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DISSERTATION ABSTRACT

Lucia Schwarz

Doctor of Philosophy

Department of Physics

September 2014

Title: Error Models for Quantum State and Parameter Estimation

Within the field of Quantum Information Processing, we study two subjects:

For quantum state tomography, one common assumption is that the experimentalist

possesses a stationary source of identical states. We challenge this assumption and

propose a method to detect and characterize the drift of nonstationary quantum

sources. We distinguish diffusive and systematic drifts and examine how quickly one

can determine that a source is drifting. Finally, we give an implementation of this

proposed measurement for single photons.

For quantum computing, fault-tolerant protocols assume that errors are of certain

types. But how do we detect errors of the wrong type? The problem is that for large

quantum states, a full state description is impossible to analyze, and so one cannot

detect all types of errors. We show through a quantum state estimation example

(on up to 25 qubits) how to attack this problem using model selection. We use, in

particular, the Akaike Information Criterion. Our example indicates that the number

of measurements that one has to perform before noticing errors of the wrong type

scales polynomially both with the number of qubits and with the error size.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

1.1. Quantum Computing

The world of quantum mechanics is very different from the one that we can

experience with our senses. Quantum mechanical particles have no definite position

and momentum at the same time, instead we can only determine the probability for

finding the particle in a certain location or with a certain velocity when it is measured.

Moreover, any time we observe the particle, we also change its state.

Through these strange properties of quantum mechanical systems, a new kind of

computer has been envisioned: the quantum computer. Instead of discrete, classical

bits, a quantum computer uses quantum bits called “qubits”, which can be in a

continuous superposition of two states. Any operation on N qubits will then act on

all possible 2N different states, which means that in principle large calculations can be

executed in parallel. The read-out mechanism has to be well thought out to extract

exactly the information that we want, since any other information is lost during the

measurement.

The potential of a quantum computer is not fully known yet. Its most famous

algorithm is Shor’s factoring algorithm [50], which can factor large numbers into their

prime factors in polynomial time. There is a lot of interest in this algorithm because

it will be able to crack the common RSA public key encryption (for more information,

see [53]).

Another quantum algorigthm is Grover’s search algorithm [25] which can sort an

unsorted database in a time that is less than linear in the size of the database. Maybe
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the most interesting possibility for scientists is the simulation of quantum systems,

which may revolutionize quantum chemistry and condensed matter physics.

Actual implementations of quantum computers are still rudimentary and limited

to a small number of qubits. There is a great diversity of physical systems that are

proposed for use in quantum computing. One of the first studied systems was nuclear

magnetic resonance [63], but the size of such a computer is limited in practice by the

size of the molecules that are used. Among the most advanced implementations so

far are trapped-ion systems, where the record was set by the group of Rainer Blatt

with 14 entangled qubits [43]. This technology allows for complete coherent control

of all the qubits.

The other promising system are superconducting qubits, where each qubit is

represented by a tiny superconducting circuit that contains Josephson junctions [5,

15].

In general, we can distinguish between three different types of quantum

computer. A universal quantum computer is a quantum computer with a universal set

of gates, and involves complete coherent control of the qubits. This type of quantum

computer will be able to perform any task that a classical Turing machine can do,

and quite possibly even more. It is thought that for certain algorithms, a quantum

computer will achieve a considerable speed-up.

But for certain problems, we might not need a universal quantum computer. In

order to perform quantum simulation, a quantum computer only needs to simulate

one particular class of Hamiltonians, and can be engineered to perform this task

without being universal. Finally, there are quantum computers that rely on quantum

annealing [31], a method for finding the global minimum of a function by adiabatically
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cooling quantum fluctuations. These systems are already being built, but can only

solve a certain class of problems [8].

As these technologies become more developed, we might eventually see systems

that consist of several different parts, a fast interacting system that processes quantum

states and a slower system where quantum states can be stored for longer times

without too much decoherence. In this case we will also need to develop methods for

transfering quantum states from one system to another.

The crucial resource for quantum computing is strongly believed to be

entanglement, and all quantum computers use entanglement in some way. First

described in the famous paper by Einstein, Podolsky and Rosen [16], entanglement

describes correlations between quantum mechanical particles that are stronger than

allowed by classical physics. For example, consider a singlet state of two spin-1/2

particles, commonly denoted by |S〉 = 1√
2
(|↑↓〉 − |↓↑〉).

If the first system is measured to be in state |↑〉 in any arbitrarily chosen

measurement direction, then the second system will be in state |↓〉 in the same basis

and vice versa, even though quantum mechanics dictates that since the operators for

the spin in x-, y- and z-direction do not commute with each other, they cannot have

definite values at the same time. This effect cannot be described purely by classical

correlations. Moreover, a measurement on one part of this entangled system will

affect the state of the other part instantaneously, no matter how much distance is

between them. It was discovered by Bell [6] that this effect can not be explained by

local hidden variable theories, and in that sense quantum theory is nonlocal.
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1.2. Quantum Cryptography

Two entangled particles share these stronger-than-classical correlations even if

they are spatially separated over large distances. Even though it is not possible to

transfer information faster than light, this principle can still be used in the field of

Quantum Cryptography. In order to encrypt and send a message safely between two

parties, traditionally called Alice and Bob, they need to share a private key that is

unknown to any eavesdropper, called Eve. Up until recently, the classical public key

algorithm was considered the most reliable and secure way to generate private keys.

It uses the fact that large numbers can not be factored into their prime factors by

current classical computers in a short time. If quantum computers become available,

this scheme can be broken by the aforementioned Shor algorithm.

In contrast to relying on hard computational problems, quantum key distribution

[17] uses the nature of entanglement as a way to transmit a private key between two

parties. Light, or photons, have a certain polarization which can be measured in any

direction. Specifically, we can choose a basis that defines horizontally and vertically

polarized states, and a different basis that is rotated with respect to the first basis

by 45 degrees, so its basis states are diagonally and anti-diagonally polarized.

Let’s assume that Alice and Bob share N pairs of entangled photons, where

each pair is originally in a singlet state. Both Alice and Bob now measure their

photons randomly in either the horizontal/vertical basis, or in the diagonal/anti-

diagonal basis.

Then they communicate classically about which basis they measured in, and

disregard any state where they used different basis states. This will leave them with

about N/2 pairs, and since the photons were entangled, both Alice and Bob can infer

the measurement outcome of each other because they will be perfectly anti-correlated.
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This string of bits can then be used as a secure private key to encrypt any message

that they want to transmit.

Listening to the classical channel does not give any information about the

key, only the basis in which it was measured in. But what happens if there

is an eavesdropper that can intercept the quantum channel? If Eve performs

a measurement on the transmitted photons, her measurement will project the

photon into whichever basis Eve chose for her measurement. This will destroy the

entanglement, and Bob’s measurement outcome will then not necessarily be correlated

with Alice’s. By comparing a small part of their private key, Alice and Bob can find

out with very high statistical confidence whether their photons were intercepted or

not.

This method is secure in principle, since any measurement on the transmitted

particles will change their state and thus eavesdroppers can be detected. There are

already commercial options of this method of quantum key distribution.

1.3. Challenges of Quantum State Estimation

Even though quantum computers have been implemented in small systems, there

are daunting challenges that need to be overcome in order to build a large scale

quantum computer that is actually useful. The minimum requirement for such a

quantum computer will be the implementation of qubits that can be initialized to

a desired states and measured reliably. Furthermore we need to be able to perform

computations by applying quantum gates to the qubits. This can be reduced to a

universal set of only a few quantum gates, through whose combinations any other

unitary interaction can be performed. This universal set of quantum gates needs

to include two-qubit gates, so any two qubits need to be able to interact with each

5



other. In order to build a large-scale quantum computer, all the operations have to

be implemented in a fault-tolerant way, i.e. the error probability per qubit has to

be small enough so that it can be corrected reliably. If this is the case then we can

control decoherence while we scale up the number of qubits, eventually leading to a

quantum computer that will outperform any classical computer.

For detecting errors, it is important that the state of a quantum system can

be measured reliably. For small systems, this is commonly done by Quantum

Tomography, which was first implemented experimentally at the University of Oregon

by Raymer in 1993 [54], and since then has become an important tool in the field of

quantum information science. The largest system where tomography has been used

is a system of 8 qubits [28], which required 65, 536 parameters. In chapter II we

will give an introduction into the area of Quantum State Estimation and Quantum

Tomography. While the theoretical background is very well understood and Quantum

Tomography is widely used in practice, there are still many challenges that need to be

overcome in order to perform reliable, large-scale Quantum Tomography. The main

part of this thesis will examine some of these problems and provide new methods to

solve them.

In chapter III we discuss how tomography is limited if the source of the quantum

systems is nonstationary. We develop a method for characterizing quantum sources

that can detect whether a source is drifting, and also distinguish between diffusive and

systematic drifts. A special focus is placed on the question of how many measurements

are needed for reliable estimates. We also show that for single-photon wave packets,

our measurement can be implemented by the Hong-Ou-Mandel effect.

In chapter IV, we give an overview of quantum error correction and explain how

certain types of errors in a quantum computer can do more harm than others. In
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particular, the threshold theorem for fault tolerant quantum computing assumes that

all errors that occur are of certain types. But how can we detect that only such benign

errors occur? For implementations of tens or even hundreds of qubits, reconstructing

the full state becomes impossible, and reconstructing a quantum process that occurs

during a computation becomes even more impossible, because as the size of the system

grows, the number of variables that are needed to describe it grows exponentially.

