to understand what could be possible

from supersymmetry breaking corrections to increase the size of the quark-squark-

neutral gaugino coupling.
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We have not considered flavor-violation in the model, but this too could be

interesting, especially if the dilepton signal was also accompanied by some fraction

of e±µ∓ events (that would also exhibit a feature in their mℓℓ spectrum). We

did not consider flavor-violation in this chapter for two reasons: one is that it

obviously would not interfere with SM Drell-Yan production, which was our primary

motivation. Second, we would necessarily be forced into considering additional

lepton-flavor-violating constraints, which are likely to be highly constraining. For

a discussion of quark flavor constraints on models similar to ours see [76].

The scalar quark mediator will necessarily have box contributions to the dijet

signal as well. Unfortunately, our estimates of the size of this radiative correction

are that it is much too small to lead to an observable monocline signal in the

dijet spectrum. This is because the box contribution arises in the partonic process

qq̄ → qq̄ whereas the dominant dijet production involves qq → qq as well as gluon

mediated processes, which are much more significant given the associated PDF

enhancements. To get a signal that could compete with QCD strength would

require λ couplings much larger than required for dilepton production, and this

suggests that a perturbative analysis is no longer possible.

In summary, we encourage ATLAS and CMS to explore the sensitivity of

features in the dilepton kinematic and angular spectrum for extracting dark matter

signals!

In Chapter III we investigated the viability of regions of large tan β in the
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frame of Fat Higgs/λ-SUSY models. In the “toy” model we constructed we showed

that the singlet cubic term is suppressed while the the tadpole and singlino mass

parameter term were allowed. Within this framework we showed that there are

regions of large tan β that are phenomenologically viable.

We computed the one-loop effective potential and showed that the tan β-

independent contributions to the Higgs quartic are crucial in raising the Higgs

mass to the observed value of 125 GeV. We have also shown that non-standard

Higgs bosons of the same mass as the stops will give comparable contributions to

the Higgs quartic when λ ≃
√
3yt. In the region of degenerate non-standard Higgs

boson masses, the corrections are larger than those estimated in Ref. [134, 139].

This discrepancy is purely due to the assumptions made in Ref. [134, 139] that

lead to a split heavy CP-even and CP-even spectrum.

Furthermore, we pointed out that contributions of the neutralino and

charginos to electroweak precison observables are small even for large tan β when

µeff ≃ 500 GeV and µ′ & 100 GeV. Such large values of µeff make this region Fat

Higgs/λ-SUSY parameter space slightly more unnatural than the low tan β region

considered in Ref. [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133].

Additionally, this scenario corresponds to the decoupling limit where the mixing

between the heavy Higgs states and the SM-like Higgs is suppressed. Therefore

SM-like Higgs decay properties are with 1% of their corresponding Standard Model

values. Therefore detecting this scenario at the LHC will be challenging.
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We also found regions of large tan β in Fat Higgs/λ-SUSY models that satisfy

all the above constraints and provide a viable dark matter candidate, namely, a

bino/singlino admixture. If we were to impose thermal freezeout constraints, the

dark matter mass must be either at the pole of annihilation (half the Higgs boson

mass) or above 104 GeV for the relic abundance to be set by coannihilation effects

from a possible compressed slepton spectrum. The regions satisfying this hypothesis

can completely be probed by the future XENON1T experiment.

In Chapter IV, we found that a mixed gluino that acquires both a Dirac mass

and a Majorana mass solely for its gaugino component (Mm 6= 0, M ′
m = 0), is

less constrained from LHC searches than a pure Dirac gluino. This is because the

lightest gluino eigenstate contains more of the adjoint fermion partner that does

not couple to quarks and squarks, and thus further suppresses squark production

through t-channel exchange. This was shown in detail by examining the individual

squark production sub-processes as a function of the Majorana mass.

A mixed gluino that acquires both a Dirac mass and a Majorana mass for its

adjoint fermion component (Mm = 0, M ′
m 6= 0), or for both of its components

(Mm 6= 0, M ′
m 6= 0), is more constrained from LHC searches than a pure Dirac

gluino. This is because the lightest gluino eigenstate contains more of the gaugino

that does couple to quarks and squarks. However, the effect is not significant

when the Majorana masses are small compared with the Dirac mass, roughly
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Mm,M
′
m
<∼O(0.1)Md. Again, this was shown in detail by examining the individual

squark production sub-processes as a function of the Majorana mass(es).

A model with a Dirac gluino and Majorana electroweak gauginos that both

contribute to squark production can have modifications from the gluino-only

cross section by a factor of a few. The largest effect occurs at the “maximal

electroweakino impact” mass values of M1,M2 ≃Mq̃. As the electroweak gauginos

become larger or smaller than this value, their effect on squark production becomes

suppressed.

New candidates for the LSP are one of the consequences of finding that light

Majorana electroweak gauginos not significantly affecting cross sections. In addition

to a gravitino LSP, we showed that a Majorana bino is also perfectly viable since

it does not significantly increase squark production cross sections. One could also

contemplate a light Majorana wino, however this would introduce new branching

fractions of left-handed squarks to winos.

The results in the chapter focused on the LHC operating at 8 TeV; to illustrate

what happens at the LHC operating at 14 TeV, we have extended some of

the results for both the mixed gluino as well as Majorana electroweakinos in

Appendix H. We conclude by considering several new simplified models could be

studied and constrained (by the experimental collaborations) that would capture

the essentials of these scenarios with mixed gauginos and electroweakinos. It would

be particularly insightful to study the simplified models when not only the squarks
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but also the gluino is relatively light, while the LSP mass is allowed to vary. Here

are several proposals:

1) Dirac gluino, several choices of LSP mass: Cross section bounds in

Mq̃ −MD plane; MLSP = 0, 200, 400 GeV.

