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DISSERTATION ABSTRACT

Charles William Warren

Doctor of Philosophy

Department of Physics

December 2015

Title: The Effect of Copper on the Defect Structure of Cadmium Telluride Thin-Film
Solar Cells

Transient photocapacitance (TPC) and transient photocurrent (TPI) spectroscopy

have been used to examine the defect structure in the upper-half of the bandgap of

CdTe solar cells, with an emphasis on understanding the effect of copper. TPC

spectra reveal two defects in the CdTe devices at optical energies of EV + 1.2 eV

and EV + 0.9 eV. The origin of the 1.2 eV defect could not be associated with a

particular element, although copper and zinc were ruled out as sources. TPI spectra

were used to observe that the density of the 1.2 eV defect was dramatically reduced by

thermally annealing the devices, suggesting that the defect itself is annealed during

the treatment.

The set of CdTe samples examined used a rapid thermal processing treatment to

control the amount of copper that diffused into the CdTe layer from the Cu:ZnTe

interfacial layer at the back of the device. Comparison of devices with varying

amounts of copper in the CdTe layer revealed that the 0.9 eV defect seen in TPC was

associated with the presence of copper in the absorber layer. TPI spectra confirmed

the association of the 0.9 eV with copper and showed that the magnitude of the
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0.9 eV defect signal increased as more copper was diffused into the CdTe layer. A

proportional link between the density of the 0.9 eV defect observed in TPI spectra and

the amount of copper in the absorber layer observed via ToF-SIMS further established

that copper is responsible for the existence of the defect. Numerical modeling of the

CdTe devices was used to confirm that the spatial distribution of copper observed in

ToF-SIMS was consistent with the relative variation of defect magnitudes observed

in TPI.

The fact that the copper-associated 0.9 eV defect lies close to mid-gap suggests

that it will act as an efficient recombination center in CdTe. Therefore, it is suggested

that this work has detected the deep defect that is responsible for the decreased

minority carrier lifetime that has been previously associated with the amount of

copper in the CdTe layer.
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CHAPTER I

INTRODUCTION

A material exhibits the photovoltaic effect if exposure to light creates a voltage

(or current) within it. Thus, photovoltaic devices, or solar cells, use light to generate

a voltage (or drive a current, equivalently). The photovoltaic effect itself has a long

history, with the first observation of the effect in a solid state device by W. Adams

and R. Day dating back to 1876 [1]. However, it was not until 1954, when Chapin,

Fuller and Pearson introduced the first silicon solar cell [2], that a significant advance

was made toward utilizing the photovoltaic effect as a practical source of energy. At

present, the ultimate goal of the field of photovoltaics is to realize what Chapin, Fuller

and Pearson initiated—using solar cells as a practical source of energy. To this end,

much research has been devoted to understanding device and materials physics as

they relate to solar cells, and it is the goal of this work to make a contribution to this

effort.

At this point it is best to take a step back and understand some of the basic

properties of solar cells. In the absence of light, an ideal solar cell is simply a diode.

Thus, it obeys the ideal diode equation (derived in Appendix E)

Jdark(V ) = Js

(

exp

[

qV

kBT

]

− 1

)

, (1.1)

where Jdark(V ) is the current density as a function of applied voltage (V ) in the

dark, Js is the saturation current, q is the fundamental charge, kB is Boltzmann’s

constant, and T is the absolute temperature. When the solar cell is exposed to

light, absorbed photons create electron-hole pairs in the device. The electrochemical
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potential difference across the device separates the electrons from the holes, and drives

them out of the device into the external circuit. The photogenerated electrons and

holes leaving the device result in a photocurrent (JSC) that flows in the opposite

direction of the dark current (when V > 0, i.e., in forward bias). Therefore, an ideal

solar cell under illumination will behave such that

Jlight(V ) = Jdark(V )− JSC = Js

(

exp

[

qV

kBT

]

− 1

)

− JSC . (1.2)

Eqs. 1.1 and 1.2 are plotted in Figure 1. Under illumination, there are several

quantities that are convenient to define. They are: the short-circuit current (JSC),

which is the current when V = 0; the open-circuit voltage (VOC), which is the voltage

when J = 0; and the maximum power point (Jm, Vm), which is the point at which

the power P = JV is maximized. From these quantities, one can define the fill factor

FF ≡ JmVm
JSCVOC

, (1.3)

and the power conversion efficiency

η ≡ Pout

Pin

=
JmVm
Pin

=
JSCVOCFF

Pin

, (1.4)

where Pout is the power generated by the solar cell, and Pin is the power put into

the solar cell (via illumination). Typically, Pin is 1000W/m2 with the Air Mass 1.5

(AM1.5) spectrum.1 More than any other parameter, the power conversion efficiency

(often referred to as the ‘PCE’ or just the ‘efficiency’) determines whether or not a

1AM1.5 is the solar spectrum after it has passed through 1.5 atmospheric thicknesses.
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FIGURE 1. The current-voltage characteristics of an ideal solar cell in the dark
(blue) and under illumination (red). Also shown is the short-circuit current (JSC , the
current when V = 0), and the open-circuit voltage (VOC , the voltage when J = 0),
and the maximum power point ((Jm, Vm), the point at which the power P = JV is
maximized.
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given solar cell will be useful a energy generation device, and the goal of studying

and understanding photovoltaic devices is often to increase this number.

One basic type of solar cell design is shown in Figure 2. Because the glass layer

is on the top of the device (the side light enters), is it said to be in the ‘superstrate’

configuration.2 To be absorbed in the absorber layer, light first passes through

the glass, the transparent conductor, and the window layer. The absorbed light

generates electron-hole pairs in the absorber layer, which are then separated by the

electrochemical potential difference between the window layer and the absorber layer.

Majority carriers3 are driven to the back of the device, where they are collected by the

back contact (which has a much higher conductivity than the absorber layer, often

simply a metal) and transported to the external circuit. Minority carriers are driven

to the front of the device, where they enter the window layer. Often, the window

layer that interfaces favorably with the absorber layer is not a good conductor. In

these cases, a high conductivity transparent conductor layer is needed to transport

the minority carrier laterally to the external circuit.4

At present, the dominant material used in solar cells for power generation

is multi-crystalline silicon, accounting for more than half of the yearly global

production [3]. However, one drawback of silicon is that it has an indirect bandgap. A

bandgap is said to be ‘indirect’ if the excitation of a charge carrier across it requires a

change in momentum. Since photons near the bandgap energy of semiconductors

carry essentially zero momentum, the absorption of a phonon must be involved

2If the glass were on the bottom it would be in the ‘substrate’ configuration.

3Charge carriers that are in excess in the absorber material.

4Carriers need to travel roughly 100 nm vertically to escape the window layer, while reaching the
external circuit often requires they travel many millimeters or centimeters. Thus, a low conductivity
window layer can be tolerated if it is sufficiently thin, while the conductivity requirements of the
transparent conductor are much more stringent.
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glass

transparent conductor

window layer

absorber

back contact

light

electron-hole pair

ammeter
0

current

FIGURE 2. Basic solar cell design illustrating how charge carriers are generated in
the absorber layer and collected into the external circuit.

whenever a photon is absorbed by an indirect bandgap material.5 For a direct bandgap

material, the absorption of a photon conserves momentum, which means no phonon

interactions are required for it to take place. As a result, direct bandgap materials

tend to have much larger absorption coefficients than indirect bandgap materials.

For silicon, the absorption coefficient is 104 cm−1 at 500 nm. As a consequence,

the absorber layer in silicon solar cells needs to be roughly 100−200µm thick for

a high percentage of incident photons to be absorbed. So called ‘thin-film’ solar cell

5Recall that the momentum carried by a photon is the energy divided by the speed of light.
Silicon has a bandgap of 1.12 eV at 300K, therefore a photon at the bandgap energy carries a
momentum p = (1.12 eV)(1.602×10−19 J/eV)/(2.998×108 m/s) = 6×10−28 kgm/s. An electron at
the conduction band minimum of silicon will have a wave vector k on the order of π/a, where a is the
lattice constant (5.43× 10−10 m for silicon). Thus, the momentum of an electron at the conduction
band minimum will be p = ~k ≈ (1.055 × 10−34 J s)(π/5.43 × 10−10 m) = 6 × 10−25 kgm/s—about
3 orders of magnitude larger than the momentum supplied by the photon. So, about 99.9% of the
momentum required for an indirect gap transition in silicon needs to comes from an interation with
a phonon.
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technologies utilize direct bandgap materials, whose high absorption coefficient allow

for the absorber layer to be much thinner (typically 1−10µm). Having a thinner

absorber layer is advantageous because it reduces the materials cost, and the weight.6

One such direct bandgap material is CdTe, which has an absorption coefficient greater

than 105 cm−1 at 500 nm—allowing for typical absorber thicknesses of only 2−4µm [4].

Starting in the mid-1960s CdS/CdTe heterojunctions (the focus of this work,

hereafter referred to as CdTe) were studied in the context of their application as

thin-film diodes and photodetectors [5–7]. By the early 1970s, the work of Bonnet

et al. [8], Fahrenbruch et al. [9], and Yamaguchi et al. [10] toward their application

as solar cells for power generation had resulted in devices with single digit power

conversion efficiencies. It was not until 1993 that advances in the CdTe fabrication

techniques (most notably the post-deposition treatment of the CdTe film with CdCl2)

resulted in the first CdTe solar cell with an efficiency greater than 15% [11].

Over the following decades, the manufacturing of CdTe solar cells grew into a

multibillion-dollar industry—as of October 2015, CdTe is the most manufactured

thin-film solar cell technology in the world with nearly 2000MW (at peak output)

produced annually [3]. The current world record efficiency for CdTe (held by First

Solar) is 21.5% for a single solar cell [12], which compares favorably to the world

record efficiency of 20.4% [3] for a single multi-crystalline silicon solar cell. The

current world record is 18.6% for a CdTe module [13] (also held by First Solar).

Despite the advancements that have been made in the understanding and

production of CdTe solar cells, further efficiency improvements remain limited by

recombination in the CdTe layer [14]. Since recombination in solar cells is mediated

by defect states residing in the bandgap, understanding what defects are present in

6The weight is an important factor for solar panels that are installed on rooftops.
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the sub-bandgap density of states of CdTe is important if improvements are to be

made. In particular, an understanding of what elements are responsible defect states

is needed to guide and inform future progress. With these broad goals in mind, this

work is focused on the role of copper in the defect structure of CdTe solar cells.

In order to understand why copper is worth focusing on, one must understand

the back contact of CdTe. One of the difficulties presented by CdTe is that making

an ohmic back contact is challenging [4]. This is because forming an ohmic contact

to CdTe requires a metal with a work function >5.7 eV [15]. Even platinum, which

has the highest work function amongst the metallic elements (5.65 eV [16]), does not

satisfy this requirement. One common method to get around this is is to create a

tellurium-rich surface at the back contact, which is often achieved by a wet chemical

etch of the back surface using a Br2/methanol mixture [17]. The etch is followed by

the deposition a copper-containing material on the tellurium-rich surface. Copper

reacts with the tellurium to form a heavily p -doped region, which can then be

contacted directly with a metal to form a tunnel junction or with an interfacial

layer [4]. One common interfacial layer is copper-doped ZnTe (denoted Cu:ZnTe),

which has favorable valance band alignment with CdTe, and can itself be heavily

doped to form a tunnel junction with a metal (e.g. gold) [18, 19].

Nearly all the methods to form a back contact to CdTe have one factor in

common—the use of copper. Indeed, despite research into copper-free contacting

schemes (see, e.g., [20]), copper-containing back contacts are currently the most

effective method for forming a reasonably ohmic, low-resistance contact [4].

Futhermore, as discussed in Chapter V, copper is a common impurity in tellurium

feedstock [21] and therefore may unintentionally appear in CdTe devices regardless of

7



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

EC

edcb

E - E
V
 (eV)

a
EV

FIGURE 3. Illustration of the defect levels in CdTe that have been associated with
copper. Thermal (solid) and optical (dotted) energies of traps associated with the
presence of copper in CdTe. This includes: (a) an acceptor state at EV + 0.15 eV
seen in photoluminesence [27], (b) various states at roughly EV + 0.3 eV detected
with various techniques such as photo-induced current transient spectroscopy [27],
(c) a deep state at EV + 0.55 eV seen in admittance spectroscopy [28], (d) a deep
state at EV + 0.9 eV discussed in this work, and (e) a state at EC − 0.28 eV seen in
optical deep level transient spectroscopy [26]. Traps denoted with vertical lines had
no determination of the energetic width. State “d” is drawn as a Gaussian, reflecting
the results of this work.

the contacting scheme used. Thus, a detailed understanding of the role copper plays

in CdTe solar cells is needed to understand how the devices work as a whole.

The role of copper in CdTe is not limited to forming an reasonably ohmic back

contact, as it is has been associated with other beneficial and detrimental effects.

For example, in addition to forming a back contact, CdTe absorbers benefit from

copper because it is p -type dopant [4]. Unfortunately, copper is also associated

with reduced minority carrier lifetime—suggesting that copper is also responsible

for the introduction of recombination centers in CdTe [22–24]. Indeed, Cu has been

associated with various defects levels in CdTe (summarized in Figure 3). This includes

previous studies of CdTe that have associated copper with thermal transitions using

methods such as deep level transient spectroscopy (DLTS) [25, 26], photo-induced

current transient spectroscopy (PICTS) [27], and admittance spectroscopy (AS) [28].

Optical transitions have been observed with photoluminescence (PL)[27] as well as

in this work. Owing to their thermal nature, the bulk of these measurements that

8



can detect deep states are sensitive to those lower than the mid-gap energy. This

means that deep states, which are the most efficient recombination centers [29], in

the upper-half of the gap are largely unexplored. In order to further improve the

efficiencies of CdTe solar cells, and balance the beneficial and detrimental aspects of

copper inclusion, the effect of copper on mid-gap states must be better understood.

Such an understanding will lead to improved material and device models. Fortunately,

transient photocapacitance (TPC) and transient photocurrent (TPI) spectroscopy are

well suited for measuring optical transitions in the upper half of the bandgap, within

absorber layers of working devices [30].