In chapter V, we develop a method to tackle this problem, and show its

application on quantum state estimation for up to 25 qubits. Our method uses model

selection to create and test error models for the state. This will drastically reduce the

number of parameters that need to be measured and analyzed. Our model selection

tool is the Akaike Information Criterion, a tool borrowed from information theory and

statistics that has a very strong theoretical foundation (see appendix), and that has

been used for many decades. Our example indicates that the number of measurements

that one has to perform before noticing errors of the wrong type scales polynomially

both with the number of qubits and with the error size.

Finally, in chapter VI, we conclude the results of this thesis.

Chapters III and V were published and co-authored with S. J. van Enk.
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CHAPTER II

QUANTUM STATE ESTIMATION

2.1. Quantum States

A pure quantum state is a normalized vector (called ket) in a complex Hilbert

space and describes the state of a physical system. This space can be finite- or infinite

dimensional.

The simplest finite-dimensional system, which also serves as the basis of quantum

computation, is a 2-level system known as a qubit, in analogy to the classical bits.

Such a qubit can be represented by many different physical systems, e.g. two discrete

energy levels in an atom which are coupled by a laser, or the spin of an electron which

has two distinctive states that are coupled by a magnetic field.

The two orthogonal eigenstates of a qubit are labeled as |0〉 and |1〉 and form a

basis of the two-dimensional Hilbert space. Any pure qubit state then can be written

as a linear combination of those basis vectors

|Ψ〉 = α |0〉+ β |1〉 , (2.1)

where α and β are complex numbers with |α|2 + |β|2 = 1.

However, since we often deal with ensembles of states, or have incomplete

information about our system, it is very useful to introduce a more general type

of states called mixed states, which can be described by density matrices of the form

ρ =
∑
i

pi |Ψi〉 〈Ψi| , (2.2)
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where
∑

i pi = 1 and pi > 0 for all i. This density matrix contains all the information,

however incomplete, that we have about a quantum system [21]. It is hermitian,

positive (all eigenvalues are greater or equal to 0) and always obeys Tr(ρ) = 1.

We define the purity of a state as P = Tr(ρ2). This quantity is only equal to 1 if

the state is pure. For a maximally mixed state of dimension d, which is ρmixed = 1/d,

the purity becomes P = 1/d.

2.2. Measurements

Any observable on a quantum system (described by |Ψ〉 or ρ) can be described by

a hermitian operator Â that acts on the Hilbert space. The operator has eigenvalues

ai with eigenvectors |ai〉, which represent the possible outcomes of the measurement.

If |ai〉 are normalized, each possible measurement result ai occurs with probability

pi = | 〈ai|Ψ〉 |2, (2.3)

and after the measurement the state has collapsed into the corresponding eigenvector

|Ψ〉 → |ai〉 . (2.4)

This can easily be generalized to the density matrix formalism using the projection

operators Âi = |ai〉 〈ai|. Then the probability of each outcome is

pi = Tr(ρÂi) (2.5)
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which is also known as Born’s rule, and the state collapses according to

ρ→
√
Âiρ
√
Âi

TrρÂi
. (2.6)

This kind of measurement that uses projection operators is known as a von

Neumann measurement. Since Â is hermitian, the eigenvectors are orthogonal such

that Tr(ÂiÂj) = δij. These operators form a complete set in the space of operators

on the Hilbert space, such that
∑

iAi = 1.

It has been found very useful to generalize the notion of measurement operators to

not only allow orthogonal projection operators, but any set of positive operators that

sum up to unity. Let {Πi} be such a set of Positive Operator Valued Measurements

(POVM) with
∑

i Πi = 1. Note that the Πi do not necessarily have to be orthogonal,

but Born’s rule is still valid such that

pi = Tr(ρΠi). (2.7)

Any POVM can be realized by coupling an auxiliary system to the state and

performing a von Neumann measurement on this combined system [47].

2.3. Quantum Tomography

The goal of quantum tomography is to reconstruct the density matrix ρ of a

quantum system. However, because of the uncertainty relation that is inherent to

quantum mechanics, we can never measure all information about one single copy of

the system. Take for instance a spin-qubit, which can be completely characterized by

three parameters (e.g. the spin in x-, y- and z direction). Each time we measure any

spin component of this qubit, the system collapses to an eigenstate of the measurement
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operator and we can therefore not make any subsequent measurements on the original

system.

Quantum tomography circumvents this limitation by using not just one, but

many identical copies of the same quantum state ρ.

We choose a complete set of measurement operators, in general these can be

denoted as POVMs {Πi} with i ∈ {1,m} and record the outcome of each measurement

for a large number M of such states. If each outcome i occurs xi times, then the

frequency fi = xi/M of each measurement outcome approaches the probability pi =

Tr(ρΠi) of each measurement outcome, such that

fi = pi + ε (2.8)

where ε is the statistical error due to the finite number of measurements and decreases

as ε = O(1/
√
M) with higher numbers of measurements.

If we had unlimited resources, and access to infinite copies of the system, we

could make this error infinitesimally small and the measurement frequencies would

be equal to the true probabilities. Then we could reconstruct the exact density matrix

as the solution of the set of linear equations that (2.5) gives with pi ≡ fi for all i.

Even if we only have a limited amout of resources, we can still use this procedure

to reconstruct a density matrix ρe that best describes the state of each copy of ρ, by

solving the m linear equations given by

fi = Tr(ρeΠi) (2.9)

for ρe. For more in-depth reviews of quantum tomography, see [46, 41].
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2.4. Maximum Likelihood Estimation

Quantum tomography provides us with a reconstructed density matrix, but this

density matrix could be unphysical. For instance, we could perform tomography on a

qubit using three different measurement settings that measure the spin in x-, y- and

z-direction. These measurements are represented by the Pauli matrices σx, σy and σz.

Consider the case where we only perform one single measurement per setting, e.g. we

use three identical copies of the qubit and measure each spin once. If our qubit is in

state |0〉, it is possible that all the measurements return the result ’up’ or ’0’. Then

the reconstructed density matrix is

ρ =

 1 1+i
2

1−i
2

0

 , (2.10)

which is clearly not physical because it has one negative eigenvalue. This example is

extreme, but it illustrates the following problem: Most states that we are interested

in tend to be pure states, which lie at the boundary of the space of physical density

matrices, and therefore it is very likely that quantum tomography with a finite number

of measurements will return a density matrix that lies outside of this boundary.

Instead of choosing an unphysical density matrix, we would like to choose the

one state out of the space of physical density matrices that fits the measurement

results best. In order to choose the best density matrix, we introduce the likelihood

of a density matrix ρ as the probability of the measured outcome (denoted by the set

of frequencies {fi}), given that a system is in state ρ:

L = P ({fi}|ρ) =
∏
i

Tr(Πiρ)fiM (2.11)
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where M is the total number of measurement records, and fi is the frequency of each

outcome associated with the operator Πi. If this expression is taken as a function of ρ

instead of fi, it is not a probability distribution since it is not normalized. However,

the global maximum of this function over the space of physical density matrices is

the density matrix that is most likely to have produced the recorded measurement

outcome. For practical reasons, because the likelihood tends to be very large, we

usually perform this maximization on the logarithmic likelihood

logL =
∑
i

(fiM) log[Tr(Πiρ)] = M
∑
i

fi log[pi(ρ)] (2.12)

where we introduced pi(ρ) as the probability of measurement outcome i, given that

the system is in state ρ. Since the logarithm is monotonous, logL is maximized for

the same state ρ as L.

Note that if the result of quantum tomography from Eq. (2.9) is physical, it will

always agree with the density matrix found by maximum likelihood estimation. This

can be easily seen by noticing that the function
∑

i fi log pi is the relative entropy (also

known as Kullback-Leibler divergence) between two probability distributions {pi} and

{fi}. The relative entropy takes on its maximum when the probability distributions

are equal, i. e. pi ≡ fi for all i ∈ {1, . . . ,M}. But this is just the condition that we

solved in Eq. (2.9) for pi = Tr(ρΠi).

For more information on how quantum-state estimation can be improved even

further, see [7].
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2.5. De Finetti Theorem

One requirement for quantum tomography is to have a source that produces

many identical copies of the state that we intend to measure. Realistically, even

the most perfect source cannot produce perfect copies of the same state. One may

well wonder why quantum tomography assigns just one density operator, instead of

a distribution of states. A crucial role in this context is played by the de Finetti

theorem ([11, 37]).

The de Finetti Theorem states that if one has an extendible permutation-

invariant sequence of N quantum systems, then one can assign a quantum state

of the form

ρ(N) =

∫
dρP (ρ)ρ⊗N (2.13)

to the collection of N systems, with P (ρ) a probability density over density operators.

Quantum tomography then succeeds in making the distribution P (ρ) more and more

narrow, sharply peaked around some ρ0. In fact, in the limit of N → ∞, one has

P (ρ) → δ(ρ − ρ0). For this to work, we have to ensure that the two prerequisites,

extendibility and permutation invariance, hold for the measurement records of the

sequence of states that are being used for quantum tomography.

A state is permutation invariant, or symmetric, if any permutation of its

subsystems does not change the overall state. Formally, this can be written as

ρΠ(1) ⊗ ρΠ(2) ⊗ · · · ⊗ ρΠ(N) = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN . (2.14)

An example for such a system is a state of N qubits that are either all in state |0〉 or

all in state |1〉. This state is known as the GHZ state, or Greenberger-Horne-Zeilinger
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state [13], and is of the form

|GHZ〉 =
1√
2

(|00 . . . 0〉+ |11 . . . 1〉) . (2.15)

Any permutation of the qubits will always result in the same state.

