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DISSERTATION ABSTRACT
Roger A. Smith
Doctor of Philosophy
Department of Physics
September 2016

Title: The Double-Heralded Generation and Frequency Translation of Two-Photon
States of Light in Optical Fibers

The creation of optical states of light that are quantum mechanical in nature
in optical fibers is discussed and demonstrated experimentally. Specifically, two-
photon states created by spontaneous four-wave-mixing in commercially available
single-mode, birefringent fibers are studied. When creating photon states of light,
it is important to verify the created states are of the proper photon number
distribution and free of noise. We detail a method for combining thresholding,
non-number resolving detectors to characterize the photon number distribution
created via SFWM and a procedure to quantify the noise sources present in the
process. Frequency translation in optical fibers with two-photon states is discussed

and experimental considerations are presented.
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CHAPTER I

INTRODUCTION

Roughly one hundred years ago, a revolution was in the early, sleepy
beginnings that only a truly paradigm-shifting theory can hold. The adoption
of this new belief was slow and wrought with confusion and contradiction. At
the crux of the revolution was a change in humans’ fundamental understanding
of the mechanics of the universe. Contrary to how the world appears in the
everyday existence that humans enjoy, the deepest reality is not deterministic, but
probabilistic. This is the apparent contradiction at the root of quantum mechanics
(that is not much of a contradiction, after all).

The philosophical interpretation of quantum mechanics, a world built upon
probabilities, seemed so inconsistent with reality that Albert Einstein famously
denounced the theory, a theory of which he was a principal architect. Forms of his
famous statement remains well popularized today: God does not play dice with the
universe.! There have been many summits full of the best and brightest minds in
physics, chemistry, and philosophy to understand the implications of such a theory.
Many questions have arisen, along with many answers, although not always clear.

The history of quantum mechanics is long and rich, far more than will be
covered here. Instead, we will connect some of the highlights that are particularly
interesting or illuminating.? Max Planck is credited with originally postulating

the idea of a discrete amount of energy, or quanta, to explain the behavior of

!To which Niehls Bohr responded with a reprimand similar to “stop telling God what to do.”

2It should also be noted that some of the elementary ideas of quantum mechanics are very
similar to ideas presented by some philosophers of ancient Greece. The curious reader is directed
to works by Werner Heisenberg for further discussion of these ideas [1].



blackbody radiation. A blackbody is a mass that absorbs all incoming light and
appears black at room temperature, hence the name. As a blackbody absorbs light,
its temperature rises, and it begins to emit the light. Prior to Planck’s theory, there
was a significant discrepancy between the observation of blackbody radiation and
the theories of the time, called the ultraviolet (UV) catastrophe. Previous studies
theorized that the radiation from a blackbody would by skewed toward higher
energies, putting the peak of radiation in the ultraviolet. Planck’s modification
to existing theory caused the peak to move toward lower energies and matched the
observed radiation spectrum extremely well.

Four years later, Einstein expanded the discretization of energy and
electromagnetic radiation to the interaction with metals through the theory of
the photoelectric effect. In 1921, Einstein was awarded a Nobel prize for this
discovery. The photoelectric effect opened the door for matter-light interactions in
the quantum regime. Six years after Einstein’s Nobel prize, Paul A.M. Dirac took
quantum matter-light interactions further through the development of a theory of
quantum radiation and absorption that won him the Nobel prize in 1933.

Although quantum mechanics was a quickly growing field in the first half
of the twentieth century, certain theoretical results were not able to be shown
experimentally, especially in the field of nonlinear optics. Nonlinear optics required
a high energy light beam to interact with a material to exploit the nonlinear
response from the medium. A transparent material typically exhibits linear
behavior when light interacts with it (e.g. light traveling through a glass window
pane). However, the polarization of the material has a nonlinear component that
is many orders of magnitude lower than the linear response. With the successful

demonstration of the MASER (Microwave Amplification by Stimulated Emission of



Radiation) in 1954 by Charles Townes, James P. Gordon, and H. J. Zeiger, and the
LASER built in 1960 by Theodore Maiman, the world of experimental nonlinear
optics was born. In 1961, the first demonstration of nonlinear effects was shown
by Franken et al. in crystalline quartz [2]. In 1967, Stephen Harris and colleagues
observed optical parametric fluorescence in a lithium niobate crystal [3]. Three
years later, David Burnham and Donald Weinberg demonstrated spontaneous
parametric downconversion in an ammonium dihydrogen phosphate crystal [4].
The nonlinear effects observed in the 1960s were inherently quantum
mechanical in nature. In 1956, Hanbury-Brown and Twiss performed a key
experiment that illustrated a method for measuring correlations between different
beams of light [5]. The Hanbury-Brown and Twiss setup would become a powerful
tool for quantum optics experiments. A proper formalism for quantum optics was
developed by Roy J. Glauber in 1963 that elucidated the statistical properties of
quantum states of light, which are much different from classical light [6]. Nearly
two decades later, Kimble, Dagenais, and Mandel confirmed the non-classical
behavior of light emitted from sodium atoms excited with a laser [7]. Short
and Mandel further measured the sub-Poissonian statistical nature of photons
in 1980 [8]. Grangier et al. measured the second-order coherence of heralded
single photons [9]. The same year using two-photon interference, Hong, Ou, and
Mandel experimentally determined the temporal duration of photons produced by
spontaneous downconversion in a KDP crystal to be of the order of femtoseconds,
or 107'° seconds [10]. This technique, termed Hong-Ou-Mandel interference,
has become standard practice in experimental quantum optics to determine the

indistinguishability of quantum states.



