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DISSERTATION ABSTRACT 

 

David Andrew Golter II 

 

Doctor of Philosophy 

 

Department of Physics 

 

December 2014 

 

Title: Optical Control of Electron Spins in Diamond 

 

 

By choosing the right system and using the right techniques, it is possible to 

achieve reliable control of an individual quantum system in a solid. Certain atom-like 

solid-state systems are especially suited for this goal. The electron spin of the diamond 

nitrogen-vacancy (NV) impurity center is a leader among such systems and has featured 

in a great deal of recent experimental work in the context of various quantum 

technologies. By extending optical control for the NV center we increase the utility of 

this system, opening it up to fresh applications in quantum optics. 

Doing quantum control with a solid-state spin comes with its own challenges. In 

particular it can be difficult to simultaneously isolate single systems, both for control and 

from environment-induced decoherence, while also coupling multiple systems together in 

a controlled way. A goal of the work presented in this dissertation is to develop 

techniques for answering this problem in the NV center. 

Optical control, as opposed to the microwave control usually used for state 

manipulation in the NV center, would make it easier to address only one spin system at a 

time. We demonstrate such control using two methods, two-photon optically driven Rabi 

oscillations and stimulated Raman adiabatic passage. These both have the added 

advantage that by using Raman-resonant, dipole-detuned optical fields, they protect the 
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spin state from the decoherence normally associated with the optical transitions. 

Furthermore, we see that this electron spin control is nuclear spin dependent, providing a 

mechanism for coupling these two spin systems. 

We also investigate a decoherence reduction technique that involves coupling 

continuous microwave fields to the spin states. The resulting “dressed states” are shielded 

from spin-bath-induced magnetic field fluctuations. We confirm this using optical 

coherent population trapping measurements which we have also developed in the NV 

center. We show that these measurements are sensitive to nuclear spin states as well as to 

dressed states. 

These results supply the missing piece, optical spin manipulation, to control 

schemes that are all-optical, and they demonstrate ways to significantly push back the 

decoherence limit. 

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

 

1.1. Optical Control of a Quantum System 

Contemporary advances in technology and in our understanding of certain 

physical systems have raised the exciting prospect of establishing reliable control of 

individual quantum-mechanical systems [1]. Experimental efforts along these lines work 

to advance basic quantum phenomena, for example Rabi oscillations or entanglement, 

from idealized theoretical textbook examples to practical experimental demonstrations 

involving real physical systems. Moreover, while many initial demonstrations of such 

quantum control involved ensembles [2], manipulation of single systems is becoming 

increasingly viable. Achievements in quantum control, while interesting challenges in 

their own right, also contribute to the development of new technologies, technologies that 

are useful for applications such as quantum information processing [3],[4] and metrology 

[5],[6].  

Before these applications can be realized, it is necessary to generate consistent 

quantum state initialization, manipulation, and readout procedures. Coherent control 

methods involving optical fields have been particularly successful for meeting these 

requirements in isolated atoms [7]. The interaction between atoms and photons is well-

understood. Optical control also lends itself to extensions into cavity QED scenarios [8]. 

Atom-like solid-state systems, which are generating increasing interest as quantum 
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systems for coherent control applications, would benefit from the incorporation of optical 

control techniques. 

In this dissertation we present several demonstrations of such optical control in a 

solid-state electron spin system. Using the negatively-charged nitrogen-vacancy impurity 

center (NV center) in diamond, we accomplish coherent population trapping (CPT), 

optically driven Rabi oscillations (ODROs), and stimulated Raman adiabatic passage 

(STIRAP). Furthermore we use optical methods to monitor the coherence properties of 

this system and confirm the effectiveness of using dressed states to minimize 

decoherence. 

 

1.2. Physical Systems for Quantum Control 

 When it comes to choosing a physical system in which to implement quantum 

control one finds a large array of potential candidates [4], [9], everything from photons to 

superconducting circuits. Of particular interest are quantum states associated with 

isolated atoms [10], [7]. The structure and dynamics of such systems are well understood, 

and control techniques have been widely developed. For example, internal states such as 

electron spin can be used as qubits, while radiation fields work to initialize, manipulate, 

and readout these states [11], [12]. Additionally such systems are typically well isolated 

from their environment, reducing the impact of that fundamental enemy of quantum 

control, decoherence. 

 Atomic systems, however, are subject to several important limitations. The need 

to constrain the position and motion of individual atoms requires extensive external 

infrastructure, e.g. ion traps [13], optical lattices [14]. In such an arrangement it can be 
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difficult to interact multiple quantum systems with each other, a requirement, for 

instance, in quantum information applications. Incorporating the atomic system into other 

structures such as optical cavities or mechanical resonators is also a challenge. 

 Atom-like solid-state systems, such as quantum dots [15] or impurity centers [16], 

possess many of the advantages of atomic systems while overcoming some of their 

limitations. The position and motion of these solid-state systems are naturally 

constrained. Multiple systems can potentially be packed closely enough to even allow 

direct dipole-dipole interactions. Well-developed fabrication techniques make it possible 

to build more intricate quantum devices that incorporate cavities or resonators [17]. For 

these reasons and more, such atom-like systems have become the focus of a great deal of 

research [18], [19]. 

 The NV center in diamond has emerged as a leading solid-state point defect 

system. With electronic spin states that exhibit long (for a solid-state system) coherence 

times, and an energy level structure that lends itself to microwave (MW) control and 

optical initialization and readout even at room temperature, the NV center has been an 

ideal system for pursuing quantum control applications [20]-[22]. Researchers have made 

significant progress in both understanding the electronic structure and spin dynamics of 

this physical system on one side and in demonstrating basic quantum control techniques 

on the other. 

 

1.3. Overcoming the Disadvantages of Solid-State Systems 

 For all their advantages, atom-like solid-state systems like the NV center present 

their own challenges. While closely spaced quantum systems make interactions easier, 
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they also make spatial resolution more difficult. While having a quantum system 

embedded in a larger material structure makes confinement of the system easier, it also 

increases unwanted interactions between the system and its environment leading to 

effects such as spectral diffusion and decoherence. The particular quantum control 

methods which we demonstrate in this dissertation help to mitigate these problems in the 

NV center making it an even more attractive quantum system for control applications. 

Moreover, the techniques presented here could also, in the future, be applied to other 

solid-state systems such as SiC [23], [24]. 

Specifically we demonstrate coherent, all-optical control methods which, when 

combined with well-established optical state initialization and readout, allow frequency 

resolution where spatial resolution is difficult [25], sidestep spectral diffusion effects, and 

avoid radiative decay. We also show that MW dressed states can be used to greatly 

reduce decoherence, which is perhaps the biggest challenge for a solid-state system. 

 A common feature of these experiments is the use of a coupling radiation field (or 

fields) to change the underlying spin dynamics of the atom-like system, altering its 

response to, say, an additional radiation field, or to its environment. For instance, in the 

phenomenon known as electromagnetically induced transparency, the presence of a 

“control” field renders the atomic system transparent to a second “probe” field [26]. Our 

concern is with the effect on the atomic system itself rather than with the nonlinear 

optical effects on the fields. This side of the picture is referred to as coherent population 

trapping [27]. Quantum interference cancels out the two field-driven transitions, creating 

within the atomic system, a “dark” state, that is, a coherent superposition of atomic 
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energy states that is shielded from excitation. This mechanism lies at the heart of the all-

optical control techniques which we demonstrate.  

 Similarly, we explore a method of minimizing decoherence that relies on the 

change in the spin dynamics of an atomic system resulting from a coherent preparation 

with continuous radiation fields. These “dressed” states are just composite atom-field 

states [27],[28], and behave in a way that is fundamentally different from the non-dressed 

spin states. 

 Choosing a physical system in which to implement quantum control is inevitably 

going to involve tradeoffs. By developing the right control techniques, however, we can 

play to the strengths of this solid-state system while minimizing its weaknesses. The 

results contribute to the general goal of providing reliable control over an individual 

quantum system. 

 

1.4. Dissertation Outline 

 In Chapter II we give an introduction to the diamond NV center. We provide a 

brief outline of the current theoretical understanding of this system’s energy level 

structure. This is followed by a survey of previous experimental research, with an 

emphasis on quantum control applications. We put our own work in the context of this 

continuing effort to demonstrate coherent quantum control in a solid-state atom-like 

system. 

 Chapter III begins with a description of our experimental setup as well as some 

details of our general experimental methods. We then review the results of preliminary 



  6 

investigations into the NV center at low temperature including MW control, optically 

detected magnetic resonance (ODMR), and photoluminescence excitation (PLE). 

 Chapters IV, V, and VI present our main experimental results. In Chapter IV CPT 

measurements are discussed. CPT provides a highly sensitive means of probing the 

energy-level structure of this system. We see that the CPT can be nuclear-spin-dependent, 

revealing the hyperfine structure of the electron-spin ground states. Additionally, the CPT 

trace is sensitive to the dynamic Stark splitting induced by a coherent spin excitation. 

This indicates that CPT can be used to measure dressed states, a feature that we will 

employ in Chapter VI. This chapter contains some previously published material that was 

co-authored with Khodadad N. Dinyari and Hailin Wang. 

 All-optical control of the NV center is the subject of Chapter V. A standard 

control method for the NV center involves using a single MW field resonantly coupled to 

a single electronic spin transition, where the two spin states associated with that transition 

represent the qubit states. In contrast, the techniques we use involve two optical fields 

and three spin states, with a subset of the spin states acting as the qubit. We demonstrate 

two control methods, both involving the optical Raman resonances which underlay the 

CPT described in Chapter IV. Method one consists of optically driven Rabi oscillations 

of a two-photon transition. Method two involves stimulated Raman adiabatic passage via 

the controlled evolution of a dark state. We compare these two processes both 

theoretically and experimentally and analyze the effects of spin dephasing and spectral 

diffusion. This chapter contains some previously published material that was co-authored 

with Hailin Wang. 
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 In Chapter VI we demonstrate the use of dressed states for protection from 

decoherence. In the case of the NV center, magnetic field fluctuations due to a 

surrounding spin bath are the primary source of decoherence. We present a technique for 

significantly improving coherence time by using MW dressed spin states that are 

protected from these fluctuations. CPT measurements of these dressed states show an 

improvement in coherence time by at least a factor of 50, limited by the transit time 

broadening of the measurement. This chapter contains some previously published 

material that was co-authored with Hailin Wang and Thomas K. Baldwin. 

 Chapter VII offers a summary of the main results of our work, and briefly 

suggests some further applications of the techniques we have presented. 

 

1.5. Acronyms Used in this Dissertation 

CPT – Coherent Population Trapping 

CW – Continuous Wave 

MW – Microwave 

NV (center) – Nitrogen-Vacancy 

ODMR – Optically Detected Magnetic Resonance 

ODRO – Optically Driven Rabi Oscillation 

PLE – Photoluminescence Excitation 

STIRAP – Stimulated Raman Adiabatic Passage 
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CHAPTER II 

THE DIAMOND NV CENTER 

 

Our understanding of the diamond NV center matured greatly over the last two 

decades, to the point that we now have a fairly comprehensive theoretical picture of its 

structure and dynamics. This has been accompanied, as well as aided, by an explosion in 

impressive experimental advances. Over the last decade, this impurity center has proven 

itself to be an excellent model system for demonstrating fundamental quantum 

mechanical applications and the basic building blocks of quantum control and quantum 

information processing. In the first part of this short chapter we outline the characteristics 

of the NV center, what it is and how it works. In the second, we summarize the major 

experimental developments that have made this solid-state system so exciting. 

 

2.1. NV Center Structure 

 Diamond is attractive as a host for impurity centers for a number of reasons [17], 

[22], [29]. It is chemically inert. It has a high Debye temperature, meaning low electron-

phonon coupling which increases spin-lattice relaxation times [30]. It consists primarily 

of the zero nuclear spin 
12

C isotope resulting in a less noisy magnetic environment. 

Importantly, diamond has a relatively large energy bandgap (5.5 eV) with enough room 

to fit both ground and excited impurity electronic states. This makes these impurities 

optically active, even in the visible or infrared regimes. There exist hundreds of such 

“color” centers in diamond, many of which have not yet been extensively studied [31].  



  9 

 One which has received considerable attention is the nitrogen-vacancy center. 

Consisting of a substitutional nitrogen impurity adjacent to an empty lattice site, these 

impurity centers are naturally occurring and are quite common. Alternatively, they can be 

created through a combination of implantation and annealing. We are primarily interested 

in the electron-spin-state structure for the NV center. This structure and its properties 

have been well explained using molecular models [32]-[34] and group theory 

considerations along with ab initio calculations [35], [36]. Without going into the details 

of these models, we summarize the main relevant features of this system [37]. 

 There are six electrons associated with the NV center. The nitrogen atom supplies 

two free electrons, while the dangling bonds for the three carbon atoms neighboring the 

vacancy each contribute one. In the case of the negatively charged NV center an 

additional electron has been captured from elsewhere in the material. (Throughout this 

dissertation “NV center” will refer to the negatively charged variety unless stated 

otherwise.) The NV center’s spin states refer to the net spin of these six electrons (see 

Fig. 2.1). 

 

 

Figure 2.1. Diagram of NV center ground and excited electron spin configurations in the 

four occupied orbitals (ex, ey, a1, a1’). 

Ground Excited
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The ground electron spin state for this system (shown in Fig. 2.2) is a spin-triplet 

with the ms = 0 state (net electron spin projection for the six electrons is 0) split from the      

ms = ±1 states (net electron spin projection for the six electrons is ±1) by 2.88 GHz due to 

spin-spin interactions between the electrons. An externally applied magnetic field lifts the 

degeneracy between the ms = ±1 states by producing a Zeeman splitting. The continually 

present magnetic field generated by the nitrogen nucleus associated with the NV center 

also contributes to the Zeeman shift. This hyperfine interaction makes the energy of the 

electron ms = ±1 states dependent on the orientation of the nuclear spin, allowing for 

coupling between these two systems. The most common nitrogen isotope is 
14

N which 

has a spin of 1. This means that the ms = ±1 levels each have three hyperfine states 

corresponding to nuclear spins mn = 0, +1, -1. The mn = ±1 states are split above and 

below the mn = 0 state by 2.2 MHz. In addition to this, there is a quadrapole interaction 

that splits the mn = ±1 hyperfine states from the mn = 0 state by 5 MHz for all electron 

spin states. 

 

 
Figure 2.2. NV center electronic ground spin state structure including zero-field splitting 

(2.88 GHz), Zeeman splitting (𝜔𝐵), hyperfine splittings (2.2 MHz), and quadrapole 

splitting (5 MHz). 
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The excited state structure is more complicated. The orbital occupation, shown in 

Fig. 2.1., creates a pair of triplet states. These six states are commonly labeled |𝐴1⟩,  |𝐴2⟩, |𝐸𝑥⟩, |𝐸𝑦⟩, |𝐸1⟩, |𝐸2⟩ based on their symmetry properties. The spin-orbit interaction 

splits states with different total angular momentum, separating the pairs (|𝐴1⟩, |𝐴2⟩), 
(|𝐸𝑥⟩, |𝐸𝑦⟩), and (|𝐸1⟩, |𝐸2⟩) from each other by about 5 GHz. The spin-spin interaction 

shifts non-zero spin states (|𝐴1⟩, |𝐴2⟩, |𝐸1⟩, |𝐸2⟩) up and zero spin states (|𝐸𝑥⟩, |𝐸𝑦⟩) 
down by about 1 GHz. It also splits |𝐴1⟩ and |𝐴2⟩ by about 3 GHz. The result is that, for 

low strain, states |𝐴1⟩, |𝐴2⟩, |𝐸𝑥,𝑦⟩, and |𝐸1,2⟩ are separated from each other by large 

energy gaps. 