The other requirement is that the system is extendible, meaning that the

sequence of states can be extended to an arbitrarily large symmetric sequence:

TrN+1,...,N+m [ρ1 ⊗ . . . ρN ⊗ ρN+1 . . . ρN+m] = ρ1 ⊗ · · · ⊗ ρN (2.16)

where Trn is the partial trace over subsystem n. The GHZ state does not fulfill this

requirement: If we choose a GHZ state of N + 1 qubits, and trace out the last qubit,

the resulting state is

ρ =
1

2
(|00 . . . 0〉 〈00 . . . 0|+ |11 . . . 1〉 〈11 . . . 1|) (2.17)

We see that all the coherence has been lost, and we are not arriving at the original

state.

It is easy to see that the usual assumption of a sequence of identical copies

ρ = ρ1 ⊗ ρ1 ⊗ · · · ⊗ ρ1 (2.18)

fulfills both of the requirements of the de Finetti theorem. Note that one way to ensure

a permutation invariant measurement record is to perform different measurements in

a random order.

An important prerequisite for quantum state tomography is therefore that we

have a reliable way to check whether a sequence of states fulfills the two requirements
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of the de Finetti theorem. In the next chapter we will propose a very simple

measurement that can perform such a test.

2.6. Scalability of Quantum State Estimation

Quantum tomography works well for small systems. In the case of single

qubits, the density matrix has only three independent variables, so it is sufficient

to experimentally determine the expectation values of three different measurement

settings in order to reconstruct the entire state. Any useful quantum computer will

require a much larger array of qubits though, and the number of elements in the

density matrix increases exponentially as 4N−1 in the number of qubits N . Quantum

tomography very quickly becomes experimentally and numerically unfeasible.

In practice, most of the time we only consider a very small set of states where

many parameters are taken to be zero and only few specific errors are assumed to

occur. In that case we can use models of only a few variables to describe an arbitrarily

large quantum state. For example, assume that our target state is supposed to be

a perfect GHZ state |GHZ〉. If we can accurately bring a system of many qubits in

such a state, the density matrix will only have 4 non-zero elements, and determining

the rest of the density matrix elements will not give us any more information. But of

course we need to check if we indeed created such a perfect |GHZ〉 state. In order to

test if there are any other non-zero parameters in our quantum state, we might try

an error model with only one error parameter q and model the state as a mixture of

the target state and a maximally mixed state

ρ = q |GHZ〉 〈GHZ|+ (1− q)1/D, (2.19)
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where D is the dimension of the Hilbert space. But we cannot know if our system is

indeed described well by such a simple state, or if we could find a better description

that could more accurately describe the behaviour of our system. We will consider

generalizations of this simple idea in Chapter V, and also provide a method that can

compare two or more such models and predict which model will perform better.
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CHAPTER III

DETECTING DRIFT OF QUANTUM SOURCES

This chapter was published as Detecting the Drift of Quantum Sources: Not the

de Finetti Theorem, Phys. Rev. Lett. 106, 180501 (2011). It was initiated by S. J.

van Enk and finished jointly by Lucia Schwarz and S. J. van Enk.

3.1. Drifting Sources

We consider quantum state tomography in the case where the assumption

of permutation invariance does not hold, and where, consequently, the de Finetti

theorem does not apply. The most relevant case is that of a (slowly) drifting source.

For example, it is well known that a laser displays phase diffusion: when one considers

two light pulses emitted by the same laser with a short time delay τ between them,

there will be a (random) phase difference whose average magnitude increases with τ .

Of course, even in this case, one could average over all emitted light pulses, say N

instances, to arrive at a single average density matrix. Indeed, if done correctly the

averaging procedure restores the permutation invariance, but (i) the average density

matrix depends on the number N , and (ii) the averaging procedure throws away

potentially useful information. For example, if we are interested in the purity of our

quantum states, the single state estimate will be too conservative.

In this section, we set ourselves the task of figuring out how one could detect

whether (and how) a source is drifting.

In principle, for detecting drift one could still use a variant of quantum

tomography: for example, we split ourN quantum systems into two groups of sizeN/2

each: the first half (chronologically) and the second half. For each we estimate a single
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density matrix: and if the difference between the two estimates is (not) statistically

significant then we conclude our source is (not) likely drifting. This method works

to some extent, but is still subject to the same two objections mentioned above.

Moreover, it has been known for a few decades that for the detection of given physical

quantities (such as a particular matrix element of the density matrix) a targeted

method is always superior to performing full tomography [14]. Therefore, we propose

and analyze a different method directly targeted at detecting drift. A difference with

the above-mentioned method [14] is that we consider a quantity determined by pairs

of density matrices.

3.2. A Two-state Measurement: The Swap Operator

Consider what one would measure to detect phase diffusion of a (pulsed) laser in

the special (but relevant) case where one assumes the laser pulses can be described by

coherent states with some fixed (and known) amplitude but a diffusing phase (relative

to some phase standard). One would take pairs of the output laser pulses, and split

them on a 50/50 beamsplitter in such a way that one particular output would be the

vacuum if their phase difference, δφ, would be zero. That output’s intensity is then

I = |α|2|1− exp(iδφ)|2/2, (3.1)

if |α| is the amplitude of the laser pulses. Thus measuring this intensity determines

the phase difference directly.

Now how do we generalize this measurement to arbitrary quantum systems (in

particular, qubits)? We first note that the intensity I can also be written in terms

of the overlap between the two input states, call them ρ = |α〉 〈α| and ρ′ = |α′〉 〈α′|,
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since exp(−2I) = Tr(ρρ′) in this case. Thus, our choice of generalization will be to

measure the overlap between pairs of instances of quantum systems from one and the

same source. In other words, we propose to measure the swap operator V̂ , defined in

terms of basis vectors {|i〉} and {|j〉} of the two (isomorphic) Hilbert spaces of two

instances numbered m and n from our source by

V̂ =
∑
i

∑
j

|i〉m 〈j| ⊗ |j〉n 〈i| . (3.2)

The expectation value of V̂ equals the overlap

Tr(ρm ⊗ ρnV̂ ) = Tr(ρmρn). (3.3)

(Note the left-hand side contains the tensor product of two density operators, the

right hand-side their matrix product.)

The operator V̂ possesses D(D+1)/2 eigenvalues +1 corresponding to symmetric

eigenstates

|i〉 |i〉 ; [|i〉 |j〉+ |j〉 |i〉]/
√

2 (3.4)

for i 6= j, and D(D−1)/2 eigenvalues −1 corresponding to antisymmetric eigenstates

[|i〉 |j〉 − |j〉 |i〉]/
√

2 (3.5)

for i 6= j.

Each measurement of V̂ yields one of its two eigenvalues, ±1, and so only after

multiple measurements will one obtain a statistical estimate of the overlap. [And, as

a bonus, if the two density matrices are identical, then this measurement in fact

measures the purity [19, 18], P = Tr(ρ2
m).] By comparing the overlap between
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adjacent copies, where |m−n| = 1 with the overlap between outputs that are farther

apart, |m−n| > 1, we obtain information about whether the source is drifting: if the

source is not drifting, the overlap is independent of |m− n|.

3.3. Characterizing Different Types of Drift

In order to infer more detailed information about the character of the drift or

diffusion (beyond the mere statement that the source is or is not stationary), we need

some simplifying assumptions about the sequence of states (the space of all possible

output states of N copies is too large to be either measurable or tractable). Here we

make the following two assumptions (one of which has been implicitly used already

in the above description): (a) the states are independent, (b) the drifting process

is Markovian, such that the overlap between two copies m and n only depends on

|m−n| (applicable to, e.g., laser phase diffusion, and testable by our measurement by

monitoring Vk, defined in Eq. (3.20), over time). So we write the state of N systems

produced by our quantum source as a tensor product 1

ρ(N) = ρN ⊗ ρN−1 . . .⊗ ρ1. (3.6)

In this case, we get

Vnm ≡ Tr[ρn ⊗ ρmV̂ ] =
1

2
[Pn + Pm]− 1

2
Tr[∆2

mn], (3.7)

1It is an open question whether this form can be derived from approximate permutation invariance
(plus extendability) of the sequence. The state of laser pulses emitted by a phase-diffusing laser can
be written in this form, modulo two subtleties discussed in [62].
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where Pk = Tr[(ρk)
2] is the purity of system k, and ∆mn = ρm − ρn. As special cases

of nonstationary sources we consider both diffusion and systematic drift, modeled by

ρn+1 = UrρnU
†
r . (3.8)

Diffusive drift occurs when Ur is a random unitary matrix, picked from some

distribution; a systematic drift occurs when Ur is fixed. In either case, the purity

of ρn is independent of n: Pn = Pm ≡ P1. We can take stochastic averages over the

random distribution of unitaries, which we will indicate by a bar, to get

V nm = P1 −
1

2
Tr[∆2

nm]. (3.9)

In case the drift process is purely a systematic drift, each unitary Ur is the same, and

we get

Tr[∆2
nm] = |n−m|2D1 (3.10)

for some drift constant D1.

