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DISSERTATION ABSTRACT 

 

Kristin S. Alligood 

Doctor of Philosophy 

Department of Biology 

March 2017 

Title: Using Natural Populations of Threespine Stickleback to Identify the Genomic Basis 

of Skeletal Variation 

 

 Across vertebrates, skeletal shapes are diverse, and much of this variation appears 

to be adaptive. In contrast, the early developmental programs of these structures are 

highly conserved across vertebrates. The question then becomes where in the conserved 

genetic programs of skeletal development does variation lie to direct diversity? In 

threespine stickleback, rapid changes in head and body shape have been documented 

during repeated and independent invasions of oceanic fish into freshwater habitats in 

regions deglaciated approximately 13,000 years ago. However, recent research indicates 

that similar phenotypic and genetic divergence can occur in decades. A remaining 

challenge is to link stickleback population genomic variation to causal genes that underlie 

such rapid phenotypic evolution.  

 Here I use genome wide association studies (GWAS) in natural populations of 

stickleback to uncover genomic regions that contribute to variation of two dermal bone 

derived traits, lateral plate number and opercle shape. The decrease of lateral plate body 

armor and change in opercle bone shape, important for feeding mechanics, are classically 

associated with freshwater divergence. 
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 GWAS has recently begun to be used in natural populations but is still under 

scrutiny for performance among different populations. Using a population of 

phenotypically variable stickleback in Oregon, GWAS proved an effective method to 

uncover genomic regions and genetic variants known to contribute to lateral plate number 

and opercle shape, as well as new genomic regions and candidate genes not previously 

implicated in phenotypic variation. Although successful, using similar methods on 

decades old stickleback populations in Alaska revealed the challenges that accompany 

controlling population structure created by strong natural selection. 

 Together, I found that although lateral plate number and opercle shape rapidly 

evolve in a coordinated fashion during adaptation from marine to freshwater 

environments, phenotypic variation is largely driven by independent genetic 

architectures. However, in very rapidly evolving populations, despite this independence 

of genetic architecture, the genetic variants contributing to the traits co-localize to similar 

genomic regions. This finding could be either biological or methodological which 

highlights the promise and limitations of using GWAS to identify genetic variation that 

gives rise to phenotypic diversity.  

This dissertation includes unpublished co-authored material.  
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CHAPTER I 

 

INTRODUCTION  

 

Discovering Genes behind the Evolution of Developmental Processes 

 A central goal for evolutionary developmental biology (evo-devo) is to 

understand how the genes of an organism are linked to its phenotype—its form and 

function—and how those relationships change over time (Müller 2007). Since the 

startling discovery of a developmental genetic toolkit conserved across taxa, one focus of 

evo-devo research has been geared towards understanding how changes in deeply 

conserved genes and pathways can lead to macroevolutionary changes (Carroll 2008). 

Modification to the homeobox (hox) gene cluster is now a classic example of how 

changes in regulation, organization, and presence/absence can affect broad morphology 

across species (Ronshaugen et al. 2002; Pearson et al. 2005; Hsia et al. 2010; Small et al. 

2016). Additionally, in development, the same genes are found to be reused at different 

times and across processes (Carroll 2008). While extensive phenotypic variation is 

clearly evident among species, vast variation also exists within species, which ongoing 

research often attributes to modification of these deeply conserved elements (Albertson 

2003; Albertson et al. 2009; Pottin et al. 2011). 

 Within species, connecting genotypes-to-phenotypes that matter for evolution has 

been a difficult task because often the map between these two levels is ambiguous: one 

genotype can affect multiple phenotypes through pleiotropy, and conversely one 

phenotype can be produced by multiple genotypes if constraint on the phenotype is 

imposed (Sansom and Brandon 2007). This link is also difficult to establish across 

evolution and between diverging species because the relative roles of pleiotropy, 

epistasis, and linked selection can be a challenge to unravel (Sinervo and Svensson 2002; 

Paaby and Rockman 2013). Evolutionary biologists once dreamed of having the 

resources to connect genotypes-to-phenotypes. Now we are just beginning to develop the 

tools to make these connections, and there is much to be learned. 

 Utilizing the genetic variation that occurs in natural populations provides a 

powerful system to parse out the genotype-to-phenotype link (Rockman 2008). Often, 
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forward mutagenesis screens are used to determine a gene’s function and effect on 

phenotypes, and, because of the conserved genetic toolkit, many discoveries made in the 

laboratory are to some degree generalizable (Carroll 2008; Albertson et al. 2009). 

However, phenotypes must be visible to researchers, usually early in development, to 

warrant further study. This has led to a bias towards identifying large effect mutations 

which are usually not viable in nature. Unlike mutagenesis screens, genetic variation in 

natural populations has already been vetted by natural selection, allowed to integrate into 

developmental networks and persist in populations. Identifying genetic variants that 

contribute to phenotypic variation in these populations presents an opportunity to uncover 

novel factors contributing to phenotypic diversity.   

 Linking genetic and phenotypic variation in natural populations of organisms has 

long been a daunting task. Evolutionary geneticists have tried to adapt laboratory genetic 

mapping approaches from model organism research and apply them to naturally 

occurring genetic variation. Quantitative trait loci (QTL) mapping has proven a powerful 

technique to identify the genomic regions contributing to diverging traits. By crossing 

individuals from natural populations in the laboratory, environmental variance is limited 

and segregating genetic variation can be identified and mapped with relatively few 

genetic markers (Johanson et al. 2000; Hoekstra et al. 2006; Reed et al. 2011). Although 

challenging, this approach has led to success. In Florida, light colored beach mice 

diverged from their mainland ancestors likely within the last 6,000 years driven by 

selection for crypsis. In (2007), Steiner et al. traced color pattern divergence to two 

pigment genes melanocortin-1 receptor (Mc1-r) and Agouti. In another example, 

differences in Arabidopsis flowering time have also been shown to be due to a single 

locus of large effect, the FRIGIDA (FRI) locus (Burn et al. 1993; Johanson et al. 2000). 

In Heliconius butterflies, the genetic basis of red color pattern variation in wings has been 

identified as changes in cis-regulation of the single transcription factor optix, and similar 

regulatory changes have been demonstrated to be important in mimicry among distantly 

related species (Reed et al. 2011).  

 So far, in instances where clear links have been made between genotype and 

phenotype, the traits have been largely Mendelian or oligogenic, and can therefore be 

explained predominantly  by a gene of large effect (Johanson et al. 2000; Colosimo et al. 
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2005; Hoekstra et al. 2006; Reed et al. 2011). While these investigations provide great 

insight into the traits studied, the generality of these results is unclear because 

quantitative traits are thought to dominate in the wild (Sansom and Brandom 2007). It is 

also possible, however, that traits previously identified as Mendelian are actually 

quantitative. Laboratory mapping crosses, by necessity, limit the phenotypic variation 

which can be examined to only variation from a very few parental organisms, which may 

result in a limited or skewed view of the underlying genetics (Korte and Farlow 2013; 

Savolainen et al. 2013; Remington 2015). An additional problem is that what can appear 

as a single locus of large effect segregating in the laboratory are actually several linked 

loci of small effect that act additively and segregate together (Mackay et al. 2009). Also 

possible is that methodological shortcomings may have allowed the discovery only of 

genes with large effects and that genes of smaller effect are still to be discovered (Slate 

2013). Regardless, it is now clear that numerous single traits are controlled by many 

genes that coordinate in a complex genetic network and that also interact with the 

environment (Wagner and Altenberg 1996; Kimmel et al. 2005; Müller 2007). This 

coordinated and complex genetic network is clearly evident within vertebrate head, jaw, 

and skeletal structures.  

 

The Vertebrate Head as a Model Complex Trait 

 The vertebrate skeleton comprises many interacting bone, cartilage and muscle 

structures which must develop in a coordinated manner to enable proper function (Olsen 

et al. 2000). One aspect of the vertebrate skeleton that has received much attention for the 

study of the genetic basis of variation is the vertebrate head (Albertson 2003; 

Schoenebeck et al. 2012). In spite of the immense variation that exists among species in 

heads and jaws, analysis of early development using zebrafish and other model organisms 

has revealed a conserved embryonic origin of major head structures in all lineages 

examined and relatively few highly conserved mechanisms that direct this development 

(Santagati and Rijli 2003; Eames and Helms 2004; Eames et al. 2012). For example, 

across all vertebrates, gill arches serve as a major organizing location for bones and 

cartilages, and distinct hox gene expression patterns direct migrating neural crest cells 

from the hindbrain rhombomeres to occupy specific arches where they will give rise to 



 4 

stereotypical head structures (Santagati and Rijli 2003). Hedgehog (Hh) signaling is used 

multiple times in craniofacial development. Early, Hh functions to pattern and direct 

outgrowth of craniofacial skeletal precursors, but slightly later, Hh is critical for normal 

cartilage development especially in the anterior neurocranium (Eberhart 2006). Members 

of the endothelin (edn) gene family (and the genes activated by Edn) are critical for 

growth, patterning, and establishing identity of individual bone structures (Olsen et al. 

2000; Kimmel 2003). Much has been learned from these laboratory studies in terms of 

the developmental systems that are behind craniofacial morphogenesis. 

 Despite these advances, the question remains “Where does developmental genetic 

variation that contributes to evolution reside?” The genes and developmental pathways 

involved in bone shape evolution are just beginning to be discovered. For example, in 

cichlids, genes in the sonic hedgehog (shh) pathway appear to be involved. A derived 

allele of the ptch1 receptor changes the shape and reduces mineralization of the lower jaw 

such that suction feeding is improved which likely contributes to the niche partitioning 

among the Lake Malawi cichlids (Roberts et al. 2011). Furthermore, in mice a recent 

manipulative study shows that changes in the dosage of key developmental genes such as 

Bmp4 or Noggin somewhat recreate differences in mouse mandible shape found in 

natural populations (Boell et al. 2013). These studies provide some insight into the 

developmental genetic basis of craniofacial evolution, but by no means is our 

understanding complete. Only a few of the many instances of phenotypic evolution 

observed in natural populations have been attributed to specific genes, and even fewer 

have identified the specific changes within these genes that allow for phenotypic 

evolution (Barrett and Hoekstra 2011). This is likely because of previous methodological 

limitations now dissipating due to new genomic approaches, and because few good 

model systems exist in which examination of both developmental and evolutionary 

processes can be assessed. By using natural populations, our field is moving towards 

gaining a better understanding of the loci that are utilized by evolution. However, a 

remaining question in this work is whether or not the same genes identified in 

developmental laboratory mutagenesis studies are also targeted by evolution (Mackay et 

al. 2009).  
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 In the last decade, genome wide association studies (GWAS) have become a 

widely used approach, not just in humans, but also in natural populations to identify the 

genes that contribute to adaptive and complex quantitative traits (Visscher et al. 2012; 

Lee et al. 2014). By being able to survey many more species, capture a broader amount of 

phenotypic variation, and fine map loci more easily, GWAS has the potential to link the 

genotype-to-phenotype map in natural populations in the context of the environment and 

help determine if evolution targets the same loci as are found to contribute to phenotypes 

though mutagenesis studies in the laboratory. In addition, GWAS may prove useful to 

address fundamental questions in evolutionary biology that are different from identifying 

the genes responsible for phenotypic variation. For example, GWAS might make it 

possible to identify the range of effect sizes and physical location of loci that contribute 

to the genetic and genomic architectures of traits, a long standing goal (Pasaniuc and 

Price 2016). However, identifying populations in nature that are amenable to GWAS is 

still a challenge (Smith and O'Brien 2005; Korte and Farlow 2013). In this Dissertation, I 

use the threespine stickleback as a model system to begin to address some of these 

fundamental evolutionary questions using a GWAS approach. 

 

The Threespine Stickleback as an Ideal Evolutionary Genomic Model 

 The threespine stickleback, Gasterosteus aculeatus, is a small fish that is broadly 

distributed both geographically and ecologically within coastal marine, coastal 

freshwater, and brackish water habitats of the northern hemisphere. Stickleback have 

long received attention for the study of behavioral ecology and evolution, speciation, 

population and quantitative genetics (Bell and Foster 1994; Cresko et al. 2007). Because 

of advances in genomic and developmental techniques in stickleback, it is now an ideal 

system in which to investigate the genetic basis of adaptive phenotypic evolution 

(Kingsley et al. 2004; Baird et al. 2008; Hohenlohe et al. 2010). Across the stickleback’s 

geographical distribution thousands of freshwater populations have been independently 

derived from marine populations. Despite the independence of their evolutionary origins, 

the morphological and behavioral characteristics of freshwater stickleback are repeatable 

and predictable based on the particular ecology of the habitat even across great 

geographic distances (Bell and Foster 1994; Schluter 1995; Rundle et al. 2000; von 
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Hippel 2010). While many traits evolve as populations colonize and adapt to their 

freshwater environments, morphological differences, such as those in skeletal armor 

traits, are some of the most immediately apparent (Bell 2001; Cresko et al. 2004; Shapiro 

et al. 2004).  

 

Brief Outline of the Dissertation 

 The work in this dissertation focuses on two skeletal structures which evolve 

stereotypically as marine stickleback adapt to freshwater environments and uses GWAS 

as a method to identify genomic regions contributing to phenotypic variation. The first 

structure is the opercle bone which is a superficial craniofacial bone important in feeding 

and respiration. The evolution of the shape of this bone is a trait thought to have a 

complex genetic architecture (Kimmel et al. 2005). The second structure is among the 

most prominent and well-studied changes accompanying the marine-freshwater 

transition, lateral plate loss (Bell 2001). The loss of bony lateral armor is thought to be a 

trait regulated by a relatively simple genetic architecture. 

 Identifying a population appropriate for GWAS requires investigation into the 

nature of phenotypic variation and population structure. In Chapter II, I explore the 

phenotypic variation in opercle shape and lateral plate count and population structure 

among sampling collections along the McKenzie River in Oregon. Much of this work 

was spurred by previous studies done by Mark Currey who identified the likely presence 

of a phenotypic and genetic cline along the river and observations made by Susan 

Bassham, Paul Hohenlohe, and Taylor Wilson that extensive variation existed within at 

least one of the collection sites, Riverbend. Here, I examine lateral plate count and 

opercle shape and find that phenotypic variation is largely governed by independent 

genetic architectures. My analysis of population structure reveals divergence due to 

spatial differentiation, but that little population structure exists within collection sites 

showing that Riverbend is an ideal population to implement GWAS. In this site, 

phenotypic variation is extensive but population structure is low which allowed us to 

identify genomic regions contributing to opercle shape as well as a novel genomic region 

that may contribute to the transmission genetics of lateral plate variability. These results 

demonstrate the utility of using GWAS to aid in a better understanding of the genes that 
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contribute to adaptive evolution as well as to other fundamental questions in evolutionary 

biology.  

 A hallmark of the stickleback system is the rapid pace at which phenotypes are 

modified in a freshwater environment from the marine invaders. In Chapter III, I take the 

GWAS approach to a system of recently formed freshwater ponds on Middleton Island in 

Alaska to try to identify the genetic architectures of opercle shape and lateral plate count 

within the context of very rapid evolution. This study builds upon efforts to capture the 

phenotypic and genomic evolution of rapidly evolving populations done in collaboration 

with William A. Cresko, Frank von Hippel, Emily Lescak, Susan Bassham, and Julian 

Catchen. We found that the genomic regions contributing to phenotypic variation of each 

trait co-localize to similar genomic regions and may suggest that genomic covariation of 

loci contributes to rapidly diverging traits through linked selection. Evaluating these 

results is challenging because although the populations are very young, extensive 

populations structure has developed and we find ourselves at the limits of current GWAS 

methods. 

 Finally, in Chapter IV I summarize the findings of Chapters II and III and put the 

results into a broader context of how to continue to connect the genotype-to-phenotype 

map in systems with differing evolutionary histories. 
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CHAPTER II 

 

UNCOVERING NEW GENOMIC REGIONS THAT CONTRIBUTE TO CLASSIC 

SKELETAL TRAITS WITH GWAS IN A PHENOTYPICALLY VARIABLE 

POPULATION OF OREGON STICKLEBACK  

 

Stickleback collections used in this study were made by M.C. Currey. I and M.C. Currey 

prepared individuals to be phenotyped and sequenced, and subsequently phenotyped and 

processed sequencing reads. S. L. Bassham and J. Catchen were important in initial 

characterization of some of the populations used in this study. I performed all the data 

analysis and writing. W. A. Cresko was the principal investigator for this study.  

