
SEARCH FOR LONG-DURATION TRANSIENT GRAVITATIONAL WAVES

ASSOCIATED WITH MAGNETAR BURSTS DURING LIGO’S SIXTH SCIENCE

RUN

by

RYAN QUITZOW-JAMES

A DISSERTATION

Presented to the Department of Physics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2016



DISSERTATION APPROVAL PAGE

Student: Ryan Quitzow-James

Title: Search for Long-Duration Transient Gravitational Waves Associated with
Magnetar Bursts during LIGO’s Sixth Science Run

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Physics
by:

James E. Brau Chair
Raymond E. Frey Advisor
Timothy Cohen Core Member
Daniel A. Steck Core Member
James A. Isenberg Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded March 2016

ii



© 2016 Ryan Quitzow-James
This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs (United States) License.

iii



DISSERTATION ABSTRACT

Ryan Quitzow-James

Doctor of Philosophy

Department of Physics

March 2016

Title: Search for Long-Duration Transient Gravitational Waves Associated with
Magnetar Bursts during LIGO’s Sixth Science Run

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars are thought to be

neutron stars with strong magnetic fields, called magnetars, which emit intermittent

bursts of hard X-rays and soft gamma rays. Three highly energetic bursts, known

as giant flares, have been observed originating from three different SGRs, the latest

and most energetic of which occurred on December 27, 2004, from the SGR with the

largest estimated magnetic field, SGR 1806-20. Modulations in the X-ray tails of giant

flares may be caused by global seismic oscillations. Non-radial oscillations of the dense

neutron star matter could emit gravitational waves powered by the magnetar’s magnetic

energy reservoir. This analysis searched for long-duration transient gravitational waves

associated with three magnetar bursts that occurred during LIGO’s sixth science run,

from July 7, 2009 to October 20, 2010. The search results were consistent with the

calculated background, and 90% confidence upper limits on the possible undetected

gravitational wave energy were found.
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CHAPTER I

GRAVITATIONAL WAVES AND MAGNETARS

Albert Einstein’s special theory of relativity preferred objects to be in an inertial

frame; however, Einstein reasoned that a theory that did not prefer a state of motion

would be superior, and thus, he embarked on formulating general relativity [1]. In

1915, Einstein published his general theory of relativity [2]. In 1916, Einstein laid

the groundwork for gravitational-wave theory and predicted linearized gravitational

waves (GWs) [3, 4]. GWs are tensor waves predicted to travel at the speed of light,

stretching and compressing space perpendicular to their direction of travel.

Russell A. Hulse and Joseph H. Taylor Jr. received the 1993 physics Nobel Prize

for the first observational evidence supporting the existence of GWs [5]. Discovered

by Hulse and Taylor in 1974, PSR B1913+16 is a binary star system containing two

neutron stars, one of which is a pulsar. The pulsar is a reliable natural clock and allowed

very precise measurement of the orbital period of the system (approximately 7.75

hours) [6]. More than three decades of observations found that the orbital period was

decreasing at 0.997 +/- 0.002 times the rate predicted by general relativity from energy

loss due to gravitational wave emission (see Figure 1.1) [6]. This successful observation

is often termed an indirect measurement of GWs because it is an observation of energy

loss attributed to GWs rather than an observation of the GWs distortion of spacetime.

On September 14, 2015, at 09:50:45 UTC, the two detectors of the

Laser Interferometer Gravitational-Wave observatory (LIGO) directly detected a

gravitational wave signal (see Figure 1.2) [7]. This GW event is known as GW150914.

The time difference between the event times in each detector was less than the 10ms

light travel time between the detectors. The signal ranged in frequency from 35Hz to
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FIGURE 1.1. The parabolic line shows the shift in the periastron from orbital energy
loss due to GW radiation as predicted by general relativity. The dots are data points
from observations, which agree well with predictions. Figure © AAS. Reproduced
with permission from [6].

250Hz, with a peak GW strain amplitude of 10−21. When recovered with a matched-

filter analysis, the signal matched the features of a binary black hole inspiral, merger

and ringdown. The masses of the merging black holes were estimated to be 36+5
−4M⊙

and 29+4
−4M⊙, with the resulting black hole mass estimated to be 62+4

−4M⊙. The event

emitted 3+0.5
−0.5M⊙c

2 as GW energy. GW150914 is the first direct detection of GWs.

GW150914 is also the first observation of a binary black hole system and provided

observations of space-time in regions with strong-field gravity and high-velocity objects,
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and confirmed “predictions of general relativity for the nonlinear dynamics of highly

disturbed black holes” [7].

Additional detections in the future should increase our knowledge of the universe

and general relativity. Measuring the polarization properties of GWs could verify

general relativity’s prediction of the transverse traceless nature of the waves and the

spin-two nature of gravitons [3]. GWs could be compared with optical counterparts

to verify whether they travel at the speed of light [8]. GWs are not expected to be

significantly affected by most matter and are instead sensitive to coherent motions

of large amounts of matter [3, 8]. This weak coupling to low-density matter would

allow observations of phenomena unobservable with electromagnetic radiation, such as

information from star cores in supernovae, compact star (neutron stars or black holes)

mergers or even observations from the early universe before light could travel freely

(the earliest electromagnetic observations are of the cosmic microwave background

radiation) [3, 8].

The LIGO Scientific Collaboration and Virgo Collaboration use a global network

of three interferometer detectors to search for GWs. In 2015, LIGO finished upgrades

to its second generation configuration, known as Advanced LIGO (aLIGO), and

completed its first observation run from September, 2015, to January, 2015. More

tuning will be required, but once aLIGO reaches design sensitivity it is expected to be

10 times as sensitive as initial LIGO and have a search volume 1000 times larger.

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) may emit

GWs that could be detectable by the LIGO detector network. SGRs and AXPs emit

energetic bursts of X-ray and gamma rays which are thought to be powered by large

magnetic fields. Neutron stars which possess extraordinary strong magnetic fields are

called magnetars. They have external dipole magnetic fields of ∼1013–1015 gauss as

3



inferred by their spin periods and spin-down rates [9]. Two of their largest emissions,

called giant flares, have quasiperiodic oscillations (QPOs) visible in the tails following

the initial burst. This suggests bursts may cause oscillations which may emit GWs.

These oscillations occur in frequencies to which LIGO is sensitive. Two models for

burst emission, crust cracking and hydrodynamic deformation, may provide enough

energy to power the electromagnetic bursts and GWs of comparable or greater energies

[10]. If the GW emission energy is similar to the electromagnetic burst emission energy,

magnetars could emit GWs which could be detectable by LIGO. If not, restrictions

could be set on the energy content of the mechanisms of excitation.

This search analyzed data from both LIGO detectors to look for long-duration

transient GWs which occurred during or just after magnetar bursts. Three magnetar

bursts occurred while both of LIGO’s detectors were taking data during LIGO’s sixth

science run (S6), from July 7, 2009 to October 20, 2010. There is much uncertainty in

the possible mechanisms behind bursts; therefore, no particular waveform was assumed

for this search. The choice of clustering algorithm and search pipeline was motivated

by electromagnetic observations. If emitted GWs are related to QPOs, GWs may be

long lasting and nearly monochromatic. A cross-correlation search was performed

using a seedless clustering algorithm sensitive to long and thin signals which may

change in frequency or be nearly monochromatic. The statements made in this thesis

are my own; the analysis and results have not been reviewed by the LIGO Scientific

Collaboration.

The chapters of this thesis are organized as described below.

Chapter II focuses on general relativity, and the basic linearized theory of GWs,

as well as the basic idea of strain which could allow GWs to be detected.

4



Chapter III focuses on the LIGO detector, noise sources in the detector, and

possible sources of GWs in LIGO’s sensitive frequency band.

Chapter IV discusses the work done to monitor seismic upconversion in LIGO’s

sixth science run.

Chapter V discusses magnetars, their history, and some basic observations about

them and why they may be good candidates for detection of GW emission.

Chapter VI discusses the search methodology, detailing the chosen pipeline and

clustering algorithm and the process of how it was used to search for GWs.

Chapter VII discusses the results, and details the upper limits and the methodology

to find the upper limits.

Chapter VIII makes the concluding remarks.
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FIGURE 1.2. The gravitational-wave event GW150914 as observed by the LIGO
detectors (left is the detector in Hanford, Washington, and right is the detector in
Livingston, Louisiana) [7]. The times are relative to September 14, 2015 at 09:50:45
UTC and all time series have been filtered using a 35–350Hz bandpass filter and
additional band-reject filters to remove instrumental spectral lines. Top row: Strain
for each detector. Second row: Numerical relativity waveform projected onto each
detector. Shaded regions show 90% credible regions using sine-Gaussian wavelets (light
gray) and binary black hole template waveforms (dark gray). Third row: Residual
strain time series after subtracting filtered numerical relativity waveform. Bottom
row: A frequency-time representation of the GW signal. Figure from [7].
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CHAPTER II

GENERAL RELATIVITY AND GRAVITATIONAL WAVES

Gravitational wave (GW) emission is predicted by general relativity. Calculating

GWs is very complex, requiring numerical relativity in strong fields [3]. The concept

can be demonstrated in the weak-field approximation. In this case, flat-space is

assumed as the background with a perturbation from distant simple point masses.

For this derivation, Einstein summation convention will be used with Greek letters

ranging over 4-dimensional space-time from 0 to 3, with 0 representing the dimension

of time. Roman letters will be used to refer specifically to the 3 spatial dimensions

ranging from 1 to 3. Upper indices will be contravariant, and lower indices will be

covariant. Natural units will often be used to simplify equations. Please see Appendix

A.1 for conventions.

2.1. Einstein’s Equations

A relativistic description of gravity needs to be coordinate independent. This

description should reduce to the Newtonian version in the limit of weak gravity and

low-velocity (v ≪ c where c is the speed of light and equals 1 in natural units).

Newtonian gravity cannot be described in a coordinate independent way because it

treats time differently than relativity and assumes all of space shares a well-defined

time [11]. In the Newtonian theory of gravity, mass is the source of the gravitational

field. Newtonian theory gives the following relation between mass and the gravitational

potential:

∇2φ(~r) = 4πGρ(~r) (2.1)
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Here G is the gravitational constant, φ(~r) is the gravitational potential, and ρ(~r) is

the mass density.

While the “rest mass” of a particle or object is invariant, the density depends on a

particular measurement of space and is not conserved between frames. The relativistic

generalization of ρ(~r) is the stress-energy tensor T [11, 12]. The Laplacian and the

gravitational potential φ(~r) also treat time and space differently and therefore depend

on the coordinates of spacetime. In general relativity, gravity is identified with the

curvature of space-time (which can be described by a rank 2 tensor known as the

metric, often represented as gµν). The left side of (2.1) can be generalized with a

coordinate independent second order differential operator on the metric, O(gµν) [12].

The stress energy tensor is now related with the curvature of space-time:

O(gµν) = kT (2.2)

T µν is a symmetric rank 2 tensor in four dimensions, so there are 10 independent

components to this equation. Because T µν is a 2nd rank tensor, O must produce a

rank 2 tensor when operating on the metric. This means O should be a second rank

tensor consisting of combinations of the metric and first and second derivatives of

the metric [12]. The Ricci tensor fits this description, however conservation of energy

would require that T was a constant [11]. More generally, any tensor will satisfy these

constraints if it is of the form [12]:

O(gµν) = Oαβ = Rαβ + µgαβR + Λgαβ (2.3)

8



where Λ and µ are constants. Rµν and R are the Ricci tensor and Ricci scalar and are

defined as:

Rµν = Rα
µαν = Rνµ (2.4)

R = gµνRµν = gµνgαβRαµβν (2.5)

Rαµβν is the Riemann curvature tensor:

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + ΓασµΓ

σ
βν − ΓασνΓ

σ
βµ (2.6)

Γµαβ is the Christoffel symbol:

Γµαβ =
1

2
gµν(∂βgνα + ∂αgνβ − ∂νgαβ) (2.7)

Lowering the index on Rα
βµν to Rαβµν gives:

Rαβµν = gαλR
λ
βµν =

1

2
(∂β∂µgαν − ∂β∂νgαµ + ∂α∂νgβµ − ∂α∂µgβν) (2.8)

Indices can be raised and lowered using gµν :

gµνA
ν = Aµ (2.9)

gµνAν = Aµ (2.10)

Using the Einstein equivalence principle to require local conservation of energy,

it can be found that µ = −1
2

[12]. This gives the general form of the Einstein field

equations:

Rµν − 1

2
gµνR + Λgµν = kT µν (2.11)
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The Einstein tensor Gµν is defined as:

Gµν = Rµν − 1

2
gµνR (2.12)

Using the Einstein tensor, (2.11) can be written as:

Gµν + Λgµν = kT µν (2.13)

The constant Λ is known as the cosmological constant. It was added by Einstein

to allow static solutions to the overall distribution of matter [13]. Later observations

by Edwin Hubble suggesting an expanding universe caused him to remove the term

[12, 14]. More recent observations of an accelerating universe suggest the term is small

but non-zero [12, 15]. For the following derivations, Λ will be set to zero.

The value of k in (2.13) can be found to be 8π in natural units by requiring the

equations accurately describe the behavior of the planets in the solar system [12]. This

gives the following equation:

Gαβ = 8πT αβ (2.14)

Or in SI or CGS units [8]:

Gαβ =
8πG

c4
T αβ (2.15)

2.2. Einstein’s Equations in Weak Gravitational Fields

Weak gravitational fields can be represented as a small perturbation (hµν) about

a flat-space background (represented with the Minkowski metric: ηµν):

gµν = ηµν + hµν (2.16)

10



where the Minkowski metric is:

ηµν =



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















(2.17)

and the elements of the perturbation hµν are much smaller than 1:

|hµν | ≪ 1 (2.18)

The first step to get a weak-field version of (2.14) is to get a weak-field version of

the Riemann curvature tensor. The Riemann curvature tensor can be represented in

terms of just hµν (see Appendix A.4 for the derivation):

Rαβµν =
1

2
(∂β∂µhαν + ∂α∂νhβµ − ∂β∂νhαµ − ∂α∂µhβν) (2.19)

Using (2.19) with (2.12), we find a weak-field version of Gµν (derivation again in

Appendix A.4):

Gµν = −1

2

(

�h̄µν − ∂γ∂µh̄γν − ∂ν∂
γh̄µγ + ηµν∂

γ∂βh̄γβ
)

(2.20)

where � is the d’Alembert operator and h̄µν is the “trace reverse” of hµν :

� = ∂µ∂µ = − 1

c2
∂2

∂t2
+∇2 (2.21)

h̄µν = hµν −
1

2
ηµνh

α
α = hµν −

1

2
ηµνh (2.22)
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where h is the trace of hµν :

h = hµµ (2.23)

The Lorenz gauge condition is:

∂ν h̄
µν = 0 (2.24)

Using the Lorenz gauge condition, (2.20) simplifies to:

Gµν = −1

2
�h̄µν (2.25)

Plugging (2.25) into (2.14) gives the linear form of the Einstein equations:

� h̄µν = −16πT µν (2.26)

2.3. Gravitational Wave Propagation

In order to more easily look at GW radiation, a region of space far from any

matter or energy can be examined. Choosing a region of spacetime such that the

stress-energy tensor T µν = 0 gives the following from (2.26):

�h̄µν = 0 (2.27)

Writing out the d’Alembert operator explicitly gives:

(

− ∂2

∂t2
+∇2

)

h̄µν = 0 (2.28)
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This is the three dimensional wave equation, the solution to which can be shown to

be of the form:

h̄µν = Aµνeikαx
α

(2.29)

Applying (2.28) to (2.29) and using the fact that ∂βeikαx
α

= ikβe
ikαxα gives the

following:

∂α∂αh̄
µν = ∂α∂αA

µνeikβx
β

= −kαkαĀµνeikβx
β

= −kαkαh̄µν = 0 (2.30)

If h̄µν is non-zero, the the term in front of it must be zero:

kαkα = 0 (2.31)

A vector kµ satisfying (2.31) is known as a “Killing vector”. Taking the derivative

of (2.29) and using the Lorenz gauge condition (2.24) gives the following condition:

∂ν h̄
µν = ikν h̄

µν (2.32)

0 = ikνA
µνeikβx

β

(2.33)

0 = kνA
µν (2.34)

(2.34) can only be true if kν and Aµν are perpendicular. This solution describes

a plane wave. Any solution to (2.24) and (2.28) can be described as a superposition

of plane waves.

Two more gauge fixing conditions can be chosen to give two additional constraints

on Aµν [12]:

Aµµ = 0 (2.35)
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AµνU
ν = 0 (2.36)

(2.35) and (2.36) along with (2.34) are known as the transverse-traceless gauge

conditions. The trace condition means h̄TTµν = hTTµν .

A Lorentz frame for the background Minkowski metric can be chosen such that the

wave is traveling along the z direction (kµ = [ω, 0, 0, ω]) and the vector the transverse

traceless gauge is based on is U ν = δν0. In this frame:

AµνU
ν = Aµνδ

ν
0 = Aµ0 = 0 (2.37)

and:

kνA
µν = −k0Aµ0 + kzA

µz = −k0 × (0) + kzA
µz = ωAµz = 0 (2.38)

which gives Aµz = 0. The “transverse” part of the gauge describes the fact that Aµν

is transverse to the direction of propagation. This leaves Axx, Axy, Ayx and Ayy as

the only non-zero components. Aµν is related to the stress-energy tensor which is

symmetric, so Axy = Ayx. (2.35) requires Ayy = −Axx. This gives:

ATTµν =



















0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0



















(2.39)
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Plugging this in to (2.29), and using the fact that in the transverse traceless gauge

h̄µν = hµν , gives the following:

hµν =



















0 0 0 0

0 hxx hxy 0

0 hxy −hxx 0

0 0 0 0



















(2.40)

From this, the canonical polarizations can be derived (+ polarization Axy = 0

and × polarization Axx = 0):

hµν =



















0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



















(2.41)

The GW polarizations are shown in Figure 2.1.

time

h+

h×

FIGURE 2.1. As a GW passes perpendicular to the plane of the paper, a ring of
test particles would be deformed. The top row shows the effect of a GW with plus
polarization, and the bottom row shows the effect of a GW with cross polarization.
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2.4. Quadrupole Moment and Gravitational Waves

For this section, we will consider the slow motion approximation for a quadrupole

moment generating GWs. The assumptions include that the source term is much

smaller than the wavelengths of the generated waves, and that the speeds of the

involved sources are not relativistic (v ≪ c). To find the equations for h̄µν for a GW

of frequency f = Ω/2π in the slow motion approximation in a weak-field far from the

source at distance r, both sides of (2.26) can be integrated. Assuming Tµν sinusoidally

varies in time with a frequency f = Ω/2π and integrating over a spherical volume

with radius r [12]:

h̄µν =
4eikr

r

∫

Tµν d
3x (2.42)

where k = Ω/c (k = Ω in natural units).

The conservation law ∂µT
µν = 0 can be used to show (for Ω 6= 0) [12]:

h̄µ0 = 0 (2.43)

Schutz uses the tensor virial theorem to rewrite the spatial components of
∫

Tij d
3x

[12]:
∫

Tij d
3x =

1

2

d2

dt2

∫

T00xixj d
3x (2.44)

h̄ij can now be approximated as:

h̄ij =
−2eikr

r

d2Iij
dt2

(2.45)

where Iij is the quadrupole moment tensor:

Iij =

∫

T00xixj d
3x (2.46)
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See Schutz’s textbook for the details of the derivation of these terms [12]. (2.43) and

(2.45) approximate the equations for a GW of frequency f = Ω/2π in the slow-motion

weak-field approximation.

If we move to a frame in the transverse traceless gauge with the wave moving in

the z direction, the equations further simplify. Let Iij be the trace reduced quadrupole

tensor:

Iij = Iij −
1

3
δijI

k
k (2.47)

h̄ij can now be written in the transverse-traceless gauge as:

h̄TTzi = 0 (2.48)

h̄TTxx = −h̄TTyy = −Ω2 (Ixx − Iyy) eikr/r (2.49)

h̄TTxy = h̄TTyx = −2Ω2Ixyeikr/r (2.50)

An interesting example of a quadrupole moment is the case of a binary neutron

star system. Consider a system consisting of two stars of equal mass m and distance

apart R. This system will have the following position equations in a coordinate system

in which they are rotating in the x-y plane (making Izj = Ijz = 0):

x1(t) =
1

2
R cos (ωt+ φ0) (2.51)

x2(t) = −x1(t) (2.52)

y1(t) =
1

2
R sin (ωt+ φ0) (2.53)

y2(t) = −y1(t) (2.54)
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where ω = 2πfrot and frot is the rotational frequency of the system and x1(t) and x2(t)

are the positions of the center of mass of each star. In the slow motion approximation

and treating the stars as idealized point particles, the equations for the reduced

quadrupole moment tensor are:

Ixx = mR2

(

1

4
cos (2ωt+ 2φ0)−

1

3

)

(2.55)

Iyy = mR2

(

−1

4
cos (2ωt+ 2φ0)−

1

3

)

(2.56)

Ixy = Iyx =
mR2

4
sin (2ωt+ 2φ0) (2.57)

From these equations, it is clear that the frequency of the emitted GWs is twice

that of the rotational frequency of the system (f = 2frot or Ω = 2ω). Using these

equations along with (2.43), (2.48), (2.49) and (2.50) allows the computation of hµν .

Using the fact that in the transverse-traceless gauge h̄µν = hµν and absorbing the

phase from eikr and 2φ0 into a single phase factor φ, the non-zero components of hµν

are:

h+ = hTTxx = −hTTyy =
−2π2f 2mR2

r
cos (2πft+ φ) (2.58)

h× = hTTxy = hTTyx =
−2π2f 2mR2

r
sin (2πft+ φ) (2.59)

These equations describe circularly polarized GWs. If the stars had been rotating

in a different plane, the polarization would have been different.

In a more general case, the stars are rotating around an axis in the x-z plane

which makes an angle ι with the the z-axis. (2.51) and (2.53) become:

x1(t) =
cos ι

2
R cos (ωt+ φ0) (2.60)
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y1(t) =
1

2
R sin (ωt+ φ0) (2.61)

The equations for the reduced quadrupole moment tensor components with x

and y indices are:

Ixx = mR2 cos2 ι

(

1

4
cos (2ωt+ 2φ0)−

1

3

)

(2.62)

Iyy = mR2

(

−1

4
cos (2ωt+ 2φ0)−

1

3

)

(2.63)

Ixy = Iyx =
mR2 cos ι

4
sin (2ωt+ 2φ0) (2.64)

The non-zero components of hµν are now:

h+ = hTTxx = −hTTyy =
−2π2f 2mR2

r

(

cos2 ι+ 1

2

)

cos (2πft+ φ) (2.65)

h× = hTTxy = hTTyx =
−2π2f 2mR2

r
(cos ι) sin (2πft+ φ) (2.66)

The angle ι between the axis of rotation and the z-axis affects the polarization

and amplitude, describing circularly polarized GWs for ι = 0 or ι = π, and linearly

polarized GWs for ι = π/2.

2.5. Effect on Free Test Particles

A passing GW will change the proper distances between coordinates, changing

the distance between two freely falling particles. One way to measure this would be

to measure the distance between them with light. The square of the line element will

first be considered:

ds2 = gµνdx
µdxν (2.67)
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In transverse-traceless gauge:

ds2 = −dt2 + (1 + h+)dx
2 + 2h×dxdy + (1− h+)dy

2 + dz2 (2.68)

For light this becomes:

ds2 = 0 = −dt2 + (1 + h+)dx
2 + 2h×dxdy + (1− h+)dy

2 + dz2 (2.69)

dt2 = (1 + h+)dx
2 + 2h×dxdy + (1− h+)dy

2 + dz2 (2.70)

For a photon traveling along the x-axis, tangent to the direction of the plane

gravitational wave, dy = dz = 0, giving:

dt2 = (1 + h+)dx
2 (2.71)

dx

dt
=

1

(1 + h+)1/2
(2.72)

As Schutz notes, this is not equal to one (or c in other unit systems such as SI) [12].

The speed of light in vacuum is always v = c = 1, so this means the distance between

spatial coordinates has changed. This change is what we want to measure.

Suppose there are two particles: one at x = 0 and one at x = L. The time it

takes a photon to travel between the two coordinates is:

∫ t

t0

dt =

∫ L

0

(1 + h+)
1/2 dx (2.73)

t− t0 =

∫ L

0

(1 + h+)
1/2 dx (2.74)
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Since the value of hµν is small, the integrand can be expanded and all terms above

linear order can be ignored:

t− t0 = L+

∫ L

0

1

2
h+(t(x)) dx (2.75)

In the case where the wavelength of a passing GW is long compared to the distance

between the particles, hµν can be treated as constant:

t− t0 = L+
L

2
h+ (2.76)

L is the distance between the points in their rest frame without a passing GW. The

change in the distance ∆L is the remaining term:

∆L =
L

2
h+ (2.77)

∆L

L
=
h+
2

(2.78)

A similar calculation can be done for h×. h+ and h× are known as the gravitational

“strains”. From these equations it is apparent that the strain can be measured by

measuring the change in proper distance between the two particles. This can be done

by measuring the time the photon takes to traverse the coordinates.

As will be discussed in Chapter III, the path difference of photons traveling

through different arms of an interferometer can be measured by measuring the change

in relative phase when they exit the interferometer. The difference in length between

each arm is:

Lx − Ly = L+
L

2
h+ − L+

L

2
h+ (2.79)
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Lx − Ly =
L

2
h+ +

L

2
h+ (2.80)

Lx − Ly =
L

2
h+ +

L

2
h+ (2.81)

Dividing by L and putting this in terms of strain gives:

Lx − Ly
L

= h+ (2.82)

L+∆Lx − L−∆Ly
L

= h+ (2.83)

∆Lx −∆Ly
L

= h+ (2.84)

This is the basic principle behind using laser interferometry to measure GWs.
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CHAPTER III

INTERFEROMETRIC GRAVITATIONAL WAVE DETECTORS

LIGO consists of two observatories: the LIGO Hanford Observatory (LHO) in

Hanford, Washington, and the LIGO Livingston Observatory (LLO) in Livingston,

Louisiana. Each observatory operates a power-recycled Fabry-Perot Michelson

interferometer with 4 km arms, referred to as H1 at LHO and L1 at LLO, which

serve as GW detectors.

LIGO’s initial detector configuration reached design sensitivity in 2005 during

LIGO’s fifth science run (S5) [16]. At this time, LHO also operated a second 2 km

interferometer known as H2. After the completion of S5, LIGO received several

upgrades which increased its sensitivity to higher frequencies (above 150Hz) and

allowed testing of several key systems in preparation for the 2nd generation detectors

known as Advanced LIGO (aLIGO) [17, 18]. This upgraded configuration was known

as Enhanced LIGO (eLIGO) and was used during LIGO’s sixth science run (S6), the

last science run before upgrades to the aLIGO configuration commenced [17, 18, 19].

S6 took place from July 7, 2009 to October 20, 2010 [19]. H2 was inactive during

LIGO’s S6 and the components that were to make up the mirrors of H2 in aLIGO

have been put towards LIGO-India, a possible future LIGO detector to be constructed

in India.

3.1. Detector Design

The LIGO interferometer design is based on the Michelson interferometer. The

Michelson interferometer was originally invented in the late 1800s to confirm the

existence of the luminiferous ether, a hypothesized fluid that physicists at that time

23



believed to be the medium through which light propagated [20]. It was designed to

measure the difference in relative speed of light in perpendicular directions caused by

the motion of Earth through this ether [20]. To detect this ether, the interferometer was

rotated through a 90◦ angle. This rotation would change the number of wavelengths

in each arm in the presence of an ether which would change the interference fringe in

the output [20].

This first Michelson interferometer was plagued by noise [20]. It was so sensitive

to vibrations that it could only be used at night for brief periods of time. It was

eventually moved to a different location in a cellar, but even then, impacts on pavement

100m away disturbed the apparatus [20]. There were also concerns about changes in

the arm lengths due to small temperature differences. The device was returned to

the manufacturer to improve the ease of rotation due to concerns that the arms were

bending beyond acceptable limits when it was rotated during the experiment.