If the process that changes the states ρn is diffusive (for example, the random

distribution of Ur is a Gaussian centered around the identity), then we get a linear

relationship between the overlap and the distance |n−m|,

Tr[∆2
nm] = |n−m|D2, (3.11)

for some diffusion constant D2
2. In this case, measuring the swap operator between

neighboring copies, for which |n −m| = 1 and on copies with |n −m| = 2 gives us

2Equations (3.10) and (3.11) are informative only for states sufficiently far away from the
completely mixed state, since the latter is invariant under (3.8), so that D1 and D2 are zero for
that extreme case.
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both the purity

P1 = 2Tr[∆2
n,n+1]− Tr[∆2

n,n+2] (3.12)

and the diffusion constant

D2 = Tr[∆2
n,n+2]− Tr[∆2

n,n+1]. (3.13)

(And similar relations hold when the drift is purely systematic.)

One way to check which sort of drift process one actually has, diffusive,

systematic, or a combination thereof, is to measure in addition the quantity

Tr[∆2
n,n+3], and then calculate the ratio

α ≡
Tr[∆2

n,n+2]− Tr[∆2
n,n+1]

Tr[∆2
n,n+3]− Tr[∆2

n,n+2]
. (3.14)

If the ratio is 1, one has a purely diffusive process, if α = 3/5 one has a systematic

drift, and in all cases in between one has both diffusive and systematic drifts. To

see how the number α is determined when there is a combination of systematic and

diffusive drifts, let us consider the simplest case of a qubit source. We model the drift

process with a unitary matrix Ur = exp(iδ~r · ~σ), with δ � 1, ~σ a vector containing

the three Pauli matrices, and a random vector ~r that consists of both a diffusive part

and a systematic part,

~r = p~rconst + (1− p)~rdiffusive (3.15)

with a normally distributed random vector ~rdiffusive and a constant (unit) vector ~rconst

(and 0 ≤ p ≤ 1). In this case α depends on p and on the ratio of the two constants
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FIGURE 3.1. A simulation of the measureable ratio α (3.16) for a combination of
systematic and diffusive drifts, for different drift constants.

D1 and D2, with D1 = δ2Tr[~rconst · ~σ, ρ]2 and D2 = δ2Tr[~rdiffusive · ~σ, ρ]2:

α =
−p2 + D1

D2
(−3p2 + 6p− 3)

−p2 + D1

D2
(−5p2 + 10p− 5)

. (3.16)

In Fig. 3.1, we plot this ratio for different values of D1 and D2.

3.4. How Many Measurements?

The next question we consider is, given a source of quantum states, how quickly

can we determine (by measuring the swap operator) whether the source is drifting?

Let us first consider the case of pure diffusive drift. We could, for example, measure

the swap operator between states that are 1 step and 2 steps apart, respectively, and
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see if the two numbers are equal or not. Suppose we write the overlaps as

Tr(ρnρn+1) = P1 −D2/2, (3.17)

Tr(ρnρn+2) = P1 −D2. (3.18)

. . . (3.19)

Suppose we have N data sets of the measurements of both Tr(ρnρn+1) and Tr(ρnρn+2).

We get the measured frequencies f±1 and f±2 , respectively, of the measurement

outcomes ±1 in the two cases. The average values are

Vk := Tr(ρnρn+k) = f+
k − f

−
k , (3.20)

for k = 1, 2, and the standard error bars are (for large enough N) ∆Vk = 2
√
f+
k f
−
k /N .

To decide that the source is drifting, the values of V1 and V2 should not overlap within

their error bars. The necessary condition for that is

1

2
∆V1 +

1

2
∆V2 < V1 − V2 = D2/2. (3.21)

From assumption (3.17) and Eqns. (3.20), we can write the frequencies in terms of

D1 and P1, and using all this in Eq. (3.21) we can solve for the minimum necessary

number of measurements:

Nmin = [
1

D2

(
√

(1 + P1 − D2

2
)(1− P1 + D2

2
) (3.22)

+
√

(1 + P1 −D2)(1− P1 +D2))]2. (3.23)
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To detect a systematic drift, a similar calculation gives

Nmin = [
1

3D1

(
√

(1 + P1 − D1

2
)(1− P1 + D1

2
) (3.24)

+
√

(1 + P1 − 2D1)(1− P1 + 2D1))]2. (3.25)

The number of measurements needed, for both diffusive and systematic drifts, is

depicted in Fig. 3.2 for various values of P1.

In principle, one could detect a drifting source a lot faster if one measured the

swap operator on states that are k > 2 steps apart (in addition to measuring states 1

step apart), simply because |Vk−V1| will be larger. In an actual experiment, however,

the larger the distance between two copies, the longer the earlier copy would have to

be stored in memory. We could model the decoherence that the earlier copy undergoes

as follows: assume that there is a typical decoherence time scale τ , which, e.g., drives

any state towards the totally mixed state. That is, if we keep a system for time t,

then

ρ→ (exp(−t/τ)ρ+ (1− exp(−t/τ)1/D, (3.26)

with D the dimension of the Hilbert space of our quantum system. Then assume

that the time needed to produce one copy is ετ with some (hopefully small) number

ε. Then we can write the overlap between states n and n+ k as

Pk = Tr(ρnρ̃n+k) (3.27)

= e−kεTr(ρnρn+k) + 1
D

(1− e−kε)Tr(1ρn+k). (3.28)

The inferred overlap between copies n and n + k follows from the measured Pk by

multiplying it with exp(kε) (and subtracting a known quantity): so the error bar in
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the overlap multiplies by the same number. This error thus becomes substantial once

kε becomes of order unity, so that is where we would expect the method to use copies

a distance k apart to break down. In Fig. 3.3 we plot the number of measurements

needed for various values of ε as a function of k, and we can indeed see that for too

large values of k, the required number of measurements increases exponentially with

k. The optimal k, of course, depends on the specific decoherence process, and also

on how fast the source is drifting, but seems to be around kε ≈ 4 in our example.

3.5. Experimental Implementation of the Swap Operator

Finally, we wish to note that in the case of two independent single photons,

when they are viewed as quantum systems with an infinite-dimensional Hilbert space

describing polarization, spectral, and transverse spatial degrees of freedom, the swap

operator can in fact be measured via the Hong-Ou-Mandel interference effect [30].

This can be shown as follows. We consider two single photon wavepackets impinging

on two different input ports (denoted A and B) of a 50/50 beamsplitter. We write

the two (mixed) input states in terms of creation and annihilation operators a† and

a (for port A) and b† and b (for port B) as:

ρA =
∑

kl pkla
†
k |0〉 〈0| al (3.29)

ρB =
∑

nm qnmb
†
n |0〉 〈0| bm, (3.30)

where the subscripts stand for the mode properties (polarization, frequency etc.)

other than their propagation direction. The combined input state is then ρin =
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ρA⊗ ρB. This state gets transformed by the 50/50 beamsplitter in the following way:

ρout =
∑
klnm

pklqnm
4

(c†k + id†k)(ic
†
n + d†n) |0〉 〈0| (cl − idl)(−icm + dm), (3.31)

where c and d now denote operators of the two output ports C and D. To get the

probability Pcc of getting a coincidence count, i.e., photo detections at both output

ports C and D, we take a partial trace and we get:

Pcc =
∑
rs

〈1r|c 〈1s|d ρout |1r〉c |1s〉d =
∑
rs

〈0| crdsρoutc
†
rd
†
s |0〉 (3.32)

This simplifies to

Pcc =
1

2

∑
k

pkk
∑
n

qnn −
1

2

∑
kl

pklqlk. (3.33)

The first two sums are the traces of the density matrices and therefore equal 1. It is

easy to see that

Tr(ρAρB) =
∑
klnm

pklqnmδnlδmk =
∑
kl

pklqlk, (3.34)

so that we get the simple relation

2Pcc = 1− Tr(ρAρB). (3.35)

Thus, as announced, the HOM effect measures the overlap between two input states,

and hence the swap operator. (And so, if the two single-photon input states are

identical, then the HOM interference measurement measures the purity of the input

states. Note that this is different from the measurement of single-photon (spectral)

purity implemented recently in Ref. [10], which also makes use of the HOM effect,

but with a known coherent-state input in the other input port.) Of course, the HOM
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effect has been measured many times in the context of characterizing single-photon

sources (see, e.g., [49, 39]), but never, as far as we know, systematically on copies

more than the minimum distance apart. We also note that for the polarization degree

of single photons, the overlap has been measured [29], following ideas from [19].

In conclusion, we proposed the measurement of the swap operator as a means to

detect the drifting of a quantum source. This measurement complements quantum

tomography, which produces an estimate of a single average density matrix, by

partially characterizing how this estimate would change over time, for instance,

distinguishing between diffusive and systematic drifts. We also analyzed how many

measurements are needed to determine that a source is drifting, including the

influence of decoherence on the precise measurement strategy. We showed the swap

measurement on pairs of single-photon wavepackets is implemented simply by the

Hong-Ou-Mandel effect.
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FIGURE 3.2. How many measurements do we need to figure out that a source is
drifting? Obviously, the larger the drift is (as measured by the parameter D2 for
diffusive drift or D1 for systematic drift), the fewer measurements we need. Top:
systematic drift, bottom: diffusive drift.
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CHAPTER IV

FAULT TOLERANT QUANTUM COMPUTING: WHICH ERRORS ARE OK?

4.1. Errors in Classical versus Quantum Computing

In a classical computer, errors can be corrected using redundancy. The

computation can be performed in parallel and the correct result is determined simply

by the ’majority vote’. This is a very simple but terribly wasteful procedure, since

the bit error rate in our laptops and PCs is typically so low, that error correction is

not needed in any standard computer.

