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DISSERTATION ABSTRACT

Gregory Barello

Doctor of Philosophy

Department of Physics

June 2016

Title: Models and Constraints for New Physics at the Energy, Intensity, and Cosmic
Frontiers

The modern era of particle physics is driven by experimental anomalies.

Experimental efforts have become increasingly diverse and are producing enormous

volumes of data. In such a highly data-driven scientific environment theoretical

models are necessary to understand this data and to help inform the development

of new experimental approaches. In this dissertation I present two significant

contributions to this effort relevant to the energy, intensity, and cosmic frontiers

of modern particle physics research.

Part 1 of this dissertation discusses methods to understand modern dark matter

direct detection results. In particular I present an analysis under the hypothesis of

inelastic dark matter, which supposes that dark matter must scatter inelastically, i.e.

that it must gain or loose mass during a collision with atomic nuclei. This hypothesis

is attractive because it can alleviate otherwise contradictory results from a number of

dark matter detection facilities. The main conclusion of this work is a presentation of

the analytical tools, along with a mathematica package that can be used to run the

analysis, and the discovery that there are regions of inelastic dark matter parameter
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space which are consistent with all current experimental results, and constraints.

Part 2 of this dissertation discusses a phenomenon of modern interest called

kinetic mixing which allows particles from the standard model to spontaneously

transform into particles which experience a new, as of yet undiscovered, force. This

phenomenon is relatively common and well motivated theoretically and has motivated

significant experimental effort. In this work, I present an analysis of a general

case of kinetic mixing, called nonabelian kinetic mixing. This work shows that, In

general, kinetic mixing predicts the existence of a new particle and that, under certain

conditions, this particle could be detected at modern particle colliders. Furthermore,

the mass of this particle is related to the strength of kinetic mixing. This relationship

suggests novel ways to constrain kinetic mixing parameter space, and if observed

would provide a very striking indication that such a model is realized in nature.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

The State of Particle Physics

The Standard Model of Particle Physics has guided high energy particle physics

research for the last four decades. Since its development in the 1970s every test of the

Standard Model has confirmed its predictions, culminating in the 2012 discovery of

the Higgs boson at the Large Hadron Collider [1]. The Standard Model is our most

fundamental theory of the constituents of matter, and yet, there are phenomena that

it cannot explain. For decades the goal of validating the Standard Model has guided

theoretical and experimental particle physics. Now most of the predictions of the

Standard Model have been verified, and there are only unexplained phenomena in

need of an understanding. This is the state that particle physics finds itself in today.

Some of the phenomena in need of an explanation are: neutrino masses, the

hierarchy problem, and dark matter. These are the driving forces behind the

theoretical and experimental research that occurs today. Within the standard model,

neutrinos are predicted to be massless, however recent measurements of neutrino

oscillations imply that the neutrinos do have a (very small) mass [2]. The hierarchy

problem refers to a theoretical difficulty with the standard model, whereby the

parameters of the model must be very finely tuned in order to produce the light

Higgs boson that has been discovered. Dark matter will be one main focus of this

thesis. Dark matter refers to the observation that 80% of the matter in our universe

seems to be made up of something which is not the standard model material that
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we know of. On the other hand there are experimental facilities producing fantastic

volumes of data. In such a data-driven scientific environment it is important for

theorists to develop models which can be used to guide scientific efforts. This is the

point of view I have taken during my own work. My work has focused on developing

interesting and useful phenomenological predictions, with a special focus on dark

matter and related phenomena.

On the experimental side it is important to cast a wide net which has motivated

a multi-pronged approach highlighting three main categories: the energy, intensity,

and cosmic frontiers [3].

The energy frontier: Those experiments which aim to create extremely

energetic collisions of particles are collectively known as energy frontier experiments.

The primary examples of such an experiment are those associated with particle

colliders, such as ATLAS and CMS located at the Large Hadron Collider, which are

relevant to the material presented in part 2 of this document. The most significant

energy frontier experiment in operation is the Large Hadron Collider (LHC) which

collides beams of protons at a center-of-mass energy of 13TeV; 13, 000 times the

proton mass.

The intensity frontier: Those experiments which aim to measure extremely

rare, or weak, phenomena by taking advantage of very high intensity sources of

particles are part of the intensity frontier. Examples of these experiments include

fixed-target collider experiments, such as those discussed in part 2 of this document,

and reactor-based neutrino experiments, which work with very high luminosity beams
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of neutrinos, such as BooNE, located at Fermilab.

The cosmic frontier: Those experiments which take advantage of the many

physical processes which happen in the cosmos to obtain their data comprise the

so-called cosmic frontier. Part 1 of this document will discuss one particular type:

the dark matter direct detection facilities, such as XENON, LUX, DAMA/LIBRA,

and others. These experiments rely on the presence of dark matter in our local

environment to be able to detect collisions between the dark matter and standard

nuclear matter, and have been the focus of my work. Other examples of cosmic

frontier experiments, which are featured less heavily in my research, are neutrino

detection facilities, such as IceCube Neutrino Observatory, and various telescopes in

operation, such as AMS, FERMI, and others.

Overview

This dissertation discusses two main threads within beyond the Standard Model

(BSM) phenomenology.

Dark Matter Direct Detection

Dark matter is a well established reality (see [4] and references therein). The

original hints of dark matter were from discrepancies in the orbital velocities of

celestial bodies. Since then indications of dark matter have been measured via

gravitational effects, and the most successful models of cosmology include dark

matter, and provide remarkably good explanations of elemental abundances, and

anisotropies in the cosmic microwave background. It is widely believed that dark
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matter is particulate in nature. This conclusion is supported by the mass distribution

of the famous bullet cluster [5], as well as the fantastic agreement between the cosmic

microwave background anisotropy spectrum and predictions made by cosmological

models incorporating particulate dark matter [6]. More recently there have been

a number of anomalous measurements which may be the first hint of dark matter,

both in ground based, direct detection experiments [7], and from studies of cosmic

radiation [8]. So far, the unambiguous evidence we have for dark matter is mostly

due to it’s extremely weak, gravitational, interaction with the Standard Model.

Naturally, this breadth of evidence, and contemporary hints of a signal, have

induced a flurry of theoretical and experimental developments. There are three main

approaches taken when trying to study dark matter. The first is the so-called indirect

detection, in which one hopes to observe the Standard Model remnants of dark matter

interactions in the cosmos. Experimentally, this subfield is represented mostly by

telescopes, such as FERMI/LAT [9], and AMS-2 [10]. The second significant effort is

so-called direct production, in which the hope is to be able to produce dark matter

at particle colliders, and see traces of it in the collision events. The third cornerstone

of the modern experimental effort is direct detection, which will be the focus of

the work presented here, and involves monitoring large volumes of Standard Model

matter in hopes of witnessing a collision event with dark matter. The assumption

underlying all of these approaches is that dark matter does interact with the Standard

Model in some manner other than gravitationally. Indeed, if it did not there would

be little hope of detecting dark matter for the foreseeable future. Guided by this

assumption, direct detection experiments place a large volume of Standard Model

material (examples include xenon, and crystalline scintillators made out of various

4



salts) in a low background environment, commonly at the bottom of a mine shaft,

deep underground, and monitor it for unexpected collision events.

Many direct detection experiments have already been built and the results are

mixed. Most experiments report no signal while others report a persistent signal,

seemingly in conflict with others’ null result. One complicating factor is that different

experiments have chosen different materials to use as their detection medium. In the

simplest case, scattering in these different materials should interact in comparable

ways with dark matter, and this is the interpretation used to compute most exclusions.

On the other hand, more complex models of dark matter often predict that the

strength of a dark matter particle’s interaction can vary widely depending on the

details of the atomic nuclei being used. Models of dark matter have begun to take

advantage of this complexity in order to explain how some experiments see a signal

while others do not. As a matter of fact, using a diverse range of materials has the

advantage of potentially being sensitive to a wider range of dark matter models.

One way to gain a handle on the effects of different materials is to decompose

the response of the nucleus into so-called form factors of the nuclei. These form

factors can in principle be computed for various nuclei, and each form factor couples

only to a specific set of dark matter - Standard Model interactions. Then dark

matter interactions can be categorized by which couple to each form factor. This

allows us to study the coupling operators themselves, and then use our knowledge

of each material to apply the results to specific experiments effectively decoupling

the process of analyzing dark matter interactions from applying those analyses to

specific materials. Furthermore, effective field theory allows us to parameterize all
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possible interactions of dark matter in terms of these operators which couple to the

form factors in a well defined way, allowing us to perform a fully model independent

analysis of each operator, and then make the link to particular models after the fact.

This approach has found success in the study of dark matter direct detection, as

well as other applications [11, 12]. This parameterization can be used both to guide

experimental efforts, and to guide model building efforts. The details of this approach

will be discussed in chapter 2, and references therein.

The work presented in chapter 2 goes one step further by applying this technique

to a promising explanation of modern direct detection results: inelastic dark matter.

Inelastic dark matter refers to the possibility that dark matter undergoes inelastic

scattering: a reaction in which the dark matter must change form to another, slightly

heavier, dark matter particle while interacting with Standard Model particles. It was

realized some time ago that inelastic scattering can ameliorate current contradictory

results [13]. Applying the analysis presented here allows direct detection of inelastic

dark matter to be understood in a model-independent way. Our results are presented

in chapter 2.

Kinetic Mixing at the Energy and Intensity Frontiers

The second thread of this dissertation is the study of kinetic mixing. To

understand the relevance of kinetic mixing it must be understood that in particle

physics there are a number of common motifs. One of the most fundamental is that

of the gauge force. All of the strong, weak, and electromagnetic forces are described as

gauge forces. The success of gauge theory in our current models of physics suggests

that it will continue to appear in the new physics that we discover. Importantly,
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there are many concrete predictions we can make on the basis of gauge theory. One

prime example is kinetic mixing, which was first discussed by B. Holdom in 1985

[14]. Kinetic mixing is a phenomenon in which a new gauge boson can spontaneously

turn into a photon, or other Standard Model gauge boson, and will generically occur

whenever a new abelian gauge force is present. This phenomenon straightforwardly

generalizes to nonabelian gauge theories as well. In addition to its naturalness in BSM

models, kinetic mixing can be part of a suitable description of dark matter interacting

with the Standard Model, which can even generate the inelastic transitions discussed

before [15].

The new gauge forces required to generate kinetic mixing are naturally present

in many BSM physics theories, especially dark matter models where it may be that

an entire “dark sector” exists with many particles and gauge forces. It has also long

been hoped that kinetic mixing could ameliorate conflict between the Standard Model

and the measured anomalous magnetic moment of the muon [16]. Indeed, there are

values of the new boson’s mass and kinetic mixing strength which can fully account

for the muon anomalous magnetic moment. However, as it stands, the preferred

regions are ruled out for the simplest kinetic mixing models. In addition to this,

models with kinetic mixing are able to accommodate recent anomalies seen in cosmic

rays [10, 17, 18].

These facts, as well as a healthy body of theoretical work which incorporates

kinetic mixing, has encouraged the development of a large experimental effort

specifically searching for kinetic mixing, which spans the intensity and energy

frontiers. The approach this dissertation will focus on recognizes that the new gauge
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boson, once created, will eventually decay into Standard Model particles, as long as

it is sufficiently heavy to do so. This is the idea behind studies at the LHC, which

look for “lepton-jets”, which are created when a high energy dark photon decays to

a collimated spray of electrons or muons that appears inside their detector. At the

intensity frontier, beam-dump and fixed-target facilities use the fact that the dark

photon will interact weakly with the Standard Model to take advantage of a shield,

collide a particle beam with it, and see if anything comes out the other side (see,

for example, [19]). If a dark photon does exist and couples sufficiently weakly to the

Standard Model it will travel through the shield and decay to electrons, or muons,

on the other side. The length and nature of decay depends both on the mass of

the dark photon and the kinetic mixing strength. To that end, various experiments

adjust beam energy, and shield thickness to probe different regions of parameter space.

These approaches will be discussed further, with references, in part 2.

The particular work presented here focuses on another facet of the kinetic mixing

scenario: as will be discussed further in part 2, in order for kinetic mixing to occur

there must be an additional new particle, the “mediator”, which would generate

kinetic mixing by “linking” the two gauge bosons. The precise meaning of this will

be clarified later on, however, for the time being it is interesting to note that in

some cases, particularly nonabelian kinetic mixing (in which one or the other of the

associated gauge fields are nonabelian), the mass of the mediating particle is directly

linked to the strength of kinetic mixing. As I will show later on, this allows us to

make striking predictions which link the fixed target and beam dump experiments to

lepton-jet searches at particle colliders.
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This dissertation includes previously published and unpublished co-authored

material. The work presented in chapter 2 was done in collaboration with Christopher

A. Newby and Spencer Chang and has been published in Physical Review D [20].

The model-building work in chapter 3 was done in collaboration with Christopher A.

Newby and Spencer Chang and is currently under review for publication in Physical

Review Letters [21]. The collider study work in chapter 3 was done in collaboration

with with Christopher A. Newby, Spencer Chang, and Bryan M. Ostdiek and is

ongoing.
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CHAPTER II

A MODEL INDEPENDENT APPROACH TO INELASTIC DARK MATTER

DIRECT DETECTION

This chapter is based on previously published, co-authored material1.

Dark matter direct detection experiments are an ambitious effort to observe

galactic dark matter scattering off of nuclear targets [22] as a means to study dark

matter’s interactions with normal matter. Beginning with the early experiments in the

eighties, there has been steady progress to increasing sensitivity. Planned experiments

in the future will push this frontier [23], giving us hope that such interactions will be

confirmed soon. Such a discovery would give important insights into the fundamental

nature of dark matter and its place in the Standard Model of particle physics.