A few years later, a more sensitive version of the experiment was performed.

Known as the Michelson-Morley experiment, it refuted the idea that the Earth moves

through a stationary ether [21]. This experiment helped lead to our current concept

of light and the understanding that light does not need a medium to propagate.

A Michelson interferometer functions by splitting light (in the case of LIGO, the

beam from a laser) down two arms, where the light is reflected back, recombining at

the beam splitter. A fraction of the recombined beam is directed onto a photodetector

which measures the power of the beam (see Figure 3.1).

In 1969, Rainer Weiss proposed using the Michelson interferometer design as the

basis for a GW detector [22]. The aim was to search for GW emissions from pulsars.

He set the groundwork for the design of the interferometers used today, including using

Fabry-Perot cavities in the arms to increase the effective length of the interferometer.
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A B

C

D

E

FIGURE 3.1. Pictured: A Michelson interferometer, which consists of (A) an input
light source (in the Michelson-Morley experiment they used a sodium light for alignment
and a white light for measurements), (B) a beam splitter, (C, D) two end mirrors and
(E ) a photodetector to detect the recombined light.

He also mapped out the noise sources that could be of concern and how to deal with

them, including the use of a suspension system to isolate the detector from seismic

noise.

The Michelson interferometer design was used as the basis for LIGO’s GW detector

because the perpendicular arms would respond differently to changes in spacetime

from a passing GW in most orientations, giving a direct measure of the induced strain

(see Figure 3.2). The output beam intensity can be used as a measure of the difference

in length of the interferometer arms: the intensity of the beam as measured by the

photodetector is dependent on the relative phase of the two beams, which is dependent

on the path length difference through the interferometer arms. A passing GW would

alter the length of each arm differently, giving a direct measure of the strain from a

passing GW through the path length difference.

The sensitivity of a basic Michelson interferometer can been increased by in several

ways. As discussed in Section 2.5, the effect of the strain on the interferometer arms

is directly related to their length (h ∝ δL/L); therefore, an interferometer detector
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FIGURE 3.2. The distortion in spacetime from a passing GW affects the arms of
a Michelson interferometer differently, allowing probing of the GW amplitude by
measuring the change in the difference in arm lengths. Figure from [23].

with longer arms will be more sensitive to passing GWs. For this reason, LIGO’s

interferometer arms were constructed to be 4 km [23]. In addition to increasing the

physical length of the arms, the effective arm length can be increased using Fabry-Perot

cavities [24]. Increasing the laser power also increases the detector sensitivity. This

is due to two reasons: 1) changes in length corresponding to larger changes in the

output intensity of the beam and 2) the shot noise (see Section 3.2.3) is proportional

to the square root of the power, causing the signal to noise ratio (SNR) to increase

with the square root of the power in frequencies where shot noise dominates. The

detector sensitivity can be improved by reducing the effect of noise on the detector,

both external environmental noise as well as internal noise from the components of the

detector itself. The external noise is reduced mainly by isolating the detector from the

environment with the suspension. The internal noise is minimized with careful design

of the internal parts. This modified detector is known as a power-recycled Fabry-Perot

Michelson interferometer (see Figure 3.3). LIGO’s targeted strain sensitivity was

∼10−21 [23]. For a distance of 4 km, that translates to 10−18 m, approximately 1000

times smaller than the diameter of a proton [23].
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FIGURE 3.3. Simplified layout of the LIGO interferometer. The OMC was added for
eLIGO in S6. Figure from [17].

3.1.1. Interferometer Mirrors

The main interferometer mirrors that were used in initial LIGO are made of a

fused silica substrate in the form of 10.7 kg cylinders [17, 23]. They are covered with

thin films formed of quarter wavelength layers of dielectric materials to control the

reflectivity and transparency of the mirrors and other desired properties, controlling

the properties of the different cavities such as the finesse of the Fabry-Perot cavities.

The mirrors are designed to minimize thermal noise. The mirrors are also known as

“test masses” as they are used to probe changes in spacetime due to passing GWs.

3.1.2. Vacuum System

Each of the test masses and the arms are contained in an ultra-high vacuum of

∼10−9 Torr in order to minimize noise from laser scattering from gas in the beam

path. The beam paths of the interferometer are enclosed in 4 km welded steel tubes
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which function as an ultra-high vacuum system. Each of the test masses, as well

as components such as the output mode cleaner, are contained in independently

controlled vacuum chambers which can be brought to atmospheric pressure, allowing

maintenance and commissioning work, and then pumped back to vacuum again for

detector operation.

3.1.3. Fabry-Perot Cavities

The base design of the Michelson interferometer is modified by the addition of

a Fabry-Perot cavity in each arm in order to increase the detector sensitivity (see

Figure 3.4). The resonance of the cavity is determined by the distance between the

two mirrors. Fabry-Perot cavities can be characterized by their finesse (F), a measure

of the sensitivity of the cavity to changes in the cavity length or the wavelength of

light [24]. The finesse can be represented in terms of the reflectivities of the input

mirror (ri) and the end mirror (ro) of the cavity [24]:

F =
π
√
riro

1− riro
(3.1)

Each arm of the LIGO interferometers contain a Fabry-Perot arm cavity which is

3995 m in length [23, 25]. The Fabry-Perot cavities increase the effective interferometer

arm length by a factor of ∼100 for a 100Hz signal [23]. The finesse of the arm cavities

in initial and Enhanced LIGO was 220, and in aLIGO is 450 [23, 26]. The cavity is

formed by adding mirrors, the Input Test Masses (ITMs), after the beam splitter and

forming a cavity with the mirrors at the ends of the interferometer arms, the End Test

Masses (ETMs). The reflectivities of the ITMs and ETMs determine the behavior of
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the cavity. Since LIGO’s ETMs have higher reflectivity than its ITMs, the majority

of the power is sent back towards the beam splitter [24].

FIGURE 3.4. Modified Michelson Interferometer with Fabry-Perot Cavities.

3.1.4. Laser Power and the Power Recycling Cavity

As laser power increases, output power increases, leading to an improved sensitivity

in measuring the difference in arm lengths. Increasing the power also has the effect

of reducing the shot noise in comparison to the output signal (see Section 3.2.3 for

shot noise). The power in the arm cavities can be increased by directly increasing the

power of the laser. An additional method to increase the power is to install a mirror

between the beam splitter and input laser to act as a power recycling mirror. When

properly positioned, this mirror will return nearly all of the laser power headed back

to the laser to the rest of the interferometer (see Figure 3.5). The Power Recycling

Cavity (PRC) is the cavity formed by the power recycling mirror and the ITMs.

Initial LIGO used a 10W 1064 nm Nd:YAG laser [23]. For S6, the laser power

was increased to 30–35W to improve the sensitivity above 150Hz by lowering the

limit from shot noise [17]. The laser power was increased by installing new Master

Oscillator/Power Amplifiers (MOPAs) in the 4 km detectors in Hanford and Livingston
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FIGURE 3.5. Power Recycled Modified Michelson Interferometer with Fabry-Perot
Cavities.

which provided 30-35 W in the TEM00 mode (also referred to as the Gaussian spatial

mode) [18]. More robust modulators and Faraday isolators were installed to help

handle the higher power [17]. A more powerful CO2 laser system was used to counteract

increased deformation in the test masses due to thermal heating from the more powerful

laser (see Section 3.1.8) [17].

3.1.5. Detector Readout

Before S6, an RF readout configuration was used in which the laser was set

to destructive interference at the photodetector to make the detector insensitive to

changes in laser power and avoid laser power noise from coupling to the output beam

[24]. However, in a simple Michelson interferometer, this reduces sensitivity to the

strain to second order. In order to get a linear response to the strain, the input laser

is modulated to produce RF sidebands [23]. The sidebands from the GW modulation

would produce power variations in the RF sidebands [16]. Allowing the sidebands to

reach the photodetectors while suppressing the carrier requires a macroscopic difference
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in the arm lengths known as the Schnupp asymmetry [24]. Initial and enhanced LIGO

had a Schnupp asymmetry of 355mm [16].

For S6, the detector readout was upgraded to a DC readout configuration in

which the carrier is slightly shifted off a dark fringe and changes in DARM result

in changes in the laser power at the photodetectors [16, 17]. A potential drawback

of the DC readout implementation is that by allowing the carrier through, there is

now noise dependent on laser power fluctuations [27]. This requires a laser with low

noise. The signal response is not completely linear, as the operating point is on the

near-quadratic slope close to the dark fringe [27]. If the mean deviation from this

operation point is not too large, this is not a problem. A DC readout configuration

provides a fundamental increase in the SNR by a factor of
√

3/2 compared to an RF

readout configuration for the same laser power at frequencies limited by shot noise

[16]. In the DC readout configuration, the PRC and arm cavities act as a filter and

reduce the coupling of noise in the input beam to the detector readout [16].

In eLIGO, the shift off the dark fringe was provided by a small offset of ∼10 pm

in DARM, providing ∼30–100mW of power [16]. The offset was optimized to remain

as small as possible (as noise coupling increases with a larger offset) while still being

large enough to exceed the RMS residual arm motion and produce enough power so

the contrast defect is negligible, and the shot noise exceeds the electronics noise of the

readout [16].

3.1.6. Input Mode Cleaner

After the RF sidebands are added, the input laser passes through the input mode

cleaner (IMC) before entering the interferometer. The IMC stabilized the position,

pointing and frequency and removed higher order spatial modes of the laser so that

31



the laser light which entered the interferometer was 1064 nm in a TEM00 Gaussian

spatial mode [17]. The IMC is a triangular cavity made from three mirrors, with a

total path length of 24m [17].

3.1.7. Output Mode Cleaner

The output mode cleaner (OMC), which was added in S6 and was a prototype

for aLIGO, filters the output signal before it hits the photodetectors. The output

mode cleaner is in vacuum to minimize noise and consists of four mirrors in a “bow-tie”

configuration [17, 18]. The interferometer is designed to function with a pure gaussian

spatial mode; as such, the input mode cleaner reduced higher order modes of the

laser before input into the detector [16]. However, imperfections in the detector optics

produce additional power in these higher order modes, which provide no information

and add additional shot noise [16]. The output mode cleaner was installed to help

mitigate these effects by filtering out the higher order spatial modes of the laser after

it passes through the interferometer [16]. The OMC also filters out the RF sidebands

from the output signal as they are still present to measure degrees of freedom in the

detector other than DARM, but would only add noise to the signal [16].

3.1.8. Thermal Compensation System

The Thermal Compensation System (TCS) uses a CO2 laser system to counteract

the thermal lensing of the test masses due to excess heat from the main laser [28].

The power recycling mirror was designed with a radius of curvature to mach the

effective curvature of the ITMs when they were heated with an input laser power of

6 W; however, the thermal lens of the ITMs is dependent on the absorption in the

substrates and coatings, which are “poorly controlled parameters” [28]. H1 reached
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the desired operating point at 2.5 W while H2 and L1 did not reach it with the full 6

W. Although the thermal lenses did not affect the main carrier, they did affect the

sidebands, diminishing the sensitivity of the detector. To compensate for this effect,

CO2 lasers were directed onto the ITMs. The lasers can be set to a Gaussian mode to

increase the lensing or to an annulus or ring mode to decrease the lensing as needed

[28].

With the increased laser power used in eLIGO, thermal lensing due to heat

absorption from the laser increased [18]. TCS used an 8 W CO2 laser, which was not

powerful enough to compensate for the additional thermal lensing; therefore, TCS

was upgraded to use a CO2 laser capable of 20 W of power to counteract the larger

thermal lensing.

3.1.9. Suspension

The suspensions reduce the effect of external environmental noise on the detector.

Each of the main mirrors in the beam line were suspended by a loop of steel wire,

forming a single pendulum which isolated the mirror by a factor of f−2 (nearly 2× 104

at 100Hz along the beam direction) [23]. Four electromagnetic actuators controlled

the orientation and position for each of the main optics, which further isolated the

detector output from external noise and kept the detector at a stable operating point

[17, 23]. The actuators consisted of a permanent magnet attached to the mirror and

an electromagnetic coil attached to a support structure [23]. Optical sensors in the

actuators measured the mirror’s position with respect to the support structure [23].

The pendulums were mounted to a four layer mass-spring stack which reduced the

noise by approximately f−8 above ∼10Hz (isolating by ∼108 at 10Hz) [23]. The single

pendulum and passive isolation stack were in vacuum and attached to tubes which
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exit the vacuum and connected to an external active seismic isolation system [29].

Feed-forward signals from external seismometers were sent to the external actuation

system to reduce noise due to ground motion [29]. See Figure 3.6 for an overview

schematic of the suspensions.

Due to the higher than expected noise at LLO, the development of the external

active isolation system was sped up [30]. LLO had higher microseismic and

anthropogenic noise than LHO in the 0.1–0.5Hz and 1–10Hz bands. Resonances

in the passive isolation stack amplified external noise in the 1–3Hz band which caused

problems for Livingston [30]. A piezoelectric actuation system, called piezoelectric

pre-isolation (PEPI), was used in both Livingston and Hanford and could actuate in

the beam direction up to ±90 µm [30]. Between the third and fourth science runs, LLO

was upgraded with a hydraulic actuation system called hydraulic external pre-isolation

(HEPI), that could actuate in 6 degrees of freedom with a larger actuation range of

±700 µm [29].

In S6, the feed-forward subtraction scheme was improved by using the signals

from multiple seismometers along with Weiner filtering in the noise subtraction process

[29]. The active isolation system was effective at reducing the detector coupling to low

frequency ground motion, with a reduction in the microseismic peaks up to a factor of

∼5 and an overall reduction in the RMS motion by a factor of ∼2 [29].

The suspension of the output mode cleaner consisted of a double pendulum and a

one-stage active isolation system, both of which were prototypes for aLIGO subsystems

[17].
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FIGURE 3.6. Schematic of suspension used in LIGO. The optic is suspended by a
steel wire from a passive isolation stack. Four electromagnetic actuators control the
orientation and position of the optic. Feed-forward signals from external seismometers
are applied using the external actuators (HEPI at LLO and PEPI at LHO) to counteract
some of the low frequency ground motion. The vacuum chamber is the dashed line.
Figure is from [29].

3.2. Noise Limits

The sensitivity of LIGO is limited by contamination of the data by noise. Figure

3.7 shows “typical” amplitude spectral densities (ASDs) for the Hanford and Livingston

LIGO detectors during S6 [19]. The major contribution to noise below 40Hz in LIGO

during S6 was seismic noise from sources such as earthquakes and anthropogenic

noise such as highway traffic and construction [19]. Noise in the 50–150Hz band

had significant contributions from Brownian motion, thermally excited motion in the

suspensions and test masses [19]. Photon shot noise was the main noise source above

150 Hz [19, 24].

In addition to these broadband sources, narrow band noise peaks and short

duration transient noise events known as glitches affected GW searches by lowering

their sensitivity [19]. Glitches affected short duration searches for GW bursts and
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compact binary coalescences, while spectral lines and other long term noise artifacts

affected the longer duration stochastic and continuous wave searches [19].
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FIGURE 3.7. A normal strain ASD for H1 and L1 in S6. Figure from [19].

3.2.1. Seismic Noise

LIGO was limited below 40Hz by seismic noise [19, 31]. This included

ground motion caused by earthquakes, wind, ocean waves and anthropogenic noise.

Earthquakes contributed noise in the 0.03–0.1Hz band, and in higher frequencies

the closer they were to a detector [31]. Noise from wind contributed mostly to the

0.5–15Hz band and could knock the detector out of lock when wind speeds were above

10–20 miles per hour due to the induced swaying of the buildings housing the detectors

[31]. Noise from human related activity varied significantly between day and night

and included logging, construction and ground and air traffic [31]. Vehicular traffic

from highways produced noise in the 2–15Hz band [31]. Ocean waves contributed to

seismic noise in the 0.07–0.7Hz band; with the highest contribution at twice their

propagation frequency [31]. They contributed a problematic large peak at 0.1–0.3Hz
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[29]. The noise due to ocean activity can vary up to two orders of magnitude in just a

few days [31]. The passive isolation systems are not effective at attenuating the noise

at these lower frequencies, requiring an active feed-forward system to reduce the lower

frequency noise as described in Section 3.1.9 [31].

In addition to limiting the sensitivity below 40 Hz, seismic noise was also

upconverted into broadband noise in higher frequencies, causing drops in sensitivity in

LIGO’s most sensitive band [19]. High seismic noise was linked to increases in noise

in the 40–200Hz band [19]. This noise was termed seismic upconversion and thought

to be due to Barkhausen noise (see Chapter IV).

3.2.2. Thermal Noise

Noise in the 50–150Hz band had major contributions from Brownian motion from

thermal excitations in the test masses and the suspensions [19]. Some noise sources

in this band were never identified [19]. The suspensions and the test masses were

designed so that the resonances were outside of the LIGO sensitivity band “as much

as possible” [23]. This mitigated most of the thermal noise that would otherwise limit

the detector sensitivity; however, there was still some thermal noise in the detection

band which was dependent on the mechanical dissipation of the components [23].

The fused silica substrate of the test masses had a very low mechanical loss and

contributed very little thermal noise outside of its resonant frequencies [23]. The main

contribution of thermal noise from the test masses came from the thin films, which

had a relatively high mechanical loss. This concentrated the dissipation on the mirror

surface interacting with the laser [23]. The thermal noise in the suspension wires

is proportional to the radius of the wire to the fourth power [23]. The wires were

constructed of steel and fabricated with a small radius to minimize the thermal noise
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while still retaining enough strength to support the test masses. A diameter of 300 µm

allowed the steel loops to support the 10 kg test masses at 30% of their breaking stress

[23].

3.2.3. Shot Noise

Shot noise, described by Poisson statistics, is a statistical effect caused by the

quantum nature of light and is the dominant noise source above 150Hz [19, 23]. The

ideal limit to the strain spectral density due to shot noise for the LIGO interferometers

is [23]:

h̃(f) =

√

π~λ

ηPBSc

√

1 + (4πfτs)2

4πτs
(3.2)

In this equation c is the speed of light, ~ is the reduced Planck constant, η is the

quantum efficiency of the photodetector, τs is arm cavity storage time, PBS is the

power incident on the beam splitter and f is the frequency of a passing GW.

Shot noise is proportional to the square root of the power of the laser. As

the power of a laser rises, the shot noise will rise as the square root of that power;

therefore, the SNR improves with the square root of the power. While this would

seem to support making the laser as powerful as possible, radiation pressure becomes

a limiting factor with higher power. Larger test masses could be used to help mitigate

noise from radiation pressure. aLIGO is using 40 kg test masses which can cope with

the increased radiation pressure from higher laser power [8, 26].

3.2.4. Spectral Lines

LIGO’s sensitivity was limited in specific frequency ranges by narrow band noise

structures. The United States power grid and the electronics in the observatories

produced large spectral lines at 60Hz, and at some of the 60Hz harmonics [19]. The
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60Hz line is close to the frequency of possible continuous GWs from the Crab pulsar,

which would be emitted at 59.6Hz [31]. Fluctuations in the current broadened the

width of the 60Hz line, limiting the detector sensitivity to the Crab pulsar [31].

3.3. Potential Gravitational Wave Sources

LIGO is potentially sensitive to four main types of sources: 1) short lived and

known (compact binary coalescences); 2) short lived and unknown (GW bursts); 3)

long lived and known (continuous waves); and 4) long lived and unknown (stochastic)

[8]. Compact binary coalescences (CBCs) include binary neutron stars (BNSs), neutron

star black hole binaries (NSBHs) and binary black holes (BBHs). GW bursts could

come from events such as core-collapse supernovae, gamma ray bursts (GRBs) or non-

radial modes in neutron stars. LIGO is expected to be sensitive to continuous waves

(CWs) emitted from rapidly spinning neutron stars. A stochastic GW background

could come from sources such as mergers of very distant neutron stars, cosmic strings

and primordial waves from the Big Bang.

3.3.1. Compact Binary Coalescences

GWs from CBCs can be considered the best case scenario for detection by LIGO.

A binary system is effectively a large mass quadrupole, which is ideal for GW emission.

CBCs consist of three stages: the inspiral, the merger and the ringdown [8]. The

inspiral is expected to be well described by post-Newtonian calculations. The merger

stage is considered to begin after the “innermost stable circular orbit” after which

the two objects “plunge together” to form a black hole [8]. Numerical relativity is

required to calculate the waveform during the merger stage due to strong effects from

general relativity [8]. In the S6 high mass search, the merger stage was approximated
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with analytic effective one body solutions guided by numerical relativity simulations

[32, 33]. In the ringdown, oscillations of the resulting black hole emit GWs whose

frequency and damping time are determined by the black hole’s mass and angular

momentum [8].

Since inspirals and ringdowns are thought to be well described by calculated

waveforms, matched filtering is the optimal search method [23]. Waveforms covering

the desired parameter space of mass combinations are generated in frequency space

and used in a “template bank” [23]. Each waveform in the template bank is used to

filter the data in frequency space using a noise weighted convolution of the waveform

with a time segment of the detector data stream [34]:

z(t) = 4

∫ ∞

0

h̃(f)∗s̃(f)

Sn(f)
e2πift df (3.3)

σ2 = 4

∫ ∞

0

h̃(f)∗h̃(f)

Sn(f)
df (3.4)

h̃(f) is the Fourier transform of the template waveform, s̃(f) is the Fourier transform

of the data and Sn is the noise power spectral density. The SNR (ρ) is defined as

ρ(t) = |z(t)| /σ.

If a waveform in the template bank returns an SNR above a given threshold, it

is categorized as a trigger and is checked for coincidence with triggers in the other

active detectors [34]. At least one other detector must be active and the triggers must

be within the light speed travel time of the involved detectors (6 10ms for H1 and

L1). The mass components of the triggered waveforms must agree within a certain

allowable difference. Having more templates ensures a higher probability of recovering

the signal with less loss of SNR. The computational cost of additional templates

must be balanced against the SNR loss for using less templates [23]. Templates are
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chosen at discrete points in the mass range such that the maximum loss of SNR is 3%

[23, 32, 35].

Both BNS and NSBH inspirals could be the central engines powering short GRBs

[8, 36]. GWs associated with GRBs could provide information on the GRB trigger

mechanism.

GWs from CBCs involving neutron stars could provide information on the neutron

star equation of state [8]. In NSBH binaries, tidal disruption of the neutron star in

the final stages of collapse could provide detailed information on the neutron star

equation of state and structure [36].

GWs from CBCs offer a potential “standard candle” independent of Type 1A

supernovae with which cosmological distances could be determined and verified [8]. The

waveform could determine the distance to the source, thus providing an independent

measure of the Hubble constant. The redshift of the GW can affect the distance

estimate through its affect on the GW waveform. This can be compensated for with

estimates of the redshift of the host galaxy, or if the CBC involves a neutron star the

tidal disruption may help determine the redshift through determination of the stellar

mass in its local frame.

During S6, LIGO’s range for GWs from BNS inspirals averaged over sky position

and orientation was ∼20Mpc for LHO and LLO [19]. aLIGO’s range is expected to

be ∼200Mpc at design sensitivity [37]. In aLIGO, a two detector network will have a

sky localization of thousands of square degrees in some directions. Three detectors

of similar sensitivity provide a sky localization of ∼5–20 square degrees for many

directions, and the planned LIGO-India detector would improve the localization to an

order of a few square degrees [37].
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aLIGO is projected to reach a sensitivity similar to design sensitivity after 2019,

with Advanced Virgo to follow a few years later, with an expected detection rate of

BNS inspirals of 0.2–200 per year [37]. During or after 2022, LIGO-India may be

incorporated into the detector network, improving the expected detection rate to

0.4–400 BNS inspirals per year.

3.3.2. Gravitational Wave Bursts

GW bursts are short-duration transient GWs thought to be generated from violent

astrophysical events. Possible astrophysical sources of bursts include core-collapse

supernovae, cosmic string cusps, magnetars, pulsar glitches and GRBs [38]. GWs

can only be emitted from events that are not perfectly spherically symmetric. For

example, observations of many pulsars with high speeds relative to their neighbors

lead to speculation that some supernovae have a substantial non-spherical component

which could emit GWs [8].

The expected waveforms for GW bursts are often poorly constrained or completely

unknown; therefore, search methods other than matched filtering are used. One is the

excess power method [39]:

E = 4
∑

k16k6k2

|h̃k|2/Sk (3.5)

In this equation, |h̃k|2 is summed over a given frequency band and time duration and

is weighted by an averaged noise spectral density Sk. This statistic adds up the excess

power for a given frequency band and time duration. Thresholds are set choosing a

false alarm rate based on the background calculated by analyzing time shifted data.

Other search methods include cross correlation or cross coherence [23].

In addition to combining the search data in a given time and frequency band,

clustering algorithms can be used to combine the data in different ways, often based
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on rules of grouping together values for specific time frequency combinations above a

determined threshold.

Burst searches are either all-sky or targeted. All-sky searches use multiple time

shifts to target different points throughout the sky. Targeted searches use information

from electromagnetic observations to provide a specific sky direction to search for a

GW, increasing their sensitivity over all-sky searches [23]. Targeted searches can be

used to search for GWs coincident with supernovae, GRBs or other electromagnetically

observed events.

3.3.3. Continuous Waves

LIGO is sensitive to frequencies in which rapidly rotating neutron stars are thought

to generate continuous waves. Possible mechanisms which could generate GWs include

non-axisymmetry due to residual deformation of the crust, non-axisymmetric magnetic

field energy, normal oscillation modes such as r-modes (where the emission is due

to quadrupole mass currents) and non-isotropic accretion in a binary system with

a neutron star [8, 40]. In a neutron star with a strong magnetic field, the magnetic

axis may not be aligned with the rotation axis, causing magnetic pressure distortions

making the neutron star asymmetric [41]. A neutron star’s rotation axis may not

align with the moment of inertia tensor’s principal axis, causing the neutron star to

precess and emit GWs [41].

The mass quadrupole of an asymmetric rotating neutron star would generate

GWs at twice the rotation frequency [42]. The GWs would be modulated by the

Earth’s motion (including both its daily rotation and its orbit around the sun) [43, 44].

GWs from a neutron star in a binary system would also be modulated by that system’s

43



rotation. Changes in rotational frequency such as those observed in pulsars over time

would also change the GW emission frequency [42].

Known pulsars can be ideal targets [42]. Regular observation with electromagnetic

detectors can determine the frequency evolution of the star, allowing GW data to

be coherently integrated over months or even years [42]. It should be noted that

uncertainties in the electromagnetic and possible GW emission mechanisms leave

the possibility open that the the GW frequency is not exactly twice the observed

rotation frequency [40]. For example, if the main GW emission mechanism is in the

core instead of the crust and the core and crust rotate at different frequencies, then a

search assuming a GW frequency from the crust would assume the wrong frequency

[40].

Low-mass X-ray binaries (LMXBs) are another interesting source. LMXBs are

observed to be clustered in a particular band of frequencies (270 Hz 6 νS 6 620 Hz)

[45]. One possible explanation is that the spin-up from the accretion disk is balanced

by the spin-down from GW emission. This allows the GW strength to be estimated by

relating the X-ray flux to GW emission (h ∝ (FX/νS)
1/2 for X-ray flux FX and spin

frequency νS). The source known as Scorpius X-1 would be of particular interest as it

would be the most luminous GW source of the LMXBs. Electromagnetic observations

have been used to estimate an indirect upper limit on the GW emission from Scorpius

X-1 of hEQ0 ≈ 3.5× 10−26
(

300Hz
νS

)1/2

.

3.3.4. Stochastic

A stochastic GW background would be generated from the superposition of many

unknown cosmological and/or astrophysical sources [8, 23, 46]. Cosmological stochastic

GWs are expected to carry the earliest detectable information about the universe
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[47]. Cosmological sources of GWs may include vacuum fluctuations amplified during

inflation or in “pre-big-bang models” and cosmic strings formed from “phase transitions

in the early universe” [23]. The predicted strength of cosmological waves varies greatly

[8]. Predictions from standard inflation would be far below the detectable range

of aLIGO, although there are some pre-big-bang models which could be probed [8].