Since the demonstration of Hong-Ou-Mandel interference, the field of
quantum optics has grown rapidly, including the creation of various subfields such
as quantum information processing and quantum computation. Various protocols
for sending information encoded in quantum states have been invented [11, 12] and
experimentally demonstrated [13, 14, 15]. The field of the quantum information
technology has become such a mature field that there are commercial products
available from a number of companies to provide secure transfer of information
with quantum protocols.

In 1995, Peter Shor proved the ability of a quantum computer to factor very
large numbers, a task a classical computer is unable to complete [16]. Algorithms
for quantum computers were expanded by Grover in 1997 [17]. Experimental
realization of quantum bits were shown by a variety of groups in ions [18],
trapped atoms [19], and the atomic spin [20, 21]. This was followed by the first
demonstration of a quantum algorithm in 1998 by Jones, Mosca, and Hansen
in nuclear magnetic spins [22]. A landmark paper was presented in 2001 by
Knill, Laflamme, and Milburn describing an experimental protocol for quantum
computation with linear optics [23]. In the two centuries after this result, many
forms of creating optical qubits have been shown including the first demonstrations
of all optical controlled-NOT gates in 2003 by Pittman et al. and O’Brien et
al. [24, 25]. As with quantum information protocols, there has been a significant
interest in the commercialization of quantum computation, with applications
primarily in encryption. Quantum computation and quantum information sciences
continue to grow at a dizzying pace, without any slowing in sight.

In tandem with the beginnings of quantum optics, optical fibers were

being developed for sending information via classical light. The optical fiber



was first demonstrated by Charles Kao and George Hockham in 1966 [26]. The
use of light for classical communication in optical fibers spawned another field,
telecommunications, which is the backbone of countless services and technology
that are ubiquitous today. In contrast to the field of telecommunications, we
are interested in the nonlinear effects of optical fibers with intense laser pulses.
Optical fibers create photon states that are tailorable, depending on the properties
of the fiber including length and the spectral profile of the pump [27, 28]. This
dissertation is focused on the intersection of quantum optics and nonlinear optics
in optical fibers, with an emphasis on the creation, detection, and frequency
translation of quantum states of light.
In this dissertation, we explore the underpinnings of the processes involved
in creating and manipulating photon pairs in optical fibers. First, in Chapter
IT, we will begin with a discussion of essential quantum optics necessary for
this dissertation, which is one small part of the rich, complex world of quantum
mechanics. We begin with the fundamental equations that govern the behavior of
light, Maxwell’s equations. By quantizing Maxwell’s equations, we move from the
classical regime into the quantum regime and can explore the behavior of light at
the single photon level. A brief introduction into quantum optics will be presented
followed by a discussion of a common measurement in determining the number of
photons present, the second-order correlation function measurement, g(2)(7).
From quantum optics, we move into exploring the medium of interest in
this work, the optical fiber. Chapter III begins again with Maxwell’s equations,
although modified to describe the behavior of light in a medium. We discuss
the effects of the medium on the propagation of light and derive the nonlinear

Schrodinger equation in a fiber. From expanding the response of the medium, we



are able to uncover the nonlinear nature of the medium, opening the possibility to
explore various nonlinear phenomena. Simply put, these phenomena result from
the interaction of the optical fiber to redistribute the energy from the incident
light waves, to waves of different frequencies. Particular attention is given to the
process of creating photon pairs and to the scattering of an incident photon, called
modulation instability and Bragg scattering, respectively. Modulation instability
is studied in commercially available, birefringent step-index fiber, while Bragg
scattering is examined in the context of using photonic crystal fibers. Birefringent
fibers have become a common source for photon-pair generation [28, 29, 30, 31]. We
will discuss methods to tailor the spectral correlation of photon pairs produced in
birefringent fibers. Photonic crystal fibers have opened a world of nonlinear optics
across the visible spectrum [32, 33, 34, 35, 36]. We are concerned mainly with using
photonic crystal fibers for frequency translation [37].

In Chapter IV, we consider the prospect of verifying two-photon states
created in optical fibers. The process of heralding, or conditional preparation,
is used to produce pairs of photons. In this scheme, one photon from the pair is
detected to “herald” the presence of the other photon, drastically reducing the
effects of noise or empty counts in single-heralded photon pair generation. However,
moving to double-heralded two-photon states requires careful examination to distill
the photon number distribution in the presence of noise. We present methods for
effectively quantifying the contribution from different noise processes and recovering
the noise-free distribution that would be created if the noise was properly filtered
experimentally. This technique is a powerful tool in understanding the noise present

in double-heralded photon generation.



