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DISSERTATION ABSTRACT

Roger A. Smith

Doctor of Philosophy

Department of Physics

September 2016

Title: The Double-Heralded Generation and Frequency Translation of Two-Photon
States of Light in Optical Fibers

The creation of optical states of light that are quantum mechanical in nature

in optical fibers is discussed and demonstrated experimentally. Specifically, two-

photon states created by spontaneous four-wave-mixing in commercially available

single-mode, birefringent fibers are studied. When creating photon states of light,

it is important to verify the created states are of the proper photon number

distribution and free of noise. We detail a method for combining thresholding,

non-number resolving detectors to characterize the photon number distribution

created via SFWM and a procedure to quantify the noise sources present in the

process. Frequency translation in optical fibers with two-photon states is discussed

and experimental considerations are presented.
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CHAPTER I

INTRODUCTION

Roughly one hundred years ago, a revolution was in the early, sleepy

beginnings that only a truly paradigm-shifting theory can hold. The adoption

of this new belief was slow and wrought with confusion and contradiction. At

the crux of the revolution was a change in humans’ fundamental understanding

of the mechanics of the universe. Contrary to how the world appears in the

everyday existence that humans enjoy, the deepest reality is not deterministic, but

probabilistic. This is the apparent contradiction at the root of quantum mechanics

(that is not much of a contradiction, after all).

The philosophical interpretation of quantum mechanics, a world built upon

probabilities, seemed so inconsistent with reality that Albert Einstein famously

denounced the theory, a theory of which he was a principal architect. Forms of his

famous statement remains well popularized today: God does not play dice with the

universe.1 There have been many summits full of the best and brightest minds in

physics, chemistry, and philosophy to understand the implications of such a theory.

Many questions have arisen, along with many answers, although not always clear.

The history of quantum mechanics is long and rich, far more than will be

covered here. Instead, we will connect some of the highlights that are particularly

interesting or illuminating.2 Max Planck is credited with originally postulating

the idea of a discrete amount of energy, or quanta, to explain the behavior of

1To which Niehls Bohr responded with a reprimand similar to “stop telling God what to do.”

2It should also be noted that some of the elementary ideas of quantum mechanics are very
similar to ideas presented by some philosophers of ancient Greece. The curious reader is directed
to works by Werner Heisenberg for further discussion of these ideas [1].
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blackbody radiation. A blackbody is a mass that absorbs all incoming light and

appears black at room temperature, hence the name. As a blackbody absorbs light,

its temperature rises, and it begins to emit the light. Prior to Planck’s theory, there

was a significant discrepancy between the observation of blackbody radiation and

the theories of the time, called the ultraviolet (UV) catastrophe. Previous studies

theorized that the radiation from a blackbody would by skewed toward higher

energies, putting the peak of radiation in the ultraviolet. Planck’s modification

to existing theory caused the peak to move toward lower energies and matched the

observed radiation spectrum extremely well.

Four years later, Einstein expanded the discretization of energy and

electromagnetic radiation to the interaction with metals through the theory of

the photoelectric effect. In 1921, Einstein was awarded a Nobel prize for this

discovery. The photoelectric effect opened the door for matter-light interactions in

the quantum regime. Six years after Einstein’s Nobel prize, Paul A.M. Dirac took

quantum matter-light interactions further through the development of a theory of

quantum radiation and absorption that won him the Nobel prize in 1933.

Although quantum mechanics was a quickly growing field in the first half

of the twentieth century, certain theoretical results were not able to be shown

experimentally, especially in the field of nonlinear optics. Nonlinear optics required

a high energy light beam to interact with a material to exploit the nonlinear

response from the medium. A transparent material typically exhibits linear

behavior when light interacts with it (e.g. light traveling through a glass window

pane). However, the polarization of the material has a nonlinear component that

is many orders of magnitude lower than the linear response. With the successful

demonstration of the MASER (Microwave Amplification by Stimulated Emission of
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Radiation) in 1954 by Charles Townes, James P. Gordon, and H. J. Zeiger, and the

LASER built in 1960 by Theodore Maiman, the world of experimental nonlinear

optics was born. In 1961, the first demonstration of nonlinear effects was shown

by Franken et al. in crystalline quartz [2]. In 1967, Stephen Harris and colleagues

observed optical parametric fluorescence in a lithium niobate crystal [3]. Three

years later, David Burnham and Donald Weinberg demonstrated spontaneous

parametric downconversion in an ammonium dihydrogen phosphate crystal [4].

The nonlinear effects observed in the 1960s were inherently quantum

mechanical in nature. In 1956, Hanbury-Brown and Twiss performed a key

experiment that illustrated a method for measuring correlations between different

beams of light [5]. The Hanbury-Brown and Twiss setup would become a powerful

tool for quantum optics experiments. A proper formalism for quantum optics was

developed by Roy J. Glauber in 1963 that elucidated the statistical properties of

quantum states of light, which are much different from classical light [6]. Nearly

two decades later, Kimble, Dagenais, and Mandel confirmed the non-classical

behavior of light emitted from sodium atoms excited with a laser [7]. Short

and Mandel further measured the sub-Poissonian statistical nature of photons

in 1980 [8]. Grangier et al. measured the second-order coherence of heralded

single photons [9]. The same year using two-photon interference, Hong, Ou, and

Mandel experimentally determined the temporal duration of photons produced by

spontaneous downconversion in a KDP crystal to be of the order of femtoseconds,

or 10−15 seconds [10]. This technique, termed Hong-Ou-Mandel interference,

has become standard practice in experimental quantum optics to determine the

indistinguishability of quantum states.
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Since the demonstration of Hong-Ou-Mandel interference, the field of

quantum optics has grown rapidly, including the creation of various subfields such

as quantum information processing and quantum computation. Various protocols

for sending information encoded in quantum states have been invented [11, 12] and

experimentally demonstrated [13, 14, 15]. The field of the quantum information

technology has become such a mature field that there are commercial products

available from a number of companies to provide secure transfer of information

with quantum protocols.

In 1995, Peter Shor proved the ability of a quantum computer to factor very

large numbers, a task a classical computer is unable to complete [16]. Algorithms

for quantum computers were expanded by Grover in 1997 [17]. Experimental

realization of quantum bits were shown by a variety of groups in ions [18],

trapped atoms [19], and the atomic spin [20, 21]. This was followed by the first

demonstration of a quantum algorithm in 1998 by Jones, Mosca, and Hansen

in nuclear magnetic spins [22]. A landmark paper was presented in 2001 by

Knill, Laflamme, and Milburn describing an experimental protocol for quantum

computation with linear optics [23]. In the two centuries after this result, many

forms of creating optical qubits have been shown including the first demonstrations

of all optical controlled-NOT gates in 2003 by Pittman et al. and O’Brien et

al. [24, 25]. As with quantum information protocols, there has been a significant

interest in the commercialization of quantum computation, with applications

primarily in encryption. Quantum computation and quantum information sciences

continue to grow at a dizzying pace, without any slowing in sight.

In tandem with the beginnings of quantum optics, optical fibers were

being developed for sending information via classical light. The optical fiber

4



was first demonstrated by Charles Kao and George Hockham in 1966 [26]. The

use of light for classical communication in optical fibers spawned another field,

telecommunications, which is the backbone of countless services and technology

that are ubiquitous today. In contrast to the field of telecommunications, we

are interested in the nonlinear effects of optical fibers with intense laser pulses.

Optical fibers create photon states that are tailorable, depending on the properties

of the fiber including length and the spectral profile of the pump [27, 28]. This

dissertation is focused on the intersection of quantum optics and nonlinear optics

in optical fibers, with an emphasis on the creation, detection, and frequency

translation of quantum states of light.

In this dissertation, we explore the underpinnings of the processes involved

in creating and manipulating photon pairs in optical fibers. First, in Chapter

II, we will begin with a discussion of essential quantum optics necessary for

this dissertation, which is one small part of the rich, complex world of quantum

mechanics. We begin with the fundamental equations that govern the behavior of

light, Maxwell’s equations. By quantizing Maxwell’s equations, we move from the

classical regime into the quantum regime and can explore the behavior of light at

the single photon level. A brief introduction into quantum optics will be presented

followed by a discussion of a common measurement in determining the number of

photons present, the second-order correlation function measurement, g(2)(τ).

From quantum optics, we move into exploring the medium of interest in

this work, the optical fiber. Chapter III begins again with Maxwell’s equations,

although modified to describe the behavior of light in a medium. We discuss

the effects of the medium on the propagation of light and derive the nonlinear

Schrödinger equation in a fiber. From expanding the response of the medium, we
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are able to uncover the nonlinear nature of the medium, opening the possibility to

explore various nonlinear phenomena. Simply put, these phenomena result from

the interaction of the optical fiber to redistribute the energy from the incident

light waves, to waves of different frequencies. Particular attention is given to the

process of creating photon pairs and to the scattering of an incident photon, called

modulation instability and Bragg scattering, respectively. Modulation instability

is studied in commercially available, birefringent step-index fiber, while Bragg

scattering is examined in the context of using photonic crystal fibers. Birefringent

fibers have become a common source for photon-pair generation [28, 29, 30, 31]. We

will discuss methods to tailor the spectral correlation of photon pairs produced in

birefringent fibers. Photonic crystal fibers have opened a world of nonlinear optics

across the visible spectrum [32, 33, 34, 35, 36]. We are concerned mainly with using

photonic crystal fibers for frequency translation [37].

In Chapter IV, we consider the prospect of verifying two-photon states

created in optical fibers. The process of heralding, or conditional preparation,

is used to produce pairs of photons. In this scheme, one photon from the pair is

detected to “herald” the presence of the other photon, drastically reducing the

effects of noise or empty counts in single-heralded photon pair generation. However,

moving to double-heralded two-photon states requires careful examination to distill

the photon number distribution in the presence of noise. We present methods for

effectively quantifying the contribution from different noise processes and recovering

the noise-free distribution that would be created if the noise was properly filtered

experimentally. This technique is a powerful tool in understanding the noise present

in double-heralded photon generation.

6



After creating and verifying double-heralded two-photon states, we explore

the outcomes of performing Bragg scattering on these states in Chapter V. As

shown in Chapter III, Bragg scattering is analogous to a beam splitter with the two

output ports consisting of the different frequency bands rather than two different

output directions from a beamsplitter. Put another way, Bragg scattering in a

fiber is analogous to a moving Bragg grating that couples two frequency channels

together. Through this formalism, it is straightforward to discuss the effects of

performing frequency translation on a two-photon state. We describe the process

with different input states and show the necessity for high efficiency and care when

calculating the final output states.

We conclude this exploration into the process of photon generation and

nonlinear quantum optics in Chapter VI. Although the work presented here

is a small set of the current work in the field of quantum optics, it provides a

background for further exploration into photon pair sources and other quantum

nonlinear effects in χ(3) materials as well as a flavor of the considerations needed to

measure the photon-number distribution created from nonlinear sources.
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CHAPTER II

QUANTUM STATES OF LIGHT

The concept of the photon, or a single quantum of light, is one of the many

advances that arose from the work of Planck and Einstein in the early twentieth

century. The term photon was originally coined in 1917 by Leonard Troland in

his studies of the absorption of the retina and human visual perception [38].1

The fundamental physical meaning of a photon is often difficult to elucidate in

experiments of quantum optics. Rather, operational definitions are often adopted

to provide some understanding (e.g. a single detection or “click” of a detector).

Indeed, much care must be taken when using the word photon to describe a single

quantum of energy.

In the face of some haste in terminology, quantum optics has become a

beautifully complex and diverse field at the intersection of optics and quantum

effects. Fortunately, much of the formalism of quantum optics follows from

classical optics with some modifications. This chapter will examine a small field

of quantum mechanics, focused on the behavior of photons. We are interested in

quantum states of light, especially the distributions created by sources, the spectral

properties of the photons created by these sources, and nonlinear interactions

involving photons. Following a brief introduction into quantum states, we will

describe types of measurements of quantum states typically performed in the

laboratory.

1The introduction of the word “photon” is often attributed to Gilbert N. Lewis from his 1926
Nature paper [39], although it appears first in Troland’s 1917 paper on visual perception. The
interested reader is directed to a recent paper on the history of the term by Helge Kragh [40]
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2.1. The Harmonic Oscillator

In classical physics, a typical problem studied is the simple harmonic

oscillator. A simple harmonic oscillator is a pendulum or a mass on a spring

bouncing back and forth as shown in Fig. 2.1. To have a harmonic oscillator, it

is necessary to have a restoring force opposing the motion of the mass. For the

spring, this is the spring pulling the mass toward equilibrium and in a pendulum

the restoring force is gravity, pulling the mass to the bottom of the arc.

(a) (b)

FIGURE 2.1. (a) A mass, m, on a spring with a spring constant k. The spring
force opposes the motion of the mass toward the equilibrium point, causing spring
to oscillate. (b) A pendulum composed of a mass, m, on a string of length L.
Gravity pulls the mass to the lowest point, causing the mass to oscillate. Both
the mass on a spring and pendulum are examples of simple harmonic oscillators.

As an illustration, let us examine the case of a mass on a spring, shown in

Fig. 2.1(a). Let the mass be m and the spring have a constant of k. We assume

everything is in one direction, so the vector nature of the force and displacement

are simplified to scalars with implicit direction along ~x. The spring exerts a force

on the mass proportional to the displacement from equilibrium

F (x) = −kx. (2.1)

9



From Newton’s second law, the force is equal to mass times acceleration, or the

second time derivative of displacement. Using this relation and the equation for

momentum, we can describe the equations of motion for the mass

m
d2x

dt2
= −kx (2.2)

px = m
dx

dt
. (2.3)

By solving the differential equations Eqs. 2.2 and 2.3, we have the behavior of the

spring in time

x(t) = x0 sin(ωt) (2.4)

px(t) = mωx0 cos(ωt), (2.5)

where x0 is the equilibrium point and ω is the frequency of oscillation. The value

for the frequency follows from the original equations of motion

ω =

√
k

m
. (2.6)

The energy stored in the spring is described by the Hamiltonian, which is the

sum of the kinetic, T , and potential V , energies. The equations for the kinetic and

potential energies are given by

T =
1

2
m

(
dx

dt

)2

=
p2
x

2m
(2.7)

V =
1

2
kx2 =

1

2
mω2x2, (2.8)

10



where the kinetic energy was written in terms of the momentum. Eq. 2.8 is valid

for conserving forces, or forces that are independent of the path taken during

motion. The Hamiltonian for this spring is then

H =
p2

2m
+ V (x) =

p2

2m
+

1

2
mω2x2. (2.9)

In the formalism of quantum mechanics, the classical variables of position

and momentum become operators. Mathematically, operators act upon quantum

states and reveal information regarding a system. In general, operators act as

measurements for a quantum system. For example, if the state of the spring in

the example above is defined as |ψ〉, we would apply the position operator, x̂ to

the state in order to calculate the position of the mass. Similarly, if we act the

momentum operator, p̂ on the state, the result is the momentum of the state.

Although this change to the quantum regime seems straightforward, there is a

very important caveat with regards to quantum operators. In quantum mechanics,

it is not possible to measure with certainty the value of two conjugate variables for

a system. Conjugate variables are properties of a system connected through the

Lagrangian for the system, which is a description of the behavior of the system.

This is in stark contrast to measurements in classical mechanics. In principle, it

is possible to measure with absolute certainty the value of the momentum and

position for a classical object.

Heisenberg showed that for the uncertainty in measuring position and

momentum of a quantum state must be larger than Planck’s constant by two

σxσp ≥
~
2
. (2.10)
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A generalized form of this relation holds for any pair of non-commuting operators,

or operators that do not satisfy the commutation relation [41]

[
Â, B̂

]
≡ ÂB̂ − B̂Â = 0. (2.11)

Classically conjugate variables become non-commuting quantum operators.

Philosophically, non-commuting operators are related in that applying one to

the system inherently changes the system and thus measurement of the second

one will be affected by the first measurement. This is one of the philosophical

cruxes of quantum mechanics. Physical systems are unknown to an observer and

in order to gain information of the system, measurements must be made, but the

measurements inherently interact with the system and irreversibly change the

system. As a result, it is impossible to know with complete certainty the values

of two non-commuting operators, such as position and momentum.