Optical transitions between the ground and excited states correspond to a zero 

phonon line at 637 nm. Angular momentum conservation determines which ground states 

couple to which excited states and sets selection rules on photon polarization. The |𝐸𝑥,𝑦⟩ 
states couple to the ground ms = 0 state via horizontal and vertical linearly polarized light 

respectively, and the |𝐴1⟩, |𝐴2⟩, and |𝐸1,2⟩ states couple to the ground ms = ±1 states via 

right and left circularly polarized light. These transitions only become narrow enough to 

drive directly at low temperature. 

Crystal lattice strain can break the xy-symmetry and cause the excited states to 

spit and mix. The ground states, with their anti-symmetric combination of ex and ey 

orbitals, are much less sensitive to strain. The local strain varies throughout the crystal 

lattice, so the exact excited state splittings are unique to each NV center.  

There also exists a continuum of vibronic states which allow phonon assisted 

absorption at higher energies and emission at lower energies. The former means that the 

NV center can be excited using, for instance, a green 532 nm laser even at room 
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temperature. The latter causes the NV center to emit much of its fluorescence into a 

phonon sideband. 

The optical transitions are in general spin conserving, however there exists a non-

radiative pathway via a pair of additional ground, metastable singlet states whereby the 

system can decay from an excited state with ms = ±1 into the ground state with ms = 0 

(See Fig. 2.3). This provides an important mechanism for initialization of the spin state. 

Under continuous optical excitation at 532 nm, all optical transitions are driven. Any 

population in the ms = ±1 branch eventually leaks out via this pathway into the ms = 0 

branch causing optical pumping into the ground ms = 0 state. Since it relies on off-

resonant excitation, this initialization process is effective even at room temperature. This 

also works as a method of spin measurement since the initial fluorescence under green 

illumination (before spin polarization occurs) is spin dependent, with the ms = ±1 states 

spending time in the metastable singlet states and therefore fluorescing more weakly. 

 
Figure 2.3. Energy level structure of the NV center, demonstrating spin-dependent 

fluorescence and spin-state polarization under off-resonant optical excitation. Ground 

and excited state levels are grouped by their spin value. 
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Under continued resonant excitation the NV center has a probability of being 

ionized and switching into the neutrally charged state which has different spin properties 

and resonances. An additional benefit of green illumination is that it can change the 

charge state, recovering a negatively charged NV center. However this comes at the cost 

of spectral diffusion. The resonance of the NV center is slightly Stark shifted due to its 

electronic environment, and the green laser can rearrange this environment changing the 

position of the resonance. 

The primary source for decoherence of the NV center spin state is the surrounding 

bath of 
13

C atoms which have a non-zero spin. The concentration of this isotope in the 

crystal varies from sample to sample and even within the same sample. The coherence 

time (𝑇2) for the NV center ground spin states can be as long as milliseconds in very pure 

samples. Even in a less pure diamond, coherence times of hundreds of microseconds are 

readily observed. Ground state dephasing times (𝑇2∗) also vary, but are typically a 

microsecond or better. These impressive coherence times, which do not require low 

temperatures, further increase the attractiveness of this solid-state system. 

 

2.2. NV Center Applications 

 Ensemble NV center impurities in diamond were studied as far back as the 1960s. 

The center’s basic properties were determined over the course of a few decades using 

optical spectroscopy with irradiation and annealing [38]-[40], electron-spin resonance 

[41], spectral hole burning [42], and optically detected magnetic resonance (ODMR) [43] 

methods. Beginning in the 1990s studies using single NV centers began, with 
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demonstrations of confocal optical microscopy and ODMR [44] and photon antibunching 

[45]. 

 In the last decade experimentalists turned their attention to accomplishing 

coherent quantum control and other basic building blocks of quantum information 

science in single NV centers at room temperature. This began with MW-driven Rabi 

oscillations and Hahn echo measurements [46].The interaction of the NV center with the 

surrounding spin bath, and the resulting decoherence effects were studied [47], [48]. This 

allowed the essential requirements for quantum gates, along with state mapping between 

two quantum systems, to be demonstrated by using the hyperfine interaction between the 

NV center electronic state and the nuclear spin of nearby 
13

C atoms [49]-[51], and N 

atoms [52], [53], and later with the N atom associated with the NV center itself [54], [55]. 

These techniques led to single-shot readout of single nuclear spins [56] and the use of NV 

centers for high sensitivity magnetometry [57], [58]. 

 Low temperature studies of single NV centers began with optical spectroscopy in 

bulk diamond [59], [60] and in nano-diamonds [61] revealing the details of the spin 

excited state structure. Once the various transitions and selection rules had been sorted 

out, entanglement between NV center spins and optical photons could be realized [62]. 

This was followed by demonstrations of quantum interference between single photons 

emitted from two separate NV centers [63], [64], leading finally to entanglement between 

these two remote spin states [65]. 

 Progress has also been made toward low temperature coherent optical 

manipulation of NV center spin states. Experiments have demonstrated CPT [66], optical 

Rabi oscillations [67], optical cooling of nuclear spins [68], and resonant, optical 
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initialization and readout of NV spin states [69]. The research presented in this 

dissertation involving CPT and all-optical control contributes to this ongoing effort [70]-

[72]. 
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CHAPTER III 

EXPERIMENTAL METHODS 

 

In this chapter we lay the groundwork for the central experimental results which 

are the subject of the following chapters. We begin with a description of our experimental 

setup. After this we present preliminary, low-temperature experimental investigations of 

the NV center and in the process introduce the basic methods of spin preparation and 

measurement which appear in our main experiments. 

 

3.1. Experimental Setup 

 To optically excite and collect fluorescence from a single NV center we use a 

standard confocal microscope setup (see Fig. 3.1). The same objective (Olympus 

LUCPLFLN40, .6NA, 40x magnification) focuses the excitation lasers onto the sample 

while collecting emitted fluorescence. Galvanometer mirrors (Thorlabs, GVSM002) steer 

the laser beams and, with them, the position of the focal spot in the focal plane. A 

dichroic mirror (longpass cutoff at 550 nm) and a series of filters (532 nm notch, 637 nm 

notch, 647 nm cutoff longpass) block out any reflected laser light while passing the 

phonon sideband of the fluorescence. This fluorescence is coupled into a single mode 

optical fiber which acts as a pinhole to reject any light not coming from the focal plane of 

the microscope. For some of our experiments we instead used a multimode fiber with a 

small core diameter (10 m). The fiber then couples into an avalanche photodiode  
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Figure 3.1. Diagram of the experimental setup. 

 

 

(Perkin-Elmer, SPCM-AQR-16-FC) for single photon counting with a counting card 

(National Instruments, PCI 6602). 

 Beams from a 532 nm diode laser (Laserglow, LCS-0532), a 637 nm tunable 

diode laser (New Focus, Velocity 6304), and a 637 nm frequency stabilized tunable dye 

ring laser (Coherent, 899-21) each pass through acousto-optic modulators (AOMs) 

allowing them to be independently pulsed. Many of our experiments require two, 

oppositely circularly polarized, phase locked, 637 nm radiation fields. To achieve this we 

split the ring laser beam into two, cross linearly polarize them using a half-wave plate, 

and send them through separate AOMs. A double pass configuration on one of the AOMs 

allows for a greater range of frequency tuning while keeping the beam position stable. 

The two beams are recombined before being sent to the sample. A quarter-wave plate 

immediately before the objective changes the polarization of the two beams into the 

desired circular polarizations. 

 The experiments discussed in this paper all involve resonant optical excitation of 

the NV center and so must be performed at low temperatures. The diamond sample is 
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mounted inside of a coldfinger, optical, helium flow cryostat (either an open cycle 

(Advanced Research Systems, LT-103) or a closed cycle (Montana Instruments, 

Cryostation)) and kept at approximately 7 K. An objective with a particularly long 

working distance (3.4 mm) and an adjustable cover slip correction collar allows optical 

access through a window in the cryostat. 

 We used a type IIa diamond sample with a density of NV center impurities in the 

parts-per-billion range. In order to improve our fluorescence collection efficiency, we 

used a focused ion beam to mill a solid immersion lens (SIL) directly onto the surface of 

the diamond [73], [74]. Diamond has a high index of refraction (2.42), lowering the 

effective NA of our objective. The SIL geometry ensures that any light rays originating 

from an emitter located at the center of the SIL will leave the diamond normal to the 

surface, eliminating refraction. We made multiple SILs and looked for one containing an 

NV center with good properties at a location near the center of the SIL. Fig. 3.2 shows a 

scanning electron microscope image of the SIL. An additional advantage of using a SIL 

is that this relatively large feature (11 m diameter) makes the position of a particular NV 

center easy to relocate. This made it possible to perform nearly all the experiments 

described in this dissertation on the same NV center. 

 

 
Figure 3.2. (a) SEM image of the SIL. (b) Profile of the SIL shape. 
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To apply MW radiation to the NV center we use a thin (approximately 20 m 

diameter) bonding wire, stretched over the sample, as an antenna. The signal from a 

radio-frequency signal generator (Agilent, 8648C) is modulated for the desired pulse 

sequence and amplified (typically to a power between approximately 20 mW and 4 W) 

before being sent to the antenna. For experiments where two MW fields are needed, we 

use two phase-locked signal generators and combine the two signals using a frequency 

splitter. 

 A small permanent magnet mounted close to the sample but outside of the 

cryostat produces a ground state Zeeman splitting. A pulse generator (Spin Core, Pulse 

Blaster ESR-PRO-400) creates the pulse sequence for a given experiment, synchronizing 

the AOM’s, MW excitation, and photon counting. A separate pulse generator (Tektronix, 

AFG 3052C) was used for driving the red laser AOM’s in a few of the STIRAP 

experiments where more controllable pulse shapes were needed. 

 

3.2. Preliminary Low-Temperature Investigations 

 We now describe a few basic NV center experiments and the experimental 

methods involved. Confocal imaging scans locate single NV centers. PLE measurements 

show the electronic excited state structure and provide a means of spin detection. ODMR 

measures the ground state Zeeman splitting and reveals hyperfine coupling. And Rabi 

oscillation experiments demonstrate MW spin control. 
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3.2.1. Confocal Imaging of Single NV Centers 

 The confocal microscope setup provides a spatial resolution in the x, y, and z 

dimensions on the order of 1m. A scan, in the x-y plane, of the focal spot from a 532 nm 

laser, combined with the collection and measurement of any emitted fluorescence, 

produces a two-dimensional image of NV centers in the focal plane of the objective. An 

example of such a scan is shown in Fig. 3.3. 

 The faint, circular feature in this image is the SIL which is being scanned over. 

The bright spots are individual NV centers. The variations in brightness are due to the 

fact that different NV centers are closer to the focal plane. Additionally there are four 

possible spatial orientations for the NV center, defined by the direction of the center’s 

dipole with respect to the crystal lattice [75]. These occur randomly and affect how 

efficiently the center will absorb the incoming radiation and as well as how much of its 

fluorescence will be emitted in the direction of the microscope. The NV center indicated 

by the arrow is the one that was used in most of our experiments. 

 

             
Figure 3.3. 2D fluorescence image. Fluorescence was collected under 532 nm 

illumination. The bright spots are NV centers. The arrow indicates the NV center that 

was used. 

≈ 1m

NV center 

used for 

experiments 

Edge of SIL
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3.2.2. Photoluminescence Excitation 

 The zero phonon line of the NV center is at 637 nm. Scanning a laser over this 

wavelength while collecting phonon-sideband fluorescence reveals the various optical 

transitions within the NV center spin state structure [60]. The excitation spectrum for the 

NV center that we used is shown in Fig. 3.4a as is the pulse sequence that produced this 

measurement. This spectrum is strain dependent and is different for different NV centers. 

Each peak in the spectrum is labeled by the transition which it represents. In order to 

access the transitions that couple to ms = ±1 as well those that couple to ms = 0, we apply 

continuous MW excitation that is resonant to the transition between these ground states. 

The optical transitions of interest for our experiments are ms = 0 → Ey, and ms = ±1 → A2. 

 

 
Figure 3.4. (a) PLE spectrum of a single NV center. The frequency of a 632 nm laser is 

scanned while the sideband fluorescence is collected.  Each peak is labeled by the 

transition it represents. (inset) Pulse sequence used for PLE measurements. (b) PLE scan 

of the ms = 0 → Ey transition indicating a broadened linewidth, due to spectral diffusion, 

of around 600 MHz. 
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Continued, resonant excitation can cause optical pumping and ionization. Periodic 

illumination with a green laser, as discussed in the previous chapter, reverses ionization 

and reinitializes the spin state. However, this also produces spectral diffusion. The scans 

shown in Fig. 3.4 effectively sum over this diffusion, resulting in linewidths that appear 

quite broad. The intrinsic linewidth for the NV center is approximately 13 MHz [76]. The 

PLE peak corresponding to the transition to Ey, shown in Fig. 3.4b, indicates a linewidth, 

due to spectral diffusion, of around 600 MHz. 

 We can investigate the ionization and pumping effects of resonant excitation by 

limiting our detection time to a small window and scanning it in time relative to the red 

excitation pulse. The results of this measurement are shown in Fig. 3.5 for two different 

optical powers. Here the laser is tuned to the ms = 0 → Ey transition. The number of 

counts detected jumps up when the detection window begins to overlap with the resonant 

 

 
Figure 3.5. Decay of the fluorescence signal under continued (a) high power and (b) low 

power resonant excitation due to optical pumping and photoionization. This limits the 

detection time for an efficient PLE spin measurement. 
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excitation, and then begins to decay as ionization and pumping reduce the fluorescence. 

The rate of this decay is faster for higher optical power. These processes have been 

studied in much more detail by others [67], [68, Supplementary Information]. By tuning 

the laser onto a transition involving the ground state spin whose population we would like 

to measure, and by limiting the detection window to the beginning of the decay curves 

shown in Fig. 3.5, PLE becomes a good method for spin measurement. We now apply 

this measurement technique in demonstrations of ODMR and Rabi oscillations. 

 

3.2.3. Optically Detected Magnetic Resonance 

 The pulse sequence we use to perform an ODMR measurement is shown in Fig. 

3.6a. First, a green pulse initializes the spin state into ms = 0. Next is a MW pulse. This is 

followed by a PLE measurement of the ms = 0 state population using the red laser tuned 

to the ms = 0 → Ey transition. The MW frequency is scanned over the 2.88 GHz ground 

state splitting. When the MWs are on resonance with this transition, some of the 

population is driven up into the ms = ±1 state where it remains due to the long spin state 

lifetime. The result is a decrease in the resonant excitation leading to a decrease in the 

emitted fluorescence. The plot in Fig. 3.6b shows the fluorescence as a function of MW 

frequency. We calibrated the duration of the MW pulse to perform a -rotation on the 

spin state (see the next section on Rabi oscillations) so as to maximize the depth of the 

ODMR dip. 
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Figure 3.6. ODMR measurement. (a) Pulse sequence. (b) Fluorescence as a function of 

MW frequency. The single dip corresponds to the ms=0 → ms=±1 ground state transition 

at 2.877 GHz (at low temperature). 

 

 

An external magnetic field can lift the degeneracy between the ms = ±1 states. 

Fig. 3.7 shows the ODMR spectrum in the presence of a magnetic field with a strength of 

a couple millitesla. Two dips are now visible, one corresponding to the ms = 0 → ms = +1 

transition and the other to the ms = 0 → ms = -1 transition. The locations of these two dips 

indicate a Zeeman splitting between the ±1 levels of 155 MHz.  