2) Dirac gluino, several choices of gluino mass: Cross section bounds in

Mq̃ −MLSP plane MD = 1-3 TeV in steps of 0.5 TeV.

3) Mixed gluino, several choices of squark mass: Cross section bounds in

Mg̃1−x plane for Cases I,II,III;Mq̃ = 500-1000 GeV in steps of 100-250 GeV,

with a massless LSP.

4) Mixed gluino, several choices of LSP mass: Cross section bounds in

Mg̃1 − x plane for Cases I,II,III; Mq̃ = 500, MLSP = 0, 200, 400 GeV.

5) Dirac gluino with Majorana electroweakinos, several choices of LSP

mass: Cross section bounds in Mq̃ −MW̃ ,B̃/Mq̃ plane; take MW̃ = MB̃ and

MW̃ = 2MB̃; MLSP = 0, 200, 400 GeV.
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APPENDIX A

PARTON LEVEL CROSS-SECTIONS

In this appendix, we provide expressions for the new physics box contributions

to the parton level qq̄ → ℓ+ℓ− cross-sections that are then convoluted with parton

distribution functions to obtain the proton-level differential cross-sections dσ/dmℓℓ.

We define the following short hand notation for 4-point loop functions

Di ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, t, µ

2
1,M

2
φ, µ

2
2,M

2
φ] ,

D̃i ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, t, µ

2
3,M

2
φ, µ

2
4,M

2
φ] ,

D̄i ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, u, µ

2
1,M

2
φ, µ

2
2,M

2
φ] ,

˜̄Di ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, u, µ

2
3,M

2
φ, µ

2
4,M

2
φ] , (A.1)

with the conventions for 4-point functions as in [225].

To incorporate the mixing of the dark fermions, we define the function

ϑ[x] ≡ 1− x

M1 +M2

, (A.2)

so that ϑ[M1] = cos2 θ and ϑ[M2] = sin2 θ. Here, θ is the mixing angle introduced in

Eq. (IV.8). In the following, c = 2/3 for up quarks in the initial state and c = −1/3

for down quarks in the initial state.

The interference of the tree-level s-channel photon-mediated diagram with
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(i) any direct box diagram is given by

dσ̃γ−box[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2|λq̃|2|λℓ̃|2

256π3

×2Re

{
(s+ t)2

s2
(2D00 + (D2 +D12 +D22 +D23)s)

}
;

(ii) any crossed box diagram is given by

dσ̃γ−xbox[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2|λq̃|2|λℓ̃|2

256π3

× 2Re

{
(s+ t)2

s2
(µ1µ2D̄0)

}
.

The interference of the tree-level s-channel Z-mediated diagram with

(i) any direct box diagram is given by

dσ̃Z−box[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2t2W |λq̃|2|λℓ̃|2

256π3

×2Re

{
(s+ t)2

s(s−M2
Z)

(2D00 + (D2 +D12 +D22 +D23)s)

}
;

(ii) any crossed box diagram is given by

dσ̃Z−xbox[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2t2W |λq̃|2|λℓ̃|2

256π3

× 2Re

{
(s+ t)2

s(s−M2
Z)

(µ1µ2D̄0)

}
,

where tW = tan θW and θW is the weak mixing angle.

Thus, the interference between the all the tree diagrams and any direct box

diagram is

dσ̃tree−box[µ1, µ2] =

dσ̃γ−box[µ1, µ2] + dσ̃Z−box[µ1, µ2] , (A.3)
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and the interference between all the tree diagrams and any crossed box diagram is

dσ̃tree−xbox[µ1, µ2] =

dσ̃γ−xbox[µ1, µ2] + dσ̃Z−xbox[µ1, µ2] . (A.4)

The interference between any two direct box diagrams is given by

dσ̃box2 [µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λℓ̃|4
2048π5s

(s+ t)2

×2Re
{
(2D00 + (D2 +D12 +D22 +D23)s)

× (2D̃∗
00 + (D̃∗

2 + D̃∗
12 + D̃∗

22 + D̃∗
23)s)

}
. (A.5)

The interference between any two crossed box diagrams is given by

dσ̃xbox2 [µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λℓ̃|4
2048π5s

(s+ t)2

× 2Re
{
(µ1µ2µ3µ4D̄0

˜̄D∗
0)
}
. (A.6)

The interference between any direct box diagram and any crossed box diagram is

given by

dσ̃box−xbox[µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λℓ̃|4
2048π5s

(s+ t)2

×2Re
{
((2D00 + (D2 +D12 +D22 +D23)s)

× µ3µ4
˜̄D∗
0)
}
. (A.7)
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We can now write down the total cross-sections using the expressions above.

From Eq. (A.3), the interference between all the tree diagrams and all the direct

box diagrams is obtained as

dσtree−box =
∑

a,b=1,2

dσ̃tree−box[Ma,Mb] .

From Eq. (A.4), the interference between all the tree diagrams and all the crossed

box diagrams is obtained as

dσtree−xbox =
∑

a,b=1,2

dσ̃tree−xbox[Ma,Mb] .

From Eq. (A.5), the total interference between a pair of direct boxes (including

box2 pieces) is given by

dσbox2 =
1

2

∑

a,b,c,d=1,2

dσ̃box2 [Ma,Mb,Mc,Md] .

From Eq. (A.6), the total interference between a pair of crossed boxes (including

crossed box2 pieces) is given by

dσxbox2 =
1

2

∑

a,b,c,d=1,2

dσ̃xbox2 [Ma,Mb,Mc,Md] .