To move to the quantum regime, the position and momentum in the

Hamiltonian from Eq. 2.9 become operators. Let us define two operators, â and

â† in terms of x̂ and p̂ [42]

â =

√
mω

2~

(
x̂+

ip̂

mω

)
(2.12)

â† =

√
mω

2~

(
x̂− ip̂

mω

)
, (2.13)

which have a commutation relation of
[
â, â†

]
= 1. The operator â† is the Hermitian

conjugate of â. â† is known as the creation operator while â is the annihilation

operator. The names for these operator result from the action each operator has on

the quantum harmonic oscillator. The creation operator raises the quantum state
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from one energy level to the next. The annihilation operator lowers the state by

one energy level. We can also define two operators that are related to the position

and momentum operators, called the quadrature operators [43],

X̂ =

√
mω

~
x̂ =

1

2

(
â† + â

)
(2.14)

Ŷ =

√
1

2m~ω
x̂ =

1

2

(
â† − â

)
. (2.15)

The creation and annihilation operators can be combined to create the number

operator

N̂ = â†â. (2.16)

When acting on a state of the quantum harmonic oscillator, the number operator

returns the energy level in which the state resides. By inserting Eqs. 2.12 and 2.13

into the Eq. 2.9, we can reformulate the Hamiltonian in terms of the creation and

annihilation operator to reveal a simple and meaningful form

Ĥ = ~ω
(
â†â+

1

2

)
= ~ω

(
N̂ +

1

2

)
. (2.17)

In Dirac notation, states of the quantum harmonic oscillator are written as

|ψ〉 = |n〉 , (2.18)

where n is the energy level of the quantum oscillator and required to be a positive

integer. This state is the eigenstate of the number operator, N̂ , with an eigenvalue

equal to the level of the oscillator. The eigenvalues for the creation and annihilation
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operators are defined as

â |n〉 =
√
n |n− 1〉 (2.19)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.20)

To find the energy of a state, we apply the Hamiltonian

Ĥ |n〉 = ~ω
(
N̂ +

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉 . (2.21)

Therefore the energy of the quantum harmonic oscillator is easily extracted from

Eq. 2.21

En = ~ω
(
n+

1

2

)
. (2.22)

It is clear that for the ground state, |ψ〉 = |0〉, the energy is E0 = 1
2
~ω. Even at the

lowest energy, the state has a nonzero energy. This is the zero-point energy of the

oscillator, in contrast with the classical harmonic oscillator.

For the classical harmonic oscillator, the oscillation energy is allowed to be

continuous. However, in the quantum harmonic oscillator, the energy values that

are allowed become quantized. The quantization of the energy is performed by

restricting the oscillation frequency to be discrete values. The allowed energy levels

from the example above are odd-integer multiples of ~ω/2.

The derivation for a quantum oscillator is a brief example of the difference

in formalism between the classical and quantum regimes. An important result

of examining the quantum harmonic oscillator is the derivation of the creation

and annihilation operators. Familiarity with these operators allows one to extend
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the formalism to quantum optics easily. As we will see in the next section, â and

â† are also used with the electric field in the number basis. In order to see this

correspondence, we must first quantize the electric field.

2.2. Quantization of the Electric Field

In general, light is governed by Maxwell’s equations, a set of four equations

that describe the behavior of electric and magnetic fields. In free space without

charges, Maxwell’s equations are

∇ · E = 0 (2.23)

∇ ·B = 0 (2.24)

∇× E =
−∂B

∂t
(2.25)

∇×B = µ0ε0
∂E

∂t
, (2.26)

where E is the electric field, B is the magnetic field, µ0 is the permeability of free

space, and ε0 is the permittivity of free space.

By taking the curl of Eq. 2.25, inserting Eq. 2.26 and using a vector identity2,

the wave equation can be derived

∇2E− µ0ε0
∂2E

∂t2
= 0. (2.27)

The wave equation describes how the electric field travels through space and time

by relating the second derivatives of these coordinates. The derivatives are related

by a constant, µ0ε0, which together is also a fundamental constant, c, the speed of

2The identity is ∇×∇×E = ∇ (∇ ·E)−∇2E, where ∇2 is the Laplacian
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the light

µ0ε0 =
1

c2
. (2.28)

It is convenient to describe the electric and magnetic fields in terms of a

vector potential, A

B = ∇×A (2.29)

E = −∂A

∂t
. (2.30)

The vector potential also satisfies the wave equation

∇2A− µ0ε0
∂2A

∂t2
= 0. (2.31)

With the vector potential, the form of the equations are easier to transform into

quantum mechanical equations by replacing the vector potential with quantum

operators.

To make sense of these equations, we will consider the fields in a cube with

each side of length L. Then the solutions to this wave equation are a sum of the

contributions of all the modes within a cavity over an expansion of plane waves [43]

A (r, t) =
∑
k

∑
ξ=1,2

ekξ

{
Akξ exp [i(k · r− ωkt)] + A∗kξ exp [−i(k · r− ωkt)]

}
, (2.32)

where Akξ are constants that determine the strength of the contribution from each

mode, k is the wavevector, ξ are the transverse spatial polarization, and ekξ is a

unit vector in the direction of the polarization of the mode. The wavevector has a
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component in each spatial direction and the allowed values are integers

kj =
2πνj
L

. (2.33)

The index j is over the spatial dimensions, j = x, y, z and νj is a positive integer

(including zero) denoting the mode number. The polarization vectors are transverse

by definition and chosen to be perpendicular such that

ekξ · ekξ′ = δξξ′ . (2.34)

Now that we have a full solution for the vector potential in the cube, we can derive

the electric field using Eq. 2.30,

E (r, t) =
∑
k

∑
ξ=1,2

ekξiωk
{
Akξ exp [i(k · r− ωkt)] + A∗kξ exp [−i(k · r− ωkt)]

}
.

(2.35)

The magnetic field is obtained similarly from Eq. 2.29,

B (r, t) =
∑
k

∑
ξ=1,2

k× ekξ

k
ik
{
Akξ exp [i(k · r− ωkt)] + A∗kξ exp [−i(k · r− ωkt)]

}
.

(2.36)

As expected, dividing E by B recovers the speed of light through the definition

ω = ck. With equations for the electric and magnetic field, we can find the total

energy in the cavity

E =
1

2

∫
cavity

dV

[
ε0E (r, t) · E (r, t) +

1

µ0

B (r, t) ·B (r, t)

]
. (2.37)
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The dot products of the electric and magnetic fields result in a Kronecker delta

function from the exponential terms

∫
cavity

dV exp [±i (k− k′) · r] = V δk,k′ , (2.38)

where V = L3 is the volume of the cube. After some algebra and invoking the

orthogonality of the mode functions, the total energy in the cube cavity becomes

E =
∑
k

∑
ξ

ε0V ω
2
k

(
AkξA

∗
kξ + A∗kξAkξ

)
. (2.39)

Classically, the terms in the parentheses can be combined together. However, in the

quantum formalism, it is important to preserve the order of the fields, as not all

variables commute as discussed in the previous section.

To complete the quantization of the electric field, we must turn the mode

functions into quantum operators. The mode functions now become operators that

create or annihilate photons in the chosen mode. Then modifying the creation and

annihilation operators to have a mode specific index

âkξ |nkξ〉 =
√
nkξ |nkξ − 1〉 (2.40)

â†kξ |nkξ〉 =
√
nkξ + 1 |nkξ + 1〉 . (2.41)
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Comparing Eq. 2.21 and Eq. 2.39 and noting that ââ† = 1 + â†â, the form of

the mode amplitudes as a quantum operator can be found by inspection

Akξ →
√

~
2ε0V ωk

âkξ (2.42)

A∗kξ →
√

~
2ε0V ωk

â†kξ. (2.43)

For a given mode, the full electric field operator is then

Êkξ = ekξ

√
~ωk
2ε0V

{
âkξexp[i(k · r− ωkt)] + â†kξexp[−i(k · r− ωkt)]

}
. (2.44)

2.3. Number, Coherent, and Thermal States of Light

The eigenstates of the creation and number operators, |nkξ〉 are also called

Fock states. By definition, Fock states are excitations of a single mode. Any Fock

state can be written as a product of creation operators

|nk〉 =

(
â†k

)n
nk!

1/2
|0〉 . (2.45)

Fock states are orthogonal (〈m|n〉 = δnm) and comprise a complete basis of Hilbert

space. The completeness relation is

∞∑
nk=0

|nk〉〈nk| = 1. (2.46)

Fock states are a common basis for decomposing fields in quantum optics with an

intuitive meaning. The value nk is the number of excitations of the electric field, or

loosely the number of photons in a given mode, k. If the excitations of the electric

field are not in a single mode, but over multiple modes with a total number of
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photons, then the state is no longer a Fock state. The state is a number state.

Number states can occupy multiple modes, but with a total number of photons

over all the modes used to define the number state. In this case, the state can be

written as a product over the modes

|Ψn〉 =
∏
m

cn,m |nm〉 , (2.47)

where the coefficients cn,m define the probability amplitude to detect the photon

number state in a specific mode, indexed by m. Then the state can be defined as a

sum over the number basis

|Ψ〉 =
∑
n

|Ψn〉 =
∑
n

∏
m

cn,m |nm〉 . (2.48)

With a description of the Fock basis, we can properly describe a common

state called the coherent state. The coherent state of light is a state that has a

constant relation between the phase of the states that comprise the basis. An

important example of a coherent state is the light produced by a laser. Coherent

light is an especially interesting example of light since it has classical behavior that

can be adequately described by quantum theory.

A coherent state is typically denoted by the complex number, α. The

coherent state, |α〉, can be written as a sum of Fock states [44]

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 . (2.49)
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The expectation value and second moment of the number operator for a coherent

state is

〈n〉 = 〈α| n̂ |α〉 = 〈α| â†â |α〉 = |α|2 (2.50)〈
n2
〉

= 〈α| n̂2 |α〉 = |α|4 + |α|2. (2.51)

The variance of the photon number for the coherent state is found by using Eq.

2.50 and Eq. 2.51:

(∆n)2 ≡
〈
n2
〉
− 〈n〉2 = |α|2 = 〈n〉 . (2.52)

As with conjugate variables of position and momentum, the uncertainty in

measuring number is constrained by a measurement of the conjugate variable.

For coherent states, it is easiest to examine the uncertainty relation between the

quadratures X and Y , as defined in Eq. 2.14 and Eq. 2.15.

By inserting the quadratures into Eq. 2.10, we arrive at the Heisenberg

uncertainty relation for the quadratures of a field

(∆X)2 (∆Y )2 ≥ 1

16
. (2.53)

For a coherent state, the uncertainties of the quadratures are

(∆X)2 = (∆Y )2 =
1

4
. (2.54)

By definition, a coherent state is the minimum-uncertainty state possible and is

displaced from the vacuum state by α. The coherent state has an average number
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of photons of |α|2. The quadratures can also be interpreted as the amplitude

and phase of the field of the field. Thus, the amplitude and phase of the field are

conjugate variables for light fields in the formalism of quantum mechanics.

The probability distributions of the states can be found by taking the inner

product of a Fock state with the coherent state. For a coherent state, in a given

mode the probability to find n photons in the mode is a Poisson distribution given

by

P (n) = | 〈n|α〉 |2 = e−|α|
2 |α|2n

n!
= e−〈n〉

〈n〉n

n!
. (2.55)

For a Fock state, the probability to measure a particular photon number, n,

in a given mode is somewhat trivial. If the state under measurement is a Fock state

with a photon number different than n, then the value is zero by the orthogonality

of the number state basis. If the state is a superposition of Fock states, or a

number state, then the probability will pick out the probability for a given photon

number

P (n) = | 〈n|ψ〉 |2 =

∣∣∣∣∣〈n|
(∑

m

cm,n |nm〉

)∣∣∣∣∣
2

=
∑
m

|cm,n|2. (2.56)

A state that has not yet been discussed is a thermal state of light. Thermal

states created by blackbody radiation were the basis for Planck’s original derivation

to quantize the modes of a cavity that lead to quantum mechanics. The light

radiates from the blackbody depending on the temperature in the form of a

Boltzmann factor. From statistical mechanics, the probability that an oscillator

22



in thermal equilibrium is excited to the n state is given by [43]

P (n) =
exp

[
− En
kBT

]
∑
n

exp
[
− En
kBT

] , (2.57)

where kB is the Boltzmann constant and the energy is the quantized energy of the

harmonic oscillator, En = n~ω. With the substitution U = exp(~ω), Eq. 2.57

becomes

P (n) =
Un∑
n

Un
= (1− U)Un. (2.58)

The denominator was changed by using the definition for a geometric series. We

can further simplify this equation by looking at the expectation value for n. By

using the definition of the expectation value and a little algebra, we find

〈n〉 =
∑
n

nP (n) =
U

1− U
=

1

exp(~ω/kBT )− 1
. (2.59)

And by solving for U in Eq. 2.59, we can rewrite the probability purely in terms of

the mean number

P (n) =
1

1 + 〈n〉

(
〈n〉

1 + 〈n〉

)n
. (2.60)

By comparing the three distributions for a coherent state, a number state,

and a thermal state, it is clear that the measured distributions would be quite

different. For example, for a mean number of 2, the three distributions are plotted

in Fig. 2.2. As we will discuss in the following section, the difference in the
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statistics of these states drastically affects the coherence measurements of the states

and is often utilized to determine the type of light being measured.

1 2 3 4 5 6 7 8 9 10

n

0

0.2

0.4

0.6

0.8

1
P

(n
)

Coherent

Thermal

Number

FIGURE 2.2. Depiction of difference in the photon number distributions expected
for coherent, number, and thermal states of light with 〈n〉 = 2.

It should be noted that often attenuators are used with a laser to decrease the

intensity of the laser light to the level of single photons to perform experiments in

quantum optics. However, although an attenuated laser may have an intensity on

the order of a single photon, the statistics of the light continue to follow a Poisson

distribution, with a much lower 〈n〉. This is not the same as using a true number

state, created via a process such as spontaneous parametric down conversion.

2.4. Coherence Measurements

Many of the effects of optics, both classical and quantum, result from

the coherence properties of light. From interference of different beams of light,
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interactions between matter and light, coherence plays a key role in these

phenomena. An important measurement in quantum optics is the coherence of the

field.

The first order coherence is a measure of the temporal stability of an electric

field, E(t), and for stationary fields is defined as [45]

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

, (2.61)

where the angled brackets denote time averaging over t. When the first-order

coherence is measured between two fields, it quantifies the amount to which both

fields are stationary and able to interfere or interact. If the two fields are first-order

coherent, there will be interference and the two fields will effectively interact and

produce visible fringes.

The numerator in Eq. 2.61 is similar to the intensity of the field, I(t) =

〈E∗(t)E(t)〉. From the first-order coherence, another useful parameter is the

visibility of the interference. Physically, the visibility is the depth of the fringes

and defined as:

Visibility =
I(t)max − I(t)min

I(t)max + I(t)min

. (2.62)

Both the visibility and the first-order coherence are bound to be in the range

[0, 1]. It is clear that first-order coherence is an interaction between the fields of

two beams of light. However, in quantum optics experiments, the second-order

coherence is typically of more interest. A simple explanation involves the Fock state

described in the previous section. A Fock state with well defined number will have
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a random phase, causing the interference with any other field to be random, and

appear to look the same as thermal light which also has a random phase.

The second-order coherence function is a measure of the second-order product

of the field, or the intensity. The second-order coherence function for classical fields

is defined as

g(2)(r1, r2, τ) =
〈E∗(r1, t)E

∗(r2, t+ τ)E(r2, t+ τ)E(r1, t)〉
〈E∗(r1, t)E(r1, t)〉 〈E∗(r2, t+ τ)E(r2, t+ τ)〉

, (2.63)

where r1, r2 are two locations of the beams. If the beams are stationary, the

equation further simplifies:

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t+ τ)〉

. (2.64)

Again, this is for classical fields. The second-order coherence function for quantum

states modifies Eq. 2.64 by changing the fields to quantum operators. The second-

order correlation function simplifies to the form [43]

g(2)(τ) =

〈
â†â†ââ

〉
〈â†â〉2

=
〈n(n− 1)〉
〈n〉2

=
〈n2〉 − 〈n〉
〈n〉2

= 1 +
(∆n)2 − 〈n〉
〈n〉2

. (2.65)

By definition, the variance (∆n)2 must be non-negative. For a number state, where

the variance is 0, the second-order coherence for fields with 〈n〉 ≥ 1 is

g(2)(τ) = 1− 1

〈n〉
, (2.66)

which is inherently non-classical if τ = 0. To see this, we must examine the second-

order coherence function for classic fields, Eq. 2.64 with τ = 0. From the Cauchy-

Schwartz inequality, 〈I〉2 ≤ 〈I2〉. Therefore the numerator must always be less than
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the denominator, causing g(2)(0) to have a minimum value of one without an upper

bound. For a number state with an average photon number of any value greater

than 0, g(2)(0) will be less than one. This is a violation of the Cauchy-Schwartz

inequality and signature of a non-classical state. Table 2.1 shows the values for the

states described in the previous section. The second-order coherence function shows

a distinct difference between the statistical nature of each of the states.