Astrophysical sources may dominate the LIGO and Virgo bands and include distant

CBCs, supernovae, magnetars and rotating neutron stars [46]. Other possible sources

include mergers of supermassive black holes; however, those GWs would be in the

frequency range of space based detectors [8].

To find a stochastic signal, data are cross-correlated from two or more detectors

[48]. As the integration time grows, a common GW signal would increase with the

integration time (T ), while uncorrelated noise would increase with
√
T . This causes

the SNR for a common signal to grow with
√
T , allowing detection of signals buried

in the noise for sufficiently long integration times.

This method relies on the assumption of an absence of significant correlated noise

between the detectors. Large separations between detectors is integral to removing

correlated noise. The Schumann resonance from lightning strikes is an example of a

correlated noise source that could still contaminate distant detectors, and may prove

a problem in aLIGO (the Schumann resonance was below the detection threshold

in initial LIGO). Magnetometers are used to monitor for correlations in this specific

case. The detector separation, while reducing the correlated noise, also reduces the

sensitivity as “physically-separated detectors respond at different times to GWs from

different directions and with differing response amplitudes depending on the relative

orientation and (mis)alignment of the detectors” [48]. The loss of sensitivity can be

45



described by an “overlap reduction function” [23]. The overlap reduction function

averaged ∼0.1 for LHO and LLO in their sensitive frequency band around 100Hz [23].
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CHAPTER IV

SEISMIC UPCONVERSION

In early LIGO science runs, increases in seismic noise below 10Hz were linked to

decreases in detector sensitivity in the 40–200Hz band, LIGO’s most sensitive band

(see Figure 3.7) [19]. This noise, called seismic upconversion, was often a limiting

factor of the sensitivity in this frequency band during S6.

Investigations found that reductions in range in this band were more closely

correlated with the currents in the test mass actuators than directly with low seismic

noise or test mass motion [19]. Upconversion noise bursts were found to occur during

times of “high slope in the amplitude of the magnetic actuator current” (see Figure

4.1) [19]. This was evidence that the culprit was Barkhausen noise.

Barkhausen noise comes from fluctuations in the magnetic field from sudden

discontinuous jumps in the sizes and orientations of magnetic domains in a ferromagnet

as an externally applied magnetic field changes [19]. This can produce avalanching,

where a group of nearby domains rearrange and change orientation in quick succession

at the influence of neighboring domains.

A succession of experiments has led to the conclusion that it was likely the cold

worked steel in the test mass actuators that was the source of seismic upconversion

noise [49]. Figure 4.2 is a schematic of the test mass suspension showing the location

of the test mass actuators. It was originally thought seismic upconversion was due

to Barkhausen noise in the NbFeB magnets attached to the test masses [19, 50].

Switching out the NbFeB magnets with less noisy SmCo magnets was unsuccessful in

significantly reducing seismic upconversion noise [19]. Investigations in S6 by Robert

Schofield found that parts in the test mass actuators were ferromagnetic and possibly
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FIGURE 4.1. Upconversion noise and actuator coil current. The top is a plot of the
DARM time series in the 70–110Hz band. The bottom is the coil current amplitude
of one of the actuators. The noise in this band of DARM occurs during times of high
slope in the amplitude of the magnetic actuator current. Figure from [49].

the source of seismic upconversion due to Barkhausen noise [49]. Parts made of 303

steel in the actuators had become ferromagnetic, likely due to cold working. In aLIGO,

the parts in the “most sensitive locations” are made of 316 steel, “which is much less

ferromagnetic after cold working”, to help mitigate any possible seismic upconversion

[19].

4.1. Monitoring Upconversion

In LIGO’s fifth science run Masahiro Ito, a former UO graduate student, used

the current through the electromagnets of the test mass actuators to monitor seismic
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FIGURE 4.2. A schematic of the optic suspension during initial LIGO. The magnetic
actuators act on magnets secured to the test mass. Figure from [25].

upconversion noise and predict times when seismic upconversion noise was likely high

[51]. He calculated an empirical function to predict the probable seismic upconversion

noise in the detector GW signal output (or detector strain).

This work was continued for S6 [52]. The S5 weighting function for the Hanford

detector was used to monitor upconversion at LHO, and a new weighting function

for the Livingston detector was calculated to monitor upconversion at LLO. These

weighting functions were empirically determined and used to predict how noise in the

actuator coil current would convert to higher frequency noise in the main detector

channel.

4.1.1. Correlating with Noise

To identify seismic upconversion, the band limited root mean square (BLRMS)

of a frequency band in the coil current is calculated, squared, and plotted against

the square of the BLRMS (BLRMS2) of a frequency band in the strain to check for a
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correlation (see Figure 4.3). If the noise in the coil current is increasing noise in the

strain, the strain BLRMS2 will be proportional to the coil current BLRMS2.

LIGO has multiple noise sources, and excess noise from sources other than seismic

upconversion will cause points to lie above the correlation line between strain and coil

current. In Figure 4.3, this can be seen by the many points in the upper left portion

of the plot. To account for this, a “minimal bound” can be constructed by taking

the lowest strain noise values for a set of coil current BLRMS2 values. This minimal

bound describes the expected noise due to seismic upconversion if the detector is at

its best performance and all other noise sources are relatively quiet (the noise due to

upconversion plus other noise at optimal levels). Points above this minimal bound

would be due to seismic upconversion plus other excess noise sources.

The procedure to find the minimal bound relating a coil current frequency band

to a strain frequency band is the following:

1. Break time series data into time segments of a certain length (in our case we

used 40 s intervals) and Fourier transform each segment.

2. Calculate the power spectral density (PSD) and sum the data in each segment

that is within the band of interest and take the square root to calculate the

BLRMS in that band for that time segment. The start time of each time interval

is recorded as the time value for each BLRMS data point.

3. Plot the data with strain BLRMS2 on the Y axis and coil current BLRMS2 on

the X axis.

4. Bin the X axis (20 equal bins were used) and take the data point with the lowest

Y value from each bin. The X value is take as the midpoint of each bin.
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FIGURE 4.3. Test mass actuator coil current BLRMS2 (0.1–0.3Hz band) versus
detector strain BLRMS2 (70–110Hz band) for a time during S6 with very clear seismic
upconversion.

5. Fit the minima previously found with a linear line. This line is the minimal

bound on the expected strain noise for a given value of the coil current noise.

This same procedure can also be used to find correlations between the strain (or

other data output) and other noise sources. If the minimal bound has a significant

slope with a good fit, then some kind of upconversion-like noise is likely. A program

designed to automate the analysis of multiple bands and channels for upconversion-

like noise was originally written by Ryan Quitzow-James and further developed by

Vincent Roma. This program has been in use looking at data from aLIGO to monitor

upconversion-like noise.
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4.1.2. Weighting Functions

The weighting functions were used to predict the noise due to seismic upconversion

in the strain. To make a weighting function, the minimal bounds were calculated for

bands in the actuator coil current comparing each one to the 70–110Hz band in the

detector strain. The bands of interest in the actuator coil currents were identified by

Masahiro Ito during S5 as 0.1–0.3Hz, 1.0–1.6Hz, 1.8–2.6Hz, 5–7Hz, 10–13Hz and

17–19Hz. These same bands were used for S6. The Livingston weighting function was

created using the following procedure:

1. Calculate BLRMS2 for 40 s long non-overlapping time intervals. Plot coil current

BLRMS2 against strain BLRMS2 for times during S6 when data for both exist.

2. Bin data into 20 equal bins along the coil current axis. Pick the point with the

minimum strain BLRMS2 value in each bin.

3. Find the continuous science segment each minimum point belongs to and calculate

the minimal bound for that time interval.

4. Repeat the above steps for each coil current band.

5. Create a plot using the data calculated in the previous steps with the central

frequency of each band on the X axis and associated slopes of each minimal

bound on the Y axis.

6. Find the weighting function by fitting the points on the plot with a power-law

(or fitting sub sets of them as is the case with the Livingston weighting function).

Multiple power-law fits can be used for adjacent sets of bands if appropriate.

Masahiro Ito determined that the power-law fit was significantly different above

and below 10Hz when calculating the Hanford weighting function and used two power-
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laws, one to fit the points below 10Hz, and one to fit the points above. This example

was followed when calculating the Livingston weighting function.

When calculating the Livingston weighting function, there was a wide variation of

slope values, with many clustered near the minimum for each band (similar to Figure

4.4). Outliers in the BLRMS2 plots skewed some of the slopes to larger values. Some

of the outliers were likely due to excess noise before the detector became unstable and

dropped out of science mode.

For each coil current band, a subset of slope values which were grouped together

near the minimum slope value was chosen by hand. These were used to fit the power

curve. In the future, a programatic and/or statistical method can be used. Some

possible methods that have been tested include not counting bins with less than 10

points when calculating the minimal bound, and removing 1–5% of the points with

the highest coil current BLRMS2 before calculating the minimal bound to remove the

outliers. Tests so far have successfully removed the high slope values seen in Figure

4.4, including the points in the middle of the Y axis, and left just the values clustered

at the lower Y axis. Figure 4.5 shows a weighting function calculated with this method

using Hanford data (and the points used to calculate it) along with the Hanford and

Livingston weighting functions.

4.1.3. Flagging Seismic Upconversion

The likely source of seismic upconversion was found during the later part of S6,

but it could not be mitigated during the run by changing the hardware [49]. The

next best option was to provide lists of times of high upconversion that may impact

searches [19]. Times not on this list would likely have low seismic upconversion noise.

These lists of times with high upconversion were known as upconversion flags.
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FIGURE 4.4. Minimal bound slopes plotted against frequency. This was a test looking
at many bands. Outliers cause the minimal bound fit to produce high slopes.

Flags for S6 were created for H1. Coil current data was not available prior to

December 11, 2009, 23:56:19 UTC for the Livingston detector, so flags for S6 were

created for L1 from this time onward.

The procedure for creating lists of flags is the following:

1. Calculate the PSD for each consecutive 40 s interval of data and scale by the

weighting function before summing between the frequencies of interest (0.1–40Hz)

and taking the square root to get a “weighted” BLRMS for each time.

2. Flag segments of time for which this weighted BLRMS is above the chosen

threshold.
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FIGURE 4.5. H1 and L1 weighting functions plotted with a test weighting function
calculated for H1 and fit to the grey points. The y-axis is the weighting factor from
coil current BLRMS2 to strain BLRMS2. The outliers were reduced before calculating
the minimal bounds by removing a small percentage of the loudest points in the coil
current and requiring a minimum of 10 points in each bin.

Masahiro’s weighting function was used for H1 during S6, and the weighting

function we calculated for Livingston was used for L1 when coil current data was

available.

Upconversion flags were calculated for S6 using multiple thresholds, which are

summarized in Table 4.1. H1 and L1 flags use the same set of thresholds. Each

flag includes all times with predicted seismic upconversion above the associated

threshold. The times with the lowest upconversion can be identified by their lack of

any upconversion flags.
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Threshold Percent Time Flagged (H1) Percent Time Flagged (L1)

1.35× 10−22 79.59% 75.39%
1.7× 10−22 49.36% 40.82%
2.5× 10−22 13.84% 14.33%
2.8× 10−22 8.43% 11.16%
3.3× 10−22 3.9% 5.26%
3.6× 10−22 2.59% 2.85%
4.4× 10−22 0.99% 0.55%
6.5× 10−22 0.11% 0.039%
9× 10−22 0.0097% 0.0088%

TABLE 4.1. Weighted coil current thresholds chosen for flags and the fraction of time
during S6 that is flagged for each threshold.

The flags constructed from the weighted coil current threshold of 4.4× 10−22 were

chosen by the LIGO Detector Characterization group as a useful flag for data quality1.

A study by Jessica McIver found these flags vetoed a significant amount of low-SNR

glitches while flagging less than 1% of observational data [53]. They were classified

such that they could be checked against possible GW bursts if found by analysis of

the detector output.

4.2. Range Predictor

The inspiral range of the detectors can vary significantly, and sometimes the

source of the range drop is unknown. After creating the flags for H1 and L1, a

“range predictor” was created to track when decreases in the range of the estimated

binary neutron star (BNS) inspiral sensitivity during S6 were likely due to seismic

upconversion as opposed to other processes [54]. A range predictor was made for H1

by plotting the average BNS inspiral sensitivity against the weighted coil current. The

1The coil currents were measured in counts, which the weighting function converts to the unit
of strain (which is unitless). Since the weighted coil current is the square root of the sum of the
predicted strain noise power within a band, the weighted coil current is also unitless.
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laser power was not always in high power mode during S6. The range predictor was

made only from data when the laser was in the high power 20W mode. The range

predictor found increased seismic upconversion was correlated with drops in the BNS

inspiral range during S6 (see Figure 4.6).

FIGURE 4.6. Weighted coil current is correlated with drops in the BNS range.

The range predictor was also used to verify that upconversion was responsible for

a drop in range and not an additional problem with the interferometer. Figure 4.7

plots the predicted and actual BNS inspiral range for H1 from May 29, 2010, through

July 11, 2010. The reduction in range matched the predicted range, and was also

coincident with an increase in the McNary Dam overflow. This is taken as evidence

that the drop in range was due to seismic upconversion caused by the seasonal increase

in the McNary Dam overflow.
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FIGURE 4.7. Seasonal increase in seismic upconversion due to McNary Dam overflow.
The predicted (blue points) and actual (red points) BNS inspiral ranges are shown
from May 29, 2010, through July 11, 2010. The drop in range matches predictions, as
well as an increase in the McNary Dam overflow (green line). This is taken as evidence
that the drop in range was due to seismic upconversion, which itself was increased by
the seasonal increase in the McNary Dam overflow. Figure from [54].

4.3. Correlation with Low-Frequency Low-SNR Glitches

This study broke S6 into 40 s time intervals and compared the number short

duration transient noise events (glitches) in each interval to the weighted coil current

BLRMS of that interval. The number of glitches was correlated with the weighted coil

current amplitude. Glitches were then broken down into groups based on SNR and

central frequency of their most significant time-frequency pixel to find which glitches

were related to seismic upconversion.
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For glitches at all frequencies with SNR > 10, there was no correlation with

seismic upconversion [55, 56]. Similarly, when compared to glitches of all SNR with

frequencies above the expected seismic upconversion band, frequencies above 200Hz,

there was no correlation. For glitches with SNR < 10 and frequencies of 0–70Hz there

was a correlation with weighted coil current. This is not surprising since the main

noise source below 40Hz is seismic noise. In the 110–200Hz band, glitches with SNR

< 10 were also correlated with seismic upconversion. The strongest correlation was to

glitches in the 70–110Hz band with SNR < 10 (see Figure 4.8).

All glitches in this study had a minimum SNR of 4.5. Subgroups of the 4.5–10

SNR group suggest there may be stronger correlations for the lower SNR glitches

within that group. It is possible that glitches with even lower SNR could have had

similar or even stronger correlations with seismic upconversion [55]. Initial results

show the louder glitches in the 4.5–10 SNR group are less strongly correlated (but

still correlated) than the middle and lower SNR glitches in that group.

This investigation found that low-frequency low-SNR glitches were correlated

with seismic upconversion and supports the idea that these glitches were produced by

seismic upconversion.
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FIGURE 4.8. Low-frequency low-SNR glitches and seismic upconversion. The weighted
coil current is correlated with glitches in the GW output with an SNR between 4.5
and 10 and in the 70–110Hz band. The line represents the correlation through a
least-squared fit. Figure from [19].

60



CHAPTER V

ASTROPHYSICS OF MAGNETARS

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are

astronomical objects that emit intermittent bursts of X-rays and gamma-rays. The

slow spin period and lack of partner objects are some of the observations that lead

observers to suspect these objects are highly magnetized neutron stars, or magnetars,

whose very strong magnetic field powers these bursts. The magnetic fields of magnetars

are much stronger than the quantum critical value at which the energy separating

Landau levels is equal to the rest mass of electrons (BQED = m2c2

~e
= 4.4× 1013 gauss)

[57]. These strong magnetic fields may provide an energy reservoir than can power

GWs during and immediately after bursts and giant flares. Searches for GWs from

magnetars were performed on S5 data as well as data surrounding the 2004 giant flare

[58, 59].

5.1. Soft Gamma Repeaters and Anomalous X-Ray Pulsars

5.1.1. Soft Gamma Repeaters

On January 7, 1979, satellites observed the first detected SGR burst [60]. The

burst was emitted from SGR 1806-20 in the Sagittarius constellation [60]. Two months

later, on March 5, 1979, a much more powerful burst was detected from SGR 0526-66

[59, 60]. It was the most luminous extra-solar burst of gamma-rays detected at the

time and the first giant flare observed [60]. More detections of SGR bursts would

follow, including three more starting just nine days later from a third source object,

leading to the realization of a new class of astronomical event [60].
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Initially, these bursts could not be definitively differentiated from GRBs [61]. In

1987, these repeating bursts were recognized as a distinct class of event from GRBs

[60]. The source objects were called soft gamma repeaters (SGRs), named for the

sporadically repeating nature of the bursts and the spectrally soft photons when

compared with GRBs [9, 60].

SGRs are astronomical objects which release intermittent bursts of hard X-rays

and soft gamma rays. Hard X-rays have energies above 10 keV [57]. The burst

emissions extend up into the “few hundred keV energy band” which consists of hard

X-rays/soft gamma rays [62]. These bursts can be classified into three general types:

short bursts (with isotropic energies up to 1041 erg), intermediate bursts (with isotropic

energies of 1041–1043 erg ) and rarer, more energetic bursts known as giant flares (with

isotropic energies of 1044–1046 erg) [62]. Isotropic energy is the estimated energy

assuming uniform energy emission in all directions.

5.1.2. Anomalous X-Ray Pulsars

When first observed, AXPs were originally thought to be X-ray pulsars. X-ray

pulsars are a subclass of X-ray binaries, which are made up of a donor object and a

white dwarf, neutron star or black hole. In an X-ray binary, matter from the donor

object accretes onto the compact object, emitting X-ray radiation as a result of the

accreting matter’s gravitational energy converting into kinetic energy [63]. In the case

of a neutron star with a strong magnetic field (∼1012 gauss), the accreting matter is

guided by the magnetic field lines into matter columns falling onto the magnetic poles

[63]. If the magnetic field axis and rotational field axis are not aligned, there is a

pulsation in the X-ray radiation at the rotation frequency of the neutron star, and the

X-ray binary appears as an X-ray pulsar [63].
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Several characteristics of AXPs were observed that did not fit with the X-ray

pulsar model [57]. The distribution of the spin periods was recognized to be narrow

(2–12 s as opposed to a range of milliseconds to hours in X-ray pulsars), leading to the

recognition of the existence of a different type of object. The periodic pulsations of

AXPs allowed searches for orbital Doppler modulation, the lack of which put stringent

upper limits on the size of potential companion stars.

Optical and infrared searches found counterparts for approximately one third

of SGRs and AXPs, and candidate counterparts for a few of the other SGRs and

AXPs [9]. The counterparts and candidate counterparts were very faint, excluding

the presence of bright companion stars and ruling out accretion in a binary system

as the source of the X-ray radiation [57]. The lack of partner object distinguished

these objects from the normal X-ray pulsars and led to these objects being classified

as “anomalous” X-ray pulsars (AXPs), astronomical objects which emit persistent

periodically varying X-rays, but lack the partner object associated with X-ray pulsars.

When persistent X-ray emission was discovered from SGRs, the emission shared

properties with those seen from AXPs; similar periods, period derivatives and X-ray

luminosities (but with harder spectra) were observed pointing to a possible link between

these objects [57]. The magnetar model, originally designed to explain the observations

from SGRs, was applied to AXPs, explaining the persistent X-ray luminosity that

could not be powered by rotational energy loss or accretion from a binary [57]. The

discovery of short bursts from AXPs confirmed the connection to SGRs and supported

the application of the magnetar model to AXPs [57].
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5.1.3. Transient Magnetars

Transient magnetars are magnetars whose X-ray luminosity is usually at a much

fainter quiescent level, and have outbursts lasting weeks or months where their

luminosity increases to the level of “constant” magnetars [9]. During such outbursts

they will emit short bursts like other magnetars. No bursts have been seen from

transient magnetars during quiescent luminosity levels. Transient magnetars are a clear

example that there may be more undetected magnetars, showing that the magnetar

birthrate may be higher than previously thought.

5.2. Electromagnetic Emission from SGRs and AXPs

Electromagnetic emissions from SGRs and AXPs have been observed at many

wavelengths and include both long term persistent emission and shorter sudden bursts

of hard X-rays and soft gamma-rays. Persistent X-ray emission has been seen in both

SGRs and AXPs and is too luminous to be powered by the rotational energy loss

which powers radio pulsars [57, 62]. Optical and infrared observations of SGRs and

AXPs have ruled out accretion from a binary companion as a possible energy source

[57, 62]. Originally thought to be radio silent, radio emissions were detected from

transient magnetars [62]. The radio emissions were highly variable, possibly associated

with outbursts, with properties very different from those seen from radio pulsars [62].

5.2.1. Short Bursts

Short bursts have been observed in both SGRs and AXPs, usually lasting ∼0.1–1 s

with energies up to 1041 erg and peak luminosities that can reach 1041 erg/s assuming

isotropic energy emission [62]. The burst luminosities are often above the classical

Eddington limit (∼2× 1038 erg/s for a neutron star without a magnetic field) [62, 64].
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The Eddington limit is the maximum luminosity a star can have before photon pressure

is expected to overcome the gravitational potential and start pushing mass off of the

star.

Observations have found that both the wait times between bursts and the

intensities of individual bursts have log-normal distributions, and the bursts are

not correlated with any particular phase of the magnetar’s rotation [57]. There is no

correlation between the wait time before a burst and the burst’s intensity [57]. Burst

durations are correlated with fluence (the total energy emitted per surface area at the

point of observation) [62]. A few bursts have shown tails that lasted ∼100–1000 s [62].

Wait times between bursts can be years, although there may be bursts just under the

detection threshold during quiet times as bursts intensities are detected right up to

the threshold [62]. Burst wait times can also be very short, with some remarkable

events know as burst storms in which tens to hundreds of bursts occur within a few

hours in rapid succession with a rise in emission [62].

5.2.2. Intermediate Bursts

Intermediate bursts have energies in the range 1041–1043 erg, with peak

luminosities of 1041–1043 erg/s, well above the Eddington limit [62]. They last ∼1–40 s

and have been seen in both AXPs and SGRs. The initial burst seems to be a brighter,

longer version of short bursts, and are often, but not always, followed by a long tail

(containing less than 2% of the energy in the initial spike) which is modulated at the

neutron star’s rotation period and can last up to several thousand seconds [62]. The

strongest intermediate burst occurred on April 18, 2001, from SGR 1900+14 [64]. It

had no initial peak and a slow rise time of ∼10 s, lasting ∼40 s with pulsations at the
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neutron star’s rotational frequency [57, 62]. Some intermediate bursts have precursors,

and short bursts have been detected during some of the tails [62].

5.2.3. Giant Flares

In addition to the regular and intermediate bursts, three bursts with estimated

isotropic energies greater than 1044 erg known as giant flares have been observed from

SGRs. The first of these rare events was detected on March 5, 1979, from SGR

0526-66, the same year SGRs were first detected [59, 60]. It had a total estimated

isotropic energy of ∼1.2× 1044
(

d
15 kpc

)2

erg (∼1.5× 1045 erg at the estimated distance

of 53.6 kpc) [59, 65]. The second giant flare was detected on August 27, 1998 from

SGR 1900+14 and had a total estimated isotropic energy of ∼4.3× 1044
(

d
15 kpc

)2

erg

(∼3× 1044 erg at the estimated distance of 12.5 kpc) [59, 64, 65]. The third giant flare

was detected on December 27, 2004, from SGR 1806-20 (see Figure 5.1 for a plot of the

time series data from the event) [57, 66]. It had a total estimated isotropic energy of

∼5× 1046
(

d
15 kpc

)2

erg (∼1.7× 1046 erg at the estimated distance of 8.7 kpc) [59, 65].

The sources for these giant flares are the three SGRs with the strongest estimated

magnetic fields [65].

Giant flares are characterized by an initial spike with luminosities up to 1047 erg/s

lasting less than a second, followed by an afterglow lasting several hundred seconds

[62]. Turolla et al. pointed out that none of the giant flares were “caught during

pointed observations”; this means the detector sensitivity to the giant flare tails was

much lower than for some of the intermediate flares, and that this constraint should

be considered when “comparing the apparent durations” [62]. In all three cases, the

tail was present and was modulated by the rotation period of the neutron star [57].
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FIGURE 5.1. Time series of data of the 2004 giant flare from SGR 1806-20. Initial
peak followed by X-ray tail. Large modulations in the tail are due to the magnetar’s
rotation. Solid lines and dashed lines indicate detection of QPOs at different phases
of the rotation. Figure from [67].

It is thought that a giant flare stems from a sudden release of energy, with

the initial spike coming from an escaping relativistically expanding electron-positron

plasma and the long tail coming from energy radiating from an electron-positron pair

fireball trapped in the magnetosphere [57]. The energy content of the tails for all

three flares was similar (∼1044 erg) [62]. If the tail is due to a fireball trapped by a

magnetic field, this requires a magnetic field of ∼1014 gauss [57].

In the giant flare from SGR 1806-20, an increase in hard X-rays was observed

after the end of the pulsating tail, peaking ∼700 s after the giant flare’s start and

lasting about one hour [57]. Radio afterglows were detected after the giant flares from

both SGR 1900+14 and SGR 1806-20 [62]. This is thought to come from expanding
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magnetic fields and shocked plasma which were ejected from the magnetar during the

burst, the linear polarization suggesting electron synchrotron emission [62]. In these

two giant flares, higher frequency components known as quasiperiodic oscillations

(QPOs) were detected (see Section 5.2.5) [57].

Precursors to the 1998 and 2004 giant flares were observed [62]. A precursor

resembling a short burst occurred less than a second before the onset of the 1998 giant

flare [62]. If there was a similar precursor to the 1979 giant flare, it would not have

been detectable by instruments at the time [62]. The precursor to the 2004 giant flare

was in the energy range of an intermediate burst and occurred 142 s before the flare

[62].

It is possible that some gamma-ray bursts may be giant flares from distant

magnetars outside our galaxy. The energetic initial peak of a giant flare could appear

as a short GRB [62]. It has been suggested that giant flares with 1044 erg could be

detected from a few Mpc, and giant flares of 1046 erg could be detected from as far

away as the Virgo cluster [62]. So far, no evidence of excess GRBs has been detected

in the direction of nearby galaxies or the Virgo cluster [62]. This means at most ∼8%

of the short GRBs observed by BATSE could be giant flares outside our galaxy [62].

Two events that may have been extragalactic giant flares are GRB 070201 and

GRB 051103. GRB 070201 was coincident with the spiral arms of the Andromeda

galaxy (M31) [68]. At the distance of 0.77 Mpc, observations with the LIGO detectors

ruled out a BNS or NSBH merger with greater than 99% confidence [68]. If the

source object was at this distance, the estimated isotropic electromagnetic energy was

1045 erg, consistent with the energy of a magnetar giant flare [68]. GRB 051103 was

coincident with the M81 spiral galaxy at a distance of 3.6 Mpc [69]. At this distance,

observations from the LIGO detectors excluded BNS mergers with 98% confidence
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and NSBH mergers with greater than 99% confidence [69]. If the source was in M81,

the isotropic electromagnetic energy was ∼3.6× 1046 erg, the same order of the energy

in the 2004 giant flare. This would be the furthest SGR observed as of 2012 [69].

5.2.4. Persistent X-Ray Emission

Originally seen in AXPs, persistent X-ray emission has been detected in some

SGRs as well. The X-ray luminosities are more than what can be powered by rotational

energy loss from the spin-down, with typical luminosities for AXPs of 1034−36 erg/s

depending on the distance estimates [57, 62]. It is thought the X-ray luminosity is

powered by twists in the magnetosphere, created from the transfer of helicity form a

strong internal field with toroidal components to the external field (possibly cracking

and twisting the neutron star crust in the process) [62].