After creating and verifying double-heralded two-photon states, we explore
the outcomes of performing Bragg scattering on these states in Chapter V. As
shown in Chapter III, Bragg scattering is analogous to a beam splitter with the two
output ports consisting of the different frequency bands rather than two different
output directions from a beamsplitter. Put another way, Bragg scattering in a
fiber is analogous to a moving Bragg grating that couples two frequency channels
together. Through this formalism, it is straightforward to discuss the effects of
performing frequency translation on a two-photon state. We describe the process
with different input states and show the necessity for high efficiency and care when
calculating the final output states.

We conclude this exploration into the process of photon generation and
nonlinear quantum optics in Chapter VI. Although the work presented here
is a small set of the current work in the field of quantum optics, it provides a
background for further exploration into photon pair sources and other quantum
nonlinear effects in x® materials as well as a flavor of the considerations needed to

measure the photon-number distribution created from nonlinear sources.



CHAPTER II

QUANTUM STATES OF LIGHT

The concept of the photon, or a single quantum of light, is one of the many
advances that arose from the work of Planck and Einstein in the early twentieth
century. The term photon was originally coined in 1917 by Leonard Troland in
his studies of the absorption of the retina and human visual perception [38].!

The fundamental physical meaning of a photon is often difficult to elucidate in
experiments of quantum optics. Rather, operational definitions are often adopted
to provide some understanding (e.g. a single detection or “click” of a detector).
Indeed, much care must be taken when using the word photon to describe a single
quantum of energy.

In the face of some haste in terminology, quantum optics has become a
beautifully complex and diverse field at the intersection of optics and quantum
effects. Fortunately, much of the formalism of quantum optics follows from
classical optics with some modifications. This chapter will examine a small field
of quantum mechanics, focused on the behavior of photons. We are interested in
quantum states of light, especially the distributions created by sources, the spectral
properties of the photons created by these sources, and nonlinear interactions
involving photons. Following a brief introduction into quantum states, we will
describe types of measurements of quantum states typically performed in the

laboratory.

!The introduction of the word “photon” is often attributed to Gilbert N. Lewis from his 1926
Nature paper [39], although it appears first in Troland’s 1917 paper on visual perception. The
interested reader is directed to a recent paper on the history of the term by Helge Kragh [40]



2.1. The Harmonic Oscillator

In classical physics, a typical problem studied is the simple harmonic
oscillator. A simple harmonic oscillator is a pendulum or a mass on a spring
bouncing back and forth as shown in Fig. 2.1. To have a harmonic oscillator, it
is necessary to have a restoring force opposing the motion of the mass. For the
spring, this is the spring pulling the mass toward equilibrium and in a pendulum

the restoring force is gravity, pulling the mass to the bottom of the arc.

(a)

FIGURE 2.1. (a) A mass, m, on a spring with a spring constant k. The spring
force opposes the motion of the mass toward the equilibrium point, causing spring
to oscillate. (b) A pendulum composed of a mass, m, on a string of length L.
Gravity pulls the mass to the lowest point, causing the mass to oscillate. Both
the mass on a spring and pendulum are examples of simple harmonic oscillators.

As an illustration, let us examine the case of a mass on a spring, shown in
Fig. 2.1(a). Let the mass be m and the spring have a constant of k. We assume
everything is in one direction, so the vector nature of the force and displacement
are simplified to scalars with implicit direction along #. The spring exerts a force

on the mass proportional to the displacement from equilibrium

F(z) = —kx. (2.1)



From Newton’s second law, the force is equal to mass times acceleration, or the
second time derivative of displacement. Using this relation and the equation for

momentum, we can describe the equations of motion for the mass

2

chZZTf = —kx (2.2)
dz

Pa=m—. (2.3)

By solving the differential equations Eqs. 2.2 and 2.3, we have the behavior of the

spring in time

x(t) = xosin(wt) (2.4)

pz(t) = mwzg cos(wt), (2.5)

where z is the equilibrium point and w is the frequency of oscillation. The value

for the frequency follows from the original equations of motion
k
(2.6)

The energy stored in the spring is described by the Hamiltonian, which is the

sum of the kinetic, 7', and potential V', energies. The equations for the kinetic and

potential energies are given by

1 A P2

T=— — ) == 2.
Qm(dt) 2m (2.7)
Lo L 9,

V= §k;x = gmw e’ (2.8)

10



where the kinetic energy was written in terms of the momentum. Eq. 2.8 is valid
for conserving forces, or forces that are independent of the path taken during

motion. The Hamiltonian for this spring is then

2 2
p p L 99

ST Ve E ) 2.
H o + V(x) o T 5w (2.9)

In the formalism of quantum mechanics, the classical variables of position
and momentum become operators. Mathematically, operators act upon quantum
states and reveal information regarding a system. In general, operators act as
measurements for a quantum system. For example, if the state of the spring in
the example above is defined as |1)), we would apply the position operator, & to
the state in order to calculate the position of the mass. Similarly, if we act the
momentum operator, p on the state, the result is the momentum of the state.