This simple sort of error correction is not easily translated to a quantum

computer though, since the nature of quantum states makes qubits very different

from classical bits. Without correcting errors, a quantum computer cannot perform

any nontrivial calculation reliably. The reason for this is that qubits are not digital,

and they can occupy a continuum of states, namely all the superpositions of their

two basis states |0〉 and |1〉. This makes the computation very susceptible to errors,

since even small deviations from the original quantum state will change the result,

and will build up in subsequent computational steps.

Error correction in quantum computing is not straightforward for several more

reasons. Most importantly, the no-cloning theorem [64] prevents us from using a

simple repetition code for error correction. Since each qubit is typically represented

by just one or a few elementary particles, we cannot make several copies of a state

and repeat the calculation multiple times. Additionally, any measurement on a

quantum state changes the state itself, so much care has to be taken to not destroy

the information that a state carries.
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In this section we give a brief overview of the methods that have been developed

to not only detect, but also correct an error without destroying the coherence of the

state.

4.2. Decoherence

A quantum system in which the qubits are designed to interact with each

other to form quantum gates, and with our measurement apparatus to read out the

result, invariably also interacts with its environment. This process can be described

as the quantum state becoming entangled with its environment through unitary

interactions, and then being ’measured’, which changes the state. This process is

called “Decoherence” and is the main challenge in quantum computing [59].

In general, any error on a quantum state can be described if we introduce

some extra qubits from the environment, which interact with our state via a unitary

transformation on the combined state, and then discard the extra qubits. This non-

unitary evolution can be written in terms of the so-called “Kraus representation”

as

ρ→
∑
i

EiρE
†
i (4.1)

where the Kraus operators Ei sum up to the identity on the Hilbert space of our

state such that
∑

iEiE
†
i = 1. For example, for a single qubit state, consider the

Kraus operators E0 =
√

1− q
2
1 (which represents the possibility of no error occuring)

and E1 =
√

q
2
σz (which represents a phase flip error). If we apply this nonunitary

evolution to a pure state of the general form |Ψ〉 = α |0〉 + β |1〉, the density matrix
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will evolve according to

ρ =

 |α|2 α∗β

αβ∗ |β|2

→
 |α|2 (1− q)α∗β

(1− q)αβ∗ |β|2

 . (4.2)

This type of decoherence is called dephasing, a process in which the coherence

(represented by the off-diagonal elements in the density matrix) between qubits decays

and the system transitions from quantum mechanical behavior to classical behavior.

Other effects of decoherence include depolarizing, where a pure state evolves towards

the fully mixed state, and dissipation, where the populations of quantum states are

changing.

4.3. Error Models

We can use the quantum mechanical principle, that any measurement projects a

state onto an eigenstate of the measurement operator, to our advantage. If our system

has a small (analog) error, we can devise a measurement operator that either projects

the state onto its original state with no error, or onto a state where a well-defined

error occured. In that way we can turn analog errors into digital (discrete) errors

that we can correct.

In a qubit, we can describe these discrete errors as a phase flip, a bit flip, or a

combination of both. These actions can be categorized by the Pauli spin operators

(see table 4.1). Any errror correction scheme that corrects these errors also corrects

any linear combination, and since these three operators span the space of operators

on the Hilbert space, we can correct any single-qubit error [23].

If we have N qubits, the state space of our density matrix has 2N × 2N − 1

real parameters. If we also want to consider quantum processes, that means we
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σx =

(
0 1
1 0

)
bit flip |0〉 ⇒ |1〉, |1〉 ⇒ |0〉

σy =

(
0 −i
i 0

)
bit- & phase flip |0〉 ⇒ |1〉, |1〉 ⇒ − |0〉

σz =

(
1 0
0 −1

)
phase flip |0〉 ⇒ |0〉, |1〉 ⇒ − |1〉

FIGURE 4.1. Three independent 1-qubit errors and their action on the basis states.
Any error on 1 qubit can be expressed as a linear combination of these.

would have to correct approximately 4N × 4N linearly independent errors. Since it

is unlikely (but not impossible) that a large number of errors occur simultaneously,

usually not all possible errors are corrected. For example, if we want to consider only

one- and two-qubit errors, there would be
(
N
1

)
+
(
N
2

)
possible errors that can occur in

the N-qubit density matrix, which is only polynomial in the number of qubits instead

of exponential, and consequently is much more practical to implement.

4.4. Error Correction Codes

In classical error correction, we use redundancy to correct errors. For example,

in a 3 bit classical code, we use three physical bits to encode one logical bit. The two

possible states are encoded as 1L ≡ 111 and 0L ≡ 000. After each calculation, we can

check the state of each physical qubit and determine the state of our logical qubit as

the bit state that occurs most often. If only one error has occured, for example we

might find our code in state 001, then this code will correct the error and flip the

last bit back to 0. Of course not all errors can be caught: If two or three bits are

flipped, then the error correction will go wrong. If the probability for each bit error

pI is assumed to be independent, then the probability that this code will produce an
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error is

perror = 1− (1− pI)3 − 3pI(1− pI)2 ' 3p2
I , (4.3)

so for small pI � 1 the reliability of the code is improved dramatically. This kind of

error correction becomes useful only if pI is low enough so that the error probability

will actually decrease if the error correction is applied, here this will be approximately

the case when 3p2
I < pI and therefore the threshold error rate is given by pI < 1/3.

For a quantum system, we might try to use the same principle and encode a state

|Ψ〉 as |Ψ〉 ⊗ |Ψ〉 ⊗ |Ψ〉. However, this is impossible due to the no-cloning theorem,

we can not create copies of a qubit. Peter Shor discovered that it is still possible

to spread the information of one qubit into a block of several qubits. For example,

for his 9-qubit code [51], the basis states are encoded in three groups of three qubits

each:

|0〉 ⇒ |0̄〉 = (|000〉+ |111〉)
⊗

3 (4.4)

|1〉 ⇒ |1̄〉 = (|000〉 − |111〉)
⊗

3 (4.5)

Note that this does not violate the no cloning theorem, since for any state |Ψ〉 =

α |0〉+ β |1〉 the encoded state is

∣∣Ψ〉 = α |0̄〉+ β |1̄〉 6= [α(|000〉+ |111〉) + β(|000〉 − |111〉)]
⊗

3 (4.6)

This code has two independent error correction mechanisms. Firstly, any bit flip

error can be corrected by taking the majority of each group of three qubits. Secondly,

phase errors can be corrected by taking the majority of the three signs in each group.
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We can then perform measurements that only extract information about the

errors, but not about the state itself. Making use of the projective nature of quantum

mechanics, the measurements are chosen such that the state is projected either back

into the correct state, or into a state where a definite error has occured, which can

then be corrected by applying the inverse operation of the error.

This error correction code can only correct one single qubit error. For example,

if we assume that each qubit has an error rate of pI , then we will get an actual error in

our logical qubit only if two or more errors appear in the encoded block, and the error

probability will be reduced to perror ≈ Cp2
I . The factor C depends on the encoding

scheme, for example for the nine qubit code we would have C ≈
(

9
2

)
= 36, and

therefore the threshold error rate below which this code becomes useful is pth ≈ 1/36.

Many other error correcting codes have been proposed, including codes that can

correct more than one errors [34, 55]. There are also lower bounds on the number of

qubits that are necessary, which can be derived by counting the number of errors that

need to be corrected. For example, to encode a single logical qubit into N physical

qubits, each of the 2 basis states (|0L〉 and |1L〉 can be unchanged, or can be affected

by 3N linearly independent errors. In total, this adds up to 2 + 2 · 3N dimensions

which need to fit into the N qubit Hilbert space, and this leads to the quantum

Hamming bound quantum hamming bound: To encode one qubit, and correct up to

one errors, the number of physical qubits needs to fulfill

2 + 2 · 3N ≤ 2N . (4.7)

In our case we can see that we need at least 5 qubits to encode one logical qubit.

Error correction codes can be classified by the number of qubits that are used to

encode one qubit, and by the number of errors they can detect. In order to correct
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more errors, it is often useful to concatenate codes, so each encoded qubit is again

encoded in a block of qubits. In that case we can reduce the error twice:

perror ⇒ Cp2
I ⇒ C(Cp2

I)
2 = C3p4

I . (4.8)

However using more qubits also makes the circuit more susceptible for errors, which

poses a limit on the number of layers for encoding.

In general, if we have L layers of encoding, the probability for an error scales like

p2L . Since this is a double exponential in L, for a calculation with T steps typically

only log(log(T )) layers are needed. However, since the number of qubits scales up

exponentially with the number of encoding layers, we are still left with ∝ log(T )

qubits per block.

Note that this implicitly assumes that the single qubit errors are independent,

and do not account for the possiblity that errors on two or more qubits might occur

that are spatially correlated.

4.5. Fault Tolerant Quantum Computing and the Threshold Theorem

Implementing error correction schemes does not guarantee that a quantum

computation can be performed correctly. The gates used for encoding, detecting

and correcting errors may be faulty themselves, and we need to be careful not to

correct errors that are falsely detected. For instance, if we detect a bit flip error, we

could check again and only correct the error if we find the same bit flip again. Of

course as the computation time increases, the probability of errors occuring will also

increase.
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An error correction scheme is called fault tolerant if it can guarantee that a

computation can be performed arbitrarily exact in polylogarithmic time. The first

protocol for fault tolerant quantum computing was suggested by Shor [52], since then

there have been many improvements [1, 32].