The X-ray emission spectra from AXPs are generally fit by a combination of

thermal blackbody and power-law, and in a few specific cases are fit equally well with

two blackbodies or other combinations of two spectral components [57]. There appear

to be blackbody components in the X-ray emission spectra of SGRs when high quality

spectra are available [57]. The tails could be due to resonant cyclotron scattering

which distorts the thermal spectrum: in a strong magnetic field with local variations

permeated by electrons, resonant scattering would give rise to a hard tail instead of

narrow lines [62]. However, Mereghetti et al. caution this may instead reflect a more

complex thermal model rather than a distinct physical process [9].

5.2.5. Quasiperiodic Oscillations

Quasiperiodic oscillations (QPOs) were first observed in the tail of the giant flare

from SGR 1806-20 (see Figure 5.1) [57]. One was detected at 92.5Hz for a 50 s interval,
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and two other oscillations were detected at 18Hz and 30Hz with less significance [57].

Further analysis and observations from additional satellites confirmed the 92.5Hz and

18Hz QPOs and revealed additional QPOs up to 1, 840Hz, with lower significance

QPOs as high as 2, 384Hz [57]. Data from the giant flare from SGR 1900+14 was

analyzed and QPOs were found at 28Hz, 54Hz, 84Hz, and 155Hz [57]. Mereghetti

speculates that “hint for a 43 Hz periodicity” in the giant flare from SGR 0526-66

in 1979 was likely a QPO as well [57]. More recently it is thought that analysis of

at least one burst event has revealed the probable existence of QPOs in a non-giant

flare burst, showing that QPOs are not limited to giant flares. A common property of

QPOs is they each occur at a particular phase of the rotation [57].

Robert C. Duncan predicted that magnetars may experience global seismic

oscillations from crustquakes driving the bursts [70]. He hypothesized that such an

oscillation could have caused the 43Hz oscillation in the 1979 giant flare peak [70].

Torsional modes would likely be the easiest oscillations to excite as they are purely

shear deformations and wouldn’t change the shape of the star, while other modes

would involve compression and vertical motion of the dense matter which would

require much more energy [70]. Global seismic oscillations from crustquakes are still

the most plausible explanation for QPOs, and would mean QPOs could help constrain

properties of magnetars, including the strength of the interior field and possibly even

the equation of state [62].

5.3. The Magnetar Model

When first proposed, the magnetar model was created to explain the observations

from SGRs, and was specifically motivated to explain the unique observations of

the March 5, 1979 giant flare [71]. An emission line consistent with a redshifted
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pair-annihilation line from a neutron star surface observed in the spectrum of the

giant flare combined with a sky position suggesting an association with a supernova

remnant in the Large Magellanic Cloud were taken as evidence for a neutron star [71].

The X-ray tail of this giant flare was modulated with a period of ∼8 s [71]. This was

most easily explained as the rotation of the source object, and taken with the previous

evidence suggested the presence of a slowly rotating neutron star.

The age of the supernova remnant (∼104 yr) was used to estimate the SGR

spin-down rate (Ṗ ≈ 1.27× 10−12/t4 where 0.6 < t4 < 1.6) [71]. If the spin-down is

due to magnetic dipole radiation, the surface magnetic dipole field strength would

be approximately 6 × 1014/
√
t4 G for the rotation period of ∼8 s [71]. This object

was also estimated to have a large recoil velocity if it was connected with supernova

remnant N49 [71]. This was taken as evidence for an isolated neutron star as it’s

doubtful it would have remained in a binary system with such a large recoil velocity

[71]. Additionally, there are several “kick” mechanisms which could impart a large

recoil velocity to the magnetar, most of which would be ineffective for pulsars with

weaker magnetic fields [71]. The slow rotation speed, large recoil velocity and bursting

behavior can all be explained with the magnetar model [71].

It should be noted that many of the past associations of SGRs with supernova

remnants are no longer considered significant [57]. As such, large recoil velocities are

no longer considered a characteristic of magnetars.

SGRs and AXPs are thought to be magnetars, neutron stars with very strong

magnetic fields that power persistent X-ray emission and intermittent bursts of hard

X-rays and soft gamma-rays. Since the persistent X-ray luminosity is greater than

what can be powered by the rotational energy loss that powers radio pulsars, and

optical and IR observations rule out accretion from binary companion objects as the
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cause, it is thought the emissions are powered by a strong magnetic field [62]. The

typical estimated strength of the external field is 1013–1015 gauss, and it is suspected

the internal field is as strong as ∼1016 gauss and dominated by a toroidal component.

Several pieces of evidence point to SGRs and AXPs having large external magnetic

fields. The external magnetic dipole field strength is conventionally estimated from

the spin-down rate (Ṗ ) and rotation period (P ) with the following equation [64]:

Bd = 3.2× 1019
√

PṖ gauss (5.1)

Bd is the magnetic dipole field strength at the magnetic equator on the stars surface;

the magnetic field is a factor of two stronger at the magnetic poles [64]. Large rotational

spin-down rates of ∼10−13–10−11 s/s have been measured along with rotational periods

of 2–12 s which together are consistent with magnetic dipole breaking from magnetic

fields of ∼1014–1015 gauss [62]. These field strengths are sufficient to slow the neutron

star’s rotation period to ∼10 s within 103–104 years, which agrees with the ages of

supernova remnants in the cases where they have been associated with a magnetar.

These magnetic fields are much higher than the estimated magnetic fields of normal

pulsars, which are inferred from the rotation period and spin-down to be ∼1012 gauss

[72]. The typically inferred characteristic ages (τc = P/2Ṗ ) of pulsars are 107 years,

which is much older than the ∼103–104 years estimated for the spin-down from

magnetic breaking in magnetars [72].

The peak luminosities of SGR and AXP bursts above the Eddington limit can

be explained by the strong magnetic fields [64]. The strong magnetic fields allow the

photon flux to exceed the Eddington limit during bursts by causing electron scattering

to become highly anisotropic and dependent on photon polarization [64].
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Additionally, as mentioned in Section 5.2.3, the tails of giant flares may be due

to a fireball trapped in the magnetosphere of the star. This would require a dipole

magnetic field of at least ∼1014 gauss [57].

5.3.1. Magnetar Formation

There are several models for the formation of magnetars. When putting forth the

magnetar model, Robert C. Duncan and Christopher Thompson hypothesized that a

rapidly rotating neutron star coupled with vigorous convection in the early stages of

the neutron star’s formation (∼30 s) could generate the strong magnetic field with

an α-Ω dynamo [71, 73]. An α dynamo is driven by the coupling of convection with

rotation, and an Ω dynamo is driven by differential rotation (different depths of the

star rotate with different angular velocities) [62]. An α-Ω dynamo is made up of both

of these effects and only operates at low Rossby numbers (the ratio of the rotation

period to the convective overturn time), which requires a small initial rotation period

of 6 ∼1ms [62, 71].

In this scenario, magnetars would be created from massive stars with rapidly

rotating cores [62]. The stellar cores would impart rotational energy through the

magnetic field to the ejecta, producing highly energetic supernovae. So far, observations

of supernova remnants associated with SGRs and AXPs have not found evidence of

highly energetic supernovae. This rotational energy can be radiated away through

GWs instead if the interior magnetic field is ∼1016 gauss.

In a formation model known as the fossil field scenario, strong magnetic fields up

to 5× 1015 gauss can result from magnetic flux conservation during the core-collapse

supernova of a massive high-field star [9]. This model is “economical” as it does not

require a new mechanism to produce the strong fields in magnetars, and population
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synthesis calculations find this model accounts for strong-field white dwarfs, however,

this model cannot account for the number of magnetars on its own, as there are too

few strong-field massive stars to account for the magnetar birthrate as estimated from

observations [9].

Magnetars could form during short GRBs from the coalescence of a double-

degenerate binary [62]. In long GRBs, magnetars could form from core-collapse

supernovae. Plateau phases are observed in a significant fraction of the Swift long

GRBs, which could be powered by the initial spin-down of new magnetars.

5.3.2. Emission Mechanisms

Several mechanisms powered by the strong magnetic field have been proposed as

possible sources for the persistent X-ray emission. In one, the magnetic field decays,

providing internal heating which causes higher surface temperatures than similarly

aged neutron stars with smaller magnetic fields [57]. In another, the motion from the

magnetic field diffusing out of the neutron star core causes persistent seismic activity

in the crust in the form of multiple small-scale fractures which produce Alfvén waves

which contribute to the X-ray emission [57]. This mechanism could also explain the

short bursts as originating from more powerful less, frequent crust fractures [57]. The

persistent emissions could also be powered by magnetospheric twists in the external

field induced by a stronger internal magnetic field with a large toroidal component [57].

This would cause an electric field in the magnetosphere, causing charged particles to

flow, creating a current which is another source of heating for the surface [57, 62].

Multiple mechanisms have been put forth to explain magnetar bursts and giant

flares; more than one of these mechanisms may be responsible, or none at all. One

possible mechanism behind giant flares are large scale rearrangements of the magnetic
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field caused by the internal magnetic field evolving into unstable configurations

[73]. This displaces the magnetic footprints in the crust and injects energy into the

magnetosphere in the form of an Alfvén pulse which causes the observed emission [73].

Bursts and giant flares could also be caused by magnetic reconnection which can

occur when the magnetic field reaches unstable configurations. Possible causes for

unstable configurations include the continual transfer of helicity from the internal

magnetic field to the external magnetosphere or by an interchange instability in the

neutron star fluid which rearranges the neutron star’s magnetic field [73].

Crust cracking is a third mechanism which could cause both bursts and giant

flares. The decay of the interior magnetic field builds up stress in the crust until it

breaks. The crust then moves (by rapid plastic deformation instead of fractures and

voids due to the intense pressure) and twists the external magnetic field lines, injecting

energy into the magnetosphere [62, 74]. Magnetic reconnections can occur depending

on the configurations of the evolving magnetic field lines. Crust cracking was originally

hypothesized to cause the bursts but not the giant flares, as it was thought the

maximum energy this mechanism could generate was 1044 erg [10, 73]. Simulations

by Horowitz and Kadau suggest that the breaking strain of the neutron star crust is

much stronger than previously thought, partly due to the intense pressure suppressing

defects [10, 74]. With this increased breaking strain, energies up to ∼1046 erg can be

generated, enough to power the observed giant flares [10]. Furthermore, energies up

to 1049–1050 erg may be reachable if the neutron star (or just the core) is made up of

solid quark matter [10].

A fourth possibility for the cause of bursts and giant flares is hydrodynamic

deformation of the star. In this model, much or all of the energy powering bursts and

giant flares comes from gravitational potential energy stored in the shape of the star.
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In this model, the core has a strong toroidal component which makes the star’s shape

more prolate [10]. Jumps between equilibrium configurations of the magnetic field

release gravitational potential energy to power the bursts by reducing the toroidal

component which changes the shape of the star becoming less prolate [10, 75]. This

also increases the moment of inertia, increasing the rotation period [10]. First proposed

by Ioka as jumps between magnetic field configurations of equal energy, this model

was expanded upon by Corsi and Owen to a model which conserved the poloidal

magnetic field, thus expending helicity from the magnetar [10, 75]. Corsi and Owen’s

model could also provide large energy jumps with a smaller internal magnetic field

[10]. Hydrodynamic deformation could generate energies up to ∼1049 erg [10]. Corsi

and Owen’s model could provide this energy with a magnetic field of ∼1016 gauss [10].

Each of these mechanisms is powered by the internal field of the magnetar. It

is thought that the internal field is ∼10 times stronger than the external field and

likely has a significant toroidal component [57]. If the 2004 giant flare is not a unique

event during the active lifetime of a magnetar, it is estimated that the internal field

strength is originally of order ∼1016 gauss [57]. The dynamo formation mechanism

could form an internal magnetic field larger than ∼1016 gauss [10, 73]. Analytical and

numerical studies have found that any stable configuration for the internal field of

magnetars must have both a poloidal and toroidal component, and one model found

that a strong toroidal component would form independent of it’s starting strength

[62].

5.4. Gravitational Wave Emission from Magnetars

Magnetars are thought to be good potential sources of detectable GWs for several

reasons. Magnetars are relatively close sources, with distances of known magnetars
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in the range of 1.6–62.4 kpc, and many with distances close to or within 10 kpc [65].

Their strong magnetic fields provide a large energy reservoir to power electromagnetic

emissions and could power detectable GWs if they are of similar energies to the bursts

or giant flares. Non-radial modes, such as f-modes, torsional modes and Alfv́en modes,

may be excited and cause GWs in frequency ranges of interest to LIGO [59, 76, 77].

Well known sky locations and specific times from electromagnetic burst events allow

a targeted search which reduces the false alarm rate and increases sensitivity in

comparison to all-sky, all-time searches [59].

F-modes have been commonly considered for detections as they are thought to

emit most of their energy as GWs [10, 59]. Some more speculative sources suggest low

frequency modes may be better candidates for search attempts [76, 77]. This is in part

due to the frequencies of the different modes. F-mode frequencies are thought to be

on order of thousands of Hz [59] while torsion modes and Alfvén modes are thought

to occur around hundreds of Hertz in LIGO’s most sensitive band [70, 76, 77].

Both torsional modes and Alfvén modes have low frequency modes that are

hypothesized to be related to QPOs due to the overlap in frequencies [70, 76, 77, 78].

It is speculated that if either of these modes is responsible for QPOs, the modes may

emit GWs for longer than the visible QPOs in the electromagnetic spectrum [78].

Some QPOs have been observed lasting 100s of seconds, which could translate to GWs

with durations of hundreds to thousands of seconds [67, 78]. If GWs last only as long

as QPO signals, durations could be tens to hundreds of seconds. K. Glampedakis

and D. I. Jones speculate a wide range for the duration of Alfvén modes that can

accommodate observed durations of QPOs, and they also suggest that Alfvén mode

frequencies may evolve over time by increasing in frequency [78].
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Although the exact mechanisms behind bursts are uncertain, as are the coupling to

GWs, energy considerations can be used to estimate the strength of possible GWs. As

previously stated in Section 5.3.2, both crust cracking and hydrodynamic deformation

could provide sufficient energy to generate GWs with amplitudes comparable to the

current sensitivities of the LIGO detectors [10].
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CHAPTER VI

METHODOLOGY

The question motivating this search is whether detectable GWs are generated

during magnetar bursts. Although there has been much research and simulations of

possible GWs, there is no clear model with well predicted waveforms for GW emissions

from magnetar bursts. This leads to a search for unmodeled GWs and an excess

power type search. The consideration of longer duration signals paired with the

uncertainty of the model and frequencies of those GWs requires a pipeline that can

search for general signals of varying duration. One pipeline which meets these criteria

is known as the Stochastic Transient Analysis Multi-detector Pipeline (STAMP), and

was previously used in a search for long duration transients related to GRBs [79].

STAMP calculates the cross-power of two detectors and divides it by an estimated

variance calculated from the auto-power of adjacent times to create a detection statistic.

STAMP creates spectrograms of this cross-power statistic which is then analyzed for

possible signals. In a targeted search such as this, the strength of possible signals can

be compared to an estimated background distribution calculated from off-source data

to estimate the significance of possible events. As an additional step to prevent a

possible signal from an unknown source to be counted as part of the noise background,

the background can be estimated for data that has been time shifted to non-physical

times, times longer than the light crossing time of the detectors. When considering

longer signals, longer time shifts are required to prevent accidental coherence from

the time-shifted signal if the signal is continuous in frequency.

Three main factors differentiate this search from previous searches for GWs related

to magnetars. The sixth science run of LIGO (S6) provides new data that has not

79



been analyzed in a previous search for GWs related to magnetar bursts. This pipeline

provides a search for unmodeled waveforms of long duration. This search is also the

first search to used STAMP’s seedless clustering techniques.

6.1. Data Sources

There are two types of data sources for this search. One is the InterPlanetary

Network (IPN), which is a network of spacecraft equipped with gamma ray detectors

at different locations in the solar system, including Earth orbit and other planets such

as Mercury, Venus and Mars. The network is used to search for extra-solar events

emitting gamma rays, namely GRBs, but also SGR bursts. IPN provides information

on what SGR and AXP bursts have been observed, and thus provides the triggers, or

times of interest for this search. A list of observed SGR and AXPs bursts is available

from the IPN master burst list available at http://www.ssl.berkeley.edu/ipn3/

sgrlist.txt [80].

The second type of data for this search is from the LIGO instruments themselves:

the measurements of the LIGO detectors as they search for signs of the strain from

passing GWs. The main 16,384 Hz amplitude time-series data is saved at several

locations, including both LIGO sites as well as a computing cluster at CalTech. There

are tens of thousands of auxiliary channels monitoring data thought to be relevant to

the functioning of the detector, including environmental monitors that include sensors

to track wind speed, temperature, magnetometers to track the ambient magnetic fields

and seismometers tracking ground motion. and channels tracking the state of different

internal parts of the detectors. This data is recorded in files known as frame files and

saved either on hard drives or tapes and is readily accessible on the different LIGO

computing clusters.
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6.2. Search Pipeline: STAMP

STAMP calculates a cross-power statistic for two detectors [81]. A spectrogram

or map of frequency-time pixels (ft-map) is created in which each pixel has a value

calculated from this statistic. To calculate this statistic, a filter function is applied to

the cross-power. The filter function includes the sky direction, the polarization of the

possible signal, the detector antenna functions and the auto-power of each detector.

The filter function is applied in a separate step after the cross-power and auto-power

ft-maps are created, allowing multiple directions to be tested without recalculating

the initial maps.

After the filter function is applied to the ft-map, pixels are grouped into clusters

and analyzed to search for possible signals. This search uses stochtrack, a type of

seedless clustering algorithm based on pattern matching, looking for long and thin

signals that are monotonic [82]. The advantage to this method is that no pixel or

group of pixels need be above a specific threshold to form seeds for clustering. This

method will also find clusters that are broken up by cuts in both frequency and time

due to notches and glitch cuts. This method focuses on longer lived signals which are

monotonic. For shorter duration signals, seeded clustering is likely to be superior.

6.2.1. Single Pixel Statistic

STAMP uses a cross power statistic. For a single time-frequency pixel it is [81]:

Ŷ (t; f, Ω̂) ≡ Re
[

Q̃IJ(t; f, Ω̂)CIJ(t; f)
]

(6.1)

81



where the one-sided cross-power spectrum is [81]:

CIJ(t; f) ≡ 2s̃∗I(t; f)s̃J(t; f) (6.2)

Q̃IJ(t; f, Ω̂) is a filter function which accounts for source direction, polarization

and the detector antenna functions. For unpolarized sources, the filter function is [81]:

Q̃IJ(t; f, Ω̂) =
1

ǫIJ(t; Ω̂)
e2πifΩ̂·∆−→x IJ/c (6.3)

where the “pair efficiency” ǫIJ(t; Ω̂) ∈ [0, 1] is [81]:

ǫIJ(t; Ω̂) ≡
1

2

∑

A

FA
I (t; Ω̂)F

A
J (t; Ω̂) (6.4)

where I and J are the detectors, FA
I (t; Ω̂) is the “antenna factor” for detector I and

∆−→x IJ ≡ −→x I −−→x J is the difference in position vectors of the detectors. A is summed

over the GW polarizations.

An estimator for the variance of Ŷ is [81]:

σ̂2
Y (t; f, Ω̂) =

1

2
|Q̃IJ(t; f, Ω̂)|2P adj

I (t; f)P adj
J (t; f) (6.5)

where P adj
I (t; f) is the average one-sided auto-power spectrum in neighboring pixels

[81]:

P adj
I (t; f) ≡ 2

〈

|s̃I(t; f)|2
〉

(6.6)

The brackets 〈〉 denote an average over neighboring pixels.
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The SNR from STAMP for a single pixel is then defined as [81]:

SNR(t; f, Ω̂) ≡ Ŷ (t; f, Ω̂)

σ̂Y (t; f, Ω̂)
= Re





Q̃IJ(t; f, Ω̂)

|Q̃IJ(t; f, Ω̂)|
CIJ(t; f)

√

1
2
P adj
I (t; f)P adj

J (t; f)



 (6.7)

Note that this SNR of a single ft-pixel does not depend on the polarization

properties of the source, as the polarization does not affect the phase of Q̃, which

is the only dependence of this SNR since it doesn’t depend on the magnitude of Q̃

[81]. This degeneracy can be broken when combining ft-pixels from multiple times or

multiple detector pairs [81].

6.2.2. Multi Pixel Statistic

For a multi-pixel statistic where a transient persists over N pixels in a set of

pixels Γ, the SNR of the cluster is is calculated by summing the SNR of the individual

pixels and dividing by
√
N :

SNRΓ(Ω̂) =

∑

t;f∈Γ SNR(t; f, Ω̂)√
N

(6.8)

In the case of the clustering algorithm described in Section 6.2.3, when the line

defining the cluster overlaps two pixels for the same time (t), the pixels will be weighted

and treated as one pixel.

6.2.3. Seedless Clustering

There are two general types of clustering algorithms used by STAMP: seed-based

clustering and seedless clustering. Burstegard is an example of the more conventional

seed-based clustering approach which is based on using pixels above a given threshold
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as seeds to group into larger clusters. Burstegard was used in the search for long

transients related to GRBs, and a related algorithm called zebragard was used in the

STAMP all-sky search [79, 83].

The algorithm called stochtrack is a seedless clustering algorithm that instead

relies on creating many curves from quadratic Bezier functions and using those as

the potential clusters, compares the SNR of each cluster, keeping the loudest [82].

This gives a loudest cluster statistic for each ft-map it is used on. Constraints to the

randomly generated curves include requiring the curves persist for a minimum time tmin,

as well as fitting to three time-frequency control points: P0(tstart, fstart), P1(tmid, fmid)

and P2(tend, fend). These control points are used to form a curve parameterized by

ξ = [0, 1] [82]:






t(ξ)

f(ξ)






= (1− ξ)2P0 + 2(1− ξ)ξP1 + ξ2P2 (6.9)

Each template is generated using six random numbers. This can be done with

GPUs. The number of templates is often O(105−108), with order 200,000 (or 2×105)

as typical. This search used 30,000,000 (3× 107) templates.

6.3. Data Analysis Procedures

The data in this search was analyzed using STAMP with the seedless clustering

method as described in Section 6.2.3. First, the triggers that occurred during coincident

science times were identified which allowed the on-source and off-source data to be

determined for each trigger. Once the source direction was determined and the

appropriate spectral lines notched, the background was estimated using the off-source

data and the significance of the on-source events could be determined. The off-source

data was compared to simulations as well as additional off-source data sets that had

84



their own constraints. Those constraints were: 1) the power configuration must be

the same as the off-source; or 2) the range must be within 5% of the off-source.

6.3.1. Identifying Triggers

The potential triggers for this search were taken from the IPN master burst list

[80]. The time given for each trigger is the Universal Time at the satellite when the

satellite was triggered, not the time at which the signal crossed the Earth. From the

IPN burst list it can be seen that all triggers that occurred during S6 are recorded for

times at satellites within one light second of the Earth. The time of each trigger is

also truncated to one second accuracy. These two sources of timing error add up to as

much as one second, which is within the limits of the on-source window of [-2, 1602]

seconds as described in Section 6.3.4.

Triggers from this list were chosen for this search if they occurred when both H1

and L1 were active and in science mode. The FERMI/GBM list was also searched for

possible triggers, however no new triggers were found during coincident science times

[84]. There were three triggers which satisfied these conditions (see Table 6.1). The

chance that a trigger occurred just before the start of coincident science time was also

considered. Triggers within 1000 seconds of coincident science times were searched

and one trigger at was found, however it was disregarded because it was quite far from

coincident science time.

Trigger GPS UTC (at satellite) Source Epoch

2469 940556320 26 OCT 2009 01:38:25 SGR 1806-20 S6B
2471 949827104 26 MAR 2010 20:48:59 SGR 1806-20 S6C
2475 957191879 06 MAY 2010 14:37:44 1E 1841-045 S6C

TABLE 6.1. Information on S6 magnetar burst triggers.
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Virgo was also considered as a possible data source, however adding Virgo data

provided no new triggers. Virgo was active during the trigger at 940556320 GPS, but

the ranges of H1 and L1 were superior. Virgo was not active during S6 C, and thus

not active during the other two triggers. The STAMP pipeline is designed to handle

two detectors, therefore because Virgo data was either unavailable or available with

less sensitivity, H1 and L1 alone were used for this study. The commands used to find

the times each detector was in science mode are listed in Table 6.2.

LHO

ligolw_segment_query --database --query-segments

--include-segments 'H1:DMT-SCIENCE:4' --gps-start-time 931035296

--gps-end-time 971622272 | ligolw_print -t segment:table

-c start_time -c end_time -d " " > H1S6science4.txt

LLO

ligolw_segment_query --database --query-segments

--include-segments 'L1:DMT-SCIENCE:4' --gps-start-time 931035296

--gps-end-time 971622272 | ligolw_print -t segment:table

-c start_time -c end_time -d " " > L1S6science4.txt

Virgo (VSR2)

ligolw_segment_query --database --query-segments

--include-segments 'V1:ITF_SCIENCEMODE:6' --gps-start-time 931035296

--gps-end-time 971622272 | ligolw_print -t segment:table

-c start_time -c end_time -d " " > V1VSR2science6.txt

Virgo (VSR3)

ligolw_segment_query --database --query-segments

--include-segments 'V1:ITF_SCIENCEMODE:7' --gps-start-time 931035296

--gps-end-time 971622272 | ligolw_print -t segment:table

-c start_time -c end_time -d " " > V1VSR3science7.txt

TABLE 6.2. Commands to find science segment times during S6 and save in text files.

6.3.2. Source Direction

The directions used in the search for GWs for each magnetar burst event were

those of the source object. Two sources were identified from the online master burst

list: SGR 1806-20 (an SGR) and 1E 1841-045 (an AXP) [80]. The directions of these
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objects were provided from the McGill magnetar catalog, available online1 and in the

cited publication [85]. See Table 6.3 for source sky location and distance.

Source Right Ascension (hrs) Declination (degrees) Estimated Distance

SGR 1806-20 18h08m39.337s −20◦24′39.85′′ 8.7+1.8-1.5 kpc
1E 1841-045 18h41m19.343s −04◦56′11.16′′ 8.5+1.3-1.0 kpc

TABLE 6.3. Information on S6 magnetar burst source positions and distances from
Earth [85].

Since astronomical objects are continually moving through space, their sky

positions change over time. If the change in position of the objects is large enough,

proper motion must be accounted for to accurately target the source object with the

time delay of the detectors. SGR 1806-20 was localized and its counterpart identified

in [86] and its proper motion estimated in [87]. 1E 1841-045 was localized in the

sky and multiple possible counterparts identified in [88]. A more recent study has

proposed a possible near infrared (NIR) counterpart, however the counterpart could

not be confirmed [89]. Therefore, studies on the proper motion of 1E 1841-045 are

restricted to placing upper limits. The upper limits on both the RA and declination of

1E 1841-045 are currently less than four milliarcseconds per year (mas/yr) [90]. Table

6.4 summarizes the proper motion of both sources.

Source Proper Motion RA (mas/yr) Proper Motion Dec (mas/yr)

SGR 1806-20 -4.5 -6.9
1E 1841-045 < 4 < 4

TABLE 6.4. Information on S6 magnetars burst sources proper motions [85, 87, 90].

The resolution of the LIGO-Virgo three detector network is estimated to be ∼10

square degrees for 90% confidence limits [91]. The possible change in sky position

1The McGill Online Magnetar Catalog is available at http://www.physics.mcgill.ca/~pulsar/
magnetar/main.html [65]
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for either source over 10 years is much smaller than this resolution (SGR 1806-

20: ∆RA = 0hr0m0.045s ∆dec = 0◦0m0.069s, 1E 1841-045: ∆RA < 0hr0m0.040s

∆dec < 0◦0m0.040s). The actual difference from measurement time to trigger time is

on order of 3–5 years, and the corresponding change in sky position proportionally

smaller. Compared to the estimated sky resolution of ∼3◦ (0.2 hrs or 0hrs12m), the

changes in sky position are negligible for this analysis. Therefore, the sky positions

are taken as directly measured.