Finally, from Eq. (A.7), the total interference between direct and crossed boxes is

given by

dσbox−xbox =
∑

a,b,c,d=1,2

dσ̃box−box[Ma,Mb,Mc,Md] .
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APPENDIX B

CALCULATION OF aeff AND beff

In this appendix we describe the calculation of aeff and beff, which characterize

the s−wave and p−wave contributions to the effective annihilation cross-section

〈σeffvrel〉 of pseudo-Dirac dark matter.

Consider the annihilation process χ1χ2 → ff̄ , which proceeds through the t

and u channels. Here χ1 and χ2 are two Majorana fermions with masses µ1 and µ2

respectively, and f is an SM fermion taken to be massless for simplicity. Taylor-

expanding in v to write 〈σv〉 = a[µ1, µ2] + b[µ1, µ2]v
2 +O(v4), we get

a[µ1, µ2] =
λ4d2(|p| − p)

16π|p|(|p|+M2
φ)

2
,

b[µ1, µ2] =
λ4sgn(p)

96π(|µ1|+ |µ2|)(|p|+M2
φ)

4

×
{
4|p|[4p2q + p(4M4

φ − q2) + 3M2
φd

2q]

+p2[4(p− q)2 + 3q2] +M4
φ[3q

2 + 8qp− 12p2]

−2pM2
φd

2[5q − 2p]
}
, (B.1)

where d = µ1 − µ2, p = µ1µ2 and q = µ2
1 + µ2

2. The expressions above hold

for annihilation into leptons. For annihilation into quarks, the expressions must

be multiplied by a color factor of 3. We recover the Majorana limit by setting
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µ1 = µ2 =Mχ

aMaj = 0 ,

bMaj =
λ4M2

χ(M
4
φ +M4

χ)

12π(M2
φ +M2

χ)
4
. (B.2)

The Dirac limit can be obtained in the limit −µ1 = µ2 =Mχ. We obtain

aDirac =
λ4M2

χ

8π(M2
φ +M2

χ)
2
,

bDirac = −
λ4M2

χ(−M4
φ + 3M2

φM
2
χ +M4

χ)

24π(M2
φ +M2

χ)
4

, (B.3)

in agreement with [50] up to a factor of 4 coming from an extra
√
2 in the definition

of our coupling in the Lagrangian.

Let us now compute aeff and beff by including the effect of coannihilations

between the two eigenstates of pseudo-Dirac dark matter. We do this by making

an appropriate replacement of the coupling in a[µ1, µ2] and b[µ1, µ2] to account for

the mixing, multiplying each term by the appropriate Boltzmann factor and finding

the weighted average. Therefore, from Eq. (II.25), we have

aeff(x) = λ4[c4θa[M1,M1] + 2c2θs
2
θa[M1,M2]w(x)

+s4θa[M2,M2]w
2(x)]/[(1 + w(x))2] ,

beff(x) = λ4[c4θb[M1,M1] + 2c2θs
2
θb[M1,M2]w(x)

+s4θb[M2,M2]w
2(x)]/[(1 + w(x))2] , (B.4)

where w(x) = (1 + δ)3/2e−xδ, δ = (M2 −M1)/M1.
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APPENDIX C

DIRECT DETECTION FORMULAE

We follow the approach of [226] (see also [227]) to compute the spin-independent

scattering cross-section of χ1 with nucleons, obtained as

σSI =
4

π
µN |fN |2 (C.1)

where µN is the χ−N reduced mass (N=p,n) and fN is given by

fN
mN

=
∑

q=u,d

(
fqfTq +

3

4
(q(2) + q̄(2))gq

)
,

with fq = λ2Mχ/[16(M
2
q̃ −M2

χ)
2], gq = 4fq. Only the quarks that couple to our dark

sector are included in the summations given here. The nucleon matrix elements

of the quark operators are taken from [50] (see also [228]). The large values of

q(2) + q̄(2) make the quark twist-2 contribution the dominant one.

The spin-dependent cross-section for scattering between nucleons and χ is given

by [51]

σMaj
SD =

3

64π

λ4µ2
N(
∑

q∆
N
q )

2

(M2
q̃ −M2

χ)
2

, (C.2)

where the summation is again over the quarks that couple to the hidden sector and

∆N
q is defined by 2sµ∆

N
q ≡ 〈N |q̄γµγ5q|N〉 with sµ the nucleon spin operator. We

take bounds from the neutron-dark matter scattering since they are stronger, thus

the appropriate matrix elements we use are ∆n
u = −0.427,∆n

d = 0.842. [229].
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APPENDIX D

DECOUPLING BEHAVIOR AT ONE-LOOP LEVEL

We need to use the tadpoles at the one-loop level to solved for the one-loop

corrected soft squared mass parameters. Extending Eq. (III.12) to one-loop order

leads to the system of three equations,

Ti =
∂VHiggs

∂φi
=

∂V tree
Higgs

∂φi

∣∣∣∣
{vk}

+
∂∆V

∂φi

∣∣∣∣
{vk}

= T tree
i +∆Ti = 0, i = 1, 2, 3.(D.1)