The experimental challenges of direct detection are many. Finding conclusive

evidence is a tall order, as demonstrated by several recent experimental anomalies,

the most famous being the annual modulation signal seen by DAMA [7], which appear

to be in conflict with the null results of other experiments. However, whether a dark

matter scenario is consistent with existing limits and excesses depends strongly on the

form of its interactions with the nucleus. For each interaction, the relative sensitivities

of different experiments can vary wildly, leading to the hope of a scenario consistent

with all of the existing data. Another reason to study the allowed interactions is

that certain interactions may have distinctive features in the signal that allow better

background separation. These reasons highlight the importance of exploring the

full landscape of possible interactions. Some examples of the studied possibilities

1This chapter is based on reference [20] written in collaboration with Spencer Chang and
Christopher A. Newby
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include inelastic transitions [13], dark matter form factors [24, 25], dark matter-

nucleus resonances [26, 27], and isospin-violating dark matter [28–30].

Given the large range of possible scattering interactions allowed by dark matter

theories, it has proven useful to study the phenomenology of dark matter scattering

in a model independent fashion [11, 31]. In particular, Ref. [11] has provided a

systematic study of the effective description of nonrelativistic, elastic scattering and

a Mathematica package to generate the necessary form factors [32]. A notable success

of this approach was the illumination of nuclear responses beyond the standard spin-

independent and spin-dependent responses that are primarily considered by dark

matter experiments. Thus, model independent approaches have the benefit of larger

applicability, pointing out all of the regions where experiments can be sensitive —

see [33–38] for some recent work in this direction.

In this paper, we extend this work by considering the modifications necessary

to describe inelastic transitions of the dark matter particle. Such transitions have

important kinematic effects and were originally proposed and studied for scattering to

a heavier dark matter state [13, 39] and then later extended to the “down scattering”

case [40–42]. We will investigate the modifications to Ref. [11] that must be made

to properly treat inelastic scattering in a model-independent fashion. As we will

show, this requires a straightforward reorganization of the basis of scattering matrix-

elements. This has the added benefit that we were able to suitably modify the

Mathematica package [32] to calculate the form factors for inelastic scattering.

To illustrate the utility of this methodology, we will demonstrate how the inelastic

transitions between particles of spin 1/2 to 1/2, 0 to 1, and 0 to 0 can be treated

in a standard basis of nonrelativistic matrix elements. We do so by considering

the relativistic operators between such particles that can be mediated by spin 0 or
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1 particles. Using these results, we perform a reanalysis of the magnetic inelastic

dark matter scenario [43] and perform a model independent scan over the relativistic

operators to determine scenarios which could explain the DAMA/LIBRA signal. For

the magnetic inelastic dark matter scenario and for operators which couple the dark

matter to protons only, we find the constraints from xenon detectors can be weakened

to allow some operators to survive, while germanium detectors have an extremely

weak sensitivity. However, a stringent constraint comes from iodine targets, like

those used by COUPP and KIMS. A large uncertainty in this analysis is the quenching

factor of iodine. Depending on the values we assume, the constraints from KIMS,

XENON, and LUX can change by a large amount, due to changes in the recoil spectra.

Another uncertainty is the lack of form factors for cesium and tungsten. Given these

uncertainties, we find that DAMA explanations are constrained but not ruled out yet,

which should be resolved by the next round of experimental releases.

The outline of the rest of the paper is as follows. In section 2.1, we discuss

the kinematics of inelastic scattering to determine the relevant kinematic variables.

In section 2.2 we discuss the modifications to the operators needed to describe dark

matter inelastic transitions. In section 2.3, as an application of this formalism, we

fit the annual modulation signal at DAMA/LIBRA and discuss the constraints from

other experiments. In section 2.4, we conclude. Finally, in the appendices, we give

further details on the nonrelativistic limit of the kinematics and matrix elements of

inelastic scattering.

Variables for Inelastic Kinematics

To begin, we need to determine the correct variables to describe inelastic

scattering. To do so, we need to understand the kinematic modifications of an inelastic
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χ1("p ) χ2("p
′)

N ("k ) N ("k ′)

"q ≡ "p ′
− "p = "k − "k ′ δ ≡ mχ2 −mχ1

FIGURE 1. Inelastic scattering of dark matter off of a nucleon with our conventions
for the kinematic variables.

transition for nonrelativistic scattering. We are interested in scattering events of the

type

χ1(~p ) N(~k ) → χ2(~p
′) N(~k ′) (2.1)

where χ1 is the incoming dark matter particle, χ2 is the outgoing particle, and N

is a nucleon in the target nucleus, see Fig. 1. There is a mass splitting between the

two particles δ = mχ2
−mχ1

. Positive δ was the first case to be considered originally

[13], which pointed out that this has the important effects of favoring scattering off

of heavier nuclei and increasing the annual modulation fraction. Negative δ leads

to exothermic transitions which have also been considered in the literature [40–42].

In certain theories, the elastic scattering process is forbidden or suppressed [44, 45],

making these inelastic transitions the leading way to detect dark matter scattering.

For a survey of such theories, see [13, 46–50].

The modifications of a nonzero splitting δ on the kinematics is straightforward.

To leading order in the nonrelativistic expansion, δ is the additional energy required

to make the transition occur. Thus, given the scaling of kinetic energy, we expect

situations where the splitting scales as δ ∼ O(v2) to have a consistent velocity
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expansion. Since dark matter in our galaxy have speeds v ∼ 10−3c, this means

that we should consider splittings in the range δ ∼ 100 keV
( mχ

100 GeV

)

.

Now, we adapt the analysis of [11] to inelastic scattering in order to determine

the relevant degrees of freedom that characterize the effective theory in a velocity

expansion. One approach would be to start with the relativistic kinematics and

take the nonrelativistic limit. Although this gives the same result, as we show in

Appendix ??, we find that it is simpler to proceed from the constraints of Galilean

invariance where velocities receive a common shift. This determines that there are

two relevant vectors that are boost invariant, ~v ≡ ~vχ1
− ~vNin

= ~p/mχ1
− ~k/mN and

~q = ~p ′ − ~p = ~k − ~k′, while the boost invariant scalars are the particle masses and

δ. Note that ~p ′ − ~p is not exactly Galilean invariant; due to the mass difference

δ, it is invariant to leading order in the velocity expansion and thus is a consistent

approximation at first order. Throughout this discussion, we are working in this

expansion and will cavalierly use equalities for expressions if they are equal to the

same order in the expansion.

At this point, it is useful to construct an orthogonal basis of these vectors.

To do so, consider the scattering in the center-of-mass frame, where ~vχ1
= µN

mχ1

~v,

~vNin
= − µN

mN
~v, and µN is the reduced mass between χ1 and N . The initial energy in

this frame, expanded to second order in velocities, is

Ein ≈ mχ1
+mN +

1

2
µNv

2. (2.2)
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After scattering, the momentum vectors are ~p ′ = ~p + ~q and ~k′ = ~k − ~q. Expanding

the final energy to the same order, we find

Eout = mχ2
+mN +

1

2mχ2

|~p+ ~q |2 + 1

2mN

|~k − ~q |2

(2.3)

≈ Ein + δ + ~v · ~q + |~q |2
2µN

.

To reach the final form, we treated all momenta as order v and δ as order v2. Thus,

we find that energy conservation requires

δ + ~v · ~q + |~q |2
2µN

= 0. (2.4)

Using this constraint, one can easily show that

~v⊥inel ≡ ~v +
~q

2µN
+

δ

|~q |2~q = ~v⊥el +
δ

|~q |2~q (2.5)

is perpendicular to ~q. Here we see that the inelastic kinematics alters this vector from

the elastic version ~v⊥el by a new piece proportional to δ. This new term is entirely

consistent with the velocity expansion.

As a consistency check, notice that Eq. 2.4 requires

|~v| ≥ 1

|~q |

∣

∣

∣

∣

|~q |2
2µN

+ δ

∣

∣

∣

∣

. (2.6)

If we write the momentum transfer in terms of the energy recoil |~q | =
√
2mNER, we

find that the minimum velocity for scattering is

vmin =
1√

2mNER

∣

∣

∣

∣

mNER
µN

+ δ

∣

∣

∣

∣

(2.7)
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which reproduces the well known result in the literature [13].

Inelastic Scattering Operators

Now that we know the correct variables to describe inelastic kinematics, we can

list the allowed matrix elements for inelastic, nonrelativistic dark matter-nucleon

scattering. To leading order in the velocity expansion, we found that the only

modification is that ~v⊥ is changed from the elastic case. Thus, the operators that are

allowed are the same as in [11] with ~v⊥ → ~v⊥inel. Listing these in the same numbering

scheme, we have

O1 = 1χ1N , O2 = (v⊥inel)
2, O3 = i~SN ·

(

~q

mN

× ~v⊥inel

)

,

O4 = ~Sχ · ~SN , O5 = i~Sχ ·
(

~q

mN

× ~v⊥inel

)

,

O6 =

(

~Sχ ·
~q

mN

)(

~SN · ~q

mN

)

,

O7 = ~SN · ~v⊥inel, O8 = ~Sχ · ~v⊥inel,

O9 = i~Sχ ·
(

~SN × ~q

mN

)

, O10 = i~SN · ~q

mN

,

O11 = i~Sχ ·
~q

mN

, O12 = ~Sχ ·
(

~SN × ~v⊥inel

)

,

O13 = i
(

~Sχ · ~v⊥inel
)

(

~SN · ~q

mN

)

,

O14 = i

(

~Sχ ·
~q

mN

)

(

~SN · ~v⊥inel
)

,

O15 = −
(

~Sχ ·
~q

mN

)(

(~SN × ~v⊥inel) ·
~q

mN

)

,

(2.8)

where ~Sχ,N are the spin operators for the dark matter and nucleon. In [11], operator

O2 was not considered since it doesn’t appear in the nonrelativistic reduction of the

scattering matrix elements of relativistic operators, and we find the same result here.
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Thus, the important operators are at most linear in ~v⊥inel. Since ~v⊥inel differs from the

elastic ~v⊥ by just a shift in ~q, we will later find that this linearity allows one to utilize

the form factors provided by the Mathematica package [32].

There are two other modifications to the elastic case that we will find. First of

all, δ can be a coefficient multiplying the operators when one reduces from relativistic

operators. The second effect is that ~q no longer has to appear in the combination of

i~q, as can be seen by the expression for ~v⊥inel. In the elastic case, this was guaranteed

by the interaction being Hermitian. Since conjugation swaps initial and final states,

this acts as time reversal, i~q
T−→ i~q. However, for the inelastic case, the initial and

final states are not the same particle, so this is no longer required by the interaction.

In general, the inelastic operators in Eq. 2.8 may have arbitrary complex coefficients,

as long as they appear in appropriate Hermitian conjugate pairs in the Hamiltonian.

This was not the case for elastic operators because Hermiticity requires them to have

real coefficients.

Form Factors for Inelastic Scattering

Now, one must use these nucleon-dark matter operators to determine the matrix

elements within the target nucleus. We will give a brief summary here, giving more

details in Appendix ??. Since inelasticity modifies ~v⊥inel, we should examine how this

affects the nuclear response. First of all, by introducing the target velocity ~vT , we

17



rewrite

~v⊥el = ~v +
~q

2µN
(2.9)

=

(

~p

mχ1

−
~k

mN

)

+
1

2mχ1

(~p ′ − ~p ) +
1

2mN

(

~k − ~k′
)

≈ 1

2
(~vχ1

+ ~vχ2
− ~vNin

− ~vNout
)

=
1

2
(~vχ1

+ ~vχ2
− ~vTin − ~vTout)

+
1

2
[(~vTin − ~vNin

) + (~vTout − ~vNout
)]

≡ ~v⊥elT + ~vnuc.

Thus for each nucleon in the nucleus, ~v⊥el is equal to the target’s ~v⊥el plus a term, ~vnuc,

that is dependent on the nucleon’s relative velocity to the nucleus. Similarly, for the

inelastic velocity, we have

~v⊥inel = ~v⊥inelT + ~vnuc (2.10)

where

~v⊥inelT =
1

2
(~vχ1

+ ~vχ2
− ~vTin − ~vTout) +

δ

|~q |2~q, (2.11)

Since the nucleus and dark matter scattering is also in the nonrelativistic limit, the

same kinematic considerations from before show that ~v⊥inelT is perpendicular to ~q and

thus we can now interpret ~q as the momentum transfer from χ1 to the target nucleus.

The reason for the separation of ~v⊥inelT into target and relative parts is that the

nuclear form-factors only depend on interactions with nucleons, so only ~vnuc is an

operator. The five nucleon interactions are [11]:

18



ON
1 = 1N , ON

2 = −2~vnuc · ~SN ,

~ON
3 = 2~SN , ~ON

4 = −~vnuc, and

~ON
5 = 2i~vnuc × ~SN .

(2.12)

which correspond to different types of nucleon responses. ON
1 corresponds to the

charge interaction, ON
2 to the axial charge interaction, ~ON

3 to the axial vector

interaction, ~ON
4 to the vector magnetic interaction, and ~ON

5 to the vector electric

interaction. Note that the explicit dependence on the inelastic nature of the scattering

is not in the operators but in the coefficients. For a more detailed discussion of the

nuclear form factors see [11].