 The magnitude of the Zeeman splitting depends on both the strength of the 

magnetic field and on its orientation with respect to the NV center dipole axis [57]. We 

hold the distance between the permanent magnet and the diamond sample constant while 

adjusting the magnet’s orientation until the Zeeman splitting is maximized, indicating 

that the B-field is roughly aligned with the dipole axis. 
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Figure 3.7. ODMR measurement with an external B-field. The left dip corresponds to the 

ms=0 → ms=-1 transition, and the right dip corresponds to the ms=0 → ms=+1 transition. 

This indicates a Zeeman splitting between ms=-1 and ms=+1 of 155 MHz. 

 

 

The two ground state transitions have polarization selection rules. Since the MW 

polarization is fixed by the orientation of the antenna, the coupling to the MWs is not the 

same for both transitions [77]. The MW pulse we used was a -pulse for one transition 

but not the other, leading to the asymmetry apparent in the depths of the two dips. 

 The width of the ODMR dip is limited by dephasing to about 1 MHz. (See the 

Ramsey fringe measurements presented in Chapter V and the discussion of dephasing in 

Chapter VI.) Additionally the transition exhibits a significant power broadening. When 

the MW power is decreased, and consequently the -pulse time length is increased, the 

hyperfine structure described in Chapter II is revealed. Fig. 3.8 shows the ODMR 

spectrum for one of the ground state transitions with high and low MW power. In the low 

power case three dips are now visible, split by 2.2 MHz, corresponding to the three  
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Figure 3.8. ODMR measurement of the ms=0 → ms=-1 transition with (a) high MW 

power (-pulse = 120 ns) and (b) low MW power (-pulse = 790 ns). The three dips in 

(b) correspond to the three hyperfine states, due to coupling with the 
14

N nuclear spin, 

and exhibit a splitting of 2.2 MHz. 

 

 

14
N nuclear spin states. This indicates the possibility of performing nuclear spin 

dependent electron spin flips [51]. 

 

3.2.4. Rabi Oscillations 

 MW radiation resonant with a ground state spin transition will drive oscillations 

in the state population. We measure these Rabi oscillations using the same pulse 

sequence we used for ODMR (Fig. 3.6a), but now the MW pulse duration is varied rather 

than the MW frequency. Fig. 3.9a displays the results when the PLE measures the 

population in the ms = 0 state. Alternatively we can measure the population in the          

ms = ±1 states by performing PLE on the transition involving the A2 excited state. (For 

the Rabi oscillation measurements the MW field was tuned onto the ms = 0 → ms = +1 
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Figure 3.9. Rabi oscillations. The fluorescence from a PLE measurement following a MW 

pulse is plotted as a function of the MW pulse length. PLE is measured from the ms=0 → 

Ey,(a) and ms=+1 → A2 (b) transitions as indicated in the energy level diagram in (c). 

Solid lines are damped Sine waves fit to the data. (d) Rabi frequency as a function of the 

square root of the MW power. The expected linear relation is observed. The MW power 

refers to the power of the RF signal that is sent to the antenna. 
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power. In Fig. 3.9d we plot the measured Rabi frequency for different MW powers 

confirming this dependence. 

 The long lifetime of these ground state spins makes efficient -pulses possible. 

The Rabi oscillations in Fig. 3.9 indicate a-pulse length of about 80 ns corresponding to 

complete population transfer from ms = 0 to ms = +1. The fluorescence fails to decrease 

completely to zero here, primarily due to imperfect spin initialization from the green 

excitation (typically no better than about 90% [43, Supplementary Information]) as well 

as slightly unequal contributions from different hyperfine states. This latter effect is 

minimized even more at higher Rabi frequencies. 

 The effects of the hyperfine splittings are made more evident when the Rabi 

oscillations are observed on a longer time scale (Fig. 3.10). A beating is now apparent in 

the signal. The reason for this is that while the MW field is tuned onto resonance with the 

hyperfine state mn = 0, it is slightly off resonance from the other two hyperfine states. 

These two transitions have population oscillations with a slightly different Rabi 

frequency which are combined with the resonant Rabi frequency. On top of the data in 

Fig. 2.10 we plot the sum of three Sine waves with frequencies given by 𝛺, √𝛺 2 + (±2.2𝑀𝐻𝑧)2 , and with amplitudes given by 𝐴, 𝐴 ∗ 𝛺 2𝛺 2+(±2.2𝑀𝐻𝑧)2, where 𝛺 and  𝐴 are the Rabi frequency and amplitude for the contribution from the mn = 0 hyperfine 

state, and 2.2 MHz is the hyperfine splitting. The Rabi oscillations can also be affected by 

coupling between the NV center and other spins in its environment [48]. 
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Figure 3.10. Rabi oscillations. The beating is due to coupling between the NV center 

electron spin and the 
14

N nuclear spin. The detuning of the MW field is different for each 

hyperfine state leading to different Rabi frequencies. The measurement sums over the 

contributions from all three hyperfine states and exhibits a beating. The solid line is a fit 

described in the main text. 

 

 

The Rabi oscillations shown so far include contributions from all three hyperfine 

states. As in the ODMR measurement, when the MW power is low enough it will only 

drive one hyperfine state at a time. This case is shown in Fig. 3.11. Here the population 

oscillates only when the nuclear spin state is 0. The mn = ±1 hyperfine states are 

unaffected by the MW pulse and contribute a constant background. In this measurement, 

therefore, a fluorescence drop of at most one-third is expected. These are nuclear spin 

dependent Rabi oscillations. A -pulse now represents an electron spin flip conditional 

on a nuclear spin state. 
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Figure 3.11. Nuclear spin dependent Rabi oscillations. A low MW power only drives one 

hyperfine state at a time. Solid line is a damped Sine wave fit to the data. 

 

 

3.2.5. Conclusion 

 These PLE, ODMR, and Rabi oscillation experiments have demonstrated optical 

initialization, optical readout, and MW control of NV center spin states. In the rest of this 

dissertation we will use these abilities to investigate other phenomena such as CPT and 

dressed states. We will also present methods of replacing the MW control with optical 

control. 
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CHAPTER IV 

COHERENT POPULATION TRAPPING IN THE NV CENTER 

 

This chapter contains some material that was co-authored with Khodadad N. 

Dinyari and Hailin Wang in reference [70]. The experiments described here were 

performed by the author. 

CPT measurements are the subject of this chapter. As we will see, these 

measurements can act as a very sensitive probe of the energy-level structure of the NV 

center. While ODMR measurements of the ground spin-state structure require MW 

excitation, CPT provides an optical alternative. We will find this to be useful when 

working in the context of all-optical control or when we wish to use the MW driven 

transitions for other purposes.  

After a brief review of the theory behind CPT, we describe how we realize it in 

the NV center. The features of the two-photon Raman-resonant condition along with the 

concept of the dark state will be relevant to the optical control techniques presented in the 

following chapter. We also show that the CPT is sensitive to the hyperfine interaction and 

can therefore be nuclear-spin dependent. Finally we present a CPT measurement of 

dynamic Stark splitting. This introduces us to the idea of dressed states which will be 

developed further in Chapter VI. 
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4.1. Coherent Population Trapping: Theory 

 The three energy-level system shown in Fig. 4.1 is referred to as a “-

configuration”. Two lower levels couple to the same upper level via two radiation fields. 

When  is zero, the two fields are said to be on Raman resonance, i.e. the detuning 

between the fields is equal to the splitting between the two lower energy levels. If we also 

set the dipole detuning, Δ to zero, the Hamiltonian for the atom-field system (after 

making the rotating wave approximation and using the rotating frame) is given by 𝐻 = ℏ2 (Ω𝑎|𝑎⟩⟨𝑐| +Ω𝑏|𝑏⟩⟨𝑐|) + 𝐻. 𝐶.  An eigenstate of this Hamiltonian with an 

eigenvalue of 0 is |𝑑⟩ = 1√Ω𝑎2+Ω𝑏2 (Ω𝑏|𝑎⟩ − Ω𝑎|𝑏⟩). This is referred to as a dark state. It 

is a superposition of the two ground states and is completely uncoupled from the excited 

state [27], [78]. What has happened is that destructive quantum interference between the 

two transitions has cancelled them out. If the system is in the state |𝑑⟩, the excited state 

will never be populated and the system will not emit fluorescence via spontaneous 

emission from the excited state; hence the name “dark” state. If the system does not begin 

in the dark state, the combination of optical excitation and spontaneous emission can 

pump it into the dark state. The result of all this is that the amount of fluorescence 

emitted by this system will depend on whether the Raman resonance condition for the 

two fields is met.  
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Figure 4.1. Three-level -configuration. The two transitions are driven by two fields with 

Rabi frequencies of a and b and with an overall dipole detuning of Δ and a Raman 

detuning of 𝛿. 

 

 

 

 

4.2. -Type Configuration in the NV Center 

 To realize CPT it is necessary to have a -type energy level configuration. 

Electromagnetically induced transparency was first observed in diamond NV centers 

using ground states and MW driven transitions [79]. The first optical demonstrations of 

CPT used a -configuration involving both ground and excited states [66], [80], [81]. 

The ground spin states ms = 0 and ms = ±1 formed the two lower levels. Under normal 

conditions, due to spin conservation, none of the NV excited states will couple to both of 

these ground states. For this reason, these studies relied on either a very strong external 

magnetic field or a high level of crystal strain to cause mixing between excited states 

with different spin. A different -configuration can be formed at low magnetic field and 

low strain using the ground ms = ±1 states as the two lower levels. CPT was recently 

b

D 
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demonstrated using this configuration [68], and our own CPT measurements used a 

similar procedure [70]. 

 There exists an excited state, referred to as A2, that can couple to both the ms = +1 

and ms = -1 ground states and so can serve as the top level in the -configuration (see 

Fig. 4.2a). At zero strain, A2 has the form |𝐴2⟩ = 1√2 (|𝐸−⟩|+1⟩ + |𝐸+⟩|−1⟩) where |±1⟩ 
are the spin states with ms = ±1, and |𝐸±⟩ are orbital states with orbital angular 

momentum projections of ±1 along the NV axis [62]. It will decay radiatively, with equal 

probability, into the ms = +1 and ms = -1 ground states, which have zero orbital angular 

momentum projection, i.e. |𝐸0⟩|+1⟩ and |𝐸0⟩|−1⟩ where |𝐸0⟩ is the orbital state with an 

orbital angular momentum projection of 0. Optical transitions do not change the spin  

 

 
Figure 4.2. (a)-configuration in the NV center. The A2 excited state couples to the ms=-

1 and ms=+1 ground states via + and - polarized optical fields respectively. From 

here on we omit the orbital angular momentum component (|𝐸0⟩) from the labeling of the 

ground state levels. (b)PLE spectra of the two A2 transitions indicating a Zeeman 

splitting of about 500 MHz. Each transition was selected by using a CW MW field tuned 

to the appropriate ground state transition. The solid lines are Lorentzian fits to the data.  
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state. In order to conserve the total angular momentum (angular momentum of the 

photons plus the orbital angular momentum of the electrons), ground state ms = +1 

couples to A2 via - polarized light, and ground state ms = -1 couples to A2 via + 

polarized light. For large degrees of crystal strain, these selection rules no longer hold, 

but for low levels they are still approximately correct [82] and have been used for 

demonstrations of spin-photon entanglement [62]. The excited state level A1 also couples 

to both ground states, but it has a significant probability of decaying non-radiatively into 

the ms = 0 ground state. A2 does this as well but at a much slower rate [68] making this 

-configuration a nearly closed system. The lifetimes of the ground spin states are long 

enough that we can ignore the possibility of decaying out of them. 

The polarization selection rules, together with a Zeeman splitting produced by an 

external magnetic field, allow the two optical transitions in the -configuration to be 

excited separately. The PLE scans in Fig. 4.2b show these two transitions with a Zeeman 

splitting of about 500 MHz. A smaller splitting was used for the CPT experiments. To 

counteract optical pumping into the ms = 0 state due to the off-resonant green excitation 

used in the PLE measurement, a weak CW MW field was applied, populating the ground 

state whose transition with A2 we wished to measure.  

As discussed in the previous chapter, the peak in the PLE measurement appears 

broad due to averaging over spectral diffusion, while the intrinsic linewidth is much 

sharper. The peaks in Fig. 4.2b overlap significantly, but for each run of the experiment 

the two transitions can in fact be well distinguished spectrally. 
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4.3. Coherent Population Trapping: Experiment 

 For the CPT measurement we use two optical fields of roughly equal power. One 

is held resonant with the transition between ms = +1 and A2 while the other is scanned in 

frequency over the transition between ms = -1 and A2 (Fig. 4.3a). As in the PLE 

measurement, a green pulse reverses optically induced ionization, and a weak MW 

excitation counteracts optical pumping. The results are shown in Fig. 4.3b. Away from 

Raman resonance no dark state is formed and A2 can be populated, resulting in a high 

level of fluorescence. When the detuning between the two optical fields is equal to the 

Zeeman splitting, Raman resonance is achieved and continued excitation pumps the 

system into the dark state leading to a drop in fluorescence. 

 

 
Figure 4.3. (a) Energy-level diagram. Both optical fields have the same power (combined 

power = 1W). One is tuned in frequency while the other is held fixed. A weak CW MW 

field counteracts pumping out of the -configuration due to the off-resonant excitation 

step. (b) CPT measurement. Away from Raman resonance A2 is excited and the 

fluorescence is high. On Raman resonance the system is pumped into the dark state and 

fluorescence is low. As the location of the dip indicates, a Zeeman splitting of about 260 

MHz was used. 
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 Power broadening of the optical transitions leads to a broadening of the CPT 

resonance. A relatively high optical power (about 1 W measured before the objective) 

was used for Fig. 4.3b, resulting in a dip linewidth of about16 MHz. This is much larger 

than the 2.2 MHz hyperfine splitting, so in order to resolve this splitting we must use a 

lower optical power. 

 

4.4. Nuclear Spin Dependent Coherent Population Trapping 

 Since the Zeeman splitting of the ms = ±1 states depends on the 
14

N nuclear spin 

value, the Raman resonance condition and the CPT measurement do as well (see Fig. 

4.4a). To resolve this hyperfine effect, we use a lower optical power (≈ 60 nW). To 

improve the measurement we also replace the CW MW with a MW -pulse (on the       

ms = 0 → ms = +1 transition) which populates the -configuration before the CPT 

measurement begins (see Fig. 4.4b). A strong -pulse (Rabi frequency ≈ 5 MHz) ensures 

that the population is driven into the -configuration regardless of the nuclear spin state. 

The resulting CPT trace is shown in Fig. 4.4c. Three dips are now visible, each 

corresponding to the Raman resonance condition being met for a different pair of 

hyperfine states with equal nuclear spin value. They are separated by 4.4 MHz, twice the 

hyperfine splitting, since, for instance, the mn = +1 hyperfine state of the ms = -1 spin 

state is shifted down by 2.2 MHz while the mn = +1 hyperfine state of the ms = +1 spin 

state is shifted up by 2.2 MHz. 
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Figure 4.4 Nuclear spin dependent CPT. (a) Energy-level diagram indicating the three 

hyperfine Raman resonance conditions.(The quadrapole splitting shown in Fig. 2.2 is left 

out since it is the same for all spin states and therefore irrelevant to CPT.) (b) Pulse 

sequence. (c) CPT measurement using low optical power (combined power = 60 nW) and 

a strong MW -pulse. All three hyperfine states are visible. The solid line is a fit to three 

Lorentzians. (d) Three different CPT traces obtained using low optical power and a weak 

MW -pulse populating the mn = -1 (blue, dashed line), mn = 0 (black, solid line), or mn 

= +1 (red, dotted line) hyperfine state. (A different Zeeman splitting was used in each of 

the CPT measurements shown so far.) 

 

 

The CPT plot represents the sum of many individual CPT measurements and 
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of hyperfine states, it is not met for the other two; and these cases will contribute 

fluorescence.  