These techniques (presented in Chapter III) are used to detect two broad

transitions in CdTe solar cells (the sample set is described in Chapter IV). As

described in Chapter V, these defects are centered at 0.9 eV and 1.2 eV above the

valence band. The 0.9 eV transition is shown to be associated with the presence of

copper, and implicated as the recombination center responsible for the reduced carrier

lifetime that has been associated with copper previously. The 1.2 eV transition is

shown to not be associated with copper (or zinc), and may be an intrinsic defect.

In Chapter II and the Appendices, the background necessary to the understand the

results of this work is provided, including a detailed introduction into the physics of

p−n junctions, junction capacitance, and the numerical modeling of p−n junctions.
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CHAPTER II

BACKGROUND

The p− n Junction

A p − n junction (see Figure 4) is formed by joining a p -type and an n -type

semiconductor. When the junction is formed, excess holes on the p -side of the

junction will diffuse to the n -side, while excess electrons on the n -side will diffuse to

the p -side. The diffusion of holes to the n -side of the juction leaves the p -side near

the interface depleted of free carriers. This results in an overall negative charge in the

region near the interface due the fixed, ionized acceptor sites that are left behind by

the holes. Likewise, the diffusion of electrons to the p -side of the juction leaves the

n -side near the interface depleted of free carriers. This results in an overall positive

charge for this depletion region due the fixed, ionized donor sites that are left behind

by the electrons. The charged regions on either side of the interface give rise to an

electric field, E , which acts against diffusion.

The electrons and holes at the p − n interface will drift and diffuse until they

reach thermal equilibrium. At equilibrium the net hole and electron currents are

exactly zero, i.e.,

Jdrift
n + Jdiffusion

n = Jdrift
p + Jdiffusion

p = 0. (2.1)

Here, Jdrift
n is the electron current due to the electric field, Jdiffusion

n is the electron

current due to diffusion, Jdrift
p is the hole current due to the electric field, and Jdiffusion

p

is the hole current due to diffusion. This equilibrium condition can be re-expressed

in terms of the junction Fermi level. To see how, recall that the drift current for

10
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FIGURE 4. Band diagram and charge density profile of a p− n junction. There are
no free carriers in the depletion region (to a good approximation), and the overall
charge is due to the fixed ionized donor or acceptor sites that the charges left behind.
Outside the depletion region the total charge is zero because the density of free carriers
exactly matches the density of ionized lattice sites.
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electrons due to E (see Appendix A) is

Jdrift
n = qµnnE , (2.2)

where q is the magnitude of the charge of an electron, µn is the electron mobility,

and n is the density of electrons in the conduction band (i.e., free electrons). As

shown in Appendix B (Eq. B.5), the diffusion current for electrons due to an electron

concentration gradient, dn/dx, is given by

Jdiffusion
n = qDn

dn

dx
, (2.3)

where Dn is the diffusivity. Considering only electrons1, substituting Eqs. 2.2 and 2.3

into the equilibrium condition (Eq. 2.1) gives

qµnnE + qDn
dn

dx
= 0. (2.4)

Using Eq. C.22 and the Einstein relation (Eq. B.11), this becomes

µnn
dEC
dx

+ kBTµn
dn

dx
= 0. (2.5)

From Eq. C.15

dn

dx
=

n

kBT

[

−dEC
dx

+
dEF
dx

]

, (2.6)

which allows us to rewrite Eq. 2.5 as

µn
dEC
dx

+ µn

[

−dEC
dx

+
dEF
dx

]

= 0. (2.7)

1The derivation for holes is independent and identical.
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From which it is apparent that

dEF
dx

= 0 (2.8)

at equilibrium throughout the p − n junction. Thus, the equilibrium condition for

current (Eq. 2.1) requires that the Fermi level be flat throughout the junction (as

shown in Figure 4).

A p − n junction is ‘one-sided’ if one side of a p − n junction is much more

heavily doped than the other (denoted p+ − n or p− n+, with the ‘+’ indicated the

heavily doped side). In this case (see Figure 6), charge neutrality requires that the

depletion region resides almost entirely with the lightly doped side of the junction.

For example, if the doping on the n+ -side is 1000 times greater than on the p -side,

then the depletion region on the n+ -side will be 1000 times smaller than the depletion

region on the p -side.

In one dimension2, the potential profile (i.e., the band bending) and charge profile

in a p− n junction are determined by Poisson’s equation

d2ψ

dx2
=
ρ(x)

ǫ
. (2.9)

Here, ψ is the electron potential (which is why the right-hand side of Eq. 2.9 is

positive), ρ is the charge density, and ǫ is the permittivity.3 For a p − n junction

in thermal equilibrium the charge density is given by an integral over the density of

states, g(E, x),

ρ(x) = q

∫

[

f(E ′, E0
F , T )− f(E ′, E0

F − ψ(x), T )
]

g(E ′, x)dE ′, (2.10)

2It is assumed the p− n junction is uniform laterally.

3Throughout, ψ is defined such that ψ = 0 in the neutral region far away from the junction
interface.
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where

f(E,EF , T ) =
1

1 + e(E−EF )/kBT
(2.11)

is the Fermi-Dirac distribution, and E0
F is the Fermi level in the neutral bulk [31].

In Eq. 2.10, the expression inside the square brackets connects the charge density

at position x to the amount of band bending, ψ(x), at that location. That is, the

net charge density in the depletion region originates from the portion of the density

of states that has been pulled above the Fermi level due to the band bending (as

illustrated in Figure 5). In the low-temperature limit, the Fermi-Dirac distribution

becomes a step function, which allows one to simplify Eq. 2.10 to

ρ(x) = q

∫ E0
F

E0
F
−ψ(x)

g(E ′, x)dE ′. (2.12)

Using Poisson’s equation and Eq. 2.12 to solve for ψ and ρ can be done

numerically (see Appendix D), and can even be done analytically in special cases.

Junction Capacitance

The results of the previous sections can be extended to derive the capacitance

associated with a p− n junction, i.e., the junction capacitance. To see how, consider

a one-sided p− n+ junction (see Figure 6) with the junction interface at x = 0. Take

ψ(∞) = 0, (2.13)

for simplicity, and

dψ

dx

∣

∣

∣

∣

∞

= 0 (2.14)
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FIGURE 5. Illustration of how band bending in a n+ − p junction is related to the
charge density via integration of the density of states, as in Eq. 2.12. Hatched regions
of the density of states are filled with holes. At x = xa, there is no band bending and
the net charge density is zero. At x = xb, the band bending is ψ(xb), and the net
charge is proportional to the area of the density of states that has been pulled below
the Fermi level (as in Eq. 2.12).
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FIGURE 6. Band diagram and charge density profile of one-sided p − n+ junction.
Charge neutrality requires that the depletion region is almost entirely within the
lightly doped p -side of the junction.
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to enforce charge neutrality deep in the bulk. Using the chain rule, Poisson’s equation

for the electron potential

d2ψ

dx2
=
ρ(x)

ǫ
(2.15)

can be rewritten as

d

dx

(

x
dψ

dx

)

− dψ

dx
=
xρ(x)

ǫ
. (2.16)

Integrating Eq 2.16 gives

[

x
dψ

dx

]∞

0

− [ψ(x)]∞0 =

∫

∞

0

xρ(x)

ǫ
dx. (2.17)

The boundary conditions (Eqs. 2.13 and 2.14) simplify the left-hand side of Eq. 2.17

yielding

ψ(0) =

∫

∞

0

xρ(x)

ǫ
dx. (2.18)

Thus, a change in the charge distribution δρ(x) is related to a change in the electron

potential δV by

δV =

∫

∞

0

xδρ(x)

ǫ
dx, (2.19)

and the change in the total charge of a junction with area A will be

δQ = A

∫

∞

0

δρ(x)dx. (2.20)

Combining Eqs. 2.19 and 2.20 defines the junction capacitance4

C ≡ δQ

δV
=
ǫA

∫

∞

0
δρ(x)dx

∫

∞

0
xδρ(x)dx

≡ ǫA

〈x〉 (2.21)

4Note that the electron potential ψ that appears in Poisson’s equation has units of volts. The
same is true for the applied voltage δV that appears in the definition of capacitance. Thus, the
change in electron potential and the change in applied voltage are identical.
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where

〈x〉 ≡
∫

∞

0
xδρ(x)dx

∫

∞

0
δρ(x)dx

(2.22)

is the first moment of the charge response.

In a uniform, one-sided device with no electronically active defect levels, δρ(x)

can be approximated by a delta function in the low temperature limit

δρ(x) ≈ δρ δx δ(x−W ), (2.23)

where W is the width of the depletion region. Substituting Eq. 2.23 into Eq. 2.22

gives

〈x〉 = W, (2.24)

which reduces the junction capacitance from Eq. 2.21 to the standard parallel-plate

cacpacitor result

C =
ǫA

W
. (2.25)

Characterization of p − n junctions using junction capacitance provides several

unique advantages. First, as seen in Eq. 2.21, the junction capacitance depends

exclusively on the charge response within the the depletion region of the p−n junction.

Solar cells are typically n+− p junctions (see Figure 6), with the lightly doped p -side

being the absorber layer. Thus, the junction capacitance is sensitive to the charge

response in only the absorber layer, which is often the layer of interest.5 Second,

extremely sensitive measurements of the junction capacitance are readily performed

using a lock-in amplifier because the measurement already requires the use of a small

AC probe voltage. Third, the width the of the depletion region can be adjusted by

5Assuming, that there are no other significant junctions elsewhere in the device.
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applying a DC bias to the p − n junction, which allows one to control the spatial

sensitivity of the junction capacitance measurement.

Capacitance Transients in p− n Junctions

Consider a n+ − p junction held under a quiescent reverse bias, with a deep

defect level at energy ED (measured with respect to the valence band). As shown in

the leftmost section of Figure 7g, assume that the junction has reached steady-state,

and therefore that the capacitance does not vary with time. The band diagram and

charge profile for this case are illustrated in Figure 7a and Figure 7b, respectively.

Now imagine that the junction is subject to a forward bias voltage pulse. As

illustrated in Figure 7c, this will collapse the depletion region and push much of the

deep defect above the Fermi level. The collaspe of the depletion region causes the

capacitance to increase dramatically, as shown in the middle section of Figure 7g.

Previously empty defect states that are pushed above the Fermi level capture holes

from the valence band at rate (cp) such that

cp = p σp〈vp〉, (2.26)

where, p is the density of free holes, σp is the hole capture cross section of the defect

state, and 〈vp〉 is the thermal velocity of holes. Typically, this capture process is

very fast compared to the time scale of the measurement, with a characteristic time

of 10µs for p = 1014 cm−3, σp = 10−16 cm2, 〈vp〉 = 107 s−1, and T = 300K [32].

Thus, the transient capacitance associated with capture is usually not observed. This

forward bias pulse is typically referred to as a “filling” pulse, because it fills previously

unoccupied defect states with carriers by moving them across the Fermi level.
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Next imagine that the junction is returned to the original quiescent reverse bias.

As illustrated in Figure 7e, defect states that were filled by the filling pulse are now

pushed back below the Fermi level, where it is statistically favorable for them to

empty. This emptying occurs via thermal emission of holes into the valence band.

Unlike the capture process occurring during the filling pulse, this requires that thermal

energy be supplied to the holes residing in the defect state in order for them to escape.

Thus, the thermal emission rate for holes (ep) will be

ep = NV σp〈vp〉 exp
[

−ED − EV
kBT

]

, (2.27)

where NV is the effective density of states in the valence band (see Eq. C.18), kB

is the Boltzmann constant, and T is the absolute temperature. The exponential

factor in Eq. 2.27 (known as a Boltzmann factor) causes the thermal emission rate

to be very slow compared to the capture rate, i.e., ep ≪ cp, with a characteristic

time of 2ms for p = 1014 cm−3, σp = 10−16 cm2, 〈vp〉 = 107 s−1, ED = 0.45 eV, and

T = 300K [32]. As illustrated in Figure 7f, when the junction is initially returned

to quiescent bias the depletion edge expands past the steady-state quiescent value

because the carriers trapped above the Fermi level have yet to be thermally emitted.

Thus, as shown in the rightmost section of Figure 7g, the capacitance is initially

lower than the steady-state quiescent capacitance. As carriers are thermally emitted

from the defect state, the depletion region will recede to the steady-state value, and

the capacitance will increase to the steady-state quiescent value. This process of the

capacitance returning to the steady-state value via thermal emission of carriers from

defect states is known as a capacitance transient. Capacitance transients of this type

occur on a characteristic time scale, τ = 1/ep, and contain information regarding the
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energy (via the time scale of the transient) and density (via the magnitude of the

capacitance transient) of the defect state responsible for their occurrence.

Spatial Sensitivity of Capacitance Transients

The form of Eq. 2.21 suggests that the junction capacitance will not have a

uniform spatial sensitivity to charge in the depletion region. Indeed, following

Lang [33], the non-uniform sensitivity of capacitance transients can be derived by

considering an abrupt one-sided p − n junction with a depletion width, W . The

potential dropped across this device is simply

ψ(0) =

∫ W

0

x′ρ(x′)

ǫ
dx′. (2.28)

If one introduces a small charge of magnitude δρ, with a width δx at a position x,

then the potential across the device must be

ψ′(0) =

∫ W+δW

0

x′ρ(x′)

ǫ
dx′ −

∫ W

0

x′δρ δx δ(x)

ǫ
dx′, (2.29)

where δW is the shift in the edge of the depletion region due to the introduction of

δρ, and δ(x) is a Dirac delta function centered at x.6 Subtracting Eqs. 2.28 and 2.29

gives the change in potential due to the introduction of δρ

δψ = ψ′(0)− ψ(0) =

∫ W+δW

W

x′ρ(x′)

ǫ
dx′ − xδρ δx

ǫ
, (2.30)

6Note that the sign of δW and of the rightmost term in Eq. 2.29 implies that δρ has the opposite
sign of ρ(x), i.e., δρ corresponds to the trapping of majority carriers. Trapping minority carriers will
result in Eq. 2.35 with the right-hand side positive.
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FIGURE 7. Illustration of how the charge density, potential and capacitance of a
one-sided p − n junction change in response to a voltage pulse. Figures (a) and (b)
depict the potential and charge density profiles at equilibrium under reverse bias.
Figures (c) and (d) depict the potential and charge density profiles at equilibrium
during the forward bias filling pulse. Figures (e) and (f) depict the potential and
charge density profiles while the sample is equilibrating (via thermal emission) after
being returned to reverse bias. Figure (g) depicts the capacitance as a function of
time as the device goes through the phases depicted in Figures (a)-(f).
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or

δψ =
ρ(W )WδW

ǫ
− δρ x δx

ǫ
. (2.31)

Under typical measurement conditions, the DC bias is held constant when measuring

the capacitance transient, thus the left-hand side of Eq. 2.31 is zero, and

δW

W
=

δρ x δx

W 2ρ(W )
. (2.32)

From Eq. 2.25 one can derive the differential relation

−dC
C2

=
dW

ǫ
, (2.33)

or

−dC
C

=
dW

W
, (2.34)

which allows (assuming δC ≪ C) one to rewrite Eq. 2.32 as

δC

C
= − x δxδρ

W 2ρ(W )
. (2.35)

It should be noted that using Eq. 2.34 implies that there is a small AC perturbation

applied to the junction at a frequency such that only shallow dopants can respond

(this does not affect the condition that the change in DC bias be zero). Eq. 2.35 makes

it clear that changes to the junction capacitance depend linearly on the position of

charge in the depletion region. Furthermore, it is evident that changes to the charge

density at the junction interface (x=0) will produce zero change in the junction

capacitance, while changes to the charge density at the depletion edge (x=W ) will

produce the largest change in the capacitance. Thus, capacitance transients are most
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sensitive to changes in charge density near the depletion edge, and least sensitive to

changes occurring at the interface.