 

INTRODUCTION 

 The evolution of cartilage and mineralized skeletons are major innovations 

hypothesized to be key in the diversification of vertebrates (Shimeld 2000; Hirasawa and 

Kuratani 2015). Vertebrate morphological variation involves adaptations to better 

locomote, forage, capture prey, compete, and defend territory and oneself. These traits in 

turn have enabled resource utilization in an array of new ecological niches. Biologists 

have long studied vertebrate body shape and skeletal systems to learn about their 

phenotypic evolution, and more recently have begun unraveling their genetic and 

developmental basis (Shubin et al. 1997; Ackermann and Cheverud 2002; Pavlicev et al. 

2011; Schoenebeck et al. 2012; Franchini et al. 2013). As genomic technologies have 

improved, many research programs now focus on finding the genes and developmental 

pathways underlying evolutionary change. Numerous questions are only now being 

addressed, such as what the genes are and how they function, whether lineages that show 

similar phenotypic changes utilize the same genes and pathways (Arendt and Reznick 

2008), and if so whether those mutations are novel or part of standing genetic variation 

that exists in natural populations (Barrett and Schluter 2008).  

 A fundamental question that is a logical extension of this area of inquiry is 

whether phenotypic evolution in natural populations is largely driven by changes in genes 
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and pathways that have already been identified by induced mutagenesis studies in the 

laboratory, or whether evolution finds novel solutions. Until the 1990s skeletal system 

research utilized a handful of vertebrate models - primarily mice, chicken and zebrafish - 

and the inferences were mainly limited to the particular model organism of interest. 

However, the discovery of deep homology shared among even distantly related taxa, and 

the presence of a conserved genetic toolkit, made researchers look for common genetic 

pathways across vertebrates (Shubin et al. 1997; Prud'homme et al. 2007; Shubin et al. 

2009). Coupled with the ease of mutagenesis techniques, skeletal biology research was 

spurred to focus on the early developmental genetics of bone and cartilage morphologies 

in model systems (Satokata and Maas 1994; Olsen et al. 2000; Huycke et al. 2012). 

Developmental skeletal biologists have now deciphered fundamental and intricate 

developmental genetic networks that consist of a handful of players, for example Wnt, 

BMPs, Hedgehog, and FGF, all of which are critical in the establishment of a functioning 

skeletal system (Olsen et al. 2000; Ornitz and Marie 2002; Westendorf et al. 2004; 

Merrill et al. 2008). While there is much to be discovered, the core genetic networks for 

the early development of cartilage and bone have been outlined.  

 Despite the advances in model organism research in the laboratory, it remains 

unclear if evolution utilizes these developmental pathways and their constituent genes as 

the major players in phenotypic adaptation in natural populations. Mutagenesis screens in 

the laboratory and natural selection in the wild share some similarities, but significant 

differences between them exist that may lead to different genetic outcomes in each. 

Natural selection works on multiple phenotypes throughout ontogeny to maximize 

lifetime fitness (Orr 2009; Anderson et al. 2014). Many mutations uncovered in the 

laboratory would be highly deleterious either directly, or through negative pleiotropic 

effects, were they to occur in the wild. With the advance of genomic technologies, the 

study of the developmental genetic basis of phenotypic adaptation in the wild provides an 

excellent opportunity in a variety of different organisms beyond the classic laboratory 

models.  

 Most recently, quantitative trait locus (QTL) studies, which involve modifications 

of methods for mapping induced mutations in the laboratory but instead using natural 

genetic variants, have often been used with marked success (Slate 2005; Edwards and 
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Weinig 2010; Laporte et al. 2015). Across organismal systems, these approaches have 

enabled the discovery of chromosomal regions, and in some cases the causal genes, that 

affect interesting and important phenotypes. Examples include coat color of beach mice 

(Hoekstra et al. 2006), Arabidopsis flowering time (Clarke and Dean 1994), color pattern 

variation in Heliconius butterfly wings (Reed et al. 2011), floral color contributing to 

reproductive isolation in Mimulus spp. (Yuan et al. 2013), and lateral plate and pelvic 

structure morphology in stickleback fish (Colosimo et al. 2004; Cresko et al. 2004; 

Shapiro et al. 2004; Colosimo et al. 2005), among others. The loci discovered through 

QTL mapping often have modest to large effects on the phenotype but generally do not 

explain all of the observed genetic variance (Slate 2005; Scoville et al. 2011). In addition, 

the mapping resolution for QTLs often leads to identifying regions that capture many 

hundreds of genes, and subsequent identification of causative changes can be difficult 

(Colosimo et al. 2004). Finally, because QTL crosses comprise a small number (often 

two) of genetically divergent parents for families raised in a common environment, the 

QTL may be specific to those parents, or caused by unnatural genetic combinations from 

the laboratory environment itself (Remington 2015).  

 A powerful complement to QTL approaches in the laboratory are studies of the 

genotype-to-phenotype map in natural populations. As the cost of generating thousands 

of markers throughout the genome declines, natural populations are more accessible than 

ever to address questions about the genetic variation that gives rise to expression of 

phenotypes and ultimately to an organism’s performance and fitness within the context of 

selective forces and the environment. Broadly, genome wide association studies (GWAS) 

can be used to identify genetic variants that contribute to phenotypic variation in the wild. 

GWAS can exploit historic recombination performed by nature to increase mapping 

precision, and it provides a path to investigate species and traits impractical for laboratory 

mutagenesis studies (Winkler et al. 2010; Korte and Farlow 2013). For example, in a 

recent study, Delmore et. al. (2016) used a hybrid population of Swainson’s thrushes 

(Catharus ustulatus) and geolocators to track migration routes of the birds over an entire 

year. They combined the tracking data with genomic data and identified specific genomic 

regions to support the idea that different migratory routes in these birds have a significant 
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genetic component. This trait in Swainson’s thrushes is more challenging to map 

genetically using laboratory approaches.  

 While there are clear benefits to the use of GWAS for traits that are difficult to 

study except in natural populations (Wood et al. 2014), there are requirements for the 

efficient use of this method. GWAS relies on identifying the appropriate populations that 

are segregating the phenotypes and genetic variants of interest, and requires controlling 

for or eliminating population structure, expressed as systematic differences in allele 

frequencies, to remove spurious associations (Astle and Balding 2009; Winkler et al. 

2010; Flint and Eskin 2012). In addition, although the increased number of 

recombinations typical in GWAS creates an advantage for providing an opportunity for 

finely mapping loci that contribute to a trait, the potentially more significant effects of 

environmental variation on individuals grown and reared in the wild requires many more 

individuals and markers than in laboratory crosses (Remington 2015). GWAS will 

therefore be most successful when using deep genomic and biological sampling in 

populations that have phenotypic variability but low population structure. These criteria 

are most often met in hybrid or admixed populations (Pallares et al. 2014).   

 The threespine stickleback (Gasterosteus aculeatus) is an ideal system to study 

the genotype-to-phenotype-to-fitness map in both the laboratory and natural 

environments. These small fish are found nearly ubiquitously in the Holarctic and have a 

long history as a model system for ecological and behavioral research reaching as far 

back as the early 1800’s (Bell and Foster 1994; Colosimo et al. 2004). The power of the 

stickleback model system arises because these small fish occupy a range of ecological 

habitats from freshwater, brackish, to marine environments and display extraordinary 

morphological and behavioral diversity, all of which can be easily captured, maintained, 

and propagated in the laboratory under constant conditions. The diversity of the species 

complex is driven by a dynamic process where anadromous fish repeatedly and 

independently invade, and subsequently adapt to, isolated or semi-isolated freshwater 

environments. Over the millions of years that the threespine stickleback has been a 

species, the freshwater environments have experienced more or less connectivity to the 

sea that results in persistent gene flow between the isolated, phenotypically diverse 
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freshwater stickleback and their panmictic marine counterparts (Bell and Foster 1994; 

Bell et al. 2009).  

 A striking aspect of the stickleback system is the morphological and genetic 

parallelism that underscores the repeated and independent invasions of anadromous 

stickleback into freshwater environments. Although stickleback are phenotypically 

diverse among freshwater populations, the marine to freshwater transition is notably 

stereotypical for several genomic and phenotypic attributes. Many of the same genomic 

regions appear responsible for divergence across marine and freshwater populations 

globally (Chan et al. 2010; Hohenlohe et al. 2010; Jones et al. 2012), and numerous 

behavioral, life history and morphological traits shift as oceanic stickleback adapt to 

freshwater (Bell and Foster 1994).  

 Loss of bony armor and change in body and craniofacial shape are some of the 

most apparent and well-studied phenotypes in stickleback. These traits were also some of 

the first to be targeted for more detailed developmental genetic QTL analyses (Shapiro et 

al. 2004; Colosimo et al. 2005; Kimmel et al. 2005). The transmission genetics of lateral 

plate loss was extensively investigated in the 20th century and explained through models 

of inheritance all of which proposed a largely simple genetic basis (Hagen 1973; Hagen 

and Gilbertson 1973; Banbura 1994; Banbura and Bakker 1995; Bell 2001). These 

models were supported by the identification of a locus of major effect (ectodysplasin eda, 

linkage group IV) as well as several loci of smaller effect in a large QTL mapping cross 

between a marine female from Hokkaido Island, Japan and a freshwater benthic male 

from Paxton Lake, British Columbia (Colosimo et al. 2004). Since the initial studies in 

2004, QTL studies between individuals from different populations implicate the reuse of 

the major effect locus eda in lateral plate loss around the world (DeFaveri et al. 2011; 

Jones et al. 2012).  

 Parallel changes in stickleback craniofacial shape have been investigated in a 

variety of head and jaw features (Arnegard et al. 2014; Miller et al. 2014; Conte et al. 

2015). One well-studied craniofacial bone in the transition from marine environments to 

freshwater is the opercle, which is an important trophic trait, acts as a protective gill 

cover, and aids in respiration (Kimmel et al. 2005; Kimmel et al. 2008). The opercle bone 

is also a subject of developmental studies because its early appearance and superficial 
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location enables ease of visualization (Kimmel et al. 2010). Unlike lateral plate loss, the 

genetic basis of opercle shape is thought to be complex (Schluter et al. 2004; Kimmel et 

al. 2005). Unfortunately, though the opercle has been the subject of one QTL study and 

one of many traits examined in other QTL studies, no candidate genes have been 

identified.   

As technologies have become available that enable dense sets of genome-wide 

markers to be identified, we have the opportunity to explore the genetic basis of traits 

important for adaptive phenotypic and parallel evolution in nature. As a field, we have 

perhaps put an unbalanced emphasis on divergent populations particularly since the 

discovery that eda was responsible for lateral plate loss in laboratory crosses (Colosimo 

et al. 2004; Colosimo et al. 2005; DeFaveri et al. 2011). Although many successful QTL 

studies have subsequently been performed using divergent stickleback populations to 

identify linkage groups that contribute to a huge number of traits that evolve in parallel, 

identifying candidate loci still remains a tremendous effort because of the relatively small 

family sizes in laboratory and the complex nature of the traits. Stickleback populations 

which are phenotypically and genetically variable provide an excellent system to use 

GWAS to link the genotype-phenotype map, an enduring goal in evolutionary biology. 

We have the opportunity to do this in a population of stickleback from Oregon.    

 The focus of the current study is to confirm the utility of a natural population in 

Oregon for current GWAS methods, and to use these approaches to examine the genetic 

sources of opercle bone shape and lateral plate number variation. Although these traits 

have been studied using QTL mapping methods in other populations, we chose to focus 

on lateral plate count and opercle shape because previous studies provide an expectation 

about the genomic regions that contribute to these phenotypes. Stickleback sampled from 

the Riverbend site of the McKenzie River in the Oregon, Willamette Basin are 

phenotypically variable for many skeletal phenotypes some of which span the 

morphological space between stereotypical marine and freshwater phenotypes (Fig. 2.1). 

We do not yet fully understand why phenotypic variation is maintained in this freshwater 

population. However, population genomic evidence (Currey 2014) argues that recent 

human introductions of anadromous stickleback upstream of Riverbend at the Leaburg 

fish hatchery created this diversity. As gene flow occurred downstream from the 
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hatchery, anadromous alleles were likely introduced into the presumably monomorphic 

freshwater Riverbend population and created the phenotypically variable population we 

utilize in our study. Because we found that the Riverbend population has little population 

structure, we have an opportunity to ask if the same genomic regions contribute to 

phenotypic changes across large geographic areas and if we can learn something new 

about the genetic variation contributing to phenotypes using GWAS.  

 

METHODS 

Field Collections 

 We collected threespine stickleback from locations along the McKenzie River in 

Oregon in the fall of 2010 (Riverbend), 2012 (Leaburg Fish Trap and Waterville), and 

2013 (Riverbend) (Fig. 2.1A). The stickleback were collected from minnow traps (0.32- 

and 0.64-cm mesh) which were placed near the riverbank and retrieved the following 

day, sacrificed with an overdose of MS-222 anesthetic, and preserved in 95% ethanol.  

 

Sample Preparation  

 We assigned each individual a unique identifier so that an individual’s genotype 

and phenotype could be associated in future analyses. We extracted genomic DNA using 

the Qiagen DNeasy kit from clipped caudal and pectoral fins and fixed the somas in ~4% 

formaldehyde solution (Macron Fine Chemicals) in water for at least 8 hrs to overnight. 

After the fixative was removed, we rinsed the bodies in 1% KOH (in water) for one or 

more hours, then bleached the bodies in a room temperature solution of 30% hydrogen 

peroxide, 1% KOH until skin pigment was gone. We rinsed the fish in 1% KOH for 

several hours, stained the fish in a 0.25% Alizarin red S, 1% KOH solution for two hours, 

destained in 1% KOH, and stored the fish in 50% isopropanol longterm.   
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Figure 2.1 Oregon collection sites and phenotypes measured. A) Map of the Willamette 

Basin in Northwest Oregon; major rivers are indicated as blue lines. Stickleback were 

collected from three sites along the McKenzie River and one site at the confluence of the 

McKenzie and Willamette Rivers (red circles). Sample size for each collection site is 

indicated. Many completely plated fish are found at Leaburg fish trap (line drawing; lateral 

plates, blue) and only low plated fish are found at Green Island (line drawing; lateral plates, 

blue). Walterville Slough and Riverbend show intermediate lateral plate morphologies. B) 

Line drawing of threespine stickleback collected at the Riverbend site highlight a 

representative partially plated individual with phenotypes measured— lateral plate number 

(blue), opercle shape (violet). Lateral plates are divided into four subtypes: anterior, 

supporting, posterior, and keel. C) Opercle shape was measured with geometric 

morphometrics using previously established landmarks (Kimmel et. al. 2012). Gray dots 

indicate sliding semi-landmarks, black dots are fixed landmarks. ‘j’, ‘v’, ‘p’ indicated at the 

three opercle edges indicate the joint, the ventral edge, and the posterior edge respectively. 
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Phenotypic Analysis 

 We photographed the left side of alizarin-stained fish with a tripod-mounted 

Canon DSLR camera and Canon EOS ViewerUility software. We used these images to 

count lateral plate number and, in conjunction with ImageJ software, measure standard 

length (SL) which we defined as the most anterior tip of the upper jaw to the most 

posterior end of the hypural plate.  

 For a more detailed view, we imaged the left side of the head with an Olympus 

SZX16 dissecting microscope equipped with an Olympus DP71 microscope digital 

camera and processed the image with Olympus DP Controller version 3.3.1.292. We used 

geometric morphometrics to assess opercle shape and digitized the positions of eight 

reproducible landmarks (Fig. 2.1C) with the ‘tps’ software package from the State 

University of New York at Stony Brook [tpsDig2 version 2.10; (Rohlf 2006)]. We used 

the geomorph R package (Adams and Otárola-Castillo 2013) to treat landmarks as either 

sliding semi-landmarks (landmarks 3-7) or as fixed landmarks (landmarks 1, 2, and 8) 

(Fig. 2.1C) (Bookstein 1997a). The fixed landmarks capture the region where the opercle 

connects to the hyomandibula at the opercle joint. Sliding semi-landmarks 3-5 show the 

curvature of the anterior edge of the bone which reflects the curvature of the adjacent 

subopercle bone. Semi-landmarks 5 and 6 denote the points at the far ventral and 

posterior edges, between which is the opercle fan (dotted line). Semi-landmarks 6 and 7 

show the dorsal edge of the bone, also the edge to which the elevator opercular muscle 

attaches to rotate the opercle, an important function in the opening of the jaw (Hulsey et 

al. 2005; Kimmel et al. 2008; Anker 2010). To eliminate variation imposed due to size, 

location, or orientation, we performed a Generalized Procrustes Analysis, with the 

geomorph R package (Klingenberg 2010; Adams and Otárola-Castillo 2013) and treated 

landmarks 3, 4, 5, 6, and 7 as sliding based on minimum bending energy.  