We again can try to solve for the soft masses m2
Hu
,m2

Hd
and m2

S in terms of

the Higgs VEVs. Note that while each T tree
i , as given in Eq. (III.12), contains

only its corresponding soft mass m2
Hi
, ∆Ti in general contain all three soft mass

terms. Although obtaining the solutions to such a system of equations maybe

straightforward, the computation could become complicated when we expand the

full potential around the true electroweak symmetry breaking minimum. We can

avoid this difficulty by solving Eq. (D.1) iteratively. We first solve for the tree level

soft mass squared parameters
(
m2
H0

u

)0
,
(
m2
H0

d

)0
,
(
m2
S

)0
using Eq. (III.12) and then

substitute them into ∆Ti. This approximation linearizes Eq. (D.1) which leads to

the one-loop corrected soft mass squared parameters solution

m2
i =

(
m2
i

)0 − 1

16π2

∑

j=D,S

M2
A,j

vi

∂b0j
∂φi

∣∣∣∣
vi

+ ... (D.2)

where
(
m2
i

)0
is the tree-level solutions of Eq. (III.12), b0j = bj

(
(m2

i )
0
)
, vi =

(vu, vd, s), i = (H0
u, H

0
d , S) and φi = (H0

u, H
0
d , S). Substituting these solutions
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into the total potential and expanding it about the electroweak symmetry breaking

minimum we observe that corrections to the CP-even Higgs mass matrix takes the

form

(
∆M2

H0

)ab
=

1

16π2

∑

i=D,S


 ∂b0i

2

∂φa∂φb

∣∣∣∣∣
{va}

− 1

2va

∂b0i
∂φa

∣∣∣∣
{va}

δab


M2

A,i + ..., (D.3)

By the symmetries of the model, the only field dependences at quadratic order in

b0i are h2u, h
2
d, huhd and h2s. Thus Eq. (D.3) suggests that the coefficient of M2

AS
in

the self-energy corrections vanishes and that of M2
AD

will be proportional to

− v2

sβcβ




c2β −sβcβ 0

−sβcβ s2β 0

0 0 0




. (D.4)

When these correction are rotated into the basis defined in Eq. (III.16) we see that

the (2, 2) element is the only non-zero element. Therefore the decoupling is manifest

even at the one-loop level.
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APPENDIX E

EFFECTIVE POTENTIAL DERIVATION

In this section we apply the procedure outlined in Sec. III.2.2 to the computation

of one-loop radiative corrections from the Higgs sector. First, we deal with

degenerate pseudoscalars, so that all the one-loop corrections come from a single

heavy scale. We will call this Case (A). Next, in Case (B), we inspect the effect

of splitting the pseudoscalar masses on the one-loop corrections, where they now

come from two heavy scales. For simplicity, the soft terms Aλ, Aκ, µ
′,m3,m

′
S are

taken to vanish in this case.

(A) Degenerate pseudoscalars

From the CP-odd mass matrix in Eq. (III.14), we impose the necessary and

sufficient condition for mass degeneracy in the pseudoscalars given by
(
M2

A

)
12

=

0,
(
M2

A

)
11

=
(
M2

A

)
22

=M2
A, to obtain

µ′ = Aλ,

ξF = (M2
Asβcβ −m2

3)/λ− 2Aλs,

ξS = −M2
As− Aλ(M

2
Asβcβ −m2

3 − λv2s2β)/λ (E.1)

Respecting this condition, the field-dependent mass matrix for the charged sector
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is

M±
11

2
= m2

Hu
+ λ2h2s +

g2

4
(h2u − h2d) +

g22
2
h2d,

M±
12

2
= (

g22
2

− λ2)huhd + 2λAλ(hs − s) +M2
Asβcβ,

M±
22

2
= m2

Hd
+ λ2h2s −

g2

4
(h2u − h2d) +

g22
2
h2u, (E.2)

for the CP-odd sector it is

MP
11

2
= m2

Hu
+ λ2(h2d + h2s) +

g2

4
(h2u − h2d),

MP
12

2
= 2λAλ(hs − s) +M2

Asβcβ,

MP
22

2
= m2

Hd
+ λ2(h2u + h2s)−

g2

4
(h2u − h2d),

MP
13

2
= 0,

MP
23

2
= 0,

MP
33

2
= m2

S + λ2(h2u + h2d) + A2
λ −m′

s
2
,

(E.3)
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and for the CP-even sector it is

MS
11

2
= m2

Hu
+ λ2(h2d + h2s) +

g2

4
(3h2u − h2d),

MS
12

2
= (2λ2 − g2

2
)huhd − 2λAλ(hs − s) +M2

Asβcβ,

MS
22

2
= m2

Hd
+ λ2(h2u + h2s)−

g2

4
(h2u − 3h2d),

MS
13

2
= 2λ2(huhs − Aλhd),

MS
23

2
= 2λ2(hdhs − Aλhu),

MS
33

2
= m2

S + λ2(h2u + h2d) + A2
λ +m′

s
2

(E.4)

The eigenvalues of the charged matrix are given by M±
1,2

2
=

1

2
(Trc ∓

√
Tr2c − 4Detc), where Trc = M±

11
2
+ M±

22
2
and Detc = M±

11
2
M±

22
2 − M±

12
2
M±

21
2
.

We only include the contribution from the heavier eigenstate corresponding to

M±
2

2
. Note that when we take the supertrace in the charged higgs sector, we

obtain a multiplicative factor of 2 since each charged higgs state comprises of two

real physical states. In other words, the supertrace is here taken over the full 4× 4

squared-mass matrix and not the 2 × 2 version that is usually written down for

brevity.

The eigenvalues of the CP-odd matrix are obtained in a straightforward manner,

since the upper left 2× 2 block is decoupled from MP
33

2
. The squared eigenmasses

are obtained asM2
1,p =

1

2
(Trp−

√
Tr2p − 4Detp),M

2
2,p =

1

2
(Trp+

√
Tr2p − 4Detp) and

M2
3,p =M2

33, where Trp =MP
11

2
+MP

22

2
and Detp =MP

11

2
MP

22

2 −MP
12

2
MP

21

2
.
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Obtaining the CP-even eigenvalues is non-trivial since we need to deal with a

rank 3 matrix. However, we can take advantage of the degeneracy of the CP-odd

scalars by employing the following simplifying trick.