For our cases, since ~v⊥inel only appears linearly (see Tables 1-3), we merely have

to incorporate the change of ~v⊥elT → ~v⊥inelT in the Mathematica notebook [32]. In

calculating the matrix elements squared, this results in terms which are proportional

to |~v⊥inelT |2. This has the simple form

|~v⊥inelT |2 = |~vT |2 −
(

1

2µT
+

δ

|~q |2
)2

|~q |2

= |~vT |2 − v2minT (2.13)

where ~vT = ~vχ1
− ~vTin and µT is the χ1-nucleus reduced mass. In the second form,

we have written the subtracted term as vminT , the minimum speed to scatter off of

the nucleus with energy ER, which is the nucleus version of Eq. 2.7. Note that for

upscattering (δ > 0) this leads to a suppression of this factor and for both signs of δ,

this term goes to zero at the minimum incoming velocity.

19



The power of this formalism is that it gives the correct variables in which to

characterize inelastic scattering and thus is helpful for understanding results that are

at first surprising. As an example, in Ref. [43], an inelastic dark matter model was

analyzed that had a magnetic dipole interaction with the nucleus. For the scattering of

this dark matter dipole off of the nucleus charge, peculiar terms involving δ/|~v|2, δ/ER

are found. In that paper, these terms were only discovered by a systematic expansion.

However, in terms of this discussion, these terms are just due to the contribution from

the δ dependent terms of |~v⊥inelT |2. Of course, the main improvement on Ref. [43] is that

the form factors can now be reliably computed by a modification of the Mathematica

notebook [32]. Again, for details on how to implement these inelastic modifications

to the form factor calculation, see Appendix ??.

Relativistic Matrix Elements for Fermion-Fermion Inelastic Transitions

As a first application of this formalism, let’s analyze the case where χ1,2 are both

spin 1/2 fermions. We start with the relativistic operators that would generate such

scattering off of a nucleon. We list the same twenty operators of [32] in Table 1 for

inelastic scattering 2. Factors of 1/mM are added to get the correct mass dimension,

where mM is a proxy for the mass of the mediator for the interaction. This coefficient

involves powers of the UV coupling strength and can have strong q2 dependence,

especially if the mediator is light or massless. Factors of i are set up so that if

Ψ2 = Ψ1, the operator is Hermitian, thus allowing a convenient comparison to the

elastic case by taking δ = 0. The third column is the nonrelativistic limit of the

matrix element after multiplying by 1/(4mNmχ) to get to standard nonrelativistic

2Our operator 20 has one less factor of i due to a typo in [32].
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normalization. This matrix element is then decomposed in the final column in the

basis of the fifteen nonrelativistic operators of Eq. 2.8.

When calculating the matrix elements, we do not find explicit terms with ~v⊥inel,

instead we get terms of ~v⊥el . This is because the additional term of δ
|~q |2

~q does not appear

in the nonrelativistic reduction. However, many factors of ~v⊥el appear as ~v
⊥
el · (~q × ~S)

which are equivalent to ~v⊥inel · (~q× ~S). The other terms are of the form ~v⊥el · ~S which we

rewrite as (~v⊥inel− δ
|~q |2

~q) · ~S. Writing the matrix elements in terms of ~v⊥inel is convenient

since it minimizes cross terms in the matrix element squared. Note that in operators

18 and 19 there are additional terms proportional to δ which are new nontrivial

contributions to the scattering amplitude. Amusingly, these contributions come from

terms of δ
|~q |2

~q dotted into ~q, canceling the |~q |2 term in the denominator. As a final

check, we see that when we take δ = 0 we recover the elastic results in [32].

FIGURE 2. Sample iodine scattering spectra with equal couplings to protons and
neutrons for fermion operators 7, 9, 13, 19. The dark matter parameters are mχ =
70 GeV and δ = 120 keV. In solid are our predicted curves while dashed curves
show incorrect spectra from combining elastic form factors with the inelastic velocity
threshold.

In Fig. 2, we plot some examples for the energy recoil spectra for these fermion

operators in arbitrary units. In this figure, we are assuming iodine scattering with
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equal couplings to protons and neutrons with a dark matter mass mχ = 70 GeV

and mass splitting δ = 120 keV. In solid lines, we have our predicted rates. As

a comparison, we show in dashed lines an incorrect spectra if we had taken the

elastic form factors but still integrated from the correct minimum velocity for inelastic

scattering, vminT . Notice that the correct spectra is always smaller than the incorrect

spectra for the operators considered with a positive δ. This reflects the vanishing of

|~v⊥inelT |2 on threshold. We chose these operators (7, 9, 13, 19) because they illustrate

that the inelastic modifications to the form factors can in some cases significantly alter

the shape and normalization of the spectra. In addition, we found these differences

to be quite sensitive to the choice of target nuclei and isospin structure of the nucleon

couplings.

Relativistic Matrix Elements for Scalar-Vector Inelastic Transitions

An additional novelty of inelastic scattering is that it allows transitions between

dark matter particles of different spin. In this section, we consider the case where this

transition is between a scalar Φ and a vector V µ. Such nearly degenerate states have

been shown to occur in models where the dark matter is composite [47, 48] due to a

hyperfine splitting in the dark sector. In Table 2, we list eight Hermitian operators

which can be mediated by either spin 0 or 1 mediators. For the third column, we list

the matrix element’s nonrelativistic limit after multiplying by a factor of 1/(2mN) to

go to the standard nonrelativistic normalization for the nucleons.

All of these matrix elements are in the form of M = ~X · ~ǫ, where ~ǫ is the

polarization vector of the spin 1 dark matter particle (which we take to be real for

notational simplicity). Depending on whether the spin 1 particle is in the initial or

final state, we have to average or sum over these polarizations. Since
∑

pol ǫ
i ǫj = δij,
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we have for the spin-summed (or averaged) matrix element squared

|M |2 =
{ 1

3
| ~X|2 spin 1 in initial state

| ~X|2 spin 1 in final state

. (2.14)

This form allows us to treat these matrix elements with our basis of nonrelativistic

operators in the following way. If we just naively replace ~ǫ with ~Sχ, we would have

|M |2 = 1

2sχ + 1

∑

spins,i,j

SiχS
j
χX

i∗Xj =
sχ(sχ + 1)

3
| ~X|2.

(2.15)

Thus, we can use the same operator basis where we naively replace ~ǫ with ~Sχ by

multiplying the final result by a correction factor

ccorr =

{ 1
sχ(sχ+1)

spin 1 in initial state

3
sχ(sχ+1)

spin 1 in final state

.

(2.16)

Thus, in the final column of Table 2, we decompose the matrix element under this

replacement of ~ǫ → ~Sχ, so that we can write it in the same operator basis as the

fermion case. These correction factors are accounted for in the additions we made to

the Mathematica package of [32].

Relativistic Matrix Elements for Scalar-Scalar Inelastic Transitions

As one more example, we analyze the case of a dark matter scattering process

with a transition from a spin 0 particle Φ1 to another spin 0 particle Φ2. In Table 3, we
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list seven operators between these two scalars which can be mediated by either spin

0 or 1 mediators. For the third column, we list the matrix element’s nonrelativistic

limit after multiplying by a factor of 1/(2mN) to go to the standard nonrelativistic

normalization for the nucleons.

Fitting DAMA/LIBRA’s annual modulation signal

In this section we present fits to the DAMA/LIBRA annual modulation signal

[7]. For the following analysis we consider δ > 0, which favors dark matter scattering

off of heavier targets. Thus we specifically consider constraints from XENON10 [51],

XENON100 [52], LUX [53], CDMS [54], COUPP [55], and KIMS [56]. Unfortunately,

we cannot be inclusive in our consideration of constraints. In particular we cannot

derive limits from other direct detection experiments such as CRESST (CaWO4) [57]

or fully analyze KIMS (CsI) which could be sensitive to the preferred parameter

spaces. This is because tungsten and cesium form factors are not yet available in

the Mathematica package [32], so we cannot treat them at the same level. However,

KIMS most recent analysis [56] claims any scenario involving iodine scattering to

explain the DAMA modulation is incompatible with their data, which considering

only iodine scattering, is mostly accurate, but there are some exceptions. As we will

demonstrate, KIMS limits are strongly dependent on the iodine quenching factors

which have some large uncertainties at the moment. Given all of these caveats, we

will find some allowed regions on parameter space but expect these scenarios to be

tested in the near future.
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Experimental Input

To analyze the direct detection signal, we take a dark matter density ρ =

0.3 GeV/cm3 [58] and a Maxwell-Boltzmann velocity distribution with parameters

v0 = 220 km/s [59] and vesc = 550 km/s [60]. For DAMA, since inelastic kinematics

favors scattering off of heavier targets, we only consider scattering off of the iodine

nuclei in the NaI crystals. We calculated the shift in the best fit points due to Na for

operator 2 and found only a 0.07% change in the best fit mM , and a 0.01% shift in

χ2, so decided not to include Na in the full analysis. We found the modulation rate

for scattering off of iodine alone and determined the point in (mχ, δ,mM) parameter

space which minimized a χ2 fit against the DAMA/LIBRA data [7]. For our χ2,

we used the first 12 bins of their data, which corresponds to an energy range of 2-

8 keVee. Later on, when we plot the 2D parameter space (δ, 1/mM), we will show

contours for ∆χ2 = 2.3, 5.99 representing the 68, 95% C. L. region for two degrees of

freedom (d.o.f.).

An important parameter in our fits is the quenching factor we adopt for iodine

in NaI. The quenching factor Q determines the relationship between the measured

energy in electron equivalents, keVee, and the original energy imparted to the nucleus

keVnr, keVee = Q × keVnr. Because of this, a good measurement of the quenching

factor is necessary to determine the mass splitting and dark matter mass which best

fits the DAMA/LIBRA modulation signal as well as determining the constraints from

other experiments. For NaI, the value for iodine’s quenching factor QI = 0.09 [61] is

widely used, however a more recent paper [62] reports a measurement of QI = 0.04.

We will consider both values for iodine’s quenching factor in what follows and denote it

by QNaI. A smaller quenching factor shifts the nuclear recoil energies that are relevant

to DAMA to higher energies, so even though there is no suppression at xenon targets
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for scattering due to kinematics, the energy range could be outside of the acceptance

range for LUX and XENON100 (this is more important for LUX as it has a smaller

acceptance window). We find that a smaller quenching factor generally requires a

larger value of δ to fit the DAMA data which leads to a suppression of scattering

at lighter targets like the germanium at CDMS. These considerations mean that an

uncertainty in the quenching factor has profound consequences for constraining signals

seen in direct detection experiments.

As limits, we first consider the xenon scattering limits in recent analyses by

XENON100 [52] and LUX [53]. For XENON100’s analysis, there was an exposure

of 7.6 × 103 kg · days and the acceptance we used was extracted from the hard

discrimination cut of Fig. 1 in [52] used in their maximum gap analysis. This

acceptance range is 2 to 43.3 keVnr, though we extended their acceptance window

to 50 keVnr assuming the acceptance didn’t change in the last 6.7 keVnr. They

observed two events, which we take to be all signal, giving a Poisson 90% C.L. limit

of 5.32 events. LUX’s analysis had 1.0 × 104 kg · days of exposure and used a 99.6%

efficiency after a 50% NR acceptance in an energy range of 10-36 keVnr (the low

energy, 0-10 keVnr, efficiency isn’t 99.6% but can be found in the efficiency curve

after the single scattering requirements have been accounted for in Fig. 1 of [53]).

They observed one event, which we take to be all signal, leading to a Poisson 90%

C.L. limit of 3.89 events. As both XENON100 and LUX experiments were primarily

searching for elastic dark matter, their energy ranges weren’t conducive to a search for

inelastic dark matter which favors higher nuclear recoil energies, leading to weakened

sensitivities. To be sensitive to these high energy scatters, we also consider an older

XENON10 analysis that was focused on inelastic dark matter [51]. This XENON10

analysis had an exposure of 316 kg · days, with an extended energy range of 75-250
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keVnr that has a high efficiency ∼ 32%, after applying software cuts and nuclear recoil

acceptance. They saw no events in their extended range. Since the advantage of this

analysis over the more recent xenon experiments is its extended energy range and not

its exposure we chose to constrain models if they predict more than 2.3 events (the

90% C.L. limit with no observed events) in this 75-250 keVnr range.

We looked at the constraints from CDMS inelastic dark matter search from their

germanium detectors [54] as well. Due to the lighter mass of germanium relative

to xenon, we expected its limits would be suppressed relative to xenon limits. This

CDMS analysis had 970 kg·days of exposure, and even with perfect acceptance the

exclusions for all operators were ∼> 1000 times weaker than the limits from the

xenon experiments. Thus we decided not to include any more details for germanium

detectors.

An important constraint comes from COUPP which employs a CF3I target [55].

We considered scattering of the dark matter off of the iodine as well as the fluorine, but

not the carbon as its form factor isn’t available in the Mathematica package. However,

due to carbon’s light mass, it shouldn’t give a significant contribution except for small

mass splittings. Our analysis of the COUPP data proceeds similarly to our analysis

of the xenon experiments. COUPP had three runs with i) exposures of 70.6 kg·days

and an energy threshold of 7.8 keVnr, ii) 88.5 kg·days with an energy threshold of

11 keVnr, and iii) 394 kg·days with an energy threshold of 15.5 keVnr. We considered

only single bubble events for which there was a total efficiency of 79.1%, and we used

the step-function efficiency model [63] for the iodine nucleation efficiency which rises

to 100% above 40 keVnr. Note that we didn’t observe a significant shift in the derived

limits when using the other parameterized efficiencies [63]. COUPP saw a total of

13 events for all three energy thresholds after time-isolation cuts. Considering these
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as signal gives a Poisson 90% C.L. limit of 18.96 events. In all cases, we integrated

scatters up to 200 keVnr which covers the range of allowed scatters.