 We also used geomorph (Adams and Otárola-Castillo 2013) to capture the major 

axes of opercle shape variation with principle component analysis (PCA) on the 

Procrustes Coordinates derived from the GPA. Importantly, in our analyses, we included 

opercle shapes of laboratory reared stickleback individuals derived from wild caught, 

Alaskan anadromous and freshwater populations isolated from each other for thousands 

of years. We included these individuals because previous research has shown that 
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principle component 1 (PC1) for opercle shape captures the marine to freshwater 

transition, and the shape change in similar around the globe (Kimmel et al. 2012a). The 

Alaskan individuals were, therefore, used to set the boundaries of the morphospace and 

as a reference to visualize where along that space the individuals from McKenzie River 

fell.  

Genotyping 

 For each individual from the four populations along the McKenzie River, we 

digested genomic DNA with SbfI-HF (NEB) restriction enzyme and prepared RAD-seq 

libraries as previously reported (Baird et al. 2008; Hohenlohe et al. 2012b). We ran 

approximately 96 uniquely barcoded individuals in a single lane on the Illumina HiSeq 

2500 platform and used a total of 39 lanes. On average, each lane of sequencing 

generated ~23 million single end reads, and, post quality filter, we retained ~19 million 

reads (82%). The sequence output was 101 nucleotides (nt) long and included a 6-nt in-

line barcode which we used to identify individual fish. After we demultiplexed by 

barcode and quality filtered the raw sequence data with the process_radtag program 

in Stacks software suite (Catchen et al. 2011), we aligned the reads against the 

stickleback reference genome (version BROADSs1, Ensemble release 64) with GSnap 

(Wu and Watanabe 2005). For our alignment to the reference, we allowed up to five 

mismatches and gaps of length 2. We also disabled terminal alignments and required 

unique alignments in GSnap ( Wu and Watanabe 2005) and then used the Stacks 

programs pstacks, cstacks, and sstacks to process and call genotypes at each locus 

for all individuals. We used the Stacks populations program (Catchen et al. 2011; 

Catchen et al. 2013) to identify loci that would be included in further analyses by 

requiring that loci must be present in all populations, genotyped successfully in at least 

75% of the individuals within each population, and have minor allele frequencies greater 

than 10%.  

 

Association Mapping 

 To utilize SNP data for genome wide association studies, we used the 

populations program in the Stacks suite (Catchen et al. 2011; Catchen et al. 2013) to 
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output filtered SNP data (see above) in PLINK (Purcell et al. 2007) format from the 21 

linkage groups. We used PLINK v1.07 (Purcell et al. 2007) to make these files 

compatible with the genome-wide efficient mixed-model association (GEMMA v.0.94.1) 

software package (Zhou and Stephens 2012). We performed all genotype-phenotype 

associations with the univariate linear mixed model (LMM) implemented in GEMMA 

which allowed us to control for relatedness and population structure within the mapping 

population and thus reduce spurious associations (Zhou and Stephens 2012, 2014). 

Because SNPs were quality filtered through Stacks, we modified GEMMA’s default 

parameters to ensure that all SNPs were included in the association analysis. We report p-

values calculated from the Wald test and likelihood-ratio test (LRT) in GEMMA and the 

likelihood of odds (LOD) scores which we back calculated from the LRT p-values (Zhou 

and Stephens 2012).  

 We used GEMMA to control for population structure and relatedness by creating 

a mean-centered relatedness matrix (Zhou and Stephens 2012). Unfortunately, a problem 

can arise when the relatedness matrix is created from all SNPs across the genome because 

the causative SNP is fitted to the LMM twice, once in the relatedness matrix and once in 

the association. This phenomenon is called ‘proximal contamination’ and it reduces the 

power to identify the causative SNP (Lippert et al. 2011; Listgarten et al. 2012). To 

account for ‘proximal contamination’ we employed a ‘leave one chromosome out’ 

method whereby we created relatedness matrices for all linkage groups (LG) except for 

the LG used in the association (Pallares et al. 2014). We then performed associations on 

each LG individually with the appropriate relatedness matrix.  

 We accounted for multiple testing with permutation to identify the genome-wide 

significance threshold. We performed association mapping on 1000 permuted datasets. 

The phenotype values were randomized for each dataset but the genotypes were kept 

intact. We recorded the minimum p-value for each statistical test (Wald, LRT, score) and 

used the 95% quantile from the p-value distribution as the genome-wide significance 

threshold (Pallares et al. 2014).  

 

Identifying a Credible Interval around Association  
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 To identify the credible genomic interval around the most associated SNP from 

our GWAS, we found the most downstream and upstream SNPs which were correlated 

with the top SNP at a minimum of r
2
 ≥ 0.8 (Pallares et al. 2014). We used PLINK 1.07 

(Purcell et al. 2007) to calculate r
2
 values. There were several instances in which no SNPs 

were correlated with the top SNP at r
2
 values of 0.8 or above. In these cases, we used r

2
 ≥ 

0.4 as our minimum criteria which we expect is a conservative estimate.  

 We also estimated linkage distances by calculating LOD (logarithm of the odds) 

scores from p-values output from the LRT in GEMMA. Because GEMMA does not 

output the LRT test statistics directly, we used the LRT p-values to back calculate the test 

statistics. In R, LRT=qchisq(1-p, df=1)/2 where p is the p-value. Using the LRT we were 

able to calculate the LOD score with LRT=2ln(LR), where LR is the likelihood ratio. We 

then identified the 2-LOD support interval and found that for associations hovering 

around the genome-wide significance threshold, the support interval often spanned the 

entire linkage group. 

    

Examining Effect of Genotype on Phenotype  

  The effect of the genotypes of most highly associated SNPs on the phenotypes 

was tested with analysis of variance (ANOVA). If genotype had a significant effect on 

phenotype, we used Tukey’s HSD (honest significant differences) to identify pairwise 

differences between genotypes. All analyses were performed with the R stat package (R 

core team 2015).  

   

Analysis of Genomic Correlation Patterns Using Linkage Disequilibrium 

 We tested all pairwise combinations of SNPs for genotypic linkage disequilibrium 

(LD) by calculating the squared correlation coefficient (r
2
) in PLINK v1.07 (Purcell et al. 

2007). We used Stacks (Catchen et al. 2011) to output a reduced dataset for LD analysis 

with only one SNP per RAD locus. This reduced the number of pairwise comparisons 

and the number of SNPs with r
2
 values of 1 due to tight physical linkage within a RAD 

site.  

 



 20 

RESULTS 

McKenzie River Stickleback Phenotypic Variation Encompasses the Marine-

Freshwater Phenotypic Range Seen in Divergent Stickleback Populations 

 Skeletal phenotypes of stickleback sampled along the McKenzie River vary 

dramatically. We pooled individuals from three populations sampled from the McKenzie 

River (Leaburg Fish Trap, Walterville Slough, Riverbend), and one population sampled 

from the confluence of the McKenzie and main stem of the Willamette River (Green 

Island) (Fig. 2.1A). Although the stickleback we sampled are resident in freshwater 

environments, we found that lateral plate number covered the range of phenotypes across 

the typical marine (high plate number)-freshwater (low plate number) morphospace and 

that the distribution is relatively trimodal (Fig. 2.2B, n=344). For ease, we include Green 

Island as a McKenzie population. Individuals with very low plate counts (~4 plates) only 

had supporting and a subset of anterior plates while those individuals with a very high 

plate count (~34 plates) had a full complement of anterior, supporting, posterior, and keel 

plates (Fig. 2.1A, Fig. 2.2B). The high plated phenotype is most commonly associated 

with marine or anadromous stickleback populations. Typically, individuals with an 

intermediate plate count were missing plates along the posterior region (Fig. 2.1B, Fig. 

2.2B). We never saw intermediate individuals which had posterior or keel plates but were 

missing anterior or supporting plates. This is consistent with lateral plate patterns 

observed in other phenotypically variable, freshwater populations (Bell 2001).  

 When we examined each site separately, we observed differences in the 

distribution of lateral plate number variability. The site located farthest upstream, 

Leaburg Fish Trap, is bimodal in lateral plate number containing high and low plated fish 

with no evidence of fish with intermediate plate counts. Moving downstream, the 

Walterville Slough and Riverbend sites contain fish with all three phenotypes, high, low, 

and intermediate lateral plate number. The site located furthest downstream, Green 

Island, only contains fish with low lateral plate numbers (Fig. 2.3A) and is the only site 

with significantly different lateral plate counts from the other sites (Tukey HSD; p<0.05). 

Although the McKenzie River individuals span the marine-freshwater morphospace when 

pooled together (Fig. 2.2B), only two sites show all three general plate morphologies. 
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Figure 2.2 Discordant phenotype distributions between lateral plate number and operate 

shape of pooled individuals across the four McKenzie River sampling locations. A) 

McKenzie River sampling locations from which individuals were pooled, reflect relative 

geographic locations along the river. Sample sizes are indicated at each site, and lateral 

plates (blue) and opercle shape (purple) are indicated on line drawing. B) Frequency 

distribution lateral plate count. C) Frequency distribution of opercle PC1 scores. Gray 

boxes indicate morphospace occupancy of post-glacial, divergent marine and freshwater 

Alaskan stickleback which were included in PCA to help anchor the morphospace. 

Opercle shapes at the extremes of PC1 are shown. 
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 Unlike lateral plate count, opercle bone shape did not fill the entire morphospace 

typical between marine and freshwater stickleback. Instead, opercle shape primarily 

reflects freshwater variation (Fig. 2.2C). Previously, using PCA, (Kimmel et al. 2012a) 

showed that the majority of opercle shape variation segregates between marine and 

freshwater populations and that the shape change along the major axis of variation is 

similar among independently derived populations around the northern hemisphere. We 

therefore used PCA to identify where opercle shapes of McKenzie River stickleback 

populations fell along PC1 morphospace. To anchor the shape space (Fig. 2.2C, gray 

boxes) we included one monomorphic marine and one monomorphic freshwater 

population from South Central Alaska which enabled us to assess marine and freshwater 

characteristics of opercle shape. We found that opercle PC1 scores were normally 

distributed and the majority of McKenzie River individuals had PC1 opercle shapes that 

fell within the phenotypic region defined by the Alaskan freshwater population. Only a 

few McKenzie River individuals had PC1 opercle shapes that fell within the phenotypic 

region defined by the Alaskan marine population. PC1 explained ~42% of opercle shape 

variation in the combined McKenzie and Alaskan dataset (Fig. 2.2C, Fig. 2.4).  

 Following a second PCA with Alaskan populations removed, we found that 

opercle variation of only McKenzie River individuals along PC1 looks similar to the 

shape changes with the Alaskan populations included except that the opercles are not as 

narrow along dorsal edge, characteristic of marine populations. PC1 explains ~37% of 

shape variation without Alaskan populations included. This underscores the idea that 

opercle PC1 shape changes are shared among populations globally.  

 To determine if opercle PC1 scores displayed population specific distributions, 

we separated the PC1 scores for each population. We observed that opercle PC1 scores in 

populations along the McKenzie did not follow the distributions observed for lateral 

plates, rather, the PC1 scores were normally distributed across populations (Fig. 2.3B). 

Riverbend had the majority of observations and was the only site to differ significantly 

towards a more freshwater shape than the other McKenzie River populations (Tukey 

HSD; p<0.05). 
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.  

Figure 2.3. Phenotypic distributions of lateral plate number (A) and opercle PC1 scores (B) for 

individuals collected along the McKenzie River at each collection site. Boxplots are overlaid 

with individual values (jittered red dots). The mean (blue square) and 95% confidence interval 

around the mean are offset. Sites are organized according to their position along the McKenzie 

with direction of flow labeled. GI, Green Island; Rb, Riverbend; Wv, Walterville Slough; LFT, 
Leaburg Fish Trap. 
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Figure 2.4 Opercle shape variation among populations along the McKenzie, within 

Riverbend, and with and without divergent, post-glacial Alaskan populations to anchor 

morphospace. Wireframe opercle shapes depict rendered shapes at the extremes of PC1. 

Black circles are PC1 maximum, open circles are PC1 minimum, dotted lines depict the 

opercle fan. Percent variance explained by each PC is shown.  
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 The presence of phenotypic variation among McKenzie River stickleback suggest 

that this population may be well suited to identify the genomic regions and potentially 

genes that contribute to skeletal variation using a GWAS approach. Furthermore, the 

differences in distribution and range of the phenotypic space covered by lateral plate 

count and opercle shape in the McKenzie river also suggests that the genomic sources 

that contribute to phenotypic variation may be independent.  

 

Absence of Phenotypic Correlations between the Opercle and Lateral Plate Phenotypes 

Indicates Independent Genetic Architectures 

 Pleiotropy has been hypothesized to contribute to the correlated evolution of 

phenotypes, often through constraint caused by different opposing directions of selection 

on each trait (Lande 1980; Pavlicev et al. 2006; Pavlicev et al. 2008). We decided to first 

examine this hypothesis by assessing if phenotypic variation is correlated between traits 

both within and among populations (Berg 1960; Armbruster et al. 2014). If correlations 

exist among evolving phenotypes, pleiotropic effects cannot be ruled out. However, if 

correlations are absent, pleiotropic effects are likely not major contributors to present 

phenotypic variation. Based on the differences in the distributions of lateral plate number 

and opercle PC1 shape variation described above (Fig. 2.3B,C), we do not expect that 

pleiotropy contributes to patterns of lateral plate number and opercle PC1 shape 

variation.  

 To explicitly test this hypothesis, we calculated the correlations between opercle 

PC1 shape and lateral plate count, among and within populations, using bivariate linear 

regression. We found no evidence for phenotypic correlation among or within 

populations (all populations, r
2
= -0.003, p=0.8; GI, r

2
= 0.036, p=0.1; Rb, r

2
= -0.002, 

p=0.5; Wv, r
2
= -0.043, p=0.8; LFT, r

2
= -0.007, p=0.4). This suggests that, for these 

phenotypes, pleiotropy does not contribute significantly to phenotypic variation present 

in stickleback from the McKenzie River, and that the genetic architectures of lateral plate 

number and opercle PC1 shape variation are distinct (Fig. 2.5).  
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Figure 2.5 Correlation between lateral plate number and opercle PC1 scores among (A) and 
within (B) McKenzie River populations.  
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Population Genetic Variation Appears to be Generated Through Neutral Processes and 

Exhibits Spatial Structure along the McKenzie River 

 To investigate the patterns of genetic variation segregating among McKenzie 

River populations, we assessed population structure using 1000 randomly selected 

markers and PCA (see Methods). We found evidence for population structure and saw 

that genetic variation mirrored the population’s physical location along the McKenzie 

(Fig. 2.6A). The first major axis explained 35.15% of the genetic variation (PC2 

explained only 2.55%). Individuals from Green Island and Leaburg Fish Trap, 

representing the downstream and upstream ends of the sampling locations, respectively, 

tightly clustered in their respective groups on opposite sides of PC1 ordination space. 

Riverbend and Walterville Slough, which are the geographically intermediate 

populations, fell between Green Island and Leaburg Fish Trap along PC1, and covered a 

wider range of the ordination space (Fig. 2.6A,B).  