Note that Eq. 2.32 also allows one to determine the spatial sensitivity of current

transients as follows: The total change in charge, dQ, described above is simply

δQ = Aδρ δx. (2.36)

If δρ are trapped majority carriers, then some portion of them do not leave the

depletion region because charge is needed to shrink the depletion region.7 The amount

of charge required to do this will be

δQ′ = Aρ(W )δW. (2.37)

Thus, the total charge leaving the depletion region will be

δQout = δQ− δQ′ = Aδρ δx− Aρ(W )δW. (2.38)

Using Eq. 2.32 this can be rewritten as

δQout = Aδρ δx

(

1− ρ(W )δW

δρ δx

)

= Aδρ δx
(

1− x

W

)

.

(2.39)

It is clear from Eq. 2.39 that majority carrier charge leaving the depletion region

during the transient (i.e. the majority carrier current transient) has the opposite

spatial sensitivity of capacitance.

7That is, some portion of the majority carrier charge goes to the edge of the depletion region to
neutralize the space charge there—thus shrinking the depletion region.
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Measuring Junction Capacitance

Recall that the definition of capacitance C ≡ δQ/δV , where δQ is the change in

charge produced in response to a change in voltage δV . In the case in which δQ and

δV are small, the capacitance can be expressed in terms of a derivative

C =
dQ

dV
. (2.40)

Ideally, one would like to measure the capacitance by applying δV to a given device

and measuring the δQ that is produced. Unfortunately, it is usually not feasible

to measure δQ directly. The more practical route is to apply an AC voltage with

amplitude V and angular frequency ω

V (t) = V sin(ωt), (2.41)

and monitor the current, I(t). This is because the capacitance is proportional to the

magnitude of the AC current, as can be seen by calculating the AC current from

Eqs. 2.40 and 2.41, yielding

I(t) ≡ dQ

dt
= C

dV

dt
= ωCV cos(ωt). (2.42)

Sadly, the above relations only apply when measuring a pure capacitor. In

general, a photovoltaic device will also have a resistive components both in parallel

(RP ) and in series (RS) with the junction capacitance one wishes to measure. The

equivalent circuit for this scenario is shown in Figure 8.
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FIGURE 8. The equivalent circuit for a typical photovoltaic device. The circuit
consists of a junction capacitance C, a series resistance RS and a parallel resistance
RP .

In this case, the complex impedance of the circuit is

Z = RS +
1

1
RP

+ iωC
, (2.43)

which means the complex current will be

I(t) =
V (t)

Z
= V eiωt





1

RS +
1

1

RP
+iωC



 , (2.44)

which, after separating the real and imaginary parts, becomes

I(t) = V eiωt







1
RP

+ ω2C2RS
(

1 + RS

RP

)2

+ ω2C2R2
S

+
iωC

(

1 + RS

RP

)

(

1 + RS

RP

)2

+ ω2C2R2
S






. (2.45)

If RS is small such that RS/RP ≪ 1 and ωCRS ≪ 1, then Eq. 2.45 simplifies to

I(t) = V eiωt
[

1

RP

+ iωC

]

. (2.46)
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From Eq. 2.46 it is clear that the capacitance is proportional to the imaginary

part of the complex impedance, and that information about the parallel resistance

is contained in the real part (which is 90◦ out of phase). Thus, measuring the

capacitance is equivalent8 to measuring the complex phase of the AC current—a

measurement for which a lock-in amplifier is particularly well-suited. In practice,

measuring capacitance with a lock-in amplifier also requires that the circuit response

be calibrated using a pure capacitor with an impedance similar to the device of

interest.

The basic experimental setup for such capacitance measurements is shown in

Figure 9. A small, ‘reference’ AC voltage generated by the lock-in amplifier is applied

to the device under test. The resulting AC current response of the device is terminated

at a current pre-amplifier, which outputs voltage that is proportional to the AC

current (greatly amplified). This voltage is then routed back to the lock-in amplifier,

where the real and imaginary phases of the current are separated. The imaginary part

of the current (which is proportional to the capacitance) can then be read directly

from the lock-in amplifier. If desired, the entire measurement can be controlled by a

computer that is interfaced with the lock-in amplifier (via, e.g., a GPIB port).

8Provided, again, that RS is small.
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FIGURE 9. The basic experimental setup for measuring capacitance using a lock-in
amplifier and a current pre-amplifier.
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CHAPTER III

METHODS

Transient Photocapacitance Spectroscopy

Transient photocapacitance (TPC) spectroscopy utilizes junction capacitance

and sub-bandgap monochromatic illumination to detect defect transitions in

semiconductor devices. It produces spectra that are similar to standard optical

absorption measurements, but with some important differences:

– Because it is based on junction capacitance, TPC spectra are only sensitive to

the transitions occurring in the depletion region of the device. Solar cells are

typically one-sided devices with a lightly doped absorber material, therefore

the depletion region is entirely1 within the absorber layer. Thus, TPC spectra

naturally isolate the defect transitions occurring in the absorber layer from those

in the other layers of the device. Since the defect transitions in the absorber

layer are often the most important in terms of device performance, the ability

of TPC to isolate them is advantageous.

– Because junction capacitance is sensitive to the net charge of the depletion

region, and thus the type of carrier leaving the depletion region, the sign of

TPC spectra indicates whether the observed transition is releasing a majority

or minority carrier from the depletion region.

– Because junction capacitance can be measured very sensitively with a lock-in

amplifier, TPC spectra can detect sub-bandgap transitions that are extremely

weak compared to band-to-band transitions.

1to a very good approximation
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TPC was pioneered to facilitate the study of gap states in amorphous Silicon

(a-Si) by J. D. Cohen, A. V. Gelatos (University of Oregon) and J. P. Harbison (Bell

Labs) [30, 34–44], as well as by D. K. Biegelsen and N. M. Johnson (Xerox) [45].

The Oregon group went on to apply the technique to the study of gap states in

SiGe [39, 40, 46–49], CuIn1−xGaxSe2 [50–53], Zinc Tin Oxide [54], nanocrystalline

Silicon [55, 56], Cu2ZnSn(S, Se)4 [57] and CdTe [58, 59].

The general sequence of events for a TPC measurement is illustrated in Figure 10.

The device of interest is held under a quiescent bias VQ (typically reverse bias or no

bias), and a resultant capacitance CQ is exhibited. A forward bias pulse VP is then

applied to the device, causing the capacitance to increase dramatically to CP . The

device is then returned to quiescent bias, and the resulting capacitance transient

C light(t) is observed under monochromatic illumination. Next, the monochromatic

illumination is removed, a second forward bias pulse is applied, and the resultant

capacitance transient Cdark(t) is observed in the dark. The TPC signal is defined to

be the normalized integrated difference between the light and dark transients

STPC(E) ≡ 1

Φ(E)

∫

C light(E, t)− Cdark(t)dt, (3.1)

where Φ(E) is the photon flux at monochromatic energy E. During Cdark(t) the

device is equilibrating entirely through thermal processes, while during C light(t)

optical processes are occurring in additional to the thermal ones. Thus, C light(E, t)−

Cdark(t) isolates the optical contribution to C light(E, t) by canceling off the thermal

contribution to the transient. Varying the monochromatic illumination energy E,

produces a TPC spectrum.

In principal, the limits of the integral in Eq. 3.1 are over the entire length on the

transient. In practice, the lock-in amplifier used to measure the capacitance takes on
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the order of 10 cycles to properly lock on to the capacitance signal after the voltage

pulse is removed. Thus, the integration window is typically adjusted to cut off the

part of the transient that is influence by the recovery of the lock-in amplifier.

Notice that in Figure 10 there are two behaviors that will produce a non-zero

capacitance signal. The first behavior is a vertical offset between the light and dark

transients such that C light(t) = Cdark(t)+constant (the shape of the both transients are

identical). This occurs when a state is far enough from the Fermi level that the voltage

pulse does not cause it to change it’s occupation. In this case, the illumination will

produce a steady-state change in the occupancy of the state—resulting in a constant

shift in C light(t) with respect to Cdark(t). The second behavior is one in which the light

transient plateaus faster (or slower) than dark transient, but both transients plateau

to the same capacitance value. In this case, the light is assisting (or inhibiting) the

thermal emission of trapped carriers from a state (as described in Chapter II). One

benefit of this type of behavior is that it allows the competition between optical and

thermal processes to be observed, but it also requires that the time scale of the TPC

measurement be tuned to a range that allows the thermal transient to be seen. In

general, both types of behavior will be present during a TPC measurement.

The optical contribution to C light(E, t) is proportional to the integrated density

of states accessible at the monochromatic illumination energy. To understand

how, consider that the rate R(E) at which photons induce carrier transitions in a

semiconductor is proportional to the integral

R(E) ∝
∫

|〈i|ex|f〉|2gunocc(E ′)gocc(E
′ − E)dE ′, (3.2)

where E is the energy of the photon, and |〈i|ex|f〉|2 is the optical matrix element

associated with the relevant transition from unoccupied states with density gunocc to
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FIGURE 10. Schematic of a TPC measurement. Initially, the device is held under a
quiescent bias VQ, and exhibits a capacitance CQ. Next, a forward bias pulse VP is
then applied to the device, causing the capacitance to increase dramatically to CP .
Then, the device is returned to quiescent bias, and the resulting capacitance transient
is observed under monochromatic illumination. The monochromatic illumination is
then removed, and a second forward bias pulse is applied. After returning the device
to quiescent bias again, the resultant capacitance transient is observed in the dark.
The TPC signal is the normalized integrated difference between the light and dark
transients.
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occupied states with density gocc. In the case of a semiconductor being illuminated

with sub-bandgap light, there are two relevant transitions to consider: those from the

valence band to unoccupied gap states

RV (E) ∝
∫ EV +E

EF

|〈i|ex|f〉|2g(E ′)gV (E
′ − E)dE ′, (3.3)

and those from an occupied gap states to the conduction band

RC(E) ∝
∫ EF

EC−E

|〈i|ex|f〉|2g(E ′)gC(E
′ + E)dE ′. (3.4)

Note that Eq. 3.3 only applies when EV + E > EF and Eq. 3.4 only applies when

EC − E < EF ; they are zero otherwise.2 For TPC, only transitions that produce

a change in the net charge of the depletion region will contribute.3 For example,

promoting a electron from a defect state to the conduction band will only contribute

to the TPC signal if the hole that is left behind does not escape to the valence band

via thermal emission (on the time scale of the TPC measurement). In general, charge

left behind by an optical transition will escape thermally if it is within a thermal

energy depth

Ee = kBT log(ντ) (3.5)

of the relevant band. Here, ν is the thermal emission prefactor for the relevant gap

state, and τ is the time scale of the TPC measurement. Thus, one can modify Eqs. 3.3

and 3.4 to make them appropriate for TPC by adjusted the integration limits such

2This nicely separates the occupied and unoccupied parts of g(E) into the proper integrals as
well.

3This is because the TPC signal is proportional to the junction capacitance, which depends on
the net charge of the depletion region.
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that

RTPC
V (E) ∝

∫ EV +E

EV +Ee

|〈i|ex|f〉|2g(E ′)gV (E
′ − E)dE ′, (3.6)

and

RTPC
C (E) ∝

∫ EC−Ee

EC−E

|〈i|ex|f〉|2g(E ′)gC(E
′ + E)dE ′. (3.7)

Fortunately for the semiconductor physics community, it turns out that the optical

matrix element and the density of states in the conduction band (or valence band)

both vary slowly in energy space with respect to g(E) (see, e.g., [60] and [61]). This

allows one to approximate these quantities as constants, leading to the much simpler

and more useful expressions

RTPC
V (E) ∝

∫ EV +E

EV +Ee

g(E ′)dE ′, (3.8)

and

RTPC
C (E) ∝

∫ EC−Ee

EC−E

g(E ′)dE ′. (3.9)

Considering that the TPC signal is defined by isolating the optical contribution to

the capacitance transient, it is apparent that

STPC(E) ∝ RTPC(E) ∝
∫

g(E ′)dE ′, (3.10)

and therefore that STPC(E) as defined in Eq. 3.1 is proportional to the integrated

density of states. In the case of a p-type semiconductor, this relation is more precisely
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formulated as

STPC(E) = K(T, τ, ω)
[

STPC
V (E)− STPC

C (E)
]

= K(T, τ, ω)

[
∫ EV +E

EV +Ee

g(E ′)dE ′ −
∫ EC−Ee

EC−E

g(E ′)dE ′

]

,
(3.11)

where K(T, τ, ω) is a constant that does not depend on E. Note that STPC
V represents

the release of a majority carrier (a hole) from the depletion region and STPC
C represents

the release of a minority carrier (an electron). The release of a majority carrier will

shrink the depletion region4 (increasing capacitance), while the release of a minority

carriers from the depletion region will cause the depletion region to expand (decreasing

capacitance). Thus, STPC
V and STPC

C must enter Eq. 3.11 with opposite signs, and the

sign of STPC(E) will indicate whether a minority or majority carrier transition is

occurring. This is crucial for determining whether the energy of a transition is with

respect to the valence band or conduction band.