The last experiment we consider is KIMS [56] which has a CsI target. Their

analysis has 90% C.L. limits on the dark matter scattering rate in eight bins ranging

from 3-11 keVee. For the purposes of constraining operators we consider a scenario

ruled out if the predicted rate in any of these eight bins is larger than the stated

limit for that bin. Because KIMS uses CsI there is a different quenching factor for

the iodine than the one for NaI crystals. In [64] the quenching factor is measured to

be ∼ 0.10 over a range of 20 to 120 keVnr. However, similar to NaI, recent results

[65] have pointed to a lower value of QI ∼ 0.05 for CsI too. The recent paper only

measured CsI doped with sodium, which is not the same as the KIMS detectors which

are doped with thallium. However, in light of the new measurement and since the

earlier measurement [64] found similar quenching factors for detectors of different

doping, a value of QI ∼ 0.05 for the KIMS detectors seems reasonable. Thus, we

consider both values in the following analysis and to differentiate it from the iodine

quenching factor for NaI, we denote it as QCsI. As another reminder, we emphasize

that we cannot perform this analysis with cesium scattering, so all our constraints

from the KIMS experiment are assuming only iodine recoils. Thus, the KIMS limits

should get stronger with cesium scattering, but we unfortunately do not know how

large of an effect this is.

One other issue we need to consider is the running time of these experiments,

since large modulation can lead to order one changes in the scattering rate throughout

the year. We use the average scattering rate for XENON100, COUPP, and KIMS

since their exposure was accumulated over a year, for LUX we use the maximum rate
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since its exposure was obtained during the summer, and for XENON10 we average

over its run from October to February.

Reanalysis of Magnetic Inelastic Dark Matter

In this section, we revisit the case of magnetic inelastic dark matter where the

transition is mediated by a magnetic dipole transition [43]

L =
µχ
2
χ̄2σ

µνχ1Fµν + h.c. (2.17)

Theoretically this scenario is appealing since the tensor operator vanishes for

Majorana fermions, naturally leading to an inelastic transition. Furthermore, iodine

has a large dipole moment relative to most other heavy nuclear targets, mitigating

xenon and tungsten constraints [43]. As mentioned earlier, the form factors used for

these scenarios were highly uncertain [43], but we can now reliably calculate them

with our modification of the Mathematica code. Note that cesium does have a large

dipole moment as well, but since it isn’t implemented in the Mathematica notebook,

we unfortunately have to neglect its scattering contribution.

To calculate the form factor for the dipole transition, we use the following

coefficients for the fermion operators 9 and 10 involving protons and neutrons

LMIDM =
1

q2

[

χ̄2iσ
µν qν
mM

χ1 p̄γµp

]

+ 0.9
mM

mNq2

[

χ̄2iσ
µν qν
mM

χ1 p̄iσµα
qα

mM

p

]

− 0.96
mM

mNq2

[

χ̄2iσ
µν qν
mM

χ1 n̄iσµα
qα

mM

n

]

.(2.18)
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The relative coefficients are set by the proton and neutron magnetic moments being

2.8 and −1.91 nuclear magnetons, respectively. Given the overall normalization, the

relationship between our mM and the dark matter dipole moment is 1/mM = eµχ.

The best fit points in this parameter space are shown in Table 4 for the two

choices of quenching factor, QNaI = 0.09, 0.04. The χ2/d.o.f. for our fit to DAMA is

shown, with a d.o.f. = 9, showing a very nice goodness of fit. The final six columns

show the normalized limits, r, from xenon and iodine experiments so that r values

above 1 are constrained at 90% C.L. For XENON10, XENON100, LUX, and COUPP

experiments, r is the ratio of predicted events over the number of events allowed

at 90% C.L. (2.3, 5.32, 3.89, and 18.96 respectively). For KIMS, in each bin from

3-11 keVee we take the predicted bin rate divided by the 90% C.L. limit on the rate

in that bin, with r being the largest of these bin ratios. We list KIMS constraints

where we assume two values of the quenching factor QCsI = 0.10 and 0.05 for CsI.

Notice that for QNaI = 0.04, the scenario is narrowly excluded by COUPP while being

unconstrained by the other experiments.

Xenon Constraints

The strength of the LUX or XENON100 limit depends strongly on the value

of QNaI we choose. For the standard value QNaI = 0.09, the 2 − 6 keVee energy

range of DAMA’s modulation spectra is ∼ 22 − 67 keVnr. With the lower value of

QNaI = 0.04 this changes to a much higher range of 50−150 keVnr. For inelastic dark

matter, the modulated and unmodulated spectra span roughly the same energy bins

and since xenon’s mass is similar to iodine, the scattering off xenon will be roughly in

the same range of nuclear recoil energies. This explains why the LUX constraints are

noticeably weaker for QNaI = 0.04, since its acceptance goes to zero above ∼ 36 keVnr
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while XENON100’s goes up to 50 keVnr. This acceptance helps to make XENON100

competitive despite its smaller exposure.

To show this effect, we look at the best fit spectra for magnetic inelastic dark

matter with different QNaI values. We saw that XENON100 and LUX were a strong

constraint for the larger value of the quenching factor, but the constraints for QNaI =

0.04 were much weaker. This is directly related to the location of the scattering

spectrum relative to the experimental acceptance windows as shown in Fig. 3. For

QNaI = 0.09, the peak of the spectrum is well covered by both experiments, leading to

the stringent constraints. However, for QNaI = 0.04, the peak scattering is missed by

both experiments, with LUX having no sensitivity. Given these high energy events,

we also checked the constraints from XENON10’s inelastic dark matter analysis [51]

which extended to much higher energies. In Fig. 3 and Table 4, one can see that

this XENON10 constraint is slightly stronger for the smaller iodine quenching factor,

but is still not able to constrain this scenario due to its low exposure. On the other

hand, in existing XENON100 or LUX data there are about ∼ 100 events at high

energy, so we encourage an extension of their analysis to energies above 50 keVnr.

If the background in this region can be kept under control, they would have a high

sensitivity to this scenario.

Iodine Constraints

As expected, the constraints from other iodine detectors are very stringent for

most inelastic dark matter scenarios since this is a direct comparison of the same

target. For COUPP constraints, changing QNaI hardly affects the constraints. The

energy thresholds of the COUPP runs are not too high to lose many low energy events

and the acceptance at high energy means that COUPP is sensitive to essentially all
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FIGURE 3. These figures shows the xenon scattering spectrum for the best fit to
DAMA’s signal for magnetic inelastic dark matter for two choices of QNaI. The black
curve is the expected spectrum while the orange (blue, orange-dashed) curve is the
accepted spectrum for XENON100 (LUX, XENON10). Note that for QNaI = 0.09
the peak is visible to both XENON100 and LUX, but for QNaI = 0.04 both these
experiments’ acceptances are too low at high energy to see a significant number of
events.

of the iodine scattering relevant for DAMA. This explains why COUPP is the best

constraint on DAMA both in terms of sensitivity and robustness from quenching

factor uncertainties.

For KIMS, if the iodine quenching values used by the DAMA and KIMS

experiments, QNaI = 0.09, QCsI = 0.10 are correct, the best fit point for magnetic

inelastic dark matter is ruled out. These constraints show a strong dependence on the

quenching factor values chosen. As the recent work of [62] and [65] shows, the correct

values are not pinned down yet and could be significantly smaller. This is especially

relevant to KIMS constraints, since the scattering spectrum can be substantially

shifted in energy, allowing much weaker constraints for some choices of the quenching

factors. As an illustration, we show in the four plots of Fig. 4 how the spectra at KIMS

shifts as we change the two quenching factors. In the upper left plot, we see that for

the quenching factors QNaI = 0.09, QCsI = 0.10, the best fit point is constrained in the

lowest KIMS bin. However, in the upper right plot, changing to QCsI = 0.05, we see

that the spectrum shifts to energy bins below their threshold, giving no constraint.
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In general, such a combination of quenching factors leads to particular weak limits

from KIMS due to the scattering moving below threshold. In the bottom left, the

benchmark point with QNaI = 0.04, QCsI = 0.10, leads to a mild constraint in the

6 keVee bin. In the bottom right, changing the CsI quenching factor to 0.05, the

spectrum shifts to lower values again leading to a rate that is almost constrained in

the first bin with a smaller normalized limit, r. Given the uncertainties, we consider

both CsI quenching factors in presenting KIMS limits. However, if the same physics

leads to the quenching factors of NaI and CsI to be of similar size, we find that KIMS

becomes a more robust constraint.

Up to these quenching factor issues, iodine targets still provide the most model

independent constraints on scenarios where iodine scattering explains the DAMA

signal. For these cases, the only way to suppress scattering is to have higher

modulation amplitude. Since COUPP and KIMS both ran over a year, this can

lead to a modest drop in sensitivity which explains why the higher δ point has weaker

constraints.

Combined Limit Plots for Magnetic Inelastic Dark Matter

Although the best fit points for magnetic inelastic dark matter are ruled out

conclusively by COUPP, there can be viable regions of parameter space which

maintain a decent fit to DAMA. To search for these we fix the best fit dark matter

mass and then explored the remaining two dimensional parameter space in (δ,mM).

For DAMA, the 68, 95% C.L. parameter estimation regions were computed relative

to the best fit χ2. As can be seen in the left plot of Fig. 5, if QNaI = 0.09, the

constraints from LUX and XENON100 are strong and rule out all of the DAMA

parameter space. However, for the case of QNaI = 0.04, the right plot of Fig. 5
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FIGURE 4. This figure shows the KIMS energy spectrum for scattering events for
magnetic inelastic dark matter at different QNaI’s and QCsI’s. The blue points are the
best fit points predicted rates and the black lines are the 90% limits in each KIMS bin
[56]. Notice that the peak can shift from lower to higher energies as the quenching
factors vary causing significant changes to the limit.

shows that the constraints from all experiments weaken as one moves to higher values

of the mass splitting, leading to a sliver of the 68% C.L. DAMA region which is

not constrained and a significant region allowed at 95% C.L. That XENON10 and

the iodine experiments slowly fall off with increasing mass splitting shows how these

experiments are mostly being weakened by increasing modulation and not a change

in the energy spectrum.

In Fig. 6, we show the modulation spectra for the best fit point and an

unconstrained point with the DAMA data points for comparison. We see that the

increase in mass splitting leads to a degradation in the χ2 but still has a good fit
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FIGURE 5. This figure shows the combined limits plots for magnetic inelastic dark
matter. The DM masses used are those listed with the corresponding quenching
factor in Table 4. Constraints from LUX (blue), XENON100 (orange), XENON10
(orange dashed), KIMS (QCsI = 0.05 magenta solid, QCsI = 0.10 magenta dashed)
and COUPP (black) are also shown, with the 90% C.L. limits listed in section 2.3.

0 2 4 6 8
-0.01

0.00

0.01

0.02

0.03

0.04

keVee

S
m
Hc
p
d
êk
g
êk
eV
L

Magnetic IDM with QNaI = 0.04

FIGURE 6. This shows the magnetic inelastic dark matter modulation amplitudes
with the DAMA data points for comparison. The plot assumes a iodine quenching
factor QNaI = 0.04 and has both the best-fit modulation amplitude in blue and a
sample unconstrained fit in orange. For nine d.o.f., the parameter values for the best
fit are (mχ, δ,mM) = (122.7 GeV, 179.3 keV, 1096 GeV) with χ2/d.o.f. = 0.82 and
for the unconstrained point are (mχ, δ,mM) = (122.7 GeV, 184.5 keV, 952 GeV) with
χ2/d.o.f. = 1.17.
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to the DAMA spectra. Note that the values of 1/mM required are quite reasonable

since the magnetic moment of a particle should be of order a dark matter “magneton”

= e/(2mχ), so that 1/mM ∼ e2/(2mχ) = 5 × 10−4(100 GeV
mχ

). The required magnetic

moment seems to be similar to those seen in the nucleon sector and thus it seems

plausible that this part of parameter space could appear generically in a complete

model of magnetic inelastic dark matter.

General Model Independent Analysis

Now, we consider a more general model independent search for consistent

scenarios that explain the DAMA annual modulation signal. We performed a survey

of the relativistic operators listed in Tables 1-3 by analyzing the scattering when only

one operator is turned on at a time. Depending on the operator, we need to multiply

by a dimensionful coupling λ to describe the effective operator in the Lagrangian.

For the fermion operators, we took this coupling to be λ = 1/m2
M , so that mM

characterizes the scale of the effective operator. For the bosonic cases, we instead

take λ = 1/mM . Thus the parameters we varied were the dark matter mass mχ, the

dimensional coupling parameter mM , and the mass splitting δ.

To narrow our survey and to specifically avoid the stringent constraints of xenon

target experiments, we only considered operators whose transition probabilities for

iodine were significantly (≥ 10 times) enhanced over xenon. These operators were

identified by examining the ratio of iodine’s transition probability to xenon’s at the

minimum velocity for iodine (see Eq. 2.7), as it is higher than the minimum velocity

for xenon scattering. This ratio was plotted, for a specific value of mχ on the (δ, ER)

plane with ER the nuclear recoil energy (the parameter mM cancels in the ratio). The

operators’ coupling to nucleons was varied between pure proton, pure neutron, equal
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coupling to proton and neutron, and equal but opposite couplings. We found that

only pure coupling to protons significantly favored iodine over xenon and further that

all iodine-enhanced operators had some contribution from the nucleon spin ~ON
3 , see

Eq. 2.12. Since iodine’s nucleus has an unpaired proton while xenon has an unpaired

neutron, this explains why the sensitivity is enhanced if we only couple to the proton

[66]. As a check that this method for selecting operators finds all relevant ones, we

also performed a full analysis for several other operators and nucleon couplings and

found the results matched our predictions from this selection process. Note that our

inability to treat cesium in KIMS is particularly important for coupling to proton

spin, since cesium also has an unpaired proton. On the other hand, tungsten isotopes

only have unpaired neutrons, so we expect that their rates would be suppressed much

like xenon targets.