 The population structure observed may be explained by isolation-by-distance 

caused by spatial separation of the populations, local adaptation, or some combination of 

both. To begin to identify if spatial differentiation is due to selective or neutral processes, 

we used all pairwise combinations of markers between all individuals and calculated 

genome wide linkage disequilibrium (LD) as measured by r
2
. This method allows us to 

identify patterns of genomic correlation both within and between linkage groups. Because 

selection acts heterogeneously across the genome, we expect that if selection is the major 

driver of population structure, a portion of the genome would be in very high LD - some 

of which would be across linkage groups - where as other genomic regions would show 

little LD (see Chapter III, Middleton Island for a good example). We also expect that the 

blocks of high LD within linkage groups would display between linkage group LD as a 

product of producing an artificially admixed population (see Chapter III, Middleton 

Island). If, however, neutral processes, which largely act homogeneously across the 

genome, were primarily responsible for the population structure along the McKenzie, 

when we pooled populations we would expect to see an overall increase in LD across the 

genome with little evidence of between linkage group LD.   
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Figure 2.6 Population structure along the 

McKenzie River reflects proximate physical 

locations. A) Principal Component Analysis 

(PCA) of 1000 randomly selected loci across 

genome shows that population location on the 

McKenzie River is the primary axis along 

which variation is partitioned (35.15%). PC2 

(2.55% variation explain) and beyond account 

for much less of the variation among 

individuals. Individuals from Leaburg Fish 

Trap (green) and Green Island (orange) are 

clustered tightly, but individuals from 

Walterville Slough and Riverbend occupy a 

larger phenotypic area. B) Boxplot and 

distributions of each population shows 

differences in clustering of PC1 scores. The 

group of Riverbend individuals which occupy 

Walterville Slough’s genetic space could 

indicate a set of recent migrants into the 
Riverbend population.  
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 Visualization of genome wide LD patterns show blocks of high LD within linkage 

groups (average LD within linkage groups r
2
 = 0.17) and an overall elevation LD across 

the genome (r
2
 = 0.10). Although the average whole genome r

2
 value was elevated, we 

did not find any systematic patterns of genomic correlation between linkage groups (Fig. 

2.7A). These results suggest that the population structure observed with PCA is due to 

neutral divergence that acts globally across the genome.  

 Population structure at any scale can impede one’s ability to identify the genetic 

variants that contribute to phenotypic variation (Marchini et al. 2004). However, 

populations whose structure is primarily created by neutral processes are more amenable 

to GWAS because it is easier to control for spurious associations but not remove the 

signal that contributes to the phenotypic variation of interest (Price et al. 2010). The lack 

of selection driven genetic variation among populations from the McKenzie River, 

together with phenotypic variation, provides an attractive system to pursue a search for 

the genomic and genetic bases of lateral plate and opercle shape variation.  

 

Patterns of Relatedness Vary between Individuals from Different Populations 

 Calculating the pattern of relatedness between pairs of individuals (often 

summarized by PCA) has become an essential step to control for population structure in a 

GWAS (Astle and Balding 2009). We, therefore, calculated and visualized average 

relatedness among individuals in the McKenzie River. Unlike our PCA, we used all 

markers available and employed GEMMA to calculate the matrix of relatedness in all 

pairwise combinations of individuals. Figure 2.8 shows the mean centered relatedness 

coefficients between all individuals colored by individuals within or between 

populations. Because the Riverbend sample size is larger than other populations 

examined, within comparisons of Riverbend individuals are predominantly responsible 

for defining the mean relatedness coefficient. 
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 Overall, we found that individuals chosen between populations were less related 

to each other than they were between individuals within populations. Two exceptions are 

the comparison between Leaburg Fish Trap:Walterville Slough and Riverbend:Green 

Island. These population pairs are more related to each other than on average across the 

McKenzie. Increased relatedness and proximate locations of population pairs suggests 

that the pairs may experience gene flow. The complex relationships of individuals from 

very closely to distantly related individuals highlight complicated population structure 

along the Mckenzie. Because appropriately controlling for population structure is known 

to be a challenge (Price et al. 2010; Sul and Eskin 2013), pooling individuals along the 

McKenzie likely presents a difficultly for interpreting GWAS results in this system. An 

alternative is to focus within one McKenzie population which shows phenotypic 

variability but which has a simpler population structure.  

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________ 

Figure 2.8 Mean centered relatedness coefficients between all pairwise combinations of 

individuals along the McKenzie River. A mean center of zero is indicated by the gray dashed line. 

Within and between population comparisons are denoted by color and abbreviation, and location 

along McKenzie River shown in river cartoon. GI, Green Island; Rb, Riverbend; Wv, Walterville 

Slough; LFT, Leaburg Fish Trap. A) Density distributions for all populations in stacked barplot. 

B) Density distributions separated by population. 
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The Riverbend Population is Phenotypically Variable with Little Genetic Structuring 

 Phenotypic variation among individuals collected from Riverbend reflect the 

phenotypic variation present among individuals collected along the McKenzie River. 

Stickleback with a low number lateral plates, typical of freshwater environments, 

dominate the population. However, individuals with intermediate and high numbers of 

lateral plates were also sampled revealing a trimodal distribution (Fig. 2.9B). Opercle 

PC1 shape (~47% variance explained with AK individuals included), like the McKenzie 

River collection, is normally distributed with the majority of individuals falling within 

the phenotypic space defined by individuals from the freshwater monomorphic Alaskan 

population (Fig. 2.9C). 

 Unlike individuals from the combined McKenzie River populations, individuals 

sampled from Riverbend display little population structure. The first factor (PC1) of an 

analysis between collection dates which span a three-year period only explained 5.62% of 

variation (PC2 explains 3.23% of variation), suggesting that a large proportion of 

variation among individuals cannot be projected onto any one ordination axis (Fig. 2.10). 

Although, notably, 10 individuals from the most recent collection date clustered away 

from the other 219 individuals. Overall, genomic correlation genome-wide is lower in the 

Riverbend population (average r
2
=0.01) compared to the combined McKenzie 

populations (average r
2
=0.10). Analysis of genome-wide linkage disequilibrium within 

the Riverbend population shows that blocks of high LD are present within linkage 

groups, similar to combined McKenzie populations, but that LD among linkage groups is 

lower than the combined McKenzie populations. The Riverbend population is nearer 

equilibrium (Fig. 2.7B). Finally, individuals in Riverbend do not show complex patterns 

of relatedness, but rather are normally distributed about the mean (Fig. 2.11). Taken 

together, phenotypic variability and little underlying population structure suggest that 

stickleback from Riverbend comprise an ideal population for GWAS. 

  



 34 
  

Figure 2.9 Phenotypic distributions of lateral plate count and opercle shape in Riverbend 

reflect the discordant distributions observed across all McKenzie River populations. A) 

Location of Riverbend with respect to other McKenzie River populations. Stickleback line 

drawing highlights the location of lateral plates and the opercle bone. Colors for lateral 

plates (blue) and opercle (purple) are used in B and C, respectively. Sample size is 

indicated for the Riverbend population, n=229. Frequency distribution of lateral plate 

count (B) and opercle shape (C) in stickleback collected from the Riverbend population. 

Frequency distribution in Riverbend reflects frequency distribution for pooled populations 

along the McKenzie (inset). C) Gray boxes indicate morphospace occupancy of post-

glacial, divergent marine and freshwater Alaskan stickleback included in PCA to help 

anchor the morphospace. Opercle shapes at the extremes of PC1 are shown.  
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Figure 2.10 Population structure between 

Riverbend collections is minimal. A) The first 

two principal components are displayed from 

a principal component analysis (PCA) of 1000 

randomly selected loci across the genome. The 

major component accounts for only 5.6% of 

variation with the sample, and the second 

component account for 3.2% which suggests 

little population structure. B) Boxplot and 

distributions of individual PC1 scores from 

each collection show little difference except 

for a small group of outliers in the September 

2013 collection. 
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Figure 2.11 Mean centered relatedness coefficients between all pairwise combinations of 

sampled individuals in Riverbend. A mean center of zero is indicated by the gray dashed line. 

Within and between population comparisons are denoted by color and collection date. Location 

along McKenzie River shown in river cartoon. A) Density distributions for all collections in 

stacked barplot. B) Density distributions separated by collection date.  
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GWAS Uncovers Multiple Genomic Regions Associated with Variation in Lateral Plate 

Count and Opercle Shape 

 Using individuals from the Riverbend population, we conducted a GWAS using 

the software GEMMA (Zhou and Stephens 2012) to determine the genomic regions, and 

potentially genes, that are associated with phenotypic variation of lateral plate count and 

opercle shape while controlling for population structure and limiting spurious 

associations using a mean centered relatedness matrix. For lateral plate count, we 

expected to find genomic regions that had previously been implicated in loss of lateral 

plates such as the major effect locus, ectodysplasin (eda), and potentially additional 

modifier loci. For opercle shape, we expected to find variants that contribute primarily to 

freshwater variation and less to the marine-freshwater transition. Although opercle shape 

is thought to be polygenic (Kimmel et al. 2005), it remains unclear if the architecture 

includes a locus of major effect or if the loci that contribute are all of small effect.  

 

Two Genomic Regions are Associated with Lateral Plate Count 

 Following permutation tests to generate a genome-wide significance level, (p < 

4.38 x 10
-06

, see Methods), we identified two genomic regions associated with lateral 

plate count variability. A large peak on LG 4 spans a genomic region that encompasses 

ectodysplasin (eda), the gene previously identified as the major effect locus for lateral 

plate loss in the marine-freshwater transition (Colosimo et al. 2005). Because we expect 

that the genomic region containing eda should be associated with lateral plate number, 

these results give us confidence that GWAS in the Riverbend population is informative 

(Fig. 2.12).  
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Figure 2.12 Manhattan plot visualizing genomic regions of association between genotype and 

lateral plate number variation. LMM GWAS identifies two genomic regions associated with 

the phenotype on linkage group IV and linkage group XX. Genome wide significance level 

shown by horizontal, dashed black line determined through phenotypic specific permutations. 

-log10(p-vals) show significance of association and were calculated through the likelihood 

ratio test (LRT) in GEMMA software. A) Genome wide Manhattan plot. Alternating gray bars 

depict linkage group boundaries. B) Single linkage group view of associations on LG IV and 

LG XX. Vertical black bars below Manhattan plots show position of RAD markers along the 

linkage group. Magenta diamond shows the top associated SNP. Linkage decay of every other 

SNP to the top SNP was calculated with r
2
 correlations and visualized by a red-blue color 

palette. Credible interval calculated by linkage decay bounded by vertical gray dashed lines. 

Candidate genes from credible interval are reported from the small gray box surrounding the 

top SNP for simplicity (Table S2.1). Vertical black dashed lines indicate the location of 

previously identified genes of interest with lateral plate phenotypes (eda, gdf6).    

A 

B 
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 We examined the genotypic effect of the most highly associated SNP on the 

number of lateral plates. Few individuals had the AA genotype (Fig. 2.13A), but all 

individuals displayed high lateral plate counts (mean = 31.5; Fig. 2.13A; Fig. 2.14A). The 

majority of individuals had the alternative homozygous genotype, GG, and had 

significantly fewer lateral plates (mean = 8.7; Tukey HSD, p<0.05). Unlike the plate 

count for AA homozygote individuals, the distribution of plate count for GG homozygote 

individuals was larger. These results suggest that either other loci contribute, or that the 

environment can influence variability observed within individuals with reduced lateral 

plate counts. Mean plate count of the AG heterozygotes appears to have incomplete 

dominance (Fig. 2.14A; mean = 26.6), however, because the distribution is bimodal (Fig. 

2.13D). One group of AG fish are completely plated, similar to individuals with the AA 

genotype, but a second group of fish are largely intermediate between the two alternative 

homozygote individuals (Fig. 2.13A, D). These findings are of interest because in most 

mapping studies the heterozygous genotype shows complete or nearly complete 

dominance for high lateral plate counts (but see Erickson et al. (2016)). Our results, 

therefore, suggest a role for modifier loci.  

 

 

 

 

_______________________________________________________________________ 

Figure 2.13. Genotypic effect of most highly associated SNP on chromosome 4 and chromosome 

20 on lateral plate count phenotype. (A-C) Boxplots and distributions of individuals with 

available genotypes at each locus and the corresponding lateral plate count. Genotypes are 

organized from left to right to show the higher, or more “oceanic” (Oc), lateral plate number to 

the lower, more “freshwater” (F), lateral plate number genotype. A) Genotypic effect on lateral 

plate number at chromosome 4. B) Genotypic effect on lateral plate number at chromosome 20. 

C) Interaction between genotypes of the most highly associated SNP on chromosome 4, labeled 

by dark blue (AA), green (AG), and light blue (GG) colors, and genotypes of the most highly 

associated SNP on chromosome 20, indicated by left to right order. No individuals have both the 

chr4(AA) and chr20(CC) genotype. D) Lateral plate number frequency distribution of individuals 

with the heterozygote (AG) at the chromosome 4 SNP. Representative line drawings of 

stickleback within the two groups are shown. 
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Figure 2.14 Mean lateral plate count (+/- 95% CI) of the most highly associated SNP genotype 

at chromosome 4 and chromosome 20 (A, B) and the interactions among genotypes (C). In each 

panel, genotypes organized from more “oceanic” to more “freshwater”, left to right. Pairwise 

comparisons show if genotype had a significant effect on mean lateral plate number depicted by 

* (Tukey HSD; p<0.05) 

A 

B 

C 
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 We identified a second peak of association on LG 20 (Fig. 2.12) which has not 

previously been shown to be associated with lateral plate loss (Colosimo et al. 2004; 

Cresko et al. 2004; Colosimo et al. 2005; Conte et al. 2015). This peak is smaller and 

more narrow than the genomic region on LG 4, with only two SNPs at or above 

significance. The genotypic effect of the most highly associated SNP on the lateral plate 

phenotype was less clear than the effect of the top SNP on LG 4, with high, low, and 

intermediate lateral plate numbers associated with each of the homozygote and 

heterozygote genotypes (Fig. 2.13B). Like LG 4, one homozygote genotype (CC) was 

more rare than other genotypes, but the mean lateral plate count was not significantly 

greater than mean plate count of the two other genotypes (Fig. 2.14B; Tukey HSD 

p>0.05). Both the heterozygote (CT) and alternative homozygote (TT) tend to include 

more fish with low and intermediate numbers of lateral plates. Although groups of 

individuals with high and intermediate plate count were present for each CC and TT 

genotype, in a pairwise comparison, these genotypes had a significant effect on mean 

lateral plate count (Tukey HSD p< 0.05). The loci on linkage group 4 and 20 were in 

Hardy-Weinberg Equilibrium (HWE).  

 

Genotypes at Loci on Linkage Group 4 and Linkage Group 20 May Interact 

 To determine if an interaction exists between the SNP on LG 4 and on LG 20 we 

first looked, and found no evidence, for long distance LD between the pair of SNPs (r
2
 

=0.002). This confirmed that the association on LG 20 was independent and not a 

spurious association caused by genomic correlation with LG 4. Next, we identified the 

effect of the multi-locus genotypes on lateral plate phenotype. Interestingly, no 

genotyped individual was a double homozygote for the AA (LG 4) and CC (LG 20) multi 

locus genotype (Fig. 2.15C). These homozygote genotypes would correspond to the 

highest plated genotypes at each locus on LG 4 and LG 20 and may indicate that this 

multi locus genotype combination has a low fitness in the freshwater environment.  

 We do not expect that genotypes on LG 20 interact with either the homozygote 

high plated genotype (AA) or the heterozygote LG 4 genotypes (AG) (Fig. 2.13C, Fig. 

2.14C). However, the genotypes on LG 20 do appear to interact with the LG 4 
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homozygote low plated genotype (GG), modifying plate variation within the low plated 

LG 4 genotype (Fig. 2.13C, Fig. 2.14C,). This suggests a potential epistatic effect 

between the loci.  

Figure 2.15 Genotype frequencies at each significantly associated locus (A, B) and multi-locus 

frequencies (C). Gray bars indicate missing genotypes. Both single locus genotype frequencies 

are in HWE. 00=individuals not genotyped at the locus  
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Genomic Intervals Are Defined by Decay of Linkage and Reveal a Potentially Novel 

Genomic Region that Contributes to Lateral Plate Variation 

 To identify the genomic region that we expect will include the causative locus, we 

attempted to define the genomic interval. Common practice in GWAS defines the interval 

in terms of local LD, and identifies the putative genomic region as that which includes 

SNPs in tight linkage (r
2
 ≥ 0.8) with the most associated SNP (see Methods). With these 

criteria, we identified an approximately 2 Mb genomic region on LG 4 that includes a 

known major effect locus of lateral plate number, eda, although we did find it interesting 

that the genomic region containing SNPs above the genome-wide significance level is 

>10Mb (Fig. 2.12). The credible interval region also encompasses two other candidate 

loci, pdlim7 and anxa6, identified in an F2 mapping family between lake and stream 

stickleback (Berner et al. 2014). Pdlim7 was also identified as a candidate gene in an F2 

mapping family between ocean and freshwater stickleback (Hohenlohe et al. 2010). 