Although this change to the quantum regime seems straightforward, there is a
very important caveat with regards to quantum operators. In quantum mechanics,
it is not possible to measure with certainty the value of two conjugate variables for
a system. Conjugate variables are properties of a system connected through the
Lagrangian for the system, which is a description of the behavior of the system.
This is in stark contrast to measurements in classical mechanics. In principle, it
is possible to measure with absolute certainty the value of the momentum and
position for a classical object.

Heisenberg showed that for the uncertainty in measuring position and

momentum of a quantum state must be larger than Planck’s constant by two

St

0y > ot (2.10)

11



A generalized form of this relation holds for any pair of non-commuting operators,

or operators that do not satisfy the commutation relation [41]
[21, B] — AB - BA=o0. (2.11)

Classically conjugate variables become non-commuting quantum operators.
Philosophically, non-commuting operators are related in that applying one to
the system inherently changes the system and thus measurement of the second
one will be affected by the first measurement. This is one of the philosophical
cruxes of quantum mechanics. Physical systems are unknown to an observer and
in order to gain information of the system, measurements must be made, but the
measurements inherently interact with the system and irreversibly change the
system. As a result, it is impossible to know with complete certainty the values
of two non-commuting operators, such as position and momentum.

To move to the quantum regime, the position and momentum in the
Hamiltonian from Eq. 2.9 become operators. Let us define two operators, a and

a' in terms of Z and p [42]

R mw [ . p
=4/ — —_— 2.12
¢ 2h <$+ mw) (2.12)
) mw . 2 213
¢ 2h (x mw )’ (2.13)

which have a commutation relation of [&, dq = 1. The operator a' is the Hermitian
conjugate of a. a' is known as the creation operator while @ is the annihilation
operator. The names for these operator result from the action each operator has on

the quantum harmonic oscillator. The creation operator raises the quantum state

12



from one energy level to the next. The annihilation operator lowers the state by
one energy level. We can also define two operators that are related to the position

and momentum operators, called the quadrature operators [43],

5 N SOV
- 1 1
o A T A-i- A
Y =\lg—==t=73 (a' —a) . (2.15)

The creation and annihilation operators can be combined to create the number

operator
N = dfa. (2.16)

When acting on a state of the quantum harmonic oscillator, the number operator
returns the energy level in which the state resides. By inserting Fqs. 2.12 and 2.13
into the Eq. 2.9, we can reformulate the Hamiltonian in terms of the creation and

annihilation operator to reveal a simple and meaningful form
-~ AT ~ 1 O 1
In Dirac notation, states of the quantum harmonic oscillator are written as

) = In), (2.18)

where n is the energy level of the quantum oscillator and required to be a positive
integer. This state is the eigenstate of the number operator, N, with an eigenvalue

equal to the level of the oscillator. The eigenvalues for the creation and annihilation

13



operators are defined as

aln) =+vnln—1) (2.19)
a'ln) =vn+1|n+1). (2.20)

To find the energy of a state, we apply the Hamiltonian

H|n) = hw (N + %) In) = hw (n + %) n). (2.21)

Therefore the energy of the quantum harmonic oscillator is easily extracted from

Eq. 2.21
E, = hw (n + —) . (2.22)

It is clear that for the ground state, [¢)) = |0), the energy is Ey = shw. Even at the
lowest energy, the state has a nonzero energy. This is the zero-point energy of the
oscillator, in contrast with the classical harmonic oscillator.

For the classical harmonic oscillator, the oscillation energy is allowed to be
continuous. However, in the quantum harmonic oscillator, the energy values that
are allowed become quantized. The quantization of the energy is performed by
restricting the oscillation frequency to be discrete values. The allowed energy levels
from the example above are odd-integer multiples of fw /2.

The derivation for a quantum oscillator is a brief example of the difference
in formalism between the classical and quantum regimes. An important result
of examining the quantum harmonic oscillator is the derivation of the creation

and annihilation operators. Familiarity with these operators allows one to extend

14



the formalism to quantum optics easily. As we will see in the next section, a and
a' are also used with the electric field in the number basis. In order to see this

correspondence, we must first quantize the electric field.

2.2. Quantization of the Electric Field

In general, light is governed by Maxwell’s equations, a set of four equations
that describe the behavior of electric and magnetic fields. In free space without

charges, Maxwell’s equations are

V- E=0 (2.23)
V.B=0 (2.24)
—0B
OE
VxB= IU()EQE, (226)

where E is the electric field, B is the magnetic field, pg is the permeability of free
space, and ¢, is the permittivity of free space.
By taking the curl of Eq. 2.25, inserting Eq. 2.26 and using a vector identity?,
the wave equation can be derived
O°E

VQE - MOGOW =0. (227)

The wave equation describes how the electric field travels through space and time
by relating the second derivatives of these coordinates. The derivatives are related

by a constant, pgeg, which together is also a fundamental constant, ¢, the speed of

2The identity is V x V x E =V (V- E) — V2E, where V? is the Laplacian
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the light

Ho€o = g (228)

It is convenient to describe the electric and magnetic fields in terms of a

vector potential, A

B=VxA (2.29)
HA
=5 (2.30)

The vector potential also satisfies the wave equation

VQA - MOGOW =0. (231)

With the vector potential, the form of the equations are easier to transform into
quantum mechanical equations by replacing the vector potential with quantum
operators.