6.3.3. Data Quality

The cross-power analysis method used by this search requires data from science

segments with coincident data from two detectors. A science segment is “defined

as time when the interferometer is operating in a nominal state and the spectral

sensitivity is deemed acceptable by the operator and scientists on duty” [19]. Data

from times marked by CAT1 flags are deemed as having severe data quality issues

and are not used in this search. There are also various times with hardware injections,

where a fake signal is put into the data. These times are also removed from the

analysis as the data is contaminated by the injection. Times with pulsar injections

were not removed as they were continuously running, but the pulsar lines were notched

if they showed up in the background as described in Section 6.3.6. The times that are

left were listed in the job file for the STAMP-AS search. This job file was used as the

basis of available times for this search.

6.3.4. Search Window

The search window is defined by two sets of limits: the time window and the

frequency window. The time window for this search spans two seconds before the
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trigger to 1600 seconds after the trigger, or [-2, 1600] s. The 1600 seconds following

the trigger is based on two things: 1) observations that the longest afterglow from a

giant flare was about 400 seconds long; and 2) the idea from several papers that GW

signals associated with QPOs may last several times longer than the observed QPOs

in the EM afterglow of the giant flares. The two seconds preceding the trigger is to

ensure the start of the event is in the data and to account for any possible timing

errors from the satellites, as well as the difference in time at the satellites and that

recorded on Earth.

The pixels in the ft-maps are 4 seconds by 1 Hz due to the combination of

computational limits, increased sensitivity with longer pixels, and ability to search

for more general waveforms with shorter pixels. The ft-map is calculated with a

Hann window and 50% overlap of each pixel in time, making the time resolution two

seconds. The resulting 4 s by 0.25Hz pixels are combined into 4 s by 1Hz pixels. The

50% overlap adds an additional two seconds on to the end of the time window, making

the effective time window [-2, 1602] s.

The end of LHO’s science segment (at 940557107 GPS) is 787 s after the trigger

(at 940556320 GPS) [80]. The resolution of the pixel map is 2 s, so the end of this

trigger’s on-source window becomes 786 s. After accounting for the 18 s needed for

preprocessing at the end of the segment, the on-source window of this event becomes

[-2, 766] s ([-2, 768] s with the 50% overlap).

The frequency range of the ft-maps spans 40 Hz to 2500Hz, or [40, 2500] Hz. The

lower bound comes from the seismic wall at lower frequency, and the higher bound is

set to include the highest observed QPO frequencies in the EM afterglow, including

the QPOs at 1840Hz and 2384Hz. The search window parameters are summarized in

Table 6.5.
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Frequency window [40, 2500] Hz

Time window (with 50% overlap) [-2, 1600] ([-2, 1602]) s

Time window for trigger 2469 (with 50% overlap) [-2, 766] ([-2, 768]) s

∆f 1 Hz

∆t 4 s (2 s time resolution)

FFT window Hann

TABLE 6.5. Search window parameters.

6.3.5. On-Source Window

The on-source window consists of the data surrounding a trigger. It includes the

time required for the search window plus additional data for the preprocessing stage.

The on-source window is not time shifted. The on-source window includes 18 seconds

before and after the search window. This gives an on-source window of [-20, 1620] s

([-20, 786] for trigger 2469). The 18 seconds includes a 2 second buffer as well as 16

seconds to help estimate the pixel background for the pixels on the beginning and end

of the pixel map. The windows are summarized in Table 6.6.

On-source window [-20, 1620] s

On-source window for trigger 2469 [-20, 786] s

TABLE 6.6. On-source windows.

6.3.6. Notching Lines

The lines notched for each trigger were chosen by running the analysis on data

without notches. Initially the window was broken up in frequency into smaller

overlapping sub-windows: [40, 70] Hz, [40, 500] Hz, [70, 500] Hz, [250, 750] Hz, [500,

1000] Hz, [750, 1250] Hz, [1000, 1500] Hz, [1250, 1750] Hz, [1500, 2000] Hz, [1750,

2250] Hz and [2000, 2500] Hz. First, tens of sets of time shifted segment-pairs with
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1 s× 1Hz pixels were run using these sub-windows without setting the clustering seed.

These segment-pairs were run with time windows of [-2, 400] s (with an additional

half second on the end due to the 50% overlap). Then, tens of sets were run with

4 s× 1Hz pixels and the normal time window. The number of templates run in the

sub-windows was first 3,000,000 and then 6,000,000. As identifiable lines were found,

these segment-pairs were rerun with the identified lines notched to search for additional

lines. Next the full 1000 off-source set of segment-pairs was run using the full window,

and any qualifying lines found were notched. When running with the full window,

30,000,000 templates were used. Finally, the full set of 1000 off-source segment-pairs

was run with the clustering seed used for the analysis and any identified lines were

notched.

Lines that appeared with an identified source on the notch list https://wiki.

ligo.org/viewauth/Main/Notchlist were notched, as well as adjacent lines that

appeared on the STAMP-AS list [92]. Lines that showed up this second way were lines

adjacent to 60Hz harmonics which had also showed up and been notched. There were

a few additional lines adjacent to identified lines in the off-source data that didn’t

appear in the STAMP-AS list. These consisted of a line near a 16Hz harmonic, lines

adjacent to 60Hz harmonics and lines adjacent to pulsar injections. These lines were

also notched as they were adjacent to identified lines.

Many other lines showed up; however, they were within the background

distribution and didn’t show up in either the notch list or the STAMP-AS list.

Because they were within the background distribution and not creating a tail and the

source was not identified, they were not notched. Notching identified lines and adjacent

lines was sufficient to remove the population of high-SNR clusters that deviated largely

from the distributions from simulations (see Section 6.3.9).

91

https://wiki.ligo.org/viewauth/Main/Notchlist
https://wiki.ligo.org/viewauth/Main/Notchlist


The lines for each trigger are detailed in Table 6.7, Table 6.8 and Table 6.9.

SGR Trigger 2469

Line Source Line(s) [Hz]

60 Hz and surrounding frequencies 57, 58, 59, 60, 61, 62, 63

Second 60 Hz harmonic and surrounding frequencies 119, 120, 121

Third 60 Hz harmonic and surrounding frequencies 178, 179, 180, 181, 182

Fourth 60 Hz harmonic and surrounding frequencies 239, 240, 241

Seventh 60 Hz harmonic and adjacent frequency 420, 421

Ninth 60 Hz harmonic and adjacent frequency 540, 541

Additional 60 Hz harmonics
300, 360, 480, 600, 720, 960,

1080, 1380, 1740, 1800

Pulsar injection and adjacent frequency 53, 54

Pulsar injection nearby 108

16 Hz harmonic and adjacent frequency 223, 224

16 Hz harmonics 64, 320, 368

2 Hz harmonic 372

16 Hz harmonic, Hanford photon calibration
400

line, high coherence notch

High coherence notch 1478

TABLE 6.7. Lines identified and notched for trigger 2469. Line sources identified
from [92].

6.3.7. Background Estimation

The background for each trigger is estimated with 1000 time-shifted data segment-

pairs taken from off-source data (data outside of the on-source window). Each of these

sections of data is the same size as the on-source window of the associated trigger.

The data sections are made from the off-source data of the STAMP-AS jobs mentioned

in Section 6.3.3. The data sections are created such that they occur in both detectors

at the same time and do not overlap other sections. The sections are taken from
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Trigger 2471

Line Source Line(s) [Hz]

60 Hz and surrounding frequencies 57, 58, 59, 60, 61, 62, 63

Second 60 Hz harmonic and surrounding frequencies 118, 119, 120, 121, 122

Third 60 Hz harmonic and surrounding frequencies 179, 180, 181, 182

Fourth 60 Hz harmonic and surrounding frequencies 239, 240, 241

Fifth 60 Hz harmonic and surrounding frequencies 299, 300, 301

Eighth 60 Hz harmonic and adjacent frequency 480, 481

Additional 60 Hz harmonics 360, 420, 720, 960, 1380, 1800

Pulsar injection nearby 108

16 Hz harmonic and high coherence notch 112

16 Hz harmonics 224, 304, 384

2 Hz harmonic 372

16 Hz harmonic, Hanford photon calibration
400

line, high coherence notch

TABLE 6.8. Lines identified and notched for trigger 2471. Line sources identified
from [92].

data as close to the on-source window as possible. For example, if 2000 seconds of

coincident data is available, the closest 1640 seconds are taken to create an off-source

data segment. If less continuous data is available than the length of the on-source

window, then that data is not included in the analysis. In the case of trigger 2469,

after the 1640 second long off-source data segments are formed, the first 806 seconds

are used in order to match up with the shortened on-source window.

The 1000 time-shifted data segment-pairs are generated from 33 segments from

each detector (66 total). Taking data from completely different times ensures the

data is shifted by at least the duration of the on-source window. A monochromatic

or near-monochromatic signal could add into the background estimation if the time-

shift isn’t longer than the signal time. The large time shift from pairing different
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SGR Trigger 2475

Line Source Line(s) [Hz]

60 Hz and surrounding frequencies 57, 58, 59, 60, 61, 62, 63

Second 60 Hz harmonic and surrounding frequencies 119, 120, 121

Third 60 Hz harmonic and surrounding frequencies 178, 179, 180, 181, 182

Fourth 60 Hz harmonic and surrounding frequencies 239, 240, 241

Additional 60 Hz harmonics 300, 360, 480, 1380, 1560, 1740

Pulsar injection and adjacent frequency 52, 53

Pulsar injection nearby 108

16 Hz harmonic 64

2 Hz harmonic 372

16 Hz harmonic, Hanford photon calibration
400

line, high coherence notch

Livingston photon calibration 404

High SNR notch 85

TABLE 6.9. Lines identified and notched for trigger 2475. Line sources identified
from [92].

segments together helps prevent this possibility. Shifting by time segments also allows

many time-shifted data sets to be generated from a small amount of data close to

the on-source time, which is preferable for estimating the noise of the on-source. By

pairing different segments from each detector together, 1056 time-shifted segment-pairs

can be formed. The thousand segment pairs are chosen such that the sum of the

difference between the on-source start time and the off-source pairs segment start

times is minimized.

1000 time-shifted segment-pairs was chosen for two reasons. The first was to get

a smooth SNR distribution for the background estimation. The second was reduce

the probability that the on-source SNR was louder than the background due to noise

fluctuations. The probability of any one of the three triggers having a larger SNR
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than their loudest respective background SNRs due to random chance is 0.2997001%,

making the significance of such an event nearly 3 sigma. This is calculated in 6.10,

where PSNR>SNRThreshold
is the probability for a single trigger that the on-source event

is louder than the background due to noise, n is the number of triggers (n = 3 in this

search), Pnone is the probability that none of the SNRs of the triggers is above their

backgrounds and Pany is the probability that any of the on-source SNRs is above their

backgrounds :

Pany = 1− Pnone = 1− (1− PSNR>SNRThreshold
)n = 1− (1− 1/1000)3 = 0.002997001

(6.10)

After the SNR of the loudest cluster of each off-source time-shifted data segment-

pair was found, it was then ordered with the rest of the off-source SNRs into an

SNR distribution that was used to estimate the false alarm probability (FAP). The

probabilities were assigned to the population by the proportion Pα of clusters with

SNR greater than or equal to the cluster α’s SNR (where NSNR>SNRα
is the number of

clusters with SNR greater than or equal to the cluster α’s SNR and NTotal is the total

number of clusters):

Pα = NSNR>SNRα
/NTotal (6.11)

The cluster with the lowest SNR was assigned a probability of 1, while the cluster

with the highest SNR was assigned a probability of 1/1000 or 0.001. This method was

used to calculate the SNR distributions in both the time-shifted and simulated sets of

data. The FAP of the on-source event was estimated as the proportion of off-source

clusters with SNR equal to or greater than that of the on-source event:

FAP = NSNR>SNRα
/NTotal (6.12)
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If the event turned out to be louder than the loudest of the off-source clusters,

then more off-source time-shifts would be needed to properly estimate the SNR of the

event.

6.3.8. Horizon Distance and Laser Power

In the process of estimating the background of each trigger, two questions about

data quality and how well the off-source data represents the on-source data were raised.

The first question was how does the laser power of the detectors affect the background

SNR distribution? The second question was does the background SNR distribution

change with the current range of the detector? Two additional background estimations

were calculated for each trigger to test these questions (with the exception of trigger

2469 where the entire set of off-source segments were in the same power configuration

as the on-source window). In order to test whether the laser power affected the

SNR distributions, the 33 closest segments with the same power configuration as the

on-source were used. In order to test the effect of the range on the SNR distribution,

the 33 closest segments in which the horizon distance was within 5% of the on-source

average were chosen.

The state of the laser power was determined by querying the segment database

to find the times when the different power flags were active. The power flags were

H1:DMT-PSL_POWER_LT_10W, H1:DMT-PSL_POWER_LT_14W, L1:DMT-

PSL_POWER_LT_10W and L1:DMT-PSL_POWER_LT_14W. The flags were

active when the wattage of the power was at or below the number before the W

in the flag (e.g. laser power in H1 was at or below 10 Watts when H1:DMT-

PSL_POWER_LT_10W was active). To verify the accuracy of these flags, the

LIGO electronic logs were consulted, and when the laser power was recorded, they
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agreed with the flags. Additionally, the laser power channels H1:PSL-PWR_PWRSET

and L1:PSL-PWR_PWRSET were checked for the background and on-source of trigger

2471 and matched up with the flags.

The power flags were used to find time segments with the same power configuration

in H1 and L1 as the on-source. First the time segments were broken up in the same

fashion as the earlier off-source segments, requiring the times to be within the STAMP-

AS jobs. Then the segments were picked individually for each detector such that the

laser power configuration matched that of the on-source for that detector. It was not

a requirement to choose segments that matched for both detectors, but rather the

closest segment was chosen for a specific detector if it matched the laser power.

Data from https://dcc.ligo.org/LIGO-T1100338/public was used to find the

33 closest jobs within 5% of the on-source horizon distance [93]. The horizon distance

for a binary system in which each object was one solar mass was chosen for this

comparison. The horizon distances were calculated for 2048 second long segments

(that will be termed “range segments”) that are not always in sync with the segments

calculated in this search [93]. If a segment of this search was completely within

one of the range segments, then the horizon distance of that range segment was

used; otherwise, if the segment overlapped multiple range segments, then the horizon

distance was estimated using the average of the horizon distance as calculated by the

number of seconds the segment overlaps each range segment. The segments were chosen

for restricted range in a similar way as for the restricted power configuration: after

initially breaking the coincident data into segments requiring the times to be within

the STAMP-AS jobs, the segments closest to the on-source were chosen independently

for each detector if they were within 5% of the on-source range for that detector.
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For all of the triggers, the effect of restricting either the laser power or the horizon

distance did not significantly affect the SNR distributions.

6.3.9. Monte-Carlo Simulations

The background SNR distribution from time-shifted data of each trigger’s off-

source segments was compared to SNR distributions calculated from Monte-Carlo

simulations. 1000 time-shifted simulated segment-pairs were used to generate a single

simulated SNR distribution. Ten simulated SNR distributions were generated for each

trigger. For each SNR distribution, 33 sets of simulated segments per detector were

generated (66 total). All simulated segments, regardless of detector or trigger, used a

unique number to seed the random number generator. These 33 segments per detector

were used to construct 1000 segment-pairs for each simulated SNR distribution in the

same fashion as the time-shifted segment-pairs. Each segment was assigned a detector

and time corresponding to one of the off-source segments. The simulated segments

were used to construct 1000 segment-pairs using the 1000 closest segment-pairs to

the on-source time, just like with the time-shifted data. The Gaussian data from

each simulation was colored by the on-source PSD for the appropriate detector. The

PSD was estimated using data from the on-source window with Welch’s method as

implemented by the python library matplotlib (function matplotlib.pyplot.psd) using

50% overlap and 1 second long intervals.

6.3.10. Software Specifics

The version of the STAMP pipeline used in this analysis is stamp2

Rev # 11102 from https://ligo-vcs.phys.uwm.edu/svn/matapps/packages/

stochastic/trunk/stamp2. Two separate matlab files were used for preprocessing.
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The first was “anteproc.m”, which was used for all the data that did not require

injections, including the simulated data. The second was “preproc.m”, which was

used when injections were used, as well as during initial testing. They are mostly the

same, with the main differences being “preproc.m” can inject waveforms and processes

data from both detectors and saves them in one “.mat” file. “anteproc.m” has the

advantage that it will save the data processed from each detector separately, which

lowers the amount of preprocessing and data storage that is needed (66 segments

preprocessed vs 1000 with “preproc.m”). When using “anteproc.m” the data can be

time-shifted after preprocessing, while “preproc.m” would need to rerun the data each

time a different time-shift was needed. Both “preproc.m” and “anteproc.m” read in a

parameter file with the settings for the preprocessing stage, a job file defining each of

the possible time segments, and a number that determines which time segment will

be preprocessed.

The main stage of the analysis used “grand_stochtrack.m”, which is a wrapper for

“clustermap.m”. “clustermap.m” calculates the cross-power map, the sigma map and

the SNR map from the power maps from the preprocessing stage, as well as performs

the clustering. “grand_stochtrack.m” is designed for use with configuration files and

takes, as input, the configuration file and a number (in this case the segment-pair

number out of 1000).

“preproc.m”, “anteproc.m” and “grand_stochtrack.m” were all compiled into

Matlab executables to be used on the CalTech cluster using Condor, software that

manages the distributed parallelization of tasks on the LIGO clusters. The Matlab

version used was Matlab 2013a.

99



CHAPTER VII

RESULTS OF GRAVITATIONAL WAVE SEARCH

No gravitational wave candidate was identified in this search. The loudest and

most significant cluster was from SGR trigger 2475, with SNR = 6.24 and FAP = 0.213.

When rerun with the absolute value SNR modification to the clustering algorithm

discussed in Section 7.3, the SNR was the same with FAP = 0.378. The lowest upper

limit calculated from this search was from this same trigger. The energy upper limit

for a 90% confidence level (CL) was calculated as EGW = 1.48 × 1046 erg for a half

sine-Gaussian waveform with central frequency f0 = 150 Hz and characteristic time

τ = 400 s for a source at a distance of 8.5 kpc. Accounting for the calibration error,

this upper limit becomes EGW = 2.03 × 1046 erg. The search results for all three

triggers are summarized in Table 7.1. See Table 7.6 and Table 7.7 for the full set of

calculated upper limits.

7.1. Search Results

SGR 2475 had the most significant cluster with an SNR of 6.24 and an FAP of

0.214 (FAP = 0.378 when rerun with the absolute value SNR modification). The

probability of one of the three triggers having FAP 6 0.213 is slightly more than

51%. The results for all three triggers is summarized in Table 7.1. See Figure 7.1,

Figure 7.2 and Figure 7.3 for plots of each of the three open boxes plotted against

their respective background and simulated backgrounds. See Figure 7.6 and Figure

7.7 for the FT-map and loudest cluster for SGR trigger 2475.

As it was found that SGR trigger 2469 and SGR trigger 2475 had a negative

SNR response to linear polarizations, the background and on-source was rerun for
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Trigger SNR FAP abs SNR abs FAP

2469 5.73 0.929 6.06 0.679
2471 5.79 0.888 N/A N/A
2475 6.24 0.214 6.24 0.378

TABLE 7.1. Summary of open-box results. SGR trigger 2471 had a positive SNR
response to all tested polarizations, so rerunning with the absolute value SNR
modification was unnecessary. The other two were rerun, so the SNRs and FAPs can
be interpreted for circular and linear polarizations respectively (although the SNR for
SGR trigger 2475 did not change, so the positive SNR was louder). The SNR values
are rounded to 3 significant figures. The FAP values are exact as calculated from
individual backgrounds.

these triggers with the absolute value SNR modification to the clustering algorithm.

The new background distributions are plotted and compared to the old background

distributions in Figure 7.4 and Figure 7.5 respectively. The simulated backgrounds

were not rerun in the interest of saving computational resources and time. SGR trigger

2471 was not rerun because all tested polarizations returned a positive SNR.

The rerun background distributions become somewhat louder. SGR trigger 2469

had a louder cluster when rerun with the absolute value modification. Both the

backgrounds and on-source are in line with expectations: if random noise does not

favor positive or negative SNRs, each job-pair would have a 50% probability of it’s

loudest cluster having positive SNR. This means it is likely around half the job-pairs

would have a loudest cluster with negative SNR which wouldn’t have been counted

without the absolute value modification. The magnitudes of these negative SNR

clusters should have the same behavior as the positive SNR clusters, so they shouldn’t

drastically effect the background distribution. The results using the absolute value

clustering algorithm are summarized in Table 7.1.
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FIGURE 7.1. The on-source event plotted against the background for SGR trigger
2469. The shaded grey areas mark the regions within σ = 1, 2, 3 thresholds along
the x-axis. σ was calculated for each FAP using the SNRs from 10 simulated SNR
distributions as described in Section 6.3.9. For the on-source event, SNR = 5.73 and
FAP = 0.929.
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FIGURE 7.2. The on-source event plotted against the background for SGR trigger
2471. The shaded grey areas mark the regions within σ = 1, 2, 3 thresholds along
the x-axis. σ was calculated for each FAP using the SNRs from 10 simulated SNR
distributions as described in Section 6.3.9. For the on-source event, SNR = 5.79 and
FAP = 0.888.
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FIGURE 7.3. The on-source event plotted against the background for SGR trigger
2475. The shaded grey areas mark the regions within σ = 1, 2, 3 thresholds along
the x-axis. σ was calculated for each FAP using the SNRs from 10 simulated SNR
distributions as described in Section 6.3.9. For the on-source event, SNR = 6.24 and
FAP = 0.214.
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FIGURE 7.4. FAP vs SNR for 2469 for abs SNR version. For the on-source event,
SNR = 6.06 and FAP = 0.679.
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FIGURE 7.5. FAP vs SNR for 2475 for abs SNR version. For the on-source event,
SNR = 6.24 and FAP = 0.378.

FIGURE 7.6. FT-map from STAMP for SGR trigger 2475.
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FIGURE 7.7. Loudest cluster found by STAMP’s seedless clustering algorithm,
stochtrack, for SGR trigger 2475.
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7.2. Upper Limits

Upper limits were set on the energy of a GW that could exist without being

detected in the data with this search. To find the upper limits, half sine-Gaussians were

injected into 40 job-pairs, including the on-source. The 39 off-source job-pairs used

had lower SNRs than the on-source. The detection efficiency for a particular injection

was found by finding the percentage of injected waveforms that were recovered with

SNR greater than the on-source SNR. Upper limits were found for detection efficiencies

of 90% and 50%.

It is thought higher frequency QPOs may damp on sub-second timescales [94, 95].

In addition, higher frequency signals would need much more energy to be detectable.

Therefore these upper limits focus on low frequencies. It was not assumed that

magnetars would have a particular inclination angle during bursts or flares. As such,

upper limits were set for a range of polarizations, discussed in more detail in Section

7.2.1.3. While SGR trigger 2471 and SGR trigger 2475 each had a single on-source

SNR, SGR trigger 2469 had a different SNR with and without the absolute value

SNR modification. For SGR trigger 2469, the on-source SNR of 5.73 (without the

absolute value SNR modification) was used to calculate the upper limits with circular

polarization and the SNR of 6.06 (with the absolute value SNR modification) was

used to calculate the upper limits with the non-circular polarization.

Models for magnetar bursts and giant flares did not provide enough details

to construct specific waveforms. As such, ad hoc sine-Gaussian waveforms were

constructed with EM QPO observations used as a guide. It should be noted that the

sine-Gaussian is a rough approximation, and that actual QPOs can vary more in both

frequency and amplitude.
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7.2.1. Waveform Parameters

The last half of a sine-Gaussian was used as the waveform type injected into

the data. The length of the injected waveforms was equal to 3τ . In addition to the

Gaussian envelope, a Hann window was applied to beginning and end of the signal:

the beginning had the first half of a 2 second long Hann window applied and the

end had the last half of the Hann window applied (making each half Hann window 1

second long).

A sine-Gaussian is of the form:

hSG(t+ t0) = h0e
−t2/τ2 sin(2πf0t) (7.1)

The quality factor Q can be defined as:

Q =
√
2 πτf0 (7.2)

(7.1) can be rewritten in terms of the quality factor in (7.2):

hSG(t+ t0) = h0e
−2π2f0

2t2/Q2

sin(2πf0t) (7.3)

The equations for plus and cross polarizations of a sine-Gaussian waveform

generated by a quadrupole are:

h+ =
h0√
2
e−t

2/τ2
(

(1 + cos2 ι)

2
cos (2 πf0t) cos 2ψ + (cos ι) sin (2 πf0t) sin 2ψ

)

(7.4)

h× =
h0√
2
e−t

2/τ2
(

−(1 + cos2 ι)

2
cos (2 πf0t) sin 2ψ + (cos ι) sin (2 πf0t) cos 2ψ

)

(7.5)

109



ι is the inclination angle of the quadrupole and ψ is the polarization angle. The

polarization angle is often included in the antenna factors. In such a case, the equations

for h+ and h× become:

h+ = h+,ψ=0 =
h0√
2
e−t

2/τ2 (1 + cos2 ι)

2
cos (2 πf0t) (7.6)

h× = h×,ψ=0 =
h0√
2
e−t

2/τ2 (cos ι) sin (2 πf0t) (7.7)

7.2.1.1. Characteristic Time

The τ in Table 7.2 were tested to determine which combination of τ and h0

would produce the best (and lowest) energy upper limits. The total energy of the

waveform was kept constant while τ and h0 were varied (EGW ∝ h0
2 × τ = constant).

Waveforms with longer τ were recovered at lower energies. Two values of τ were

chosen to cover both shorter and longer signals: τ = 150 s and τ = 400 s. Since longer

τ were recovered with lower calculated energies, these τ can be thought of as setting

rough upper limits for waveforms with longer τ , at least up to about 800 s as that was

the longest τ tested. These durations were both on the order of observed EM QPO

lengths, with 400 s being the longest observed QPO [57].

τ (s): 50, 100, 150, 200, 300, 400, 800

TABLE 7.2. Initial values of τ to test.

7.2.1.2. Central Frequency

From reviewing the literature and discussions with Paul Lasky and James Clark,

it was decided to focus on lower frequencies for the upper limits. In addition to much

higher energies required for detection at higher frequencies, it is thought that any
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high frequency modes will damp on sub-second timescales, which is not within the

scope of this search [94, 95]. The frequency of 150Hz was chosen to cover the most

sensitive range of the detectors, and the frequencies of 450Hz and 750Hz were chosen

to cover the lower-mid frequency range outside of the most sensitive frequency band.

A summary of the parameters varied in the injections (besides h0) can be found in

Table 7.3.

τ (s): 150, 400

Frequency (Hz): 150, 450, 750

TABLE 7.3. Waveform parameters.

7.2.1.3. Polarization

The original intent was to put limits on the entire range of possible polarizations.

Calculations of the hrss suggest that circularly polarized signals would give the best

energy upper limits and that linear polarizations would give energy upper limits

approximately 8 times higher (see (B.37) and (B.38) in Appendix B). The actual

sensitivity to the strain had much more variability. Upon injecting waveforms with

different polarizations, it was found that some polarizations required a much larger

strain to be recovered and some could not be recovered at all (discussed in detail in

Section 7.3). Therefore, with the exception of SGR trigger 2471, upper limits were

found for a subset of polarizations with decent SNR response.