To improve the contrast, as well as confirm the hyperfine nature of these 

resonances, we use a weak MW -pulse (≈ 0.8 MHz, small compared with the hyperfine 

splitting) during the initialization step. This can put population into the -configuration 

for only one hyperfine state at a time. In other words it produces a nuclear-spin-

dependent electron spin flip. Now only one CPT dip is observed, and its location depends 

on which hyperfine state was addressed by the MW -pulse in the initialization step (Fig. 

4.4d). The two states not addressed by the MWs never enter into the -configuration and 

remain dark for the entire experiment. 

The contrast of the CPT dip is likely limited by several factors. As discussed 

earlier, population in the A2 state has a small probability of decaying into the ground      

ms = 0 state where it goes dark regardless of whether or not the Raman resonance 

condition is met by the optical fields. This, combined with optically induced ionization 

events, reduces the “high” count level in the CPT trace. Furthermore, on Raman 

resonance the system takes a finite time to pump into the dark state, during which it still 

emits fluorescence. This, plus background due to imperfect initialization and selection 

rules, prevents the CPT dip from reaching zero. 

 

4.5. Dynamic Stark Splitting Measured by Coherent Population Trapping 

 We have shown that CPT in the NV center can be an effective measurement of 

individual nuclear spin states due to its sensitivity to the hyperfine interaction. We now 
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demonstrate that CPT is also responsive to the coherent spin dynamics of this coupled 

electron-nuclear spin system.  

 

4.5.1. Dynamic Stark Splitting Introduction 

 When a field couples to the transition between the levels of a two-level system it 

will drive population oscillations. Looking at it a different way we can treat this as an 

effective splitting of each level (see Fig. 4.5 for the case where the driving field is on 

resonance). This is referred to as dynamic Stark splitting (also Autler-Townes splitting) 

[78], [83]. We can think about this in terms of dressed states. A “dressed” state is an 

eigenstate of a combined atom-field system. The dynamic Stark splitting is just the 

splitting between dressed states, while the effective energy levels are just different 

dressed state components of the bare (non-dressed) spin states. We will discuss dressed 

states in more detail in Chapter VI. 

 

 

 
 

Figure 4.5. Dynamic Stark splitting of a two-level system coupled resonantly to a field 

with Rabi frequency 𝛺𝑑. 
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For a dressing field with a resonant Rabi frequency of d and a detuning of d, the 

split states are shifted by an amount given by 

12 (𝛿𝑑  ± √𝛿𝑑2 + Ω𝑑2 ).                                             (4.1) 

This effect can be observed with an electromagnetically induced transparency 

measurement [84], [85] and, as we shall see, with a CPT measurement. 

 

4.5.2. Measurement of Dynamic Stark Splitting 

We repeat the measurement performed in Fig. 4.4c with all three hyperfine states 

visible, but now with the addition of a new, continuous MW field (on the ground state 

transition that is not addressed by the MW -pulse). This field is present during the 

optical excitation and produces a dynamic Stark splitting of the ground states. 

Fig. 4.6 shows the resulting CPT trace when the continuous MW field is resonant 

with the ground state transition for the mn = 0 hyperfine state. The dynamic Stark 

splitting of this state is visible as a splitting of the central CPT dip. The other two 

hyperfine states exhibit a slight shifting and splitting that is difficult to observe in this 

CPT trace. The magnitude of the dynamic Stark splitting, and therefore the distance 

between the two central CPT dips, is dependent on the power of the continuous MW 

field. CPT traces for three different MW powers are shown in Fig. 4.6 where the Rabi 

frequencies were determined with Rabi oscillation measurements.  
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Figure 4.6. CPT measurement of dynamic Stark splitting for different MW powers 

(vertically offset). A CW MW field is applied to the ground state transition for the mn = 0 

hyperfine state during the CPT measurement. The center CPT dip is split by an amount 

dependent on the strength of this field. Traces are labeled by the experimentally 

determined MW Rabi frequency. Solid lines are a theoretical fit as described in the main 

text. 

 

Fig. 4.7 represents the same measurement, but now the MW power is held 

constant (Rabi frequency ≈ 4/2 MHz) and each CPT trace corresponds to a different 

MW detuning. The splitting and shifting of the hyperfine states depends on this detuning. 

As many as six different CPT dips can now be observed, two for each hyperfine state. 

Plotted on top of the data in Figs. 4.6 and 4.7 is the sum of multiple Lorentzians 

with spectral positions that were calculated using (4.1) along with the experimentally 

determined MW Rabi frequency and the detuning for each hyperfine state. These spectral 

positions show good agreement with the measurements. The depths and linewidths of the 

fitting curves were chosen to fit the data. 
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Figure 4.7.  CPT measurement of dynamic Stark splitting for different MW detunings 

(vertically offset). For the top trace, the MW frequency is 9.9 MHz above the ground state 

transition for the mn = 0 hyperfine state. For each succeeding trace, the frequency is 

shifted down by 2 MHz. Solid lines are a theoretical fit as described in the main text. 

 

 

4.6. Conclusion 

 We have seen that CPT measurements in the NV center not only measure the 

electronic spin states of this system, but are also sensitive to the interaction of these states 

with both nuclear spins and with a coherently coupling radiation field.  

CPT can be a robust form of optical measurement. The Raman resonance 

condition is not affected by spectral fluctuations in either the optical transition or the laser 

that produces the optical fields (assuming of course that the two fields are derived from 

the same laser). This makes processes that rely on this condition attractive for the optical 

control purposes that we pursue in the next chapter.  
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Also the width of the CPT dip is not limited by the intrinsic linewidth of the 

optical transitions but, rather, reflects the coherence between the two ground states, 

which in the NV center can be quite sharp. Consequently we can use CPT as a measure of 

this coherence; and we do exactly this in Chapter VI. (However the CPT dip width is, as 

we shall see, limited by optical power broadening.) 

 The mechanisms behind CPT could also be used to achieve spin control and 

detection with a high degree of spatial resolution which may be useful, for instance, in 

implementing scalable quantum logic gates in chains or clusters of closely spaced NV 

centers [86]. 
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CHAPTER V 

ALL-OPTICAL CONTROL OF THE NV CENTER 

 

This chapter contains some material that was co-authored with Hailin Wang in 

reference [71]. The experiments described here were performed by the author. 

Most demonstrations of spin control in the NV center have relied on MW fields to 

directly drive transitions between the long-lived spin ground states. However this 

manipulation method comes with some disadvantages. To realize full all-optical control 

we need to combine new techniques for optical manipulation with the well-established 

optical state initialization and readout. In this chapter we develop such techniques. 

After a short comparison between MW and optical control, we explore two 

methods of optical control. First we demonstrate decoherence protected, optically driven 

Rabi oscillations (ODROs) by driving a two-photon transition. We show that this control 

can be nuclear spin dependent and then use it to perform a Ramsey fringe measurement. 

Second we implement stimulated Raman adiabatic passage (STIRAP) which represents 

spin control via the coherent evolution of a dark state. We experimentally compare the 

two methods and theoretically analyze the effects of different decoherence processes to 

determine the relative strengths and weaknesses of each method. 

These optical control techniques make possible some applications that are 

important for scalable quantum information processing. At the end of this chapter we 

briefly present preliminary investigations into one such application: subwavelength 

spatial resolution. 
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5.1. MW Control versus Optical Control 

 Experimenters have realized some impressive accomplishments using MW 

control of the spin state of the NV center. Reliance on MW control, however, is subject to 

several limitations. The first is resolution. Both spectral and spatial resolutions are poor 

under MW control. The ground state zero-field and Zeeman splittings are similar for all 

NV centers (assuming they experience the same B-field) making separate NV centers 

difficult to resolve spectrally. The high degree of sensitivity to strain exhibited by the 

excited states means that even closely spaced NV centers can have optical resonances 

that are separated by a few GHz. Furthermore, unlike with MW excitation, it is easy to 

achieve spatially wavelength-limited optical excitation using far-field optics. There are 

schemes for achieving subwavelength resolution which use both optical and MW fields. 

The optical control methods which we present can be extended to accomplish 

subwavelength resolution that is all-optical. 

 A second difficulty of using MW control is that it requires specific on-chip 

infrastructure (e.g. antennas, striplines), which makes sample preparation more complex 

and could prove a hindrance to scalability. If one is already using optical fields for state 

preparation and measurement, as most NV center applications do, it makes sense to put 

state manipulation into this category as well. 

 Finally, many interesting applications and scalability schemes require either spin-

photon or spin-phonon coupling using optical cavities or nanomechanical oscillators 

respectively. All-optical control would obviously fit nicely into cavity QED scenarios 

[87]. As for spin-phonon coupling [88], it has already been mentioned that the sensitivity 

to lattice deformations is much stronger for the excited states than for the ground states. 
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Unlike the MW transitions, the optical transitions couple to these excited states; and so 

the opportunity is there for phonon-assisted optical transitions which would mean 

phonon-assisted spin transitions. 

 A primary challenge to the use of optical control is the rapid decoherence of these 

transitions due to radiative decay. The first demonstrations of optical control in NV 

centers relied on resonant optical excitation to drive Rabi oscillations between a ground 

and an excited state [67]. The results were limited by a short pure dephasing time (about 

10 ns). The lifetime of the excited state is also short (about 11 ns). The optical control 

methods we use depend on a Raman two-photon resonance which allows for spin control 

without ever populating the unstable excited state, potentially yielding much longer 

coherence times. A similar all-optical control scheme has recently been demonstrated that 

relied on an excited-state spin anticrossing [89]. 

 

5.2. Optically Driven Rabi Oscillations with a Two-Photon Transition 

 The first optical control method we examine is the driving of ODROs between 

ground spin states via a two-photon transition in a -configuration [90]. First we look at 

the theory and then the experiments. After that we show that the control is nuclear spin 

dependent. Lastly we demonstrate the viability of this control method for other 

applications by using it to perform a Ramsey fringe measurement. 
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5.2.1. Two-Photon ODROs: Theory 

 The Hamiltonian for the three-level -configuration described in Chapter IV (Fig. 

4.1 with the states |𝑎⟩, |𝑏⟩, and |𝑐⟩ replaced with ms = -1, ms = +1, and A2 respectively) is 

given by 

𝐻 = ( 
 Δ − 𝛿2 0 Ω−20 Δ + 𝛿2 Ω+2Ω−2 Ω+2 0 ) 

 
                                              (5.1) 

where we have taken the rotating wave approximation and used the rotating frame. D is 

the average dipole detuning, 𝛿 is the detuning from Raman resonance, and Ω+ and Ω− are 

the Rabi frequencies associated with each field. For 𝛿 = 0, and |Δ| ≫ Ω+, Ω− we can 

adiabatically eliminate the excited state and write an effective Hamiltonian for just the 

two lower states 

𝐻𝑒𝑓𝑓 = − 14Δ( Ω−2 Ω+Ω−Ω+Ω− Ω+2 ).                                        (5.2) 

Heff describes a two-level system undergoing Rabi oscillations with a Rabi frequency 

given by Ω𝑅 = Ω+Ω−/2 |Δ|.                                                   (5.3) 

This means that when the two fields are tuned to Raman resonance, and the overall dipole 

detuning is large enough, the system behaves like a two-level system being driven by a 

single field on resonance [91].  
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5.2.2. Two-Photon ODROs: Experiments 

 To demonstrate these Rabi oscillations in the NV center we employ the same -

configuration that was used in the preceding chapter to measure CPT. Fig. 5.1 shows the 

energy level diagram and the pulse sequence that we use to carry out this measurement. 

During the initialization step a green pulse first pumps the system into the ms = 0 

ground state. This is followed by a strong MW -pulse which rotates the population into 

the ms = -1 level (regardless of the nuclear spin state). In the manipulation step two 

simultaneous, square-shaped, optical pulses are applied. These have nearly equal peak 

intensity (Ω+= Ω−), opposite circular polarization, and an extinction ration near 10:1; and 

they are tuned to be on Raman resonance (𝛿 = 0) but away from the A2 transition dipole 

resonance (D ≠ 0). A two-step PLE measurement provides the spin detection. First, a MW 

-pulse drives the population from the spin state we wish to measure into the ms = 0  

 

 
 

Figure 5.1. (a) Energy level diagram including the hyperfine splitting, optical and MW 

excitations, and the relevant excited states. (b) Pulse sequence used for two-photon 

ODROs. 
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state. Second, an additional optical field resonantly drives the transition between ms = 0 

and the Ey excited state while, as usual, the phonon sideband fluorescence is detected. 

The results are shown in Fig. 5.2a where the resulting populations in both ms = -1 

and ms = +1 are measured. As the widths of the optical pulses in the manipulation step 

are increased, the electron spin population oscillates between ms = -1 and ms = +1 just as 

if this transition were being driven directly. These Rabi oscillations feature a decay time 

of 1.3 s, much longer than the excited state lifetime of 11.5 ns. We will discuss the 

various decay mechanisms in detail later. 

For this data, an overall dipole detuning (Δ) of -1.5 GHz (blue detuned) was used. 

We perform the same measurement for various dipole detunings and optical field powers 

and plot the results in Fig. 5.2b. The oscillation period is seen to be proportional to | Δ |, 

 

 
Figure 5.2 (a) ODROs of an electron spin. The fluorescence measures the population in 

the ms = ±1 states. The solid lines are a numerical fit to a damped oscillations with an 

added slope due to optical pumping. (b) Period of the ODROs as a function of detuning 

for three different optical intensities. Inset: effective Rabi frequency as a function of the 

intensity for three different detunings. 
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while the effective Rabi frequency is proportional to √𝐼+𝐼−, where 𝐼+ and 𝐼− are the peak 

intensities of the two optical pulses. These are just the relations we would expect from 

(5.3). 

 

5.2.3. Nuclear Spin Dependence of the Two-Photon ODROs 

 One of the most fruitful features of MW based spin control in the NV center has 

been the ability to couple the electronic spin state with nearby nuclear spin states [51], 

[56], [92], [93]. If optical control is to be a genuine alternative to MW control, we need it 

to be capable of displaying the same nuclear spin dependence. 

It turns out that the Rabi oscillations shown in Fig. 5.2 do in fact depend on the 

14
N spin state. For the data shown there, the detuning between the two optical fields, 𝛿 

was set so that they would be on Raman resonance for the mn = 0 hyperfine states. Fig. 

5.3 includes plots of the same measurement for two additional detunings, one with the 

fields on Raman resonance for the mn = +1 hyperfine states and the other with the Raman 

detuning set in between hyperfine states. Rabi oscillations are observed only when the 

mn-dependent Raman resonance condition is satisfied and disappear away from that 

resonance. This indicates that only one hyperfine state is being driven at a time. As we 

would expect, as long as the two-photon ODRO Rabi frequency, Ω𝑅, is small compared 

with the hyperfine splitting, these ODROs are nuclear spin selective. 

The nuclear spin orientation on a given experimental run is random and so these 

measurements sum over all three orientations. The population will therefore oscillate only 

1/3 of the time, meaning that, for ODROs with perfect fidelity, the observed oscillations  
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Figure 5.3. Nuclear spin selective ODROs with detunings indicated in the CPT trace 

shown in (a). (b)-(d) The populations in the ms = -1 (top traces) and ms = +1 (bottom 

traces) states as a function of optical pulse width. Solid lines in (c) and (d) are numerical 

fits to damped oscillations. 
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It is worth noting that the data shown in Fig. 5.3b, where ODROs are not driven, 

also gives a nice measurement of excitation into the A2 state. Any such excitation would 

lead to optical pumping, as A2 can decay into any of the ground states (recall that decay 
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lengths. The slow decay rate that we observe indicates that this effect plays only a minor 

role in the decay of the Rabi oscillations. 