The best fit points in this parameter space is shown in Tables 5 and 6 for the two

choices of quenching factor of QNaI = 0.09, 0.04. The χ2/d.o.f. for our fit to DAMA is

shown, with a d.o.f. = 9, showing a reasonable goodness of fit for all operators. The

final five columns show the normalized limits, r, from xenon and iodine experiments

so that r values above 1 are constrained at 90% C.L. For XENON100, LUX, and

COUPP experiments, r is the ratio of predicted events over the number of events

allowed at 90% C.L. (5.32, 3.89, and 18.96 respectively). For KIMS, in each bin from

3-11 keVee we take the predicted bin rate divided by the 90% C.L. limit on the rate

in that bin, with r being the largest of these bin ratios. We list KIMS constraints

where we assume two values of the quenching factor QCsI = 0.10 and 0.05 for CsI.

Notice that there are a few operators which are narrowly excluded by COUPP while

being unconstrained by the other experiments.
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Even though we’ve discussed how XENON10 is sensitive to much higher energy

scatters than XENON100 or LUX, we find that it generically sets weaker constraints

for this model independent analysis due to its lower exposure. In a few cases, the

limits of XENON10 were similar or just a bit larger than XENON100, for example

fermion operators 7, 15, and 19, spin 0 to 1 operators 6, and spin 0 to 0 operator 4,

but they were not large enough to be constraining. Because these constraints were not

strong enough to rule out any best fit points, we chose not to include the XENON10

limits in our tables or figures for this model independent survey.

Combined Limit Plots for Relativistic Operators

Although the best fit points are ruled out conclusively by COUPP, we still find

viable regions of parameter space which maintain a decent fit to DAMA, similar to

the case of magnetic inelastic dark matter. For some of the operators, we found that

the DAMA regions could stretch far into the high δ region of parameter space. The

resulting increase in modulation can lead to consistency with the COUPP and KIMS

constraints. The fermion operators which have such an allowed region are operator

2 for QNaI = 0.09, operator 7 for both quenching factors, operator 9 for QNaI = 0.04,

11 for QNaI = 0.09, 13 for QNaI = 0.04, 15 with both quenching factors, and 19 with

both quenching factors. Also the scalar to scalar operator 4 has a consistent region

for both quenching factors. For these operators, we have plotted the allowed regions

in Fig. 7 and 8. One again can see that the key to avoiding constraints is moving to

higher δ. Thus, the allowed spectra at DAMA will again generically be at slightly

higher energy with a slight reduction in the overall amplitude, similar to what was

seen in Fig. 6. In this list of allowed operators, we ignored degeneracies in scattering

form factors where we have the families i) fermion 2, fermion 8, scalar 2, and scalar 5,
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ii) fermion 11, fermion 14, and scalar to vector 7, iii) fermion 15 and scalar to vector

6. These families share allowed parameter space, although different values for mM

are required to get the same rate. Interestingly, some operators whose best fit values

are only narrowly ruled out remain ruled out in these two dimensional scans. For

instance, fermion operators 4, 10, 20 and scalar to scalar operator 7 have reasonable

constraints for QNaI = 0.09. In these cases, the form factors do not allow good DAMA

fits to persist to higher δ thus making it impossible to avoid the constraints.

Conclusions

We have shown that a nonrelativistic effective theory for the inelastic scattering

of dark matter off a nucleus is a straightforward extension of elastic scattering. The

modifications revolve around the Galilean-invariant, incoming dark matter velocity.

Due to the inelastic kinematics, the components of the incident velocity that are

perpendicular to the momentum transfer ~q have a new piece that depends on the

mass splitting δ

~v⊥inel ≡ ~v +
~q

2µN
+

δ

|~q |2~q. (2.19)

This variable change motivates a new basis of scattering matrix elements written in

terms of ~v⊥inel. As an application, we have shown how inelastic transitions of a fermion

to fermion, scalar to scalar, and scalar to vector can be written in terms of this basis.

Finally, since the nuclear matrix elements for most cases only depend linearly on

this velocity, we were able to modify the Mathematica code [32] to generate the form

factors for inelastic scattering processes. Thus, our work extends the framework of [11]
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FIGURE 7. This figure shows the combined limits plots for operators which have
an unconstrained region that fits the DAMA signal. The DM masses used are those
listed with the corresponding operator in Table 5. Constraints from LUX (blue),
XENON100 (orange), KIMS (QCsI = 0.05 magenta solid, QCsI = 0.10 magenta
dashed) and COUPP (black) are also shown, with the 90% C.L. limits listed in section
2.3.

so that inelastic dark matter transitions can now be treated in a model independent

fashion.
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FIGURE 8. This figure shows the combined limits plots for more operators which
have an unconstrained region that fits the DAMA signal. The DM masses used are
those listed with the corresponding operator in Tables 5, 6. Constraints from LUX
(blue), XENON100 (orange), KIMS (QCsI = 0.05 magenta solid, QCsI = 0.10 magenta
dashed) and COUPP (black) are also shown, with the 90% C.L. limits listed in section
2.3.

Armed with our effective theory, we then created several fits to the

DAMA/LIBRA annual modulation. We considered both the scenario of magnetic

inelastic dark matter as well as a model independent survey looking at individual
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FIGURE 9. This figure shows the combined limits plots for the remaining operators
which have an unconstrained region that fits the DAMA signal. The DM masses used
are those listed with the corresponding operator in Tables 5, 6. Constraints from LUX
(blue), XENON100 (orange), KIMS (QCsI = 0.05 magenta solid, QCsI = 0.10 magenta
dashed) and COUPP (black) are also shown, with the 90% C.L. limits listed in section
2.3.

relativistic operators. Due to the strong constraints from XENON100 and LUX, in the

model independent scan, we considered choices for the nucleon couplings that would

enhance iodine scattering over xenon. This led us to consider operators involving
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only couplings to protons that are sensitive to the proton spin. CDMS constraints by

comparison are significantly weaker due to germanium’s lighter mass and even smaller

proton spin. However, we showed that there are significant constraints from the

iodine experiments KIMS and COUPP, which provide a mostly model-independent

constraint. These limits are thus harder to avoid; we find that they can only be

weakened by enhanced modulation or by uncertainties in the iodine quenching factors,

which affect the KIMS limits.

For the case of magnetic inelastic dark matter and for some of the relativistic

operators involving only proton couplings, we found that scenarios could be consistent

with the DAMA fit and existing constraints. However, we would like to stress that

we are not able to definitively claim a consistent explanation of the DAMA signal.

First of all, due to lack of implementation, we could not treat scattering off of cesium

or tungsten, which are relevant for KIMS and CRESST. Cs in particular has an

unpaired proton and should lead to stronger constraints from KIMS. Hopefully in a

future update of the notebook [32], these elements could be included. Second, we only

tested the relativistic operators using our effective theory. No models explaining these

interactions were considered and thus in a complete model may run into difficulties

when confronted with other dark matter constraints. However, it would be interesting

to look at complete models realizing these scenarios, which we leave to future work.

In particular, the magnetic inelastic dark matter scenario should be straightforward

to build in a model, since the required coupling structure is through the standard

electromagnetic couplings (for specific realizations see refs. [67, 68]).

In the near future, these models should be definitively tested from direct

detection experiments alone. To do so, one high priority is resolving the current

uncertainty in iodine quenching factors so as to both pin down the DAMA parameter
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space and firm up the constraints from KIMS. Existing data at XENON100 and LUX

at energies above 50 keVnr should also be reanalyzed which will enhance sensitivities to

scenarios when the iodine quenching factor is low. Finally, iodine target experiments

are the most robust tool to rule out or discover these scenarios. In particular,

COUPP’s next analysis should give us a definitive answer whether iodine scattering

scenarios are a consistent explanation of DAMA’s annual modulation signal.

52



CHAPTER III

CORRELATED SIGNALS AT THE ENERGY AND INTENSITY FRONTIERS

FROM NONABELIAN KINETIC MIXING

This chapter is based on previously published and unpublished, co-authored

material1.

In the previous chapter I discussed an analysis of dark matter interactions with

nuclear matter. The analysis presented was model independent in that it focused on

a complete basis of interaction operators for low energy scattering. This naturally

suggests the question: how can these interactions be generated? There are many

ways to generate the interactions discussed in the previous chapter, but many such

methods are highly unnatural in the sense that parameters of the Lagrangian have to

be tuned to produce careful cancellations in the non-relativistic limit. In addition to

the precise form of the interaction, the required weakness of the dark matter-standard

model interaction must be explained by any complete model, which may also require

a tuning of parameters.

In this chapter I will introduce a promising model for dark matter interactions

with the standard model: Kinetic Mixing. Kinetic mixing (KM) is a phenomenon

that produces an interaction between gauge bosons of two different gauge groups,

and generically occurs when there are two U(1) gauge symmetries in a theory. KM

between abelian gauge groups occurs via a renormalizeable operator, and KM between

1This chapter is based on reference [21] written in collaboration with Spencer Chang and Chris
A. Newby and unpublished work done in collaboration with the two aforementioned and Bryan M.
Ostdiek.
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any two gauge groups will be generated by loop processes whenever there are particles

charged under both symmetries [14, 69].

The reason kinetic mixing is attractive as a model for dark matter interactions

is that the mixing parameter, and hence the interaction strength, can easily be made

small. The rate of interaction between the dark matter and the standard model scales

as the square of the mixing strength, which we denote by ǫ, and if kinetic mixing is

generated by, for example, processes at the GUT scale, the mixing parameter will be

around ǫ ∼ 10−6 − 10−4 [70]. Kinetic mixing’s naturalness as an ingredient in BSM

models makes it a hotly studied phenomenon. For example, in Z ′ [69]2 as well as

many dark matter models [15, 71], the SM is supplemented by an additional U(1)

gauge symmetry which can mix with U(1)Y . These models have in turn motivated a

large and diverse experimental effort with current and upcoming searches at intensity

frontier experiments (fixed-target and flavor factories) and the LHC (see [72] for

overview and references).

One topic which is not often discussed is the fact that, in most cases, there is

an additional ingredient required to generate kinetic mixing: another particle which

is charged under both the involved gauge forces, and which mediates kinetic mixing.

The details of this particle and it’s role in kinetic mixing will be discussed in detail

below. In this chapter I will focus on the properties of this mediating particle. The

main focus of the aforementioned searches and models has been on the dynamics of

the dark photon itself, or signals of particles charged only under the dark sector, while

little attention has been paid to the mediating particle. The reason this mediating

2A Z ′ is a new, heavy, gauge boson with mass comparable to the Z of the standard model. In
this chapter I will focus on much lighter bosons, in the 100s of MeV mass range.
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particle is ignored is that it’s mass can usually be made large while leaving the

KM strength fixed. In the most studied case of KM between two abelian sectors,

where the mixing operator is dimension four, the mediator mass only logarithmically

affects the strength of KM. Moreover, KM between abelian sectors is described by a

renormalizable operator, so it can be included without explicit reference to a mediator.

Thus, in the abelian case, it is not guaranteed that the mediator will be light enough to

be discovered. On the other hand, when KM goes through a nonabelian gauge sector,

the operator is nonrenormalizable and thus inextricably linked to a mass scale. This

fact gives nonabelian kinetic mixing models unique predictive power which has not

yet been studied in the literature. This work fills that gap. Furthermore, as this work

shows, nonabelian KM strengths relevant for current intensity frontier experiments

are unambiguously linked to a weak scale mediator, predicting a correlated signal at

the energy frontier. Although such nonabelian mixing is already well known in the

literature this study represents the first statement of this connection, and the first

presentation of a model where a nonabelian operator is the sole origin of KM.

Kinetic Mixing

To begin I will introduce kinetic mixing, it’s historical context, and its

generalization to nonabelian gauge fields.

Kinetic mixing was first introdiced in 1985 by Holdom [14]. It was recognized that

kinetic mixing between two abelian gauge symmetries arises from a renormalizeable

operator meaning that it should generically occur in a Lagrangian with order one

coefficient. This term is of the form
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ǫ

2
FµνF

µν
D (3.1)

Where F µν
D is a new abelian gauge field strength, Fµν is a standard model field

strength, and ǫ is the strength of kinetic mixing. Of course, there is not such mixing

with order one coupling in our universe, but we will return to that point in a moment,

however we will assume for the remainder of this discussion that ǫ is small.

Once this interaction is introduced into the Lagrangian, it is convenient to

introduce a field redefinition to remove this kinetic mixing term:

Aµ → Aµ + ǫAµD (3.2)

AµD → AµD − ǫAµ (3.3)

where A (AD) denotes the gauge field associated with the standard model (dark)

gauge symmetry and which (to leading order in ǫ) removes the kinetic mixing term.

Of course, the mixing term can be removed to all orders in ǫ, but this is good enough

for our purposes. Notably, this field redefinition also introduces a coupling to the new

gauge field to particles charged under the standard model. To see this, consider what

happens to the minimal gauge coupling of a charged particle to the standard model

field strength Aµ under this field redefinition.

qAµψ̄γµψ → q (Aµ + ǫAµD) ψ̄γµψ = qAµψ̄γµψ + ǫqAµDψ̄γµψ (3.4)
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so that the particle charged under a standard model gauge field which undergoes

kinetic mixing can be considered to develop a “millicharge” under the new gauge

field, with charge ǫq. This phenomenon makes kinetic mixing a useful model building

tool, especially for coupling dark sectors to the standard model since the resulting

interaction strength is naturally very weak. Additionally, it is promising from a

phenomenological perspective, because it means that the dark photon will be able to

decay into, for example, electrons. Of course, there is still the issue of why ǫ is not

order 1. This is the topic we discuss next.