First, consider the characteristic equation of the CP-even matrix, written as

α3x
3 + α2x

2 + α1x+ α0 = 0,

whose solutions are the field-dependent eigenmasses M2
i,s. The coefficients αi, in

terms of the matrix elements in Eq. (E.4), are

α3 = 1,

α2 = −(MS
11

2
+MS

22

2
+MS

33

2
),

α1 = MS
11

2
MS

22

2
+MS

22

2
MS

33

2
+MS

33

2
MS

11

2 −MS
12

2
MS

21

2 −MS
23

2
MS

32

2 −MS
31

2
MS

13

2
,

α0 = −[MS
11

2
(MS

22

2
MS

33

2 −MS
23

2
MS

32

2
)−MS

12

2
(MS

21

2
MS

33

2 −MS
23

2
MS

31

2
)

+MS
13

2
(MS

21

2
MS

32

2 −MS
22

2
MS

31

2
)] (E.5)

We also know, in terms of the eigenmasses, that

α2 = −(M2
1,s +M2

2,s +M2
3,s),

α1 = M2
1,sM

2
2,s +M2

2,sM
2
3,s +M2

3,sM
2
1,s (E.6)

Now the CP-even sector contribution to the effective potential, from Eq. (III.18),

is

∆V ⊃ 1

64π2
[(M2

2,s)
2 + (M2

3,s)
2] log

(
M2

A

M2
Z

)
. (E.7)
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The quantity in brackets can be re-written using Eq. (E.6) as simply

(M2
2,s)

2 + (M2
3,s)

2 = α2
2 − 2α1 − (M2

1,s)
2 (E.8)

The coefficients α1 and α2 may be read off Eq. (E.5), while we may still have to

determine M2
1,s analytically. This is, however, a simple task if we write M2

1,s as a

power series in M2
A :

M2
1,s = b1 +O

(
1

M2
A

)

=⇒ (M2
1,s)

2 = b21 +O
(

1

M2
A

)
, (E.9)

where b1 is at most quadratic in the background fields. Putting Eqs. E.8 and E.9

into Eq. (E.7), we obtain the one-loop effective potential contribution simply as

∆V ⊃ 1

64π2
[α2

2 − 2α1 − b21] log

(
M2

A

M2
Z

)
, (E.10)

where we have discarded O(1/M2
A) terms that are irrelevant in obtaining the

required self-energy corrections.

After including all the one-loop corrections, the final expressions we obtain for

the CP-even mass matrix are now as follows.

(
M

2

H

)
11

=M2
Zs

2
β +M

2

Ac
2
β +Π11;

(
M

2

H

)
12

= (2λ2v2 −M2
Z −M

2

A)sβcβ +Π12;

(
M

2

H

)
22

=M2
Zc

2
β +M

2

A +Π22;
(
M

2

H

)
13

= 2λvµeffsβ +Π13;

(
M

2

H

)
23

= 2λvµeffcβ +Π23;
(
M

2

H

)
33

=M
2

A +Π33,
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where

M
2

A = M2
A

(
1 +

λ2

8π2
log

(
M2

A

M2
Z

))
, (E.11)

and

Π11 =
v2

256π2
[−32λ4s2β(2c2β − s22β) + 2λ2g2(3c2β − 1)(3s22β + 2)

+g4(4c4W + 4c2W − 7s22β − 1− c2β(4c
4
W − 4c2W + 5s22β + 3))

+64λ2
Aλµeff

v2
cot β] log

(
M2

A

M2
Z

)
,

Π12 =
v2

256π2
[−32λ4(s22β − 2)− 2λ2g2s2β(8c

2
W − 15s22β + 14)

+g4s2β(4c
4
W + 4c2W − 7s22β + 3)

−64λ2
Aλµeff

v2
] log

(
M2

A

M2
Z

)
,

Π22 =
v2

256π2
[32λ4c2β(2c2β + s22β)− 2λ2g2(3c2β + 1)(3s22β + 2)

+g4(4c4W − 4c2W + 7s22β + 1 + c2β(4c
4
W − 4c2W + 5s22β + 3))

+64λ2
Aλµeff

v2
tan β] log

(
M2

A

M2
Z

)
,

Π13 =
vµeff

µeff

[12λ3s3β + λg2sβ(3c2β + 2c2W + 1)

+
λvAλ cos β

32π2

(
−λ2(13 + 3c4β) +

g2

2
(5 + 4c2W − 6c2β + 3c4β)

)
] log

(
M2

A

M2
Z

)
,

Π23 =
vµeff

µeff

[12λ3c3β + λg2cβ(−3c2β + 2c2W + 1))

+
λvAλ sin β

32π2

(
−λ2(13 + 3c4β) +

g2

2
(5 + 4c2W + 6c2β + 3c4β)

)
] log

(
M2

A

M2
Z

)
,

Π33 = {4λ
2µ2

eff

16π2
+

λAλ
128π2

[λ(16Aλ(4 + c4β)

+λ(64s2 + 29v2)s2β + λv2s6β) + g2v2s2β(3 + 4c2W + c4β)]} log
(
M2

A

M2
Z

)
(E.12)

If we set all NMSSM-specific parameters to zero in the above, we recover the
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MSSM limit presented in [153, 154, 155, 156]. The soft term Aλ decouples at one-

loop order and does not contribute to the SM Higgs quartic coupling, a property

best seen in the basis of Eq. (III.16). The SM Higgs boson mass is then identified

as

M
2

hh = λ2v2s22β +M2
Zc

2
2β +Πhh,

Πhh =
v2

512π2
[4λ4(31 + 4c4β − 3c8β) + 4λ2g2(−9− 4c2W + (4c2W − 2)c4β + 3c8β)

−g4(−11 + 8c2W − 16c4W + 8c2W c4β + 3c8β)] log

(
M2

A

M2
Z

)
(E.13)

Aλ is absent in the expression above, confirming its decoupling behavior at the

one-loop level. Moreover, if we neglect the electroweak strength corrections, in the

limit of large tan β we get

lim
tanβ≫1

Πhh =
λ4v2

4π2
log

(
M2

A

M2
Z

)
, (E.14)

in agreement with our heuristic estimate in Eq. (III.25).