 

5.2.4. Ramsey Fringes Measured using Two-Photon ODROs 

 We now use our optical control to perform a Ramsey fringe measurement. This 

type of measurement is sensitive to the undriven spin dynamics of the system. The 

procedure is relatively simple. A superposition of two states is created using a /2-pulse 

and then allowed to evolve freely for a time  during which one state can pick up a phase 

relative to the other. After this delay, a second /2-rotation converts this phase difference 

into a population difference which can then be measured.  

To make the signal more apparent the control field is detuned from exact 

resonance (i.e. in this case the two optical fields are slightly detuned from Raman 

resonance, 𝛿 ≠ 0). With respect to this field, then, the relative phase during the free 

evolution time will oscillate at a frequency given by the detuning. This shows up as a 

population oscillation after the second /2-rotation is performed.  

The spin environment of the NV center causes dephasing. Nearby atoms with 

nonzero nuclear spin, typically 
13

C, together produce a net magnetic field. The NV 

electron spin can precess around this weak bath field. This results in an additional phase 

difference being picked up during the free evolution part of the Ramsey measurement. 

Since the bath field exhibits random fluctuations, this phase will be different for each 

measurement causing the Ramsey signal, which sums over many measurements, to 

decay. The rate of this decay thus provides a good measure of the dephasing rate. 
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For this measurement we use the same sequence we used to measure ODROs; the 

spin state is initialized into ms = -1 and the final population in ms = +1 is detected. In 

between we now implement the Ramsey pulse sequence where the /2-pulses are 

optically driven and are calibrated from ODRO measurements. The two optical fields are 

given a detuning from Raman resonance, , of 1.4 MHz for the mn = 0 hyperfine states. 

For this measurement we used a smaller dipole detuning (Δ = 1 GHz) and higher optical 

powers so that the transition can still be driven given this value of . The optical spin 

control will also no longer be completely nuclear spin selective. (The optical pulse may 

not produce a true /2-rotation for all three hyperfine states. However, while the Ramsey 

measurement is most efficient when /2-rotations are used, it will still work with non-

/2-rotations so long as at least some rotation takes place. The phase of the resulting 

oscillations will be affected by this.)  

 The resulting Ramsey fringes are shown in Fig. 5.4b where a nuclear-spin-

selective MW -pulse was used in the initialization step to populate only the mn = 0 

hyperfine state of the ms = 0 level. Thus only this hyperfine state contributes to the 

Ramsey signal, and we observe oscillations at the frequency of the Raman detuning for 

this hyperfine state (1.4 MHz). In Figs. 5.4c and 5.4d we initialize into the mn = -1 and 

+1 states respectively. The oscillations in these measurements match the Raman 

detunings for these hyperfine states (2.2 MHz + 1.4 MHz and 2.2 MHz – 1.4 MHz 

respectively). For Fig. 5.4e a non-nuclear-spin-selective MW -pulse initialized all three 

hyperfine states. The Ramsey fringes now display a more complicated pattern with each 

hyperfine state contributing to the signal. 
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Figure 5.4. Ramsey fringe measurement using ODROs. (a) Pulse sequence for the spin 

manipulation step. (b)-(e) Free induction decays of an electron spin with R/2 = 2.5 

MHz and D = -1 GHz. For (b), (c), and (d), nuclear-spin-selective MW -pulses were 

used to prepare the electron spin in the ms = -1 and mn = 0, -1, and +1 hyperfine states 

respectively so that only these hyperfine states contribute to the signal. For (e), the 

electron spin was prepared in the ms = -1 state with random nuclear spin orientation. 

Solid lines are numerical fits as discussed in the main text. 
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case are added together and plotted, with an overall scaling factor, onto the data in Fig. 

5.4e. These fits indicate a dephasing time, 𝑇2∗, of approximately 1 s. This is in 

agreement with other Ramsey fringe measurements performed on this same NV center 

using MW driven, rather than optically driven, /2-rotations. We have illustrated the 

viability of using this two-photon ODRO spin control as a substitute for MW spin 

control. 

 

5.3. Stimulated Raman Adiabatic Passage 

 A second method of optical spin control is STIRAP. Again we begin with a 

theoretical description of the process followed by the experimental realization. We 

designed STIRAP experiments that also include the two-photon ODROs that were just 

described. This will be helpful as we compare these two control techniques. 

 

5.3.1. Stimulated Raman Adiabatic Passage: Theory 

 Recall the dark state discussed in the previous chapter with respect to CPT. 

|d⟩ = 1√Ω+2+Ω−2 ( Ω+−Ω−0 )                                               (5.4) 

This is an eigenstate of H, when Raman resonance is met ((5.1) with  = 0), with an 

eigenvalue of 0. This dark state is decoupled from the excited state and has a form that 

depends on the ratio of the two optical field strengths. By varying this ratio, the dark state 

can be tuned. If this is done slowly enough the spin state will adiabatically follow the 

dark state. By initializing the system into the dark state and then adjusting the amplitudes 

of the two optical fields adiabatically, population can be transferred between the two 
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lower levels of the -configuration with the system remaining in the dark state the entire 

time. In order to satisfy the adiabatic requirement, the rate of the transfer needs to be slow 

compared with Ω𝑅 [94]. We therefore expect STIRAP to be slower than the ODROs. 

 

5.3.2. Stimulated Raman Adiabatic Passage: Experiments 

 To perform and measure STIRAP we use a similar pulse sequence to that used for 

ODROs. One again the electron spin is initialized into the ms = -1 ground state; and at the 

end, the population in the ms = +1 state is measured. Two Raman resonant, dipole 

detuned optical pulses are used in the manipulation step as before, but now their temporal 

line shapes are more complex and the time delay between the two pulses is varied. The 

shapes of the two pulses are shown in Fig. 5.5a. The trailing edge of the Ω+ pulse and the 

rising edge of the Ω− pulse are characterized by a time, trise. The rising edge of the Ω+ 

pulse and the trailing edge of the Ω− pulse are sharp and are separated by a time, T. 

 For different values of T, different parts of the two pulses overlap and different 

amounts of population are transferred from ms = -1 to ms = +1. There are two different 

regimes. When the sloping portions of the two pulses overlap, STIRAP can take place. 

The system begins in state ms = -1, so when Ω+turns on it is already in the dark state. As Ω+slowly ramps down and Ω− slowly ramps up, the dark state rotates and is ultimately 

left in ms = +1. When the peak amplitudes overlap (and the sloping edges do not) the 

experiment is the same as that used to measure ODROs. 
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Figure 5.5. STIRAP and ODROs. (a) The temporal line shapes of the two Raman 

resonant optical pulses used during the spin manipulation step. The final population in 

state ms = +1 is measured as a function of delay, T, between the two pulses. The regimes 

where STIRAP and ODROs take place are indicated. (b)-(e) Left column: experimental 

results obtained with different trise, as shown in the figure. Solid lines are guides to the 

eye. Right column: theoretical calculations using the parameters of the experiments in 

the left column. These calculations are discussed in detail in the main text. 

6 5 4 3 2 1 0

0.2

0.3

0.2

0.3

0.2

0.3

0.2

0.3

 

 

 

 

 

 

 

 

 

 

 

6 5 4 3 2 1 0
 

 

 

 

 

 

 

 

 

 T

1.5s trise

+ -
Rabi 

Oscillations

trise ≈ 
.02s

T (s)

F
lu

o
re

sc
e

n
ce

 (
N

o
rm

a
li

ze
d

)

trise ≈ 
0.4s

trise ≈
0.7s

trise ≈ 
1.2s

T (s)

(b)

(c)

(d)

(e)

F
lu

o
re

sce
n

ce
 (a

.u
.)

(a)

+

- +

STIRAP-



  59 

Fig. 5.5b shows the measurement results. The first half of the plot represents 

population transfer via STIRAP. The smoothly increasing edge corresponds to an 

improving efficiency of the overlap. The second half corresponds to the two-photon 

ODROs. The backwards decay of these oscillations is because moving to the right in this 

part of the plot represents a decreasing optical pulse width. The dipole detuning of the 

optical fields means that when the pulses do not overlap (the beginning and end of the 

plot) there should be no excitation or transfer, although the slight difference in height 

between these two parts of the plot indicates that a very small degree of pumping does 

take place. A larger dipole detuning would minimize this even further. 

 STIRAP only happens when the dark state is evolved adiabatically. To 

demonstrate this, we carry out the same measurement for different values of trise. This is 

shown in Fig. 5.5b-e. As trise is decreased we can see the adiabatic condition breaking 

down and the STIRAP being replaced with ODROs. This confirms that STIRAP can only 

occur on a time scale longer than the Rabi period. 

 Plotted next to the experimental data in Fig. 5.5b-e are the results of a theoretical 

simulation of this experiment. There is good agreement between the data and the model. 

We now describe this model in detail and then use it to look at the effects of different 

decoherence mechanisms. 

 

5.4. Theoretical Model 

 To analyze the results of our ODRO and STIRAP experiments, especially the 

effects of various broadening mechanisms, we perform a simulation using the model 

three-level system that we have been describing so far [27]. We include only one excited 
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state level. Other excited states exist which couple to the ground state, but the state we 

are concerned with, A2, is the highest in energy. Since we use optical fields that are blue-

detuned, and the nearest excited state, A1, is about 3 GHz lower in energy, contributions 

from this and other states will be negligible. 

 We numerically solve the Lindblad form master equation 

𝜕𝜌𝜕𝑡 = −𝑖[𝐻, 𝜌] + D(𝜌)                                                     (5.5) 

with H defined in (5.1) and with 

D(𝜌) = ( Γ𝜌𝑒𝑒 −𝛾𝑠𝜌−+ −𝛾𝜌−𝑒−𝛾𝑠𝜌+− Γ𝜌𝑒𝑒 −𝛾𝜌+𝑒−𝛾𝜌𝑒− −𝛾𝜌𝑒+ −2Γ𝜌𝑒𝑒).                              (5.6) 

where Γ is the excited state population decay rate, 𝛾 is the optical dipole coherence decay 

rate, and s is the spin coherence decay rate. We set Γ/2𝜋 = 𝛾/2𝜋 = 7 MHz, and 𝛾𝑠/2𝜋 = 1/(2𝜋 ∗ 𝑇2)  = 0.8 kHz. This model ignores decay out of the -system which is a 

reasonable approximation [68]. 

 

5.4.1. Model of Two-Photon ODROs 

 To model the Rabi oscillations shown in Fig. 5.2 we set Δ/2𝜋 = -1.5 GHz,     𝛿/2𝜋  = 0, and Ω+/2𝜋  = Ω−/2𝜋 = 46 MHz (as inferred from Ω𝑅). In Fig. 5.6a the final 

population in level ms = +1, (𝜌++), is plotted as a function of pulse width. The small 

amount of decay is mostly due to optical pumping from direct excitation into A2. In the 

experiment, the two hyperfine states for which the optical fields are not on Raman 

resonance will contribute to the background through pumping but not to the Rabi 

oscillation signal itself. 
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Figure 5.6. Simulation of the two-photon ODROs. (a) 𝛥 held constant and 𝛿 = 0. (b) 

Spectral diffusion is included. Sum over 𝛥’s with 𝛿 = 0. (c) Dephasing is included. Sum 

over 𝛿’s with 𝛥 held constant. (d) Both spectral diffusion and dephasing are included. 

Sum over 𝛥’s and 𝛿’s. 
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predict effects of optical pumping that are much greater than those we see in the 

experiment. 

 To describe the decay rate observed in our experiments, we also need to add the 

effects of dephasing between the ms = +1 and ms = -1 ground state levels. From our 

measurement of Ramsey fringes we determined a dephasing time of T2
*
 = 1 s. To model 

this, we sum over a range of 𝛿’s weighted by a Gaussian with a FWHM/2𝜋  = 1 MHz. 

Fig. 5.6c shows the results where Δ is held constant and these dephasing effects are 

included. Cases with a non-zero 𝛿 (both positive and negative) exhibit smaller oscillation 

amplitudes and increased Rabi frequencies. This means that the net effect of including 

dephasing is to produce oscillations with a smaller amplitude, a slightly shifted Rabi 

frequency, and an increased decay rate. Fig. 5.6d shows the results with both spectral 

diffusion and dephasing effects included. We now have a decay rate that is similar to that 

observed in the experiment. 

 

5.4.2. Model of the STIRAP Experiment 

 The STIRAP/Rabi oscillation experiments were modeled in the same way. Now 

we use Δ/2𝜋  = -0.9 GHz and Ω±/2𝜋  = 48 MHz to match the experimental parameters. 

Given these parameters, optical pumping is expected to be a larger effect than in the Rabi 

oscillation case. Additionally, the process may no longer be completely nuclear spin 

dependent; however using a smaller ΩR should recover this dependence. The scale of the 

simulated plots was adjusted to match that of the experiments so that the shapes could be 

easily compared. 
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 As with Fig. 5.6, Fig. 5.7 shows the results of the simulation for (a) Δ constant 

with 𝛿 = 0, (b) a sum over Δ’s, (c) a sum over 𝛿’s, and (d) a sum over both Δ’s and 𝛿’s. 

We can see from these simulations that including spectral diffusion has a relatively large 

effect on the Rabi oscillations, but a relatively small effect on the STIRAP. This is to be 

expected since the STIRAP process is relatively insensitive to Δ. The dephasing, on the 

other hand, has a smaller effect on the Rabi oscillations; and it reduces the overall 

efficiency of the STIRAP without significantly changing the adiabaticity.  

 

 
Figure 5.7. Simulation of the STIRAP/ODRO measurement. (a) 𝛥 held constant and 𝛿 = 

0. (b) Spectral diffusion is included. Sum over 𝛥’s with 𝛿 = 0. (c) Dephasing is included. 

Sum over 𝛿’s with 𝛥 held constant. (d) Both spectral diffusion and dephasing are 

included. Sum over 𝛥’s and 𝛿’s. 
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Overall this shows us that ODROs are faster but are limited by both spectral 

diffusion and spin dephasing, while STIRAP is slower and still sensitive to dephasing but 

is much more robust against spectral diffusion. These limits can in principle be pushed 

back. Dephasing can be significantly reduced by using an isotopically pure diamond [95], 

a dynamical decoupling procedure [96], or the MW dressed states described in the next 

chapter. It has recently been shown that spectral diffusion can be decreased by replacing 

the green, off-resonant initialization pulse with a weaker resonant excitation of the NV
0
 

charge state [97]. This would need to be combined with NV
-
 resonant optical 

initialization [69]. Replacing the green excitation would have the added benefit of 

allowing one to use smaller dipole detunings without risking direct excitation and the 

consequent optical pumping. This and/or increasing the overall optical power would 

make both ODRO and STIRAP controls faster. 

 

5.5. Subwavelength Resolution using Optical Control 

 Finally, we look at a potential application of all-optical control. Optical 

manipulation and detection make possible spectral resolution of NV centers. They also 

offer a vast improvement over the spatial resolution given by MW control. However, the 

optical spatial resolution is still diffraction limited to approximately the wavelength of the 

optical field. This may not be enough for applications that require multiple NV centers to 

be closely spaced. The physics of the dark state, which underlay our STIRAP control 

method, suggests the prospect of subwavelength control. We present a preliminary 

experimental investigation into this possibility. 
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5.5.1. Subwavelength Resolution Techniques 

There are various strategies for improving on the diffraction limit, typically by 

exploiting a nonlinearity in the response of an atomic system to excitation; and several of 

these have been demonstrated in the NV center [98]. Stimulated emission depletion 

(STED) microscopy works by saturating the stimulated emission process in a spatially 

dependent way. An emitter in the region that is not saturated will fluoresce via 

spontaneous emission whereas a saturated emitter will not. This process works well in the 

NV center thanks to its relatively long excited state lifetime [99]. A similar mechanism is 

used in ground state depletion (GSD) microscopy [100]. Both STED and GSD require 

optical fields with very high power. A third technique has been demonstrated with NV 

centers, that does not need as much power. Referred to as Spin-RESOLFT (Reversible 

Saturable Optical Fluorescence Transitions), this method uses a combination of MW spin 

control and spatially dependent optical initialization [101]. 