Since this coupling does not appear as order one in nature, the next most natural

conclusion is that it is zero. However, even if the coupling is zero for the full theory of

the universe, it can become nonzero at low energies. The way this occurs is by heavy

particles which are charged under both of the gauge symmetries being “integrated

out” and generating this interaction as part of an effective field theory (for details

on effective field theory see any modern reference, for example [73]). This particle

that is integrated out to generate kinetic mixing is called the mediator. If there

is a mediator with electromagnetic charge, and charge under a new abelian gauge

symmetry, at energies much less than its mass (where it can be integrated out) the

heavy particle will generate kinetic mixing from a loop process with coupling

c log(mφ/Λ)

4π
F µµ
D Fµν (3.5)

where mφ is the mediator mass, c is a constant, Λ is the renormalization scale

(for example, a the LHC one might use Λ ∼ 13TeV) and 4π indicates that this is

a loop in the process, which makes the coupling naturally weak. We refer to this

heavy particle as “the mediator”. The fact that the mediator mass only contributes
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logarithmically to this interaction is a consequence of the fact that this term is

itself renormalizeable. One notable consequence of this is that the strength of this

interaction gives essentially no information about the mass of the mediating particle.

The situation is very different in nonabelian kinetic mixing.

When kinetic mixing occurs between an abelian and a nonabelian gauge field,

the situation is very different. In particular, the nonabelian gauge field strength has

an additional gauge index. Hence, the analogous term to Eq. 3.1 would not be gauge

invariant. In order to make the mixing term gauge invariant, additional fields need

to be introduced. Introducing the operator Oa, which we assume has the appropriate

gauge structure to make the term gauge invariant, allows us to build a term in the

Lagrangian of the form

LNAKM ⊃ Oa

Λn
FDµνW

µν
a (3.6)

where now W µν
a is the field strength of a nonabelian gauge field, a is the

associated gauge index, and n is the mass dimension of Oa. In order to keep this term

dimensionally correct we add a factor 1/Λn. This interaction now describes a vertex

with two gauge bosons and whatever fields have gone into constructing Oa. In order

to generate kinetic mixing the operator Oa must develop a vacuum expectation value.

This spontaneously breaks the gauge symmetry associated with W a, and generates

kinetic mixing. To this end, taking the vacuum expectation of 〈Oa〉 = vnδai , where i

is the direction in gauge space picked out by spontaneous symmetry breaking, gives

the kinetic mixing operator:

LNAKM ⊃ vn

Λn
FDµνW

µν
i ≡ ǫ

2
FDµνF

µν (3.7)

58



Where ǫ is again the kinetic mixing strength and here F µν = W µν
i . From the

point of view of effective field theory, we should interpret Λ as the mass scale of some

new physics that has been integrated out, in this case the mediator. To that end we

write Λ = 4πmφ/c where mφ is the mass of the mediator, c is an order 1 coupling

associated with this new physics, and we include a loop factor of 4π as will generally

appear when such interactions are generated by loop processes. Plugging this into

Eq. 3.7 shows that nonabelian kinetic mixing predicts a new particle with mass:

mφ =
v

4πc
ǫ−1/n (3.8)

Nonabelian Kinetic Mixing in the Standard Model

In this work we discuss a case of particular modern interest: an abelian dark

sector mixing with SU(2)L of the SM. The lowest dimensional operator involving

only SM fields and the dark photon which kinetically mixes SU(2)L and the dark

photon is

c

16π2m2
φ

(

H†τaH
)

W a
µνF

µν
D (3.9)

where W a
µν(F

µν
D ) is the field strength of the SM SU(2)L gauge boson (dark gauge

boson), H is the SM higgs field, and τa are the Pauli matrices divided by two.

Anticipating the origin of this operator, we include the mass of the mediator mφ,

a loop factor, and absorb O(1) numbers and couplings into the coefficient c. Once

electroweak symmetry is broken, Eq. 3.9 contains the canonical mixing between the

photon and the dark photon

ǫ

2
FµνF

µν
D ; ǫ =

c v2sW
32π2m2

φ

(3.10)
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where sW is the sine of the electroweak mixing angle, and v is the SM higgs vacuum

expectation value (vev). Already this expression shows a connection between intensity

and energy frontier experiments: planned searches for the dark photon include i) fixed

target experiments, probing the region ǫ ∼ 10−5 − 10−4 for a dark photon of mass

MAD
∼ 10− 200 MeV and ǫ ∼> 3× 10−4 for MAD

∼ 10− 600 MeV (e.g. APEX [74]

and HPS [75]), ii) next generation flavor factories, sensitive to ǫ ∼ 10−4 − 10−3 for

dark photon masses up to 10 GeV [72] (going beyond existing BABAR, BESIII limits

[76, 77]), and iii) a proposed LHCb search sensitive to the range ǫ ∼ 10−5− 10−3 and

MAD
≤ 100 MeV [78]. In our models of interest, Eq. 3.11 shows that this parameter

space requires

mφ =

√

c v2sW
32π2ǫ

∼
√

c

ǫ/10−4
× 1TeV. (3.11)

Thus, in theories with only nonabelian kinetic mixing, there is a strong correlation

between signals of dark photons at the intensity frontier and the corresponding

mediator particles at the LHC. This conclusion is independent of the specific

realization of nonabelian KM.

In the rest of this paper we present a simple model where the only KM that

occurs is nonabelian. In such scenarios, the mediator particle’s signals at the LHC

are correlated with the dark photon searches of the intensity frontier. We will analyze

the model’s dynamics and then discuss the mediator particle’s phenomenology and

relevant constraints.

Nonabelian Kinetic Mixing Model

In this model, there is a dark gauge symmetry U(1)D with a dark photon, AD.

The field mediating KM is a scalar SU(2)L triplet with unit dark charge that we call

φ. In order to give the dark photon mass we introduce a dark higgs, HD, with unit
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dark charge that gets a vev 〈HD〉 = vD/
√
2. The most general, renormalizable theory

with these fields has many terms in its scalar potential. Only a subset of them will

be relevant for our discussion, and the terms we study are

V (H,Hd, φ) = λ|H|4 − µ2|H|2 + λD|HD|4 − µ2
D|HD|2

+m2
φ|φ|2 + λmix(φ

†T aφ)(H†τaH)

+κ
[

φa(H†τaH)H†
D + h.c.

]

(3.12)

where κ can be taken to be real after a field redefinition and T a is the triplet

representation’s generators for SU(2)L. Of particular importance is the term with

coefficient λmix as it is responsible for KM. After integrating out φ, KM is generated

with strength

ǫ =
ggDλmix

96π2

v2

m2
φ

sW ∼ 10−4 gD λmix

(

400 GeV

mφ

)2

(3.13)

where g is the gauge coupling for SU(2)L, and gD is the dark gauge coupling. As

the final expression shows, if the new couplings are order one, mixings relevant to

intensity frontier experiments are spanned by mφ in the range 100 GeV− 1 TeV.

This model does not contain a particle charged under both U(1)D and

hypercharge so there is no abelian kinetic mixing. If, for example, this model were

embedded into a grand unified theory (GUT), particles with GUT-scale masses may

generate abelian kinetic mixing, however in that case abelian kinetic mixing would

arise from two-loop diagrams and would generate mixing strengths on the order

ǫ ∼ 10−6 − 10−4 as discussed in [70]. In this model nonabelian kinetic mixing is

dominant over, or of comparable strength to, abelian mixing. This means that we

can use Eq. 3.13 to predict the mediator mass from the kinetic mixing strength.
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mass spectrum

The term responsible for KM also generates a mass splitting in the φ states. Two

states, labeled χ± and η±, are charged under electromagnetism and have masses

m2
χ = m2

φ +
λmixv

2

4
, m2

η = m2
φ −

λmixv
2

4
. (3.14)

This splitting can cause the lightest charged state’s mass to become tachyonic,

spontaneously breaking U(1)EM and giving the photon mass. This places a constraint

that m2
φ > λmixv

2/4.

The two remaining, neutral degrees of freedom are the real and imaginary parts

of the third component of φ, denoted φ0
R and φ0

I , respectively. These states will be

nearly degenerate with mass mφ – a very small splitting is generated which vanishes

as κ → 0. Throughout we will use φ to refer to all of these states collectively and

their individual names when specificity is required.

Potential Minimization

The κ term in the potential was introduced in order for the φ particles to

decay, but also has other important effects that can constrain the model. Once

the electroweak and dark symmetries are broken, this term induces a vev for the real,

neutral component of φ. The size of this vev is

〈φ〉 = κv2vD

4
√
2m2

φ

. (3.15)
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Since this is only in the neutral component, U(1)EM remains unbroken, but it does

shift the W boson mass, with a contribution to the T parameter

T〈φ〉 ∼ 10−3 κ2
( vD
1 GeV

)2
(

200 GeV

mφ

)4

, (3.16)

which is very small as long as the dark photon scale is sub-GeV. In addition, there

is a one loop contribution to T from the φ particles due to their mass splitting [79]

which in the limit of small splitting goes as

Tloop ∼ λ2mixv
4

192πs2W c
2
Wm

2
Zm

2
φ

∼ 0.1λ2mix

(

200 GeV

mφ

)2

. (3.17)

Contributions to S are negligible, so to be consistent with electroweak precision

constraints requires T < 0.2 (95% C.L.) [80], putting a lower bound on mφ (from

Eq. 3.17) and an upper bound on κ (from Eq. 3.16).

The κ term also causes mixing between φ0
R, hD, and the SM higgs. This leads to

a correction to the µ2
D term of size κ2v4/(16m2

φ). Thus, a large hierarchy between the

dark and electroweak scales requires a tuning in the value of µ2
D. The severity of this

tuning depends on κ, and for certain regions of parameter space this tuning can be

small. It is however interesting that the tuning in this model is indirectly observable.

This is in contrast to the SM where the details of tuning depend on some unknown,

as-of-yet-unobservable higher scale. If KM with SU(2)L is observed, this model will

provide insight into the validity of tuning as a theoretical constraint.
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Fixed Target Benchmark

Now lets consider a benchmark set of parameters, chosen in order to remain

within the region of immediate interest to fixed-target experiments: mAD
= 0.1 GeV

and gD = 0.5. This choice implies that vD = 0.2 GeV, and we set mhD = 0.4 GeV

so that the dark higgs can decay into two dark photons. Note that the dark higgs

and photon masses are negligibly small relative to electroweak scale masses, so we

can safely neglect them in later formulas. We also set λmix = 1 which puts a lower

limit on mφ of 155GeV due to the electroweak precision constraint. In our analysis

we specifically explore the range 150 GeV < mφ < 500 GeV in order to be relevant

for collider searches while remaining in the 10−5 < ǫ < 10−3 window, though it should

be kept in mind that precision electroweak constraints exclude the small part of this

region mφ < 155 GeV.

Decays

A φ particle can decay directly into gauge and higgs bosons through the κ term,

or undergo cascade decays through its mass states by radiating W (∗) bosons. The

cascade decay rate, in the large mφ and massless fermion limit, is

Γ(χ± → W±∗φ0
R,I) = Γ(φ0

R,I → W∓∗η±) =
∑

ff̄ ′

NcG
2
f∆m

5

15π3
(3.18)

where Gf is the Fermi constant, ∆m is the mass splitting between φ states, and ff̄ ′

includes all fermion pairs except the top-bottom pair for which the splitting ∆m is

too small to produce. The κ mediated decay rates, in the limit that mhD ,mAD
→ 0,
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are

Γ(φ0
R → hhD) = Γ(φ0

I → hAD) =
κ2v2

64πm3
φ

(

m2
φ −m2

h

)

,

Γ(χ± → W±hD) = Γ(χ± → W±AD)

=
κ2v2

128πm4
φm

3
χ

(

m2
χ −m2

W

)3
, and

Γ(η± → W±hD) = Γ(η± → W±AD) (3.19)

=
κ2v2

128πm4
φm

3
η

(

m2
η −m2

W

)3
.

The decay phenomenology depends sensitively on κ. If κ is sufficiently small the

cascade decays will dominate, and heavier φ will tend to decay down to the lightest

state, η±, emitting two fermions via an off-shell W per step, followed by the η±

decaying half the time to W±hD and half the time to W±AD. On the other hand, if

κ is large, κ mediated decays dominate with the neutral components of φ decaying

as φ0
R → hhD, φ

0
I → hAD and η±, χ± decaying to W±hD,W

±AD equally. Note that

the simplicity of the decays are a consequence of our benchmark choice. As the value

of vD is increased from our benchmark, additional decay modes due to κ become

more important, e.g. φ0
R → hh, ZZ,WW and η± → W±h,W±Z. However, since

these decay rates are proportional to v2D, only when vD ∼> 100 GeV do these start

to become important and thus in the intensity frontier parameter space we do not

expect these decays to have appreciable rates.