The polarization with the best SNR response was the same for every trigger:

ι = 0◦ and ψ = 0◦. This was used to set the best upper limits for each trigger. The

other polarizations used varied by trigger. The polarization used for SGR trigger 2471

was found using the data plotted in Figure 7.16. From this data, the minimum SNR

response was estimated to occur at ι = 103◦ (rounded to 3 significant figures). ι = 120◦
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(cos ι = −0.5) was used for SGR triggers 2469 and 2475. This provides similar limits

as those found for SGR trigger 2471 and covers approximately 2/3 of the polarizations

as suggested by Figure 7.17 and an equivalent plot for SGR 2469. ψ = 45◦ was used

for all cases as cross polarizations seem to have slightly smaller SNR responses than

plus polarizations. The non-circular polarization angles are summarized in Table 7.4.

The set of values used for the parameters τ and f0 were reduced when finding

the upper limits for non-circular polarizations. As summarized in Table 7.5, only

τ = 400 s and f0 = 150Hz and f0 = 750Hz were used.

SGR Trigger 2469 2471 2475

ι 120◦ 103◦ 120◦

ψ 45◦ 45◦ 45◦

TABLE 7.4. Waveform parameters for non-circular polarizations. ι = 0◦ and ψ = 0◦

were used for circular polarizations for all triggers.

τ (s): 400

Frequency (Hz): 150, 750

TABLE 7.5. Waveform parameters used for non-circular polarizations.

7.2.2. Upper Limit Methodology

The settings used by STAMP to find the upper limits were nearly the same as

those described in Chapter VI. The differences are described below.

To avoid contamination from the loudest cluster in each job-pair, code was added

to STAMP to set the pixels that made up the cluster to NaN, which are replaced with

a value of 0 before calculating the cluster SNR. Once this was done, the SNR values

without injected waveforms were much less loud than the threshold for the job-pairs

that were used.
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A new clustering algorithm known as “singletrack” was written and used for

finding the upper limits. Singletrack uses a list of previously defined clusters and

calculates the SNR for just those clusters, reducing the computational time of the

analysis after the FT-maps are generated from order 30-45 minutes to order 10 seconds.

For each trigger, a cluster or multiple clusters were found for each combination of

frequency and characteristic time by running stochtrack on the set of 40 job-pairs

(with loudest clusters removed) and using the output files for unique clusters which

recovered the injected half sine-Gaussian. Singletrack uses a small subset of the

clusters used by stochtrack, which guarantees that singletrack will not underestimate

the amplitude of the upper limits. Singletrack may not always use the cluster that

would recover the waveform at the lowest possible amplitude, but it is likely to at

least recover the injection close to the lowest possible amplitude. Singletrack is very

fast, but should only be used in cases where the final clusters can be known ahead of

time and should not be used as a general algorithm to look for an unknown signal. It

is meant for situational use such as recovering known injected waveforms.

As discussed in Section 7.3, some polarizations returned a negative SNR. Therefore

singletrack was modified to calculate the absolute value of the SNR of the cluster by

default. Singletrack can also be set to find the cluster with the largest magnitude

SNR of either positive or negative sign.

In order to reduce any bias that may exist from using the same set of clusters

from seeding stochtrack, the injection waveform can be injected into a random time

for each individual instance. The injection start time ranges from the beginning of the

window at -2 s to as close to the end of the window as possible with the waveform still

completely contained within the window (tinjection ∈ [tstart, (tend − td)] where td is the

duration of the injected waveform, tstart is the window start time, tend is the window
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end time and tinjection is the injection start time). The waveforms were injected at 0 s

in the window for circular polarization, and were injected at randomized start times

as described for the polarizations in Table 7.4. The one exception for this is SGR

trigger 2469 for τ = 400 s: the waveform is injected at 0 s in the window because the

waveform is longer than the window.

7.2.2.1. Procedure

In each of these steps, the amplitude h0 is varied at even intervals in log space.

The number of variations can change depending on the step. First a small number

of jobs is used to quickly scan the parameter space of the amplitude and find where

some of the waveforms are recovered. More jobs are added to improve the statistics

and get closer to the desired detection efficiency, before finally using the maximum

number of jobs to find the desired detection efficiency. Less jobs allow the parameter

space to be searched quicker, but more jobs are needed for improved statistics.

The following steps are performed for each combination of parameters in both

Table 7.3 and Table 7.5, except where noted:

1. h0 is varied in log space evenly across 10 different points for two jobs-pairs,

the on-source job-pair and one off-source job-pair. The standard limits for

the amplitude in terms of h02 are [10−46, 10−42]. In the case of the alternate

polarizations, the limits may be adjusted to [10−44, 10−42] or [10−42, 10−40]

instead because the recovery amplitude is worse. 20 total SNR values are

calculated in this step.

2. The values of h0 are focused around the values where the recovery switched from

0% to 100% in the previous step. 10 job-pairs, including the on-source, are used

in this step for each value of h0. Four values of h0 are spaced evenly in log space.
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40 SNR values are calculated in this step. This step was adjusted and repeated

as necessary to get close to the desired detection efficiencies.

3. h0 was varied in log space again, this time for all 40 job-pairs, including the

on-source job-pair. h0 was varied around the 90% threshold from the previous

step, or the points close to it. Four values for h0 is standard for the initial

implementation of this step (five was sometimes used instead). 160 SNR values

are calculated in this step (or 200 if five values are used). This step was sometimes

repeated if values surrounding either the 90% or 50% threshold were not found.

– In the case of the upper limits for waveforms with non-circular polarization,

this step was repeated until values above and below 50% and 90% were close

enough to linearly interpolate the thresholds in log(h0) versus efficiency

space (in some cases the 50% and/or 90% thresholds were directly found

by chance). The polarizations used are described in Table 7.4. These were

done for each trigger for each combination of the parameters in Table 7.5.

4. This step was used for circularly polarized waveform upper-limits only (ι = 0

and ψ = 0 for each combination of parameters in Table 7.3). 40 job-pairs are

again used, including the on-source. Nearly identical to the previous step, with

the difference that only 2 values of h0 are used (80 SNR values calculated). This

step is repeated until both 50% and 90% of the injections are recovered with

SNR greater than the threshold SNR.

7.2.3. Upper limit calculation

These upper limit calculations are for a half sine-Gaussian waveform as presented

in (7.4) and (7.5). The half Hann windows applied to the start and end of the
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waveforms are ignored, and the duration of the waveform is approximated as infinite

instead of 3τ . This leads to upper limits which are an upper bound on the energy in

each waveform. The differences should be negligible, on order of 1% at most for the

shorter waveforms, and less for the longer waveforms.

The root sum square strain of a signal is:

hrss =

√

∫ ∞

−∞
|h|2 dt (7.8)

where |h|2 = |h+|2 + |h×|2. For the last half of a sine-Gaussian waveform of the form

in (7.4) and (7.5), hrss is:

hrss =
h0

4π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)2

4
− cos2 ι

)

e−Q2 (7.9)

For high Q, this is:

hHQ
rss ≈ h0

4π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

(7.10)

The GW energy for a half sine-Gaussian is:

EGW = h0
2r2Qf0

c3π3/2

20G

[

1 +
1

2Q2

(

1 +
1

6
e−Q

2

)]

(7.11)

For high Q, (7.11) can be approximated as:

EHQ
GW ≈ c3π3/2

20G
h0

2r2Qf0 (7.12)
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For the hrss and EGW of a full sine-Gaussian waveform, simply multiply (7.9) and

(7.10) by
√
2 and multiply (7.11) and (7.12) by 2. (7.9), (7.10), (7.11) and (7.12) are

calculated in detail in Appendix B.

7.2.4. Calibration Error

The measured cross-correlated signal h0m1h0m2 has uncertainties due to calibration

error. The detector differential arm lengths are measured in voltage counts.

Measurements must be made on different systems within the detector to measure the

conversion from these voltage counts to actual strain values. The conversion function

is known as the calibration. Errors in the calibration propagate into error in the

measured value of the strain. The calibration errors can be grouped into an overall

scaling error A, a frequency dependent amplitude error, a frequency dependent phase

error δ and a timing error. The timing error is effectively a linear frequency dependent

phase error.
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The effect of the calibration error on the measured strain value can be estimated

with two extremes. The first extreme would be the most sensitive to a potential signal

(the scaling error is δA−, the phase errors of each detector cancel out and the timing

error is zero):

h0 1h0 2
h0m1h0m2

= A1A2

(

1−
√

δA−1
2 + δA−2

2 + |∆h1(t)|2 + |∆h2(t)|2
)

(7.13)

In the other extreme, the calibration error leads to an underestimation of the

strength of a potential signal (the scaling error is δA+, the phase error of the detectors

would be of the same sign with maximum timing error):

h0 1h0 2
h0m1h0m2

= A1A2

1 +
√

δA+1
2 + δA+2

2 + |∆h1(t)|2 + |∆h2(t)|2

cos (2πf45µs + δ1(t) + δ2(t))
(7.14)

For detailed derivations of (7.13) and (7.14) and specific numbers on the different

calibration errors, see Appendix C. In order to set conservative upper limits, the

calibration error in (7.14) was assumed. To account for the calibration error in the

energy upper limits, EGW was multiplied by the ratio in (7.14). Similarly, hrss was

multiplied by the square root of this ratio.

7.2.5. Summary of Upper Limits

The results for circularly polarized signals (with ι = 0◦ and ψ = 0◦) are

summarized in Table 7.6 for a 90% confidence level (CL) and Table 7.7 for 50%

CL. The 50% CL results for hrss are shown again in Table 7.8 with the associated

calibration error shown as a percentage of hrss. Results for the alternate polarizations

listed in Table 7.4 are summarized in Table 7.9 and Table 7.10 for 90% and 50% CL

respectively. The limits assume a fixed source distance and are set in terms of hrss and
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EGW. The calibration error leads to a 15%–21% increase in the strain upper limits

(32%–46% increase in energy upper limits). The tables include the upper limits for

hrss and EGW both with and without the calibration error.

The detection efficiency is plotted against the strain h0 for each combination of

τ and f0 in Figure 7.8, Figure 7.9 and Figure 7.10 for SGR trigger 2469, 2471 and

2475 respectively. The shaded area around each curve is found from calculating the

expectation value for Bayesian posterior probability for a Poisson process with 40

trials and taking the 1-σ width for the posterior probability.

The same plots are remade for the waveforms using the alternate polarizations

with reduced SNR response in Figure 7.11, Figure 7.12 and Figure 7.13. Figure 7.14

shows how the SNR response changes with the strain. The on-source can be seen to

be within the distribution of background points on this plot (this was also true for

plots made for the other parameter combinations).

From these plots, it can be seen that better upper limits were set for longer τ and

frequencies within LIGO’s most sensitive band. It is expected that as the frequency

decreases from LIGO’s most sensitive band, the upper limit values will decrease. This

is supported by the LIGO noise curve, as well as an upper limit which was run for

SGR trigger 2469 for f0 = 100Hz and τ = 150Hz which was recovered at a higher h0

value than its f0 = 150Hz counterpart with the same τ . As the frequency increases

above LIGO’s most sensitive frequency band and as τ decreases, the upper limit values

increase.
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f0 τ h0 hrss hrss cal err Distance EGW EGW cal err

Hz s s1/2 s1/2 kpc erg erg

SGR trigger 2469

150
400

1.07× 10−22 2.39× 10−21 2.74× 10−21

8.7

1.18× 1046 1.55× 1046

450 1.76× 10−22 3.95× 10−21 4.60× 10−21 2.89× 1047 3.91× 1047

750 2.26× 10−22 5.07× 10−21 6.02× 10−21 1.32× 1048 1.86× 1048

150
150

2.85× 10−22 3.90× 10−21 4.47× 10−21 3.13× 1046 4.12× 1046

450 3.87× 10−22 5.31× 10−21 6.18× 10−21 5.22× 1047 7.08× 1047

750 4.80× 10−22 6.58× 10−21 7.81× 10−21 2.22× 1048 3.13× 1048

SGR trigger 2471

150
400

1.58× 10−22 3.53× 10−21 4.14× 10−21

8.7

2.56× 1046 3.52× 1046

450 3.30× 10−22 7.39× 10−21 8.79× 10−21 1.01× 1048 1.43× 1048

750 3.87× 10−22 8.67× 10−21 1.05× 10−20 3.87× 1048 5.66× 1048

150
150

6.71× 10−22 9.20× 10−21 1.08× 10−20 1.74× 1047 2.39× 1047

450 1.10× 10−21 1.50× 10−20 1.79× 10−20 4.18× 1048 5.90× 1048

750 1.34× 10−21 1.84× 10−20 2.23× 10−20 1.74× 1049 2.55× 1049

SGR trigger 2475

150
400

8.66× 10−23 1.94× 10−21 2.27× 10−21

8.5

7.38× 1045 1.01× 1046

450 1.41× 10−22 3.16× 10−21 3.76× 10−21 1.77× 1047 2.49× 1047

750 2.07× 10−22 4.64× 10−21 5.62× 10−21 1.06× 1048 1.55× 1048

150
150

3.81× 10−22 5.22× 10−21 6.12× 10−21 5.35× 1046 7.36× 1046

450 4.10× 10−22 5.62× 10−21 6.68× 10−21 5.58× 1047 7.89× 1047

750 5.87× 10−22 8.05× 10−21 9.75× 10−21 3.18× 1048 4.66× 1048

TABLE 7.6. Upper limits for 90% CL for circularly polarized signals with ι = 0◦ and
ψ = 0◦.
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f0 τ h0 hrss hrss cal err Distance EGW EGW cal err

Hz s s1/2 s1/2 kpc erg erg

SGR trigger 2469

150
400

9.38× 10−23 2.10× 10−21 2.41× 10−21

8.7

9.07× 1045 1.19× 1046

450 1.50× 10−22 3.37× 10−21 3.92× 10−21 2.10× 1047 2.84× 1047

750 1.94× 10−22 4.35× 10−21 5.17× 10−21 9.73× 1047 1.37× 1048

150
150

2.24× 10−22 3.08× 10−21 3.53× 10−21 1.94× 1046 2.56× 1046

450 3.25× 10−22 4.45× 10−21 5.18× 10−21 3.67× 1047 4.97× 1047

750 4.18× 10−22 5.74× 10−21 6.81× 10−21 1.69× 1048 2.38× 1048

SGR trigger 2471

150
400

1.17× 10−22 2.62× 10−21 3.07× 10−21

8.7

1.41× 1046 1.94× 1046

450 2.69× 10−22 6.03× 10−21 7.17× 10−21 6.73× 1047 9.51× 1047

750 3.00× 10−22 6.72× 10−21 8.13× 10−21 2.32× 1048 3.40× 1048

150
150

4.18× 10−22 5.74× 10−21 6.73× 10−21 6.77× 1046 9.30× 1046

450 7.14× 10−22 9.79× 10−21 1.16× 10−20 1.77× 1048 2.51× 1048

750 9.27× 10−22 1.27× 10−20 1.54× 10−20 8.31× 1048 1.22× 1049

SGR trigger 2475

150
400

7.58× 10−23 1.70× 10−21 1.99× 10−21

8.5

5.66× 1045 7.78× 1045

450 1.12× 10−22 2.51× 10−21 2.98× 10−21 1.11× 1047 1.57× 1047

750 1.64× 10−22 3.68× 10−21 4.46× 10−21 6.66× 1047 9.74× 1047

150
150

2.45× 10−22 3.36× 10−21 3.94× 10−21 2.21× 1046 3.04× 1046

450 3.05× 10−22 4.18× 10−21 4.97× 10−21 3.09× 1047 4.37× 1047

750 4.82× 10−22 6.61× 10−21 8.00× 10−21 2.15× 1048 3.14× 1048

TABLE 7.7. Upper limits for 50% CL for circularly polarized signals with ι = 0◦ and
ψ = 0◦.
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f0 τ h0 Distance hrss hrss cal err Cal err percent

Hz s kpc s1/2 s1/2 %

SGR trigger 2469

150
400

9.38× 10−23

8.7

2.10× 10−21 2.41× 10−21 15.0
450 1.50× 10−22 3.37× 10−21 3.92× 10−21 16.0
750 1.94× 10−22 4.35× 10−21 5.17× 10−21 19.0

150
150

2.24× 10−22 3.08× 10−21 3.53× 10−21 15.0
450 3.25× 10−22 4.45× 10−21 5.18× 10−21 16.0
750 4.18× 10−22 5.74× 10−21 6.81× 10−21 19.0

SGR trigger 2471

150
400

1.17× 10−22

8.7

2.62× 10−21 3.07× 10−21 17.0
450 2.69× 10−22 6.03× 10−21 7.17× 10−21 19.0
750 3.00× 10−22 6.72× 10−21 8.13× 10−21 21.0

150
150

4.18× 10−22 5.74× 10−21 6.73× 10−21 17.0
450 7.14× 10−22 9.79× 10−21 1.16× 10−20 19.0
750 9.27× 10−22 1.27× 10−20 1.54× 10−20 21.0

SGR trigger 2475

150
400

7.58× 10−23

8.5

1.70× 10−21 1.99× 10−21 17.0
450 1.12× 10−22 2.51× 10−21 2.98× 10−21 19.0
750 1.64× 10−22 3.68× 10−21 4.46× 10−21 21.0

150
150

2.45× 10−22 3.36× 10−21 3.94× 10−21 17.0
450 3.05× 10−22 4.18× 10−21 4.97× 10−21 19.0
750 4.82× 10−22 6.61× 10−21 8.00× 10−21 21.0

TABLE 7.8. Upper limits for 50% CL for circularly polarized signals with ι = 0◦ and
ψ = 0◦ with percentage from calibration error.
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f0 τ h0 hrss hrss cal err Distance EGW EGW cal err

Hz s s1/2 s1/2 kpc erg erg

SGR trigger 2469 (ι = 120◦)

150 400 2.56× 10−22 5.72× 10−21 6.56× 10−21 8.7 6.73× 1046 8.85× 1046

750 400 1.50× 10−21 3.36× 10−20 3.99× 10−20 8.7 5.80× 1049 8.17× 1049

SGR trigger 2471 (ι = 103◦)

150 400 7.10× 10−22 1.59× 10−20 1.86× 10−20 8.7 5.19× 1047 7.14× 1047

750 400 2.35× 10−21 5.26× 10−20 6.37× 10−20 8.7 1.42× 1050 2.08× 1050

SGR trigger 2475 (ι = 120◦)

150 400 2.90× 10−22 6.50× 10−21 7.62× 10−21 8.5 8.30× 1046 1.14× 1047

750 400 1.83× 10−21 4.09× 10−20 4.95× 10−20 8.5 8.21× 1049 1.20× 1050

TABLE 7.9. Upper limits for 90% CL for signals with polarization described in Table
7.4.

f0 τ h0 hrss hrss cal err Distance EGW EGW cal err

Hz s s1/2 s1/2 kpc erg erg

SGR trigger 2469 (ι = 120◦)

150 400 2.17× 10−22 4.87× 10−21 5.58× 10−21 8.7 4.88× 1046 6.41× 1046

750 400 1.03× 10−21 2.31× 10−20 2.74× 10−20 8.7 2.75× 1049 3.87× 1049

SGR trigger 2471 (ι = 103◦)

150 400 4.85× 10−22 1.09× 10−20 1.27× 10−20 8.7 2.43× 1047 3.34× 1047

750 400 1.66× 10−21 3.73× 10−20 4.51× 10−20 8.7 7.14× 1049 1.05× 1050

SGR trigger 2475 (ι = 120◦)

150 400 2.35× 10−22 5.27× 10−21 6.18× 10−21 8.5 5.45× 1046 7.50× 1046

750 400 8.80× 10−22 1.97× 10−20 2.38× 10−20 8.5 1.91× 1049 2.79× 1049

TABLE 7.10. Upper limits for 50% CL for signals with polarization described in Table
7.4.
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FIGURE 7.8. Detection efficiency vs injected strain h0 for SGR trigger 2469.
Waveforms are circularly polarized with ι = 0◦ and ψ = 0◦.
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FIGURE 7.9. Plot of the detection efficiency vs injected strain h0 for SGR trigger
2471. Waveforms are circularly polarized with ι = 0◦ and ψ = 0◦.
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FIGURE 7.10. Plot of the detection efficiency vs injected strain h0 for SGR trigger
2475. Waveforms are circularly polarized with ι = 0◦ and ψ = 0◦.
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FIGURE 7.11. Detection efficiency vs injected strain h0 for SGR trigger 2469.
Waveforms calculated for ι = 120◦ and ψ = 45◦.
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FIGURE 7.12. Plot of the detection efficiency vs injected strain h0 for SGR trigger
2471. Waveforms calculated for ι = 103◦ and ψ = 45◦.
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FIGURE 7.13. Plot of the detection efficiency vs injected strain h0 for SGR trigger
2475. Waveforms calculated for ι = 120◦ and ψ = 45◦.
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FIGURE 7.14. SNR response to injected strain h0 for f0 = 750Hz, τ = 400 s, circularly
polarized signal for trigger 2469. The on-source job-pair is represented by a circle
at different values of h0. The dashed green line is the on-source SNR used as the
threshold for recovered injections.
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7.3. Absolute Value SNR Modification

In the process of calculating the upper limits as detailed in Section 7.2.2, it was

found that the search algorithm was not sensitive to all waveform polarizations. SGR

triggers 2469 and 2475 were found to have a negative SNR response to linear injected

signals of either plus or cross polarization. This is illustrated in Figure 7.15 for SGR

trigger 2475; SGR trigger 2469 had a similar response. It is likely that this is due to

the polarization filter used, as a previous study by Eric Thrane and Tanner Prestegard

had found that the unpolarized polarization filter used by STAMP could cause a

negative SNR for a fraction of the possible sky direction, inclination and polarization

combinations (perhaps around 10%). SGR trigger 2471 had a positive SNR response

to all tested polarizations, which included circular, plus and cross polarizations (see

Figure 7.16).

The SNR response to polarization was tested by varying both the polarization

angle ψ and the inclination angle ι of the chosen injection waveform. The waveform

used was the half sine-Gaussian described in Section 7.2.1. Two values were used for

the polarization angle (ψ = 0◦ and ψ = 45◦), and 79 values for ι were used for this

test. For both ψ = 0◦ and ψ = 45◦, cos ι was varied at evenly spaced intervals across

79 points over the interval cos ι = [−1, 1]. All three triggers returned positive SNRs

for circularly polarized waveforms.

To mitigate the sensitivity loss due to the negative SNR response, the clustering

algorithm was changed to calculate the absolute value of the SNR (previously it took

the largest positive value, effectively ignoring all negative SNRs). This successfully

returned sensitivity to the linear polarizations as illustrated for SGR trigger 2475

in Figure 7.17. It is notable that while this improved the range of polarizations the

search was sensitive to, there are still some polarizations which remain undetectable.
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It can be seen from Figure 7.15 that the SNR response becomes very small and crosses

zero as it goes from positive SNR to negative and vice versa. Polarizations with a

small SNR magnitude remain undetectable for realistic waveforms. Section 7.2 details

the upper limits for a range of polarizations.
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FIGURE 7.15. SNR vs cos ι for SGR trigger 2475. The SNRs for the on-source and
one off-source job pair are plotted for each color. The blue points vary at equal
intervals across cos ι for ψ = 0◦, which means when cos ι = 0 the waveform is linearly
polarized in the plus polarization. The green points also vary across cos ι but for ψ =
45◦, which makes cos ι = 0 a cross polarization waveform. There are 79 values of cos ι
plotted, ranging from circular polarization at cos ι = 1 to plus or cross polarization at
cos ι = 0, back to circular polarization in the opposite rotation at cos ι = −1. SGR
trigger 2475, like SGR 2469, has a negative SNR near cos ι = 0. It should be noted
that this plot was made for an unrealistically large strain h0 for the purposes of clearly
observing the sign of the strain. The waveform used had f0 = 150Hz and τ = 400 s.
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FIGURE 7.16. SNR vs cos ι for SGR trigger 2471. The SNRs for the on-source and
one off-source job pair are plotted for each color. The blue points vary at equal
intervals across cos ι for ψ = 0◦, which means when cos ι = 0 the waveform is linearly
polarized in the plus polarization. The green points also vary across cos ι but for ψ =
45◦, which makes cos ι = 0 a cross polarization waveform. There are 79 values of cos ι
plotted, ranging from circular polarization at cos ι = 1 to plus or cross polarization at
cos ι = 0, back to circular polarization in the opposite rotation at cos ι = −1. It is
notable that SGR trigger 2471 has a positive SNR for all polarizations. It should be
noted that this plot was made for an unrealistically large strain h0 for the purposes of
clearly observing the sign of the strain. The waveform used had f0 = 150Hz and τ =
400 s. The minimum SNR response occurs at approximately ι = 103◦.
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FIGURE 7.17. SNR vs cos ι for SGR trigger 2475 with absolute value SNR modification.
The SNR near cos ι = 0 is now positive. There are still two areas of low sensitivity
where the SNR goes to zero, but sensitivity to the negative SNRs have been regained.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This analysis was a directed search for unmodeled long-duration transient GWs

related to magnetar bursts. Magnetars are neutron stars with very strong magnetic

fields, with inferred external fields of ∼1013–1015 gauss (up to ∼1000 times stronger

than the estimated magnetic fields in pulsars which have typical inferred values of

∼1012 gauss) [64, 72]. The search looked for evidence for GWs related to bursts that

occurred during LIGO’s sixth science run, from July 2009 to October 2010, during

which there were three magnetar bursts that occurred while both H1 and L1 were

active and in science mode. No gravitational wave candidate was observed in this

search. GW energy upper limits were estimated on the observed bursts.

The three bursts were from two source objects: SGR 1806-20 and 1E 1841-045, an

SGR and AXP. SGRs are astronomical objects that emit intermittent bursts of gamma

rays and X-rays. AXPs are astronomical objects with persistent X-ray emission, but

lack the companion object that normally powers X-ray pulsars through accretion

(hence the term anomalous). AXPs have been observed to emit bursts similar to those

emitted by SGRs, leading observers to conclude that they are also magnetars [57].

SGR 1806-20 is a particularly interesting SGR. It was the first SGR ever discovered

to emit bursts, emitting the first detected burst in January of 1979. It has the largest

inferred magnetic field of any known object, with an estimated external field of

2× 1015 gauss [62, 65, 66]. It also hit the earth with the highest radiation flux of any

event detected from outside our solar system: the hyperflare of December 27, 2004,

which was 100 times more energetic than the other giant flares observed [66].
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Upper limits on possible GW amplitude and energy were placed for several

variations of half sine-Gaussian waveforms for each of the three bursts in this search.

The first two bursts were from SGR 1806-20 and the third burst was from 1E 1841-045.

As discussed in detail in Chapter VII, the best upper limit EGW = 1.01× 1046 erg was

placed on the burst from 1E 1841-045 (SGR trigger 2475) for a circularly polarized half

sine-Gaussian with central frequency f0 = 150Hz and characteristic time τ = 400 s.

The best upper limit placed on bursts from SGR 1806-20 was on the first burst (SGR

trigger 2469) using the same waveform with a gravitational wave energy upper limit

EGW = 1.55× 1046 erg. The best upper limit on the other burst (SGR trigger 2471)

was EGW = 3.52× 1046 erg using the same waveform.

There are several different astrophysical parameters with which the upper limits

of this search can be compared. EGW can be compared to the energy of the star’s

mass. Assuming a neutron star with mass m = 1.4M⊙ (1M⊙ = (1.98855± 0.00025)×

1030 kg ≈ 2× 1030 kg), the equivalent energy from the mass of the star would be:

E = mc2 (8.1)

E1.4M⊙
= 1.4× (2× 1030 kg)× (3× 108 m/s)2 = 2.52× 1047 kgm2/s2 (8.2)

E1.4M⊙
= 2.52× 1047(1000 g)(100 cm)2/s2 = 2.52× 1054 erg (8.3)

Assuming a mass of 1.4M⊙ for both magnetars, the GW energy as a fraction of

the energy in the star’s mass (EGW/E1.4M⊙
) is 6.1× 10−9 for the best upper limit of

SGR 1806-20 (1.55× 1046 erg) and 4.0× 10−9 for the best upper limit of the search

(1.01× 1046 erg).
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EGW can also be compared to the magnetic field energy (E~B). The energy in the

magnetic field of magnetars is estimated to be on order of 1047 erg if the magnetic

field is on order of 1015 gauss. This estimate comes from treating the interior magnetic

field as a constant 1015 gauss field and integrating the calculated magnetic field energy

density by the volume of the star, approximated with radius R ≈ 10 km. The energy

fraction EGW/E~B = 0.101 for the best upper limit of the search and EGW/E~B = 0.155

for the best upper limit of SGR 1806-20. This magnetic energy value could be thought

of as a lower limit as it is thought that the internal magnetic field may be stronger

than the external field [10]. For an internal field of order 1016 gauss (thought to be

a plausible value [10]), EEM would be on order of 1049 erg, providing a much larger

energy reservoir to power GW emission.