All of these methods for achieving subwavelength resolution work by putting the 

emitter into a state, in a spatially dependent way, where it will not emit under excitation. 

This is reminiscent of the dark state which we have been discussing. In fact, a super 

resolution method has been proposed recently [102], [103] which makes use of the 

potential non-linear spatial sensitivity of this dark state.  

As described above, the form of the dark state depends on the ratio of the two 

Raman resonant optical field strengths. By carefully choosing the spatial profiles of these 

fields, the response of the dark state can have a subwavelength spatial dependence. 

Specifically we want the amplitude of one field to go through a minimum while the 

amplitude of the other field goes through a maximum. If the system is then prepared 
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adiabatically into the dark state it will share in this high spatial resolution as will any 

subsequent optical spin measurements. 

 

5.5.2. Subwavelength Resolution Experiment 

 We test this technique using a measurement similar to that featured in the ODRO 

and STIRAP experiments; but now we give a different spatial profile to one of the optical 

fields in the manipulation step. The focal spot for all the optical fields is then scanned 

spatially. The resulting spin state should consequently exhibit subwavelength spatial 

dependence. 

 One of the Raman resonant optical fields is left with the normal Gaussian 

intensity profile. We put the other field into a doughnut mode by passing the laser beam 

through a vortex phase plate (RPC Photonics, VPP-1a) before combining it with the other 

lasers. This produces a focal spot on the diamond with an intensity minimum in the 

center. To confirm the beam profiles we perform a PLE measurement by tuning the red 

laser onto resonance and then scanning the position of the focal spot. For simplicity, we 

limit our measurements to one dimension in the experiments described here. The emitted 

fluorescence as a function of spot position for both the Gaussian and the doughnut beams 

is shown in Fig. 5.8. As desired, in the center one is minimized while the other is 

maximized. 

 After spin initialization into ms = +1, the two optical pulses are applied in such a 

way as to adiabatically prepare the system into a dark state defined by the ratio of the 

powers of these fields. First the field coupling to ms = -1 turns on (doughnut beam) so the 
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Figure 5.8. PLE measurement of the two beam profiles used for the subwavelength 

spatial resolution experiment. Only one dimension is shown. (a) Desired pulse shapes. 

(b) Fluorescence as the Gaussian beam is scanned over the NV center. (c) Fluorescence 

as the doughnut beam is scanned over the NV center. The doughnut beam is given an 

overall higher power in the experiment. 

 

 

system begins in the dark state. Next the field coupling to ms = +1 ramps up, tuning the 

dark state. Finally the two beams turn off simultaneously leaving the system in the new 

dark state. Away from the center, the doughnut field has high power giving a dark state 

that is close to the initialization state. In the center, the Gaussian field has high power 

resulting in a dark state that represents a spin transfer. 

We plot the amount of spin transfer as a function of beam position, where both 

beams were scanned together across the NV center, in Fig. 5.9a (as well as the population  
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Figure 5.9. Spatially dependent STIRAP. (a) Spatial profile of the two optical fields. The 

shaded regions indicate where the greatest spin transfer occurs. (b) Final population in 

ms = -1 indicating a spin transfer. (c) Final population in ms = +1. For both (b) and (c) 

the same measurement was performed away from Raman resonance and the results were 

subtracted from the on resonance data in order to remove the effects of optical pumping. 

The solid lines are guides to the eye. 

 

 

remaining in the initial state in Fig. 5.9b). We subtracted off the effects of optical 

pumping which were determined by carrying out the same measurement with the fields 

away from Raman resonance. 

We successfully measure a spatially dependent spin transfer. However we observe 

an unexpected suppression of the spin transfer in the center, just where we expected the 

transfer to be the greatest. This likely means that, given the experimental parameters that 
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we used, the doughnut beam was too weak in the center to meet the adiabatic condition.  

However simply increasing the power in the center of the doughnut would decrease the 

resolution capability of this measurement. Optical pumping was a challenge in this 

experiment, and increasing the length of the optical pulses so as to regain adiabaticity in 

the center would make this even worse. 

The feature we observe does appear to be close to subwavelength, and so this 

initial experiment demonstrates the viability of this super resolution technique. Future 

experiments will require the right balance of power and duration. Techniques that reduce 

spectral diffusion would make this measurement possible with a smaller dipole detuning 

and less optical pumping. With higher optical Rabi frequencies, sharper spatial 

dependence should be easier to achieve. 

 

5.6. Conclusion 

 We have demonstrated two-photon ODROs and STIRAP of single electron spins 

in the NV center. This confirms that with a modest dipole detuning, optical spin control 

can be realized that is not limited by the rapid radiative decay and large spectral diffusion 

that are associated with the underlying optical transitions. The ODROs were shown to 

give faster control, while the STIRAP control was less sensitive to spectral diffusion. 

 We also took the first steps in developing optical spin control as a feasible 

alternative to MW spin control by producing optically-driven, nuclear-spin-dependent 

electron spin flips as well as by using the optical control to perform a Ramsey fringe 

measurement of the spin dephasing rate.  



  70 

 Lastly we began investigations into using the optical control for subwavelength 

spatial resolution of the NV center via a spatially dependent adiabatic spin transfer. 
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CHAPTER VI 

DECOHERENCE PROTECTED DRESSED SPIN STATES IN 

THE NV CENTER 

 

This chapter contains some material that was co-authored with Hailin Wang and 

Thomas K. Baldwin in reference [72]. The experiments described here were performed 

by the author. 

The decoherence of a quantum state due to uncontrolled interactions with its 

environment puts a fundamental limitation on applications of quantum control and 

quantum information. While completely isolating a quantum system is not possible, and 

not even desirable since coupling between multiple quantum systems is also of 

fundamental importance, decoherence effects must be minimized to manageable levels.  

It is a particular weakness inherent in solid-state systems that they are not 

spatially isolated from their environment. An atom-like solid-state system is embedded 

within a larger structure of atoms. If the system is sensitive to magnetic fields, 

uncontrolled spins associated with these atoms will severely limit coherence. It has 

already been noted that one of the advantages of using diamond based impurity centers is 

that the atomic environment, a crystal lattice of mostly spin zero 
12

C atoms, is very 

magnetically quiet. Furthermore the spin-lattice relaxation time for this system is on the 

order of seconds [95] meaning that impurity spins are the limiting factor. Combining this 

natural advantage with various decoherence reducing techniques has allowed 
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experimentalists to demonstrate, in the NV center, some truly remarkable coherence 

times for a solid-state system. 

In this chapter we develop one such technique which relies on the insensitivity of 

certain MW dressed electronic spin states to small fluctuations of an external magnetic 

field. The method we describe will be effective for certain applications where other 

decoherence reducing methods are difficult to implement. We begin by describing some 

different methods including the one we use. Next we look at dressed states and their 

response to magnetic fluctuations. CPT measurements allow us to probe these states. 

After that we give a more detailed theoretical account of CPT with special emphasis on 

broadening mechanisms. This allows us to use CPT measurements to compare the 

decoherence rates for bare and MW dressed spin states. We will see that using MW 

fields, with an easily achievable coupling rate, to dress a single electron spin can lead to a 

better than 50 times reduction in the linewidth of the spin transition, limited by transit-

time broadening. 

 

6.1. Strategies for Improving the Coherence Time of the NV Electronic Spin State 

 The most straightforward way to lengthen the coherence time of the NV center 

electronic spin state is to increase the purity of the diamond sample. Since it is the 

interaction with impurity spins that causes decoherence, fewer impurities equals less 

decoherence. 
13

C has a natural abundance of 1.1%. Measurements in isotopically pure 

diamond with 
13

C reduced to 0.3% indicate an increase in coherence time, T2, from a 

couple hundred microseconds to 1.8 ms [95]. To measure this, spin-echo sequences must 

be used to get past spin dephasing. Presumably higher purity diamond would yield even 
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better coherence properties. There are higher costs and technical challenges associated 

with producing such samples. 

 Another approach is to use coherent control of the spin state to average out 

decoherence processes. Dynamical decoupling procedures [104] involve a series of rapid 

spin flips which together cancel out the bath-induced spin dynamics. Various approaches 

such as the optimized Uhrig sequence or the periodic Carr-Purcell-Meibloom-Gill 

sequence have been successfully implemented in different systems such as trapped ions 

[105], quantum dots [106], and NV centers [96]. In the NV center these techniques have 

also been applied to the coupled electron-nuclear spin system [107] and have produced a 

coherence time for the nuclear spin greater than 1 s [108]. 

Dynamical decoupling represents a time domain approach, and the electron spin is 

decoupled from the bath at specific times. The dynamics of the electron spin, however, 

are still influenced by the fluctuating bath field. In addition, the decoupling pulse 

sequence can often be in conflict with other desired quantum operations. 

It has been suggested recently that the NV electron spin can be decoupled from 

the bath at all times with a spectral domain approach, in which a coherent coupling 

between the spin and continuous fields leads to the formation of dressed spin states [109]-

[111]. The energy levels of the dressed spin states can become immune to fluctuating 

magnetic fields when the coherent coupling rate far exceeds the relevant amplitude and 

rate of these bath-induced fluctuations. In essence, the energy gap between the dressed 

spin states protects the electron spin from decoherence induced by the spin bath. This 

dressed state approach for protecting a spin from decoherence is often referred to as 

continuous dynamical decoupling and has been applied, using MW fields, to trapped ions 
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[112]. Work has begun towards applying it in NV centers using MW based measurements 

[113]-[115]. 

Since this approach works in the spectral domain rather than the time domain, 

spin echo and spin echo like procedures are no longer necessary for cancelling out 

dephasing. Dressing a spin state fundamentally changes how it responds to magnetic 

fluctuations and is likely more compatible, than for instance dynamical decoupling, with 

applications such as building a coupled spin-nanomechanical system or spin-based cavity 

QED. 

We follow this method, using continuous MW fields to dress the NV center 

ground spin states. We then couple the dressed spin states to optical transitions and 

employ CPT via these optical transitions to probe the energy level structure, optically-

induced spin transitions, and spin decoherence rates of the dressed spin states.  

 

6.2. Dressed Spin States 

 We will start by describing the dressed states that feature in this decoherence 

reducing method, and we will see how it is that they are insensitive to small magnetic 

field fluctuations. We then perform a CPT measurement that allows us to observe these 

dressed states. 

 

6.2.1. MW Dressed Spin States in the NV Center 

 The NV center spin ground-state triplet forms a V-configuration. To create the 

dressed spin states, we coupled two MW fields to the two ground state transitions with 
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equal Rabi frequency, Ω𝑚. The Hamiltonian of this combined spin and MW-field system 

in the rotating frame is given by 

𝐻 =  ℏ( 
 0 Ω𝑚2 Ω𝑚2Ω𝑚2 𝛿+ 0Ω𝑚2 0 𝛿−) 

 
,                                                  (6.1) 

where 𝛿+ and 𝛿− are the detunings for each MW field (in the absence of the spin bath B-

field). With  𝛿+ = 𝛿− (Raman resonance), one of the eigenstates of the time-independent 

Hamiltonian is a dark state, |𝑑⟩ = 1√2 (|+⟩ − |−⟩),                                                 (6.2a) 

which is decoupled from the MW fields. The orthogonal bright state |𝑏⟩ = 1√2 (|+⟩ + |−⟩)                                                  (6.2b) 

couples to the ms = 0 state (|0⟩) through the MW fields. When 𝛿+ = 𝛿− = 0 (Raman 

resonance and zero dipole detuning), the other two eigenstates are given by |𝑙⟩ = 1√2 (|𝑏⟩ − |0⟩)                                                    (6.2c) 

|𝑢⟩ = 1√2 (|𝑏⟩ + |0⟩).                                                  (6.2d) 

States |𝑙⟩, |𝑢⟩, and |𝑑⟩ are the semiclassical dressed states. The corresponding eigen 

energies are  𝐸𝑙 = −ℏΩ𝑚/√2 , 𝐸𝑢 = ℏΩ𝑚/√2 , and 𝐸𝑑 = 0 (see Fig. 6.1). 

 

6.2.2. Insensitivity of the Dressed States to Magnetic Fluctuations 

 So far we have included the effects of the external, static magnetic field which 

sets the Zeeman splitting, 𝜔𝐵, between the levels ms = ±1 (|±⟩). The energies of these 
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Figure 6.1. Two resonant MW fields with equal Rabi frequency, m, leads to the 

formation of three dressed states. 

 

 

states are also dependent on the bath-induced magnetic field 𝐻𝐵 = 𝑔𝑠𝜇𝐵𝐵𝑁𝑆𝑧                                                        (6.3) 

where 𝐵𝑁 is the fluctuating magnetic field of the bath, gs, is the effective g-factor for the 

electron spin, and 𝜇𝐵 is the Bohr magneton. This shifts these states by an additional 

amount ±𝛿𝑁, where 𝛿𝑁 = 𝑔𝑠𝜇𝐵𝐵𝑁. The total Hamiltonian including these effects (where 

from here on we assume  𝛿+ = 𝛿− = 0) is given by 

𝐻 =  ℏ( 
 0 Ω𝑚2 Ω𝑚2Ω𝑚2 𝛿𝑁 0Ω𝑚2 0 −𝛿𝑁) 

 
.                                                 (6.4) 

The energies of the dressed states (now the eigenstates of this Hamiltonian) are now   

𝐸𝑙 = −ℏ√Ω𝑚22 + 𝛿𝑁2   and 𝐸𝑢 = ℏ√Ω𝑚22 + 𝛿𝑁2  with 𝐸𝑑 = 0 unchanged (see Fig. 6.2a). We 

can see that for Ω𝑚 ≫ |𝛿𝑁|, the dressed state energy levels become nearly independent of 𝛿𝑁. This is illustrated in Fig. 6.2b. 

 This insensitivity to magnetic fluctuations is also apparent if we rewrite the 

Hamiltonian in (6.4) in the basis of the original dressed states, which were defined for 

2/m
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Figure 6.2. (a) The energies of the dressed spin states with the effects of a bath-induced 

Zeeman shift, ±𝛿𝑁, included. (b) The energies of the dressed spin states as a function of 𝛿𝑁. For 𝛺𝑚 ≫ |𝛿𝑁|, the curves are relatively flat, indicating an insensitivity to changes 

in 𝛿𝑁 . 
 

 𝛿𝑁 = 0. In this basis we have 

𝐻 =  ℏ( 
 0 𝛿𝑁√2 𝛿𝑁√2𝛿𝑁√2 − Ω𝑚√2 0𝛿𝑁√2 0 Ω𝑚√2) 

 
.                                                 (6.4) 

Now the fluctuating Zeeman shifts appear only as off-diagonal matrix elements. From 

this perspective, the magnetic fluctuations of the bath cannot change the energy of the 

dressed states directly, but rather can mix or induce transitions between dressed states. 

However, as long as the amplitude and rate of the bath-induced fluctuations are small 

compared with the energy gap between the dressed states, the bath-induced mixings or 

transitions are negligible.  