In Fig. 10, we highlight some of the important regions of our benchmark

parameter space. Some characteristic values of ǫ are given at three mφ values in

dashed lines, though these can be scaled up or down by changes in gD, λmix. The

green line denotes the value of κ where the cascade decays are comparable to the κ

induced decays below which the off-shell cascade decays dominate. The middle region
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FIGURE 10. This figure shows regions of interest in the (mφ,κ) plane. Starting from
the top, the regions are where the new higgs decays are greater than 10% of its SM
expected total width (green region), where µ2

D is tuned to > 10% (above the thick
orange curve) and where the electroweak cascade decays are faster than the κ decays
(below the green curve). Vertical dashed lines mark values of ǫ, labeled at the top.

of Fig. 10 shows where the tuning in µ2
D is worse than 10%, and the last region at

the top shows when the SM higgs has new decays with a branching ratio greater than

10%, which will be discussed below.

Production Rates: In order to observe these decays, φ particles will need to be

produced, which at a hadron collider proceeds predominantly through Drell-Yan

production. The production cross sections at the 13TeV LHC are shown in Fig. 11.

We used FeynRules [81] to generate our Lagrangian and CalcHEP [82] to generate the

events using the cteq6l parton distribution function for the proton. Pair production

of the neutral particles does not occur due to the lack of photon, Z couplings. Also,

production rates for φ0
I are identical to φ0

R and so are not included on the plot.

The strategy for φ searches should start with adaptations to the existing searches

for dark photons and lepton jets [70, 83–85]. All events contain either hD or AD

particles produced at significant boosts, which coupled with the decay hD → ADAD,

will lead to many events with boosted lepton pairs. For small enough ǫ, many of
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FIGURE 11. This figure shows the pair production cross section for various mass
states of φ at the

√
s = 13TeV LHC. The different curves are: two η states (red), an

η and a φ0
R or φ0

I (orange) a χ and a φ0
R or φ0

I (green) and two χ states (blue). The
legend is arranged in order of decreasing cross section. Curves were generated using
the cteq6l parton distribution function of CalcHEP [82].

these AD decays will be displaced. If the value of κ is small, where cascade decays

dominate, there will also be soft leptons or jet activity from the off-shell W ’s. An

interesting signal in this regime is the possibility of same sign η production due to

the cascade decays of φ0
R, φ

0
I going equally into η± (see Eq. 3.18). Their subsequent

decay produces a like-sign pair of W ’s leading to same sign lepton events in addition

to the lepton jets of the event. On the other hand, if the value of κ is large, there can

be other associated objects like the SM higgs bosons produced in φ0
R, φ

0
I decays (see

Eq. 3.19), which could be of interest in terms of tagging or reconstructing the events.

To summarize, this scenario’s predominant collider signal is lepton jets in association

with W,h with mass resonances between a lepton jet and the W or h.

Since the benchmark’s dark photon mass restricts it to electron decays, the lepton

jets could be challenging to pick out. Boosted electron pairs are much more difficult

to distinguish from jets and in fact, most existing lepton jet searches rely on muons
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(with significant constraints only for MAD
> 2mµ ∼ 0.2 GeV). To overcome these

challenges, some promising strategies could be to look for displaced jets and/or jets

with significant electromagnetic energy deposit. We leave studies of such issues as

well as existing LHC constraints and discovery reach for such particles to future work.

SM Higgs Phenomenology

This model also predicts new decays for the SM higgs. The dominant new decays

are into dark higgs bosons and dark gauge bosons. The kinetic mixing operator itself,

Eq. 3.9, generates new decays of the higgs to a dark photon and either a Z or a

photon. The rates of these decays are

Γ(h→ hDhD) = Γ(h→ ADAD) =
κ4v6

512πmhm4
φ

(3.20)

Γ(h→ γDγ) = v
ǫ2

32π

(mh

v

)3

(3.21)

Γ(h→ γDZ) ∼= Γ(h→ γDγ)×
(

2 cW
sW

)2

× 10−1 (3.22)

again we take the limit where AD and hD are massless. Indirectly, these new decay

widths are constrained by the relatively good fits of the SM higgs decay signal

strengths [86]. As an approximation of this constraint, the top green region of Fig. 10

shows where higgs decays into the dark sector exceed 10% of the SM higgs total width.

In particular, decays of the higgs involving the dark photon are a direct consequence

of the kinetic mixing term, and provide a model independent signal of nonabelian

kinetic mixing. For ǫ ∼ 10−3 the branching ratio of the higgs to a dark photon will

be Γ(h → γD + Z/γ) ∼ .5 × 10−6 GeV. There is potential for the LHC to detect

these higgs decays, if the dark photon is heavier than our benchmark. For example,

if mAD
∼ 0.6− 60 GeV, the LHC can be sensitive to the dark photon through higgs
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decays into 2AD [87] and a recent LHC analysis constrains Br(h→ 2AD) ∼> 3×10−4

for mAD
= 15 − 60 GeV [88]. While the fixed target parameter space motivates

searches at much lower dark photon masses, a simple modification of our benchmark

can give these heavier masses. In these modified benchmarks, if one improves the

higgs branching ratio constraint to BRnew < BRlimit, this would constrain the range

κ > 0.25(mφ/200 GeV)Br
1/4
limit. As our formulas and discussion show, increasing mAD

to these larger values, either through increasing gD or vD, changes very little in the

φ phenomenology, however, in this heavier parameter space correlated signals at the

intensity frontier could only be seen at future flavor factories for mAD
< 10 GeV.

Collider Study

There are three potentially striking collider signatures of the model we present

here3: prompt and displaced lepton jets, same sign leptons, and resonance features

associated with production of the mediator. Searches have already been done in

search of lepton jets and same sign leptons [85, 89, 90]. Relevant same sign lepton

searches done already are optimized to search for standard model processes producing

same sign leptons and are relatively ineffective for constraining this model. Displaced

lepton jet searches loose sensitivity because in order to make ǫ sufficiently small to

displace a lepton jet generically requires that mφ be large, which lowers the mediator

production cross section substantially. On the other hand, the model considered here

produces prompt lepton jets at low mediator masses, where the production rate is

relatively large. As a result, prompt lepton jet searches are able to meaningfully

constrain the parameter space of this model. I will detail our approach below, and

3The work presented in this section is unpublished work done in collaboration with Chris A.
Newby, Spencer Chang, and Bryan M. Ostdiek
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then discuss possibilities for improving search methods in future analyses.

Prompt Lepton Jet Analysis

The ATLAS search for prompt lepton jets detailed in [85] relies on dark photons,

or scalars which couple to dark photons, being produced in collision events which

subsequently decay into pairs of leptons. The results are thus somewhat dependent

on the dark photon production mechanism. In our model dark photons are produced

as the end state of mediator pair production and subsequent decay, which makes the

mediator mass a significant factor in constraining our model. We reapply this prompt

lepton jet analysis to simulated events generated according to our model. As I will

show below, this analysis already constrains significant regions of nonabelian kinetic

mixing parameter space, but there is much room for improvement.

Our simulation environment uses FeynRules [81] to generate the model file,

MadGraph5 [91] to simulate parton-level events, Pythia [92] to simulate decays, and

Delphes [93] to simulate the detector response. Lepton jets are reconstructed following

the procedure detailed in [85] with the one modification that, instead of requiring a

reconstructed electron in a lepton jet as specified for electron lepton jets (section 5.2 in

[85]), we instead require a track whose truth-level particle ID is that of an electron in

the lepton jet. This is because we find that Delphes always reconstructs the electrons

in the lepton jet as a single jet object, never registering an isolated electron. We

assume that electron reconstruction by the experimental collaborations will be better

able to reconstruct electrons appropriately. Indeed, it is reported that in the original

analysis electron lepton jets were usually reconstructed as a single electron, instead of
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as a jet. This choice may overestimate our signal events by a small factor, simulating

our lepton jet reconstruction efficiency and comparing to Figure 5 of [85] matches

quite well, reassuring us that our reconstruction is accurate.

In the original analysis of [85] additional cuts are applied to remove background,

which is primarily from multijet andW-plus-jets events, of which multijet is dominant.

Some of the cuts applied are infeasible in our simulation invironment. We were able

to simulate the isolation cut and a cut on the fraction of energy deposited in the

electromagnetic calorimeter (EM frac.). The other cuts may have a slight effect

on signal efficiency, but it is noted in the original analysis that the primary effect of

these additional cuts is to reduce background and only slightly reduce signal efficiency.

The isolation variable can easily be computed using simulated tracks according to the

procedure detailed in the original analysis. In order to compute the EM frac. variable

we use the delphes variable ‘EhadOverEem’ of the nearest reconstructed jet to each

lepton jet, which is quite accurate since almost all of the lepton jets are reconstructed

as jets by Delphes. To compute EM frac. we use the relationship

EM frac =
1

1 + EhadOverEem
(3.23)

The effectiveness of this analysis on any given parameter point is controlled

by two primary variables: the cross section, which controls how many events are

available, and the dark photon decay length, which controls whether the resulting

lepton jets are prompt, or not. For our benchmark scenario, mAD
= .1 GeV, the

decay length is approximately:
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Ldecay ∼ (10−11meters)× ǫ−2 ×
m2
φ −m2

W

2mφmAD

(3.24)

Here, the final factor is approximately the boost of the dark photon. In order

to be “prompt” as defined by the original analysis a lepton jet must have an

impact parameter d0 < 1.5 × 10−3 meters from the beam pipe, meaning that signal

efficiency starts to drop significantly for ǫ < ×
√

(m2
φ −m2

W )/(mφmAD
)10−5. For our

benchmark scenario, in which the relationship betweenmφ and ǫ is explicit, this works

out to be ǫ ∼< 5× 10−4, in order to probe lower ǫ will require quite high luminosity.

In order to get a meaningful sampling of parameter space, we simulated events

with parameters in the mφ − ǫ plane in the region 150 GeV < mφ < 350 GeV and

10−5 < ǫ < 10−3. We use the parameters of our benchmark excepting λmix which

we vary in order to achieve the desired relationship between mφ and ǫ. To get a

flavor for the varied phenomenology of this model, we study two values of κ; one “low

kappa” region in which κ = .001 and cascade decays dominate, and a “large kappa”

region in which κ = .05 and kappa decays dominate. This work is still in progress

but, preliminarially, we find that parameter space is constrained by this analysis for

ǫ ∼> 2× 10−4, as shown in Fig. 12, with slight differences arising for low and large κ.

Of particular note is the shift in constraint of the low mφ region between low and

large κ. In particular the low κ scenario is somewhat more weakly constrained. This

is because in the low mφ region of parameter space the mass of the lightest state (η)

can become very close to the W mass, which in turn limits the Pt of the final state

dark photons. Since lepton jets are required to have Pt > 20 GeV by the analysis,

this significantly weakens constraints in the low κ, low mφ region of parameter space,

where almost all of the mediators produced will undergo a cascade of decays to the
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FIGURE 12. Exclusions of our model in the mφ - ǫ plane from a prompt lepton jet
search with 20fb−1 of LHC data. Our large κ benchmark is κ = .05 and the low
kappa benchmark is κ = .001. Shaded regions are excluded at the 95% C.L. and
contour labels denote the expected number of events.

lightest state and produce relatively soft lepton jets.

Future Directions

Certainly there is more work to be done in analyzing the collider signatures

of this model, and a detailed collider study is in preparation, however already we

can see that current analyses are constraining the relevant parameter space. There

is hope to constrain additional parameter space at higher luminosity, where there

may be significantly more signal events. Unfortunately, the multijet backgrounds

will scale similarly as the signal with luminosity. The constraints on this model at

high luminosity could be significantly improved with better background rejection. An

effective way to reject additional background for this model is to additionally require a

hard, isolated lepton in the event from the W bosons associated with mediator decay.
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A W boson decays leptonically approximately 1/3 of the time, so with two W bosons

in the event (one from each mediator) we expect an additional reduction in signal

efficiency of approximately 50%. On the other hand, this requirement will reduce the

dominant multijet background by at least a factor of the lepton fake-rate, which is

around 10−2 [94]. It may even be that this requirement will make W plus jets the

dominant background in the analysis. Unfortunately this approach will not improve

limits using the current data set since the search has almost zero backgrounds as is.

Even with zero backgrounds, the 95% C.L. limit is ∼ 3 expected events, which is only

half the 95% CL limit with multijet backgrounds. On the other hand, with higher

luminosity this strategy will significantly improve the sensitivity of this search. A

more detailed analysis of this strategy is forthcoming.

Conclusions

In this letter, we have argued for a direct connection between current intensity

frontier searches for dark photons and the signals of new particles at the LHC. The

connection occurs if KM involves a nonabelian gauge symmetry, since the mixing

operator requires higgs fields to be gauge invariant and thus closely ties the mediator

particle mass to the vev of the higgs and the strength of KM. To illustrate this, we

wrote down a simple model where the only KM which occurs is between a new dark

U(1) gauge symmetry and SU(2)L. This requires a scalar triplet φ of SU(2)L which is

charged under the dark U(1). Analyzing the model, we looked at the constraints and

briefly considered the phenomenology of the φ particles at the LHC which could be

searched through simple modifications of existing dark photon searches. We showed

that modern prompt lepton jet searches already constrain some regions of parameter
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space. We also argued for a search strategy involving an additional hard lepton, in

order to reduce multijet backgrounds.

Aside from our simple model, there are obvious extensions to explore. Fermionic

mediators, mixing with a nonabelian dark gauge symmetry and incorporating dark

matter are all intriguing modifications, which will all produce the same, model-

independent correlation of signals. Interestingly, these directions all tend to lead

to larger multiplicity in the dark sector, suggesting that the model in this paper is

unique in its simplicity. Investigation of these directions, as well as a detailed collider

study of this model is forthcoming.