Shown in Figure 11 are examples of the types of transitions that can contribute

to a typical TPC spectrum. These include: (a) band-to-band transitions, which

will dominate when illuminating the device with above-gap light. If there is perfect

carrier collection from the depletion region, then the band-to-band contribution to

the TPC signal will be zero because the net charge of the depletion region will not

change. Typically, minority carriers are not collected perfectly and the band-to-band

transitions result in a large, positive TPC signal; (b) bandtail transitions, which will

dominate when illuminating with light that is just below the bandgap. Bandtail states

exist in all amorphous materials, and the width of the bandtails is generally associated

4A released majority carrier leaves behind a charge that has the same sign as the space charge in
the depletion region. Thus, releasing a majority carrier increases the charge density in the depletion
region, which means the depletion region must shrink in order the drop the same voltage across the
device (the device is being held at a fixed bias.
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FIGURE 11. Illustration of the types of transitions that contribute to TPC. The
transitions labeled on the left are responsible for the region of the TPC spectrum with
the same label. These include: (a) band-to-band transitions, (b) bandtail transitions,
and (c) defect transitions (in this case, the defect has an energy ED measured with
respect to the valence band).

with a more disordered material [62]. Bandtails are also referred to as an Urbach edge,

characterized by the Urbach energy EU , defined such that g(E) ∝ exp [E/EU ] in the

bandtail region [63]; (c) defect transitions, which will dominate for sub-bandgap light

with sufficiently low energy5. Typically, the defect states observed have a Gaussian

distribution in energy space with the center of the distribution at the ‘energy’ of the

defect.

An example of a TPC spectrum of CdTe thin film solar cell is shown in Figure 12.

As shown in the figure, typical analysis of a TPC spectrum involves fitting the data

with an integrated density of states (involving an Urbach edge and one or more

Gaussian defect states). Also shown is the density of states corresponding to the fit,

which is simply found by differentiating the integrated density of states with respect

to energy.

5Provided there are defects present in the device at observable densities
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FIGURE 12. The TPC spectrum of a CdTe thin film solar cell. The solid red line
indicates the integrated density of states (DOS) that best fit the data. The dashed
black line indicates the underlying DOS corresponding to the best fit. The spectrum
exhibits an Urbach energy of 13meV and single Gaussian defect level centered at
0.9 eV (measured with respect to the valence band).
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A schematic of the instrumentation used to collect TPC spectra is shown in

Figure 13. For the TPC spectra presented in this work, monochromatic light was

generated by a McPherson 205WR monochromator with a 550W quartz-tungsten

halogen lamp in combination with long-pass filters to attenuate high energy stray

light.6 Overall intensity of the light was further attenuated using neutral density

filters, ensuring the linear response of the device under test.7 Voltage pulses generated

using a Tektronix AFG3022B function generator were combined with a 30mV,

10 kHz AC probe voltage generated by the Stanford Research Systems SR850 lock-in

amplifier, and sent to the device. The response of the device, which was mounted in

a Linkam LTS350 liquid nitrogen temperature control stage8, was sent to a Stanford

Research Systems SR570 current preamplifier. The amplified signal was then fed

to the SR850 lock-in amplifier, which passed the capacitive phase to a Tektronix

TDS3014C oscilloscope, which recorded the device response data. The TPC signal

itself was calculated in software from the oscilloscope data.

Transient Photocurrent Spectroscopy

Complementary to TPC is transient photocurrent spectroscopy (TPI). A TPI

measurement is carried out in exactly the same manner as TPC, except the current is

monitored instead of the capacitance. Experimentally, this is achieved by bypassing

the lock-in amplifier in Figure 13. Because the lock-in amplifier is no longer used,

TPI spectra are generally less sensitive than TPC.

6Because the density of sub-bandgap states is much less than the density of states in the bands,
even a very small amount of high energy stray light can produce a signal that totally overwhelms
the signal due to sub-bandgap transitions.

7This also ensures that there is negligible quasi-Fermi level splitting, and reduces any sort of
light-induced metastabilities.

8Sample temperature ranged from 160K to 200K depending on the device.
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In the context of this work, the important difference between TPC and TPI

is that the TPI spectra of different devices are more readily compared. Ideally,

one would like to be able to align the above-gap portion of TPC spectra from

different samples in order to compare the magnitude of sub-bandgap defect states that

are observed. Unfortunately, the magnitude of the above-gap TPC signal depends

sensitively on the relative collection of minority and majority carriers. If minority

and majority carriers are both collected perfectly, band-to-band transitions will have

zero contribution to the above-gap TPC signal because the net change in charge will

be zero. If minority carriers are never collected, then the net change in charge will be

maximized, and band-to-band transitions will dominate the above-gap TPC signal.

Because current depends on the total charge leaving the depletion region, TPI does

not suffer in this way, and the above bandgap signal simply depends on the total

number of free carriers contributing to the current. Therefore, TPI spectra can be

scaled such that they align at the bandgap energy, allowing the relative magnitude

of defect states to be compared between samples.9

As discussed in Chapter II, current and capacitance transients have opposite

spatial sensitivity, thus TPI is more sensitive to junction interface region of the

device, while TPC is more sensitive to the region near the depletion edge. This

is an important consideration to keep in mind when comparing the TPC and TPI

spectra of non-uniform devices.

9Notice that any mechanisms that affect the total current (e.g., series resistance) will affect all
parts of a TPI spectrum equally in the low injection limit—e.g., once photo-excited electrons have
entered the conduction band their behavior does not depend on whether they were excited from a
defect state or from a valence band state.
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Time-of-Flight Secondary Ion Mass Spectrometry

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a technique

capable of determining elemental composition of films as a function of depth [64]. In

ToF-SIMS, the elemental composition of a given surface is determined by bombarding

it with energetic ‘primary’ ions and performing time-of-flight mass spectrometry on

the ‘secondary’ ions that are emitted as a result (see Figure 14). In order to increase

the signal-to-noise ratio, the primary ion beam is typically rastered across a surface

area of roughly 100µm× 100µm.

The basic principle of time-of-flight spectrometry is that secondary ions are

extracted from the surface region of the sample and accelerated to a known potential

energy via and extraction potential V . The time t it takes for a secondary ion with

mass-to-charge ratio m/z to reach a particle detector at a distance L will be

t = L
( m

2zV

)1/2

. (3.12)

Thus, the mass-to-charge ratio of the secondary ions can be calculated from their

arrival time at the detector. In practice, accurate timing requires that the primary

ions be delivered over a very short duration pulse (typically nanoseconds). Further,

the secondary ions are not all emitted with identical energies, therefore a precisely

calibrated ion mirror is required to offset the energy distribution of the secondary

ions [64]. The ion mirror reflects ions using a retarding field that increases in

strength as ions move into the mirror. This results in more energetic ions penetrating

further into the mirror, which increases their time-of-flight and compensates for their

increased initial energy.

40



Depth profiles are obtained by using a sputter beam to create a sputter crater on

the analysis area of the film (see Figure 15a). The sputter beam is interlaced with the

primary ion analysis beam, ensuring the analysis beam is bombarding the bottom of

a successively deeper sputter crater as the measurement proceeds (see Figure 15b). In

this way, elemental abundances can be determined as a function of depth for several

microns into the film.

It is important to keep in mind that the ion yield under bombardment varies

over several orders of magnitude for different elements, materials, and primary ions.

Thus, the elemental abundances determined by ToF-SIMS are not quantitative, unless

a film of known composition is used to calibrate the ion yields. Furthermore, since

the sputter rate is heavily dependent on the film composition and the type of sputter

ion used, the depth axis of ToF-SIMS data needs to be calibrated by the determining

the relevant film thicknesses through some other means (e.g., from scanning electron

microscopy images).

The ToF-SIMS depth profile data presented in this work, were collected with an

ION-TOF Model IV operated by Dr. Stephen Golledge of the Center for Advanced

Materials Characterization in Oregon (CAMCOR) Surface Analytical Facility. In all

cases, a 25 keV Bi+3 primary ion beam with a current of 0.3 pA was used to analyze

a 100µm × 100µm area. A 2 keV beam of O2 ions (at a current of 300 pA) was

used to sputter a 300µm× 300µm crater for the depth profiles. Copper profiles were

normalized with respect to tellurium in all cases.
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CHAPTER IV

SAMPLES

In order to ensure that the results of this work were not a by-product of

the deposition technique, the superstrate CdTe solar cells studied were fabricated

using two separate techniques: vapor transport deposition (VTD) and close space

sublimation (CSS). The VTD devices were deposited at 400 ◦C, while the CSS devices

were deposited at 600 ◦C. The structure of the VTD devices, which were fabricated by

Jiaojiao Li and Dr. Colin Wolden at the Colorado School of Mines (CSM) is shown in

Figure 17a. For CSS devices (structure shown in Figure 17b), the FTO to CdTe layers

were deposited by Daniel Meysing (CSM) and Dr. Teresa Barnes at the National

Renewable Energy Laboratory (NREL), while the deposition of the ZnTe:Cu/Au

back contact and subsequent thermal processing was performed at CSM by J. Li and

C. Wolden. All devices received a CdCl2 treatment at 400 ◦C, as is typical for high-

performance CdTe solar cells [4]. The processing methods, performance parameters,

and back contact types of the samples studied are summarized in Table 1 and plotted

in Figure 16.

The thin-film CdTe devices studied in this work were prepared in such a

way as to control copper content and minimize copper contamination. Typically,

CdTe/ZnTe:Cu devices have the ZnTe:Cu layer deposited at relatively high

temperatures (on the order of 300 ◦C) for relatively extended periods of time (on the

order of 2 hr). These fabrication conditions deposit the ZnTe:Cu whilst simultaneously

diffusing copper into the CdTe layer [24]. In contrast, the devices fabricated for

this work decouple the ZnTe:Cu deposition from the diffusion of copper into the

CdTe layer, thus enabling a careful study of role of copper. This was done by
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TABLE 1. Processing methods, typical cell performance parameters and back contact
type for the classes of devices studied.

Eff. FF VOC JSC
Sample Processing (%) (%) (mV) (mA/cm2) Back Contact
Optimal VTD 13.2 67 810 24.3 ZnTe:Cu

Overannealed VTD 8.9 56 792 20.0 ZnTe:Cu
Undoped VTD 5.4 53 561 18.1 ZnTe

As-deposited VTD 6.7 48 595 23.5 ZnTe:Cu
Optimal CSS 14.9 68 828 26.5 ZnTe:Cu

Overannealed CSS 7.8 48 671 24.1 ZnTe:Cu
Underannealed CSS 3.7 41 691 13.2 ZnTe:Cu
As-deposited CSS 0.3 35 359 2.5 ZnTe:Cu

Comparison[58] CSS 14.1 72 840 23.5 CuxTe
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FIGURE 16. Power conversion efficiency (PCE), open-circuit voltage (VOC), short-
circuit current density (JSC), and fill factor (FF) for the classes of devices studied.
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depositing ZnTe:Cu using thermal evaporation at a low enough temperature (roughly

100 ◦C) such that little or no copper diffusion occured during the deposition. The low

temperature deposition was followed by a 30 s rapid thermal processing (RTP) step1,

which diffused copper into the CdTe layer. Adjusting the parameters of the RTP step

enabled the extent to copper diffusion into the CdTe layer to be precisely controlled.

For further information regarding the RTP process and the fabrication of the VTD

devices, refer to Li et. al [17]. For further information regarding the fabrication of

the CSS device see Meysing et. al [65].

In all, five classes of devices were fabricated for the purposes of this work. They

include:

– (1) ‘Optimal’ devices. These devices represented the RTP conditions which

produced the optimal devices in terms of power conversion efficiency (PCE).

They had an intermediate amount of copper in the CdTe layer compared to the

other classes of devices.

– (2) ‘Overannealed’ devices. These devices were exposed to either an additional

RTP step relative to the optimal devices or a single RTP step at temperature

higher than that of the optimal processing. As a result, they had increased Cu

content in the CdTe layer compared to the optimal devices, as well as a reduced

PCE.

– (3) ‘Underannealed’ devices. These devices were exposed to a lower temperature

RTP step relative to the optimal devices. This resulted in a less copper in the

CdTe layer compared to the optimal devices, and and a reduced PCE.

1The RTP temperature was roughly 300 ◦C.
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– (4) ‘Undoped’ devices. These devices were given the optimal RTP treatment,

but lacked intentional Cu doping in the ZnTe layer (i.e., the back contact

layer was ZnTe instead of ZnTe:Cu). Since elements other than copper diffuse

into the CdTe layer during the RTP step (most notably zinc), these devices

were necessary to ensure that the effects seen in other devices could truly be

attributed to copper. The undoped devices had very low PCE, and showed no

evidence of copper in the CdTe layer.

– (5) ‘As-deposited’ devices. These devices served as a control, and were identical

to the optimal devices, except they lacked the RTP treatment altogether.2 They

also had very low PCE, and also showed evidence of copper diffusion into the

CdTe layer.

Typical current-voltage curves for these classes of devices are shown in Figures 18

and 19.

In addition to the devices fabricated specifically for this study, this work will

also refer to a ‘Comparison’ device from Boucher et al. [58], which had conventional

processing conditions and the commonly used CuxTe back contact. This device

allowed the conclusions drawn from the CdTe/ZnTe:Cu devices to be generalized

beyond the specific back contact scheme employed.

2They still recieved the CdCl2 treatment, which occured before the deposition of the back contact
layer.
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FIGURE 18. Typical current-voltage characteristics for the VTD devices under
AM1.5 illumination.
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CHAPTER V

RESULTS

Transient Photocapacitance Spectroscopy and Time-of-Flight Secondary

Ion Mass Spectrometry

TPC spectra of the VTD and CSS devices are shown in Figures 20 and 21,

respectively. All devices studied exhibit a bandgap Eg≈1.5 eV (as would be expected

for CdTe), an Urbach edge with EU ranging 15meV to 25meV, and a defect at

EV+1.2 eV. The Urbach energies and defect energies were determined by numerically

fitting the spectra using the least squares method. Devices in which copper has been

intentionally diffused into the CdTe layer (the optimal and overannealed devices)

show an increased TPC signal at low optical energies as compared to devices without

intentional copper doping (the undoped and as-deposited devices). This suggests the

presence of an additional defect in the CdTe layers which contain copper. Indeed,

numerical fitting of the TPC spectra for the copper containing devices used a

Gaussian defect centered at EV+1.2 eV and an additional Gaussian defect centered at

EV+0.9 eV for the best fit. Thus, the 0.9 eV defect is associated with copper because

it only appears when copper is present in the CdTe layer. The parameters of the best

fit for each device are given in Table 2.