TABLE 2.1. Second-order coherence function values

State g(2)(τ = 0)

Coherent g(2)(0) = 1
Thermal g(2)(0) = 2
Number g(2)(0) = 1− 1

〈n〉

For a perfect single-photon state, the second-order coherence function will be

exactly 0. Indeed, a second-order coherence function measurement is typically used

to show a state is non-classical and even that the field is specifically a single-photon

state.

FIGURE 2.3. Schematic of detection setup for measuring second-order coherence
function. In the experiment performed by Grangier et al., the source was a cascade
atom source producing pairs. One photon went to detector H and one photon went
to the beamsplitter that sent the other photon to A or B.

Experimentally, the second-order coherence is typically measured by counting

photons on highly sensitive detectors on the output of a beamsplitter. This
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detector setup is called a Hanbury-Brown Twiss setup, in honor of the experiment

conducted by Hanbury-Brown and Twiss in 1956 to measure the correlations from

distant stars at two different radio detectors [5]. One of the earliest second-order

coherence function measurements was made by Grangier, Roger, and Aspect in

1985 where they measured a highly nonclassical value for quantum states emitted

by an atom [9]. To calculate the second-order coherence function, the number of

clicks are recorded by two detectors, labeled A and B in Fig. 2.3. In the original

experiment, the detectors A and B were gated depending on the herald detector,

H. The second-order coherence measurement is calculated as follows [46]

g(2)(τ = 0) =
NHABNH

NHANHB

. (2.67)

The subscripts in Eq. 2.67 pertain to the detectors that are being recorded. For

example, during a given time window, NH is the number of counts recorded by

detector A, NHA is the number of coincidence detections between detectors H

and A, and NHAB is the number of triple coincidences between all three detectors

during the time window.

When the purpose is to show that a state is inherently quantum in nature

by violating the classical bound for the second-order coherence measurement,

this experimental technique is adequate. However, if the purpose is to determine

the photon number probability distribution, the second-order coherence is not

sufficient. In this case, it is important to measure the photon number distribution,

which requires a more sophisticated measurement, such as using multiplexed

detectors for direct inversion. This method will be discussed in Chapter IV.
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CHAPTER III

OPTICAL FIBERS

At the heart of communications of the modern world sit optical fibers,

sending along information close to the speed of light in vacuum all over the world.

Optical fibers are like pipes for light, efficiently containing light through the

length of the fiber. Fibers are truly modern wonders, even leading to a Nobel

Prize in 2009 for Charles Kao for his work on the development of the silica optical

waveguide along with George Hockham [26]. After decades of development, optical

fibers that are extremely high in quality are readably available at low cost and have

revolutionized many industries.

Optical fibers have been fabricated with very small cores and good

waveguiding, giving rise to high energy density for easily achievable laser pulses.

The use of optical fibers has opened a large variety of applications of nonlinear

optics that have propelled experimental results in quantum optics. In this chapter,

we will cover the basics of fiber optics before moving into the nonlinear behavior of

light within optical fibers. The creation of quantum states of light in optical fibers

and quantum frequency translation will be discussed.

3.1. Basics of Optical Fibers

Optical fibers are commonly composed of glass and utilize the phenomena

of total internal reflection.1 When light is incident upon an interface between

two different materials, the light will mostly transmit through the interface at a

1There are other types of fibers that use other methods to produce waveguiding such as
photonic bandgap fibers, but these fibers will not be discussed in this dissertation.
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shifted angle that depends on the ratio of the index of refraction of the light in

the materials. This gives rise to the bending that light rays exhibit in different

materials, which is utilized for the creation of lenses. However, if the angle of

incidence is large enough, larger than the critical angle, an interesting phenomena

occurs: the light does not transmit through the interface, but rather is reflected

off the surface at the same angle! This is total internal reflection (TIR) and an

important technique for guiding light through optical fibers.2

The typical structure for optical fibers is a cylinder with a core glass and

a shell of glass around the core. The core glass has a higher index of refraction

than the cladding. These types of fibers are called step-index fibers because of the

abrupt change in the index of refraction at the boundary between the two glasses.

The index contrast is commonly achieved by either doping the core glass with

elements that have a higher index (up-doping) or doping the cladding glass with

elements that have a lower index of refraction than the core (down-doping). An

example of the index of refraction profile between the core and cladding are shown

in Fig. 3.1.

Since the critical angle depends on the index of refraction of the core and the

cladding, the cone of allowed angles for light to enter depends on the two indices as

well. The cone of accepted angles is also called the numerical aperture (NA) and is

defined as:

NA =
√
n2

core − n2
cladding (3.1)

2A practical example of this can be demonstrated by going to the bottom of a swimming pool
and looking up at the surface. By looking off in the distance, there will be a point when you can
no longer see out of the pool, but instead see the reflections off the bottom and sides. This is
because light that reflected off those surfaces is reflected from the interface, undergoing TIR.
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FIGURE 3.1. Left: Profile of the index of refraction along the radial direction for
a typical step index fiber. The index of refraction of the core is higher than the
cladding to allow for total internal reflection. Right: Head on view of a standard
step index profile. The core is in the center, surrounded by a cladding. The outer
most edge is a protective jacket and does not affect the waveguiding in the core of
the fiber.

With the NA, a normalized frequency can be defined, denoted as the V parameter.

The V parameter is an estimate for the number of spatial transverse modes that

are able to propagate through the fiber. The V parameter is a useful tool for

estimating the number of fiber modes with the cutoff for single-mode operation

at values lower than V = 2.405. The V parameter is defined as [47]

V =
2πa0

λ
NA =

2πa0

λ

√
n2

core − n2
cladding, (3.2)

where a0 is the radius of the fiber core and λ is the wavelength of the light in

vacuum. Fibers that are designed to only allow for frequencies below the single-

mode limit for the V parameter are called single mode fibers and are common

for optical transmission lines. The V parameter arises from solving the boundary

conditions for a cylindrical waveguide, which produces Bessel functions for the

modes of the light in the optical fiber [48].
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Light travels along the fiber and is mostly confined to the core. In the

paraxial limit, light travels along the z-axis of the fiber with k̂ ‖ ẑ. Then the

momentum of the light has a magnitude equal to the propagation constant of the

fiber:

~k = kz ẑ = βẑ =
n(ω)ω

c
ẑ. (3.3)

The propagation constant is defined by three terms: the material dispersion,

waveguide dispersion, and nonlinear dispersion. The material dispersion is

determined by the material properties of the optical fiber, while the waveguide

dispersion is determined by the geometry. Material dispersion is typically much

larger than waveguide dispersion, with the exception of wavelengths close to the

zero dispersion wavelength [47]. In addition to the fiber core and the material

properties, the nonlinear dispersion depends on the intensity of the light.

For fibers that are cylindrically symmetric, there is coupling between the

two polarization axes of the fiber. Some fibers have been designed that break

the symmetry in the index of refraction by including additional material of a

higher index of refraction along one polarization axis. This creates a birefringence

that the optical modes experience and hence these fibers are called birefringent

fibers. One type of birefringent fiber is a PANDA type, with two circular rods

placed along the slow axis of the fiber. Fiber birefringence results in a linear

offset to the dispersion for light polarized along the slow axis. In breaking the

symmetry, the two polarization modes become decoupled and the light traveling

along one polarization through the fiber will stay oriented along that polarization.

A schematic of a PANDA fiber is shown in Fig. 3.2.

32



FIGURE 3.2. A schematic of a typical PANDA type birefringent fiber showing the
presence of rods along one axis. This axis is called the slow axis since the index of
refraction is larger along this axis resulting from the rods. This results in a linear
addition to the dispersion for light polarized along this axis.

The first derivative of the propagation constant with respect to frequency is

the inverse group velocity, which we will call the group slowness for ease. Positive

group slowness values correspond to frequency ranges were the material exhibits

normal dispersion, where the index of refraction increases with increasing frequency.

Anomalous dispersion occurs at frequencies where the group slowness is negative, or

the index of refraction increases with decreasing frequency.

The second derivative of the propagation constant is called the group velocity

dispersion (GVD). GVD describes the rate at which the group slowness changes

with frequency. GVD is an important parameter in describing the propagation

of pulses of light, where there are many frequency components and differences

in propagation speeds for the components will change the temporal shape of the

original pulse.

In optical fibers, the GVD is modified slightly to define the dispersion

parameter, D. The D parameter is in units of (ps/(nm·km)) and is related to the
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second derivative of the propagation constant with respect to frequency by

D = − ω2

2πc
GV D = − ω2

2πc

(
d2β

dω2

)
. (3.4)

There is a special wavelength at which the dispersion due to the material and

waveguide dispersion cancel out, which is called the zero dispersion wavelength

(ZDW) [48]. At the ZDW, D = 0. The ZDW is in the infrared, around λZDW =

1300 nm for typical step index fibers. In addition to the presence of the ZDW,

absorption from silica in the infrared is low. As result the extensive work has been

done in source development at wavelengths in this range for the transmission of

optical signals.

In typical step index fibers described above, the difference in the index of

refraction between the core and the cladding is very small, less than a few percent

of n ≈ 1.5. Two decades ago, Philip Russell and colleagues pioneered a method

to push the effective index of refraction of the cladding much closer to that of air,

1, by creating a photonic crystal fiber (PCF). The PCF has a core made of solid

silica, but rather than having another type of glass as the cladding, the cladding

is composed of a honeycomb structure with alternating silica and air [49]. The

effective index of the cladding is a weighted average of the amount of air that

occupies the cladding. As a result, the dispersion profile in a PCF is drastically

different. In addition to the ZDW in the infrared, there is a second ZDW in the

visible wavelength range that depends on the air filling fraction of the cladding [50].

Typical dispersion curves for a step index fiber and a PCF are shown below in Fig.

3.3 Having a ZDW in the visible opens the possibility for exploring a variety of

nonlinear interactions in optical fibers at visible wavelengths. As we will discuss in

the following sections, the linear behavior of the dispersion close to the ZDW allows
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energy and momentum to be conserved for fields symmetrically spaced from the

ZDW.

PCFs are typically considered “endlessly single-mode” fibers due to the

nature of the structure in the cladding. Specifically, the photonic crystal nature of

the cladding, hence the namesake, is what causes the V parameter to be modified

such that all guided wavelengths will be below the single mode cutoff [51]. The

ratio of the size of the individual air holes and the spacing between holes in the

cladding changes the V parameter and is ultimately chosen to produce single mode

operation for all guided wavelengths [52]. PCFs can be analyzed as step index

fibers with the cladding index of refraction as a weighted average,

ncladding(ω) = fnair + (1− f)ncore(ω) = f + (1− f)ncore(ω), (3.5)

where f is the fraction of the cladding composed of air. This approximation is valid

for a wide range of air-filling fractions, between 10% − 90% [53]. In addition to the

air-filling fraction, the core diameter has a large effect on the dispersion properties

of PCFs. Furthermore, the core diameters of PCFs are typically of the order 1µm,

which is smaller than commercial single mode fibers, which are on the order of

10µm. This results in a larger nonlinear response in PCFs, which has been utilized

to create very bright photon sources [35], as will be discussed in more detail below.

3.2. Nonlinear Wave Equation

In general, light is governed by fundamental equations labeled Maxwell’s

equations, originally formulated by James Clerk Maxwell and refined by Oliver

Heaviside. There are a few exceptions where light is not well described by
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FIGURE 3.3. The dispersion curves of a photonic crystal fiber (blue) and a single
mode, step index fiber (red, labeled SMF). Zero dispersion wavelengths (ZDW)
occur when the dispersion curves are zero. The large contrast in the index of
refraction between the core and the cladding for the PCF pulls the dispersion
curve down in the visible region, producing a ZDW in the visible.

Maxwell’s equations, but we will restrict ourselves to scenarios where the correction

to Maxwell’s equations are negligible. In a medium, Maxwell’s equations are [54]

∇ ·D = ρ (3.6)

∇ ·B = 0 (3.7)

∇× E =
−∂B

∂t
(3.8)

∇×H =
∂D

∂t
+ J, (3.9)

where the bold letters denote vector quantities. The vacuum electric field is

denoted by E and D is the electric displacement field. It should be noted that E
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and D have different units. Similarly, the vacuum magnetic field is denoted by B

and the magnetic field in a material is H, also called the macroscopic magnetic

field. ρ is the charge and J is the current density in the medium. We will restrict

this discussion to media which are without charge, causing ρ and J to go to zero.

The optical fibers used here are a neutral medium, thus free of charge sources and

appropriately described by this assumption. Furthermore, we assume the optical

fiber will be nonmagnetic. Then the vacuum and macroscopic magnetic fields are

proportional,

B = µ0H, (3.10)

where µ0 is the vacuum permeability.

A similar relation for the macroscopic and vacuum electric fields can be shown

with the constant of proportionality being the vacuum permittivity. However, for

the electric fields, there is an additional term to account for the behavior of the

medium. This term is the polarization P of the medium. The polarization is also a

vector and is the response of the medium to the presence of light. The relation is

D = ε0E + P. (3.11)

Although the behavior of the medium is dominated by the linear term, we do not

restrict this derivation to first order in the polarization. It is interesting to note

that the linear behavior is what allows for the frequency of light passing through
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glass to remain unchanged, for example through a glass window pane or through

glasses.3

Maxwell’s equations can be solved in terms of the vacuum fields and the

polarization of the medium using Eq. 3.10 and Eq. 3.11

∇ · E = − 1

ε0
∇ ·P (3.12)

∇ ·B = 0 (3.13)

∇× E =
−∂B

∂t
(3.14)

∇×B = µ0ε0
∂E

∂t
+ µ0

∂P

∂t
. (3.15)

With Maxwell’s equations in a medium, the wave equation for governing the

behavior of the light is found by taking the curl of the electric field E. This is

the same procedure as when solving for the wave equation in free space, but the

presence of the polarization term changes the free space wave equation by including

an additional term involving P. By taking the curl of E and invoking the typical

vector identity, we are left with the Laplacian of the electric field

∇×∇× E = ∇ (∇ · E)−∇2E = −∇2E. (3.16)

The curl of the curl of the electric field produces two terms; the first term is the

change in the divergence of the electric field and the second the Laplacian of the

field. If there is no source, then the first term is clearly zero in free space as a result

of Maxwell’s equations. However, in a medium this is not the case, as shown from

3Distortions of images where the location of different colors of light is different or the size
changes is a result of the glass having an index dependent on wavelength, not changing the
frequency of the light as it passes through the glass.
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Eq. 3.12. We assume that the divergence is much smaller than the Laplacian of

the electric field, and therefore Eq. 3.16 is reduced to the second term. Then the

nonlinear wave equation becomes

∇2E− 1

c2

∂2E

∂t2
=

1

ε0c

∂2P

∂t2
. (3.17)

This equation looks like the wave equation for a driven wave. Expanding the

polarization brings nonlinear terms into the wave equation. For ease, we group the

nonlinear terms together

P = P(1) + P(NL). (3.18)

The nonlinear response of the medium causes a wealth of phenomena, strongly

dependent upon the medium involved. The induced polarization of the medium

is related to the incident electric field by the electric susceptibility, χ(i), where i is

the order. In general, χ(i) is a tensor of rank i + 1. In centrosymmetric materials,

where the unit cell appears unchanged through inversion symmetry, the even-order

terms of the electric susceptibility vanish. Optical fibers are centrosymmetric and

therefore, the lowest order nonlinear term is third-order. In all materials, a third-

order electric susceptibility is present, however the second-order term dominates

in non-centrosymmetric media. The relation between the electric field and the
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polarization is

P(1)(r, t) = ε0

∫ t′

−∞
χ(1)(t− t′) · E(r, t′) dt′ (3.19)

P(NL)(r, t) = ε0

∫ t1

−∞
dt1

∫ t2

t1

dt2

∫ t3

t2

dt3 (3.20)

× χ(3)(t− t1, t− t2, t− t3)
... E(r, t1)E(r, t2)E(r, t3). (3.21)

The induced polarization is rather complicated due to the time ordering of

the fields in the optical fiber. For optical pulses that are longer than 1 ps, it is

appropriate to assume that the response of the medium is instantaneous, causing

the integrals in Eq. 3.21 to be evaluated at time t

P(NL)(r, t) = ε0χ
(3)E(r, t)E(r, t)E(r, t). (3.22)

3.3. Nonlinear Index of Refraction

Then in the frequency domain, the linear polarization and the electric field

can be combined by defining a frequency dependent dielectric constant

ε(ω) = 1 + χ(1)(ω) + 3χ(3)|E|2. (3.23)

We can relate Eq. 3.23 to the index of refraction by introducing a correction that is

nonlinear in the electric field

n′ = n+ n2|E|2, (3.24)
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where n2 is the nonlinear index coefficient. In general, the same procedure can be

performed for the optical loss by including a nonlinear loss term dependent upon

|E|2

α′ = α + α2|E|2. (3.25)

The dielectric constant is not restricted to be real, but is indeed complex if

there is loss. However, the assumption of negligible optical loss holds here as

well, allowing us to neglect α2 and α′. Alternatively, it can be seen as the third-

order susceptibility being purely real. Therefore the nonlinear index coefficient

becomes [48]

n2 =
3

8n
χ(3). (3.26)

The nonlinear change to the index of refraction is known as the optical Kerr effect

and gives rise to a nonlinear phase that depends on the intensity of the incident

light. The Kerr effect can lead to intensity induced self-focusing within a material

and is a common method for inducing mode-locked behavior in titanium-sapphire

lasers. Additionally, this is the origin of self-phase modulation for ultrashort pulses

through propagation in nonlinear media. The nonlinear phase is not constant

through the temporal duration of the pulse, affecting the spectrum of the pulse.