 

6.2.3. CPT Measurement of the Dressed Spin States 

 The MW dressed spin states can be probed through optical transitions. In the 

presence of the resonant MW fields, the electron wave function can be described, with 

probability amplitudes Cd, Cl, Cu for the dressed states and CA for the A2 state, as 
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    |𝜓⟩ = (𝐶𝑢2 𝑒−𝑖Ω𝑚𝑡√2 + 𝐶𝑙2 𝑒𝑖Ω𝑚𝑡√2 + 𝐶𝑑√2) 𝑒−iω𝐵𝑡|+⟩  + (𝐶𝑢2 𝑒−𝑖Ω𝑚𝑡√2 + 𝐶𝑙2 𝑒𝑖Ω𝑚𝑡√2 − 𝐶𝑑√2) |−⟩  
               + (𝐶𝑢√2 𝑒−𝑖Ω𝑚𝑡√2 − 𝐶𝑙√2 𝑒𝑖Ω𝑚𝑡√2 ) 𝑒𝑖𝑣𝑡  |0⟩ +  𝐶𝐴|𝐴2⟩ ,                                                       (6.5) 

where  is the frequency of the MW field coupling to |−⟩. Similar expressions can be 

derived for 𝛿𝑁 ≠ 0, with corresponding changes in the energy and wave function of the 

dressed states. Equation 6.5 shows that the states |±⟩ each effectively split into three 

different levels due to coupling with the MW fields. In this case, + and - polarized 

optical field will couple |𝐴2⟩ to the ms = -1 part (|𝑢−⟩, |𝑙−⟩, and |𝑑−⟩) and ms = +1 part 

(|𝑢+⟩, |𝑙+⟩, and |𝑑+⟩) of the dressed spin states respectively as shown in Fig. 6.3. It is 

important to remember that these six states are not all independent. The dressed spin 

states are still described by only three independent probability amplitudes. 

 

 
Figure 6.3. Energy level diagram with both the dressed state and bare spin state nature 

of the ground state levels made explicit. Each of these ground state levels corresponds to 

a term in (6.5). The two optical fields continue to couple to the transitions between the 

bare spin states and the |𝐴2⟩ excited state. 
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As we saw in Chapter IV, CPT can reveal this splitting. We perform a CPT 

measurement similar to those described in that chapter. Two optical fields with equal 

intensity and opposite circular polarization drive the two optical transitions of the -

configuration. One is held constant on resonance while the other is tuned in frequency. 

For this measurement we used optical fields with a combined incident power of 6 nW. 

We measure the emission from |𝐴2⟩  (fluorescence) as a function of the optical Raman 

detuning, 𝛿. Throughout the measurement we apply two dressing MW fields on 

resonance with the two ground-state MW transitions. These have a Rabi frequency of   Ω𝑚/2= 1 MHz as determined using Rabi oscillation measurements, comparable to the 

linewidth of the bare spin state transitions. The CPT measurement continues for a 

duration of 40 s before it is alternated, as usual, with off-resonant green excitation 

which reverses any ionization or optical pumping effects. The resulting CPT spectral 

response is shown in Fig. 6.4. 

This CPT trace features five resonances (sharp dips) instead of the single 

resonance that is observed for the bare spin states. We are limiting this measurement to a 

single hyperfine state. The CPT resonances shown in Fig. 6.4 correspond to the mn = 0 

hyperfine state. CPT resonances for mn = -1 and mn = +1 are 4.4 MHz away (Fig. 4.4) 

and so do not appear in this measurement. These two hyperfine states just contribute a 

background.  

The resonances in the CPT trace correspond to spin coherences. As shown in Fig. 

6.4, these can occur between two different dressed states (for example, between |𝑙+⟩ and |𝑢−⟩), and can also arise from the same dressed state (for example, between |𝑑+⟩ and |𝑑−⟩). Spin coherences arising from the same dressed state lead to the central CPT  
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Figure 6.4. Coherent population trapping of dressed spin states. Fluorescence is 

collected while one optical field is held fixed and the other is tuned. Dips indicate 

frequencies where the Raman detuning between the two fields is equal to the splitting 

between dressed state levels associated with different bare spin states. The resonances 

are labeled with energy level diagrams indicating which coherences are involved in that 

feature. The solid line is the sum of five Lorentzians with spectral positions calculated 

from the MW Rabi frequency, relative amplitudes estimated from steady state population 

considerations (see Section 6.6.3), and linewidths (0.22 MHz) fit to the data. 

 

 

resonance at 𝛿 = 0 (i.e. the frequency different between the two optical fields equals the 

Zeeman splitting, 𝜔𝐵, between the bare |±⟩ spin states). Spin coherences between |𝑑⟩ 
and either |𝑙⟩ or |𝑢⟩ lead to CPT resonances at 𝛿 = ±Ω𝑚/√2 (recall that ±Ω𝑚/√2 are 

the dressed state splittings), which are the first sidebands in the trace. Spin coherences 

between |𝑙⟩ and |𝑢⟩ lead to CPT resonances at 𝛿 = ±√2Ω𝑚, the second sidebands in the 

trace. CPT provides a convenient way of observing the dressed state behavior. 
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The spectral positions of these CPT resonances only depend on the strengths of 

the MW fields. Fig. 6.5 plots the Ω𝑚-dependence of the spectral separation between the 

first sidebands and the central resonance derived from experiments similar to that in Fig. 

6.4, confirming the above assignments. The widths and relative depths of the dips are 

more complicated and will require a more detailed look at the CPT process. This is where 

we turn next. Afterwards we will be able to return to the CPT measurement and come to 

some conclusions about the coherence properties of the dressed versus bare spin states. 

 

 
Figure 6.5. The frequency splitting between the central resonance and the first sidebands, 

as a function of MW Rabi frequency, in CPT measurements similar to that shown in Fig. 

6.4. The solid line intercepts with the origin and has a slope of 1. 

 

 

6.3. Coherent Population Trapping Analysis 

 We will now look more closely at the theory behind CPT, first in the case of bare 
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to the CPT linewidth such as power broadening. We also consider the impact of spectral 

diffusion.  

 

6.3.1. Coherent Population Trapping of Bare Spin States 

 Consider the -type three-level system we are using with the upper state |𝐴2⟩ coupling to two lower states |+⟩ and |−⟩ via two nearly resonant optical fields with 

optical frequencies of w+ and w- and Rabi frequencies of Ω+ and Ω− (both assumed to be 

real). The wave function of this system in a rotating frame is written as |Ψ⟩ = �̃�𝐴|𝐴2⟩ +�̃�+𝑒𝑖𝜔+𝑡|+⟩ + �̃�−𝑒𝑖𝜔−𝑡|−⟩.                             (6.6) 

The density matrix elements in this rotating frame are defined as 𝜌𝑖𝑗 = ⟨�̃�𝑖�̃�𝑗∗⟩. The 

corresponding density matrix equations are then given by [27] 

     �̇�𝐴+ = −(𝑖Δ+ + 𝛾)𝜌𝐴+ + 𝑖Ω+2 (𝜌𝐴𝐴 − 𝜌++) − 𝑖Ω−2 𝜌−+                    (6.7a) 

     �̇�𝐴− = −(𝑖Δ− + 𝛾)𝜌𝐴− + 𝑖Ω−2 (𝜌𝐴𝐴 − 𝜌−−) − 𝑖Ω+2 𝜌+−                    (6.7b) 

  �̇�−+ = −(𝑖𝛿 + 𝛾𝑠)𝜌−+ + 𝑖Ω+2 𝜌−𝐴 − 𝑖Ω−2 𝜌𝐴+                                   (6.7c) 

     �̇�𝐴𝐴 = −Γ𝜌𝐴𝐴 + (𝑖Ω+2 𝜌𝐴+ + 𝑐. 𝑐. ) + (𝑖Ω−2 𝜌𝐴− + 𝑐. 𝑐. )                  (6.7d) 

where 𝛾𝑠 and 𝛾 are the decay rates for the spin coherence and optical dipole coherence 

respectively, Γ is the decay rate for the excited state population, Δ+ and Δ− are the dipole 

detunings for the two optical fields, 𝛿 is the optical Raman detuning. For our system, 𝛾𝑠 ≪ (𝛾, Γ), and for our experiments we set Ω+ ≈ Ω−. (This is a little different from the 

typical textbook treatment of CPT which usually assumes  Ω+ ≪ Ω−, with the electron 

initially in the state |+⟩.) 
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 With 𝛾𝑠 ≪ (𝛾, Γ),  𝜌𝐴𝐴 and the optical dipole coherences characterized by 𝜌𝐴+ and 𝜌𝐴− can reach steady state on a timescale much faster than that for the spin coherence 

characterized by 𝜌−+. In this limit, 𝜌𝐴+ and 𝜌𝐴− as well as the diagonal matrix elements 

adiabatically follow the dynamics of 𝜌−+, with 𝜌𝐴+ = − 𝑖2𝛾 (Ω+𝑁+ + Ω−𝜌−+)                                     (6.8a) 

𝜌𝐴− = − 𝑖2𝛾 (Ω−𝑁− + Ω+𝜌+−)                                    (6.8a) 

Where 𝑁± = 𝜌± − 𝜌𝐴𝐴 is the population difference between lower and upper states and 

we have assumed |Δ±| ≪  𝛾 and have thus set Δ± = 0. The steady-state excited-state 

population is then given by 𝜌𝐴𝐴 = 12Γ𝛾 [(Ω+2𝑁+ + Ω−2𝑁−) + 2Ω+Ω−𝑅𝑒(𝜌−+)].                      (6.9) 

The CPT-induced dip in the excited state population is therefore determined by the real 

part of 𝜌−+. 

 Using (6.7c) and (6.8) we arrive at the equation of motion for the spin coherence  �̇�−+ = −[𝑖𝛿 + 𝛾𝑠 + Ω+2+Ω−24𝛾 ] 𝜌−+ − Ω+Ω−4𝛾 (𝑁+ + 𝑁−).                (6.10) 

The Ω±2 /4𝛾 terms in (6.10) correspond to the power broadening of the optically-driven 

spin transition and thus the power broadening of the CPT resonance. The steady-state 

solution of 𝜌−+ is given by 𝜌−+ = − Ω+Ω−4𝛾 𝑁𝑖𝛿+𝛾𝑠+(Ω+2+Ω−2 )/4𝛾                                    (6.11) 

Where 𝑁 = 𝑁+ + 𝑁−. For 𝜌𝐴𝐴 ≪ 1, 𝑁 can be approximated as the total population in the 

two lower states, 𝑛. Using (6.9) and (6.11), with equal Rabi frequencies for the two 

optical fields, Ω+ = Ω− = Ω𝑂, the excited state population is given by 
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𝜌𝐴𝐴 = Ω𝑂2𝑛2Γ𝛾 [1 − Ω𝑂22𝛾 𝛾𝑠+Ω𝑂2 /2𝛾𝛿2+(𝛾𝑠+Ω𝑂2 /2𝛾)2]                                 (6.12) 

This population is strongly suppressed when Ω𝑂2 ≫ 2𝛾𝛾𝑠 and the two incident optical 

fields are Raman resonant, (𝛿 = 0). Recall that even when the system is initially prepared 

in a given lower state, with Ω+ = Ω− optical excitation can quickly equalize the 

population in the two lower states. 

 The power broadening at relatively low intensity for the optical fields scales 

linearly with this power and is given by Ω𝑂2 /2𝛾. For larger Ω𝑂, approaching or exceeding 𝛾, we need to solve (6.11) without the 𝜌𝐴𝐴 ≪ 1 approximation. In this case we have 

𝜌𝐴𝐴 = Ω𝑂2𝛼(𝛿)2Γ𝛾+3Ω𝑂2𝛼(𝛿),                                             (6.13) 

where 𝛼(𝛿) is a lineshape function given by 

𝛼(𝛿) = 1 − Ω𝑂22𝛾 𝛾𝑠+Ω𝑂2 /2𝛾𝛿2+(𝛾𝑠+Ω𝑂2 /2𝛾)2.                                (6.14) 

This shows us that a deviation from the linear intensity dependence of the power 

broadening is expected when Ω𝑂 approaches or exceeds 𝛾. 

 Finally, we add the effects of spectral diffusion. As mentioned before, the 

reinitialization of the NV center with the green laser can lead to a spectral shift of the NV 

optical transition frequency. This means that, for each experimental run, this frequency 

will fluctuate. The spectral range of this fluctuation is about 500 MHz for our 

experiments, far exceeding the intrinsic linewidth (~13 MHz) of the NV center. To 

account for the effects of this spectral diffusion on the CPT process, we can no longer 

assume that |Δ±| ≪  𝛾 is always true. Equation 6.12 is now modified to 

𝜌𝐴𝐴(Δ+) = Ω̅𝑂2𝑛2Γ𝛾 [1 − Ω̅𝑂22𝛾 𝛾𝑠+Ω̅𝑂2 /2𝛾𝛿2+(𝛾𝑠+Ω̅𝑂2 /2𝛾)2]                            (6.15) 
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where 𝜌𝑒𝑒(Δ+) is the excited state population with dipole detuning Δ+ for the ms = +1 

transition, Ω̅𝑂2 = Ω𝑂2𝛾2/(𝛾2 + Δ+2 ), and we have assumed that |𝛿| ≪ 𝛾 and     𝜌𝐴𝐴(Δ+)  ≪ 1. The excited state population must now be averaged over the spectral 

distribution, 𝑓(Δ+), of the NV transition frequency giving 𝜌𝐴𝐴 = ∫𝑑 Δ+𝑓(Δ+)𝜌𝐴𝐴(Δ+).                                      (6.16) 

We can similarly modify (6.13) and (6.14) by replacing Ω𝑂with Ω̅𝑂. 

  

6.3.2. Coherent Population Trapping of Dressed Spin States 

 We now consider CPT for the dressed state system described by the wavefunction 

in (6.5). The relevant spin coherence can now be written in terms of the dressed-state 

probability amplitudes as 

                        𝜌−+ =  14 [⟨𝐶𝑙𝐶𝑙∗⟩ + ⟨𝐶𝑢𝐶𝑢∗⟩ − 2⟨𝐶𝑑𝐶𝑑∗⟩] 
                                    + 14 [(⟨𝐶𝑙𝐶𝑑∗⟩ − ⟨𝐶𝑑𝐶𝑢∗⟩)𝑒𝑖Ω𝑚𝑡√2 + (⟨𝐶𝑢𝐶𝑑∗⟩ − ⟨𝐶𝑑𝐶𝑙∗⟩)𝑒𝑖Ω𝑚𝑡√2 ] 

+ 14 [⟨𝐶𝑙𝐶𝑢∗⟩𝑒𝑖√2Ω𝑚𝑡 + ⟨𝐶𝑢𝐶𝑙∗⟩𝑒−𝑖√2Ω𝑚𝑡].                                  (6.17) 

The first group of terms in (6.17) describes spin coherences arising from the same 

dressed state (center dip in Fig. 6.4). The second group of terms describes spin 

coherences between |𝑑⟩ and either |𝑙⟩ or |𝑢⟩ (first sidebands). The third group describes 

spin coherences between |𝑙⟩ and |𝑢⟩ (second sidebands). 

 State |𝐴2⟩ and the two spin states involved in a given spin coherence term in 

(6.17) form an effective -type three-level system. Assuming the optical Rabi 

frequencies are small compared with Ω𝑚, and that the incident optical fields are Raman 

resonant with the relevant dressed spin states, non-resonant terms in the density matrix 
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equations can be ignored. Under these conditions, CPT processes for the dressed states 

can be described by equations similar to those used for the bare spin states (which were 

shown in (6.7)). 