EGW can also be compared to the estimated magnetar burst energies from

electromagnetic observations when available1. Electromagnetic energy estimates were

available for SGR burst 2471 and 2475, but we could not find estimates for SGR

burst 2469 so we have marked it as unknown where referenced. SGR trigger 2471

had an estimated fluence of 7.88(±0.39) × 10−7 erg/cm2 in the 8–1000 keV band

(later estimated in a separate paper to be 8.44(±0.546)× 10−8 erg/cm2 in the 8–200

keV band) and lasted ∼100ms [97, 98]. Assuming isotropic emission and using the

estimated distance to SGR 1806-20 of 8.7 kpc, the larger fluence estimate corresponds

to a burst energy of approximately 7.14× 1039 erg. Comparing to the best EGW upper

limit for SGR trigger 2471 and ignoring the uncertainties, the ratio of the GW energy

upper limit to the electromagnetic burst energy for this event is EGW/EEM = 4.9×106.

1The magnetar burst library at http://staff.fnwi.uva.nl/a.l.watts/magnetar/mb.html was
used to find the paper containing the estimated burst electromagnetic energy for SGR burst 2475
[96].
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SGR trigger 2475 was the first detected burst from 1E 1841-045, with duration

of 32ms and an estimated energy in the 15–100 keV band of 7.2+0.4
−0.6 × 1036 erg [99].

Calculating the ratio of the GW energy upper limit to the electromagnetic burst

energy for this event and ignoring the uncertainties gives EGW/EEM = 1.4×109. Table

8.1 summarizes the best upper limit for each trigger and their comparisons to these

different astrophysical parameters.

SGR Trigger 2469 2471 2475

Source Magnetar SGR 1806-20 SGR 1806-20 1E 1841-045

EGW Upper Limit ( erg) 1.55× 1046 3.52× 1046 1.01× 1046

EGW/E1.4M⊙
6.1× 10−9 1.4× 10−8 4.0× 10−9

EGW/E~B≈1015 gauss 0.155 0.352 0.101

Observed EEM ( erg) Unknown 7.14× 1039 7.2+0.4
−0.6 × 1036

EGW/ObservedEEM Unknown 4.9× 106 1.4× 109

TABLE 8.1. Summary of best upper limits and comparisons to possible energy sources.
E~B≈1015 gauss is approximated as 1047 erg.

These upper limits can also be compared to energy budgets for models of possible

mechanisms behind bursts and giant flares. Ioka proposed a hydrodynamic deformation

model where the magnetic field holds the star in a prolate shape and jumps between

magnetic field configurations cause the shape of the star to become less prolate and

release large amounts of energy as the star’s shape changes [75]. Corsi and Owen

further expanded on this model showing it could apply for additional neutron star

equations of state [10]. Both found that energies up to 1049 erg could be generated by

changes in the magnetic field causing deformations in the shape of the star.

Corsi and Owen also discussed crust cracking, the mechanism thought to cause

giant flares and some magnetar bursts [10]. They found crust cracking of normal

neutron star crusts may provide up to 1046 erg. Furthermore, they discussed the energy
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available from crust cracking if the star, or even just it’s core, was made up of quark

matter. In such a case, they expect phases of quark-baryon or quark-meson matter

to provide up to 1048 erg, and solid quark phases could provide up to 1049 − 1050 erg.

LIGO can already probe below the upper limits of some of these energy budgets. If

any of these mechanisms are responsible for magnetar bursts or giant flares, these

energy limits could provide sufficient energy for detectable GW emission.

This search can be run for any magnetar bursts and giant flares that occur while

aLIGO, an upgraded version of LIGO, is running. aLIGO is currently active and

taking data, and once it reaches design sensitivity, it is expected to be 10 times as

sensitive as initial LIGO. This would lead to energy limits 100 times lower than those

set by LIGO. The upper limits of this search can be used to estimate the upper

limits that may be reached with aLIGO. If this search had been run while aLIGO

was at design sensitivity, the best upper limit of EGW = 1.01 × 1046 erg could have

been EGW = 1.01 × 1044 erg. Additionally, there are multiple magnetars on order

of 2 kpc away, and one as close as 1.6 kpc [65]. For a burst from a magnetar 1.6

kpc away occurring during aLIGO, the energy upper limit would have been roughly

3.59× 1042 erg, the same order of magnitude as some stronger bursts.

This possible upper limit can be compared with the electromagnetic energy

radiated during giant flares. If a giant flare with order EEM ≈ 1044 erg energy

occurred, the ratio of emitted electromagnetic energy to GW energy for this imagined

upper limit would be EGW/EEM ≈ 3.59× 10−2. For an event such as the 2004 giant

flare, this ratio would be approximately EGW/EEM ≈ 1.8× 10−4. With these energy

ratios, GW with high EGW/EEM would either be detected or ruled out. These possible

aLIGO upper limits are summarized in Table 8.2.
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Source Magnetar 1E 1841-045

EGW Upper Limit 1.01× 1046 erg

Estimated EGW for aLIGO 1.01× 1044 erg

EGW,aLIGO for 1.6 kpc 3.59× 1042 erg

EGW,aLIGO,1.6kpc/EEM (1044 erg) 3.59× 10−2

EGW,aLIGO,1.6kpc/EEM (2× 1046 erg) 1.8× 10−4

TABLE 8.2. Summary of best upper limit and equivalent aLIGO upper limit. Includes
comparisons to electromagnetic energy levels of giant flares.

These estimates suggest running this search on data from aLIGO could probe

significantly below the energy budgets discussed above. This could lead to either the

detection of GWs related to magnetar bursts or the setting of stricter limits on the

total amount of energy released during a magnetar burst or giant flare. These results

could increase knowledge of the astrophysics of magnetars by placing constraints on

the energy released through mechanisms such as crust cracking and hydrodynamic

deformation, and may help constrain the possible equations of state of magnetars.
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APPENDIX A

CONVENTIONS AND EQUATIONS

A.1. Conventions

Derivative: d
dxα

or Dα

Partial derivative: ∂
∂xα

or ∂α

Covariant derivative: ∇α

D’Alembert operator: � = ∂µ∂µ =
(

− ∂2

∂t2
+∇2

)

Laplace operator: ∆ = ∇2 = ∂a∂a

Minkowski metric: ηαβ =



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















A.2. Definitions

Covariant derivative:

∇βV
α =

∂V α

∂xβ
+ V µΓαµβ

Christoffel symbol:

Γµαβ =
1

2
gµν(∂βgνα + ∂αgνβ − ∂νgαβ)

Einstein Tensor (trace-reversed Ricci tensor):

Gαβ = Gβα = Rαβ − 1

2
gαβR
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Riemann curvature tensor:

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + ΓασµΓ

σ
βν − ΓασνΓ

σ
βµ

Ricci tensor:

Rαβ = Rµ
αµβ = Rβα

Ricci scalar:

R = gµνRµν = gµνgαβRαµβν

A.3. Identities

∇βG
αβ = 0

Rαβµν = gαλR
λ
βµν =

1

2
(∂β∂µgαν − ∂β∂νgαµ + ∂α∂νgβµ − ∂α∂µgβν)

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ

A.4. Linearized Tensors

Christoffel symbol to first order in hµν :

Γµαβ =
1

2
gµν(∂βgνα + ∂αgνβ − ∂νgαβ)
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Γµαβ =
1

2
(ηµν + hµν)(∂β(ηνα + hνα) + ∂α(ηνβ + hνβ)− ∂ν(ηαβ + hαβ))

Γµαβ =
1

2
(ηµν + hµν)(0 + ∂βhνα + 0 + ∂αhνβ − 0− ∂νhαβ)

To linear order in hµν :

Γµαβ =
1

2
ηµν(∂βhνα + ∂αhνβ − ∂νhαβ)

Derivative of Christoffel symbol to linear order:

∂γΓ
µ
αβ = ∂γ

(

1

2
ηµν(∂βhνα + ∂αhνβ − ∂νhαβ)

)

∂γΓ
µ
αβ =

1

2
∂γη

µν(∂βhνα + ∂αhνβ − ∂νhαβ) +
1

2
ηµν∂γ(∂βhνα + ∂αhνβ − ∂νhαβ)

∂γΓ
µ
αβ = 0 +

1

2
ηµν∂γ(∂βhνα + ∂αhνβ − ∂νhαβ)

∂γΓ
µ
αβ =

1

2
ηµν(∂γ∂βhνα + ∂γ∂αhνβ − ∂γ∂νhαβ)

Riemann tensor to first order in hµν :

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + ΓασµΓ

σ
βν − ΓασνΓ

σ
βµ

Because the Christoffel symbol is linear in hµν , we can drop terms that are higher

than linear in the Christoffel symbol:

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ

Rα
βµν =

1

2
ηαγ(∂µ∂νhγβ + ∂µ∂βhγν − ∂µ∂γhβν)−

1

2
ηαγ(∂ν∂µhγβ + ∂ν∂βhγµ − ∂ν∂γhβµ)
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Rα
βµν =

1

2
ηαγ (∂µ∂νhγβ + ∂µ∂βhγν − ∂µ∂γhβν − ∂ν∂µhγβ − ∂ν∂βhγµ + ∂ν∂γhβµ)

Riemann tensor to linear order in hµν :

Rα
βµν =

1

2
ηαγ (∂µ∂βhγν + ∂ν∂γhβµ − ∂µ∂γhβν − ∂ν∂βhγµ)

And:

Rαβµν =
1

2
(∂µ∂βhαν + ∂ν∂αhβµ − ∂µ∂αhβν − ∂ν∂βhαµ) (A.1)

Ricci tensor to first order in hµν :

Rβν = Rµ
βµν =

1

2
ηµγ (∂µ∂βhγν + ∂ν∂γhβµ − ∂µ∂γhβν − ∂ν∂βhγµ)

Rβν =
1

2
(∂γ∂βhγν + ∂ν∂

γhβγ − ∂γ∂γhβν − ∂ν∂βhγ
γ)

Ricci scalar to first order in hµν :

R = gµνRµν = (ηµν + hµν)Rµν ≈ ηµνRµν

R = ηβν
1

2
(∂γ∂βhγν + ∂ν∂

γhβγ − ∂γ∂γhβν − ∂ν∂βhγ
γ)

R =
1

2

(

∂γ∂νhγν + ∂β∂γhβγ − ∂γ∂γhβ
β − ∂β∂βhγ

γ
)

R = ∂γ∂νhγν − ∂γ∂γhν
ν

Einstein Tensor (trace-reversed Ricci tensor) to first order:

Gαµ = Gµα = Rαµ − 1

2
gαµR = ηαβηµνRβν −

1

2
gαµR ≈ ηαβηµνRβν −

1

2
ηαµR

144



Gαµ = ηαβηµν
1

2
(∂γ∂βhγν + ∂ν∂

γhβγ − ∂γ∂γhβν − ∂ν∂βhγ
γ)

−1

2
ηαµ (∂γ∂νhγν − ∂γ∂γhν

ν)

Gβν =
1

2
(∂γ∂βhγν + ∂ν∂

γhβγ − ∂γ∂γhβν − ∂ν∂βhγ
γ)− 1

2
ηβν (∂

γ∂µhγµ − ∂γ∂γhµ
µ)

Let the trace of hµν be denoted such that h = hαα. Using the “trace reverse” of

hµν :

h̄µν = hµν −
1

2
ηµνh

α
α = hµν −

1

2
ηµνh

Gβν =
1

2

(

∂γ∂βh̄γν +
1

2
∂γ∂βηγνh+ ∂ν∂

γh̄βγ +
1

2
∂ν∂

γηβγh− ∂γ∂γh̄βν −
1

2
∂γ∂γηβνh

− ∂ν∂βh

)

− 1

2
ηβν

(

∂γ∂µh̄γµ +
1

2
∂γ∂µηγµh− ∂γ∂γh

)

2Gβν = ∂γ∂βh̄γν +
1

2
∂γ∂βηγνh+ ∂ν∂

γh̄βγ +
1

2
∂ν∂

γηβγh− ∂γ∂γh̄βν −
1

2
∂γ∂γηβνh

−∂ν∂βh− ηβν∂
γ∂µh̄γµ −

1

2
ηβν∂

γ∂µηγµh+ ηβν∂
γ∂γh

2Gβν = ∂γ∂βh̄γν +
1

2
∂ν∂βh+ ∂ν∂

γh̄βγ +
1

2
∂ν∂βh− ∂γ∂γh̄βν −

1

2
∂γ∂γηβνh− ∂ν∂βh

−ηβν∂γ∂µh̄γµ −
1

2
ηβν∂

γ∂γh+ ηβν∂
γ∂γh

2Gβν = ∂γ∂βh̄γν +
1

2
∂ν∂βh+ ∂ν∂

γh̄βγ +
1

2
∂ν∂βh−�h̄βν −

1

2
�ηβνh− ∂ν∂βh

−ηβν∂γ∂µh̄γµ −
1

2
ηβν�h+ ηβν�h

2Gβν = ∂γ∂βh̄γν +
1

2
∂ν∂βh+ ∂ν∂

γh̄βγ +
1

2
∂ν∂βh−�h̄βν − ∂ν∂βh− ηβν∂

γ∂µh̄γµ
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2Gβν = ∂γ∂βh̄γν + ∂ν∂
γh̄βγ −�h̄βν − ηβν∂

γ∂µh̄γµ

Gβν = −1

2

(

�h̄βν − ∂γ∂βh̄γν − ∂ν∂
γh̄βγ + ηβν∂

γ∂µh̄γµ
)

(A.2)

It can be shown that a gauge can always be chosen such that:

∂ν h̄
µν = 0 (A.3)

Plugging this into A.2 gives an Einstein Tensor linear in hµν of:

Gβν = −1

2
�h̄βν (A.4)

Plugging A.4 into 2.14 gives the linear form of the Einstein equations (the so

called weak-field Einstein equations):

�h̄βν = −16πT βν (A.5)
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APPENDIX B

DERIVATION OF UPPER LIMITS

This appendix details the derivation of the GW energy (EGW) and hrss of the

waveform type used for injections in this research. EGW and hrss are calculated for

a sine-Gaussian and the results are then used to calculate EGW and hrss for a half

sine-Gaussian.

The equations in Section 2.4 can be generalized to include the inclination angle ι

and the polarization angle ψ:

h+ =
h0√
2

(

(1 + cos2 ι)

2
cos (2 πf0t+ φ) cos 2ψ + (cos ι) sin (2 πf0t+ φ) sin 2ψ

)

(B.1)

h× =
h0√
2

(

−(1 + cos2 ι)

2
cos (2 πf0t+ φ) sin 2ψ + (cos ι) sin (2 πf0t+ φ) cos 2ψ

)

(B.2)

To simplify calculations, let φ = 0, giving:

h+ =
h0√
2

(

(1 + cos2 ι)

2
cos (2 πf0t) cos 2ψ + (cos ι) sin (2 πf0t) sin 2ψ

)

(B.3)

h× =
h0√
2

(

−(1 + cos2 ι)

2
cos (2 πf0t) sin 2ψ + (cos ι) sin (2 πf0t) cos 2ψ

)

(B.4)

The factors dependent on ψ are often absorbed into the antenna factors. This

can be thought of as working with the GWs in an intermediate reference frame. When

this is done, it is convention in most literature to choose the frame such that ψ = 0.

This gives the following:

h+ = h+,ψ=0 =
h0√
2

(1 + cos2 ι)

2
cos (2 πf0t) (B.5)
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h× = h×,ψ=0 =
h0√
2
(cos ι) sin (2 πf0t) (B.6)

It is important to note that any intermediate frame could have been chosen.

If the waveform is a sine-Gaussian such as (7.1), (B.3) and (B.4) are multiplied

by the Gaussian envelope e−(t−t0)2/τ2 (with t0 = 0 making the envelope e−t
2/τ2) and

become:

h+ =
h0√
2
e−t

2/τ2
(

(1 + cos2 ι)

2
cos (2 πf0t) cos 2ψ + (cos ι) sin (2 πf0t) sin 2ψ

)

(B.7)

h× =
h0√
2
e−t

2/τ2
(

−(1 + cos2 ι)

2
cos (2 πf0t) sin 2ψ + (cos ι) sin (2 πf0t) cos 2ψ

)

(B.8)

B.1. Calculating hrss

(B.7) and (B.8) (and using h+,ψ=0 and h×,ψ=0 for brevity) are plugged into (7.8):

hrss =
(

∫ ∞

−∞

[

∣

∣

∣

∣

h0√
2
e−t

2/τ2
(

(1 + cos2 ι)

2
cos (2 πf0t) cos 2ψ + (cos ι) sin (2 πf0t) sin 2ψ

)∣

∣

∣

∣

2

+

∣

∣

∣

∣

h0√
2
e−t

2/τ2
(

−(1 + cos2 ι)

2
cos (2 πf0t) sin 2ψ + (cos ι) sin (2 πf0t) cos 2ψ

)∣

∣

∣

∣

2
]

dt

)1/2

=

√

∫ ∞

−∞

(

|h+,ψ=0 cos 2ψ + h×,ψ=0 sin 2ψ|2 + |−h+,ψ=0 sin 2ψ + h×,ψ=0 cos 2ψ|2
)

dt

(B.9)
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hrss =

(∫ ∞

−∞

(

h2+,ψ=0 cos
2 2ψ + 2h+,ψ=0h×,ψ=0 cos 2ψ sin 2ψ + h2×,ψ=0 sin

2 2ψ

+ h2+,ψ=0 sin
2 2ψ − 2h+,ψ=0h×,ψ=0 sin 2ψ cos 2ψ + h2×,ψ=0 cos

2 2ψ
)

dt

)1/2

(B.10)

hrss =

√

∫ ∞

−∞

(

h2+,ψ=0 cos
2 2ψ + h2×,ψ=0 sin

2 2ψ + h2+,ψ=0 sin
2 2ψ + h2×,ψ=0 cos

2 2ψ
)

dt

(B.11)

hrss =

√

∫ ∞

−∞

(

h2+,ψ=0(sin
2 2ψ + cos2 2ψ) + h2×,ψ=0(sin

2 2ψ + cos2 2ψ)
)

dt (B.12)

hrss =

√

∫ ∞

−∞

(

h2+,ψ=0 + h2×,ψ=0

)

dt (B.13)

hrss =
h0√
2

√

√

√

√

∫ ∞

−∞
e−2t2/τ2

(

(1 + cos2 ι)2

4
cos2 (2 πf0t) + (cos2 ι) sin2 (2 πf0t)

)

dt

(B.14)

Using the following half angle formulas:

sin2 x =
1− cos 2x

2
(B.15)

cos2 x =
1 + cos 2x

2
(B.16)

(B.17) can be rewritten as:

hrss =
h0√
2

√

√

√

√

∫ ∞

−∞
e−2t2/τ2

(

(1 + cos2 ι)2

4

1 + cos (4 πf0t)

2
+ cos2 ι

1− cos (4 πf0t)

2

)

dt

(B.17)

hrss =
h0
2

√

√

√

√

∫ ∞

−∞
e−2t2/τ2

(

(1 + cos2 ι)2

4
(1 + cos (4 πf0t)) + cos2 ι(1− cos (4 πf0t))

)

dt

(B.18)
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hrss =

h0
2

√

√

√

√

∫ ∞

−∞
e−2t2/τ2

(

(1 + cos2 ι)2

4
+ cos2 ι+

(

(1 + cos2 ι)2

4
− cos2 ι

)

cos (4 πf0t)

)

dt

(B.19)

hrss =
h0
2

((

(1 + cos2 ι)
2

4
+ cos2 ι

)

∫ ∞

−∞
e−2t2/τ2 dt

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

∫ ∞

−∞
e−2t2/τ2 cos (4 πf0t) dt

)1/2

(B.20)

Following [100], the following formulas can be found in [101] (formulas 3.321.3

and 3.896.4):
∫ ∞

0

e−q
2x2 dx =

√
π

2q
(B.21)

∫ ∞

0

e−βx
2

cos(bx) dx =
1

2

√

π/βe−b
2/4β (B.22)

(B.20) can be rewritten using the fact it has even integrals and then (B.21) and

(B.22) can be used to solve the resulting equation:

hrss =
h0
2

((

(1 + cos2 ι)
2

4
+ cos2 ι

)

2

∫ ∞

0

e−2t2/τ2 dt

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

2

∫ ∞

0

e−2t2/τ2 cos (4 πf0t) dt

)1/2

(B.23)
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hrss =
h0√
2

((

(1 + cos2 ι)
2

4
+ cos2 ι

)

∫ ∞

0

e−2t2/τ2 dt

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

∫ ∞

0

e−2t2/τ2 cos (4 πf0t) dt

)1/2

(B.24)

∫ ∞

0

e−2t2/τ2 dt =

√
π

2
√

2/τ 2
=
τ
√
π

2
√
2

(B.25)

∫ ∞

0

e−2t2/τ2 cos (4 πf0t) dt =
1

2

√

π/(2/τ 2)e−(4πf0)2/4(2/τ2) =
τ
√
π

2
√
2
e−2π2f02τ2 (B.26)

hrss =
h0√
2

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

τ
√
π

2
√
2
+

(

(1 + cos2 ι)2

4
− cos2 ι

)

τ
√
π

2
√
2
e−2π2f02τ2

(B.27)

hrss =
h0√
2

√

√

√

√

τ
√
π

2
√
2

((

(1 + cos2 ι)2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)2

4
− cos2 ι

)

e−2π2f02τ2

)

(B.28)

Substituting in Q gives:

hrss =
h0√
2

√

√

√

√

Q

4
√
πf0

((

(1 + cos2 ι)2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)2

4
− cos2 ι

)

e−Q2

)

(B.29)

hrss =
h0

2
√
2π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)2

4
− cos2 ι

)

e−Q2

(B.30)

For high Q, (B.30) can be approximated as:

hHQ
rss ≈ h0

2
√
2π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

(B.31)
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The magnitude of (B.30) ranges from a maximum at ι = 0◦ to a minimum at

ι = 90◦:

hrss,ι=0◦ =
h0

2 π1/4

√

Q

f0
(B.32)

hrss,ι=90◦ =
h0

4
√
2 π1/4

√

Q

f0

√

1 + e−Q2 (B.33)

For high Q, (B.32) and (B.33) become:

hHQ
rss,ι=0◦ =

h0
2 π1/4

√

Q

f0
(B.34)

hHQ
rss,ι=90◦ ≈

h0

4
√
2 π1/4

√

Q

f0
(B.35)

Note that hHQ
rss,ι=0◦ =

√
8hHQ

rss,ι=90◦ . In terms of the energy upper limits, this means

that energy upper limits set for a linearly polarized waveform would be expected

to be roughly 8 times higher than for a circularly polarized waveform (and the hrss

limits would be expected to be
√
8 times higher). It is also interesting to note that

hrss,ι=0◦ = hHQ
rss,ι=0◦ ; in the case of ι = 0, the e−Q

2

term drops out completely giving an

exact answer that is the same regardless of the high Q approximation.

Rewriting (B.36), (B.37) and (B.38) in terms of τ gives:

hHQ
rss ≈ h0τ

1/2 π1/4

2(21/4)

√

(1 + cos2 ι)2

4
+ cos2 ι (B.36)

hHQ
rss,ι=0◦ = h0τ

1/2 (2 π)
1/4

2
(B.37)

hHQ
rss,ι=90◦ ≈ h0τ

1/2 (2 π)
1/4

4
√
2

(B.38)
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B.2. Calculating EGW

The fluence is “the GW energy flowing through a unit area at the detector

integrated over the emission time” [79]:

F =
c3

16πG

∫

(

ḣ2+(t) + ḣ2×(t)
)

dt (B.39)

To get the total energy emitted, integrate (B.39) over a sphere surrounding the source

with a radius r (r is the distance to the source):

EGW =
c3

16πG

∫

A

∫ ∞

−∞

(

ḣ2+(t) + ḣ2×(t)
)

dt dA (B.40)

EGW =
c3

16πG

∫ ∞

−∞

∫ 2π

0

∫ π

0

(

ḣ2+(t) + ḣ2×(t)
)

r2 sin θ dθ dφ dt (B.41)

In order to make the area integral simpler to calculate, the coordinate system

can be chosen such that ι = θ:

EGW =
c3

16πG

∫ ∞

−∞

∫ 2π

0

∫ π

0

(

ḣ2+(t) + ḣ2×(t)
)

r2 sin ι dι dφ dt (B.42)

From the derivation of (B.13) from (7.8), the following has been shown:

h2rss =

∫ ∞

−∞

(

h2+ + h2×
)

dt =

∫ ∞

−∞

(

h2+,ψ=0 + h2×,ψ=0

)

dt (B.43)

ψ has no time dependence, so:

∫ ∞

−∞

(

ḣ2+ + ḣ2×

)

dt =

∫ ∞

−∞

(

ḣ2+,ψ=0 + ḣ2×,ψ=0

)

dt (B.44)
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Using (B.44), (B.42) can be rewritten as:

EGW =
c3

16πG

∫ ∞

−∞

∫ 2π

0

∫ π

0

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

r2 sin ι dι dφ dt (B.45)

The components of the time integral of (B.45) are:

∫ ∞

−∞
ḣ2+,ψ=0(t) dt =

∫ ∞

−∞

(

d

dt

h0√
2
e−t

2/τ2 (1 + cos2 ι)

2
cos (2 πf0t)

)2

dt (B.46)

∫ ∞

−∞
ḣ2×,ψ=0(t) dt =

∫ ∞

−∞

(

d

dt

h0√
2
e−t

2/τ2 (cos ι) sin (2 πf0t)

)2

dt (B.47)

Taking the derivatives gives:

∫ ∞

−∞
ḣ2+,ψ=0(t) dt =

h0
2

2

(1 + cos2 ι)
2

4

∫ ∞

−∞
e−2t2/τ2

(

−2t

τ 2
cos (2 πf0t)− 2 πf0 sin (2 πf0t)

)2

dt (B.48)

∫ ∞

−∞
ḣ2×,ψ=0(t) dt =

h0
2

2

(

cos2 ι
)

∫ ∞

−∞
e−2t2/τ2

(

−2t

τ 2
sin (2 πf0t) + 2 πf0 cos (2 πf0t)

)2

dt (B.49)

First
∫∞
−∞ḣ

2
+,ψ=0(t) dt will be calculated:

h0
2

2

(1 + cos2 ι)
2

4

∫ ∞

−∞
e−2t2/τ2

(

−2t

τ 2
cos (2 πf0t)− 2 πf0 sin (2 πf0t)

)2

dt (B.50)
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h0
2

2

(1 + cos2 ι)
2

4

∫ ∞

−∞
e−2t2/τ2

(

4t2

τ 4
cos2 (2 πf0t)

+ 2
2t

τ 2
cos (2 πf0t)2 πf0 sin (2 πf0t) + 4 π2f0

2 sin2 (2 πf0t)

)

dt (B.51)

h0
2

2

(1 + cos2 ι)
2

4

[∫ ∞

−∞
e−2t2/τ2 4t

2

τ 4
cos2 (2 πf0t) dt

+

∫ ∞

−∞
e−2t2/τ2 4t

τ 2
cos (2 πf0t)2 πf0 sin (2 πf0t) dt +

∫ ∞

−∞
e−2t2/τ24 π2f0

2 sin2 (2 πf0t) dt

]

(B.52)

In addition to the half angle formulas (B.15) and (B.16), using the double angle

formula:

sin 2x = 2 sin x cos x (B.53)

(B.52) can be rewritten as:

h0
2

2

(1 + cos2 ι)
2

4

[∫ ∞

−∞
e−2t2/τ2 4t

2

τ 4
1 + cos (4 πf0t)

2
dt

+

∫ ∞

−∞
e−2t2/τ2 4t

τ 2
πf0 sin (4 πf0t) dt +

∫ ∞

−∞
e−2t2/τ24 π2f0

21− cos (4 πf0t)

2
dt

]

(B.54)

Each of these integrals is even, so (B.54) can be rewritten as:

h0
2

2

(1 + cos2 ι)
2

4

[∫ ∞

0

e−2t2/τ2 4t
2

τ 4
(1 + cos (4 πf0t)) dt

+

∫ ∞

0

e−2t2/τ2 8t

τ 2
πf0 sin (4 πf0t) dt +

∫ ∞

0

e−2t2/τ24 π2f0
2 (1− cos (4 πf0t)) dt

]

(B.55)
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Again following [100], the following formulas can be found in [101] (formulas

3.952.1, 3.461.2 and 3.952.4):

∫ ∞

0

xe−p
2x2 sin ax dx =

a
√
π

4p3
e−a

2/(4p2) (B.56)

∫ ∞

0

x2ne−px
2

dx =
(2n− 1)!!