Notably, however, the gene closest to the most highly associated SNP is, indeed, eda.  

 While defining the genomic interval according to local LD was appropriate for the 

peak on LG 4, using this method for the peak on LG 20 was more difficult because few 

SNPs were in tight linkage (r
2
 ≥ 0.8) with the most associated SNP (Fig. 2.12). We 

attempted to remedy this problem in two ways. In the first, we converted p-values derived 

from the likelihood ratio test, generated in GEMMA (Zhou and Stephens 2012), into 

LOD scores to determine the 2-LOD interval (see Methods). This interval, however, 

spanned nearly the entire linkage group. We, therefore, considered this method too 

conservative. In the second method, we used a criterion to include any SNP correlated at 

a value of r
2
 ≥  0.4 with the most highly associated SNP. The resulting interval included 

the narrow peak that rises to significance as well as a portion of the elevated shoulder to 

the right of the peak (Fig. 2.12). While the causative locus could be located anywhere in 

this interval, ctnnb1 (β-catenin) is one of the genes that flanks the second most significant 

SNP on LG 20. This gene is particularly interesting because of ctnnb1’s role in canonical 

and non-canonical Wnt signaling and key function in skeletal development and bone 

mass accrual (Westendorf et al. 2004; Kramer et al. 2010). Notably, the second most 

associated SNP failed to be genotyped in ten individuals while the top SNP was only 
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missing in three individuals. Because the sample size is small, this genotyping 

discrepancy could contribute to subtle differences in p-value. 

 

Two Linkage Groups Are Independently Associated with Opercle Shape 

 We identified two genomic regions associated with opercle PC1 shape (Fig. 

2.16A). The first, on LG 8, is significantly associated with opercle PC1 shape, and the 

second genomic region on LG 7 is just shy of the genome-wide significance level (p < 

6.19 x 10
-06

). We found no evidence for long distance LD between the two top SNPs at 

each locus (r
2
=0.005) which suggests that the associations are real (i.e. no spurious 

associations caused by correlation). The phenotypes for all genotypes at both loci on LG 

8 and LG7 were normally distributed except the TT homozygote on LG 7 (Fig. 2.17A,B). 

On LG 7, only 7 individuals were identified with the TT genotype but they fell into two 

distinct groups. The opercle PC1 shapes of heterozygote individuals on both linkage 

groups were intermediate with respect to the homozygotes. Interestingly, the genotypes 

of the loci at LG 7 and LG 8 appear to have phenotypic effects in directions different than 

one would expect by their frequencies (Fig. 2.18A,B). As expected, the genotype on LG 

8 with the most individuals corresponds to the most freshwater phenotype. The opposite 

is true on LG 7 (Fig. 2.19). However, the distribution of all genotypes is shifted towards 

freshwater as compared to the distribution of phenotypes on LG 8. Both loci are in HWE, 

and there appears to be no interaction between the loci (Fig. 2.17C, Fig. 2.18C). 

 

Genomic Intervals Reveal Candidate Genes Not Previously Implicated in Opercle 

Shape 

 We identify several candidate genes within the credible interval determined by 

linkage decay (see Methods). On LG 8, the EPHB3 (Eph receptor B3) gene flanks the 

most highly associated SNP with opercle PC1 within the interval. EPHB3 has recently 

been implicated as a regulator of bone growth in mice (Kamath et al. 2016) and is critical 

for cell-cell interactions during development (Matsuo and Otaki 2012). The region on LG 

7 also contained several genes of interest including b3gat3 that encodes 

glucuronyltransferase 1, an enzyme suggested to play a role in bone density (Jones et al. 
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2015), and rcor2 which has recently been implicated in regulating osteoblast 

differentiation (Tarkkonen et al. 2016) (Fig. 2.16).  

Figure 2.16 Manhattan plot visualizing genomic regions of association between 

genotype and opercle PC1 variation. LMM GWAS identifies a genomic region on LG 

VII that is suggestive of an association and another region of LG VIII that is 

significantly associated with the phenotype. Genome wide significance level 

(horizontal, dashed black line) is determined through phenotypic specific permutations. 

-log10(p-vals) show significance and were calculated through the likelihood ratio test 

(LRT) in GEMMA software. A) Genome wide Manhattan plot. Alternating gray bars 

depict linkage group boundaries. B) Single linkage group view of associations on LG 

VII and LG VIII. Vertical black bars below plots show position of RAD markers along 

the linkage group. Magenta diamond is the top associated SNP. Linkage decay of every 

other SNP to the top SNP was calculated with r2 correlations and visualized by a red-

blue color palette. Credible interval calculated by linkage decay bounded by vertical 

gray dashed lines. Candidate genes from credible interval are reported from the small 

gray box surrounding the top SNP for simplicity (Table S2.2).   

A 

B 
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Figure 2.17 Genotypic effect of most highly associated SNP on chromosome 8 and 

chromosome 7 on opercle PC1 variation. (A-C) Boxplots and distributions of individuals with 

available genotypes at each locus and the corresponding lateral plate count. Genotypes are 

organized from left to right which show more “oceanic” (Oc) to “freshwater” (F), opercle 

shapes. A) Genotypic effect on opercle PC1 score at chromosome 8. B) Genotypic effect on 

opercle PC1 score at chromosome 7. C) The multi locus genotype effect on opercle PC1 score. 
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Figure 2.18 Mean opercle PC1 score (+/- 95% CI) of the most highly associated SNP genotype 

at chromosome 8 and chromosome 7 (A,B) and the interactions among genotypes (C). In each 

panel, genotypes organized from more “oceanic” to more “freshwater”, left to right. Pairwise 

comparisons show if genotype had a significant effect on mean lateral plate number depicted by 

* (Tukey HSD; p<0.05) 
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Figure 2.19 Genotype frequencies at each significantly associated locus (A,B) and multi-locus 

frequencies (C). Gray bars indicate missing genotypes. Both single locus genotype frequencies 

are in HWE. 00=individuals not genotyped at locus 
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DISCUSSION 

 In this study, we genetically mapped two traits that are classically associated with 

marine to freshwater divergence in stickleback, and for which we have a priori 

expectations about the nature of the genetic architectures, using a phenotypically variable 

population in Oregon. We show that opercle shape and lateral plate number likely have 

independent genetic underpinnings in this population. We identified genomic regions 

associated with each trait using a linear mixed model GWAS. For lateral plate count we 

clearly identify one major effect locus at eda, as expected, as well as a novel second locus 

that has not previously been identified that appears to modify variability in the low plated 

morph. For opercle shape, we identified two genomic regions associated with freshwater 

variability that map to genomic regions that have been implicated in previous QTL 

mapping studies. Within those, we identify at least one gene underlying these 

associations which has not been previously identified to contribute to opercle shape, but 

which could be an interesting candidate. Analysis of these two traits makes us confident 

that the genomic associations we find in the Riverbend stickleback population are real. 

Notably, we identify narrow genomic regions even with a relatively limited sample size, 

demonstrating the utility of using natural populations to connect genotype to phenotype. 

 

Hybrid Stickleback Populations Are a Powerful Tool for Evolutionary Genomics 

 Significant progress in identifying the genetic basis of phenotypes in stickleback 

has occurred through QTL mapping studies (Miller et al. 2007; Albert et al. 2008; 

Arnegard et al. 2014). Although interest in utilizing natural populations to address these 

questions has grown, only a few such studies have been undertaken in stickleback. In two 

prominent examples, researchers in one study used admixture mapping and in the other 

used QTL analysis of F2 populations in semi-natural ponds. Malek et. al. (2012) used 

bulk segregant analysis (BSA) in a recently admixed stickleback population from Enos 

Lake to identify genomic regions that contribute to nuptial color and body shape. 

Arnegard et. al (2014) mapped niche differentiation using benthic-limnetic F1 hybrids 

allowed to breed freely in semi-natural ponds that comprised both habitats. These studies, 

though successful in moving analyses out of the laboratory and into natural 
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environments, are still limited in resolution by the small number of meioses from a 

recently admixed population used in Malek et. al. (2012) and from an F2 cross Arnegard 

et. al. (2014). Using natural systems with many more generations of recombination would 

be ideal.   

 An optimal scenario for genetic mapping in natural systems are phenotypically 

variable populations with little cryptic relatedness or population structure, and low, but 

still measurable, LD within linkage groups that will link genetic markers with the traits of 

interest. In this study, we show that Riverbend is such an ideal system in stickleback. 

Even among collection dates that span three years, and using several genome-wide 

approaches, we find little population structure. PCA of genetic variation broadly detects 

population structure contained within genome-wide SNP data (Abraham and Inouye 

2014; Raj et al. 2014; Li and Ralph 2016). Within the Riverbend population, PCA among 

several combinations of 1000 randomly selected markers was largely spherical across the 

first several principal components followed by small reductions of percent variation 

explained (Fig. 2.10). In contrast, PC1 from a PCA that included individuals from four 

populations along the McKenzie River explained nearly 35% of the genetic variation, 

followed by a steep reduction in percent variation explained by the remaining PCs. This 

analysis largely grouped individuals by geographic location along the river, but identified 

little within group stratification. Furthermore, the distribution of mean-centered kinship 

matrix relatedness coefficients in Riverbend lacks a systematic pattern, and the values are 

normally distributed about the mean. In contrast, extensive patterns of relatedness seen 

among individuals from different populations along the McKenzie River supports the 

presence of population structure along the river. 

 Long-range genomic correlation, due to a significant amount of contemporary 

gene flow (Slatkin 2008) or strong natural selection, can be problematic for GWAS 

(Pritchard et al. 2000b; Slatkin 2008) (see Chapter III, Middleton Island). Our genome-

wide correlation analysis shows that within the Riverbend population there is little 

evidence for long range LD, and that between linkage group LD is nearly at equilibrium. 

These data give confidence in the veracity of the GWAS results and provide some insight 

into the still opaque origins of the Riverbend population. The lack of large blocks in long-

range LD suggests that Riverbend is not a young hybrid zone, that contemporary gene 
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flow and selection are not strong enough to create LD, and any genomically distant 

genetic correlations quickly succumb to recombination. Together with our PCA and 

relatedness results, these LD data support our hypothesis that individuals sampled from 

Riverbend represent a population with little genetic structure across geography or the 

stickleback genome, and is therefore ideal for GWAS. 

 

The Lateral Plate and Opercle Phenotypes Are At Least Partially Independent 

Genetically 

 As stickleback adapt to freshwater environments, correlated armor and body 

shape changes occur repeatedly across independent populations, prompting decades of 

investigation about the mechanisms for such correlated evolution (Reimchen 1983; 

Schluter and McPhail 1992; Marchinko and Schluter 2007; Purnell et al. 2007). Does 

selection target each trait independently, or does genetic linkage or pleiotropy facilitate a 

correlated response? QTL mapping studies between marine and freshwater stickleback, 

between benthic and limnetic stickleback, and between lake and stream stickleback have 

shown that similar genomic regions are implicated in contributing to suits of traits 

including lateral plate loss and head/body shape (Berner et al. 2014; Liu et al. 2014; 

Miller et al. 2014; Conte et al. 2015; Glazer et al. 2015; Erickson et al. 2016) but that 

QTL contributing to trait variation are not always identical between populations 

(Erickson et al. 2016). Although previous laboratory QTL studies have suggested that 

lateral plate number and opercle shape variation are not genetically linked (Kimmel et al. 

2005), the environment in which individuals were raised may affect both the phenotypic 

variation present and the contribution of alleles to the traits (Hermida et al. 2002; 

McGuigan et al. 2011). Genetic correlations not observed in laboratory environments 

may therefore be revealed in analyses of natural populations of stickleback in their native 

environment. 

 We addressed the possibility of linkage and pleiotropy shaping phenotypic 

variation in wild stickleback populations experiencing a natural environment by assessing 

the correlation between opercle shape and lateral plate variation within the Riverbend 

population, and among populations along the McKenzie River. We found little evidence 
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for within population correlation which suggests that linkage or pleiotropy is likely not a 

major driver in defining phenotypic variation or co-variation in lateral plate number or 

opercle shape (Paaby and Rockman 2013). We suspect that phenotypic variation of the 

traits is controlled an independent genetic basis.  

 

GWAS of Lateral Plate Number Variation in the Riverbend Stickleback Population 

Provides Novel Understanding of this Classic Trait 

 Riverbend stickleback range from completely plated to low plated fish, covering 

the marine to freshwater transition both in phenotypes and underlying genetic variants. 

Confirming this hypothesis we identified the strongest association with a genomic region 

on LG 4 only approximately 3 kb upstream of eda, the major effect locus identified 

previously for lateral plate loss (Colosimo et al. 2004; Colosimo et al. 2005). This finding 

instills confidence that a second peak on LG 20, although just above the genome-wide 

significance threshold, was also a real association. Previous QTL mapping studies found 

associations on LG7, 10, and 21 as well as LG4 and LG20 (Colosimo et al. 2004; 

Erickson et al. 2016), indicating that these variants are not segregating in Riverbend. 

Alternatively, it is possible that our study was underpowered and unable to detect variants 

on the linkage groups previously identified, or that our markers were not in linkage 

disequilibrium with the segregating variants. We do not suspect this is the case because 

though the effect sizes of lateral plate number QTL were small in previous studies 

(Colosimo et al. 2004), we saw no elevation in significance in these regions even though 

markers were well distributed across the linkage groups. While variants at eda are 

certainly a major factor, the variance in genomic regions identified might highlight 

nuances in the genetic architecture of the trait among populations (Bell 2001; Aguirre et 

al. 2004).  

 Since the 1950’s, several lateral plate morph inheritance models have been 

proposed that employ one or few loci of large effect (Münzing 1963; Banbura and Bakker 

1995; Bell 2001). Recently, findings from QTL studies hint at a model in which a major 

effect locus is critical to establish the overall lateral plate morphotype (high, partial, low) 

with minor effect additive loci to fine tune the number of plates (Aguirre et al. 2004; 
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Colosimo et al. 2004; Cresko et al. 2004). Aguirre and colleagues (2004) argue that in 

Loberg Lake, however, the alleles contributing to low and high lateral plate morphs are 

likely polygenic and independent. Our results largely support the classical models with 

some role for epistasis. The alternative homozygote genotypes on LG 4 determine high 

and low morph. However, the plate morph for heterozygotes is variable suggesting the 

role of yet to be identified interacting loci and/or environmental variance only affecting 

the LG 4 heterozygotes. We did identify, however, a locus on LG 20 that acts 

epistatically with the LG 4 locus by modifying variation only within the low lateral plate 

morph (Fig. 2.13C, Fig. 2.14C). These results suggest the role of other modifiers acting 

epistatically on the high and partially plated genotypes at the major effect locus. Larger 

GWAS studies will continue to identify these genes.  

  The genomic intervals we identified on LG 4 and LG 20 harbored both 

anticipated and interesting novel candidate genes. The 2 Mb region identified on LG 4 

contained eda, the most likely candidate, which has been implicated previously in QTL 

and transgenic studies as a major effect locus of lateral plate loss (Colosimo et al. 2005; 

O'Brown et al. 2015). The association window in Riverbend, determined by the decay of 

linkage with the most highly associated SNP, however, also included genes pdlim7 and 

anxa6 which have been labeled as additional candidates in a QTL study between stream 

and lake stickleback from Central Europe (Berner et al. 2014) and population genomic 

studies between ocean and freshwater fish (Hohenlohe et al. 2010). Pdlim7 and anxa6 

play a role in de novo bone initiation and bone calcification, respectively (Berner et al. 

2014).  

 Within the identified genomic region on LG 20, the nearest gene to the second 

most highly associated SNP was ctnnb1. This gene encodes β-catenin, which has not 

been previously implicated in lateral plate variation in QTL studies. It is a particularly 

interesting candidate gene because of its obligatory role in the Wnt/β-catenin signaling 

pathway known to be critical in bone formation and resorption (Kramer et al. 2010; Chen 

and Long 2013). Additionally, Wnt signaling is known to act upstream of eda (Arte et al. 