Since any error-correcting code can only detect and correct a certain number

of errors, we need to ensure that the total number of errors within a block stays

contained. A single error on a qubit can easily propagate and spread to other qubits

during a quantum computation. A fault tolerant quantum gate therefore needs to

ensure that a single error does not spread. There are many different implementations

for state preparation, measurement, error correction, and a universal set of gates,

that operate in a fault tolerant way. fault tolerant quantum computing.

Fault tolerant computing assumes a constant error rate per gate, and a (not

necessarily identical) constant error per timestep for storing a qubit. As long as this

error rate is below a certain threshold pth, the errors will be corrected faster than

they appear, and arbitrary long quantum computations can be achieved. Derivations

of this error rate tend to vary depending on how conservative their assumptions

are. Theoretical proofs have estimated a lower bound for this threshold error rate at

pth ≈ 10−5 to 10−3 [4], and the best current experiments typically achieve comparable

error rates.

4.6. Which Errors Are Ok?

We have seen that quantum error correction codes are quite efficient in correcting

stochastic errors that occur in single qubits, and more advanced codes can even correct

independent errors on two or more qubits. In the framework of fault tolerant quantum

computation, as long as the error rate is below a certain threshold, any calculation
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can be performed safely based on these assumptions. However, we can’t be certain

that all errors occur independently. For example, we could have spatially correlated

errors that affect multiple qubits (or even the entire state) at the same time. If too

many qubits are affected by an error, then the error correction will fail and the error

can spread uncontrollably. In the next chapter, we will propose a method to model

and detect such general errors that affect the entire quantum state of a register.
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CHAPTER V

PERMUTATIONALLY INVARIANT STATE RECONSTRUCTION

This chapter was published as Error models in quantum computation: An

application of model selection, Phys. Rev. A 88, 032318 (2013). It was initiated

by S. J. van Enk and finished jointly by Lucia Schwarz and S. J. van Enk.

5.1. Introduction

In order to develop a quantum computer we need to be able to coherently control

and read out a system of many qubits. Verifying how a particular experimental

implementation of a quantum computer actually performs will be straightforward

once we can run a computation in a fault tolerant manner: we just check whether the

answer produced by the computation is correct or not. But before that time arrives

we will need to employ other, less conclusive types of tests.

There are two types of generic tests that provide useful information about many-

qubit systems: multi-partite entanglement verification tests [26] and randomized

benchmarking [36, 42]. However, the information gained is somewhat unspecific:

In both cases one may detect that something is wrong, but one will not find out what

exactly is wrong. Unfortunately, there is no efficient procedure to figure out what

exactly is wrong, simply because we cannot efficiently simulate a generic multi-qubit

quantum process on a classical computer. (For smaller systems quantum tomography

can be used, and even there one has to be careful with systematic and other errors

[45, 38, 61].)

For fault tolerant quantum computation [22] one does need to know not just

how large the error probabilities are, but also whether they are of the right type.
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This is because threshold theorems [1, 35, 33, 56, 20] need to make explicit use of

error models. For example, the calculation of the error threshold may be based on a

“local stochastic” error model (for an introduction, see [23]). Errors correlated over a

long range may then be disastrous. One mechanism by which such long-range errors

might arise is as follows. A laser field’s phase and intensity always fluctuate, but, of

course, if those fluctuations are always sufficiently small, the errors they cause will

be corrected for by quantum error correction. But what if the fluctuations, for just a

brief time interval, are large? Then all qubits which happened to have been accessed

during that time interval have a much larger probability of error. The problem we

consider is how one could notice the presence of such errors.

While there is no systematic and efficient method to solve this problem

completely, there is an efficient and well-tested method: model selection [12, 9].

This term refers to a well-developed field of (classical) statistics and inference where

the aim is to rank different (statistical) models, each meant to describe some given

process. In the present context model selection can be summarized as follows: We

design a few-parameter model that describes our predictions of all the processes and

errors that occur in our experiment —it may have a few noise parameters with a

clear physical meaning, for instance— and compare it with a much larger (but still

far from exhaustive) model that includes many (but not all) possible types of errors.

As long as the large model contains a number of parameters that scales moderately

with the number of qubits, then it still can be analyzed, even for a few dozen qubits.

If that large model is ranked higher than our few-parameter model, we conclude that

errors occurred that we did not expect.

We are going to discuss an illustrative example of this model selection procedure.

We simulate a quantum state estimation experiment on N qubits, which is modeled
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after an actual experiment performed on 14 ions in an ion trap in which a 14-qubit

GHZ state of high fidelity was generated [43]. We will vary N up to 25 and assume

the goal is to generate a perfect GHZ state. We take a 3-parameter model (with

three noise parameters describing three different noise processes) as our standard error

model and then take a model with O(N3) parameters as the much larger error model,

which includes many types of errors, although, obviously, not all O(4N) possible ones.

We assume the data are generated by a “true” state of the form

ρtrue = (1− q)ρs.e. + qρg.e.,

with the subscript s.e. referring to “standard error model” and “g.e.” to the more

general error model. We investigate then the following issues: First, does the model

selection procedure recognize that the standard error model is indeed correct (i.e.,

ranked higher than the large general error model) when q = 0? Second, in the

case that q 6= 0, how many measurements does one need to take before one notices

that there is in fact an error that lies outside the standard error model? The last

question splits naturally into two subquestions, namely, how that number scales with

the number of qubits and how it scales with q.

The model selection method we use here is based on the Akaike Information

Criterion (AIC) [3]. This method is widely used outside of physics, and by now

has been applied on various occasions within quantum information theory as well

[60, 40, 65, 27, 61]. Most model selection criteria compare the goodness of fit of each

model while penalizing the number of parameters, thus possibly favoring simpler

models. The AIC in particular has a clear meaning since it is derived purely from the

principles of information (see appendix). It has been found to perform better than
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the related Bayesian Information Criterion [9] in quantum state and entanglement

estimation [40].

5.2. Preliminaries

5.2.1. Model selection and AIC

Suppose we have taken data and now wish to model the underlying process

that generated the data. Our data contains some amount of information about the

underlying process, but also statistical fluctuations. How can we determine whether

a model is a good description of the underlying process rather than of the statistical

fluctuations? In general, models with more parameters will be fitting the data

better but are also more likely to fit to the fluctuations, and models with too many

parameters are overfitting. One method to find a compromise between under- and

overfitting was proposed by Akaike [3]. He derived an expression for the estimated

Kullback-Leibler divergence between one’s model and the true underlying process.

The Kullback-Leibler divergence is expressed in terms of two probability distributions

for the data, the “true distribution” {pi}, and the distribution generated by our model,

{si}, as follows:

KL(p||s) =
∑
i

pi log
pi
si
. (5.1)

This is a measure for the distance between the two probability distributions {pi} and

{si}. It is also called the relative entropy and can be understood as the information

that is lost if the model {si} is used instead of the “real” distribution {pi}.

Of course, we do not know the true underlying distribution, but, nonetheless,

the Kullback-Leibler divergence can be estimated, as was shown by Akaike, using the

observed frequencies. Namely, up to a constant that is the same for all models, he
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found the divergence to approximately equal

AIC = −2Lmax + 2K. (5.2)

Here K is the number of parameters of the model, and Lmax is its maximum log-

likelihood,

Lmax = max
{pk}

∑
k

fk log pk, (5.3)

with fk the number of times outcome k was observed and pk the probability according

to the model of obtaining outcome k. Model selection now consists of calculating the

AIC for different candidate models, with the lowest score corresponding to the best

model. In our context this procedure can distinguish between models that accurately

describe the relevant physical (error) processes, and models that spend too many

parameters on fitting statistical noise. We thereby gain insights into the actual

physical processes that cause errors, and we can tell whether or not errors outside

our simple model are significant.

5.2.2. A 3-parameter model for noisy GHZ states

We will simulate an experiment on a noisy GHZ state [24] of N qubits. The ideal

GHZ state is a coherent superposition of all qubits in state |0〉 or all in state |1〉,

|GHZ〉 =
1√
2

(|00...0〉+ |11...1〉) . (5.4)

A high fidelity version of this state was created in a trapped ion system for 14

ions [43]. The density matrix ρGHZ = |GHZ〉〈GHZ|, written in the standard basis

|00...0〉 , |00...1〉 , ... |11...1〉, has only four nonzero elements which all equal 1
2
. This
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state is maximally entangled and pure. However, a real quantum system in the

lab will not be in this perfect state. There might be several effects that act on the

qubits during the state preparation and/or storage. As a simple and not unreasonable

model we assume just three noise processes, described by three parameters: a small

imbalance ε between the populations of |00..0〉 and |11..1〉, a systematic phase shift

ϕ of the relative phase between |00..0〉 and |11..1〉, and δ which quantifies the loss of

coherence between |00..0〉 and |11..1〉 due to random phase fluctuations. These three

processes will create a mixed state with density matrix

ρ3P =
1

2


1 + ε ... δ

√
1− ε2eiϕ

...
...

δ
√

1− ε2e−iϕ ... 1− ε

 . (5.5)

5.2.3. A large model: permutationally invariant states

For the comparison with our 3-parameter model, we try to find a model that

will describe many possible errors and deviations from this simple model. However,

we can’t model all possible errors that may occur. Our goal is therefore to design a

model with a fairly large (but still polynomial) number of fitting parameters. If an

arbitrary error is affecting our experiment, it will most likely be partially contained

in this large model and we will detect it. Of course, this leaves out certain errors that

are exactly orthogonal to the large model. To increase the chance of detecting small

errors, for an actual experiment several such fairly large models should be considered

and compared to each other. There is no systematic way to find good models for

this purpose, but any model with a large number of parameters can be used. For

simplicity, we only regard one such model in this paper. This suffices for our purpose

of determining how many measurements are needed as a function of both N and q.
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The ideal GHZ state is permutationally invariant, in the sense that any

permutation of its subsystems leaves the overall state unchanged. Mathematically,

this can be expressed as

ρGHZ =
1

N !