2(2p)n

√
π√
p

(B.57)

∫ ∞

0

x2e−p
2x2 cos ax dx =

√
π
2p2 − a2

8p5
e−a

2/(4p2) (B.58)

Using and (B.56), (B.57) and (B.58) in addition to (B.21) and (B.22) gives:

h0
2

2

(1 + cos2 ι)
2

4

×







4

τ 4







(2(1)− 1)!!

2(2(2/τ 2))1

√
π

√

2/τ 2
+
√
π
2
(

√

2/τ 2
)2

− (4 πf0)
2

8
(

√

2/τ 2
)5 e

−(4πf0)
2/

(

4
(√

2/τ2
)2

)







+
8

τ 2
πf0

(4 πf0)
√
π

4
(

√

2/τ 2
)3 e

−(4πf0)
2/

(

4
(√

2/τ2
)2

)

+4 π2f0
2

( √
π

2
√

2/τ 2
− 1

2

√

π/(2/τ 2)e−(4πf0)
2/4(2/τ2)

)






(B.59)

h0
2

2

(1 + cos2 ι)
2

4

[

4

τ 4

(

1

8/τ 2

√
π

√

2/τ 2
+
√
π
4/τ 2 − 16 π2f0

2

8(2/τ 2)2
√

2/τ 2
e−16π2f02/4(2/τ2)

)

+
8

τ 2
πf0

(4 πf0)
√
π

4 (2/τ 2)
√

2/τ 2
e−16π2f02/4(2/τ2)

+4 π2f0
2

( √
π

2
√

2/τ 2
− 1

2

√
π

√

2/τ 2
e−16π2f02/4(2/τ2)

)]

(B.60)
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h0
2

2

(1 + cos2 ι)
2

4

√
π

√

2/τ 2

[

4

τ 4

(

1

8/τ 2
+

4/τ 2 − 16 π2f0
2

8(2/τ 2)2
e−2π2f02τ2

)

+
8

τ 2
πf0

(4 πf0)

4 (2/τ 2)
e−2π2f02τ2

+4 π2f0
21

2

(

1− e−2π2f02τ2
)

]

(B.61)

h0
2

2

(1 + cos2 ι)
2

4

√
π√
2
τ

[

4

τ 4

(

τ 2

8
+
τ 2 − 4 π2f0

2τ 4

8
e−2π2f02τ2

)

+ 4 π2f0
2e−2π2f02τ2 + 2 π2f0

2
(

1− e−2π2f02τ2
)

]

(B.62)

h0
2τ

√
π

2
√
2

(1 + cos2 ι)
2

4

[

1

τ 2

(

1

2
+

1− 4 π2f0
2τ 2

2
e−2π2f02τ2

)

+ 2 π2f0
2
(

1 + e−2π2f02τ2
)

]

(B.63)

h0
2τ

√
π

2
√
2

(1 + cos2 ι)
2

4

[

1

2τ 2
+

(

1

2τ 2
− 2 π2f0

2

)

e−2π2f02τ2 + 2 π2f0
2
(

1 + e−2π2f02τ2
)

]

(B.64)

h0
2τ

√
π

2
√
2

(1 + cos2 ι)
2

4

[

1

2τ 2

(

1 + e−2π2f02τ2
)

− 2 π2f0
2e−2π2f02τ2 + 2 π2f0

2
(

1 + e−2π2f02τ2
)

]

(B.65)

h0
2τ

√
π

2
√
2

(1 + cos2 ι)
2

4

[

1

2τ 2

(

1 + e−2π2f02τ2
)

+ 2 π2f0
2

]

(B.66)

∫ ∞

−∞
ḣ2+,ψ=0(t) dt =

(1 + cos2 ι)
2

4
h0

2τ

√
π

4
√
2

[

4 π2f0
2 +

1

τ 2

(

1 + e−2π2f02τ2
)

]

(B.67)

Substituting in Q:

(1 + cos2 ι)
2

4
h0

2 Q√
2 πf0

√
π

4
√
2

[

4 π2f0
2 +

2 π2f0
2

Q2

(

1 + e−Q
2

)

]

(B.68)
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∫ ∞

−∞
ḣ2+,ψ=0(t) dt =

(1 + cos2 ι)
2

4

(

4 π2f0
2
) h0

2Q

8
√
πf0

[

1 +
1

2Q2

(

1 + e−Q
2

)

]

(B.69)

Next
∫∞
−∞ḣ

2
×,ψ=0(t) dt will be calculated:

h0
2

2

(

cos2 ι
)

∫ ∞

−∞
e−2t2/τ2

(

−2t

τ 2
sin (2 πf0t) + 2 πf0 cos (2 πf0t)

)2

dt (B.70)

h0
2

2
cos2 ι

∫ ∞

−∞
e−2t2/τ2

(

4t2

τ 4
sin2 (2 πf0t)− 2

2t

τ 2
sin (2 πf0t)2 πf0 cos (2 πf0t)

+ 4 π2f0
2 cos2 (2 πf0t)

)

dt (B.71)

h0
2

2
cos2 ι

∫ ∞

−∞
e−2t2/τ2

(

2t2

τ 4
(1− cos (4 πf0t))−

4t

τ 2
πf0 sin (4 πf0t)

+ 2 π2f0
2 (1 + cos (4 πf0t))

)

dt (B.72)

h0
2

2
cos2 ι

∫ ∞

0

e−2t2/τ2
(

4t2

τ 4
(1− cos (4 πf0t))−

8t

τ 2
πf0 sin (4 πf0t)

+ 4 π2f0
2 (1 + cos (4 πf0t))

)

dt (B.73)
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h0
2

2
cos2 ι

×







4

τ 4







(2(1)− 1)!!

2(2(2/τ 2))1

√
π

√

2/τ 2
−

√
π
2
(

√

2/τ 2
)2

− (4 πf0)
2

8
(

√

2/τ 2
)5 e

−(4πf0)
2/

(

4
(√

2/τ2
)2

)







− 8

τ 2
πf0

(4 πf0)
√
π

4
(

√

2/τ 2
)3 e

−(4πf0)
2/

(

4
(√

2/τ2
)2

)

+4 π2f0
2

( √
π

2
√

2/τ 2
+

1

2

√

π/(2/τ 2)e−(4πf0)
2/4(2/τ2)

)






(B.74)

h0
2

2
cos2 ι

√
π√
2
τ

[

1

τ 2

(

1

2
− 1− 4 π2f0

2τ 2

2
e−2π2f02τ2

)

− 4 π2f0
2e−2π2f02τ2

+ 2 π2f0
2
(

1 + e−2π2f02τ2
)

]

(B.75)

h0
2τ

√
π

2
√
2
cos2 ι

[

1

2τ 2
+

(

− 1

2τ 2
+ 2 π2f0

2

)

e−2π2f02τ2 + 2 π2f0
2
(

1− e−2π2f02τ2
)

]

(B.76)

h0
2τ

√
π

2
√
2
cos2 ι

[

1

2τ 2
+

(

− 1

2τ 2

)

e−2π2f02τ2 + 2 π2f0
2

]

(B.77)

h0
2τ

√
π

2
√
2
cos2 ι

[

2 π2f0
2 +

1

2τ 2

(

1− e−2π2f02τ2
)

]

(B.78)

∫ ∞

−∞
ḣ2×,ψ=0(t) dt =

(

cos2 ι
)

h0
2τ

√
π

4
√
2

[

4 π2f0
2 +

1

τ 2

(

1− e−2π2f02τ2
)

]

(B.79)

Substituting in Q:

(

cos2 ι
)

h0
2 Q

√
π

(
√
2 πf0)4

√
2

[

4 π2f0
2 +

2 π2f0
2

Q2

(

1− e−Q
2

)

]

(B.80)

(

cos2 ι
)

h0
2 Q

8
√
πf0

(4 π2f0
2)

[

1 +
1

2Q2

(

1− e−Q
2

)

]

(B.81)
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∫ ∞

−∞
ḣ2×,ψ=0(t) dt =

(

cos2 ι
)

(4 π2f0
2)

h0
2Q

8
√
πf0

[

1 +
1

2Q2

(

1− e−Q
2

)

]

(B.82)

Substituting (B.69) and (B.82) in to the full time integral in (B.44):

∫ ∞

−∞

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

dt =

(1 + cos2 ι)
2

4

(

4 π2f0
2
) h0

2Q

8
√
πf0

[

1 +
1

2Q2

(

1 + e−Q
2

)

]

+
(

cos2 ι
)

(4 π2f0
2)

h0
2Q

8
√
πf0

[

1 +
1

2Q2

(

1− e−Q
2

)

]

(B.83)

(1 + cos2 ι)
2

4

(

4 π2f0
2
) h0

2Q

8
√
πf0

[

1 +
1

2Q2
+

1

2Q2
e−Q

2

]

+
(

cos2 ι
)

(4 π2f0
2)

h0
2Q

8
√
πf0

[

1 +
1

2Q2
− 1

2Q2
e−Q

2

]

(B.84)

(

4 π2f0
2
) h0

2Q

8
√
πf0

[(

(1 + cos2 ι)
2

4
+ cos2 ι

)

(

1 +
1

2Q2

)

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

1

2Q2
e−Q

2

]

(B.85)

∫ ∞

−∞

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

dt =
(

4 π2f0
2
) h0

2Q

8
√
πf0

[(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+
1

2Q2

{(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

e−Q
2

}]

(B.86)

Substituting (B.30) and (B.31) in to (B.86) gives:

∫ ∞

−∞

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

dt = 4 π2f0
2

[

(

hHQ
rss

)2
+

1

2Q2
hrss

2

]

(B.87)
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Returning to (B.45), the angular integrals can now be taken care of. First, the

integral over φ. There is no φ dependence in h, so this is just:

∫ 2π

0

(1) dφ = 2 π (B.88)

Both hrss and hHQ
rss have ι dependence, so (B.87) will be inside the integral over ι.

The dependencies are of two forms:
(1+cos2 ι)

2

4
and cos2 ι. Therefore the integrals over

ι that must be solved are of the following forms:

∫

(1 + cos2 ι)
2

4
sin ι dι = −1

4

(

1

5
cos5 ι+

2 cos3 ι

3
+ cos ι

)

(B.89)

∫

(cos2 ι) sin ι dι = −1

3
cos3 ι (B.90)

When integrated from 0 to π these become:

∫ π

0

(1 + cos2 ι)
2

4
sin ι dι =

1

4

(

1

5
+

2

3
+ 1

)

− 1

4

(

−1

5
− 2

3
− 1

)

= 2

(

1

4

)(

28

15

)

=
14

15

(B.91)
∫ π

0

(cos2 ι) sin ι dι =
1

3
− −1

3
=

2

3
(B.92)

Both
(1+cos2 ι)

2

4
and cos2 ι appear together in (B.86). The integrals over ι of these

appearances can be calculated using B.91 and (B.92):

∫ π

0

(

(1 + cos2 ι)
2

4
+ cos2 ι

)

dι =
14

15
+

2

3
=

24

15
=

8

5
(B.93)

∫ π

0

(

(1 + cos2 ι)
2

4
− cos2 ι

)

dι =
14

15
− 2

3
=

4

15
(B.94)
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Now EGW can be calculated. First (B.86) and (B.88) are plugged into (B.45):

EGW =
c3

16πG

∫ ∞

−∞

∫ 2π

0

∫ π

0

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

r2 sin ι dι dφ dt =

2 πc3r2

16πG

∫ π

0

∫ ∞

−∞

(

ḣ2+,ψ=0(t) + ḣ2×,ψ=0(t)
)

dt sin ι dι (B.95)

=
c3r2

8G

∫ π

0

(

4 π2f0
2
) h0

2Q

8
√
πf0

[(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+
1

2Q2

{(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

e−Q
2

}]

sin ι dι (B.96)

=
(

4 π2f0
2
) c3r2

8G

h0
2Q

8
√
πf0

∫ π

0

[(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+
1

2Q2

{(

(1 + cos2 ι)
2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)
2

4
− cos2 ι

)

e−Q
2

}]

sin ι dι (B.97)

=
(

4 π2f0
2
) c3r2

8G

h0
2Q

8
√
πf0

[(

8

5

)

+
1

2Q2

{(

8

5

)

+

(

4

15

)

e−Q
2

}]

(B.98)

=
8

5

(

4 π2f0
2
) c3r2

8G

h0
2Q

8
√
πf0

[

1 +
1

2Q2

(

1 +
1

6
e−Q

2

)]

(B.99)

EGW = h0
2r2Qf0

c3π3/2

10G

[

1 +
1

2Q2

(

1 +
1

6
e−Q

2

)]

(B.100)

For high Q, (B.100) can be approximated as:

EHQ
GW ≈ c3π3/2

10G
h0

2r2Qf0 (B.101)
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In terms of τ , EGW becomes:

EGW = h0
2r2

√
2 πf0τf0

c3π3/2

10G

[

1 +
1

2
(√

2πf0τ
)2

(

1 +
1

6
e−(

√
2πf0τ)

2

)

]

(B.102)

EGW = h0
2r2f0

2τ
c3π5/2

5
√
2G

[

1 +
1

4 π2f02τ 2

(

1 +
1

6
e−2π2f02τ2

)]

(B.103)

In terms of τ , EHQ
GW becomes:

EHQ
GW ≈ c3π3/2

10G
h0

2r2
√
2 πf0τf0 (B.104)

EHQ
GW ≈ c3π5/2

5
√
2G

h0
2r2f0

2τ (B.105)

B.3. EGW and hrss for a Half Sine-Gaussian

EGW and hrss have been calculated above for a sine-Gaussian waveform. However,

the waveforms used in this analysis are half sine-Gaussians. A half sine-Gaussian will

have half the energy of a sine-Gaussian, and hrss will be a factor of
√
2 less than for a

sine-Gaussian. For a half sine-Gaussian, (B.30) and (B.31) become:

hrss =
h0

4π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

+

(

(1 + cos2 ι)2

4
− cos2 ι

)

e−Q2

(B.106)

hHQ
rss ≈ h0

4π1/4

√

Q

f0

√

√

√

√

(

(1 + cos2 ι)2

4
+ cos2 ι

)

(B.107)

For a half sine-Gaussian, (B.100) and (B.101) become:

EGW = h0
2r2Qf0

c3π3/2

20G

[

1 +
1

2Q2

(

1 +
1

6
e−Q

2

)]

(B.108)
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EHQ
GW ≈ c3π3/2

20G
h0

2r2Qf0 (B.109)

B.4. Comparing to Fluence

As a consistency check, the relationship between the energy, fluence and distance

can be found and compared to the same relation as stated in [79]. EHQ
GW for a sine-

Gaussian will be rewritten in terms of the fluence for a circularly polarized waveform

(ι = 0). Using (B.44) and (B.87), the fluence in (B.39) can be rewritten as:

F =
c3

16πG

∫

(

ḣ2+(t) + ḣ2×(t)
)

dt =
c3

16πG
4 π2f0

2

[

(

hHQ
rss

)2
+

1

2Q2
hrss

2

]

(B.110)

F =
π c3f0

2

4G

[

(

hHQ
rss

)2
+

1

2Q2
hrss

2

]

(B.111)

For ι = 0, the fluence is:

Fι=0◦ =
π c3f0

2

4G

(

h0
2Q

4
√
π f0

)[

1 +
1

2Q2

]

(B.112)

Fι=0◦ =

√
π c3

16G
h0

2Qf0

[

1 +
1

2Q2

]

(B.113)

For high Q, the fluence can be approximated as:

FHQ ≈ π c3f0
2

4G

(

hHQ
rss

)2
(B.114)

And for ι = 0, using either (B.113) or (B.114), FHQ can be approximated as:

FHQ
ι=0◦ ≈

π c3f0
2

4G

(

h0
2Q

4
√
π f0

)

(B.115)

FHQ
ι=0◦ ≈

√
π c3

16G
h0

2Qf0 (B.116)
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EHQ
GW can now be represented in terms of FHQ

ι=0◦ :

EHQ
GW ≈ c3π3/2

10G
h0

2r2Qf0 =
8 π r2

5

√
π c3

16G
h0

2Qf0 =
8 π r2

5
FHQ
ι=0◦ (B.117)

EHQ
GW ≈ 2

5
4 π r2FHQ

ι=0◦ (B.118)

(B.118) can be rearranged into:

5

2

EHQ
GW

4 π FHQ
ι=0◦

≈ r2 (B.119)

r ≈
(

5

2

EHQ
GW

4 π FHQ
ι=0◦

)1/2

(B.120)

(B.120) agrees with Equation 6 in [79].

B.5. Comparing to Isotropic Sine-Gaussian Emission

As an additional consistency check, the energy limits calculated in this appendix

can be compared to those calculated in [100]. The waveform considered now is a

sine-Gaussian with plus polarization and is isotropic in magnitude. (B.7) and (B.8)

now become:

h+,ψ=0 = h0e
−t2/τ2 sin (2 πf0t) sin 2ψ (B.121)

h×,ψ=0 = 0 (B.122)

The amplitude in h+ is now h0 instead of h0/
√
2 because the entire energy of the

waveform is now in the plus polarization. (B.45) would now become:

EGW =
c3

16πG

∫ ∞

−∞

∫ 2π

0

∫ π

0

ḣ2+,ψ=0(t)r
2 sin ι dι dφ dt (B.123)
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EGW =
c3r2

4G

∫ ∞

−∞
ḣ2+,ψ=0(t) dt (B.124)

EGW =
c3r2

4G

∫ ∞

−∞

[

d

dt

(

h0 sin 2 πf0te
−t2/τ2

)

]2

dt (B.125)

Using (B.47) and (B.82) and making the replacements of h0/
√
2 → h0 and

cos ι→ 1, the integral in (B.125) can be calculated:

∫ ∞

−∞

[

d

dt

(

h0 sin 2 πf0te
−t2/τ2

)

]2

dt = (4 π2f0
2)

h0
2Q

4
√
πf0

[

1 +
1

2Q2

(

1− e−Q
2

)

]

(B.126)

(B.126) is the same as equation 29 in [100].

As a last step, EHQ
GW can be found:

EGW =
c3r2

4G
(4 π2f0

2)
h0

2Q

4
√
πf0

[

1 +
1

2Q2

(

1− e−Q
2

)

]

(B.127)

EHQ
GW ≈ c3r2

4G
(4 π2f0

2)
h0

2Q

4
√
πf0

(B.128)

(B.128) agrees with equation 12 in [100].
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APPENDIX C

CALIBRATION ERROR

L1
Overall scaling = 1.02(1 + 0.13− 0.01)

Timing error = [−10,+45]µs
Static frequency dependence recommendation

Epoch [40, 70] Hz [70, 2000] Hz [2000, 5000] Hz

S6a

|h(f)| 10% 14% 20%

|h(t)|
√
102 + 32 = 10%

√
142 + 32 = 14%

√
202 + 32 = 20%

∠h(f) 7 deg 9 deg 6 deg
∠h(t)

√
72 + 42 = 8 deg

√
92 + 42 = 10 deg

√
62 + 122 = 13 deg

S6b

|h(f)| 5% 18% 19%

|h(t)|
√
52 + 72 = 9%

√
182 + 72 = 19%

√
192 + 42 = 19%

∠h(f) 4 deg 7 deg 5 deg
∠h(t)

√
42 + 3.52 = 5 deg

√
72 + 3.52 = 8 deg

√
52 + 22 = 5 deg

H1
Overall scaling = 1.014(1 + 0.025− 0.004)

Timing error = [0,+30]µs
Static frequency dependence recommendation

Epoch [40, 70] Hz [70, 2000] Hz [2000, 5000] Hz

S6a

|h(f)| 13% 8% 40%

|h(t)|
√
132 + 42 = 14%

√
82 + 42 = 9%

√
402 + 62 = 40%

∠h(f) 7 deg 5 deg 27 deg
∠h(t)

√
72 + 22 = 7 deg

√
52 + 22 = 5 deg

√
272 + 4.52 = 27 deg

S6b

|h(f)| 11% 16% 40%

|h(t)|
√
112 + 32 = 11%

√
162 + 32 = 16%

√
402 + 6.52 = 41%

∠h(f) 6 deg 5 deg 27 deg
∠h(t)

√
62 + 22 = 6 deg

√
52 + 22 = 5 deg

√
272 + 52 = 28 deg

TABLE C.1. Recommended calibration error for S6. Reproduced from [102].

Calibration error affects the strain Fourier transform h̃I(f) with timing error (τI),

phase error (δI(f)) and amplitude error (λI(f)) [103]:

h̃I(f) → e2πifτIeiδI(f)λI(f)h̃I(f) (C.1)
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L1
Overall scaling = 1.02(1 + 0.13− 0.01)

Timing error = [−10,+45]µs
Static frequency dependence recommendation

Epoch [40, 70] Hz [70, 2000] Hz [2000, 5000] Hz

S6a

|h(f)| 10% 14% 20%

|h(t)|
√
102 + 32 = 10%

√
142 + 32 = 14%

√
202 + 32 = 20%

∠h(f) 7 deg 9 deg 6 deg
∠h(t)

√
72 + 42 = 8 deg

√
92 + 42 = 10 deg

√
62 + 122 = 13 deg

S6b

|h(f)| 5% 18% 19%

|h(t)|
√
52 + 72 = 9%

√
182 + 72 = 19%

√
192 + 42 = 19%

∠h(f) 4 deg 7 deg 5 deg
∠h(t)

√
42 + 3.52 = 5 deg

√
72 + 3.52 = 8 deg

√
52 + 22 = 5 deg

H1
Overall scaling = 1.014(1 + 0.025− 0.004)

Timing error = [0,+30]µs
Static frequency dependence recommendation

Epoch [40, 70] Hz [70, 2000] Hz [2000, 3000] + [4000, 5000] Hz

S6a

|h(f)| 13% 8% 11%

|h(t)|
√
132 + 42 = 14%

√
82 + 42 = 9%

√
112 + 62 = 13%

∠h(f) 7 deg 5 deg 8 deg
∠h(t)

√
72 + 22 = 7 deg

√
52 + 22 = 5 deg

√
82 + 4.52 = 9 deg

S6b

|h(f)| 11% 16% 15%

|h(t)|
√
112 + 32 = 11%

√
162 + 32 = 16%

√
152 + 6.52 = 16%

∠h(f) 6 deg 5 deg 8 deg
∠h(t)

√
62 + 22 = 6 deg

√
52 + 22 = 5 deg

√
82 + 52 = 9 deg

TABLE C.2. Recommended calibration error for S6. Derived from data in [102]
excluding the band [3000, 4000] Hz in H1.

From [102], the calibration error in the frequency response function can be

represented as:

R(f) = A0(1 + δA+ − δA−)abs
(

η0R(f)
)

exp[i(∆φR(f)− 2πfτR)]ηγ(f)RM(f) (C.2)

R is the “true” response and RM is the model response [102]. A0 and δA± are the

overall scaling error. τ is the timing error, ηγ is the time evolution error and η0R is the

rest of the frequency dependent scaling error. ∆φR is the phase error of η0R.

Phase error including timing error:

PhaseError = δI(f)
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Timing Error = 2πifτI = δItiming(f)

δI tot(f) =
√

δI(f)2 + δItiming(f)2

While normally useful, given (C.1) instead use:

δI tot(f) = δI(f) + δItiming(f)

|h̃1(f)||h̃2(f)| → |h̃1(f)||h̃2(f)| cos (δ2 tot(f)− δ2 tot(f))

Include the calibration error in the amplitude:

λI(f) = A0(1 + δA+ − δA−)
∣

∣η0R(f)
∣

∣ ηγ(f)

|h̃1(f)||h̃2(f)| → |h̃1(f)||h̃2(f)|
(

A0(1 + δA+ − δA−)
∣

∣η0R(f)
∣

∣ ηγ(f)
)2

× cos (δ2 tot(f)− δ1 tot(f))

The time evolution error is much smaller than the “static frequency dependence error”,

and is thus neglected [102]. Let |∆h(f)| be the frequency dependent error not including

the timing error:

|∆h(f)| =
∣

∣η0R(f)
∣

∣ ηγ(f) ≈
∣

∣η0R(f)
∣

∣

Which gives:

|h̃1(f)||h̃2(f)| → |h̃1(f)||h̃2(f)|A1A2(1 + δA+1 − δA−1)(1 + δA+2 − δA2−)

× |∆h(f)1| |∆h(f)2| cos (δ2 tot(f)− δ1 tot(f)) (C.3)
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|∆h̃1(f)||∆h̃2(f)| → A1A2(1 + δA+1 − δA−1)(1 + δA+2 − δA2−)

× |∆h(f)1| |∆h(f)2| cos (δ2 tot(f)− δ1 tot(f)) (C.4)

For the timing plus phase error (δτmax = 45µs):

∆δmax(f) = 2πf45µs + δ1(f) + δ2(f)

Approximating with the time dependent version for the entire band, the frequency

dependence drops out except for the timing error part:

∆δmax(t) = 2πf45µs + δ1(t) + δ2(t)

Amplitude calibration error:

λI(f) = A0(1 + δA+ − δA−) |∆h(f)|

λI(t) = A0(1 + δA+ − δA−) |∆h(t)|

λI(t) = A0

(

1 +

√

δA+
2 + |∆h(t)|2 −

√

δA2
− + |∆h(t)|2

)

λ1(t)λ2(t) = A1A2

(

1 +

√

δA+1
2 + δA+2

2 + |∆h1(t)|2 + |∆h2(t)|2

−
√

δA−1
2 + δA−2

2 + |∆h1(t)|2 + |∆h2(t)|2
)

(C.5)
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The calibration error of two measured strain values from two detectors multiplied

together (h0measured 1h0measured 2 = h0m1h0m2) can be represented as:

h0 1h0 2 cos (δ2 tot(f)− δ1 tot(f)) = h0m1h0m2λ1(t)λ2(t)

Worst case with ∆δmax(f) and δA+:

h0 1h0 2 cos (2πf45µs + δ1(t) + δ2(t)) =

h0m1h0m2A1A2

(

1 +

√

δA+1
2 + δA+2

2 + |∆h1(t)|2 + |∆h2(t)|2
)

(C.6)

h0 1h0 2
h0m1h0m2

= A1A2

1 +
√

δA+1
2 + δA+2

2 + |∆h1(t)|2 + |∆h2(t)|2

cos (2πf45µs + δ1(t) + δ2(t))
(C.7)

Best case with ∆δ(f) = 0 and δA−:

h0 1h0 2 = h0m1h0m2A1A2

(

1−
√

δA−1
2 + δA−2

2 + |∆h1(t)|2 + |∆h2(t)|2
)

(C.8)

h0 1h0 2
h0m1h0m2

= A1A2

(

1−
√

δA−1
2 + δA−2

2 + |∆h1(t)|2 + |∆h2(t)|2
)

(C.9)
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