To make sense of these equations, we will consider the fields in a cube with
each side of length L. Then the solutions to this wave equation are a sum of the

contributions of all the modes within a cavity over an expansion of plane waves [43]

A(r,t) = Z Z ewe { Axe exp [i(k - T — wyt)] + A exp [—i(k - T —wit)]}, (2.32)
k &=12

where Ay are constants that determine the strength of the contribution from each
mode, k is the wavevector, £ are the transverse spatial polarization, and ey is a

unit vector in the direction of the polarization of the mode. The wavevector has a
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component in each spatial direction and the allowed values are integers

2 .
ki = WL”J. (2.33)

The index j is over the spatial dimensions, j = x,y, 2 and v; is a positive integer
(including zero) denoting the mode number. The polarization vectors are transverse

by definition and chosen to be perpendicular such that
€ke - €ke = 555/. (234)

Now that we have a full solution for the vector potential in the cube, we can derive

the electric field using Eq. 2.30,

E(r,t)= Z Z ewciwg { Axe exp [i(k - T — wyt)] + Afe exp [—i(k - T —wyt)]} .

k £=1.2

(2.35)

The magnetic field is obtained similarly from Eq. 2.29,

B(r,t) = Z Z k Xkekgz'k {Axe expli(k - — wit)] + Aje exp [—i(k -1 — wit)] } .

k £=1,2

(2.36)

As expected, dividing E by B recovers the speed of light through the definition
w = ck. With equations for the electric and magnetic field, we can find the total

energy in the cavity

/ % [EOE(r,t)-E(r,t)+$B (r,t) B(r,t)] . (2.37)

g:

N | —

cavity
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The dot products of the electric and magnetic fields result in a Kronecker delta

function from the exponential terms

/ dVexp[ti(k —K') - r] = Vi, (2.38)
cavity
where V' = L? is the volume of the cube. After some algebra and invoking the

orthogonality of the mode functions, the total energy in the cube cavity becomes

=Y cVw; (AxeApe + ApeAxe) . (2.39)
k ¢

Classically, the terms in the parentheses can be combined together. However, in the
quantum formalism, it is important to preserve the order of the fields, as not all
variables commute as discussed in the previous section.

To complete the quantization of the electric field, we must turn the mode
functions into quantum operators. The mode functions now become operators that
create or annihilate photons in the chosen mode. Then modifying the creation and

annihilation operators to have a mode specific index

g [1cg) = /Mg g — 1) (2.40)

d;r{g \nk§> =/ Nke +1 ’leg + 1) . (2.41)
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Comparing Eq. 2.21 and Eq. 2.39 and noting that aa’ = 1 + a'a, the form of

the mode amplitudes as a quantum operator can be found by inspection

h
A 7 2.42
ke 7\ 5oy, e (2.42)
g LY (2.43)
e 20V iy, & '

For a given mode, the full electric field operator is then

- hwg | : X :
Eye = exe ﬁ {akgexp[z(k T — wit)] + algexp[—z(k T — wkt)]} : (2.44)

2.3. Number, Coherent, and Thermal States of Light

The eigenstates of the creation and number operators, |nye) are also called
Fock states. By definition, Fock states are excitations of a single mode. Any Fock

state can be written as a product of creation operators

Fock states are orthogonal ({(m|n) = d,,,) and comprise a complete basis of Hilbert

space. The completeness relation is

> Inw) (| = 1. (2.46)

ng=0

Fock states are a common basis for decomposing fields in quantum optics with an
intuitive meaning. The value ny is the number of excitations of the electric field, or
loosely the number of photons in a given mode, k. If the excitations of the electric

field are not in a single mode, but over multiple modes with a total number of
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photons, then the state is no longer a Fock state. The state is a number state.
Number states can occupy multiple modes, but with a total number of photons
over all the modes used to define the number state. In this case, the state can be

written as a product over the modes

W) =[] cnm Inm) (2.47)

where the coefficients ¢, ,,, define the probability amplitude to detect the photon
number state in a specific mode, indexed by m. Then the state can be defined as a

sum over the number basis

) = > [0,) =Y T cnm ) - (2.48)

With a description of the Fock basis, we can properly describe a common
state called the coherent state. The coherent state of light is a state that has a
constant relation between the phase of the states that comprise the basis. An
important example of a coherent state is the light produced by a laser. Coherent
light is an especially interesting example of light since it has classical behavior that
can be adequately described by quantum theory.

A coherent state is typically denoted by the complex number, a.. The

coherent state, |a), can be written as a sum of Fock states [44]

n

) = % z% \j‘m In). (2.49)
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The expectation value and second moment of the number operator for a coherent

state is

(n) = (ol ]a) = (o] d'ala) = |af* (2.50)

(n*) = (a| 7 |a) = |a|* + |af*. (2.51)

The variance of the photon number for the coherent state is found by using Eq.