∑
πk∈SN

V (πk)ρGHZV (πk)
†, (5.6)

where the sum is over all N ! permutations πk of the N qubits, and V (πk) is the

unitary representation of the operator that permutes the subsystems according to

the permutation πk. Since our simple 3-parameter model is also permutationally

invariant, it makes sense to use as the large model the set of all permutationally

invariant (PI) states. This set has been shown to be very convenient for quantum

state reconstruction and entanglement detection [58, 57, 44]. Many experiments aim

at generating GHZ states, W states or Dicke states, all of which are PI. Moreover, if

the PI part of a state ρ is entangled, then so is ρ.

(Note that this choice does not imply that we think the actual state is

permutationally invariant, and nor does it imply that we think the error process

is permutationally invariant. All that matters is that our model will include the

permutationally invariant part of the actual error process. As long as that part does

not vanish, we will detect it. Recall that we cannot analyze all possible error models!)

As shown in [44], any permutationally invariant state can be represented as a

block-diagonal matrix

ρPI =

N/2⊕
j=jmin

Pjρj ⊗
1

Kj

, (5.7)

where ρj is a spin-j matrix of dimension 2j+ 1 and {Pj} is a probability distribution

over the spin values j, and Kj is the dimension of the non-PI part of the spin-j state,
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given by

Kj =

(
N

N/2− j

)
−
(

N

N/2− j − 1

)
. (5.8)

The dimension of the permutationally invariant subspace grows as ∝ N3 with the

number of qubits N . This model fits our purposes very well. For a dozen or more

qubits the model contains a substantial number of parameters, but not so many that

we cannot analyze it.

It was shown in Refs. [57, 44] that the necessary and sufficient number of different

measurements needed to gain full information about a permutationally invariant state

is

DN =

(
N + 2

N

)
. (5.9)

In particular, we can choose to measure observables of the form Â⊗N , that is, we

can measure the same single-qubit observable on each qubit. We just have to pick

DN different single-qubit observables, the outcomes of which ought to be more or

less uniformly distributed on the Bloch sphere [57, 44]. In principle, we can choose

any set of random, linearly independent projective measurement operators, but it is

advantageous to use an evenly distributed set of measurement operators, analogous

to SIC-POVMs [48]. We achieved this by minimizing the frame potential

F =
∑
j,k

|〈Ψj|Ψk〉|2, (5.10)

where each measurement is a projective measurement such that Âi = |Ψi〉 〈Ψi|.

48



FIGURE 5.1. Uniformly distributed measurement settings on the Bloch sphere for 2-
and 8-qubit states

It was shown [57] that the necessary and sufficient number of different

measurements to gain full information about a permutationally invariant state is

DN =

(
N + 2

N

)
= O(N2). (5.11)

In Fig. 5.1, we show two examples of a set of DN measurement operators,

represented by their Bloch vectors.

5.3. Numerical Results

We simulate an experiment on N qubits. The “true” state that generates the

data is chosen to be an unequal mixture of a noisy GHZ state ρ3P (contained in

the 3-parameter model) and a randomly picked permutationally invariant state ρPI

orthogonal to the 3-parameter states (just to make sure the overlap of the actual state
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with the 3-parameter subspace does not vary with N). We write

ρtrue = (1− q) ρ3P + q ρPI . (5.12)

The parameter q determines the probability of “wrong” types of errors, namely, those

outside our standard error model. We simulate a certain number of measurements,
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FIGURE 5.2. The differences in AIC values ∆AIC for a state of N = 5 qubits plotted
against the total number of measurements. There are 21 measurements settings in
this case, and the PI model contains 55 parameters. The simulation was run 100
times and the average ∆AIC is plotted. Error bars refer to the spread of ∆AIC over
the 100 runs.

where each single measurement consists of measuring N times the same single-qubit

observable, where the latter is chosen from the set of DN single-qubit observables. So

a single measurement yields N outcomes 0 or 1. We assume for simplicity that each of

the DN observables is measured the same number of times. We then find numerically

the maximum likelihood state for the three-parameter model as well as for the large
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PI model. This is easy for the three-parameter model since the minimization is over

just 3 parameters. For the PI model we apply an iterative algorithm described in [44]

for which the required computation time increases only polynomially in the number

of qubits. Using the two maximum likelihoods thus obtained, we can calculate the

respective AIC values for the 3P and PI models and plot the difference, which we

denote by ∆AIC. Negative values of ∆AIC correspond to the 3-parameter model

being favored, whereas positive values indicate that the PI model is better.
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FIGURE 5.3. The differences in AIC for several different numbers of qubits, plotted
against the total number of measurements. Note that a single measurement on N
qubits yields N binary outcomes. For very small numbers of measurements ∆AIC
approaches twice the difference in the number of parameters of the two models (≈
N3/3). In this plot we used q = 0.02.

Fig. 5.2 shows ∆AIC for two different “true” states, one with q = 0, the other

with q = 0.02. For q = 0 the Akaike Information Criterion correctly always prefers

the 3-parameter model. This is not as trivial (since the data are generated from a 3-
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FIGURE 5.4. The average number of measurements required to reach the point where
both models are rated equally. Small even and odd numbers of qubits behave slightly
differently. (q = 0.02)

parameter state!) as it may seem, because the statistical fluctuations are substantial

(note that each observable is measured just a few dozen times for the smallest total

number of measurements in the plot). For q = 0.02 we see that a relatively small

number of measurements suffices to start favoring the PI model over the 3-parameter

model, and the more measurements one performs, the firmer that conclusion gets.

For very small numbers of measurements, a nonzero q cannot be detected yet, and

we may interpret the point where ∆AIC crosses zero as the point where sufficiently

many measurements have been taken to detect the presence of errors outside our

standard (three-parameter) error model.

Let us consider how that crossing point changes with the number of qubits. A

range of results for different N is plotted in Fig. 5.3. With increasing N the crossing
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point clearly moves towards larger numbers of measurements. We plot the crossing

point as a function of N in Fig. 5.4. We see that the necessary total number of

measurements to detect a fixed perturbation q increases only linearly in the number

of qubits N , which shows that this can be measured very efficiently. (The number of

single-qubit measurements needed grows as N2.)
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FIGURE 5.5. ∆AIC as a function of the number of measurements performed, for
four different values of q and N = 5 qubits.

It is also useful to investigate how the number of measurements needed to detect

a nonzero value of q depends on that value.

The plots of Fig. 5.5 and Fig. 5.6 show that the total number of measurements

needed increases only moderately with 1/q. This dependence becomes more favorable

with increasingN , presumably because there are more ways to detect errors that occur

with a given probability.
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FIGURE 5.6. The minimum number of measurements M needed to detect a
perturbation of strength q, both for N = 5 and for N = 10 qubits.

5.4. Conclusions

We showed by example how to use the Akaike Information Criterion (AIC) to

select between different error models in the context of quantum computing. Thanks to

the AIC one does not need exponentially many parameters to describe an experiment

on multiple qubits. Instead, we compared a small model (with 3 parameters) with

an intermediate-sized model (O(N3) parameters). The former stands for a standard

error model in the context of fault tolerant quantum computing, the larger model

stands for other (undesired) types of errors. Since it is crucial to know whether one’s

implementation satisfies the condition for the fault tolerance error threshold theorems

to apply, our method, which works for dozens of qubits, should be quite useful here.

In our specific example the number of (unentangled) N -qubit measurements needed

to detect errors of the wrong type turned out to scale linearly with the number of
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qubits and less than quadratically with the inverse of the wrong error probability.

The latter scaling even improves with increasing number of qubits.
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CHAPTER VI

CONCLUSIONS

Inspired by recent advances in experimental quantum computation, in this thesis

we have asked the question of how to detect errors in our quantum processor,

especially the types of errors that have so far been ignored.

We considered two cases. In the first part of this work, we challenged the basis of

quantum state tomography: The assumption that the source of quantum states that

we are analyzing, produces a sequence of identical states. In more technical terms,

the so-called De Finetti theorem requires the sequence of states to be extendible and

permutation-invariant in order for us to be able to describe the sequence as a product

of identical density matrices. This should not at all be taken for granted, since

any experiment will suffer from fluctuations. Therefore we investigated the question

of how noise and fluctuations will influence quantum tomography, and we found

relations between the amplitudes of the fluctuations and the number of measurements

it will take to detect their presence. Additionally we also looked into how different

types of fluctuations could affect an experiment differently, and described a method

to distinguish between systematic and diffusive drift. The measurement that we

proposed is described by the swap operator, which acts on pairs of states and provides

a measure of how much difference there is between those two state. In general, the

implementation of this operator depends on the physical representation of states.

We provided an implementation for the case of single photons, in which case this

measurement would simply be a Hong-Ou-Mandel interference on a beam splitter.