Self-phase modulation was first observed in 1967 in CS2 [55] and further studied

extensively in optical fibers by Roger Stolen and Chinlon Lin [56]. It is important

to note the accuracy to which experimental results matched theoretical predictions

by Stolen and Lin. There was excellent agreement between theory and experiment,

verifying the underlying intensity dependent phase modulation. With a nonlinear
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refractive index, it is straightforward to see how the change in the index of

refraction causes the phase of the field to change.

A typical plane wave is described by the following

E(r, t) = U(x, y)A(z, t)ei(βjz−ωjt) + c.c., (3.27)

where β is the propagation constant for the field and defined as β ≡ (n(ω)ω)/c,

U(x, y) describes the transverse spatial profile of the field, and A(z, t) is the

slowly varying envelope of the field. If the envelope does not change much over

a particular distance, then the phase accumulated over a distance L for a given

frequency is

φ(L) = βjL =
n(ωj)ωj

c
= φ0 +

n2 ω|E|2L
c

, (3.28)

where φ0 is the phase accumulated in a linear medium. It is clear that the

additional phase accumulated depends on the intensity of the incident field. This

is the result of a phase modulation from one field on itself, but there are also effects

from the presence of another field, called cross-phase modulation (XPM). XPM is

similar to Eq. 3.28, with an additional term for the second field. However, in this

dissertation, both effects are small relative to the processes of interest and therefore

neglected.

3.4. Four-Wave-Mixing Processes

From the form of Eq. 3.22, there are three electric field terms and one

polarization term. From this one nonlinear polarization term, a wealth of

interesting phenomena arise. A common inelastic scattering process in χ(3) media is
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Raman scattering, where a photon is absorbed by the medium, energy is transferred

to a phonon in the medium, and a lower energy photon (called the Stokes photon)

is transmitted. In contrast, the energy from a phonon can be added to the photon,

creating a photon that is shifted to a higher energy, called an anti-Stokes photon.

Raman scattering will be further discussed in later chapters as it is can negatively

affect the desired creation of photon pairs.

Expanding the total electric field as a summation of four electric fields

illuminates the complexity of terms arising from the nonlinear polarization

term [48]. Explicitly, the total electric field is

E =
1

2
x̂

4∑
j=1

Eje
i(βjz−ωjt) + c.c., (3.29)

where the sum over j denotes the different fields. We are assuming all the fields are

copolarized in the x̂ direction. The nonlinear polarization term can be expanded in

a similar manner

P =
1

2
x̂

4∑
j=1

Pje
i(βjz−ωjt) + c.c. (3.30)

By substituting Eq. 3.29 and Eq. 3.30 into Eq. 3.22, we can solve for the terms

that involve four-wave mixing. Indeed, there are many terms in this equation, but

we may neglect many of them. Terms corresponding to interactions between two

fields (XPM) or one field with itself (SPM) are neglected as described previously.

The remaining terms correspond to third harmonic generation, modulation

instability, phase conjugation, and Bragg scattering.

Third harmonic generation is when three photons of frequency ω are absorbed

by the fiber and create a photon at frequency 3ω. In practice, it is very challenging
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to achieve third harmonic generation in optical fibers. Although energy is conserved

in the process by definition, it is very challenging to conserve momentum in optical

fibers due to the dispersion relation not being linear over many octaves as is

necessary.4

Modulation instability is where energy is transferred from two fields, ω1 and

ω2 to two other fields, ω3 and ω4. This can be illustrated by examining one term

from Eq. 3.30,

P4 ∝ χ(3)E1E2E
∗
3e

(i∆βz−∆ωt), (3.31)

where

∆ω = (ω1 + ω2)− (ω3 + ω4) (3.32)

∆β = (β1 + β2)− (β3 + β4). (3.33)

Eq. 3.32 is energy conservation of the process while Eq. 3.33 represents

conservation of momentum. Generally, the total momentum of the fields must

be conserved, which includes the transverse momentum, but in the paraxial

approximation the momentum is along the fiber axis, which simplifies the equation

to propagation constants. Eq. 3.33 is called the phase-matching conditions for

the fields and is achieved by tailoring the medium and the frequencies used. The

propagation constants depend directly on the index of refraction of the medium

at the frequencies involved. If the fields ω1 and ω2 are independent fields incident

upon the medium, the process of creating fields at ω3 and ω4 is called phase

4Some groups are working toward this goal by employing different modes, where the input
modes and output modes do not have the same spatial profile in order to tailor phase matching
appropriately [57].
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conjugation for historical reasons. If ω1 = ω2 and fields are created at ω3 and ω4,

the process is called modulation instability.

Bragg scattering occurs when two fields with large intensities are incident

at frequencies ω1 and ω3 with a weak field inserted at frequency ω2. In this case,

a portion of the fields at frequencies ω1 and ω2 are converted to energy in fields

ω3 and ω4. The efficiency of conversion depends on factors such as the powers of

the strong fields, fiber length, phase matching, and bandwidths of the fields. If

a quantum state is inserted instead of the weak classical field, it is still possible

to translate the energy to a different frequency while preserving the quantum

information of the state [58, 37].

3.5. Classical Modulation Instability

In order to describe the process of modulation instability, let us start with an

electric field incident upon the optical fiber, polarized in the x̂ direction. We will

examine the case were the created fields are co-polarized with the pump, although

the formalism is very similar for the case where the pump field is orthogonal

to the created fields. In a cross polarized configuration, the third order electric

susceptibility is decreased by a factor of three, but the final equations are the

same. We assume that the pump field has an input transverse spatial profile that

is symmetric and has an area of Aeff . Then the input electric field is only a function

of (z, t)

E(z, t) = A(z, t)ei(βjz−ωjt) + c.c. (3.34)
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Here A(z, t) is the amplitude function of the field and satisfies the nonlinear

Schrödinger equation [59]

−i∂z = β(i∂t)A+ γ|A|2A, (3.35)

where β(i∂t) is the Taylor expansion of the dispersion and γ is the nonlinear

parameter. Higher-order effects such as group velocity dispersion (GVD) and

third order dispersion (TOD) result from expanding β(i∂t). However, we will be

working with pulses longer than 10 ps and will neglect these effects. The nonlinear

parameter is defined as

γ =
n2ω

cAeff

. (3.36)

This comes from solving the nonlinear wave equation, Eq. 3.17. In general, the

nonlinear parameter depends on the frequency of the carrier wave, but for this

dissertation the frequencies are relatively close together, allowing the parameter

to be approximated as a constant, independent of frequency. This last term on the

right describes the effect of SPM on the input pump pulse as described above.

For simplicity, we will assume that the fields are quasi-CW, or that the fields

are all overlapped in time and are moving together. Then the time components

of the field can be ignored and considered to be a global phase shift. For an input

field, at frequency ω1 with incident optical power P1, the solution to Eq. 3.35 is

A(z, t) =
√
P1 exp[i(φ1(z)− ω1t)], (3.37)
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where the phases of the fields are

φ(z) = β(ω1)z + γ(P1)z. (3.38)

The effects of SPM on the pump field is apparent in the phase of the pump field in

Eq. 3.38. With an equation for the pump, we can derive equations for the sideband

fields created by the pump present in an optical fiber. Let the created fields be

defined as

Aj(z, t) = Bj(z) exp[i(φ(z)− iωjt)], (3.39)

where Bj(z) is the slowly varying envelope of the sidebands. The signal, idler, and

pump frequencies must satisfy the relation derived above

2ω1 = ωs + ωi. (3.40)

After inserting Eq. 3.39 into the NLS Eq. 3.35 and performing a few steps of

algebra, we are left with the coupled wave equations for the signal and idler fields

dBi

dz
= i(βi − βp + γP1)Bi − iγP1B

∗
s (3.41)

dBs

dz
= i(βs − βp + γP1)Bs + iγP1B

∗
i , (3.42)

where βj = β(ωj) is the propagation constant at the j frequency. Solving these two

coupled equations yields the final equations governing the power of the signal and

idler fields through the fiber. For simplicity, we assume that the input is only in the
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idler field. The solutions with this boundary condition are

Pi(z) = 1 +

(
γP1

κMI

2)
sin2(κMIz) (3.43)

Ps(z) =

(
γP1

κMI

2)
sin2(κMIz), (3.44)

where κMI is the phase mismatch between the fields, defined as

κMI =

√(
∆βMI

2

)2

− (γP1)2. (3.45)

∆βMI is the phase mismatch for modulation instability that includes the material,

waveguiding, and nonlinear dispersion

∆βMI = βs + βi − 2βp + 2γP1. (3.46)

The evolution of the signal and idler fields is sinusoidal with propagation length.

This results from the time reversibility of the process: there is no reason for energy

to move from the pump to the signal and idler field, but not from the signal and

idler to the pump in the undepleted pump regime. Therefore, for optimal energy

conversion to the signal and idler fields, one must take care to account for the

length of fiber, input pump power, and dispersion properties.

It is important to note that this derivation was performed in the classical

limit. Furthermore, the boundary condition of having the idler field present at

the entrance of the fiber was used to solve for the evolution of the signal and idler

field strengths. To study this effect in the quantum regime, we would like to have

a theory that requires no input field in the signal channel. In fact, the case were

light is spontaneously produced in the signal and idler channel is the situation
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of interest. To move to the quantum regime, it is necessary to begin with the

nonlinear polarization and develop the Hamiltonian from that point.

3.6. Spontaneous Four-Wave-Mixing

To examine the spontaneous creation of photons in the signal and idler

channel, we begin from the nonlinear polarization. Modifying Eq. 3.22, we find

the interaction Hamiltonian for the system is

Hint = χ(3)

∫
dt

∫
dV EpEqÊsÊi + h.a. (3.47)

Here, the pump fields are Ep and Eq and assumed to be classical and gaussian fields

in frequency

Ep,q(x, y, z, t) = A0u0(x, y)e
− (ω−ωp,q)2

2σ2p,q ei(βp,qz−ωp0,q0t), (3.48)

where A0 is the input amplitude of the electric field and u0(x, y) is the spatial

distribution of the field. For complete generality, the two pump fields are labeled

differently, although in the case of MI, the fields are in fact the same. The signal

and idler fields are quantum fields, labeled by Ês(i), where the operator nature

arises from quantizing the electric field

Êj(x, y, z, t) =

∫
dωje

i(βjz−ωjt)uj(x, y)

√
~ωj
ε0
a†j(ωj). (3.49)
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Inserting Eq. 3.48 and Eq. 3.49 into the interaction Hamiltonian yields

Hint = χ(3)R
∫
dωp

∫
dωq

∫
dωs

∫
dωi

∫
dz

∫
dt

×Ep EqΦ(ωp, ωq, ωs, ωt)e
−i∆ωt + h.a., (3.50)

where R is the overlap integral of the spatial profiles for the fields, Ep(q) is the

gaussian profile of the pump field, Φ is the phase-matching function, and ∆ω =

ωp + ωq − ωs − ωi. Since the integral over time extends to all time, the last factor

becomes a delta function

∫
dt exp[−i(ωp + ωq − ωs − ωi)t]⇒ δ(ωp + ωq − ωs − ωi). (3.51)

Inserting Eq. 3.51 into Eq. 3.50 causes the integral over dωq to be evaluated at the

frequency ωq = ωs + ωi − ωp. Integrating out ωq causes the phase-matching function

to depend on the frequencies Φ(ωp, ωs + ωi − ωp, ωs, ωi).

The only term that depends on the propagation distance is the phase term

with the combinations of the propagation constants for all the fields. Computing

this integral leaves a sinc function times a phase factor dependent on the phase

mismatch and the length of the fiber

∫ L

0

dze∆βz = exp

[
i
∆βL

2

]
sinc

(
∆βL

2

)
. (3.52)

Since the nonlinear interaction is small compared to the linear behavior in the

fiber, the wave function can be solved via perturbation theory [60]. The state
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becomes [61]

|ψ(t)〉 = |0〉s |0〉i + ε

∫
dωs

∫
dωi ϕ(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |vac〉 , (3.53)

where ε is defined to contain the constants including the electric susceptibility,

spatial overlap function, and the pump field strengths. The function ϕ(ωp, ωs +

ωi − ωp, ωs, ωi) is the joint spectral amplitude, (JSA) [50]. Photon pairs created

via SFWM have a spectral distribution that depends on the JSA. The JSA is the

product of the pump functions and the phase-matching function

ϕ(ωp, ωs + ωi − ωp, ωs, ωi) =

∫
dωp exp

[
−(ωp − ωp0)2

2σ2
p

]
exp

[
−(ωs + ωi − ωp − ωp0)2

2σ2
p

]

× exp

[
i
∆βL

2

]
sinc

(
∆βL

2

)
. (3.54)

In frequency space, the pump is a gaussian function that is anti-diagonal, as

shown in Fig. 3.4(a). For a given pump frequency, an increase (decrease) in the

signal frequency causes a decrease (increase) in the idler frequency to maintain

energy conservation, shown above in Eq. 3.40. The width of the pump function

inversely depends on the bandwidth of the pump. Tuning the bandwidth of the

pump is one method for tuning the factorability of the created photon pair, as we

further develop below.

The phase-matching term in the JSA depends on both the dispersion of the

fiber (which determines the propagation constants of the light) and the fiber length.

An example for a 0.5m segment of Fibercore HB750 is present in Fig. 3.4(b). In

general, the phase mismatch, ∆β can be quite complicated, depending on the

waveguide and material dispersion of the fiber. For pulses of light that are shorter
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(a) (b)

FIGURE 3.4. (a) Spectrum for a pump with a pulse duration of 3.5 ps. The width
is directly determined by the pulse duration. (b) Phase matching function for
Fibercore HB750 fiber of length 0.5m.

than ∼ 1ps, it is important to take higher order dispersion, such as GVD and TOD,

into account. However, since this work is focused on pulses that are longer than

30ps, we can approximate the phase-matching term to be the same as described

above in Eq. 3.46.

The width of the phase-matching function inversely depends on the fiber

length. However, unlike the pump function, the phase-matching function is not

forced to be at a forty-five degree angle in frequency space. The angle relative to

the horizontal axis, θsi, results from the dispersion. Specifically, the angle depends

on the first derivative of the propagation constant of the pump, signal, and idler

fields [50]

θsi = − arctan

(
β1(ωp)− β1(ωs)

β1(ωp)− β1(ωi)

)
. (3.55)

Here β1(ωj) = ∂β/∂ω|ωj is the group slowness.
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(a)

(b)

(c)

FIGURE 3.5. (a) Joint spectral intensity for a 0.5m segment of HB750 fiber
pumped by a laser with pulse duration of 3.5ps, as shown in Fig. 3.4. The dashed
lines correspond to the slices plotted in (b) and (c). (b) Slice of the JSI at the
Idler wavelength of λi = 967.6 nm. (c) Slice of the JSI at the signal wavelength
λs = 685.7 nm.