2.50 and Eq. 2.51:
(An)? = (n?) — (n)* = |a* = (n). (2.52)

As with conjugate variables of position and momentum, the uncertainty in
measuring number is constrained by a measurement of the conjugate variable.
For coherent states, it is easiest to examine the uncertainty relation between the
quadratures X and Y, as defined in Eq. 2.14 and Eq. 2.15.

By inserting the quadratures into Eq. 2.10, we arrive at the Heisenberg

uncertainty relation for the quadratures of a field

1
(AX)* (AY)? > R (2.53)
For a coherent state, the uncertainties of the quadratures are
2 2 1
(AX)" = (AY)" = T (2.54)

By definition, a coherent state is the minimum-uncertainty state possible and is

displaced from the vacuum state by «. The coherent state has an average number

21



of photons of |a|?>. The quadratures can also be interpreted as the amplitude
and phase of the field of the field. Thus, the amplitude and phase of the field are
conjugate variables for light fields in the formalism of quantum mechanics.

The probability distributions of the states can be found by taking the inner
product of a Fock state with the coherent state. For a coherent state, in a given
mode the probability to find n photons in the mode is a Poisson distribution given

by

2n n
[T (2.55)

a2
P(n) = | (n]a) > = ! - w

For a Fock state, the probability to measure a particular photon number, n,
in a given mode is somewhat trivial. If the state under measurement is a Fock state
with a photon number different than n, then the value is zero by the orthogonality
of the number state basis. If the state is a superposition of Fock states, or a
number state, then the probability will pick out the probability for a given photon

number

2

— Z |- (2.56)

m

P(n) = (nly)[* =

(n (Z Cmn |nm>>

m

A state that has not yet been discussed is a thermal state of light. Thermal
states created by blackbody radiation were the basis for Planck’s original derivation
to quantize the modes of a cavity that lead to quantum mechanics. The light
radiates from the blackbody depending on the temperature in the form of a

Boltzmann factor. From statistical mechanics, the probability that an oscillator
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in thermal equilibrium is excited to the n state is given by [43]

exp [_ kEnT]

e Sexp | 2|

(2.57)

where kp is the Boltzmann constant and the energy is the quantized energy of the
harmonic oscillator, £, = nhw. With the substitution U = exp(fw), Eq. 2.57

becomes

P(n) = = (1-U)U" (2.58)

The denominator was changed by using the definition for a geometric series. We
can further simplify this equation by looking at the expectation value for n. By

using the definition of the expectation value and a little algebra, we find

U 1
(n) = ;”P(”) T1-U  exp(hw/kpT) — 1

(2.59)

And by solving for U in Eq. 2.59, we can rewrite the probability purely in terms of

the mean number

1 (n) \"
P() = 10 (1+ <n>) . (2.60)

By comparing the three distributions for a coherent state, a number state,
and a thermal state, it is clear that the measured distributions would be quite
different. For example, for a mean number of 2, the three distributions are plotted

in Fig. 2.2. As we will discuss in the following section, the difference in the
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statistics of these states drastically affects the coherence measurements of the states

and is often utilized to determine the type of light being measured.

1 T T 1 1
Il Coherent
[ IThermal
I Number
0.8 i
0.6 i
<
o
0.4 ]
0.2 ]
1 [l ~

FIGURE 2.2. Depiction of difference in the photon number distributions expected
for coherent, number, and thermal states of light with (n) = 2.

It should be noted that often attenuators are used with a laser to decrease the
intensity of the laser light to the level of single photons to perform experiments in
quantum optics. However, although an attenuated laser may have an intensity on
the order of a single photon, the statistics of the light continue to follow a Poisson
distribution, with a much lower (n). This is not the same as using a true number

state, created via a process such as spontaneous parametric down conversion.

2.4. Coherence Measurements

Many of the effects of optics, both classical and quantum, result from

the coherence properties of light. From interference of different beams of light,
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interactions between matter and light, coherence plays a key role in these
phenomena. An important measurement in quantum optics is the coherence of the
field.

The first order coherence is a measure of the temporal stability of an electric

field, FE(t), and for stationary fields is defined as [45]

(E*(t)E(t + 7))

M (r) —
0 = T EOR

(2.61)

where the angled brackets denote time averaging over t. When the first-order
coherence is measured between two fields, it quantifies the amount to which both
fields are stationary and able to interfere or interact. If the two fields are first-order
coherent, there will be interference and the two fields will effectively interact and
produce visible fringes.

The numerator in Eq. 2.61 is similar to the intensity of the field, I(t) =
(E*(t)E(t)). From the first-order coherence, another useful parameter is the
visibility of the interference. Physically, the visibility is the depth of the fringes
and defined as:

I(t)... —I(t),.
Visibility = Igt;max — 18@. (2.62)

Both the visibility and the first-order coherence are bound to be in the range

[0,1]. Tt is clear that first-order coherence is an interaction between the fields of
two beams of light. However, in quantum optics experiments, the second-order
coherence is typically of more interest. A simple explanation involves the Fock state

described in the previous section. A Fock state with well defined number will have
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a random phase, causing the interference with any other field to be random, and
appear to look the same as thermal light which also has a random phase.