 We assume that the relative phase between the two optical fields is the same as 

that between the two MW fields. (Experimentally this is not necessarily the case, but a 

difference in relative phases should not affect the power dependence of the CPT 

linewidth.) The equation of motion for the spin coherence between |𝑑+⟩ and |𝑑−⟩ is given 

by 

                  �̇�𝑑−,𝑑+ = − [𝑖𝛿 + 𝛾𝑠 + Ω+2+Ω−24𝛾 ] 𝜌𝑑−,𝑑+ − Ω+Ω−4𝛾 (𝑁𝑑+ + 𝑁𝑑−)  
− Ω+24𝛾 (𝜌𝑑−,𝑙+ + 𝜌𝑑−,𝑢+) − Ω−24𝛾 (𝜌𝑙−,𝑑+ + 𝜌𝑢−,𝑑+),                        (6.18) 

where the spin states are now labeled with an index for the dressed state. Compared with 

(6.10), the two extra terms represent spin coherences between |𝑑⟩ and either |𝑙⟩ or |𝑢⟩. 
This reflects coupling between different -type three-level systems. If 𝛿 ≈ 0, these spin 

coherences are off-resonant and their contributions are negligible in the low intensity 

limit. However, when Ω𝑂/𝛾2 approaches Ω𝑚, these inter-three-level system couplings 

become important. The steady-state solution for 𝜌𝑑−,𝑑+, with Ω+ = Ω− = Ω𝑂, is given by 

𝜌𝑑−,𝑑+ = − Ω𝑂24𝛾 𝑁𝑑++𝑁𝑑−+𝜌𝑑−,𝑙+(0) +𝜌𝑑−,𝑢+(0) +𝜌𝑙−,𝑑+(0) +𝜌𝑢−,𝑑+(0)𝑖𝛿+𝛾𝑠+Ω𝑂2 /2𝛾 ,                        (6.19) 

where for the lowest order corrections we can calculate the off-resonant spin-coherences 

in (6.18) using (6.11).  

 Similarly to the bare states, the CPT linewidth for the dressed states scales 

linearly with the optical power at relatively low intensities. However, we have seen that 

the linewidth can deviate from this linear dependence when Ω𝑂/𝛾2 approaches or 
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exceeds Ω𝑚, even though Ω𝑂 remains small compared with 𝛾. Under these conditions, 

the -type three-level system responsible for the CPT process can no longer be viewed as 

an isolated system. This makes the CPT process less effective and leads to a smaller 

power broadening effect than would otherwise be expected. 

 The effects of spectral diffusion can be included by following the same procedure 

represented in (6.15) and (6.16). 

 

6.3.3. Amplitudes of the Dressed State CPT Resonances 

Before returning to our experimental data and applying the theoretical results 

regarding the CPT linewidth, we will first consider briefly the relative amplitudes of the 

dressed state CPT resonances. These relative amplitudes depend on the steady state 

populations of the dressed states. Away from Raman resonance, the optical fields excite 

population in |𝑑⟩ and |𝑏⟩ to |𝐴2⟩ with equal rates. Electron population in |𝐴2⟩ also decays 

to |𝑑⟩ and |𝑏⟩ with equal rates, equalizing the population between them. This means that |𝐶𝑙| = |𝐶𝑑| = |𝐶𝑢|. As a result, 2/3 of the population is in the ms = ±1 states and can 

contribute to the optical excitation and subsequent emission. The rest is in the ms = 0 

state. 

For the central CPT resonance in Fig. 6.4, all the dressed spin states associated 

with ms = ±1 are involved. The CPT process then leads to a complete quenching of the 

excited state population and subsequent fluorescence. (Again, other hyperfine states still 

contribute a background.) 

For the first sideband CPT resonance, only states |𝑑+⟩, |𝑑−⟩, and (for instance) |𝑙+⟩ and |𝑢−⟩ contribute to the CPT. The CPT process drives the system toward       
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|𝐶𝑙| = √2|𝐶𝑑| = |𝐶𝑢|. Now 1/5 of the total population is both in the ms = ±1 states and 

not in an optically dark state, allowing it to contribute to fluorescence. This is compared 

to the 2/3 of the population that contributes to fluorescence away from Raman resonance. 

For the second sideband CPT resonance, only states (for instance) |𝑙+⟩ and |𝑢−⟩ 
contribute to the CPT. The CPT process now drives the system toward |𝐶𝑙| = |𝐶𝑢| while 

the optical and MW excitations also ensure that the population in |𝑑⟩ and |𝑏⟩ are the 

same. Now 1/2 of the population is both in the ms = ±1 states and not in an optically dark 

state, allowing it to contribute to fluorescence. 

 Based on these considerations, assuming steady state conditions apply, we expect 

a ratio of 100/70/25 for the amplitudes of the central resonance, first sidebands, and 

second sidebands of the CPT trace.  

 

6.4. CPT Linewidths for Bare and Dressed Spin States: Experimental Results 

 As we saw in Section 6.3, the linewidth of the CPT resonances is determined by 

the decay of the underlying spin coherences as well as by power-dependent broadening 

mechanisms. For an ideal -type system at relatively low intensity, the effective 

linewidth is given by 2𝛾𝑠𝑒𝑓𝑓 = 2𝛾𝑠 +Ω𝑂2 /𝛾 (see (6.11)), scaling linearly with the optical 

power. To get a handle on the spin coherence decay rate, 𝛾𝑠, we must account for this 

optical power broadening. 

 We first discuss the behavior of the CPT resonance between different spin states 

associated with the same dressed state (the central dip in the CPT trace shown in Fig. 

6.4). Fig. 6.6 shows the linewidth of this resonance as a function of the input laser power, 

obtained with Ω𝑚/2= 0.83 MHz and under otherwise similar conditions to the previous 
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CPT measurement. Also shown in Fig. 6.6 is the power dependent linewidth of the bare 

state CPT obtained under similar conditions using the method described in Chapter IV. 

As expected, in both the dressed state and the bare state cases, the CPT linewidth 

increases with increasing optical power.  

The CPT linewidth of the bare spin states deviates from the linear power 

dependence as Ω𝑂 approaches 𝛾. The deviation from linear power dependence for the 

dressed spin states, however, occurs at a much lower power due to the inter--system 

coupling described above. On top of the data we plot the theoretically calculated power 

dependent CPT linewidth for both the bare and the dressed spin state cases. For these 

 

 
Figure 6.6. The optical power dependent linewidth of the CPT resonance. 1nW 

corresponds to an estimated Ω0/2𝜋 = 0.74 MHz. Circles (blue) are for the bare spin 

states. Squares (black) are for the center resonance in the CPT measurement of the 

dressed spin states. Solid lines (green and red) are the theoretically calculated power 

dependent broadening. The deviations from linearity described in the text are included as 

are the effects of spectral diffusion. 
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calculations we used (6.13), with the effects of spectral diffusion included as described in 

(6.15) and (6.16), as well as dressed state counterparts. Additionally we used  𝛾/𝜋 =      

13 MHz, and Ω𝑂determined from optically driven Rabi oscillations measurements like 

those describe in Chapter V. 

Fig. 6.7a shows just the dressed state data from Fig. 6.6. Here we can see that the 

data is consistent with the theoretically expected power broadening suppression. The CPT 

resonance obtained at the lowest laser power that we used (the lowest power data point in 

Fig. 6.7a), is shown in Fig. 6.7b. 

The linewidth for the dressed states is significantly smaller than for the bare 

states. From Figs. 6.6 and 6.7 we derive spin transition linewidths in the absence of 

power broadening (i.e. if the optical power was taken to zero) of approximately 0.75 

MHz and 13 kHz for the bare and dressed spin states respectively, about a 50 times 

 

 
Figure 6.7. (a) The linewidth of the central CPT resonance for the dressed spin states as 

a function of the incident optical power. The solid line is the theoretically calculated 

power dependent linewidth. The data is consistent with the theoretically expected 

deviations from linear power broadening. (b) The central CPT resonance obtained at the 

lowest optical power used (0.85 nW). The solid line is a fit to a Lorentzian. 
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reduction. The linewidth for the bare spin states is primarily limited by the bath induced 

spin dephasing rate. The large reduction of the spin transition linewidth in the dressed 

state case indicates a spin coherence that is protected from this dephasing by the 

formation of these dressed states. 

In fact the spin coherence of the dressed states is so robust against magnetic 

fluctuations, it becomes difficult to measure the decoherence rate using our spectral 

domain CPT measurement. As mentioned above, the intrinsic spin transition linewidth 

obtained with spin echoes in an isotopically purified diamond is 0.18 kHz [95]. The 

narrowest intrinsic linewidth obtained in non-isotopically purified diamond is 0.5 kHz 

[116]. Reducing power broadening down to this scale would require incredibly weak 

laser powers, making the CPT measurement very difficult. 

Additionally, a lower limit is set on our measurement due to transit-time 

broadening. The CPT measurement had a duration of 40 s before a green pulse 

(necessary to counteract ionization and pumping) reset the spin state. This places a limit 

of about 12 kHz on the smallest linewidth we can measure. This is in good agreement 

with our results and is consistent with the true linewidth being significantly sharper than 

our measurements indicate. 

Finally we look at the dependence of the CPT linewidth on the power of the MW 

dressing fields. Fig. 6.8 compares the linewidth of the central resonance with that of the 

first sideband for different values of Ω𝑚. This shows that they have similar power-

broadened linewidths at relatively large Ω𝑚. However, when Ω𝑚decreases below the 

linewidth of the bare spin transition (i.e. Ω𝑚is no longer large compared with |𝛿𝑁|) the 

linewidth of the first sideband becomes significantly greater than that of the central 
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resonance as broadening of the sideband due to decoherence becomes comparable to the 

power broadening. 

This demonstrates an important difference between spin coherences between 

different dressed states (probed by the first sideband CPT resonance) and spin coherences 

arising from the same dressed state (probed by the central CPT resonance). The 

protection of the spin coherence between different dressed states requires that Ω𝑚 be 

large compared with |𝛿𝑁|. This is not necessary for spin coherences associated with the 

same dressed state. In this case, the formation of the dressed state enforces an energy and 

phase correlation between the ms = +1 and ms = -1 parts of this same dressed state. While 

 

 

 
Figure 6.8. The linewidth of the first CPT sideband (red, circles) and the central CPT 

resonance (black, squares) as a function of 𝛺𝑚with an incident optical power of 2.5 nW. 

At higher MW power the resonances exhibit similar power broadening. At lower MW 

power the dressed state decoherence protection breaks down for the sideband, but not for 

the center resonance. 
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the resulting spin coherences are set by the MW dressing fields and cannot be 

independently controlled, they do illustrate the robustness of the dressed states against 

magnetic fluctuations. Most applications will need to use the spin coherences between 

different dressed states. 

 

6.5. Conclusion 

 We have demonstrated a continuous dynamical decoupling technique for 

protecting the NV center electron spin from bath induced decoherence. Continuous MW 

fields dressed the ground state spins, producing states that are insensitive to small 

fluctuations in the magnetic field. We used CPT measurements via the optical transitions 

to investigate these dressed states. When power broadening effects were taken into 

account, we estimated an improvement of at least 50 times in the spin transition 

linewidth. 

 For quantum information applications, dressed spin states could be used directly 

as qubits. With Ω𝑚 over 100 MHz, which has been achieved in earlier studies [117], a 

nearly complete suppression of spin dephasing could be attained. Our CPT measurements 

also indicate the feasibility of performing quantum control of dressed spin qubits through 

off-resonant optical Raman transitions, similar to those described in Chapter V with bare 

spin states. The dressed spin states would be especially useful when dynamical 

decoupling is in conflict with the desired quantum operations or when applications need 

continuous, rather than intermittent, decoupling, such as in the cooling of a mechanical 

oscillator via coupling to an electron spin or in spin-based cavity QED. 
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CHAPTER VII 

CONCLUSION 

 

7.1. Summary 

Atom-field interactions are the basis for some of the most promising advances in 

quantum technologies. Experimenters are using these interactions, not just for state 

measurement, but increasingly for the manipulation of an atom’s internal quantum states. 

The precise, comprehensive, and coherent control that has been developed regarding 

radiation fields, translates into precise, comprehensive, and coherent control over these 

atomic states. 

In this dissertation we have extended this control, particularly optical control, as it 

is applied to one of the most fruitful atom-like solid-state systems currently being 

investigated, the diamond NV center. We developed methods for controlling the NV spin 

state using two-photon ODROs and using STIRAP. The fact that these processes do not 

populate the excited state lets them avoid the dechoerences associated with the optical 

dipole transitions. The two methods were compared, and various other decoherence 

effects were investigated. We concluded from this analysis that ODROs provide faster 

control but are limited by both spectral diffusion and the ground state spin dephasing, 

while STIRAP is slower and still sensitive to dephasing but is much more robust against 

spectral diffusion. We then confirmed the viability of these spin control techniques by 

applying them in two measurement processes. ODROs successfully produced the spin 

rotations central to a Ramsey fringe measurement of spin dephasing. STIRAP allowed us 
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to execute a spatially dependent spin transfer, and to take the first steps toward using this 

for a subwavelength spatial resolution of these solid-state spins. 

We also used optical fields to demonstrate CPT effects. Our CPT used a natural 

-type energy level configuration within the NV center, and did not require the strong 

strain or magnetic fields necessary in some of the first realizations of CPT in this system. 

We showed that the CPT can be nuclear spin dependent, revealing the hyperfine splitting 

of the electronic spin states. Experiments using a continuous MW field to create a 

dynamic Stark splitting of the ground spin states suggested that CPT measurements 

would be useful for probing dressed state spins. 

We took advantage of this finding and used CPT to investigate the coherence 

properties of a certain set of MW dressed states. These were expected to be particularly 

insensitive to the primary decoherence mechanism for NV center ground state spins, 

fluctuations of a spin-bath-induced magnetic field. We studied the power dependence of 

the CPT resonance linewidth for coherences associated with these dressed states. When 

optical power broadening effects were taken into account, we were able to conclude that 

the linewidth of the transitions underlying the CPT process was reduced by at least a 

factor of 50 when the dressed spin states were used instead of the bare spin states. The 

improvement in coherence time was likely even greater since our measurements were 

limited by transit-time broadening. This decoherence reduction method, unlike some 

other methods, gives continuous protection and is relatively easy to implement. 

When combined with the advantages already inherent in a solid-state spin system, 

the experimental advancements we have described make such a system even more 

attractive as a tool for implementing applications of quantum control.  
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7.2. Future Work 

 Many of the experiments we have described would benefit from a decrease in the 

spectral diffusion. It has been shown elsewhere that replacing the ubiquitous green 

repump pulse with one at 575 nm, resonant with the neutrally charged NV state, can 

reverse ionization without the unwanted spectral diffusion [97]. Incorporating this would 

allow us to use much smaller dipole detunings for our optical fields without worrying 

about driving the optical transition directly. The result would be significantly faster 

ODRO’s and STIRAP, making it easier to expand the use of these control methods to 

applications, such as state transfer between electron and nuclear spins, which are usually 

done with MW control. 

 It should also be possible to combine the optical spin control with the dressed 

state approach for protecting the spin from decoherence. This would generate a 

coherently controllable, solid-state spin with exceptional coherence properties, perhaps 

improved even more by the use of higher purity diamond samples.  

 The optical control methods we described are especially suited for building a 

quantum network by using closely spaced NV centers, or by incorporating the NV center 

into cavity QED or optomechanical systems. In the last case, spin-phonon coupling has 

been demonstrated using NV center ground spin states [118]. However the excited states, 

which are much more sensitive to strain, exhibit a coupling to phonons that is several 

orders of magnitude stronger. The optical control method we developed would allow us 

to take advantage of these states for mediating the spin-phonon coupling while avoiding 

the decoherence associated with them. 



  97 

 Finally, it may be possible to extend some or all of the techniques presented here 

to other atom-like solid-state systems such as SiC. Experimenters continue to sift through 

the many candidate systems to find ones with useful spin properties. The success of the 

NV center has produced a wide range of techniques which can be immediately adapted 

for use in a novel system. Meanwhile research using the diamond NV center continues to 

be productive, and we hope that the work we have described will lead to even more 

success based on this remarkable solid-state spin. 
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