(B) Non-degenerate pseudoscalars: a simple case.

We now show the effect of a split pseudoscalar spectrum on the radiative

corrections. For simplicity, we assume the parameters Aλ, µ
′,m3,m

′
S vanish. We

also neglect g-dependent terms in the one-loop piece, since the largest contributions

to the SM Higgs quartic in our model arise from the λ-dependent terms. With these

simplifications, the field-dependent squared mass matrices for the charged, CP-odd
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and CP-even sectors are respectively given by

M±
11

2
= m2

Hu
+ λ2h2s, M±

12
2
= λ2huhd +M2

AD
sβcβ, M±

22
2
= m2

Hd
+ λ2h2s;(E.15)

MP
11

2
= m2

Hu
+ λ2(h2d + h2s), MP

12

2
=M2

AD
sβcβ,

MP
22

2
= m2

Hd
+ λ2(h2u + h2s), MP

13

2
= 0,

MP
23

2
= 0, MP

33

2
= m2

S + λ2(h2u + h2d);

(E.16)

MS
11

2
= m2

Hu
+ λ2(h2d + h2s), MS

12

2
= 2λ2huhd −M2

AD
sβcβ,

MS
22

2
= m2

Hd
+ λ2(h2u + h2s), MS

13

2
= 2λ2huhs,

MS
23

2
= 2λ2hdhs, MS

33

2
= m2

S + λ2(h2u + h2d);

(E.17)

Obtaining the eigenvalues of the charged and CP-odd systems is straightforward

again, as we found in Case (A). To obtain the eigenvalues of the CP-even matrix,

we solve for the roots of its characteristic equation (a cubic polynomial) as a power

series in M2
AD

and M2
AS

.

After collecting the one-loop contributions from all three sectors and summing

over them, we obtain the CP-even mass matrix as

(
M

2

H

)
11

=M2
Zs

2
β +M

2

AD
c2β +Π11;

(
M

2

H

)
12

= (2λ2v2 −M2
Z −M

2

AD
)sβcβ +Π12;

(
M

2

H

)
22

=M2
Zc

2
β +M

2

AD
+Π22;

(
M

2

H

)
13

= 2λvµeffsβ +Π13;

(
M

2

H

)
23

= 2λvµeffcβ +Π23;
(
M

2

H

)
33

=M
2

AS
+Π33
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where

M
2

AD
= M2

AD

(
1 +

λ2

8π2
log

(
M2

AD

M2
Z

)
+

λ2

8π2

µ2
eff

M2
A2

−M2
A1

log

(
M2

AS

M2
AD

))
,

M
2

AS
= M2

AS
(E.18)

and

Π11 =
λ4v2

16π2
s2β

[
−(4c2β + c4β + 1) log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
,

Π12 =
2λ4v2

16π2
sβcβ(2 + c4β) log

(
M2

AD

M2
Z

)
,

Π22 =
λ4v2

16π2
c2β

[
−(−4c2β + c4β + 1) log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
,

Π13 =
λ3vµeff

16π2
sβ

[
−(1 + 3c2β) log

(
M2

AD

M2
Z

)
+ 4 log

(
M2

AS

M2
Z

)]
,

Π23 =
λ3vµeff

16π2
cβ

[
−(1− 3c2β) log

(
M2

AD

M2
Z

)
+ 4 log

(
M2

AS

M2
Z

)]
,

Π33 =
4λ2µ2

eff

16π2
log

(
M2

AD

M2
Z

)
.

(E.19)

We make the following observations concerning the above expressions. First,

notice that in the limitMAD
=MAS

, they are consistent with the results in Case (A)

with g, Aλ → 0. Second, we observe that corrections from the heavy doublet Higgses

are β-dependent and those from the heavy singlet Higgses are not, as reflected in

the co-efficients of log(M2
AD
/M2

Z) and log(M2
AS
/M2

Z) respectively. Third, there is a

marked difference in contributions from the scales MAD
and MAS

to the SM Higgs

quartic, which can be understood in the basis of Eq. (III.16). Rotating Πij into
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this basis, the correction to the SM Higgs boson mass is identified as

Πhh =
λ4v2sβ
16π2

[(
c2β(2 + c4β)− s2β(1 + c4β + 4c2β)

)
log

(
M2

AD

M2
Z

)
+ 2s2β log

(
M2

AS

M2
Z

)]
.

The difference in the co-efficients of the logarithms are greatest at tan β ∼ 1, and

smallest at tan β ≫ 1. In the latter limit, we obtain

lim
tanβ≫1

Πhh =
λ4v2

16π2

[
2 log

(
M2

AD

M2
Z

)
+ 2 log

(
M2

AS

M2
Z

)]
,

which is consistent with our qualitative estimate in Eq. (III.24).

194



APPENDIX F

INDIVIDUAL MODES OF SQUARK PRODUCTION

Here we describe the analytic behavior of the individual subprocesses ũLũL and

ũLũR that are critical in understanding the results of Sec. IV.3.

(a) ũLũL

This amplitude takes the form

−iT
g2CF

=

(
c2θg̃

Mg̃2

p2 +M2
g̃2

+ s2θg̃
−Mg̃1

p2 +M2
g̃1

)
uLuL

where CF (= 4/3) is the appropriate Casimir invariant, uL is a 2-component spinor

denoting an incoming left-handed up quark with spinor indices suppressed, and the

second term on the RHS has a minus sign since the mass of g̃1 is the negative of

Mg̃1.