The absence of copper in the CdTe layer of the as-deposited devices, as well as

the presence of copper in the CdTe layers of the optimal and overannealed devices,

was confirmed via ToF-SIMS depth profiles (shown in Figures 22 and 23 for the VTD

and CSS devices, respectively). In Figures 22 and 23 it is evident that there is little

to no copper diffusion in the as-deposited device, and increasing diffusion of copper

51



0.6 0.8 1.0 1.2 1.4 1.6
10-8

10-6

10-4

10-2

100

102

104

 

 

 Comparison
 Overannealed
 Optimal
 Undoped
 As-deposited

Tr
an

si
en

t P
ho

to
ca

pa
ci

ta
nc

e 
(a

.u
.)

Photon Energy (eV)

FIGURE 20. TPC spectra of the VTD devices. The spectra were collected at
160K. Optimal (green downward triangles), overannealed (red upward triangles),
and comparison (black open circles) devices have an intentionally copper-doped
CdTe absorber layer, while the undoped (magenta diamonds) and as-deposited (blue
squares) devices do not. Solid lines indicate the best fits to the spectra. The best
fits include a Gaussian defect centered at 1.2 eV in all devices, and a 0.9 eV Gaussian
defect in devices with cooper diffused into the absorber. Dashed lines are the fits with
the 1.2 eV defect removed. Spectra have been offset vertically so that the individual
spectra can be seen clearly.
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FIGURE 21. TPC spectra of the CSS devices. The spectra were collected at
200K. The optimal (green downward triangles), overannealed (red upward triangles),
and underannealed (blue circles) devices have an intentionally copper-doped CdTe
absorber layer, while the as-deposited device (black squares) does not. Solid lines
indicate the best fits to the spectra. The best fits include a 1.2 eV defect in all
devices, and a 0.9 eV defect in the devices with intentional copper diffusion into the
CdTe layer. The dashed lines indicate the fits with the 1.2 eV defect removed. Spectra
have been offset vertically so that the individual spectra can be seen clearly.
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TABLE 2. Energetic position and full width at half maximum (FWHM) of the
Gaussian defects used in the best fits to the TPC and TPI spectra (where available,
fitting results for TPI spectra have been included in parentheses). The Urbach energy
(EU) of the bandtail region of the best fits are also included. The best fits were found
numerically via the least squares fitting method. In all cases, fitting the spectra with
a single defect was attempted before including a second defect in the scheme.

EU Defect 1 Defect 1 Defect 2 Defect 2
Sample (meV) Energy(eV) FWHM(eV) Energy(eV) FWHM(eV)

VTD Devices

As-deposited 21 1.20 0.09 — —
Undoped 25 1.18 0.11 — —
Optimal 18 1.19 0.09 0.91 0.19

Overannealed 15 1.19 0.10 0.92 0.19

CSS Devices

As-deposited 14(15) 1.24(1.23) 0.17(0.17) — —
Underannealed 13(14) 1.22(1.20) 0.13(0.12) 0.91(0.90) 0.15(0.13)

Optimal 16(16) 1.24(1.21) 0.15(0.13) 0.90(0.90) 0.15(0.19)
Overannealed 16(15) 1.19(1.23) 0.18(0.14) 0.91(0.88) 0.20(0.26)
Comparison 15 1.21 0.11 0.91 0.14
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FIGURE 22. ToF-SIMS depth profiles of the VTD devices.

into the CdTe layer as the RTP treatment proceeds from underannealed, to optimal,

to overannealed. This confirms that the RTP treatment is activating the copper

diffusion as expected, and that the method enables the diffusion of copper into the

absorber layer to be controlled.

Keeping the depth profiles in mind, consider the TPC spectra and the 0.9 eV

defect in particular. Note that the absence of the 0.9 eV defect in the as-deposited

device is not sufficient to associate the defect exclusively with copper. This is because

other elements (e.g. zinc) are also diffusing from the ZnTe:Cu layer into the CdTe layer

during the RTP treatment. Thus, it is the undoped device—compositionally identical
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FIGURE 23. ToF-SIMS depth profiles of the CSS devices.
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to the other devices except for the lack of copper doping in the ZnTe layer—that

allows for copper to be exclusively associated with the presence of the 0.9 eV defect.

Therefore, it is very important that the undoped device truly does not contain copper,

i.e., that the undoped device is not unintentionally copper doped. Indeed, this is a

reasonable concern because copper is a common impurity in tellurium feedstock [21].1

Accordingly, to ensure that the undoped device was truly copper-free, ToF-SIMS

depth profiling was performed on the undoped device. As seen in Figure 24, there is

virtually no copper detected in the CdTe layer of the undoped device by ToF-SIMS,

meaning that the copper concentration is several orders of magnitude smaller than in

the devices with copper intentionally diffused into the CdTe layer. Thus, the exclusive

association of the 0.9 eV defect with copper is robust.

At 0.9 eV above the valence band, the copper associated defect lies fairly close

to mid-gap, and therefore could act as an efficient recombination center. If this

were the case, one would expect the minority carrier lifetime to be reduced as

the copper content of the CdTe layer increased. Indeed, the decrease in the time-

resolved photoluminesence lifetime (which is essentially a measure of the minority

carrier lifetime) with increasing copper content that is commonly observed in the

literature [22–24] is also observed in the devices presented in this work (see J. Li et.

al [66]). Thus, it is reasonable to suggest that the 0.9 eV defect discussed in this work

is responsible for the reduction in minority carrier lifetime that has been associated

with copper.

The chemical origin of the 1.2 eV defect could not be determined. However, it

is evident that copper and zinc are not likely sources because the defect is present

both before and after the RTP step. One possible candidate is the intrinsic TeCd

1The main source of tellurium is copper anode slimes that precipitate during the electrolytic
refining of copper.
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when compared to the depth profile of the optimal device.
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defect, which has been calculated to lie at a similar energetic position using density

functional theory [14, 67].

Revisiting Figure 20, notice that the TPC spectra of the CuxTe contacted

‘comparison’ device is similar to the spectra of ZnTe:Cu contacted devices. Indeed,

the TPC spectrum of the ‘comparison’ device is best fit with defects residing at

0.9 eV and 1.2 eV (see Table 2). This suggests that defects observed in the ZnTe:Cu

contacted devices are not inherent to the back contact or RTP process itself.

Transient Photocurrent Spectroscopy

Up to this point, TPC has been used to study the presence or absence2 of the

0.9 eV defect, as it allows for the most sensitive detection. Having established that the

association of the 0.9 eV defect with copper, it is advantageous to exploit the ease with

which TPI spectra can be aligned to study the dependence of the copper associated

defect on copper content. As discussed in Chapter III, after the band-to-band signal

in TPI is aligned, the relative magnitude of sub-bandgap TPI spectra from different

samples corresponds to the relative magnitude of their actual defect densities.3 This

section will focus on the TPI spectra of only the CSS devices (shown in Figure 25).

The reason for this is that the VTD devices had inferior dark current characteristics,

which caused the dynamic range of the TPI measurement to be insufficient to observe

the deep sub-bandgap response.

The most striking feature in Figure 25 is that the magnitude of the 1.2 eV defect

response is dramatically higher in the as-deposited device. This suggests that the

1.2 eV defect is being annealed during the RTP step, although it is not clear if this

2TPC is unable to do better than this because there is no way to easily compare the magnitude
of defects in spectra from different samples.

3Assuming that the defect cross section is not varying significantly between devices.
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FIGURE 25. TPI spectra of the CSS devices. The spectra were collected at 200K.
Underannealed (blue circles), optimal (green downward triangles) and overannealed
(red upward triangles), devices have increasing concentrations of copper in the CdTe
layer, while the as-deposited device (black squares) has no copper diffused in the
CdTe layer. Solid lines indicate the best fits to the spectra. The best fits include a
Gaussian defect centered at 1.2 eV in all devices, and an additional Gaussian defect
centered at 0.9 eV in the devices with copper in the CdTe layer. Dashed lines indicate
the fits with 1.2 eV defect removed. Spectra have been vertically aligned so that the
signal at the bandgap coincides.
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process was independent of copper diffusing into the CdTe layer. However, as in TPC,

the 1.2 eV defect is present in all the CSS devices, confirming that it is not directly

associated with the presence of copper or zinc in the CdTe layer.

As in TPC, the 0.9 eV defect only appears in the TPI spectra of devices that

have copper present in the CdTe layer. Furthermore, the increasing relative density

of the 0.9 eV defect is concurrent with increasing amounts of copper in the CdTe

layer. The correlation of the relative defect density with the quantity of copper in the

CdTe layer is made more concrete by comparing the relative defect density observed

in TPI with the quantity of copper in the CdTe layer observed via ToF-SIMS. The

results of this comparison are shown in Figure 26. Here, the TPI defect density was

calculated by integrating the Gaussian defect profile determined to be the best fit

of the 0.9 eV response seen in Figure 25. The relative copper content of the CdTe

layer was calculated by integrating the ToF-SIMS depth profile across the entire CdTe

layer (as seen in Figure 23), which is appropriate for comparison to TPI because the

depletion region extends across the CdTe layer. As shown in Figure 26, the TPI and

ToF-SIMS data agree to within the uncertainty limits of the measurements. This

agreement further reinforces the association of the 0.9 eV defect with the presence of

Cu in the CdTe layer.

Differentiating the best fits to the TPI data gives the density of states underlying

the fit. Therefore, it is possible to illustrate the density of states for each of the devices

shown in Figure 25. This has been carried out in Figure 27. As can be seen, this

illustrates how the 0.9 eV defect appears in the density of states of devices with copper

in the CdTe layer, and that the density increases with copper content. Also illustrated

is the dramatic decrease in the density of the 1.2 eV defect after the RTP treatment.
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FIGURE 26. The relative variation of the quantity of copper in the CSS CdTe layers
observed in ToF-SIMS compared to the relative variation of the density of the 0.9 eV
defect observed in TPI. There is no TPI data point for the as-deposited device,
because the 0.9 eV defect was not observed, in accordance with the observed TPI
detection limit (dashed line) for that device.
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Numerical Modeling

The algorithm used to model the potential profile ψ(x) (i.e. the band diagram)

and the charge density distribution ρ(x) of a one-sided p− n junction is described in

detail in Appendix D. An example implementation in the Python language is given in

Appendix G. Fundamentally, the model allows one to calculate the potential profile

and the charge density distribution from a given density of states g(E, x) that is

allowed to vary arbitrarily in both energy and position space (one-dimensional). The

parameters required as input by the model are: the thickness and dielectric constant

of lightly doped side of the junction, the density of states, the bandgap, the Fermi

level, the built-in voltage, and the applied voltage.4 For simplicity, the Fermi Dirac

distribution is approximated by a step function (as in Eq. 2.12).

For a given p−n junction that is being modeled, measurements can be simulated

in order to calculate the characteristics of the junction. For example, the DC

capacitance (the value of the capacitance measured in the low frequency limit)

can be calculated by modeling the junction under two different voltage conditions

(V and V + δV ), and calculating the total charge (Q =
∫

ρ(x)dx) in each case.

The change in total charge between the two voltage conditions (δQ) allows the DC

capacitance (C = δQ/δV ) to be calculated. More generally, the capacitance at a

given temperature (T ) and angular frequency (ω) can be calculated in the same way

as the DC capacitance with the additional requirement that only states within a

demarcation energy

Ee = kBT log
[ω

ν

]

(5.1)

4Where relevant, the temperature, measurement frequency, and thermal emission prefactor may
also need to be specified.

64



of the relevant band are allowed to change their occupation in response to the change

in voltage, δV . Here, ν is the thermal emission prefactor of the state, and kB is

Boltzmann’s constant.

Simple measurements like capacitance can be applied to test more advanced

concepts. For example, the spatial sensitivity of capacitance can be directly probed

by modeling the conditions used to derive it in Chapter II. That is, one can introduce

a small charge into the depletion region of a model p − n junction, and calculate

how the resultant change in capacitance depends on position at which the charge

was placed. The result of such a procedure is plotted in Figure 28, showing excellent

agreement between the spatial sensitivity of capacitance exhibited by the model and

the theoretical prediction (Eq. 2.35).

More complicated measurements can be simulated as well. For TPC, this would

generally involve calculating capacitance transients generated in response to voltage

and illumination. At first glance, modeling such non-equilibrium processes would

seem to demand very complex numerical techniques. However, for the purposes of

modeling the CdTe devices appearing in this work, an assumption can be made that

greatly simplifies the complexity of the modeling required. This assumption is that

occupation of deep defects under illumination reaches steady-state quickly compared

to the time scale of the TPC measurement (1 s). That is, the capacitance transient

under illumination is identical to the dark transient except for an overall shift in

capacitance (C light(t) = Cdark(t) + constant). This assumption is justified because

the model is intended to study the copper associated defect discussed in this work.

At 0.9 eV above the valence band, this defect is so far above the Fermi level that

the voltage pulse does not change the occupation of the defect (i.e. it never crosses

the Fermi level). Thus, the change in occupation of the defect due to illumination is
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FIGURE 28. Spatial dependence of the relative change in capacitance due to charge
added to the depletion region. A small charge was added to a numerically modeled
p − n junction at a position x/W (x = 0 at the junction interface, and W is the
depletion width), and the resultant change in capacitance (∆C/C) was calculated
(black squares). The results from the numerical model are in good agreement with
the theoretical prediction (Eq. 2.35, red line). The small deviations from theory are
due to the precision limitations imposed by using a discrete grid.
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simply dictated by the balance of the thermal capture rate and the optical excitation

rate—processes which occur on time scales much shorter than the time scale of

the TPC measurement. This assumption has two important consequences. First,

the capacitance under illumination can be calculated by the method described in

Appendix D, except with the equation for the charge density (Eq. 2.12) modified

such that

ρ(x) =
q

ǫ

∫ E0
F

E0
F
−ψ(x)

g(E, x)dE + ρlight(x), (5.2)

where ρlight(x) is the steady-state charge density introduced by changing the

occupation of a defect due to illumination. Second, calculating the full transient

behavior is not necessary, because the TPC signal can be calculated from the simple

difference of the light and dark steady-state capacitance. Additionally, assuming that

sub-bandgap light is uniformly absorbed throughout the depletion region, ρlight(x) at

a given position will simply be proportional to the local density of the relevant defect.