2013), and O’Brown et al (2015) showed that, in laboratory manipulations, the Wnt 

signaling can alter eda expression. Although LG 20 has often been identified as a linkage 

group that harbors QTL associated with many aspects of skeletal variation, this LG has 
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not been previously implicated in lateral plate count. However, Colosimo et al. (2004) did 

identify QTL for lateral plate height and width which fell on LG 20 (then LG 25). More 

recently, two distinct QTL were fine mapped to a region between 3.2-4.0 Mb on LG20 

containing the gene gdf6 (Indjeian et al. 2016). Transgenic experiments revealed that 

expressing freshwater gdf6 cDNA in marine stickleback led to a loss of plates or a 

reduction in the size of the plates (Indjeian et al. 2016).  

 Based on these previous findings for gdf6 affecting lateral plate shape, we initially 

hypothesized this gene would be in the credible region. It is not. However, if gdf6 were 

associated with lateral plate variation we would likely miss it due to low LD in the 

genomic area (Fig. 2.20). Markers do flank gdf6, but because LD in that region is low, 

without a marker within the gene itself, any association would go undetected. Instead we 

saw a clear association at ~5.6Mb that pinpoints β-catenin as a strong candidate gene. A 

closer look at the RAD markers identified on LG 20 show that marker coverage is lower 

than on LG 4 (on average 1 RAD locus per 27kb LG 20 vrs. 1 RAD locus per 23kb LG 

4), and a large group of markers immediately to the right of our association is missing. 

Thus, there is also a possibility that our association points to a gene contained in the 

region with missing data and not ctnnb1. Without additional markers, we would be 

unable to see a potential peak in that area, although the pattern of LD decay does not 

suggest that this is the case. Considering the association that we identified on LG 20 in 

addition to the potential association missed due to lack of markers or linkage, it is 

possible that we were unable to detect other real associations. We, therefore, consider our 

GWAS for lateral plate number variation to be a conservative estimate.  
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Figure 2.20 Thirteen RAD markers and SNP locations in a 577kb window around gdf6a 

location on LG 20. All pairwise SNP combinations of local linkage disequilibrium depicted by 

r2 values in heatmap.  
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GWAS of Opercle Shape in Riverbend Advances Craniofacial Genomic Understanding 

 Opercle shape distribution, in contrast to lateral plates, primarily occupied 

freshwater morphospace. As such, we expected to identify genomic regions that 

contribute primarily to within freshwater variation and perhaps some to marine-

freshwater divergence. Little is known about the genetic architecture of opercle shape, 

and previous mapping studies suggest that it is polygenic (Schluter et al. 2004; Kimmel et 

al. 2005; Miller et al. 2014; Conte et al. 2015; Erickson et al. 2016). Our GWAS may 

support this hypothesis and significantly extends this previous work.  

 We identified one genomic region on LG 8 that is significantly associated with 

opercle shape. We are encouraged by this association because LG 8 has for the first time 

recently been implicated in changes to the width of the opercle in QTL mapping crosses 

between a marine fish and three independent benthic populations from British Columbia 

(Erickson et al. 2016). A peak on LG 7 has also been previously identified in multiple 

QTL studies in crosses between marine-freshwater and benthic-limnetic individuals 

(Miller et al. 2014; Conte et al. 2015). 

 Additionally, Kimmel et. al. (2005) identified LG 19, the sex-determining locus, 

as a potential major effect locus associated with opercle shape differences between 

marine and freshwater individuals, but Albert et. al. (2008), who also identified an 

opercle associated peak on LG 19 between a marine-benthic cross, noticed that the shape 

differences between the sexes and between the divergent populations were quite similar 

prompting them to hypothesize that having a male-like opercle shape was important in 

the adaptation to benthic environments. Because we did not identify LG 19 with opercle 

PC1, this suggests that opercle shape sex differences do not contribute to the primary axis 

of variation within freshwater variation. 

 Certainly, we are not capturing all the genomic regions associated with opercle 

shape, and with present methodologies, identifying all loci is impossible. However, the 

fact that we identified two genomic regions with a relatively moderate sample size of 229 

individuals is encouraging. Moving forward, we predict that increasing the sample size 

and marker density, as well as capturing and mapping different aspects of opercle (and 

other head bone) shape variation, will be informative. Current efforts to increase the 
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sample size should narrow the existing associations and identify more genomic regions. 

Our data already indicate that this genetic vein is not tapped. Because the linear mixed 

model assumes that each genetic variant will have some effect on the trait of interest, the 

model is able to produce an estimate of the percent phenotypic variation explained (PVE) 

by all genotyped markers (Zhou and Stephens 2012; Pallares et al. 2014). For opercle 

PC1 the PVE was only ~36% (compared to ~99% for lateral plate count), indicating that 

our ~16,000 SNP markers were only sufficient to explain approximately one third of the 

opercle shape variance captured by PC1. Unless all the unexplained variation is 

environmental, another explanation is that more markers are required to link to causative 

loci (see gdf6 example given above). Future studies would include more markers through 

RAD-seq with a more frequent cutter, targeted re-sequencing of particularly interesting 

genomic regions, or whole genome sequencing. 

 Unlike lateral plate number, the inheritance of opercle shape is far less understood 

and likely more complex. Of the two genomic regions we identified, it is unclear why the 

most “freshwater” genotype on LG 7 would be observed in the fewest number of fish. 

But the genotypes of the loci at the two linkage groups clearly have distinctive and 

opposite effects on the phenotypes. Based on developmental studies in zebrafish (Kimmel 

et al. 2010; Huycke et al. 2012; Kimmel et al. 2012b), the opercle develops in a modular 

fashion which appears to be genetically independent. The fact that we see no interaction 

between the genotypes at the two loci could suggest that they are operating on 

independent modules. Further investigation of how each locus affects the opercle shape 

change will be important. 

 Comparing the genes in these associated regions with previous work already 

sheds light on a fundamental question: Are genes identified through mutagenesis studies 

in developmental model systems the same genes used by evolution to contribute to 

adaptive phenotypes (Mackay et al. 2009)? In some cases, major developmental genes are 

implicated in adaptive changes. For example, both in African cichlid fishes and in 

Darwin’s finches, bone morphogenetic protein 4 (Bmp4) appears to regulate aspects of 

head shape through mechanical advantage of the jaw and depth and width of the beak, 

respectively (Abzhanov et al. 2004; Albertson et al. 2005). Although several QTL studies 

have addressed opercle shape in stickleback, no candidate genes from these crosses have 
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been identified for further study likely because the mapping intervals are quite large. 

Given our limited sample size, the genomic interval for our significantly associated 

region on LG 8 is also still large (~5Mb). However, the EPHB3 gene flanking the most 

associated marker is an interesting candidate because of its role in palate formation in 

mice (Risley et al. 2009; Matsuo and Otaki 2012). Eph receptors and their ephrin ligands, 

in general, are important for cell-cell adhesion, a process which helps to regulate 

migration, proliferation, and differentiation, all of which are critical for bone cells to 

properly make bone (Matsuo and Otaki 2012). So far EPHB3 has not been implicated in 

opercle shape regulation. 

 The opercle in zebrafish has been long studied as a model for bone shape 

development which is hypothesized to be regulated by a genetically modular system 

(Huycke et al. 2012). Opercle bone ossification is initiated as a small, linear spur 

surrounded by osteoblasts, the cranial neural crest-derived cells primarily responsible for 

bone formation in the head. The dorsal end of the spur becomes the joint (‘j’ Fig. 2.1C) 

and the ventral end becomes fan-shaped (‘v’,’p’ Fig. 2.1C). Development largely occurs 

through differential elongation along the ‘vp’ edge (fan) caused by spatiotemporal 

patterning of osteoblast deposition of mineralized matrix that appears to be regulated by a 

genetically modular, spatially specific system (Kimmel et al. 2010; Huycke et al. 2012). 

Members of the endothelin 1 signaling pathway, Dlx genes, and mef2ca were identified 

through mutagenesis studies of opercle shape development (Kimmel 2003; Talbot et al. 

2010; DeLaurier et al. 2014). In addition, Huycke et. al. (2012) showed that mutants 

identified in the Hedgehog (Hh) signaling pathway, including indian hedgehog a (ihha) 

and patched 1 (ptch1), are required for appropriate outgrowth of the ventral region of the 

opercle, but that they do not affect the development along the dorsal region. They 

hypothesized that the mechanism by which Hh signaling is involved likely lies in the 

regulation of pre-osteoblasts proliferation along the growing edge of the fan.  

 Interestingly, the changes in opercle shape we see in stickleback from Riverbend 

along PC1 include modifications of the ventral portion of the opercle similar to shape 

changes identified through mutagenesis studies in zebrafish (Huycke et al. 2012). This 

shape change is even more pronounced in the stickleback transition from marine to 

freshwater (Kimmel et al. 2008; Kimmel et al. 2012a). We therefore tested if the regions 
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associated with opercle in our Riverbend GWAS included the members of developmental 

pathways previously identified critical in normal opercle development in zebrafish such 

as ihha, edn1, mef2ca, or dlx genes. The genomic regions identified on LG 8 and 7 do not 

appear to contain members of these signaling pathways. In fact, ihha is encoded on LG 

16, a linkage group which, to our knowledge, has not been associated with changes in 

opercle shape in any QTL study, nor a major contributor in genome wide scans for 

signatures of selection (Hohenlohe et al. 2010). It is possible that with increased sample 

size and density of markers, we or others may uncover genes previously identified in 

opercle developmental studies in the laboratory. Clearly further genetic analysis of these 

genomic regions in stickleback will provide novel and complementary understanding to 

the laboratory work in zebrafish. 

 

Genetic Analysis of Traits in an Ecological Context Provides Deeper Understanding 

 Lateral plate variation is often used to distinguish marine and freshwater 

stickleback. Especially in post-glacial populations of western North America and western 

Mediterranean, a strong correlation exists between habitat (marine/freshwater) and plate 

count (Bell 2001) arguing that selection may target lateral plate variation (Hagen and 

Gilbertson 1972, 1973b). The environmental factors shaping lateral plate variation are 

hypothesized to include both abiotic factors, such as ion concentration and salinity 

tolerance, and biotic factors, such as predation. This previous work and the identification 

of the major plate QTL has led to investigations about the fitness consequences for the 

eda alleles (Barrett et al. 2008; Le Rouzic et al. 2011). Artificial pond studies show 

strong selection for the eda low allele in freshwater.  

 The distributions in lateral plate number and opercle shape in the McKenzie River 

suggest, however, that the selective pressures on these traits may be more complicated. It 

is worth noting again that a suit of skeletal, physiological, and behavioral traits all shift in 

response to freshwater adaptation (McKinnon and Rundle 2002; Barrett et al. 2009; 

Barrett 2010). The phenotypic distributions from our data show that lateral plate count 

varies across the range of phenotypes between what is thought of as classically marine 

and freshwater phenotypes, but that opercle shape largely varies within the freshwater 
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range. While with our data we cannot explicitly test the strength of selection on each 

phenotype, we would expect that if each were under the same selection strength that the 

phenotypes would vary concordantly. To this end, we wonder if trophic morphology, 

such as opercle bone shape which has a distribution predominantly within freshwater 

variation, experiences stronger selection than armor traits which has a distribution which 

covers the marine-freshwater range.  

 We suspect that the sharp divergence between completely plated marine 

stickleback and low plated freshwater stickleback may not be a largely global pattern, but 

that lateral plate number may be correlated with other traits experiencing strong selection. 

This hypothesis fits into observations of stickleback populations found particularly in 

Western and Central Europe along North America’s Atlantic Coast which show weaker 

correlations between marine-freshwater divergence and lateral plate count (Bell 2001; 

Raeymaekers et al. 2014). Notably, many of these freshwater populations are not 

completely isolated from brackish or marine environments leaving open the possibility 

that gene flow occurs and reduces the response to selection. In the populations along the 

McKenzie River that we examined, natural gene flow from anadromous fish from the sea 

is unlikely. It is more likely that marine stickleback were reintroduced upstream at the 

Leaburg Fish Trap and that gene flow has occurred downstream, but more work is 

required to establish the source of the marine phenotype.   

 The genomic findings on both opercles and lateral plates shows that our 

understanding of traits that we investigate through the lens of developmental genetics, 

can be facilitated by looking to evolutionary genetics in natural populations (Albertson et 

al. 2009). In traditional forward genetic screens researchers, by necessity, identify 

mutants for which there is a visible phenotype. In the interest of time and physical space, 

these mutants often have a robust phenotype that is observed early in development. In 

natural populations, the mutations that are not lost to selective forces are typically more 

subtle, especially for quantitative traits, and can be analyzed at many different stages of 

development. Using GWAS or other genome wide approaches in natural populations will 

likely be a productive route to identify genes and broaden our understanding of gene 

interactions within known developmental genetic networks. 
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Conclusion  

 QTL studies in the laboratory have significantly advanced the genetic 

understanding of stickleback evolution. However, a major impediment to subsequent 

progress has been the broad genomic regions identified. In addition, some traits are 

simply not amenable to analysis via crossing in the laboratory (Korte and Farlow 2013). 

Lastly, the common laboratory environment itself may directly affect the genetic 

architecture of traits that are being identified (McGuigan et al. 2011). Here we 

demonstrate the power of using GWAS in a naturally occurring, phenotypically variable 

population to efficiently begin to identify narrow genomic regions contributing to 

adaptive phenotypes that have developed in a natural environment.  

 With a limited sample size, we identified anticipated and novel genomic regions 

and candidate genes which contribute to lateral plate count and opercle shape. These 

findings have extended our current knowledge about the transmission genetics of lateral 

plate count, the genetic basis of low plated variability, and the nature of the genetic 

architecture of opercle shape. Our research demonstrates a fruitful intersection between 

evolutionary genetics and developmental genetics by using variation seen in nature to 

complement mutagenesis and transgenic studies in the laboratory.  

 Of course, identifying a population with the kind of phenotypic variability one 

wishes to study without the problems of population structure can be challenging. 

However, we demonstrate that these populations exist in Oregon and will likely be 

available across stickleback habitats in their holarctic distribution. In addition to 

identifying the genomic regions which contribute to phenotypic evolution, and because 

we examined wild caught individuals, using the Riverbend population we can begin to 

think about the selective forces and population dynamics which contribute to organismal 

fitness and link the genome, phenome, fitness map. These resources will continue to help 

this stickleback ‘supermodel’ (Gibson 2005) become even more superb. 
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BRIDGE 

 In Chapter II, we showed that GWAS can be an effective method to determine 

narrow genomic regions that contribute to phenotypic variation in the context of 

environmental and selective forces, even given a relatively small sample size. Although 

lateral plate number phenotypic variation spanned the morphospace between plate 

number expected from marine to freshwater stickleback, in the Riverbend population, we 

were only able to capture freshwater variation. Identifying the loci that contribute to the 

rapid divergence from marine to freshwater stickleback, however, is a long-standing goal 

of the field. Therefore, in Chapter III, we use GWAS to investigate the loci contributing 

to phenotypic divergence in a population of stickleback fish which span the range of 

phenotypic and habitat space of the most divergent populations. These populations 

however, only diverged from their marine ancestors within the last 50 years and possibly 

provide a unique system to utilize GWAS to uncover the genetic basis of phenotypes 

which are in the process of adapting to new freshwater environments. 
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CHAPTER III 

 

GENOMIC COVARIANCE FUELS VERY RAPID EVOLUTION OF 

COORDINATED PHENOTYPES IN STICKLEBACK  

 

The stickleback fish used in this chapter were collected from ponds on Middleton Island 

by E. A. Lescak and F. A. von Hippel. E. A. Lescak prepared DNA to be used for further 

sequencing preparation by S. L. Bassham. The sequences were aligned and first 

processed by J. Catchen. I subsequently processed the sequences again based on the 

specific needs of my study. E. A. Lescak previously phenotyped lateral plates, and, under 

my direction, S. Sichel performed much of the opercle bone phenotyping. I performed all 

data analysis and writing. W. A. Cresko was the principal investigator for this study.    