In order to produce factorable states, it is important to carefully choose

a fiber length that matches the pump bandwidth with a dispersion profile that

has the phase mismatch at zero with frequencies that conserve energy. Then

the joint spectral intensity (JSI) will appear to be a product of a function only

dependent upon the signal frequency times a function only dependent upon the

idler frequency. The JSI is the modulus square of the JSA. An example of the JSI

for a factorable state is plotted in Fig. 3.5(a). Line plots of the JSI along slices

through signal and idler frequencies are shown in Fig. 3.5(b) and Fig. 3.5(c).
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If the group slowness of the pump and signal are matched, the angle of the

phase-matching function will be 0, causing a horizontal line. Conversely, if the idler

and and pump have the same group slowness, then the angle will be −90◦. In this

work, we are interested in the case where the phase-matching function is at 45◦

relative to the horizontal. This is achieved when the argument of arctan(x) is −1.

Thus, the difference in group slowness is the same in magnitude between the pump

and the signal and idler, but the sign is opposite

β1(ωp)− β1(ωs) = −
(
β1(ωp)− β1(ωi)

)
. (3.56)

By convention, the signal field has a higher energy than the idler field, ωs > ωp >

ωi. In materials with normal dispersion, the index of refraction monotonically

follows frequency. Therefore, n(ωs) > n(ωp) > n(ωi). In fact, it is impossible for

nonlinear interactions to occur where all frequencies are in the normal dispersion

region without a method of modifying the dispersion [62]. In crystals, for example,

the optic axis is rotated with a given frequency to impart a crystal defined

momentum to offset the phase-matching and overcoming the difference between

the propagation constants of the fields. In photonic crystals, it is possible to utilize

frequencies that are in both the anomalous region and the normal region in order to

achieve phase-matching and energy conservation.

Alternatively, the use of birefringence can be used with a normal dispersion

material in order to change the dispersion of certain fields involved in the nonlinear

interaction. In this work, birefringent optical fibers will be used to create photon

pairs. As described previously, a birefringent optical fiber has two effective

indices of refraction, one for each linear polarization in the transverse spatial

profile. Birefringent optical fibers are common in telecommunications, marketed
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as polarization-maintaining, for having low crosstalk between the transverse

linear polarizations along the fiber length. As a result, these fibers are cheap and

readably available, making them a useful source for nonlinear photon creation.

Furthermore, the dispersion properties fit the desired restrictions stated above,

creating symmetric phase-matching over a broad range of pump frequencies

accessible by our titanium sapphire lasers.

In a birefringent configuration, there are two main effects on the phase-

matching function, ∆β: the fields along the slow axis of the fiber experience a

linear shift in the index of refraction; and the strength of the self- and cross-phase

modulation from the pump is reduced by a factor of 3 [63]

∆βBMI =
2n(ωp)ωp

c
− n(ωs)ωs

c
− n(ωi)ωi

c
+ 2

∆nωp
c

+
2

3
γP, (3.57)

where ∆n is the birefringence.

In this work, the pump is oriented along the slow axis and the signal and idler

photons are along the fast axis. This configuration allows for the pump, signal,

and idler fields to exist in the normal dispersion region of the fiber. Additionally,

the frequency shift between the pump and created fields can be quite large, on the

order of 50 THz, which pushes the created fields away from the main Raman peak,

which is 13.2 THz below the pump frequency and decreases the contamination from

unwanted Raman photons [64, 65]. Orthogonal fields also allows for the practical

consideration of filtering the pump field from the produced fields after the fiber,

which can be challenging since all the fields are co-propagating out of the fiber.

In the regime of symmetric phase-matching, with the width of the phase-

matching and pump functions well matched, then it is possible to produce

factorable states, also called separable states. Factorable states result when it
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is possible to construct the JSA as the product of two functions, each that only

depends on the signal or idler frequency. As a result, the state would change from

Eq. 3.53 to a less complicated function,

|ψ(t)〉 = |0〉s |0〉i + ε

(∫
dωsFs(ωs)â

†
s(ωs)

)(∫
dωi Fi(ωi)â

†
i (ωi)

)
|vac〉 , (3.58)

where Fj(ωj) are functions defining the spectral properties of the signal and idler

fields. If the state is factorable, then a measurement of one photon from a created

pair does not affect the other photon in the pair. This is important for quantum

information processing [23], where it is necessary to measure one photon from the

pair of created photons without affecting the other. Additionally, factorable states

have a high purity, or only have one Schmidt mode [66], which is a temporal mode

of the photons created.

In the gaussian approximation to the phase matching function of the fiber, it

is possible to create a perfectly factorable state. However, since the phase matching

function is a sinc function, there are tails that do not go to zero. As a result, the

real purity is decreased slightly. It is possible to decrease the effect of the tails with

filters in frequency with hard edges before the first lobes in order to increase the

purity, at the cost of count rates [28]. This has been shown in birefringent fibers

that used polarization controllers to adjust the spectrum of the created photons

and then filtering to increase the purity of the states created in two different fiber

segments [67].

We are interested in created photons in only one Schmidt mode to increase

the separability of the photon pairs created and most importantly, create photons

that match the modes of the Bragg Scattering process to maximize conversion

efficiency.
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3.7. Bragg Scattering

By contrast to degenerate modulation instability described above, Bragg

scattering (BS) is a four-wave mixing process that utilizes two pumps of different

frequency. The BS process is depicted in Fig. 3.6. In BS, one photon from the

signal field and one pump photon are annihilated in the fiber and the created

photons are in the other pump and idler channel, s+ P1 → t+ P2.

FIGURE 3.6. Diagram of energies involved in Bragg scattering. The downward
arrow indicates a photon being annihilated from that field and the upward arrow
indicates photons being created into that field. In this schematic, a photon from
pump 2 and signal 1 are annihilated, creating a photon in pump 1 and signal 2.
The photon in signal 2 preserves the encoded information of signal 1 through the
process.

Bragg scattering is similar to processes in χ(2) materials such as sum

frequency generation (SFG) and difference frequency generation (DFG). However,

in the case of third-order materials, one has an extra parameter to tune in choosing

the frequencies of the fields involved in the nonlinear interaction. By tuning the

frequencies of the pump fields, one can change the frequency of the translated field.

Care is still required regarding the dispersion of the third-order medium to ensure

phase matching between the four fields. This is in contrast to nonlinear interactions

in second-order media, where there is only one pump and thus this extra tunability

of the translated frequency is lost.

The classical equations for the signal and translated fields are similar to the

fields in modulation instability, but the fields are conjugates. This results from
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the creation of one field while one field is annihilated. The equations in the fiber

are [59]

dzAs = i(βs − βp + γP1)As + 2iγ
√
P1P2At (3.59)

dzAt = i(βt − βp + γP2)At + 2iγ
√
P1P2As. (3.60)

The solutions to these equations are similar to the solutions for MI in Eq. 3.43 and

Eq. 3.44, but with a key difference. In MI, both fields increased together, but in

BS, one field increases at the cost of the other. With initial conditions of vacuum

in the translated field and unity in the signal field, As(0) = 1 and At(0) = 0, the

solutions for the fields yield the optical fibers as a function of length

Ps(z) = 1−
(

4γ2P1P2

κ2
BS

)
sin2(κBSz) (3.61)

Pt(z) =

(
4γ2P1P2

κ2
BS

)
sin2(κBSz), (3.62)

where κBS is the phase mismatch for BS, defined as

κBS =

√
[(βt − βs)/2 + γ(P2 − P1)/2]2 + 4γ2P1P2. (3.63)

It is clear that the sum of these powers add to 1, or written another way Ps(z) =

1 − Pt(z). The optical power oscillates between the two fields through the length of

the fiber and yields the optimal length for translation at zmax = (2j + 1)π/2κBS,

were j is an integer. If the fiber is equal to zmax, the power will be completely

transferred to the translated field.

In the quantum case, the pump fields are assumed to be classical fields and

remain unchanged in the interaction. In reality, there will be a few photons being
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added to one pump and subtracted from the other, but the undepleted assumption

is valid since the pumps are strong at the entrance of the fiber. The Hamiltonian of

the system is given by [68]

H = κ
(
a†sas − a

†
tat

)
+ ηa†sat + η∗asa

†
t , (3.64)

where κ is the wavevector mismatch and η quantifies the coupling induced by the

pump. aj are operators of the electric fields for the signal and translated fields.

The Heisenberg equations of motion are used to determine the behavior of the

operators along the length of the fiber, dzaj = i [aj,H]. The operators exhibit the

commutation relations of [aj, ak] = 0 and
[
aj, a

†
k

]
= δjk, where δjk is a Kronecker

delta. Using Eq. 3.64 and the Heisenberg equations of motion yield the solutions of

the operators

as(z) = τ(z)as(0) + ρ(z)at(0) (3.65)

at(z) = −ρ∗(z)s(0) + τ ∗(z)at(0), (3.66)

where the coefficients are

τ(z) = cos
[(
|κ|2 + η2

)1/2
z
]

+ i
κ

(|κ|2 + η2)1/2
sin
[(
|κ|2 + η2

)1/2
z
]

(3.67)

ρ(z) = i
η

(|κ|2 + η2)1/2
sin
[(
|κ|2 + η2

)1/2
z
]
. (3.68)

The coefficients are the transfer functions for the solutions of the operator

equations of motion. Furthermore, these transfer functions are very similar to the

coefficients in the case of light incident on a beamsplitter. Energy is conserved in
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the process by requiring that |τ |2 + |ρ|2 = 1, which also causes the BS interaction to

be unitary.

a†1

a†2

b†2

b†1

FIGURE 3.7. Diagram of a standard beamsplitter. (a1, a2) are the input channels
while (b1, b2) are the output channels.

For comparison, the input-output relations for a typical beamsplitter, with

inputs (a1, a2) and outputs (b1, b2) as shown in Fig. 3.7, are

a†1 = tb†1 + rb†2 (3.69)

a†2 = −rb†1 + tb†2. (3.70)

The coefficients for the transfer equations in the BS case are the same as the

coefficients for the standard beamsplitter. A simple analogy between the BS

interaction and a beamsplitter is light interacting with a moving beamsplitter. If

the light transmits through the moving beamsplitter, the frequency is unchanged.

However, the light reflected is reflected with a doppler shift from the beamsplitter

moving [69]. BS has been shown to preserve the quantum properties of the input

state while changing the frequency.

As an example, we will show the outcome for a single photon state input into

the fiber. The input state can be written as |ψ〉in = a†s,in |vac〉 = |10〉 where the

state is defined as |nsnt〉 with ns is the number of photons in the signal field and nt
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is the number of photons in the translated field. Using the transfer functions in Eq.

3.65 provides the output state after the BS interaction in fiber of length L

|ψ(L)〉out = a†s,in |vac〉out =
[
τ(L)a†s(0) + ρ(L)a†t(0)

]
|vac〉out

= τ(L) |10〉out − ρ
∗(L) |01〉out . (3.71)

If the phase mismatch, the pump properties, and fiber length are chosen judiciously,

it is possible to create an output state that is perfectly translated, where |τ(L)| = 0

and |ρ(L)| = 0. Although, the translated state receives a phase of φ = l [π − arg(ρ)],

where l is the number of photons in the input state, the translated state is still

a perfectly translated copy of the input signal photon state. In this case, an

absolute phase is without physical meaning and therefore the phase is arbitrary.

The imparted phase depends on the pump fields. It is important to note that in

order to create a state that is a pure superposition of the input and translated

frequencies, the pump fields must have stationary phases. If the phases are not

constant, then the created state becomes a mixed state, with a phase averaged over

all the possible phases imparted by the pumps. This example is illuminating and

presents the framework for comparing the process of BS to a single-photon input

for a typical beamsplitter. However, this assumed that the fields involved were

CW. The experiments performed in this work will be with pulses of light, not CW.

Therefore, we need to extend this analysis to the case of pulsed pumps and signals.

In general, the operators expanded in frequency are [70]

a†(ω)→
∫
dω′G(ω, ω′)a†(ω′). (3.72)
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The Green’s kernel in Eq. 3.72 follows the standard orthogonality relations of the

form

∫
dω′G(ω, ω′)G∗(ω′′, ω′) = δ(ω − ω′′). (3.73)

To complete the relation between the general BS case and a typical beamsplitter,

we need a correspondence between the original beamsplitter relations and the

Green’s kernels for the signal and translated fields. For an input signal field, there

are two outcomes during the BS process: translation in frequency or remaining

unchanged (reflection or transmission for a standard beamsplitter). Therefore, we

can write the operator for the signal and translated field at the end of the fiber as a

sum of the processes that result in that field. Explicitly, for the signal field, it will

be the sum of photons that were translated from the other field and photons that

were unchanged through the process [69, 71],

a†s(ωs)→
∫
dω′sGss(ωs, ω

′
s)a
†
s(ω
′
s) +

∫
dωtGst(ωs, ω

′
t)a
†
t(ωt) (3.74)

a†t(ωt)→
∫
dωtGts(ωt, ω

′
t)a
†
t(ω
′
t) +

∫
dω′tGtt(ωt, ω

′
t)a
†
t(ω
′
t), (3.75)

where the subscripts of the Green’s kernels denote the beginning frequency (right

index) and the final frequency (left index). The Green’s kernels in Eq. 3.74 and

Eq. 3.75 can be arranged into a transfer matrix to take input fields in ωs and ωt to

output fields in those frequencies

Gss(ωs, ω
′
s) Gst(ωs, ω

′
t)

Gts(ωt, ω
′
s) Gtt(ωt, ω

′
t)

 . (3.76)
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Again, the kernels Gjk define the process of ωk → ωj. The kernels can be rewritten

via a Schmidt decomposition [71]. A Schmidt decomposition is a form of singular

value decomposition, which is a generalization of an eigendecomposition for

matrices that are not square. The Schmidt decomposition of the kernels are

Gss(ωs, ω
′
s) =

∑
n

τnVn(ωs)v
∗
n(ω′s) (3.77)

Gst(ωs, ωt) = −
∑
n

ρnVn(ωs)w
∗
n(ω′t) (3.78)

Gts(ωt, ωs) =
∑
n

ρnWn(ωt)v
∗
n(ω′s) (3.79)

Gtt(ωt, ω
′
t) =

∑
n

τnWn(ωt)w
∗
n(ω′t), (3.80)

where the sum is over the mode functions defined as {Vn}, {Wn}, {vn}, {wn}, which

are orthonormal sets. We further restrict the values of the coefficients ρ2
n + τ 2

n = 1.

The coefficients ρn and τn are analogous to the beamsplitter coefficients of reflection

(translation) and transmission (no translation in frequency). By using Eqs. 3.77-

3.80, the input and output operators for the BS process can be rewritten using the

expansions from the Schmidt mode decomposition

a†s(ω)|in =
∑
n

a†nVn(ω) (3.81)

a†t(ω)|in =
∑
n

b†nWn(ω) (3.82)

a†s(ω)|out =
∑
n

c†nvn(ω) (3.83)

a†t(ω)|out =
∑
n

d†nwn(ω). (3.84)
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With these modes, the analogy between the input-output operators of the BS

process and the standard beamsplitter relations is made

a†n = τnc
†
n − ρnd†n (3.85)

b†n = ρnc
†
n + τnd

†
n. (3.86)

Clearly, the process of Bragg scattering in an optical fiber is analogous to the

interaction of a state on a beamsplitter. However, with Bragg scattering, the

coefficients are determined by the properties of the fiber and the pump fields. This

analogy is a powerful extension of typical input-output theory for beamsplitters

that simplifies nonlinear interactions of photon states in optical fibers. As we will

describe in Chapter V, this allows us to greatly simplify the interaction to explore

Bragg scattering with photon number states with more than one photon.
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CHAPTER IV

DOUBLE-HERALDED MEASUREMENTS OF TWO-PHOTON STATES

Photon-number states can be used for creating photonic operations for

quantum information sciences. Additionally, the teleportation of quantum states is

improved by using conditional number-state detection [72]. Conditionally prepared,

or heralded, number states are states where pairs of photons are created and

the detection of one half of each pair heralds the presence of the other photon.