In Case I (M ′
m = 0), using the expressions for the mixing angle in Eq. (IV.9),

expanding the amplitude to leading order in p2/M2
g̃ , and then writing it in terms

of Mg̃1 and x =Mm/Md, we obtain

c2θg̃Mg̃2

p2 +M2
g̃2

−
s2θg̃Mg̃1

p2 +M2
g̃1

=
p2

M3
g̃1

x
(√

x2 + 4− x
)3

+O(p4/M4
g̃1) (F.1)
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In Case II (Mm = M ′
m), the mixing angle is fixed c2θg̃ = 1/2. Expanding the

amplitude to leading order in p2/M2
g̃ , and then writing it in terms of Mg̃1 and

x = 2Mm/Md = 2M ′
m/Md, we obtain

= − x

Mg̃1(x+ 2)
+

p2x3 + 12x

M3
g̃1(x+ 2)3

+O(p4/M4
g̃1) (F.2)

In Case III (Mm = 0), again using Eq. (IV.9), expanding the amplitude to leading

order in p2/M2
g̃ , and then writing it in terms of Mg̃1 and x′ =M ′

m/Md, we obtain

= −x
′(x′ +

√
x′2 + 4)

2Mg̃1

+
p2x(x′2 + 2)(

√
x′2 + 4− x′)3

8M3
g̃1

+O(p4/M4
g̃1) (F.3)

Clearly, all of these expressions vanish in the Dirac limit, x → 0. The key

difference is how quickly each expression turns on, and its asymptotic form as x

gets large (by which we mean near 1). For example, at small x, Case I scales as

p2x/M3
g̃1 whereas Case II and III scale as x/Mg̃1. This illustrates that Case I is

further suppressed as the Majorana mass Mm is turned on. As a second example,

when x = 1, Case I becomes −p2/M3
g̃1, Case II becomes −1/(2Mg̃1), and Case

III becomes (1 −
√
5)/(2Mg̃1). We have checked the the functional form of the

squared amplitudes agrees well with our results shown in Figs. 4.5.a, 4.7.a and

4.9.a. Finally, we can recover the heavy pure Majorana case (the MSSM) where

c2θ = 1 and Mg̃1 = 0,Mg̃2 = 5000 GeV. In this case, the amplitude becomes

Mg̃2/(p
2 +M2

g̃2) where g̃2 is interpreted as the Majorana gluino. This is obviously
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suppressed by just one power of the gluino mass, giving a large cross section as

indicated by the dashed red line in Figs. 4.5.a, 4.7.a and 4.9.a.

(b) ũLũR

The amplitude for this subprocess is

−iT
g2CF

= uαL

(
c2θg̃

p · σαβ̇
p2 +M2

g̃2

+ s2θg̃
p · σαβ̇
p2 +M2

g̃1

)
(u†R)

β̇ (F.4)

where u†R denotes an incoming right-handed up quark. For |p| ≪Mg̃, this amplitude

is suppressed by 1/M2. In Case I (M ′
m = 0), using Eq. (IV.9), expanding the

amplitude to leading order in p2/M2
g̃ , and then writing in terms of Mg̃1 and x =

Mm/Md, we obtain

c2θg̃
p2 +M2

g̃2

+
s2θg̃

p2 +M2
g̃1

=
(x−

√
x2 + 4)2

4M2
g̃1

+O(p2/M2
g̃1) (F.5)

and in Case II (Mm = M ′
m), writing in terms of x = 2Mm/Md = 2M ′

m/Md we

obtain

c2θg̃
p2 +M2

g̃2

+
s2θg̃

p2 +M2
g̃1

=
x2 + 4

M2
g̃1(x+ 2)2

+O(p2/M2
g̃1) (F.6)
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and in Case III (Mm = 0), writing in terms of x′ =M ′
m/Md we obtain

c2θg̃
p2 +M2

g̃2

+
s2θg̃

p2 +M2
g̃1

=
(x′2 + 1)(x′ −

√
x′2 + 4)2

4M2
g̃1

+O(p2/M2
g̃1) . (F.7)

These analytic expressions agree well with our results shown in Figs. 4.5.d, 4.7.d,

and 4.9.d.

We observe in Fig. 4.5.d that the cross sections for x = 0 and for the pure

Majorana gluino are identical in this mode. This is because in the pure Dirac case,

s2θ = c2θ = 0.5 and Mg̃2 = Mg̃1 = M (say), rendering the co-efficient of the spinors

in the amplitude p · σαβ̇/(p2 +M2), and in the pure Majorana limit, c2θ = 1 and we

once again have p · σαβ̇/(p2 +M2) in the amplitude.

By inspecting the expressions in Eqs. (F.1), (F.2), (F.3) and comparing with

their ũLũR counterparts, one can also see that (i) in Case I, ũLũL never catches up

with ũLũR as x goes from 0 to 1, (ii) in Case II, it catches up at about x = 0.2,

and (iii) in Case III, it catches up at a very small value of x. This is reflected in

Figs. 4.5., 4.7. and 4.9. and hence in the respective contour plots.
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APPENDIX G

“DIRAC” CHARGINOS

In this section we discuss the differences in the process pp → ũLd̃L (and its

equivalents for other generations) for winos that acquire a Majorana mass versus

uL

dL

λ
+
b

d̃L

ũL

+

uL

dL

λ
+
a

d̃L

ũL

uL

dL

λ
+

d̃L

ũL

(b) Mixed models

(a) MSSM

Figure G.1: Feynman diagrams for the process pp→ ũLd̃L in MSSM and models

with both Dirac and Majorana gaugino masses.
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winos that acquire a Dirac mass. We note that some aspects of “Dirac” charginos

have been discussed previously in [197]. We are specifically interested in the

mediation of this process by t-channel charginos. In MSSM, this process is shown

in the Feynman diagram in Fig. G.1(a). For mixed models with both Dirac and

Majorana wino masses, the Feynman diagrams are given in Fig. G.1(b).