This measurement should be taken as an addition to standard quantum tomography

and as a systematic test of whether the results of tomography are reliable.
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In the second part of this work, we focused on quantum state estimation of large

systems. In quantum computing experiments, the largest systems so far consist of on

the order of 15 qubits but this number is soon expected to increase. Typically, error

models for quantum computers assume that only uncorrelated single-qubit and two-

qubit errors occur, which we know can be corrected reliably. We instead assume that

any possible error should be considered. Since the state space grows exponentially

in the number of qubits, a complete analysis is not feasible for any but the smallest

systems. As a solution, we propose the use of a statistical tool, the Akaike Information

Criterion, to select between different error models and choose the model that is

probably closest to the truth. This still includes making educated guesses about

the errors that can occur, but is a reliable and scalable way to compare different

models with varying numbers of parameters.

We numerically simulated experiments of up to 25 qubits and compared two

different models, including one that includes many errors that go beyond the standard

error model in the context of fault tolerant quantum computing. Our method provides

a good indication of whether error correction can be implemented successfully, which

is crucial to know for any type of quantum computing. We found in our example

that the number of measurements that are necessary to detect errors of the wrong

type scaled only linearly with the number of qubits, and less than quadratically

with the inverse of the wrong error probability. This scaling is very favorable and

indicates that this type of test can be used during quantum state estimation of large

systems, or even for reliable quantum process tomography which requires an even

larger parameter space.
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APPENDIX

DERIVATION OF THE AKAIKE INFORMATION CRITERION

A.1. Prerequisites

A.1.1. Likelihood

The task of model selection is to select a model for a system that is closest

to the truth. The only way we can gather information about this system is by

making experimental observations, and therefore model selection relies heavily on

measurement data.

Assume we have a set of measurement data x = {xi}, i = 1..M out of M

observations, where each xi denotes one single measurement outcome, and we want

to use a specific model to explain the outcomes. This model might have one or more

parameters (e.g. if the model is a gaussian distribution, the parameters could be the

mean and variance) that we denote by the vector θ. We can calculate the probability

to get our measurement outcome x under the assumption that our model is in fact

correct, as g(x|θ). Often times the parameters θ of the model are unknown. The

likelihood function is defined as the probability to get a certain measurement outcome

x, given that the model parameters θ are true:

L(θ|x) = g(x|θ). (A.1)

Note that this is as a function of θ and the measurement outcomes are fixed, and

therefore the likelihood function is not a probability distribution. In many cases it is
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convenient to consider the logarithm of the likelihood

`(θ|x) = logL(θ|x) = log g(x|θ) (A.2)

which is a strictly negative function. The empirical value of θ that maximizes L

(or, equivalently, `, since the logarithm is a monotonous function) for a given set of

measurements x is denoted by θ̂M :

`(θ̂M |x) = max
θ

`(θ|x) (A.3)

A.1.2. Models

In the calculation of the likelihood, it is assumed that the underlying model

for the data is known and only the parameters of the model need to be estimated.

How can we know though if a model is the true model, or even a reasonably good

approximation to the true model? In some cases, we can’t even know if there exists

a mathematical model that completely describes the process.

In general, models with more parameters will be fitting the data better and thus

have a higher maximum likelihood. However, there is always the danger of overfitting,

especially if the number of parameters of a model is close to the order of magnitude

of the sample size.

Most importantly, we have to ask ourselves the question as to what we expect

from a ”good” model. Is it the model that is closest to the ”true” model? Is it the

model that gives us the best understanding of the underlying processes? Or is it the

model that best predicts future observations best?
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A different way to look at it is the concept that the measurement data contain

some amount of information about the underlying process, but also some noise. The

task of the model is to extract this information and translate it into a more compact

or understandable form. [9]

A.1.3. The Kullback-Leibler divergence

The Kullback-Leibler divergence provides a way to compare two probability

distributions. It is defined as

KL(p||g) =
∑
i

pi log
pi
qi

(A.4)

for discrete random variables and can be extended to

KL(p||g) =

∫
p(x) log

p(x)

q(x)
dx (A.5)

for continuous distributions.

Although the Kullback-Leibler divergence is not symmetric, and therefore not

a metric, it measures a distance between two probability distributions. It is strictly

non-negative and only equal to zero if the two distributions are identical. Akaike

[2] proposed to use this information-theoretical quantity to estimate the goodness of

models, i.e. the distance between a model g(x|θ) and the underlying true distribution

of the data p(x)

KL(p||g) =

∫
p(x) log

p(x)

g(x|θ)
dx = Ep log

p(x)

g(x|θ)
, (A.6)

60



where in the last step we wrote the integral as an expectation value over the true

distribution p.

A.1.4. Estimating the Kullback-Leibler divergence

Since the true distribution p(x) is not known, we can only find an estimate for

the Kullback-Leibler divergence of a certain model g(x|θ). We do not assume that

p(x) is contained in g(x|θ), but we denote the (unknown) model that is closest to

p(x) (in the sense that it minimizes KL(p||g) )by it’s parameter θ0. Writing the

KL-divergence as

KL(p||g) =

∫
p(x) log p(x)dx−

∫
p(x) log g(x|θ0)dx (A.7)

we can see that the first term is just a constant, so it is sufficient to only calculate

the second term. Using the data x = {xi}, and the maximum likelihood estimator

θ̂M(x), we can estimate the second term as

∫
p(x) log g(x|θ0)dx ≈

∫
p(x) log g(x|θ̂M)dx = Ex log g(x|θ̂M(x)), (A.8)

where the expectation value over the true distribution is approximated by an

expectation value over the measurement data. However, this estimate will be biased

because we use the same set of data for both determining the maximum likelihood

estimator θ̂ and taking the expectation value. To get an unbiased estimate, we really

should have two different, independent sets of data x and y. Then we could find the

unbiased estimate

T = ExEy log g(x|θ̂M(y)) (A.9)
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In the next section, we will outline how this estimate can be found.

A.2. Derivation of the AIC

A.2.1. Preliminaries

The maximum likelihood estimator θ̂M , which is found by using the data to

maximize the likelihood function, is an estimator for the unique, but unknown

parameter θ0 which minimizes the KL-divergence for this particular model w.r.t.

the truth. θ̂ will converge to θ0 for large M. One can show that

√
M(θ̂M − θ0)→ N (0,Σ) (A.10)

where the variance-covariance matrix Σ is defined by

Σ = Ey(θ̂(y)− θ0)(θ̂(y)− θ0)T (A.11)

Note that, if the true model p is contained within g(x|θ), i.e. p(x) = g(x|θ0), then

this matrix is equal to the inverse of the Fischer Information Matrix

I(θ0) = Eg

[
∂2 log g(x|θ)

∂θ2

]
θ=θ0

(A.12)

We get another useful relation by noting that θ0 minimizes the (unknown) KL-

divergence, and therefore

∂

∂θ

[∫
p(x) log

(
p(x)

g(x|θ)

)
dx

]
θ=θ0

= 0 (A.13)
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Taking into account that p(x) doesn’t depend on θ, and interchanging the derivative

and integral, we get

∂

∂θ

[∫
p(x) log g(x|θ)dx

]
θ=θ0

= Ex

[
∂

∂θ
log g(x|θ)

]
θ=θ0

= 0 (A.14)

A.2.2. Estimation of the bias

We want to maximize the expected log-likelihood (A.9) where the two expectation

values are independent and both with respect to the truth. In the following we will

calculate two Taylor-expansions in θ, one around the true value θ0 and another one

around the maximum-likelihood value θ̂.

We start with the integrand in (A.9), and expand it to second order:

log g(x|θ̂) ≈ log g(x|θ0)+

[
∂ log g(x|θ0)

∂θ

]T
[θ̂−θ0]+

1

2
[θ̂−θ0]T

[
∂2 log g(x|θ0)

∂θ2

]
[θ̂−θ0]

(A.15)

Taking the expectation value w.r.t. x, the linear term goes to zero because of (A.14),

and we write the matrix in the quadratic term as

−Ex

[
∂2 log g(x|θ0)

∂θ2

]
= I(θ0) (A.16)

We then take the second expectation value and get

EyEx log g(x|θ̂) ≈ Ex log g(x|θ0)−Ey

[
1

2
[θ̂ − θ0]T I(θ0)[θ̂ − θ0]

]
(A.17)
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and we can rewrite the second term as

Ey

[
1

2
[θ̂ − θ0]T I(θ0)[θ̂ − θ0]

]
=

1

2
Tr
[
I(θ0)Ey[θ̂ − θ0][θ̂ − θ0]T

]
=

1

2
Tr [I(θ0)Σ]

(A.18)

Next, we expand the first of (A.17) term as a Taylor series:

log g(x|θ0) ≈ log g(x|θ̂(x))+

[
∂ log g(x|θ̂)

∂θ

]T
[θ0−θ̂]+

1

2
[θ0−θ̂]T

[
∂2 log g(x|θ̂)

∂θ2

]
[θ0−θ̂]

(A.19)

. Note that here, the expected value for θ is taken with respect to the distribution

of x. The linear term vanishes, because θ̂ is by definition the value that minimizes

log g(x|θ). Taking the needed expectation value, we get

Ex log g(x|θ0) ≈ Ex log g(x|θ̂)− 1

2
Tr
[
Ex(I(θ̂)Σ

]
(A.20)

Using I(θ0) ≈ I(θ̂), our final estimate for the expected KL-divergence is

T = Ex log g(x|θ̂(x))− Tr[I(θ0)Σ] (A.21)

If p is a subset of g, then it can be shown that Tr[I(θ0)Σ] = K, where K is the

number of parameters, i.e. the length of θ. Even if p is not contained, but close to g,

this is still a good approximation.

Akaike multiplied this estimator by −2, in order to be comparable to the χ2 fit,

defining his AIC as

AIC = −2 log g(x|θ̂(x)) + 2K (A.22)
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