To conclude, KM of the SU(2)L of the SM and an abelian dark sector is timely and

well motivated given the current run of the LHC, ongoing fixed target experiments,

and potential next generation flavor factories. The connection it draws between

intensity and energy frontier experiments is unambiguous and leads to correlated

signals at these experiments, promising unprecedented insight into the physics of the

dark sector.
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APPENDIX A

DERIVATION OF NONRELATIVISTIC OPERATORS

As mentioned earlier, there are two ways of constructing the velocity degrees of

freedom used in our nonrelativistic theory: starting with Galilean invariant operators

and orthogonalizing them or starting with the relativistic kinematics and reducing to

the nonrelativistic limit. Here we derive the results shown in section 2.1 using the

second method.

To begin, we have the four four-momenta of Fig. 1 from which we need to

construct Galilean invariant velocities. As there are ten constraints; one from energy

conservation, three from momentum conservation, four from mass constraints, and

two from rotational invariance; we only need two velocity operators. Using a little

foresight, we define three velocities

~vN ≡ ~vNin
− ~vNout

,

~vχ ≡ mχ1
+mχ2

2mN

(~vχ2
− ~vχ1

), and

~v⊥el ≡
1

2
(~vχ2

+ ~vχ1
− ~vNout

− ~vNin
).

(A.1)

and expect to find one relationship between them beyond the orthogonality relations

so as to have a total of six degrees of freedom. The mass factor in front of the relative

DM velocity is so that in the elastic limit ~vχ → ~vN . We also chose the form for ~v⊥el

which is perpendicular to the momentum transfer in the elastic limit and because the

velocities have good quantum numbers under P , T , and hermitian conjugation.

Now that we have our three velocities, we need to orthogonalize them. We begin

with Lorentz invariant combinations:
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(p+ k)2 = (p′ + k′)2,

(p− k′)2 = (p′ − k)2,

k′2 = (p+ k − p′)2, and (A.2)

(p− p′)2 = (k − k′)2,

which we take the nonrelativistic limit of to obtain

− (mχ1
+mN)

2 −mχ1
mN(~vχ1

− ~vNin
)2 = −(mχ2

+mN)
2 −mχ2

mN(~vχ2
− ~vNout

)2,

− (mχ1
−mN)

2 +mχ1
mN(~vχ1

− ~vNout
)2 = −(mχ2

−mN)
2 +mχ2

mN(~vχ2
− ~vNin

)2,

− (mχ1
+mN −mχ2

)2 −mχ1
mN(~vχ1

− ~vNin
)2 +mχ1

mχ2
(~vχ1

− ~vχ2
)2

+mχ2
mN(~vχ2

− ~vNin
)2 = −m2

N , and

− (mχ1
−mχ2

)2 +mχ1
mχ2

(~vχ1
− ~vχ2

)2 = m2
N(~vNin

− ~vNout
)2.

(A.3)

From these relations we can substitute in the velocities from Eq. A.1 and solve

for their dot products. These are, with the replacement mχ2
→ mχ1

+ δ,

~vN · ~vχ = v2χ,

~vN · ~v⊥el = −
δ
(

(δ + 2mχ1
)2 +m2

Nv
2
χ

)

mN(δ + 2mχ1
)2

, and

~vχ · ~v⊥el = −
δ
(

(δ + 2mχ1
)2
(

v2N + 4(v⊥el )
2 + 8

)

+ 4m2
Nv

2
χ

)

8mN(δ + 2mχ1
)2

.

(A.4)
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Also, because of the degrees of freedom and our choice of velocities there is a

relation between v2N and v2χ. This is obtained from the last momentum-conservation

equation of Eq. A.2 and is

4mχ1
(mχ1

+ δ)m2
N

(2mχ1
+ δ)2

v2χ = δ2 +m2
Nv

2
N . (A.5)

The final, orthogonal velocities are given by

~v⊥N = ~vN ,

~v⊥χ = ~vχ −
~vχ · ~v⊥N
(~v⊥N)

2
~v⊥N , and

~v⊥inel = ~v⊥el −
~v⊥el · ~v⊥N
|~v⊥N |2

~v⊥N −
~v⊥el · ~v⊥χ
|~v⊥χ |2

~v⊥χ .

(A.6)

As stated in section 2.1, we are treating all momenta as order v and δ as order

v2, so the final forms for the velocity operators are, with ~vN → ~q/mN ,

~v⊥N =
~q

mN

, ~v⊥χ = 0, and ~v⊥inel = ~v⊥el +
δ

|~q |2~q, (A.7)

so we only have two velocity-like operators. As a check, these variables agree with

section 2.1.
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APPENDIX B

REDUCTION OF RELATIVISTIC OPERATORS

In this paper we have written the nonrelativistic reduction of many relativistic

operators, but there are other possibilities not considered here (mainly interactions

with spin 2 and beyond mediators). To help with the reduction of these other

operators, we have included a series of reductions for the prototypical elements of

a relativistic field theory. See [95] for similar results.

We concern ourselves with the spinor contractions

ψ̄2ψ1, ψ̄2γ
5ψ1, ψ̄2γµγ

5ψ1,

ψ̄2σµνψ1, and ψ̄2σµνγ
5ψ1,

where σµν ≡ i
2
[γµ, γν ].

In the nonrelativistic limit these become

ψ̄2ψ1 ≃ 2
√
m1

√
m21ψ, (B.1)

ψ̄2γ
5ψ1 ≃ 2

√
m1

√
m2(~v1 − ~v2) · ~Sψ, (B.2)

ψ̄2γµγ
5ψ1 ≃ 2

√
m1

√
m2(2S

i
ψδ

i
µ − (~v1 + ~v2) · ~Sψδ0µ), (B.3)

ψ̄2σµνψ1 ≃
√
m1

√
m24ǫijkS

k
ψδ

i
µδ

j
ν (B.4)

+
√
m1

√
m2ı(δ

0
µδ

a
ν − δaµδ

0
ν)
[

−2iǫaik(~v1 + ~v2)
iSkψ + (~v1 − ~v2)

a
]

, and
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ψ̄2σµνγ
5ψ1 ≃ −√

m1

√
m24iS

i
ψ(δ

0
µδ

i
ν − δiµδ

0
ν) (B.5)

−√
m1

√
m2ǫabcδ

a
µδ

b
ν

[

−2iǫcid(~v1 + ~v2)
iSdψ + (~v1 − ~v2)

c
]

.

In these equations 1ψ is the unit operator in spin-space, ~v1 is the velocity of

the incoming ψ1 particle, ~v2 is the velocity of the outgoing ψ2 particle, ~Sψ is the spin

operator for the ψ particle, gµν is the metric tensor, and ǫijk is the Levi-Civita symbol.

These reductions rely on ψ1 in the initial state and ψ2 in the final state (not their

antiparticles) and that the only difference in these particles is the mass (m1 and m2

for initial and final respectively). One can also use the Gordon identity,

ψ̄1γµψ2 =
1

2
√
m1

√
m2

ψ̄1(p1µ + p2µ + iσµνq
ν)ψ2, (B.6)

for the vector interaction.

Another useful result is the nonrelativistic limit for the time-like component of

the momentum transfer, which is

q0 ≃ δ +
mχ1

2
(~v2χ2

− ~v2χ1
), or

q0 ≃ mN

2
(~v2Nin

− ~v2Nout
).

(B.7)

These relations are sometimes needed for the preservation of Galilean invariance but

can be easy to overlook.
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To reduce operators for spin 1 particles we must take into account the polarization

of a nonrelativistic vector boson. This is given by

ε0λ(~p) ≃
~p

m
· ~ελ(~0)

~ελ(~p) ≃ ~ελ(~0),

(B.8)

to lowest order in ~p.

81



APPENDIX C

TRANSITION AMPLITUDE IN NUCLEAR RESPONSE BASIS

Since the effective theory for inelastic dark matter is so similar to the effective

theory for elastic dark matter, it can be easy to overlook some of the important

differences. The change in the Galilean-invariant incoming dark matter velocity

is stressed above, but the possible complex nature for the coefficients of the

nonrelativistic operators Eq. 2.8 is another modification. To highlight both of these

effects we reproduce the relevant results for the squared matrix element, following

[32].

First we write our Lagrangian as

L =
∑

τ=0,1

15
∑

i=1

cτiOi, (C.1)

where τ characterizes the isospin structure of the coupling, allowing different couplings

to protons and neutrons. We then calculate the transition amplitude, by averaging

over initial spins and summing over outgoing spins, and expand in the basis of the
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nuclear responses, giving

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2nuclear =
4π

2jN + 1

∑

τ=0,1

∑

τ ′=0,1

{

∞
∑

J=0,2,...

[

Rττ ′

M (|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||MJ ;τ (q)||jN〉〈jN ||MJ ;τ ′(q)||jN〉

+
|~q |2
m2
N

Rττ ′

Φ′′ (|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||Φ′′
J ;τ (q)||jN〉〈jN ||Φ′′

J ;τ ′(q)||jN〉

+
|~q |2
m2
N

Rττ ′

Φ′′M(|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||Φ′′
J ;τ (q)||jN〉〈jN ||MJ ;τ ′(q)||jN〉

]

+
∞
∑

J=2,4,...

[ |~q |2
m2
N

Rττ ′

Φ̃′
(|~v⊥inelT |2,

|~q |2
m2
N

)〈jN ||Φ̃′
J ;τ (q)||jN〉〈jN ||Φ̃′

J ;τ ′(q)||jN〉
]

+
∞
∑

J=1,3,...

[

Rττ ′

Σ′′ (|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||Σ′′
J ;τ (q)||jN〉〈jN ||Σ′′

J ;τ ′(q)||jN〉

+Rττ ′

Σ′ (|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||Σ′
J ;τ (q)||jN〉〈jN ||Σ′

J ;τ ′(q)||jN〉

+
|~q |2
m2
N

Rττ ′

∆ (|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||∆J ;τ (q)||jN〉〈jN ||∆J ;τ ′(q)||jN〉

+
|~q |2
m2
N

Rττ ′

∆Σ′(|~v⊥inelT |2,
|~q |2
m2
N

)〈jN ||∆J ;τ (q)||jN〉〈jN ||Σ′
J ;τ ′(q)||jN〉

]

}

.

(C.2)

This result is expanded in spherical harmonics leading to the nuclear operators

M,∆,Σ′,Σ′′, Φ̃′,Φ′′. The inelastic kinematics does not modify these operators, so

we do not reproduce their expressions. Instead, the changes are solely in the R
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coefficients

Rττ ′

M (|~vT |2,
|~q |2
m2
N

, δ) = cτ1c
τ ′∗
1 +

jχ(jχ + 1)

3

[( |~q |2
m2
N

cτ5c
τ ′∗
5 + cτ8c

τ ′∗
8

)

×
(

|~vT |2 − v2minT (δ)
)

+
|~q |2
m2
N

cτ11c
τ ′∗
11

]

Rττ ′

Φ′′ (|~vT |2,
|~q |2
m2
N

, δ) =
1

4

|~q |2
m2
N

cτ3c
τ ′∗
3 +

jχ(jχ + 1)

12

(

cτ12 −
|~q |2
m2
N

cτ15

)(

cτ
′∗

12 − |~q |2
m2
N

cτ
′∗

15

)

Rττ ′

Φ′′M(|~vT |2,
|~q |2
m2
N

, δ) = Re

[

cτ3c
τ ′∗
1 +

jχ(jχ + 1)

3

(

cτ12 −
|~q |2
m2
N

cτ15

)

cτ
′∗

11

]

Rττ ′

Φ̃′
(|~vT |2,

|~q |2
m2
N

, δ) =
jχ(jχ + 1)

12

[

cτ12c
τ ′∗
12 +

|~q |2
m2
N

cτ13c
τ ′∗
13

]

Rττ ′

Σ′′ (|~vT |2,
|~q |2
m2
N

, δ) =
1

4

|~q |2
m2
N

cτ10c
τ ′∗
10 +

jχ(jχ + 1)

12

[

cτ4c
τ ′∗
4 +

|~q |2
m2
N

(

cτ4c
τ ′∗
6 + cτ6c

τ ′∗
4

)

+
|~q |4
m4
N

cτ6c
τ ′∗
6 +

(

cτ12c
τ ′∗
12 +

|~q |2
m2
N

cτ13c
τ ′∗
13

)

(

|~vT |2 − v2minT (δ)
)

]

Rττ ′

Σ′ (|~vT |2,
|~q |2
m2
N

, δ) =
1

8

[ |~q |2
m2
N

cτ3c
τ ′∗
3 + cτ7c

τ ′∗
7

]

(

|~vT |2 − v2minT (δ)
)

+
jχ(jχ + 1)

12

×
{

cτ4c
τ ′∗
4 +

|~q |2
m2
N

cτ9c
τ ′∗
9 +

1

2

[(

cτ12 −
|~q |2
m2
N

cτ15

)(

cτ
′∗

12 − |~q |2
m2
N

cτ
′∗

15

)

+
|~q |2
m2
N

cτ14c
τ ′∗
14

]

(

|~vT |2 − v2minT (δ)
)

}

Rττ ′

∆ (|~vT |2,
|~q |2
m2
N

, δ) =
jχ(jχ + 1)

3

[ |~q |2
m2
N

cτ5c
τ ′∗
5 + cτ8c

τ ′∗
8

]

Rττ ′

∆Σ′(|~vT |2,
|~q |2
m2
N

, δ) =
jχ(jχ + 1)

3
Re
[

cτ5c
τ ′∗
4 − cτ8c

τ ′∗
9

]

.

(C.3)

Here we have expanded |~v⊥inelT |2 as in Eq. 2.13 to show the dependence on δ, and

we have also included the appropriate complex conjugation of the coefficients as

relativistic inelastic dark matter operators can produce complex coefficients for their

nonrelativistic counterparts.
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