The above simplifications also allow TPI to be easily calculated in much the

same way. This is because the current (and thus the TPI signal) generated by sub-

bandgap illumination is proportional to the difference between the charge generated

by the illumination and the charge required to shift the depletion region (i.e. change

the capacitance). Thus, one can use this simplified model to determine whether the

copper concentration profiles observed in ToF-SIMS reproduce the relative variation

in the defect signal that is observed in TPI. This is implicitly testing whether the

TPI and ToF-SIMS data are consistent with the spatial distribution of the copper

associated 0.9 eV defect being the same as the spatial distribution of copper itself.

The model parameters used to calculate the TPI signal are shown in Table 3,

the calculated charge density profile and band diagram are shown in Figure 29. In

addition to defects at 0.9 eV and 1.2 eV, the density of states contained an acceptor
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TABLE 3. Parameters of the modeled CdTe thin film.

Parameter Value Reference
Thickness 4.25µm [17]

Dielectric Constant 10.0 [4, 68]
Bandgap 1.5 eV [4]

Fermi Level 0.3 eV [4, 69]
Built-in Voltage 1.0V [70]
Applied Voltage 0.0V —

level at 0.3 eV, which yielded a doping density of 1014 cm−3. The modeled TPI

defect signal for the CSS devices—assuming the defect distribution is identical to

the the distribution of copper seen in ToF-SIMS—is shown in Figure 30. As can be

seen, assuming the distribution of the 0.9 eV defect is identical to the distribution

of copper itself (observed via ToF-SIMS) does a reasonably good job of reproducing

the relative variation of the observed TPI signal. This confirms that the association

of the increased 0.9 eV defect density with increased copper in the CdTe layer, and

suggests that the 0.9 eV defect has the same spatial distribution as copper itself.

It is worth noting that the observed variation in the magnitude of the 0.9 eV

defect in TPI can be reproduced to an arbitrary precision with any spatial distribution

provided that the overall defect density in each device is adjusted to the “correct”

value. However, given that the 0.9 eV defect is associated with copper, it is natural

to hypothesize that spatial distribution of the defect is the same as the spatial

distribution of copper itself. Thus, what is being tested in Figure 30 is whether

the variation in the magnitude of 0.9 eV seen in TPI is consistent with the known

spatial distribution of copper in the devices (observed with ToF-SIMS).
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parameters listed in Table 3.
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FIGURE 30. Comparison of the relative magnitude of the 0.9 eV defect observed in
TPI (red squares) to the modeled relative magnitude assuming the 0.9 eV defect has
the same spatial distribution as the copper observed via ToF-SIMS (blue circles).
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CHAPTER VI

CONCLUSION

In this work, the TPC and TPI techniques have been used to provide a detailed

picture of the defect structure in the upper-half of the bandgap of CdTe solar cells,

with a focus on the effect of copper. Because they are sensitive optical measurements

that can be performed on completed devices, TPC and TPI are well suited to this

task [30]. Where relevant, ToF-SIMS and numerical models were used to strengthen

the conclusions drawn from the TPC and TPI data.

Using TPC and TPI, two defects were identified in the CdTe devices at optical

energies of EV+1.2 eV and EV+0.9 eV. The 1.2 eV defect could not be associated with

a particular element, although copper and zinc were ruled out as sources. Comparison

with results from calculations using density functional theory suggest that the TeCd

defect would have a similar energetic position, suggesting that this defect may be

responsible for the 1.2 eV response. TPI was used to observe that the density of the

1.2 eV defect was dramatically reduced by the rapid thermal processing procedure,

suggesting that the defect is annealed during the treatment. It is not clear whether

or not copper plays a role in this process.

The set of samples examined used a rapid thermal processing treatment to

carefully control the amount of copper that diffused into the CdTe layer from the

Cu:ZnTe interfacial layer at the back of the device. By comparing devices with

varying amounts of copper in the CdTe layer, the 0.9 eV defect seen in TPC was

associated with the presence of copper in the absorber layer. TPI spectra confirmed

the association of the 0.9 eV with copper, and showed that the magnitude of the

0.9 eV defect signal increased as more copper was diffused into the CdTe layer. A
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proportional link between the density of the 0.9 eV defect observed in TPI and the

amount of cooper in the absorber layer observed via ToF-SIMS further established

that copper is responsible for it’s presence. Numerical modeling of the CdTe devices

was then used to confirm that the spatial distribution of copper observed in ToF-

SIMS is consistent with the relative variation of defect magnitudes observed in TPI.

The fact that the copper-associated 0.9 eV defect lies close to mid-gap suggests that

it will act as an efficient recombination center in CdTe. Therefore, it is suggested that

this work has detected the deep defect that is responsible for the decreased minority

carrier lifetime that has been previously associated with the amount of copper in the

CdTe layer [22–24].

Recalling that further improvements in CdTe device efficiency are limited by

recombination [14], these results give credence to the suggestion that the path toward

better devices will require that the density of copper in the CdTe layer be carefully

controlled or that it be eliminated altogether. Eliminating copper altogether is

problematic, because copper-free contacting schemes have yet to achieve the success

of copper-based contacts [4]. Unfortunately, controlling where and how much copper

is in the absorber is also difficult (or perhaps impossible) because copper atoms are

very mobile [71], and even appear to migrate throughout the CdTe layer under the

normal operating conditions of a solar cell [72]. It is unclear which avenue will prove

to be successful, but this work will hopefully inform future progress.
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APPENDIX A

OHM’S LAW

Following Sze [29], consider electrons inside a semiconductor at thermal

equilibrium. By the equipartition theorem, the average kinetic energy of the electrons

is related to the temperature such that

1

2
mnv

2
th =

3

2
kBT, (A.1)

where mn is the effective mass of the electrons, vth is the thermal velocity of electrons,

kB is Boltzmann’s constant, and T is the absolute temperature. Because thermal

fluctuations are random, the thermal velocity of individual electrons will be randomly

oriented, and the thermal velocity averaged over all the electrons will be zero. Since

the electrons are inside a semiconductor, they will periodically collide with lattice

atoms, which will randomize their thermal velocity. The average time between

collisions τc is known as the mean free time.

If an electric field E is applied to the semiconductor, the electrons will experience

a force −qE , where q is the fundamental charge. During the time between collisions

with the lattice atoms, the average change in the momentum of the electrons will be

−qEτc. Since lattice collisions randomize the velocity of the electrons, any momentum

gained by an electron due to the electric field is lost after each collision. Thus,

on average, the change in momentum between collisions is exactly equal to the

momentum imparted by the field

mnvn = −qEτc. (A.2)
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Here, vn is the drift velocity of the electrons (the velocity due to the electric field).

Reorganizing Eq. A.2 gives

vn = − qτc
mn

E ≡ −µnE , (A.3)

where µn ≡ qτc/mn is defined to be the electron mobility. Similarly for holes,

vp =
qτc
mp

E ≡ µpE . (A.4)

If n is the density of free electrons in the semiconductor, then the electron current

density Jdrift
n due to the electric field (Ohms’s law) is simply

Jdrift
n = −qnvn = qnµnE . (A.5)

Likewise for holes with free carrier density p,

Jdrift
p = qpvp = qnµpE . (A.6)
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APPENDIX B

THE EINSTEIN RELATION

Following Sze [29], consider a semiconductor in which the density of electrons

in the conduction band, n(x), is non-uniform in the x-direction. Due to the finite

temperature of the system, electrons will have a thermal velocity 〈vn〉, and will travel

one mean free path l between collisions with lattice atoms. In the semiconductor,

the diffusion current through an arbitrary point x = a during a time τ = l/〈vn〉 (the

mean free time) will originate from the interval a ± 〈vn〉τ = a ± l. That is, only

carriers within a mean free path of the point x = a will contribute to the diffusion

current at that point. On average, half the electrons at x = a ± l will cross x = a,

because they are equally likely to move in the positive or negative direction. Thus,

the current originating from x = a± l that passes through x = a will be

J±

n =
1

2
q〈vn〉n(a± l). (B.1)

Taking into account the fact that current flow and electron flow are in opposite

directions, the net diffusion current through x = a will be

Jdiffusion
n = J+

n − J−

n =
1

2
q〈vn〉 [n(a+ l)− n(a− l)] . (B.2)

To first order, this can be rewritten as

Jdiffusion
n =

1

2
q〈vn〉

[

n(a) + l
dn

dx
− n(a) + l

dn

dx

]

= q〈vn〉l
dn

dx
. (B.3)
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Defining the diffusivity as

Dn ≡ 〈vn〉l, (B.4)

We get that the diffusion current (Eq. B.3) becomes

Jdiffusion
n = qDn

dn

dx
. (B.5)

A relation between the electron diffusivity and the electron mobility can be

established by recognizing that the relation

l =
〈vn〉
τ

(B.6)

allows one to rewrite the mobility as

µn ≡ qτ

mn

=
ql

mn〈vn〉
, (B.7)

where mn is the effective mass of electrons in the conduction band. This allows one

to solve Eq. B.7 for l and substitute the result into Eq. B.4, yielding

Dn =
mnµn〈vn〉2

q
. (B.8)

Here, recall that the equipartition theorem in one dimension states that

1

2
mn〈vn〉2 =

1

2
kBT. (B.9)
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This allows one to solve Eq. B.9 for 〈vn〉2, giving

〈vn〉2 =
kBT

mn

. (B.10)

Substituting Eq. B.10 into Eq. B.8 gives

Dn =
kBTµn
q

. (B.11)

This result (known as the Einstein relation [73]) is significant because it establishes a

relation between the diffusivity and the mobility that does not depend on any other

materials parameters.
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APPENDIX C

THE DENSITY OF STATES IN A CRYSTAL

Following Sze [29], for free electrons the kinetic energy is

E =
p2

2m
, (C.1)

where p is the momentum andm is the mass of an electron. Conduction band electrons

are approximately free, which allows their kinetic energy to be expressed in a fashion

similar to Eq. C.1. Namely,

E =
p̄2

2mn

, (C.2)

where p̄ is the crystal momentum, and mn is the effective mass of an electron in the

conduction band. To the extent that electrons in a crystal lattice can be described

by a Bloch state (i.e. a plane wave multiplied by a periodic function), the crystal

momentum is a well-defined quantity analogous to the momentum of a free particle.

The main caveat here, is that for indirect semiconductors E = 0 does not necessarily

require that p̄ = 0, as one would expect from the free particle analogy.

A finite semiconductor with dimensions Lx, Ly, Lz, imposes boundary conditions

on the conduction band electrons indentical to those of a standard “particle-in-a-box”

problem. Thus the wavefunction of the electrons must be described by standing waves

such that

Lx
λ

= nx, nx = 0, 1, 2, 3 . . . , (C.3)
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where λ (the wavelength) is given by the de Broglie relation

λ =
h

p̄x
. (C.4)

Combining the last two relations gives the condition

p̄x =
hnx
Lx

, (C.5)

for the x-direction. Similar relations hold for the y- and z-directions as well.

These relations allow for the calculation of the density of states in p̄-space as

follows. The volume of a spherical shell of thickness dp̄ in p̄-space is simply 4πp̄2dp̄.

From Eq. C.5, the p̄-space volume occupied by each state is h3/LxLyLz. Thus, the

number of states in the shell will be

N (p̄)dp̄ = 2
4πp̄dp̄

h3/LxLyLz
, (C.6)

where the factor of 2 is necessary to account for the Pauli exclusion principle. Using

Eqs. C.2 and C.6 we can find the number of states (N ) in an energy range dE

N (E)dE =
4πLxLyLz

h3
(2mn)

3/2
√
EdE. (C.7)

Dividing by the volume LxLyLz gives the density of states (N) as a function of energy

N(E) =
4π

h3
(2mn)

3/2
√
E. (C.8)
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Notice that in the perfect crystal under consideration, the density of states in the

conduction has a
√
E dependence, which means that

dN

dE
→ ∞ as E → 0, (C.9)

i.e., the conduction band edge has an infinite slope. For amorphous materials typical

of thin-film solar cells, the band edge has an exponential dependence.

Having calculated the density of states as a function of energy, it is now

possible to determine the free carrier concentration in the semiconductor (i.e., the

concentration of electrons in the conduction band, or holes in the valence band). The

concentration of free electrons (n) is given by

n =

∫ Etop

EC

N(E − EC)F (E)dE. (C.10)

Here, EC is the energy of the bottom of the conduction band, Etop is the energy of

the top of the conduction band, and F (E) is the Fermi-Dirac distribution

F (E) =
1

1 + exp [(E − EF )/kBT ]
. (C.11)

The Fermi-Dirac distribution is the probability that a state with energy E will be

occupied by an electron, and the Fermi level EF is the energy at which F (E) = 1/2.

Note that

F (E) → exp [−(E − EF )/kBT ] when (E − EF ) & 3kBT. (C.12)
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Assuming (EC − EF ) & 3kBT , substituting Eqs. C.8 and C.12 into Eq. C.10, and

taking Etop → ∞ due to the exponential suppression of F (E) gives

n = 4π

(

2mn

h2

)3/2 ∫ ∞

EC

√

E − EC exp [−(E − EF )/kBT ] dE. (C.13)

Defining x ≡ (E − EC)/kBT this becomes

n = 4π

(

2mnkBT

h2

)3/2

exp

[

−(EC − EF )

kBT

]
∫

∞

0

√
x exp [−x] dx, (C.14)

or

n = NC exp

[

−(EC − EF )

kBT

]

, (C.15)

with

NC ≡ 2

(

2πmnkBT

h2

)3/2

. (C.16)

Likewise, for holes

p = NV exp

[

−(EF − EV )

kBT

]

, (C.17)

with

NV ≡ 2

(

2πmpkBT

h2

)3/2

. (C.18)

In the case of intrinsic semiconductors, i.e., semiconductors in which the free carrier

concentration is dominated by the thermal excitation of carriers across the bandgap1,

n = p ≡ ni. (C.19)

1Each thermal excitation across the bandgap produces exactly one free electron and one free hole.
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Combining Eq. C.19 with Eqs. C.15 and C.17 allows one to find the intrinsic fermi

level

E intrinsic
F ≡ Ei =

Eg
2

+
kBT

2
ln

(

NV

NC

)

, (C.20)

where Eg = EC − EV is the bandgap. For a typical semiconductor at 300K,

Eg/2 ≫ kBT ≈ 25.85meV,

thus, the rightmost term in Eq. C.20 is small, and the intrinsic Fermi level is typically

very close to mid-gap.