 

INTRODUCTION 

 Multicellular organisms are often phenotypically modular (Klingenberg 2008), 

with traits being more highly correlated within than among modules (Olson and Miller 

1958; Berg 1960; Armbruster et al. 2014). Phenotypic modularity can be molded by 

evolution (Clune et al. 2013), and once evolved can lead to coordinated change of traits 

within a module, while still facilitating independent evolution of suites of phenotypes in 

different modules (Wagner and Altenberg 1996; Wagner et al. 2007). The definition of 

modularity is context dependent and can be investigated at multiple levels (Armbruster et 

al. 2014). Modular phenotypes may be defined by their functional interactions. Levers of 

the cichlid lower jaw (Albertson et al. 2005; Albertson and Kocher 2006) provides one 

example. Similarly in blind cavefish, hyperactivity of the gene sonic hedgehog (Shh) 

promotes increased jaw size and number of taste buds, but simultaneously inhibits eye 

development (Yamamoto et al. 2009).  

 Evolutionary modularity refers to those traits which evolve in a correlated fashion 

due to any combination of functional, genetic or developmental mechanisms for 

correlation (Armbruster et al. 2014). Identifying the mechanisms for observed 

evolutionary modularity in natural populations is a goal of evolutionary biology. 
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Independent phenotypes may covary because selection acts on both traits independently 

in the same direction (Melo and Marroig 2015), leading to covariance across populations 

and sometimes individuals. Phenotypic modularity may also be due at least in part to 

genetic or genomic factors (Pepper 2003). Correlated phenotypes may have independent 

genetic loci that are correlated through either physical linkage or gametic phase linkage 

disequilibrium. As a result, selection on one trait will lead to a correlated response to 

selection on other traits via linked selection (Wagner et al. 2007). Correlated phenotypic 

characters may also share a genetic architecture via pleiotropy or epistasis of traits that 

share aspects of developmental genetic networks (Cheverud 1988; Cheverud et al. 2004; 

Wagner and Zhang 2011). In this case, selection on one trait would lead to a correlated 

response on other genetically or developmentally integrated traits (Lande and Arnold 

1983; Marroig and Cheverud 2001; Cheverud et al. 2004).   

 The genetic and genomic basis of phenotypic modularity has been investigated 

from a variety of perspectives (Berg 1960; Lande 1979a; Cheverud et al. 1983; Phillips 

and Arnold 1989; Schluter 1996; Mezey et al. 2000; Magwene 2001; Marroig and 

Cheverud 2001; Wagner and Zhang 2011). Quantitative geneticists became interested in 

how the response to selection on multiple traits can be affected by genetic correlations, 

and initially assumed a large number of loci of small effect acting in a largely additive 

fashion (Santiago 1998; Orr 2005). This theoretical framework was subsequently 

extended to account for linkage disequilibrium (Bulmer 1971), but epistatic effects and 

linkage were assumed to be relatively weak and transitory (Barton and Keightley 2002; 

Carter et al. 2005; Barton 2017). Quantitative genetics models capture these effects via 

the genetic variance-covariance matrix, G, which is a statistical summary of genetic 

correlations among traits (Lande 1979b, 1980; Lande and Arnold 1983; Roff 2000). 

These models are largely agnostic, however, as to whether the correlations are due 

primarily to linkage or pleiotropy; discriminating between tight linkage and pleiotropy in 

natural populations is difficult (Conner 2002). Thus, the relative roles of genetic and 

genomic architectures are still unclear for evolutionary modularity in natural populations. 

 More recently, developmental biologists discovered a surprisingly conserved 

genetic toolkit for the development of even long diverged animals (Carroll 2008). The 

observation of ‘master regulatory genes’ re-ignited an interest in the possible role of 



 66 

pleiotropy on phenotypic modularity, and created a new appreciation for how genetic 

correlations may impact the trajectory of evolution (Arnold 1992; Cheverud 1996; 

Gehring 1996; Wagner and Zhang 2011). Because a phenotype is the product of genetic 

effects translated through development, phenotypic modularity may be strongly affected 

by a trait’s genetic and genomic architectures. By genetic architecture we mean the 

number of genes and alleles and their interactions which contribute to trait variation 

(Wagner and Altenberg 1996; Hansen 2006). We define genomic architecture as the 

location, distribution, and covariation of loci within a genome (Hohenlohe et al. 2012a). 

Interestingly, because it is now known that gene families often grow by tandem gene 

duplication and functional divergence, the structure of developmental genetic networks 

may link genetic and genomic modularity as the gene families evolve (Amores et al. 

1998; Cresko et al. 2003; Force et al. 2005). These modern developmental genetic 

discoveries have renewed attention on the potential role of genetic and genomic 

correlations in affecting evolutionary change, primarily at the macroevolutionary scale. 

For example, an area of focus has been the relative use of (presumably) less pleiotropic 

cis-regulatory changes than more consequential coding mutations for macroevolutionary 

change (Carroll 2008). 

 The genetic and genomic basis of very rapid evolution of correlated phenotypes in 

natural populations has been less explored (Hendry and Kinnison 1999). Recent studies 

reveal that the tempo of evolution can be much faster than previously appreciated and 

can, in fact, occur on contemporary timescales (Stockwell et al. 2003; Hendry et al. 2007) 

via adaptive changes in many phenotypes. For example, Grant and Grant (2002) showed 

that the sizes and shapes of beaks and bodies of Darwin’s finches were modified several 

times over a 30-year period in response to selective pressures. Reznick et al. (1997) 

showed that in fewer than 11 years, the descendants of guppies transplanted from high- to 

low-predation sites in natural river systems evolved life histories similar to guppies 

naturally adapted to low-predation, and Roels and Kelly (2011) found that when 

pollinators were removed in an experimental population of Mimulus guttatus, the ability 

of the population to self-fertilize improved after only 5 generations and a variety of traits, 

ranging from floral characters to life-history, also diverged. Threespine stickleback also 

show evidence that adaptive evolution from marine to freshwater environments can occur 
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at the level of the phenotype and genotype in several decades (Bell et al. 2004; 

Terekhanova et al. 2014; Lescak et al. 2015).  

 In these and many other cases, the rapid evolution involves coordinated changes 

in so-called syndromes of traits (Protas et al. 2008; Roels and Kelly 2011). In many of the 

cases the evolution of these modular syndromes occurs repeatedly in a stereotypical 

fashion (Sicard and Lenhard 2011). In the present study, our goal is to document the 

patterns of phenotypic, genetic and genomic architectures in very rapidly evolving natural 

populations. To achieve this goal we use the threespine stickleback (Gasterosteus 

aculeatus), which is an ideal system to investigate questions about the rapid and repeated 

evolution of coordinated phenotypes (Bell and Foster 1994). This small, common fish is 

distributed along coastlines across the Northern Hemisphere as a marine and freshwater 

ecotype. The marine ecotype is phenotypically and genetically similar throughout its 

range and gives rise to the freshwater ecotype after it invades freshwater environments 

(Bell and Foster 1994). Molecular data support that freshwater populations in many high 

latitude regions are often the result of multiple, independent colonization events after the 

retreat of glaciers at the end of the Pleistocene era ~18,000 yrs ago (Bell and Foster 

1994). However, despite these multiple, independent invasions of freshwater habitats, 

stickleback have repeatedly evolved towards a freshwater form which more closely 

resembles other independently derived freshwater lineages than the common marine 

ancestor both at the level of the phenotype and genotype (Hohenlohe et al. 2010). These 

observations provide compelling evidence for the adaptive nature of the derived suites of 

phenotypic traits which include modifications to body shape, trophic morphology, 

behavior, and reduction of bony armor (Barrett 2010; Barrett et al. 2011; Aguirre and 

Bell 2012; McGee et al. 2013). What is still unclear is the degree to which the 

evolutionary modularity of the freshwater and oceanic syndromes of traits are underlain 

by genetic and/or genomic modularity, or are simply the product of selection acting 

independently on numerous different traits and their myriad underlying genetic loci. 

 We focus on the contemporary evolution of threespine stickleback on Middleton 

Island, AK (Gelmond et al. 2009; Lescak et al. 2015). After the Great Alaskan 

Earthquake of 1964, islands in the Gulf of Alaska were uplifted resulting in the formation 

of new ponds, and oceanic stickleback invaders quickly evolved freshwater phenotypes to 
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provide a unique natural experiment to investigate the genetic and genomic architecture 

of correlated phenotypes (Lescak et al. 2015). We concentrate on the coordinated 

phenotypic evolution between two well-studied skeletal traits in sticklebacks— opercle 

shape and lateral plate number— that are integrated within a larger evolutionary module 

which incorporates many traits, including skeletal, behavioral, and physiological 

components, that contribute to the stickleback “freshwater syndrome” (Conte et al. 2015). 

We use these two traits for several reasons. First, both traits are ecologically relevant. 

Lateral plate number is thought to be adaptive in avoiding predation (Barrett 2010), and 

the shape of the opercle is important in the kinetics of the stickleback jaw (Jamniczky et 

al. 2014). Second, the traits are skeletal structures derived from dermal bone and 

therefore may share aspects of their genetic architectures (Colosimo et al. 2005; Kimmel 

et al. 2010). Third, opercle shape is a continuous trait while lateral plate count is a 

meristic phenotype, therefore it is also plausible that the genetic architecture of the 

variation of these traits differs (Schluter et al. 2004; Kimmel et al. 2005).  

 To understand the genetics and genomics of rapidly evolving phenotypes, we 

integrated phenotypic and genomic analyses of lateral plate and opercle traits in natural 

populations. Traditional forward genetic approaches in the laboratory, such as 

quantitative trait locus (QTL) studies, are a powerful tool to identify the genetic and 

genomic architectures of phenotypes of divergent populations (Slate 2005). In the 

stickleback system alone, QTL mapping has led to the discovery of the genetic basis of 

divergent traits such as lateral plate loss (eda), lateral plate size (gdf6), pelvic structure 

reduction (pitx1), and pigmentation changes (kitlg) (Colosimo et al. 2004; Shapiro et al. 

2004; Miller et al. 2007; Indjeian et al. 2016). QTL for many skeletal traits have been 

found to localize to similar genomic regions (Conte et al. 2015; Glazer et al. 2015). 

However, QTL mapping is challenged by the number of recombination events which 

determines QTL resolution, and many laboratory F2 mapping families are small leading 

to relatively large linkage blocks which severely limit our ability distinguish pleiotropy 

from linkage (Haggard et al. 2013). Moreover, the genetic variation of phenotypes in 

laboratory crosses is often a small subset of that in the wild, and the laboratory 

environment itself can influence trait development and modularity (McGuigan et al. 

2011).  
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 Genetic analyses of phenotypes in natural environments allows us to interrogate 

the genetic and genomic architectures of phenotypes present within natural environments. 

This general approach has long been largely inaccessible for studies of all but humans 

and a small handful of model organisms in the wild (Korte and Farlow 2013). However, 

as genomic technologies rapidly advance, a promising new approach is to use next 

generation sequencing (NGS) combined with genome wide association studies (GWAS) 

to connect genome to phenome, and to elucidate the contributions of evolutionary 

processes to the genetic and genomic architectures of rapid and coordinated phenotypic 

evolution in the wild. In this study, we have applied NGS and GWA approaches to our 

study on opercle shape and lateral plate number. We first ask if these traits covary 

because of a shared genetic or developmental basis. We do this by assessing correlations 

within and among individuals collected from two freshwater ponds and two marine 

habitats. Next, we use genome wide association (GWA) mapping in this natural 

population to uncover the genetic architecture of each of the traits.  Finally, we assess the 

extent of genomic covariation in these recently diverged populations of stickleback. 

 

METHODS 

Sample Collections  

 We compared pre- and post-1964 maps as well as aerial imagery of Middleton 

Island to identify ponds on a terrain that were submarine prior to the 1964 earthquake 

(Fig. 3.1). During the summers of 2005, 2010, and 2011 we collected stickleback from 

several these ponds using minnow traps (Table 3.1). Some ponds contained freshwater 

(salinity 0.1-1.4 ppt); others were marine (salinity 21.4-26.4 ppt). We sacrificed fish on 

site with an overdose of MS-222 anesthetic, and preserved them in 95% ethanol using 

protocols described previously (Lescak et al. 2015). 

 

Sample Preparation  

 Briefly, as per Lescak et. al. (2015), we clipped the caudal and pectoral fins for 

DNA extraction using the Qiagen DNeasy kit and assigned unique identification numbers 

to associate genotyped DNA with soma in downstream analysis. We fixed the samples in 
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10% neutral buffered formalin, bleached in a 0.05% hydrogen peroxide solution, and 

stained with a 0.1% Alizarin red S solution to identify skeletal structures, followed by 1% 

KOH destain and preservation in 70% ethanol.   

 

Phenotyping of Lateral Plates and Opercle  

 Lateral plate counts and standard length measures (anterior tip of upper jaw to 

posterior end of hypural plate; Fig. 3.2A) were collected using a tripod-mounted Canon 

digital SLR camera and Canon EOS ViewerUtility software. Only fish that were longer 

than 32 mm standard length were included to ensure we were consistently measuring 

adult phenotypes.  

Analysis of the opercle bone shape required a more detailed view of the head, so 

we also imaged the left side of the head with an Olympus SZX16 dissecting microscope 

equipped with an Olympus DP71 microscope digital camera and processed the image 

with Olympus DP Controller version 3.3.1.292. We measured opercle shape by digitizing 

the positions of eight landmarks, previously identified by Kimmel et al. (2008) and 

shown in Fig. 3.2, using the ‘tps’ software package from the State University of New 

York at Stony Brook [tpsDig vrs. 2.1 software; (Rohlf 2006)]. Using the geomorph R 

package (Adams and Otárola-Castillo 2013), we treated landmarks 1, 2, 4, and 8 as fixed 

and landmarks 3, 5, 6, and 7 as sliding semi-landmarks (Fig. 3.2B) (Bookstein 1997b). 

Landmarks 1 and 8 and semi-landmark 2 capture the opercle joint and the region where 

the opercle connects to the hyomandibula. Semi-landmark 3, 5 and landmark 4 show the 

curvature of the anterior edge of the bone which is nestled with the reciprocal curvature 

of the adjacent subopercle bone. Semi-landmarks 5 and 6 denote the points at the far 

ventral and posterior edges, between which is the opercle fan (dotted line). Semi-

landmarks 6 and 7 show the dorsal edge of the bone and the edge to which the elevator 

opercular muscle attaches to rotate the opercle, an important function in the opening of 

the jaw (Hulsey et al. 2005; Kimmel et al. 2008; Anker 2010).  
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 To eliminate variation imposed due to size, location, or orientation, we performed 

a Generalized Procrustes Analysis (GPA) with the digitized landmark configurations. 

Following the GPA, a new dataset was generated which reflected entirely shape variation 

called the “Procrustes Coordinates” (Klingenberg 2010). 

 

 

  

Figure 3.1 Middleton Island, AK 

sampling locations. A) Alaska 

with box around sampling site 

(inset). Prince William Sound and 

the Gulf of Alaska with Middleton 

Island (B) surrounded with white 

dotted line. B) Middleton Island 

collection sites coded by whether 

the site was an oceanic (OC) or a 

freshwater (FW) habitat and by 

the dominant (high or low) lateral 

plate ecotype. Darkly shaded, 

inner Middleton Island shows 

approximately the shoreline prior 

to the 1964 earthquake. Figure 

modified from (Lescak et al. 

2015b) 
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Site Island Latitude Longitude Habitat- Group Sympatry GWAS 

Mi07 Middleton 59.448 -146.325 FW-1 N N 

Mi11 Middleton 59.412 -146.338 FW-2 N Y 

Mi15 Middleton 59.463 -146.299 FW-1 N N 

Mi16 Middleton 59.429 -146.349 FW-2 N Y 

Mi17 Middleton 59.427 -146.359 OC N Y 

Mi23 Middleton 59.461 -146.296 OC N Y 

Mi08 Middleton 59.426 -146.357 FW-2 Y N 

Mi13 Middleton 59.432 -146.314 FW-2 Y N 

Mi14 Middleton 59.437 -146.311 FW-1, 2 Y N 

Mi22 Middleton 59.412 -146.333 FW-2 Y N 

Table 3.1 Sample collection data, including site name (Mi=Middleton Island), coordinates, 

habitat type based on water chemistry (FW = freshwater, OC = oceanic), freshwater grouping 

(FW-1, FW-2, based on Lescak et. al. (2015) population genomic analysis), if freshwater and 

marine stickleback were sympatric, and whether the population was included in GWAS. 
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Figure 3.2. Stickleback phenotypes measured and morphological differences. A) Gross 

morphological differences between collected marine and freshwater stickleback on Middleton 

Island. Most anterior, posterior, and supporting lateral plates (blue) are lost during the marine-

freshwater transition. The opercle bone (purple) also undergoes shape changes, and the 

positions of digitized landmarks are shown in context of the head. Standard length (SL) was 

collected for all fish. B) Opercle principal component 1 (PC1) captures the major shape 

changes during the marine-freshwater transition. Characteristic is a widening of the dorsal edge 

and reduction of the ventral region (arrows). Numbered landmarks are depicted on the marine 

opercle shape. Black landmarks are fixed, red landmarks are sliding, dotted line represents the 

shape of the fan which was not captured by our landmarks. See text for further details about 

landmark position and principal component analysis (PCA). 
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Phenotypic Statistical Analyses  

 Principal component analysis (PCA) was used in the geomorph R package 

(Adams and Otárola-Castillo 2013) to uncover the major axis of variation of opercle 

shape among individuals from Middleton Island with the Procrustes Coordinates. 