The nonlinear-optical nature of crystalline waveguide structures [73], silicon

waveguides [74, 75], or silica fibers [76, 77] are common methods of creating

heralded single-photon states and more recently n-photon states [78, 79]. χ(3)

media are advantageous over χ(2) waveguide structures for creating sources easily

integrable into fiber networks for quantum communication [80, 81], but they tend

to suffer from higher levels of unwanted noise photons created by processes such

as Raman scattering. Thus, it is important to devise ways to characterize and

counteract this noise.

Heralding photons has been shown to effectively increase the probability of

measuring the other photon of the pair [10, 82, 33, 35]. Furthermore, heralding is

an effective way to mitigate the degradation of the signal beam by uncorrelated

noise photons. This can be shown easily by looking at an example. Let the

probability of creating a photon pair be ε and let us assume that the probability

of creating a noise photon is of the same order. For simplicity, let the probability

of creating a noise photon also be ε, where ε � 1. The two photons in the pair

are denoted as the herald photon and the signal photon, created via SFWM for

example.
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Without heralding, the probability of detecting a noise photon or a signal

photon from the pair is of the same order. In this case, the measurement of the

signal photon will be deeply affected by the presence of the uncorrelated noise

photon. The ratio of probability to create a photon pair (Ps) to a noise photon

(Pn) goes to PS/Pn = ε/ε = 1.

If we change the measurement to be a heralded detection of the signal

dependent upon a detection of the herald photon, the effect of noise is drastically

reduced. After heralding, the probability of detecting a signal photon approaches 1

in the ideal case, where there is no loss in the system and the detection efficiencies

are unity. Since the process of creating a noise photon is uncorrelated with the

photon pair creation, the probability of creating a noise photon remains ε. Then

the probability of a signal detection resulting from a noise herald is ε, which is

much less than 1. Additionally, noise in the herald channel for single-heralded

photons will cause there to be no photon in the signal channel which will appear

to be a decrease in count rates for an experiment, not a fundamental change to the

photon number distribution. Therefore, single-heralding is effective at decreasing

the effects of uncorrelated noise photons.

Moving to double-heralded generation, the deleterious effects of noise return.

The probability of producing two pairs of photons simultaneously is the square

of the probability producing a single pair, P2s = ε2. The process of producing

two pairs of photons is equal to the probability of producing one pair and one

noise photon simultaneously or the probability of producing two noise photons.

In this case, the ratio of probabilities of creating 2 photon pairs to the probability

of creating a pair and a noise photon is of order 1, P2s/P1s1n = ε2/ε2 = 1. The

effects of noise are again similar to the case of the unheralded photon experiment.
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The problem of double-heralding fundamentally arises from the uncorrelated

nature of producing two photon pairs. The production of each pair is uncorrelated

with the production of the other pair, causing the probability of the production

of two pairs to be ε2 in the example above. If the two pairs were correlated in

production, it would be possible to utilize this behavior to reduce the noise in

double-heralding experiments. Noise for heralding events skews the photon number

distribution toward lower photon numbers by increasing the number of herald

photons while leaving the signal channel unchanged, making the signal channel

appear to be a distribution with a larger photon number than is actually present.

Although double-heralding is susceptible to noise more than single-heralding,

double-heralding is still useful for preparing two-photon states. In this chapter, we

will show that the effect of noise in the herald channel is equivalent to a loss in the

signal channel. Additionally, we will explore a method for measuring the noise and

inferring the noise-free photon number distribution.

The method of detecting quantum states described here is independent of the

number of modes present in the state being measured. There is no mode-specific

sorting occurring in the measurement and in the assumption that all modes are

measured with the same efficiency, then the multimode nature of the light has

no effect upon the measurement. This is in contrast to mode specific techniques

such as quantum state tomography [83, 84, 85, 86], that require Fock states, or

single mode states for proper measurement. While this technique does not give full

state reconstruction, it does provide important information regarding the photon

number distribution without the need for precisely matched local oscillator fields to

investigate the state under measurement.
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The work presented in this chapter was carried out in collaboration with

Dileep Reddy and Dashiell Vitullo [87].

4.1. Spatially-Multiplexed Photon Detection

There are many types of detectors that have recently been developed

for the detection of single photons. Superconducting bolometers, cryogenic

superconducting wire arrays, and transition edge detectors have all been developed

to provide number resolution. However, these types of detectors must be operated

at cryogenic temperatures, between 1mK to 10K and have potentially large

insertion losses. Alternatively, avalanche photodiodes (APDs) operate at room

temperature, have high efficiencies [88], and are relatively inexpensive. APDs are

typically utilized in Geiger mode and are thresholding, or do not discriminate

between the number of photons incident. The response from an APD is the same

for one or more photons. Although APDs are thresholding detectors, it is possible

to measure the photon number distribution by direct inversion and sampling the

input beam [89, 90, 91, 92, 93, 94, 95, 96]. The sampling can be done either in time

or space.

Temporal multiplexing relies on having having multiple optical paths that

are combined upon one or two detectors. Each path is equally possible and has

a different travel time. The different paths correspond to different time bins that

arrive at the detector. In this scheme, it is important to carefully design the

experimental apparatus such that the difference in propagation time for each path

is longer than the dead time of the detectors. The thresholding detectors used in

quantum optics experiments are typically detectors with very high voltage gain,

such as an avalanche photodiodes (APDs), and have a dead time after detecting a
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photon. If a second photon arrives before the detector has had sufficient time to

reset, the photon will not be detected. The dead time is commonly of the order 50

ns. Therefore, it is important that each path is longer than the dead time of the

detectors used in the experiment. Furthermore, it is important that pulses of light

do not arrive at the temporally multiplexed detectors before all the time bins have

been recorded by the detectors. This restriction causes the decrease in possible

detection speed in exchange for more time bins.

Spatially multiplexed detection utilizes beamsplitters to divide the input

light into many paths that are physically distinct with a detector at the end of

each path. This scheme does not suffer from the issue of long wait times between

pulses. The time between pulses needs to be slightly longer than the dead time of

one detector only, not the product of the number of paths times the detector dead

time. In this case, the cost of more detection bins is physical space and a need for

more experimental equipment. Spatially multiplexed APDs can be used with high-

repetition-rate sources, easily achieving counting rates on the order of MHz. Fig.

4.1 depicts an example of spatially multiplexed detectors.

FIGURE 4.1. Spatially multiplexed detector setup with three detectors to
approximate a number-resolving detector. Each detector receives a fraction Ri of
the light from the original state and has an efficiency of ηi of detecting an incident
photon.
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The measurements of spatially multiplexed detectors with thresholding

detectors are strongly dependent upon the efficiency of detection for each detector

and the fraction of the input beam that is directed toward each detector. The

non-unity efficiency must be taken into account when inverting the measurement

data to determine the input photon number probabilities. The efficiencies of the

detectors and the amount of the input state sampled by each detector is used with

standard probabilities to define the conditional probability matrix of the detection

system. The conditional probability matrix maps detection events into the photon

number distribution.

With thresholding detectors, the presence of one or more photons causes the

detector to “click” or “fire.” The elements of the conditional probability matrix

map pn photon number distribution into qk clicks. In general, the matrix is of the

form [97]

q = C · p, (4.1)

where p is the photon number distribution of the input state, C is the conditional

probability matrix, and q is the matrix of measured clicks from the detectors.

For example, if the spatially multiplexed detection system is composed of three

detectors, the Eq. 4.1 becomes


q1

q2

q3

 =


P (1|1) P (1|2) P (1|3)

0 P (2|2) P (2|3)

0 0 P (3|3)



p1

p2

p3

 , (4.2)
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where qk is the probability of k clicks, pn is the probability of n photons incident

upon the system of spatially multiplexed detectors, and the matrix elements P (k|n)

are the probability to produce k clicks, given n incident photons. It is assumed that

the probability to create photon numbers larger than n = 3 is negligibly small. It

is important to include enough detectors to measure photon pairs that are larger

than the desired photon pair states to be measured. For systems with more than

3 detectors, the matrix is expanded and the vectors p and q are extended. This

method easily generalizes to larger photon numbers.

The matrix can be extended to include the vacuum term, p0, but the resulting

matrix element would cause the conditional probability matrix to no longer be

linearly independent. Instead, the vacuum component is calculated by assuming

the probabilities add to unity

p0 = 1− (p1 + p2 + p3) . (4.3)

It is not necessary to record which detector or combination of detectors click

for a given pulse. It is only important to measure the total number of detections

that occur over a given time window containing many pulses. This is incorporated

into the elements of the conditional probability matrix. We record many pulses

and collect the total counts of single-, double-, and triple-detection events between

the three measurement detectors. Through the use of set theory, this data can be

combined to determine the equations for one and only one detector firing, two and

only two detectors firing, or three and only three detectors firing. This is directly

apparent in the matrix elements of the conditional probability matrix. Using this
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method, the matrix elements are

P (1|n) = P(A|n) + P(B|n) + P(C|n)− 2 (P(AB|n) + P(AC|n) + P(BC|n))

+ 3P(ABC|n) (4.4)

P (2|n) = P(AB|n) + P(AC|n) + P(BC|n)− 3P(ABC|n) (4.5)

P (3|n) = P(ABC|n), (4.6)

where P (i|n) define the probability of i and only i detection events given n incident

photons and P(l|n) is the probability that all detectors in the set l will click,

given n incident photons, where l ∈ {A,B,C,AB, ..., ABC}. This method

drastically simplifies the collection method since there is no need for measuring

and recording each individual pulse. Instead, it is possible to measure many pulses

while collecting the total number of the different detection events and recover this

information.

The non-unity efficiencies and thresholding behavior of the detectors is taken

into account directly by the probability that a given set of detectors will click. The

probabilities are

P(i|n) =1− (1−Riηi)
n (4.7)

P(ij|n) =1− (1−Riηi)
n − (1−Rjηj)

n + (1−Riηi −Rjηj)
n (4.8)

P(ijk|n) =1− (1−Riηi)
n − (1−Rjηj)

n − (1−Rkηk)
n

+ (1−Riηi −Rjηj)
n + (1−Riηi −Rkηk)

n + (1−Rjηj −Rkηk)
n

− (1−Riηi −Rjηj −Rkηk)
n , (4.9)
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where i, j, k refer to detectors {A,B,C}, and ηi is the total detection path

efficiency for the ith detector and Ri is the fraction of light directed toward that

detector, as depicted in Fig. 4.1. ηi includes the transmission losses in the beam

path and the quantum efficiency of the corresponding APD. The thresholding

nature of the detector creates the terms 1 − (1 − Riηi)
n that determine the

probability of detecting a photon. This results from starting with the probability

that n photons are not detected at a given detector, i: (1−Riηi)
n. Then subtracting

this from one gives the probability that at least one of the n photons is detected at

detector i for thresholding detectors [98].

The efficiency in the inversion algorithm is the total efficiency of collection for

the detection apparatus. This efficiency includes optical transmission losses through

any optical elements (filters, dichroic mirrors, polarizers, etc.), coupling losses in the

fibers used to couple the light into the APDs, and the quantum efficiencies of the

APDs. Inserting the total efficiency in the inversion algorithm reproduces the true

photon number distribution incident upon the spatially multiplexed detectors.

It is of utmost importance that the proper efficiency is used in the inversion

algorithm. The output photon number distribution depends sensitively on the

efficiency used in the conditional probability matrix. Incorrect estimation of

efficiency for the detectors can falsely present a distribution that resembles a one-

photon state. In fact, if the efficiency used in the inversion algorithm is higher than

the experimental efficiency of the data, the photon distribution will appear to be

a one-photon number state when the state under measurement is actually a two-

photon number state. Conversely, if the efficiency is underestimated, the photon

number distribution will skew toward higher photon numbers. For detectors with

lower efficiencies, there must be more photons present in order to register a click
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and many clicks will be missed. Lower efficiencies results in clicks having a higher

probability of occurring with larger photon numbers. Therefore, experiments with

low efficiencies and a large collection of clicks registering that only one and one

detector fired will appear to measure photon number states with higher two-photon

and three-photon components. An example of the importance of correct efficiency

estimation is shown in Fig. 4.2
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FIGURE 4.2. Photon number probability inversion resulting from the inversion
algorithm with different efficiencies in the conditional probability matrix. The
source was 10m of HB800 Fiber pumped by 83 mW average power of a 36ps
titanium sapphire laser. The efficiencies used in the inversion algorithm were a.
Klyshko Efficiency (23%), b. 40%, c. 80%, d. unity efficiency.

Alternatively, noise processes in the source fiber can artificially increase the

number of herald channel clicks without affecting the number of signal channel

clicks recorded. The resulting measurement appears to be inefficient at measuring

signal photons, since there are more herald clicks than signal clicks. As we will

discuss in the following section, noise processes in the state preparation decrease

the efficiency of detecting photon pairs, allowing the noise to be modeled as

decreases in the detection efficiency.
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4.2. Effects of Noisy Heralding

For the following derivation, let us begin by describing the source of photons.

For example, we will use a source that produces pairs of photons, one labeled as

the signal (subscript s) and one labeled the herald (subscript r). The probability

of creating photon pairs in the herald and signal channel is denoted by P̄rs. We

will assume that the herald photon is lower in frequency (ωr < ωs), where the

two photons are equally spaced in energy from the pump source. As described in

Chapter 3.6, the names are used to label the use of the photons; the herald photon

will be used to conditionally prepare signal photons for use in other quantum

optics experiments. The use of the bar over the photon probability (P̄ instead of

P ) denotes the noise-free nature of this distribution. We assume there is no noise

and P̄ only describes the joint probability distribution of signal and herald photons

created by a photon pair source. In order to properly conditionally prepare the

signal photon, is important to determine the probability of a signal photon, given

the detection of a herald photon. Through straightforward probability theory, the

conditional probability of a signal photon given a herald photon is

P̄sr(ns|nr) =
P̄rs(ns, nr)∑∞
m=0 P̄rs(m,nr)

=
P̄rs(ns, nr)

P̄r(nr)
, (4.10)

where P̄r denotes the noise-free probability distribution in the herald channel.

In order to make this model more realistic, we need to introduce the effects

of noise photons. For example, in optical fibers, there is often a large amount of

Raman scattering [65] and other nonlinear processes that can begin to change the

photon distribution created by the source. Let us assume that noise photons in the

herald channel are created by processes independent of the photon pair creation
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(a) (b)

FIGURE 4.3. (a) Cartoon describing the presence of noise photons (blue circles)
in addition to herald photons (red circles) in the herald channel. (b) A schematic
of a beamsplitter in the signal channel that acts as a loss. The red photon pairs
successfully make it through the beamsplitter, while blue photons are lost. Both
physical pictures are described by the same theory, shown in Eq. 4.12 and Eq. 4.13.

process of interest. In this case, the photons in the herald channel are either from

the target process or from a noise process. Suppose the probability that the herald

photon is from the target process is ηr. A schematic is shown in Fig. 4.3. If k

detection events occur, the probability that m detection results from a herald

photon becomes a binomial distribution with the probability of herald photon as

the success outcome

p(m|k) =

(
k

m

)
ηmr (1− ηr)k−m. (4.11)

With a conditional probability that a herald detection is from noise, we can

directly compute the conditional probability that a signal detection results from

a given herald detection. Given kr herald events, the probability of detecting ns

photons is the convolution of Eq. 4.10 and Eq. 4.11 [10]

P (ns|kr) =
kr∑
m=0

P̄sr(ns|m)p(m|kr) =
kr∑
m=0

(
kr
m

)
ηmr (1− ηr)kr−m P̄sr(ns|m). (4.12)
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Alternatively let us examine the situation where there is no noise in the

herald channel, but there is loss in the signal channel. In this case, we will use the

noise-free conditional probability distribution from Eq. 4.10, P̄ (ns|nr). However, we

will introduce a beam splitter in the signal channel with reflection coefficient ρloss

and thus transmission coefficient 1 − ρloss. When photons are incident upon this

imposed beamsplitter, the photons must either transmit through the beamsplitter

or reflect, considered a loss. Thus, the distribution of photons that make it through

the beamsplitter to the signal channel detector is also a binomial distribution

convolved with the input photon number distribution

PS(n|k) =
n∑

m=1

(
k

m

)
(1− ρLoss)m (ρLoss)

k−m P̄sr(m|k). (4.13)

It is clear from inspection that Eq. 4.12 and Eq. 4.13 are the same if ηr =

(1 − ρloss), or if the probability that a detection in the herald channel results from

the target process is the same as the the probability that a signal photon transmits

through a beamsplitter and is detected in the signal channel. This is shown in Fig.