Note that multiplying Eqs. C.15 and C.17 gives the mass action law

np = n2
i = NCNV exp

[

− Eg
kBT

]

, (C.21)

which evidently depends only on fundamental materials properties. This is extremely

useful because it applies to both intrinsic and extrinsic semiconductors at thermal

equilibrium.

Also worth noting is that the kinetic energy E of free electrons at the botton

of the conduction band is zero. A consequence of this is that the bottom of the

conduction band corresponds to the potential energy of the free electrons. Therefore,

the gradient of the conduction band (or any band parallel to it) is proportional to

the electric field, i.e.,

E =
1

q

dEC
dx

=
1

q

dEV
dx

. . . (C.22)

Notice that the derivatives lack the usual minus sign because EC and EV correspond

to the electron potential energy. One consequence of this is that the force on an

electron is “downhill” in band diagrams as they are typically drawn.
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APPENDIX D

SOLVING POISSON’S EQUATION NUMERICALLY

Following Cohen and Lang [31], consider solving a differential eqaution of the

form

P ′′ = Q (D.1)

on a discrete grid xn, with a regular grid spacing h. The discrete Taylor expansion of

Eq. D.1 allows one to relate the value of P at xn+1 (denoted as Pn+1) to the value at

a neighboring point, Pn,

Pn+1 = Pn + hP ′

n +
h2

2!
P ′′

n +
h3

3!
P ′′′

n +
h4

4!
P ′′′′

n +
h5

5!
P ′′′′′

n +O(h6). (D.2)

Likewise, for Pn−1

Pn−1 = Pn − hP ′

n +
h2

2!
P ′′

n − h3

3!
P ′′′

n +
h4

4!
P ′′′′

n − h5

5!
P ′′′′′

n +O(h6). (D.3)

Adding Eqs. D.2 and D.3 eliminates terms with odd numbered derivatives, yielding

Pn+1 = 2Pn − Pn−1 + h2P ′′

n +
h4

12
P ′′′′

n +O(h6). (D.4)

Note that from Eq. D.1 and the finite difference approximation of the second derivative

one gets that

P ′′′′

n = Q′′

n =
Qn+1 − 2Qn +Qn−1

h2
. (D.5)
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Using Eq. D.5 and Eq. D.1, one can rewrite Eq. D.4 as

Pn+1 = 2Pn − Pn−1 + h2Qn +
h2

12
(Qn+1 − 2Qn +Qn−1) +O(h6). (D.6)

The above relation allows one to calculate Pn+1 from previous values of P (i.e., from

the boundary conditions), assuming that Q is known.

For Poisson’s equation in a semiconductor P = ψ(x) and Q = ρ(x)/ǫ. Here, ρ(x)

is the charge density, and ψ(x) is the electron potential (which is why Q 6= −ρ(x)/ǫ).

Thus, from Eq. 2.12

Q =
q

ǫ

∫ E0
F

E0
F
−P

g(E, x)dE, (D.7)

which is problematic because Q depends on P , and P is unknown. This can be

circumvented by noticing that Eq. D.4 gives an approximation of Pn+1 (denoted P
∗

n+1)

that does not depend on Qn+1

P ∗

n+1 = 2Pn − Pn−1 + h2Qn +O(h4), (D.8)

which allows one to define

Q∗

n+1 =
q

ǫ

∫ E0
F

E0
F
−P ∗

n+1

g(E, x)dE +O(h4). (D.9)

Notice that Eqs. D.8 and D.9 are only accurate to fourth-order in h, whereas the

original relation (Eq. D.6) was accurate to sixth-order in h. However, substituting

Eq. D.9 into Eq. D.6 yields

Pn+1 = 2Pn − Pn−1 + h2Qn +
h2

12

(

Q∗

n+1 − 2Qn +Qn−1

)

+O(h6), (D.10)
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which recovers the sixth-order accuracy in h. This is due to the O(h4) term from

Eq. D.9 picking up the h2 coefficient from Eq. D.6. Thus, Eq. D.10 provides a means

to calculate Pn+1 from Pn, Pn−1, Qn, and Qn−1 that is accurate to sixth-order in

h. Of course, one still needs P1 and P0 to find the solution to Poisson’s equation.

However, this can be dealt with by simply guessing the initial values, solving Poisson’s

equation, and iterating until it gives the correct potential at the interface (i.e., the

shooting method [74]). Typically, a good initalialization for the potential is the case

in which g(E, x) = g = constant, which one can solve analytically to find

ψ(x) = V exp

[

− x

x0

]

(D.11)

with

x0 =

(

ǫ

qg

)
1

2

. (D.12)

Here, V is the potential at the interface (x = 0) with the boundary conditions

ψ(∞) =
dψ

dx

∣

∣

∣

∣

∞

= ρ(∞) = 0 (D.13)

deep in the bulk.
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APPENDIX E

CURRENT IN A P −N JUNCTION

As noted at the end of Appendix C, the valance and conduction bands in a

p− n junction correspond to the potential. Therefore, the potential difference across

a uniform p− n junction (known as the built-in potential, Vbi) can be formulated as

Vbi =
1

q
(EF − EV )|n−side −

1

q
(EF − EV )|p−side , (E.1)

where the quantity EF −EV is being evaluated on both the n -side and p -side of the

junction (see Figure 4) at the relevant edge of the depletion region (or, equivalently,

in the neutral bulk).

On the p -side (using Eq. C.17, with pp being the free hole density at the edge of

the depletion region on the p -side),

(EF − EV )|p−side = −kBT ln

[

pp
NV

]

. (E.2)

Likewise, on the n -side (using Eq. C.15, with nn being the free electron density at

the edge of the depletion region on the n -side),

(EC − EF )|n−side = −kBT ln

[

nn
NC

]

. (E.3)

Notice that

(EC − EF )|n−side = (EC − EV + EV − EF )|n−side

= Eg + (EV − EF )|n−side ,

(E.4)
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where Eg is the bandgap. Thus,

(EF − EV )|n−side = − (EC − EF )|n−side + Eg

= kBT ln

[

nn
NC

]

+ Eg,
(E.5)

and, using Eq. E.1,

Vbi =
1

q

(

kBT ln

[

nn
NC

]

+ Eg + kBT ln

[

pp
NV

])

. (E.6)

From Eq. C.21,

Eg = −kBT ln

[

n2
i

NCNV

]

, (E.7)

which allows one to simplify Eq. E.6 to give

Vbi =
kBT

q
ln

[

nnpp
n2
i

]

=
kBT

q
ln

[

nn
np

]

=
kBT

q
ln

[

pp
pn

]

.

(E.8)

The last two equalities have used the mass action law nnpn = nppp = n2
i (Eq. C.21),

where pn is the free hole density on the n -side, and np is the free electron density on

the p -side. Keep in mind that pp, pn, nn, and np are the free densities at the relevant

edge of the depletion region (or, equivalently, in the neutral bulk).

From Eq. E.8, we have that

neqn = neqp exp

[

qVbi
kBT

]

, (E.9)
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and

peqp = peqn exp

[

qVbi
kBT

]

, (E.10)

where the eq notation has been added to denote equilibrium densities (all the densities

consider so far in this section have been equilibrium values, it is just convenient to

explicitly denote this now). If potential V (with V > 0 for forward bias) is applied to

the p− n junction these become

ñn = ñp exp

[

q (Vbi − V )

kBT

]

, (E.11)

and

p̃p = p̃n exp

[

q (Vbi − V )

kBT

]

, (E.12)

where tildes denote non-equilibrium electron and hole densities (at the edge of the

relevant depletion region) because a current is driven when V 6= 0. Assuming that

neqn ≫ p̃n (known as low-injection, i.e. the density of minority carriers driven into the

junction by the voltage is much less than the equilibrium density of majority carriers)

one can make the approximation that ñn ≈ neqn . This allows one to combine Eqs. E.9

and E.11, yielding

ñp = neqp exp

[

qV

kBT

]

, (E.13)

or

ñp − neqp = neqp

(

exp

[

qV

kBT

]

− 1

)

. (E.14)

Likewise, for holes,

p̃n − peqn = peqn

(

exp

[

qV

kBT

]

− 1

)

. (E.15)
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At the edge of the depletion region, E = 0. Thus, at the steady-state and low

injection, the continuity equation for electrons in the p -type layer (Eq. F.16) becomes

0 = Dn
∂2ñ(x)p
∂x2

− ñ(x)p − neqp
τn

, (E.16)

with GL = 0 (no illumination). Using Eq. E.14, the solution to Eq. E.16 is (assuming

the edge of the depletion region in the p -type layer is xp, and that ñp(x=∞) = neqp )

ñ(x)p − neqp = neqp

(

exp

[

qV

kBT

]

− 1

)

exp

[

− x− xp√
Dnτn

]

. (E.17)

Using Eq. B.5, the current at xp is

Jn(xp) = qDn
dñp
dx

∣

∣

∣

∣

x=xp

=
qDnn

eq
p√

Dnτn

(

exp

[

qV

kBT

]

− 1

)

. (E.18)

Likewise, at the depletion edge in the n -type layer (x = −xn),

Jp(−xn) = −qDp
dp̃n
dx

∣

∣

∣

∣

x=−xn

=
qDpp

eq
n

√

Dpτp

(

exp

[

qV

kBT

]

− 1

)

. (E.19)

If one assumes the generation and recombination inside the depletion region is

negligible, the electron and hole currents will be constant throughout the depletion

region. Therefore, Jn(xp) = Jn(−xn) and Jp(xp) = Jp(−xn), which allows one to

calculate the total current in the device by adding Eqs. E.18 and E.19 (in steady-

state the total current is constant throughout the device), yielding the ideal diode

equation

J(V ) = Jp(−xn) + Jn(−xn) = Jp(xp) + Jn(xp) ≡ Js

(

exp

[

qV

kBT

]

− 1

)

. (E.20)
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Here,

Js ≡
qDpp

eq
n

√

Dpτp
+
qDnn

eq
p√

Dnτn
, (E.21)

is the saturation current.
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APPENDIX F

THE CONTINUITY EQUATION

Following Sze [29], consider a slab of semiconductor shown in Figure 31. In a

slice located at x with an infinitesimal width dx, and cross sectional area A, the total

number of free electrons N(x, t) will be

N(x, t) = n(x, t)Adx, (F.1)

where n(x, t) is the free electron density. If there is a current flowing in the

semiconductor, the rate of change of the total number of free electrons in the slice

will be proportional the difference between the current entering and leaving the slice

∂N(x, t)

∂t
=
∂n(x, t)

∂t
Adx = −A

q
[Jn(x, t)− Jn(x+ dx, t)] , (F.2)

where Jn is the current density of electrons, and the factor of −1/q converts the charge

current (JnA) to a number current. In general, electrons can also be generated in

the slice at a rate Gn(x, t) (e.g. by optical creation of electron-hole pairs) and can

recombine with holes in the slice at a rate Rn(x, t). Thus, the full version of Eq. F.2

will be

∂n(x, t)

∂t
Adx = −A

q
[Jn(x, t)− Jn(x+ dx, t)] + (Gn(x, t)−Rn(x, t))Adx. (F.3)

Taylor expansion gives that

Jn(x+ dx, t) = Jn(x, t) +
∂Jn(x, t)

∂x
dx+ . . . , (F.4)
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x x+dx

(x) (x+dx)

FIGURE 31. A slab of semiconductor with current flowing through a slice located at
x.

which allows one to simplify Eq. F.3 to get the continuity equation

∂n(x, t)

∂t
=

1

q

∂Jn(x, t)

∂x
+Gn(x, t)−Rn(x, t). (F.5)

Similarly for holes,

∂p(x, t)

∂t
= −1

q

∂Jp(x, t)

∂x
+Gp(x, t)−Rp(x, t). (F.6)

Using the equations for drift and diffusion currents (Eqs. 2.2 and 2.3) and the product

rule, these equations become

∂n(x, t)

∂t
= n(x, t)µn

∂E(x, t)
∂x

+ µnE(x, t)
∂n(x, t)

∂x

+Dn
∂2n(x, t)

∂x2
+Gn(x, t)−Rn(x, t),

(F.7)

and

∂p(x, t)

∂t
= −p(x, t)µp

∂E(x, t)
∂x

− µpE(x, t)
∂p(x, t)

∂x

+Dp
∂2p(x, t)

∂x2
+Gp(x, t)−Rp(x, t),

(F.8)

where µ is the mobility, E is the electric field, and D is the diffusivity.
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In general, carriers are generated by optical excitation at a rate GL and by

thermal excitation Gth. The recombination rate, R, will be proportional to the

number of free electrons and holes available to recombine. Thus,

R(x, t) = βn(x, t)p(x, t), (F.9)

where β is a proportionality constant. At thermal equilibrium, thermal generation

and recombination exactly balance, therefore

Gth = Rth = βneqpeq, (F.10)

where neq and peq are the equilibrium densities. It is convenient to define the net

recombination rate

U(x, t) ≡ R(x, t)−Gth = βn(x, t)p(x, t)− βneqpeq

= β [(neq +∆n(x, t))(peq +∆p(x, t))]− βneqpeq

≈ β [neq∆p(x, t) + peq∆n(x, t)] ,

(F.11)

where the approximate equality has assumed ∆p(x, t) = pn(x, t)−peqn and ∆n(x, t) =

np(x, t) − neqp are small compared to the equilibrium values (low injection). In an

n -type semiconductor, peqn ≪ neqn and U becomes

Un(x, t) ≈ βneqn ∆pn(x, t)

= βneqn [pn(x, t)− peqn ]

≡ pn(x, t)− peqn
τp

,

(F.12)
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where τp ≡ 1/βneqn is referred to as the lifetime of minority carriers. Likewise for a

p -type semiconductor,

Up(x, t) =
np(x, t)− neqp

τn
. (F.13)

Notice that the net recombination rate is determined by the excess minority carrier

concentration. This makes sense because the minority carriers will always be less

prevalent, and therefore serve to limit the net recombination rate.