The presence of the extra chargino can be understood by studying the relevant

mass terms in the Lagrangian, given in Weyl notation by

Lw̃mass =
1

2



w ψ







M̂m M̂d

M̂d M̂ ′
m







w

ψ




+ h.c. (G.1)

where w is the wino, ψ is the triplet fermion partner, and the hatted quantities

are to distinguish from the analogous parameters for the gluino. The notation

is somewhat an abuse of notation, since the eigenvectors on the left- and right-

hand sides of the mass matrix are identical for neutral components of the wino

and triplet, whereas the eigenvectors for the charged fields must involve opposite

electric charge components that pair w+, ψ+ with w−, ψ−. Also we have neglected

the wino-Higgsino mixings that arise after electroweak symmetry breaking in order

to simply understand the differences between a pure Dirac wino and a mixed wino

with regard to squark production.

A mixed (Majorana and Dirac mass) neutral wino interacts in a way completely

analogous with the gluino. The charged wino is distinct, since of course a chargino
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is always a Dirac fermion. In the MSSM, the chargino acquires a Dirac mass by

pairing the two charged winos w± with the “Majorana” mass termM2(w
+w−+c.c.).

In models with a Dirac mass for the chargino, the charged wino w± acquires mass

with a charged fermion partner ψ∓. The mixing is analogous to the mixed gluino,

where now 


λ±a

λ±b




=




cos θw̃ sin θw̃

− sin θw̃ cos θw̃







w±

ψ±




(G.2)

with the same form of the mass eigenvalues and mixing angles as Eqs. (IV.10) and

(IV.9). Since the wino couples to quarks and squarks, while the triplet partner does

not, the usual wino interaction terms

L = −g2 (ũ∗L,iλ
+dL,i + d̃∗L,iλ

−uR,i) + h.c. (G.3)

become

L = −g2 (ũ∗L,iλ
+
a cos θw̃ dL,i + ũ∗L,iλ

+
b sin θw̃ dL,i

+d̃∗L,iλ
−
a cos θw̃ uR,i + d̃∗L,iλ

−
b sin θw̃ uR,i) + h.c.

(G.4)

Interestingly, in the pure Dirac mass limit where M̂m, M̂
′
m = 0, the mixing angles

become maximal, and then for the same reasons that qq → q̃Lq̃L vanishes for a

Dirac gluino, one can show that qq′ → q̃Lq̃′L vanishes for a Dirac wino. We did

not utilize this observation in our studies, since our main focus was the interference

between Majorana wino and bino with a Dirac gluino.
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APPENDIX H

14 TeV EXTRAPOLATION

In this appendix we extend our results to
√
s = 14 TeV at the LHC. Given that

the current LHC bound on the squark mass is roughly 800 GeV (with a massless

LSP), we illustrate the
√
s = 14 TeV results forMq̃ = 1200 GeV. The contour plots

in Fig. H.1, parameterized analogously to those of Sec. IV.3.1, show the changes one

would observe for this squark mass. Specifically, when compared to Figs. 4.3., 4.6.

and 4.8., we find that the cross sections and ratios increase for all three scenarios.

Moreover, at 14 TeV the s-channel gluon-mediated diagrams producing squark–

anti-squark dominate over squark-squark production at all gluino masses shown in

the plots, which was not the case at
√
s = 8 TeV.

Figure H.1: (next page) LEFT: Contours of the ratio of the production cross

section of the first two squark generations at LHC with
√
s = 14 TeV (extrapolated)

in our model to the cross sections in MSSM. RIGHT: Contours of the cross sections

themselves (at leading order), in pb, at LHC with
√
s = 14 TeV. The squark mass

here is 1200 GeV and the parameterization of the axes is similar to Figs. 4.3., 4.6.

and 4.8.. The critical features are explained in the text.
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Figure H.2: Ratios of squark production cross sections at
√
s = 14 TeV to those

at
√
s = 8 TeV. Here, red: QCD-only Dirac gluino case, green: electroweakinos at

their MEI values, which provides an upper bound on the impact of electroweakinos

in the presence of a Dirac gluino.

This implies that the features of the ratio and cross section contours for Mq̃ =

1200 GeV at
√
s = 14 TeV resemble their equivalents for, say, Mq̃ = 800 GeV at

√
s = 8 TeV, and this is the trend observed in all of the plots in Fig. H.1.

As for the impact of the mixed electroweak gauginos, a comparison with the

√
s = 8 TeV LHC results is presented in Fig. H.2, where the ratios of squark

production cross section at
√
s = 14 TeV to those at

√
s = 8 TeV have been plotted.

The green curve indicates electroweakinos at their MEI values while the red curve

shows the QCD-only Dirac gluino case. The gluino mass is again taken to be 5 TeV.

Here again, we emphasize that the MEI value is not a special point. It merely sets

an upper bound on the impact of electroweakinos on a pure Dirac gluino scenario.

We note two features: (a) The ratios increase as the squark mass increases. This
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happens because at
√
s = 14 TeV, the cross section is dominated by squark–anti-

squark production, unlike the case at
√
s = 8 TeV, where at high squark masses

there is competition between squark–anti-squark and squark-squark modes; (b) The

green curve increases at a slower rate with respect to squark mass than the red curve.

The impact of the electroweakinos on the total cross section is by affecting t-channel

(mainly left-handed) squark-pair production, and such an impact would weaken as

√
s is increased. This causes squark–anti-squark production through gluon fusion

diagrams and s-channel gluon-mediated subprocesses to dominate. These features

show that the impact of the electroweakinos at their MEI values are expected to

be much less for LHC operating at 14 TeV.
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