4.3. This directly shows the equivalence between noise in the herald channel and a

loss in the signal channel.

Through the equivalence of a signal channel loss and a noisy herald channel,

we are able to make straightforward measurements on the photon pairs to estimate

the efficiency of heralding and then change the inversion algorithm to account for

the contributions from noise. As we will discuss in the following section, this is a

powerful tool in understanding the noise present in a photon pair source.
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4.3. Efficiency of Measuring Coincidences

As shown in the previous section, proper measurement of the noise in the

herald channel can give insight into inferring the noise-free distribution possible

from the source under measurement. Furthermore, it is possible to quantify the

amount of noise present in the photon pairs created by the source by measuring the

efficiency of detecting coincidences from a correlated pair source.

The source investigated here is an optical fiber that produces pairs of photons

via SFWM as described in Chapter 3.6. We can exploit the temporal correlation in

creation time for the photons to determine the efficiency of measuring coincidences.

This efficiency is called the Klyshko heralding efficiency [97], in honor of David

Klyshko, who first proposed the method as a means to characterize detectors used

for measuring quantum states [99, 100, 101].

For a given pair of detectors measuring the photons from a correlated pair

source, the Klyshko heralding efficiency, ηk, is the ratio of the joint probability of

measuring both photons divided by the probability of measuring the herald photon

ηK =
P (H,S)

P (H)
. (4.14)

The Klyshko heralding efficiency is also by definition the conditional probability of

detecting a signal photon given a herald photon detection. If the signal and herald

channels are free of noise photons, then in a long counting window, the number of

coincidence detections and herald detections are, respectively

NHS = ηHηSγ (4.15)

NH = ηHγ, (4.16)
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where ηH is the detection efficiency of the herald channel (including transmission

losses and detector efficiency), ηS is the detection efficiency of the signal channel,

and γ is the number of photon pairs produced within the same time interval.

By inserting Eq. 4.15 and Eq. 4.16 into Eq. 4.14, we find the noise-free Klyshko

heralding efficiency equal to the detection efficiency of the signal channel

ηK =
P (H,S)

P (H)
=
NHS

NH

=
ηSηHγ

ηHγ
= ηS. (4.17)

This result is somewhat intuitive; in a perfect experimental system that is without

noise, the probability of measuring a signal photon given a herald detection is

independent of the herald detection efficiency. However, the addition of noise

introduces a factor that decreases the Klyshko heralding efficiency, depending on

the amount of noise present in the source.

We assume that the source only produces noise photons in the herald channel.

This assumption is reasonable for a cross-polarized phase matching configuration

as Raman scattering that is upshifted from the input pump is negligible [65].

Furthermore, this is consistent with experimental observations of the output from

our fiber source measured with a highly sensitive liquid nitrogen spectrometer. Due

to the noise process being independent of the target process, the noise photons

should be uncorrelated with the signal photons and has a negligible effect upon the

coincidences.

By examining the source of the noise photons and the photons created

through the pair process, we are able to modify the Klyshko heralding efficiency

and determine explicitly the contributions of the different noise processes present.

The factor that is multiplied by the efficiency of measuring a photon in the signal
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channel is

ηK =
ηSηHγ

ηHγ + ηHσ
= ηS

γ

γ + σ
, (4.18)

where σ is the number of noise photons in the herald channel. We can further

expand the denominator by including the noise terms expected from the source.

A pulsed pump with average power P incident upon a finite fiber of length L

will produce photon pairs that scales as NMI ∝ P 2L. Raman scattering, however,

will produce photon pairs linear in power and length, NR ∝ PL [64, 65]. Finally,

we introduce a term independent of fiber length that is linear in pump power to

account for leakage from the pump field or any other field that is present before the

fiber. By combining all these factors, we can construct a new denominator for the

Klyshko heralding efficiency

ηK = ηS ×
P 2L

P 2L+ βPL+ αP
, (4.19)

where β is the power at which Raman scattering matches the SFWM generation

rate, α is defined similarly, and ηS is the total (source independent) system

detection efficiency in the signal channel. α has units of power times length.

Luckily, each of the terms in the denominator of Eq. 4.19 have a different

dependence upon input pump power and fiber length. By measuring the Klyshko

heralding efficiency for a range of input pump powers and fiber lengths, we can

fit the parameters for Raman scattering and linear pump noise. With an explicit

measure of the contributions from noise processes, one can decide on a method for

decreasing the noise present in the photon creation source.
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In addition, measuring the Klyshko heralding efficiency is a powerful tool

for inferring the noise-free photon number probability distribution created by

the source. Since noise in the herald channel is equivalent to a loss in the signal

channel, the Klyshko heralding efficiency can be used in the inversion algorithm

to account for the effect of noise photons on the photon number probability

distribution. As we will see, using ηK in Eqs. 4.7-4.9 produces the inferred, noise-

free photon number distribution.

4.4. Experimental Apparatus

A diagram of the experimental setup is shown in Fig. 4.4. The photon source

in the experimental setup is a commercially available, PANDA-type birefringent

fiber HB800 from Fibercore pumped by a titanium sapphire laser (TiS). The laser

is passively modelocked with a semiconductor saturable absorber (SESAM) that

produces transform-limited pulses with duration 36 ps. The polarization of the Ti:S

is rotated with a half wave plate (HWP) before the HB800 fiber. The polarization

of the laser is oriented along the slow axis of the fiber to produce photon pairs in

the normal dispersion region of the fiber, as described in Chapter 3.6. With a small

probability (∼ 10−6), two photons from the incident pump field are annihilated and

create a pair of photons. The signal photon is created at an up-shifted frequency

from the pump and there herald photon is created at a down-shifted frequency from

the pump. The pump field is centered at λp = 802 nm with a bandwidth ∆λ ≈ 10

pm. The signal photons are centered at λs = 687 nm and herald photons λh = 965

nm, which corresponds to a frequency shift of 437 THz from the pump wavelength.

The photon pairs are produced far away from the peak of the Raman gain of 13.2

THz below the pump.
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FIGURE 4.4. Experimental setup for measuring conditionally prepared number
states. The multiplexed detectors are located within the dashed box. The two
heralding detectors and the three signal detectors are connected to an FPGA and a
computer for storing data. HWP denotes a half wave plate; DM denotes a dichroic
mirror; BS denotes a beamsplitter; PBS denotes a polarizing beamsplitter.

A polarizing beamsplitter is located at the output of the fiber to filter the

pump field and pass the photon pairs, which are polarized along the fast axis of the

fiber. To measure the Klyshko heralding efficiency, the photon pairs are separated

with a dichroic mirror (Semrock FF01-746) that transmits the signal photons and

reflects the herald photons. The herald field is further filtered in frequency with a

prism pair (SF14 glass) and an iris. The prism pair disperses the herald channel

and photons different from the herald photons are blocked by the iris. After the

prism pair, the herald beam is split evenly at a 50/50 beamsplitter to two fiber

couplers. Multimode GRIN fibers (Thorlabs M31L03) are used to couple the light

into APDs.

The signal field is transmitted through the dichroic mirror and is incident

upon a blazed grating (2200 lines/mm) for further spectral filtering before the

spatially multiplexed detectors. The spatially multiplexed detection system consists

of a half wave plate, a polarizing beamsplitter, and a 50/50 beamsplitter. The

first HWP is rotated such that the polarizing beamsplitter reflects a third of the
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light to a fiber coupler and sends the rest to the 50/50 beamsplitter. The 50/50

beamsplitter equally splits the light to two fiber couplers. All three signal channel

fiber couplers are coupled to APDs with multimode GRIN fibers.

Although step-index multimode fibers are much easier to couple into than

single mode fibers, the excitation of multiple spatial modes in the fiber can cause a

smearing of the pulse by introducing a large time delay between spatial modes. The

multimode GRIN fibers were chosen to decrease the time delay between different

spatial modes propagating the length of the fiber while providing ease of coupling.

The APDs used to detect the signal and herald photons are used in Geiger

mode and from Perkins-Elmer (SPCM-AQ4C). The APDs have a wavelength-

dependent quantum efficiency that is approximately 60% for the signal wavelength

and 15% for the herald wavelength. Through use of tracer lasers at wavelengths

close to the herald wavelength, the efficiency of the herald channel multimode fiber

couplers is estimated at 80%.

To measure the transmission efficiency for the signal channel, a similar

procedure is used with tracer lasers that are close to the wavelength of the signal

photons. However, the dispersive elements in the signal channel cause the measured

efficiencies with a tracer beam to be estimates with sizable uncertainty. The total

transmission efficiency in the signal channel is estimated to be 36% ± 5%. This

efficiency includes all optical losses from the beamsplitters and filters, multimode

fiber coupling losses, and the quantum efficiency for detection at the signal

wavelength of the APDs. The efficiency and beamsplitter ratio for the signal

detectors are a key component of the inversion algorithm, inserted as the values

ηi and Ri, respectively, in Eqs. 4.7-4.9.

83



When a photon is detected, an APD produces a TTL pulse. The APDs

measuring the herald channel are connected to an digital coincidence box that

can be set to pass a single APD or coincidences between the herald APDs. The

herald coincidence box and the three signal channel APDs are connected to a

field programmable gate array (FPGA) that bins the detection events from the

APDs. The FPGA records all single detections, coincidences for all possible

pairs of detectors, triple, and four-fold coincidences of the signals with the herald

channel detectors. This setup allows us to quickly switch between single-heralded

measurements and double-heralded measurements. The coincidences are sent to a

computer via LabView and the values are stored locally for analysis.

From the theory in Chapter 4.1, we do not need to measure each individual

pulse. Instead, we are able to measure a large number of pulses without tracking

each pulse. A notable advantage of this approach is the speed of measuring

detections. The detection equipment is capable of measuring at rates of a few MHz

by binning millions of pulses and storing the total values. The increase is a major

advantage for this method over temporal multiplexing.

For a given fiber length, the input pump power was varied between 10 − 50

mW average power and the single-herald coincidences were measured. By

taking the ratio of the coincidences between a single herald and signal detector

(e.g. H1 and S1), with the number of herald detections (H1), the Klyshko

heralding efficiency is computed for a given pair of detectors. There is a different

Klyshko heralding efficiency for all combinations of herald and signal detectors

(H1S1, H1S2, H1S3, H2S1, H2S2, H2S3). For a given signal detector, the Klyshko

heralding efficiency for each herald detector (e.g. H1S1 and H2S1) was the same

within 1%. The three Klyshko heralding efficiencies for the signal channel detectors
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were similar in value, within a few percent. This measurement was repeated for

four fiber lengths, L = 5 m, 10 m, 15 m, 20 m.

The Klyshko heralding efficiencies for all fiber lengths and input pump

powers were fit to Eq. 4.19. The values and the fits are shown in Fig. 4.5. At a

given power and fiber length, there are three points, one for the Klyshko heralding

efficiency of each signal detector. At some points, it appears that there are only two

or one value, although there are three points. At these locations, the three Klyshko

heralding efficiencies are all very close in value. The parameters for the fit in Fig.

4.5 are ηSystem = 41.95%, β = 5.324×10−6 mW, and α = 344 mW ·meters. Eq. 4.19

with these parameters fit all the data, for different fiber lengths and coupled pump

power, quite well.

Although the coefficients for the Raman scattering and pump leakage terms

are different in units, it is straightforward to make comparisons between the

contributions for each process. Since Raman scattering and SFWM depend on

length, it is possible to overcome the degradation from pump leakage by using

longer fibers for a given pump power. However, for fiber lengths that are shorter

than 70 × 106 m, the pump leakage will dominate the Raman contribution at

any pump power. A fiber of such a length used as a photon pair source would be

extremely impractical as the phase-matching would render it nearly impossible

to tailor a pump to create factorable states. Additionally, the fiber losses would

become quite significant for lengths of this order.

Comparing the pump leakage term to the SFWM term provides a range in

which the SFWM dominates. For a fiber length of L = 5 m, the necessary average

pump power is 68.8 mW, which decreases to 17.2 mW at L = 20 m. These pump
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FIGURE 4.5. Measured Klyshko heralding efficiencies for different average pump
powers and fiber lengths with the fits to Eq. 4.19 denoted by the dashed lines.
There are three points presented for each pump power and fiber length representing
the Klyshko heralding efficiency for each signal detector. Some points overlap where
values are nearly identical.

powers are quite reasonable and indeed within the experimentally accessible range

of pump powers.

As the coupled pump power was increased, the Klyshko heralding efficiencies

asymptotically approached the system efficiency. For larger pump powers, the

SFWM dominates the noise created by Raman scattering or from pump leakage.

For larger lengths, the Klyshko heralding efficiency is closer to the system efficiency

for lower pump powers, due to the dependance of the SFWM term on fiber length.

Not only does measuring the Klyshko heralding efficiency give an

experimentalist a wealth of information regarding the noise processes present in

a photon pair source, this data also allows for the calculation of the noise-free
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photon number distribution. That is, one can use the Klyshko heralding efficiency

to determine what the photon number distribution created by a given source would

be if there were no noise present.

4.5. Measured Photon Number States

The inversion algorithm is applied to the data for zero-, single-, and double-

heralded measurements of the signal channels for all the pump powers and lengths

used for the Klyshko heralding efficiency measurements of the previous section. A

particularly illustrative example of the change in the photon number distributions

is for a fiber length of 20m. All of the detection events were multiplied by the

inverse of the conditional probability matrix to recover the photon number

distribution incident upon the spatially multiplexed detector, as described in

Chapter 4.1. The efficiency used for the inversion algorithm was the total system

efficiency for the signal channel. In Figs. 4.6-4.8, the error bars in the photon

numbers is due to systematic error arising from the uncertainty in the transmission

efficiency for the signal channel.

Without heralding, the measured photon number distribution is largely

vacuum, as shown in Fig. 4.6. As the input pump power is increased, the vacuum

begin to decrease while the p1 component increases. However, even at 50 mW, the

distribution is primarily composed of vacuum.
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FIGURE 4.6. Photon-number probabilities measured without conditional detection
of herald photons. The vacuum component is outlined with a dashed line. Error
bars are present and are smaller than the markers.

With a single-herald, the photon number distribution shows a state that is

dominated by the one-photon contribution for powers larger than 10 mW. single-

heralding effectively selects one photon states. For larger powers, the contributions

from two and three photons increase, as expected. The photon number distribution

is shown in Fig. 4.7.
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FIGURE 4.7. Photon-number probabilities measured with single herald conditional
preparation. The vacuum component is suppressed while the p1 component is high,
showing a dominant one-photon-number component.

88



Fig. 4.8 experimentally shows the issue with double-heralded photon states.

There is a significant one-photon contribution for all powers, due to the presence

of noise in the herald channel. With noisy heralding, the occurrences of a single

pair and a noise photon will appear to be a two-photon state, but in reality only

contains one photon in the signal channel. For the highest power, 50 mW, the

two photon component appears to dominate, although the uncertainty in the

probabilities is large. The significant error bars result from systematic error in

the uncertainty from the efficiency of transmission in the signal channel. The

probability for three photons increases slightly with power, as expected.
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FIGURE 4.8. Photon-number probabilities of double-heralded states. The one-
photon contribution is large relative to the two-photon contribution, in contrast to
the desired outcome of a pure two-photon state.

Although the double-heralded photon number probability distributions are

susceptible to noise, we can use the Klyshko heralding efficiency to determine

the noise-free photon number probabilities. By inserting the Klyshko heralding

efficiencies from Fig. 4.5 into the inversion algorithm in Eqs. 4.7-4.9 in place of the

signal channel transmission efficiency, we are able to recover the photon number
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distribution without noise. This method is valid for noise sources uncorrelated with

the photon pair generation.

With the Klyshko heralding efficiencies in the inversion algorithm, the photon

number distribution is dominated by the probability for a two-photon state at all

powers. The distributions are presented in Fig. 4.9. The error bars are due to the

statistical uncertainty, assumed to be determined Poisson counting statistics. The

significant component in p1 is attributed to the presence of unwanted noise in the

signal channel. The negative probabilities shown in the distributions result from the

lack of constraints on the inversion algorithm. In order to ensure that the inversion

is producing physically meaningful results, no constraints (i.e. 0 < pn < 1) are

placed on the probabilities. Since the probabilities are positive within error bars,

we are confident in the validity of this method.
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FIGURE 4.9. Inferred noise-free photon-number distributions with double-heralded
conditional preparation using the Klyshko heralding efficiencies in the inversion
algorithm. The measured values show the photon-number probabilities of the
two-photon state that would be observed in the absence of false heralding from
independent noise processes.