Often the continuity equations will be rewritten in terms of U , e.g.,

∂n(x, t)

∂t
= n(x, t)µn

∂E(x, t)
∂x

+ µnE(x, t)
∂n(x, t)

∂x

+Dn
∂2n(x, t)

∂x2
+GL(x, t)− U(x, t),

(F.14)

and

∂p(x, t)

∂t
= −p(x, t)µp

∂E(x, t)
∂x

− µpE(x, t)
∂p(x, t)

∂x

+Dp
∂2p(x, t)

∂x2
+GL(x, t)− U(x, t).

(F.15)

Or, for minority carriers under low injection conditions,

∂np(x, t)

∂t
= np(x, t)µn

∂E(x, t)
∂x

+ µnE(x, t)
∂np(x, t)

∂x

+Dn
∂2np(x, t)

∂x2
+GL(x, t)−

np(x, t)− neqp
τn

,

(F.16)

and

∂pn(x, t)

∂t
= −pn(x, t)µp

∂E(x, t)
∂x

− µpE(x, t)
∂pn(x, t)

∂x

+Dp
∂2pn(x, t)

∂x2
+GL(x, t)−

pn(x, t)− peqn
τp

.
(F.17)
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APPENDIX G

EXAMPLE PROGRAM

##This is dcsolver.py

##Written by Charles Warren

##Import packages

import numpy as np

import matplotlib.pyplot as plt

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##NOTE:

##Throughout , I’ll refer to "the Cohen paper" that this code

##is based on. This refers to: J. D. Cohen and D. V. Lang,

##Phys. Rev. B 8, 5321 (1982). Read the Cohen paper if you

##want to understand what I’ve done.

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##BEGINNING OF FUNCTIONS

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##Calculates the next potential value using the modified

##noumerov method described in the Cohen paper.

##Everything is in SI units except for g, which is in m^−3

##eV^−1. All this does is make it so the integral to
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##calculate rho from g doesn’t have the normal factor of q.

def noumerovstep(curP,prevP,nextQ,curQ,prevQ,stepsize):

nextP = 2.0 ∗ curP − prevP + stepsize∗∗2.0 ∗\

curQ + ( stepsize∗∗2.0 / 12.0 ) ∗\

( nextQ + prevQ − 2.0 ∗ curQ )

return nextP

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##Calculates the entire potenial and charge profile using

##the noumerov method described in the Cohen paper. Note

##that when I use rho in this section of the code, I always

##include a factor of q/eps. This is because the Poisson’s

##equation is P’’ = Q = q∗rho/eps. You need to include the q

##because P is an energy not a voltage.

def noumerovsolve(phi,rho):

global N, x, dx, E, Eg, Ef0, rhotable

##Start with a flat fermi level

Ef = Ef0 ∗ np.ones([N])

for i in range(1,N−1):
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##Calculate the next phi approximately

phi[i+1] = 2.0 ∗ phi[i] − phi[i−1] +\

dx∗∗2.0 ∗ q ∗ rho[i] / eps

##Enforce the deep depletion fermi level

if ( phi[i+1] − Ef[i+1] > Eg/2 ):

Ef[i+1] = phi[i+1] − Eg/2

##calculate the next rho based on the approx. phi

rho[i+1] = calcrho(Ef[i+1]−phi[i+1],

i+1,Etable,rhotable)

##calculate the next phi based on the approx. rho

##note that the we need to pass rho/eps here b/c the

##differential equation is P’’ = Q = rho/eps

phi[i+1] = noumerovstep(phi[i],phi[i−1],

q∗rho[i+1]/eps,q∗rho[i]/eps,

q∗rho[i−1]/eps,dx)

##need to return Ef becuase it could change due to the

##deep depletion condition

return phi, rho, Ef

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##This function is the same as noumerovsolve , except it

##accounts for AC by including a demarcation position , xe.

##Assumes that phi is the DC solution.

def noumerovsolve ac(phi,rho):

global N, x, dx, Ee, E, Eg, Ef0, rhotable , rhodc

Ef = Ef0 ∗ np.ones([N]) ##Start with a flat fermi level

for i in range(1,N−1):

##Calculate the next phi approximately

phi[i+1] = 2.0 ∗ phi[i] − phi[i−1] +\

dx∗∗2.0 ∗ q ∗ rho[i] / eps

##Enforce the deep depletion fermi level

if ( phi[i+1] − Ef[i+1] > Eg/2 ):

Ef[i+1] = phi[i+1] − Eg/2

##calculate the next rho based on the approximate

##phi region where everything can respond

if ( phi[i+1] < Ef[i+1] + Ee ):

rho[i+1] = calcrho(Ef[i+1]−phi[i+1],i+1,

Etable,rhotable)
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##emission limited region

elif ( phidc[i+1] < Ef[i+1] + Ee ):

rho[i+1] = calcrho(−Ee,i+1,Etable,rhotable)

##region where nothing can respond

else:

rho[i+1] = rhodc[i+1]

##calculate the next phi based on the approximate

##rho note that the we need to pass rho/eps here b/c

##the differential equation is P’’ = Q = rho/eps

phi[i+1] = noumerovstep(phi[i],phi[i−1],

q∗rho[i+1]/eps,q∗rho[i]/eps,

q∗rho[i−1]/eps,dx)

##need to return Ef becuase it change due to the deep

##depletion condition

return phi, rho, Ef

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##When we are solving poisson’s equation , we are constantly

##integrating over the density of states. This function

##precalcuates those integrals efficiently , and stores them

##in a table so they can be accessed as needed.

def rhotable():
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global q, Eg, Ef0

global g, N, M, E

##Define the range of energies over which the integrals

##will be done.

Etable = np.linspace(Ef0,−Eg/2,M)

##Define the energy step size

dEtable = Etable[0] − Etable[1]

##initialize the integral table

rhotable = np.zeros([N,M])

##calculate all the integrals

##this can be done efficiently by taking advantage of

##the fact that integral of f(F) from

##E1 to E2+dE = integral of f(E) from E1 to

##E2 + f(E2+dE) ∗ dE j loops over the position in x,

##i loops over the position in E

for j in range(N):

for i in range(1,M):

rhotable[j][i] = rhotable[j][i−1] +\
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np.interp(Etable[i],E,g[j]) ∗\

dEtable

##reverse the table multiply by the fundamental charge

##the only reason to reverse it is so we can use

##np.interp later rhotable = q∗np.fliplr(rhotable)

rhotable = np.fliplr(rhotable)

return Etable[::−1], rhotable

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##calculate the rho integral from the precalculated rhotable

##the i index refers to the position as in x[i]

def calcrho(phi,i,Etable,rhotable):

##extracharge from, e.g., illumination

global extracharge

##linear interpolate on the array of precalculated

##integrals , add any extra charge

return np.interp(phi,Etable,rhotable[i])+extracharge[i]

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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##Define the density of states, g

def calcg():

global N, M, Ef0, q, x, thickness

g = np.zeros([N,M]) ##initialize g

##add defects

Ed1 = −Ef0

defect1 = 3.25e1 ∗ gaussian(E,−Ed1,30e−3∗q/2.3548)

##Fill the defect array, adding spatial variations

##if desired

for i in range(N):

g[i] += defect1 ##∗ ( 2.0 − x[i] / thickness )

return g

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##Generates a gaussian array (useful for defining Gaussian

##defect profiles

def gaussian(x,mu,sigma):

return np.exp(−( x − mu )∗∗2.0 / ( 2.0 ∗ sigma∗∗2.0 ))/\

( np.sqrt(2.0∗np.pi) ∗ sigma )
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##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##Brackets the target voltage of the solution so that it can

##be found using the bisection method.

def bracket(phi,rho,Ef,V,verbose=False,ac=False):

global Etable, rhotable

global dx,q,thickness ,E,Eg,Ef0,g

if(verbose): print ’Bracketing solution...’

##start off by guessing exponential bands

x0 = calcx0()

phi[0] = q ∗ V ∗ np.exp( − thickness / x0 )

phi[1] = phi[0] ∗ np.exp( dx / x0 )

rho[0] = calcrho(Ef[0]−phi[0],0,Etable,rhotable)

rho[1] = calcrho(Ef[1]−phi[1],1,Etable,rhotable)

if (ac): phi, rho, Ef = noumerovsolve ac(phi,rho)

else: phi, rho, Ef = noumerovsolve(phi,rho)

if ( phi[−1]/q < V ):

##If we are starting low, we will bump up lo

##until we exceed that target voltage (and thus

##bracket it).
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while ( phi[−1]/q < V ):

lo = phi[0]

##double the initial phi

phi[0] = 2 ∗ phi[0]

##calculate the next phi based on exponential

##bands

phi[1] = phi[0] ∗ np.exp( dx / x0 )

##calculate the initial rhos based on the phis

rho[0] = calcrho(Ef[0]−phi[0],0,Etable,rhotable)

rho[1] = calcrho(Ef[1]−phi[1],1,Etable,rhotable)

##solve poisson’s equation based on the

##initialzation

if (ac): phi,rho,Ef = noumerovsolve ac(phi,rho)

else: phi, rho, Ef = noumerovsolve(phi,rho)

if (verbose): print lo/q,phi[0]/q,phi[−1]/q,V

hi = 2∗phi[0]

else:

while ( phi[−1]/q > V ):

hi = phi[0]

##halve the initial phi

phi[0] = 0.5 ∗ phi[0]

##calculate the next phi based on exponential

##bands

phi[1] = phi[0] ∗ np.exp( dx / x0 )

##calculate the initial rhos based on the phis

104



rho[0] = calcrho(Ef[0]−phi[0],0,Etable,rhotable)

rho[1] = calcrho(Ef[1]−phi[1],1,Etable,rhotable)

##solve poisson’s equation based on the

##initialzation

if (ac): phi,rho,Ef = noumerovsolve ac(phi,rho)

else: phi, rho, Ef = noumerovsolve(phi,rho)

print hi/q,phi[0]/q,phi[−1]/q,V

lo = phi[0]

if(verbose): print ’Done.’

##If the device is too thick, phi[0] will be so small

##that double precision won’t be good enough. Making the

##device thinner solves this problem.

if(phi[0]<2e−36): print’Warning: Device is too thick.’+\

’ This could affect the convergence of the model.’

return phi, rho, Ef, hi, lo

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##Solve for the correct phi, rho given that the correct

##initial value of phi is bracketed by hi,lo.

##Uses the bisection method.

def solve(phi,rho,Ef,hi,lo,V,verbose=False,ac=False):
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global Etable, rhotable

global eps, q, dx, Ef0, g

x0 = calcx0()

k=1

tol = 1e−6

if(verbose):

print ’Finding solution...’

print ’ i V Error Tolerance’

print ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

##loop until tolerance condition is met

while ( abs( phi[−1]/q − V ) > tol ):

##try a phi[0] in the middle of hi,lo

phi[0] = ( hi + lo ) / 2.0

##calculate the rest of the initial conditions

phi[1] = phi[0] ∗ np.exp( dx / x0 )

rho[0] = calcrho(Ef[0]−phi[0],0,Etable,rhotable)

rho[1] = calcrho(Ef[1]−phi[1],1,Etable,rhotable)

##solve poisson’s equation

if (ac): phi, rho, Ef = noumerovsolve ac(phi,rho)

else: phi, rho, Ef = noumerovsolve(phi,rho)

if(verbose): print ’%2d %1.6f %1.6f %1.6f’ %\

(k, phi[−1]/q,
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abs( phi[−1]/q − V ), tol)

##stop trying to solve if hi and lo are the same

if ( str(hi) == str(lo) ): break

##redefine hi,lo based on whether the result was

##too high or too low

if ( phi[−1]/q > V ):

hi = phi[0]

else:

lo = phi[0]

k += 1

if(verbose): print ’Done.’

return phi, rho, Ef

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

def calcx0():

global eps, q, Ef0, E, g

return np.sqrt( eps / ( q ∗ np.interp(Ef0,E,g[0]) ) )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##END OF FUNCTIONS
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##Define parameters of the model

##number of points in position space

N = 500

##number of points in energy space

M = 1000

##everything is in SI units

q = 1.602176487e−19

kB = 1.3806488e−23

eps0 = 8.854187817e−12

eps = 10.0 ∗ eps0

thickness = 4.25e−6

Eg = 1.5 ∗ q

Ef0 = −300e−3 ∗ q

Vbi = 1.0

Vapp = 0.0

T = 200. ## K

freq = 1e3 ## Hz

nu0 = 1e12 ## Hz

dV = −0.01 ## V

##leave extracharge as zero for now

extracharge = np.zeros([N])

##calculate some extra parameters

108



V = Vbi − Vapp

x = np.linspace(0,thickness ,N)

dx = x[1] − x[0]

E = np.linspace(−2,0,M) ∗ q

g = calcg()

print ’Precalculating integrals over the’+\

’ density of states...’

## rhoxtable() precalculates the integral over the density

## of states as a function of phi (Etable) and x. The

## integral is eq. 3 from the Cohen paper, with g allowed to

## vary with x. Having this integral precalculated saves

## time that would be wasted calculating the same integral

## over and over a again. It also saves time in that it

## efficiently calculates all of the integrals over energy

## (for a given position) in one loop.

## Etable and rhoxtable are global variables that can be

## used in all the functions.

Etable, rhotable = rhotable()

print ’Done.’

## Initialize our arrays
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phi = np.zeros([N])

rho = np.zeros([N])

Ef = Ef0 ∗ np.ones([N])

## Calculate the DC band bending , charge profile , and

## electric field

phi, rho, Ef, hi, lo = bracket(phi,rho,Ef,V,verbose=True)

phi, rho, Ef = solve(phi,rho,Ef,hi,lo,V,verbose=True)

F = np.gradient(phi) / np.gradient(x) / q

##make some plots

plt.figure(1)

plt.plot(x∗1e6,phi/q)

plt.plot(x∗1e6,phi/q−Eg/q)

plt.plot(x∗1e6,Ef/q)

plt.xlabel( r’$x\,(\mathrm{\mu m})$’ )

plt.ylabel( r’$E\,(\mathrm{eV})$’ )

plt.figure(2)

plt.plot(x∗1e6,rho/q∗1e−6)

plt.xlabel( r’$x\,(\mathrm{\mu m})$’ )

plt.ylabel( r’$\rho\,/q\,(\mathrm{cm^{−3}})$’ )

##show the plots

plt.show()
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