The second-order coherence function is a measure of the second-order product
of the field, or the intensity. The second-order coherence function for classical fields

is defined as

5 B (E*(r1, ) E*(ro, t + 7)E(ra, t + 7)E(ry, 1))
9 T) = R 1) (B (e f 7B 1) (203

where rq, ry are two locations of the beams. If the beams are stationary, the

equation further simplifies:

I(W)I(t+ 7))
() (It +7)

g(r) = (2.64)

(
(1
Again, this is for classical fields. The second-order coherence function for quantum
states modifies Eq. 2.64 by changing the fields to quantum operators. The second-

order correlation function simplifies to the form [43]

(@lataa) (n(n—1)) _ (%) — (n)
@a? ()’ (n)?

(2.65)

By definition, the variance (An)2 must be non-negative. For a number state, where

the variance is 0, the second-order coherence for fields with (n) > 1 is

gD =1 - — (2.66)

which is inherently non-classical if 7 = 0. To see this, we must examine the second-
order coherence function for classic fields, Eq. 2.64 with 7 = 0. From the Cauchy-

Schwartz inequality, (I)* < (I2). Therefore the numerator must always be less than
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the denominator, causing ¢‘®(0) to have a minimum value of one without an upper
bound. For a number state with an average photon number of any value greater
than 0, g (0) will be less than one. This is a violation of the Cauchy-Schwartz
inequality and signature of a non-classical state. Table 2.1 shows the values for the
states described in the previous section. The second-order coherence function shows
a distinct difference between the statistical nature of each of the states.

TABLE 2.1. Second-order coherence function values

State | @ (r =0)

Coherent g( )(0) =1

Thermal @(0) =2
)

g
Number | ¢®(0) =1— &

1
(n)

For a perfect single-photon state, the second-order coherence function will be
exactly 0. Indeed, a second-order coherence function measurement is typically used
to show a state is non-classical and even that the field is specifically a single-photon

state.

I

—

FIGURE 2.3. Schematic of detection setup for measuring second-order coherence
function. In the experiment performed by Grangier et al., the source was a cascade
atom source producing pairs. One photon went to detector H and one photon went
to the beamsplitter that sent the other photon to A or B.

Experimentally, the second-order coherence is typically measured by counting

photons on highly sensitive detectors on the output of a beamsplitter. This
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detector setup is called a Hanbury-Brown Twiss setup, in honor of the experiment
conducted by Hanbury-Brown and Twiss in 1956 to measure the correlations from
distant stars at two different radio detectors [5]. One of the earliest second-order
coherence function measurements was made by Grangier, Roger, and Aspect in
1985 where they measured a highly nonclassical value for quantum states emitted
by an atom [9]. To calculate the second-order coherence function, the number of
clicks are recorded by two detectors, labeled A and B in Fig. 2.3. In the original
experiment, the detectors A and B were gated depending on the herald detector,

H. The second-order coherence measurement is calculated as follows [46]

NHABNH

A(r=0) =28
90 =0 = N N

(2.67)

The subscripts in Eq. 2.67 pertain to the detectors that are being recorded. For
example, during a given time window, Ny is the number of counts recorded by
detector A, N4 is the number of coincidence detections between detectors H
and A, and Npy4p is the number of triple coincidences between all three detectors
during the time window.

When the purpose is to show that a state is inherently quantum in nature
by violating the classical bound for the second-order coherence measurement,
this experimental technique is adequate. However, if the purpose is to determine
the photon number probability distribution, the second-order coherence is not
sufficient. In this case, it is important to measure the photon number distribution,
which requires a more sophisticated measurement, such as using multiplexed

detectors for direct inversion. This method will be discussed in Chapter IV.

28



CHAPTER III

OPTICAL FIBERS

At the heart of communications of the modern world sit optical fibers,
sending along information close to the speed of light in vacuum all over the world.
Optical fibers are like pipes for light, efficiently containing light through the
length of the fiber. Fibers are truly modern wonders, even leading to a Nobel
Prize in 2009 for Charles Kao for his work on the development of the silica optical
waveguide along with George Hockham [26]. After decades of development, optical
fibers that are extremely high in quality are readably available at low cost and have
revolutionized many industries.

Optical fibers have been fabricated with very small cores and good
waveguiding, giving rise to high energy density for easily achievable laser pulses.
The use of optical fibers has opened a large variety of applications of nonlinear
optics that have propelled experimental results in quantum optics. In this chapter,
we will cover the basics of fiber optics before moving into the nonlinear behavior of
light within optical fibers. The creation of quantum states of light in optical fibers

and quantum frequency translation will be discussed.