The fit parameters to the Klyshko heralding efficiency gave insight into the

contributions from Raman scattering and pump leakage to the noise in the herald
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channel that can be used to determine effective techniques for mitigating the

noise, such as cooling the fiber to decrease Raman scattering [102, 103]. From our

analysis, it was clear that the dominant contribution to the noise resulted from the

pump leakage term, only dependent upon the pump power. Upon further inspection

of the filters used in the experimental setup, it was determined that any light from

the laser that pumped the titanium sapphire, centered at λ = 532 nm, would not be

adequately filtered out. It was assumed that there would be little contamination of

the laser output from the green pump. Following this analysis, a filter to block the

532nm field was inserted at the output of the titanium sapphire laser.

As a result, with the Klyshko heralding efficiency used in the inversion

algorithm, the desired two-photon state is recovered. The contributions from p1 and

p3 are greatly reduced. However, when the system efficiency is used in the inversion

mathematics, the noise is still significant. The photon number distributions are

shown in Fig. 4.10 for fiber length 2.8 m and input pump power 20 mW.

(a) (b)

FIGURE 4.10. Photon number distributions for HB750 fiber of length 2.8 m and
input pump power 20 mW. The photon number distribution was calculated by the
inversion algorithm with the (a) signal channel transmission efficiency and the (b)
Klyshko heralding efficiency.
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CHAPTER V

TWO PHOTON BRAGG SCATTERING

Bragg scattering has been shown to be mathematically equivalent to a

beamsplitter [69, 104] opening new avenues for creating quantum bits and quantum

logic gates [23, 105]. Furthermore, demonstrating Bragg scattering on a two-photon

state can provide experimental verification that the process acts as a beamsplitter.

With the proper creation and confirmation of a double-heralded two-photon

number state, we can experimentally verify the ability of Bragg scattering to act

on arbitrary quantum states.

In this chapter, we describe the process using the simplified input-output

relations from a typical beamsplitter as shown in of Chapter 3.7. We examine

the result of two-photon states on a beamsplitter and the resulting fields. We

conclude with experimental considerations and requirements of efficiency to

experimentally realize this goal. Some of the work on modified second-order

coherence measurements presented in this chapter was carried out in collaboration

with Dileep Reddy.

5.1. Input-Output Relations

To describe the process of Bragg scattering with two-photon states, we begin

with the standard beamsplitter relations from Fig. 3.7 with inputs (â1, â2) and

outputs (b̂1, b̂2)

â†1 = tb̂†1 + rb̂†2 (5.1)

â†2 = −rb̂†1 + tb̂†2. (5.2)
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In this case, the inputs and outputs correspond to frequencies, with â1 7→ ωr and

â2 7→ ωb. The reflection and transmission coefficients are real and preserve unity,

forcing r2 + t2 = 1. A perfect two-photon state incident in â1 becomes the following

output state, with a factor of 1√
2

to preserve normalization:

|ψ〉in =
â†1â

†
1√

2
|vac〉

=
1√
2

(
tb̂†1 + rb̂†2

)2

|vac〉

= r2 |0122〉+
√

2rt |1112〉+ t2 |2102〉 . (5.3)

A common measurement in describing quantum states is the second-order

coherence measurement of the state, g(2). Typically the state is of the same

frequency. We can extend this measurement to the outputs from the Bragg

scattering process, where the two frequencies are separated by a dichroic mirror.

The photons in each channel are calculated as the expectation value of photons in

each beam

〈n̂b1〉 = 2t4 + 2r2t2 = 2t2(r2 + t2) = 2(1− r2) (5.4)

〈n̂b2〉 = 2r4 + 2r2t2 = 2r2(r2 + t2) = 2r2. (5.5)

The coincidences between the two frequency channels are calculated by the

expectation value of both channels having at least one photon

〈n̂b1n̂b2〉 =
〈
b̂†1b̂
†
2b̂2b̂1

〉
= 2r2t2 = 2(r2 − r4). (5.6)
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Combining these results into Eq. 2.66, we can calculate the second-order

coherence between the two channels, which is a modified form that is measuring

across frequency channels

g(2)(0) =
〈n̂b1n̂b2〉
〈n̂b1〉 〈n̂b2〉

=
2r2(1− r2)

4r2(1− r2)
=

1

2
. (5.7)

This result is unsurprising for a beamsplitter with a nonzero reflection coefficient,

due to the presence of a photon in both channels. This follows Eq. 2.65 for n = 2.

As a function of the reflection coefficient of the beam splitter (where R =

r2), the coincidences between the two output ports scales as shown in Fig. 5.1.

For reflection coefficients (or translation efficiencies) that are close to zero, the

coincidences are small. As R increases, more of the state is put into the second

output, decreasing the coincidences.

This is not particularly surprising as no new photons are created in the

process, but rather photons are changed in frequency. Thus there are two photons

in the beam, and a symmetric beamsplitter will equally split the photons and

bring the second-order correlation function close to the expected value 1/2 for two

photons. Measuring a nonzero second-order coherence between the two frequency

channels demonstrates the successful translation through Bragg scattering.

However, this does not conclude that the two-photon state is fully translated, but

rather the final state could be a combination of one photon in each channel. Ideally,

to show the two-photon state is completely translated in frequency, the second-

order coherence should go to zero, meaning the two-photons have been translated

into the other frequency channel. By measuring the individual frequency channels

after Bragg scattering, we can demonstrate the translation of two-photon states

with non-unity translation efficiency.
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FIGURE 5.1. Coincidences between two output ports from the beam splitter as a
function of the square of the reflection coefficient.

5.2. Second-Order Coherences of Individual Channels

For generality, we will assume that the input state is a superposition of both

one- and two-photon states. We can write the input state as

|φ〉 = β |1〉+ γ |2〉 , (5.8)

where the coefficients β, γ depend on the properties of the two-color beam splitter,

or the frequency translation efficiency and satisfy |β|2 + |γ|2 = 1. We assume that

there is no vacuum component.

After the input state from Eq. 5.8 is incident upon the fiber for Bragg

scattering, the output is calculated by random sampling. The output photon
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number distribution from a beam splitter is calculated by use of Bernoulli

trials [106]. For an input photon number distribution p0(n), the output distribution

is given by

p(m) =
∞∑
n=m

(
n

m

)
Tm (1− T )n−m p0(n), (5.9)

where T is the transmission coefficient of process. This is the same as the process

of noisy heralding or a loss in the signal channel from Chapter 4.2. Fig. 5.2 shows

the effect of random sampling on different input states for a range of transmission

efficiencies. The input photon number distribution is found by taking the taking

the inner product with number state

p0(1) = |〈1|φ〉|2 = |β|2 (5.10)

p0(2) = |〈2|φ〉|2 = |γ|2. (5.11)

For input states that are mostly two-photon states (|γ|2 > |β|2), the output

photon number distribution contains a significant two-photon component, but

only for high transmission efficiencies. For example, if the input state is a perfect

two-photon state, the output will appear to be mostly a one-photon state for

transmission efficiencies below about 66%. For the case were |γ|2 = 0.75 and

|β| = 0.25, the minimum necessary transmission efficiency is higher, around 78%.

For the case where the state is equally composed of one-photon and two-photon

contributions, the transmission efficiency must be unity in order to see the two-

photon contribution.

This presents a significant challenge to demonstrate the translation of a two-

photon state since low efficiency will degrade the statistics from two-photon to one-
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FIGURE 5.2. p(1) (blue lines) and p(2) (red lines) contributions to the photon
number distribution of the state after a beamsplitter plotted against the
transmission efficiency. The insets define different initial distributions: a.)
p(n) = [0, 1]; b.) p(n) = [0.25, 0.75]; c.) p(n) = [0.5, 0.5]; d.) p(n) = [0.75, 0.25];
where p(n) = [p(1), p(2)].

photon. However, a measurement of the second-order coherence function for the

beam at the output of the Bragg scattering process would appear to have a value of

1/2, regardless of the relative contributions from one- and two-photon states. This

results from the presence of any amount of a two-photon state, which tends g(2)

away from zero, the value for a true one-photon state. Therefore, it is important

to measure the full photon number distribution using multiplexed detectors to

accurately determine the statistics of the state.
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5.3. Effects of Thresholding Detectors

Furthermore, the use of non-unit efficiency, thresholding detectors adds a

level of complexity when properly evaluating the results of second-order coherence

measurements. The formulae described above imply perfect number resolving

detectors that are making photon number measurements.

The second-order coherence measurements can also be written in general as

g(2)(τ = 0) =
PAB
PAPB

, (5.12)

where Pi is the probability for a detection at detector i and Pij is the probability

for a coincident detection at i and j. The probabilities of detection follow from

those used in the conditional probability matrix for spatially multiplexing. Eq. 4.7

and 4.8 defined the probability for a click given a certain number of photons, but to

provide the total probability of a detector clicking, we sum those values over input

photons [107, 108]

PA =
∞∑
n=1

P(A|n) =
∞∑
n=1

[
1−

(
1− ηA

2

)n]
p0(n) (5.13)

PB =
∞∑
n=1

P(B|n) =
∞∑
n=1

[
1−

(
1− ηB

2

)n]
p0(n) (5.14)

PAB =
∞∑
n=1

P(AB|n)

=
∞∑
n=1

[
1−

(
1− ηA

2

)n
−
(

1− ηB
2

)n
+
(

1− ηA
2
− ηB

2

)n]
p0(n), (5.15)

where ηi is the detector specific efficiency and the input photon number distribution

is p0(n). The factors of (1/2) multiplied by the efficiencies result from the reflection
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and transmission coefficients used in the Hanbury-Brown Twiss setup used to

measure the second-order coherence of the beam.

Inserting Eqs. 5.13-5.15 into Eq. 5.12, one finds the modified second-order

coherence function, denoted by Γ(0). This is measured at g(2)(τ = 0) for all further

equations. Assuming that the input photon number distribution is zero for n > 3,

the modified second-order coherence function Γ(τ = 0) is

Γ(0) =
2p0(2)[

p0(1) + 2p0(2)
(
1− ηA

4

)] [
p0(1) + 2p0(2)

(
1− ηB

2

)] . (5.16)

It is clear from Eq. 5.16 that for a perfect one-photon state, Γ(0) = 0. However,

for a perfect two-photon state, the value is not 1/2 as predicted by Eq. 2.65.

Even in the case of unit efficiency, Γ(0) for a perfect two-photon state is 8/9.

The modified second-order coherence function only matches the case of number

resolving detectors when the efficiency is zero. Γ(0) for different detector efficiencies

is shown in Fig. 5.3.

For two detectors with the same efficiency of 60%, the modified second-order

coherence does not increase beyond 0.7. The value of Γ(0) for different two-photon

contributions for detectors at 60% are shown in Fig. 5.4.

Therefore, it is important to take great care when using second-order

coherence measurements to determine the contributions from photon numbers

larger than 1. Second-order coherence measurements are susceptible to the effects

of non-unit efficiency and the thresholding nature of detectors commonly used

in quantum optics experiments, such as avalanche photodiodes. Furthermore, it

is extremely important to experimentally achieve high conversion efficiencies to

demonstrate the translation of two-photon states.

99



FIGURE 5.3. Modified second-order coherence, Γ(0), for different detector
efficiencies. The value starts at the theoretical value for number resolving detectors
when the detector efficiency is 0 and rises to a value of 8/9, very close to the
classical limit.

FIGURE 5.4. Calculated modified second-order coherence against the value of the
two-photon contribution. It was assumed that the state was comprised of one- and
two-photon components, such that p0(1) + p0(2) = 1.
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CHAPTER VI

CONCLUDING REMARKS

In this dissertation, we have explored the process of creating double-heralded

two-photon states in optical fibers. Our journey began with a brief description of

the formalism of quantum mechanics. We described the quantization of the electric

field and the transition into the quantum regime for the simple harmonic oscillator.

After some basics on quantum mechanics, we moved to quantum states of light

and the different statistics that coherent, number, and thermal states exhibit.

Finally, we concluded our discussion of the basics of quantum optics with common

measurement schemes.

From quantum optics, we described the optical fibers and the basic methods

for describing the behavior of light propagating through a fiber. The invention

of the laser, a coherent source with the potential for high intensity fields, along

with the dispersion of optical fibers allows for many interesting phenomena to be

explored. Nonlinear optics in fibers is a rich and interesting field, into which we

provided only a brief glimpse. Specifically, we described the process of creating

photon pairs in optical fibers with commercially available, birefringent fibers,

quickly becoming a common method for creating photon pairs for quantum optics.

Furthermore, we discussed recently developed photonic crystal fibers that have

exotic dispersion profiles. As a result many nonlinear effects that were previously

restricted to certain frequency regimes are now accessible in a wide and tailorable

range of frequencies, depending on the fiber fabrication. In addition, the small

core of PCFs lends the fiber to higher energy densities and an enhancement in the

magnitude of the nonlinear effects.
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Combining quantum optics and nonlinear optics, we explored the process of

creating photon pairs larger than 1 in optical fibers. We presented the advantages

of heralding when working with a single photon pair. In contrast, the double-

heralded photon state is susceptible to the noise processes mitigated through

heralding of a single-photon state. We analyzed the noise and showed that the

presence of noise in the heralding channel is analogous to a lossy signal channel.

The noise in the heralding channel was measured by examining the efficiency to

measure coincidences created by photon pairs from our source. The photon pairs

were measured by a spatially multiplexed detection setup that provided the photon

number distribution. The efficiency of detecting coincidences from the source

provides great insight into the noise present in the heralding channel. By varying

the average input pump power and the length of the source fiber, we were able

to model the noise contributions. Accordingly, this allowed us to determine the

relative significance of the noise sources present, providing a direction to further

decrease the noise in the heralding channel. Finally, with proper characterization

of the noise, we were able to produce the inferred noise-free photon number

distribution that would be present in the absence of noise from our source.

After presenting the process for creating a double-heralded two-photon

state, we described a method for changing the frequency of the two-photon state.

The nonlinear process of Bragg scattering in an optical fiber is analogous to a

photon incident upon a moving beamsplitter that imparts a Doppler shift in one

channel, but not the other. The process of Bragg scattering can be decomposed

as a transformation between the input frequency and the output frequency. We

showed the importance of having a high translation efficiency to properly frequency

translate a two-photon state. Two-photon states are susceptible to losses in
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the experimental apparatus that quickly degrade the statistics. With a lossy

system or low efficiencies, the two-photon state will appear to be a one-photon

state. Methods for measuring photon number states using thresholding detectors

with non-unity efficiency were described. The result of non-unity efficiency and

the thresholding nature of the detectors changes the second-order coherence

measurements significantly from the case of number resolving, unit-efficiency

detectors.

The future of this work requires some care to properly perform frequency

translation of two-photon states. First, it is challenging to truly avoid the issue

of Raman scattering in the source fiber. From the analysis presented here, it was

clear that the dominant noise source were photons from the pump to the titanium

sapphire laser. After this frequency was filtered, the double-heralded state still

contained a prominent one-photon state. The noise-free distribution was much

improved, but the raw data must present a two-photon state before the state

created is a true two-photon state.

Second, it is of the utmost importance to improve the input coupling

efficiency to the PCF to properly demonstrate a full translation of the input two-

photon state. High efficiency is achievable through continued work to increase

coupling efficiency into the PCF and finer tailoring of the pump spectrum and

fiber length of the source fiber. Although these advancements are technologically

challenging, it is possible to realize these changes experimentally, demonstrating a

successful translation of two-photon states would definitively show the ability for

Bragg scattering to frequency translate arbitrary quantum states of light.

Alternatively, it is possible to experimentally verify that the process of

Bragg scattering is analogous to a beam splitter. The expected photon number
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distribution after frequency translation depends on the translation efficiency of

the BS process. By performing frequency translation on a known photon-number

distribution while changing the translation efficiency and measuring the output, it

can be shown the output photon-number distribution follows the expected value if

the process was a beamsplitter with a varying transmission efficiency. Mapping out

the photon-number distributions shown in Chapter V would clearly confirm that

the process of BS has the same effect as a beamsplitter, or random sampling of a

photon-number distribution.
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