3.1. Basics of Optical Fibers

Optical fibers are commonly composed of glass and utilize the phenomena
of total internal reflection.! When light is incident upon an interface between

two different materials, the light will mostly transmit through the interface at a

!There are other types of fibers that use other methods to produce waveguiding such as
photonic bandgap fibers, but these fibers will not be discussed in this dissertation.
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shifted angle that depends on the ratio of the index of refraction of the light in
the materials. This gives rise to the bending that light rays exhibit in different
materials, which is utilized for the creation of lenses. However, if the angle of
incidence is large enough, larger than the critical angle, an interesting phenomena
occurs: the light does not transmit through the interface, but rather is reflected
off the surface at the same angle! This is total internal reflection (TIR) and an
important technique for guiding light through optical fibers.?

The typical structure for optical fibers is a cylinder with a core glass and
a shell of glass around the core. The core glass has a higher index of refraction
than the cladding. These types of fibers are called step-index fibers because of the
abrupt change in the index of refraction at the boundary between the two glasses.
The index contrast is commonly achieved by either doping the core glass with
elements that have a higher index (up-doping) or doping the cladding glass with
elements that have a lower index of refraction than the core (down-doping). An
example of the index of refraction profile between the core and cladding are shown
in Fig. 3.1.

Since the critical angle depends on the index of refraction of the core and the
cladding, the cone of allowed angles for light to enter depends on the two indices as
well. The cone of accepted angles is also called the numerical aperture (NA) and is

defined as:

NA = \/ngore - nzladding (31)

2 A practical example of this can be demonstrated by going to the bottom of a swimming pool
and looking up at the surface. By looking off in the distance, there will be a point when you can
no longer see out of the pool, but instead see the reflections off the bottom and sides. This is
because light that reflected off those surfaces is reflected from the interface, undergoing TIR.
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FIGURE 3.1. Left: Profile of the index of refraction along the radial direction for
a typical step index fiber. The index of refraction of the core is higher than the
cladding to allow for total internal reflection. Right: Head on view of a standard
step index profile. The core is in the center, surrounded by a cladding. The outer
most edge is a protective jacket and does not affect the waveguiding in the core of

the fiber.

With the NA, a normalized frequency can be defined, denoted as the V' parameter.
The V parameter is an estimate for the number of spatial transverse modes that
are able to propagate through the fiber. The V' parameter is a useful tool for
estimating the number of fiber modes with the cutoff for single-mode operation

at values lower than V' = 2.405. The V parameter is defined as [47]

2mag

V= A NA = A ngore - n?:ladding’ (32)

where ag is the radius of the fiber core and A is the wavelength of the light in
vacuum. Fibers that are designed to only allow for frequencies below the single-
mode limit for the V' parameter are called single mode fibers and are common
for optical transmission lines. The V' parameter arises from solving the boundary
conditions for a cylindrical waveguide, which produces Bessel functions for the

modes of the light in the optical fiber [48].
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Light travels along the fiber and is mostly confined to the core. In the
paraxial limit, light travels along the z-axis of the fiber with & || 2. Then the
momentum of the light has a magnitude equal to the propagation constant of the

fiber:

Rk ps— MWW

s (3.3)

The propagation constant is defined by three terms: the material dispersion,
waveguide dispersion, and nonlinear dispersion. The material dispersion is
determined by the material properties of the optical fiber, while the waveguide
dispersion is determined by the geometry. Material dispersion is typically much
larger than waveguide dispersion, with the exception of wavelengths close to the
zero dispersion wavelength [47]. In addition to the fiber core and the material
properties, the nonlinear dispersion depends on the intensity of the light.

For fibers that are cylindrically symmetric, there is coupling between the
two polarization axes of the fiber. Some fibers have been designed that break
the symmetry in the index of refraction by including additional material of a
higher index of refraction along one polarization axis. This creates a birefringence
that the optical modes experience and hence these fibers are called birefringent
fibers. One type of birefringent fiber is a PANDA type, with two circular rods
placed along the slow axis of the fiber. Fiber birefringence results in a linear
offset to the dispersion for light polarized along the slow axis. In breaking the
symmetry, the two polarization modes become decoupled and the light traveling
along one polarization through the fiber will stay oriented along that polarization.

A schematic of a PANDA fiber is shown in Fig. 3.2.
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FIGURE 3.2. A schematic of a typical PANDA type birefringent fiber showing the
presence of rods along one axis. This axis is called the slow axis since the index of
refraction is larger along this axis resulting from the rods. This results in a linear
addition to the dispersion for light polarized along this axis.

The first derivative of the propagation constant with respect to frequency is
the inverse group velocity, which we will call the group slowness for ease. Positive
group slowness values correspond to frequency ranges were the material exhibits
normal dispersion, where the index of refraction increases with increasing frequency.
Anomalous dispersion occurs at frequencies where the group slowness is negative, or
the index of refraction increases with decreasing frequency.

The second derivative of the propagation constant is called the group velocity
dispersion (GVD). GVD describes the rate at which the group slowness changes
with frequency. GVD is an important parameter in describing the propagation
of pulses of light, where there are many frequency components and differences
in propagation speeds for the components will change the temporal shape of the
orig