Included in this PCA were forty individuals from two post-glacial populations formed 

approximately 10,000-15,000 years ago in South Central Alaska. Twenty individuals 

were from a marine population and represented the ancestral oceanic population and the 

other twenty individuals were from a freshwater lake nearby. These South Central Alaska 

post-glacial populations were used to anchor the morphospace because the populations 

are monomorphic for divergent marine and freshwater opercle shapes. Thus, by 

overlaying opercle shapes from Middleton Island we were able to assess the extent of 

phenotypic space covered by individuals from a newly formed population. PCA was 

performed with the plotTangentSpace program (Adams and Otárola-Castillo 2013). 

When we treated different sets of landmarks as fixed or as sliders, the results of 

downstream analyses were not affected. 

 To assess if opercle shape and lateral plate number were correlated, we used a 

model I linear regression. Because lateral plate number had a bimodal distribution we 

performed a square root transformation. Opercle shapes were normally distributed and 

therefore we did not perform any transformation. All statistical phenotypic analyses were 

performed in R (R Development Core Team 2015).    

   

RAD Library Preparation and Sequence Analysis  

 All sequences we used for this study were from individuals collected from sites 

Mi07, Mi11, Mi15, Mi16, Mi17, Mi23 on Middleton Island (Fig. 3.1, Table 3.1) and the 

loci were generated as described previously (Lescak et al. 2015). Briefly, genomic DNA 

was digested with restriction enzyme SbfI-HF (NEB) and RAD-seq libraries were created 

as reported previously (Baird et al. 2008; Hohenlohe et al. 2010; Etter et al. 2011). The 

individuals used for the present study were a subset of a larger study by Lescak et. al. 

(2015) where the uniquely barcoded samples were sequenced in a total of 12 lanes on an 

Illumina HiSeq2500 platform. Each lane contained between 76-96 individuals, and on 
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average we retained approximately 72% (113 million) of a total of approximately 157 

million single end, 101 nucleotide long reads. The 101 nucleotide long reads each 

included a 6 nucleotide in-line barcode to identify individual fish. Raw reads were 

demultiplexed with process_radtags program in Stacks software suite (Catchen et al. 

2011; Catchen et al. 2013) and aligned against the stickleback reference genome (version 

BROADs1, Ensembl release 64) using GSnap (Wu and Watanabe 2005). Aligned 

sequences were processed and genotypes at each locus called using the pstacks, 

cstacks, and sstacks programs from Stacks (Catchen et al. 2011; Catchen et al. 

2013). Using the Stacks program populations, we calculated population genetic measures 

of divergence at each SNP (Fst, Phist) across all loci with a minor allele cut off of 10%.  

 

Genome Wide Association (GWA) Mapping  

 To utilize SNP data for genome wide association studies, we used the populations 

program in Stacks to output filtered SNP data (minor allele frequency cutoff, 10%; 

required at least 75% of individuals in population to possess a locus) formatted for 

PLINK from the 21 linkage groups and five largest scaffolds (Purcell et al. 2007). We 

used PLINK, along with our generated phenotype files, to prepare a binary PED file from 

the PED and MAP output files from Stacks, which is compatible with the Genome-wide 

Efficient Mixed-Model Association (GEMMA) software package (Zhou and Stephens 

2012).  

 We used lateral plate count and the first principle component of opercle shape 

PCA for association mapping with the SNPs that passed quality control filters in Stacks 

(Catchen et al. 2011; Catchen et al. 2013). We completed association mapping for each 

trait using the univariate linear mixed model (LMM) implemented in the GEMMA 

software package (Zhou and Stephens 2012), in which each SNP is assumed to have 

some effect on the trait. The LMM accounts for population structure by using a 

relatedness matrix as a covariate.  

 We controlled for population structure in our GWAS by using one of four 

relatedness matrices: 1) A mean centered relatedness matrix generated within GEMMA 

(Zhou and Stephens 2012). By default, GEMMA filters out SNPs with a minor allele 
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frequency (MAF) above 1%, missingness below 5%, and correlation with a covariate 

above r
2
=0.9999. Because quality filtering was previously done in Stacks (Catchen et al. 

2011; Catchen et al. 2013), we modified the defaults to ensure that all SNPs were used 

both in building the relatedness matrix and in the subsequent association. 2) A relatedness 

matrix calculated from a PCA based on a 1000 randomly selection SNPs. We performed 

the PCA in the program GenoDive (Meirmans and Van Tienderen 2004) and extracted 

the first principle component. We followed Sul and Eskin (2013) and used the outer 

product of the PC1 vector to create a square relatedness matrix. 3) A relatedness matrix in 

GEMMA (Zhou and Stephens 2012) only from SNPs extracted from linkage group 4, a 

linkage group highly divergent between marine and freshwater populations (Hohenlohe et 

al. 2010). 4) A relatedness matrix in GEMMA only from SNPs extracted from linkage 

group 15, a linkage group with little divergence between marine and freshwater 

populations (Hohenlohe et al. 2010). We visualized all relatedness matrices to assess the 

population structure used by the LMM to control for spurious associations in R (R 

Development Core Team 2015).  

 We performed all associations in GEMMA (Zhou and Stephens 2012), again 

adjusting parameters to ensure that all SNPs were included in analyses as above. In order 

to account for ‘proximal contamination’, the phenomenon where the power to identify a 

causative SNP is reduced because the causative SNP is fitted to the model twice, once in 

the relatedness matrix and again in the association, we used a ‘leave one chromosome 

out’ method where we created relatedness matrices for all linkage groups except for the 

linkage group used in the association (Listgarten et al. 2012; Pallares et al. 2015).                                     

 

Determining Genome-Wide Significance Thresholds via Permutations  

 To account for multiple testing, we determined the genome-wide significance 

threshold for each phenotype by permutation. We performed association mapping on 

1,000 permuted datasets. In these datasets, phenotypes were randomized but the 

genotypes were kept intact. We recorded the minimum p-value for each statistical test 

(Wald, LRT, Score), and we used the 95% quantile from the p-value distribution as the 

genome-wide significance threshold (Pallares et al. 2014).   
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Analysis of Linkage Disequilibrium  

 We tested all pairwise combinations of SNPs for genotypic linkage disequilibrium 

(LD) by calculating the squared correlation coefficient (r
2
) in PLINK 1.07 (Purcell et al. 

2007). We used the Stacks populations program to output a reduced dataset for LD 

analysis with only one SNP per RAD locus. This reduced the number of pairwise 

comparisons and the number of SNPs with r
2
 values of 1 due to tight physical linkage. 

We did not remove all pairwise SNPs across the genome with high r
2
 values because we 

wanted to identify long distance genomic correlations.  

 

RESULTS 

Middleton Island Stickleback Display Extensive Phenotypic Variation across the 

Ocean-Freshwater Phenotypic Range  

 We analyzed wild caught stickleback (n=480) from ten populations on Middleton 

Island, a subset of those described in Lescak et al. (2015) (Fig. 3.1). We analyzed two 

populations (Mi17, Mi23) from marine habitats that contained only individuals classified 

as marine based on phenotype and genotype. Four populations (Mi07, Mi11, Mi15, 

Mi16) were collected from freshwater habitats that contained only individuals classified 

as freshwater based on phenotypic and genotypic data. The remaining four populations 

(Mi08, Mi13, Mi14, and Mi22) from freshwater habitats contained both freshwater and 

marine stickleback in sympatry. They were only used in phenotypic analysis (Table 3.1).  

 Interestingly, multiple population genomic analyses from Lescak et al. (2015) - 

including STRUCTURE, pairwise Fst, and Principle Component Analysis (PCA) - 

supported the presence of two distinct clusters of freshwater stickleback from the ponds 

which contained only freshwater individuals. These analyses showed that Mi07 and Mi15 

were distinct from freshwater populations Mi11 and Mi16. Therefore, for the rest of this 

paper, we follow the convention presented in Lescak et al. (2015) and analyze individuals 

collected from Mi07 and Mi15 as Freshwater group-1 (FW-1), and individuals collected 

from Mi08, Mi11, Mi13, Mi14, Mi16, and Mi22 as Freshwater group-2 (FW-2). More 

recent analyses showed that in ponds containing both freshwater and marine ecotypes, the 



 78 

marine stickleback are likely recent migrants from the ocean, and that the freshwater fish 

are the older, resident population that has rapidly adapted to the freshwater environment 

in fewer than 50 years (Lescak et al. 2015). 

 The majority of stickleback we analyzed from marine habitats on Middleton 

Island had a full set of lateral plate armor. As expected, individuals from freshwater 

habitats, and not sympatric with marine stickleback as defined by phenotype or genotype 

(Table 3.1), displayed stereotypical lateral plate loss. These freshwater individuals have 

lost the majority of their keel and posterior lateral plates and display a reduction of the 

number of the anterior and supporting plates (Fig. 3.2).  

 We found that of the 479 individuals we analyzed, the distribution of lateral plate 

counts was bimodal, and very few individuals had intermediate numbers of plates (Fig. 

3.3A). Across all phenotyped populations used in this study, we assume that plate count 

is a good measure for a marine or freshwater genotype. Despite the presence of high 

plated fish in sympatry with low plated fish in freshwater habitats in several ponds, 

lateral plate count still appears to correlate with a fish’s marine or freshwater genotype 

(see above). 

 We assessed opercle shape change with geometric morphometrics using 

previously identified landmarks (see Methods), and we reduced shape dimensionality 

using PCA. We captured the marine-freshwater transition largely with PC1 (62% of the 

variation; Fig. 3.3B) which is defined by a characteristic widening of the dorsal region 

and reduction of the ventral region (Fig. 3.2B). The PCA with Middleton Island 

individuals included a marine and freshwater population from South Central Alaska 

which are thousands of years old. These older populations occupied the extremes of the 

phenotypic space along PC1 and did not overlap, (Fig. 3.3B, shaded rectangles). By 

contrast, opercle shapes from Middleton Island individuals spanned the entire phenotypic 

space between older marine and freshwater Alaskan populations with many individuals 

occupying the intermediate space (Fig. 3.3B).  
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Figure 3.3  Distribution of lateral plate count and opercle PC1 phenotypes across 480 

stickleback on Middleton Island. A) Distribution of lateral plate count is bimodal. Individuals 

with fewer plates (low ecotype) were considered resident freshwater, while individuals with a 

nearly complete set of lateral plates (high ecotype) were considered marine. In some cases, it 

appeared that marine fish were the product of very recent introductions into freshwater 

habitats and had not yet adapted to the freshwater environment (Lescak et al. 2015). Line 

drawings of lateral plate morph (blue) stereotypical marine and freshwater stickleback below 

the extremes of the phenotypic range. B) The distribution of opercle shape along PC1 spans 

the phenotypic range between stereotypical marine and freshwater shapes and includes 

intermediates. Included in the PCA were individuals from 10,000-15,000 year old post glacial 

marine and freshwater populations which are divergent and monomorphic for opercle shape 

to facilitate visualization of the boundaries of opercle shape, marine-freshwater divergence 

(gray boxes, see methods). The most extreme PC1 shapes are shown, opercle PC1 account for 

approximately 61% of variation among these individuals. 
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Coordinated Dermal Bone Evolution of Stickleback Occurs in Decades  

 Stereotypical and coordinated phenotypic evolution of skeletal, physiological, and 

behavioral traits is observed during the marine to freshwater transition comprising a 

freshwater syndrome (Bell and Foster 1994). We focused on two of these traits, a marked 

reduction in the number of lateral plates and changes in opercle shape along the PC1 axis 

which are wider in the dorsal region and reduced in the ventral region than the marine 

ancestors. We used a linear regression model and measured the correlation between 

lateral plate and opercle PC1 shape across all individuals on Middleton Island (n=480). 

Because phenotypically marine and freshwater individuals were present in sympatry in 

several freshwater sites, we classified individuals as marine or freshwater based on lateral 

plate number rather than the habitat from which they were sampled (Table 3.1). We 

found that opercle shape and lateral plate number were correlated across phenotypically 

marine (high plated) and freshwater (low plated) individuals (r
2
=0.526) but weakly 

correlated within groups of only high or only low plated individuals (r
2
=0.116, r

2
=0.008 

respectively) (Fig. 3.4, Table 3.2). 

 We used marine individuals from Mi23, Mi17 and freshwater individuals from 

FW-2 (n=154) for subsequent analyses to reduce population structure imposed by pooling 

individuals from different freshwater populations. To ensure that phenotypic correlations 

in the marine and FW-2 subset reflected phenotypic correlations found across all 

individuals on Middleton Island, we compared the correlations between the groups. We 

found that like all individuals sampled on Middleton Island, correlations between opercle 

shape and lateral plate number in this subset were strong among high and low plated 

individuals (r
2
= 0.594) and weak within only low or high plated individuals (r

2
= 0.013, 

r
2
= 0.126; Fig. 3.4, Table 3.2) 
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Figure 3.4 Correlation between lateral plate number (square root transformed) and opercle PC1 

scores. All individuals from Middleton Island included in regression analysis are represented by 

open circles, filled gray circles, and black squares. Individuals represented by filled gray circles 

(FW-2 individuals captured from freshwater environments) and filled black squares 

(individuals captured from marine ponds) represent those individuals used subsequently in 

GWAS. Regression line plotted and r2 value was determined using all the individuals 

phenotyped on Middleton Island. For details about regression analysis within and among 

populations see Table 3.2) 
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Populations n r r2
 Intercept  

(-\+ 97.5% CI) 

Slope  

(-/+ 97.5% CI) 

All: Middleton Island 

Among - high/low 

480 -0.725 0.526 0.109 (0.100,0.119) -0.029 (-0.032,-0.027) 

All Middleton Island 

Within- low plated morph 

249 -0.093 0.008 0.081 (0.027,0.136) -0.017 (-0.041,-0.005) 

All Middleton Island 

Within- high plated morph 

231 -0.341 0.116 0.281 (0.165,0.398) -0.063 (-0.086,-0.040) 

GWAS: Middleton Island 

Among - high/low  

154 -0.771 0.594 0.056 (0.048,0.064) -0.038 (-0.004,-0.003) 

GWAS: Middleton Island  

Within- low plated morph 

81 -0.116 0.013 0.078 (-0.003,0.160) -0.018 (-0.053,-0.016) 

GWAS: Middleton Island 

Within- high plated morph 

73 -0.356 0.126 0.319 (0.093,0.545) -0.070 (-0.115,-0.026) 

 

Relatedness among Individuals on Middleton Island Reveals Strong Population 

Structure  

 We evaluated population structure by calculating a mean-centered relatedness 

matrix in GEMMA. Pairwise comparisons among FW-2 individuals showed that they are 

closely related, as did similar comparisons in the marine populations. The pairwise 

relatedness coefficients were normally distributed within populations, however, several 

pairs of individuals sampled from each of the marine and freshwater ponds appeared to 

be more closely related than others and likely reflect individuals sampled within a family. 

Because we use a mean centered relatedness matrix, the relatedness coefficients are not 

the realized relatedness between individuals. Rather, they are a scaled coefficient based 

on mean centering and therefore should not be interpreted as actual relatedness 

coefficients among individuals. Pairwise comparisons among marine and freshwater 

individuals revealed a distribution of negative relatedness coefficients. This indicates that 

individuals sampled from marine and freshwater environments were more distantly 

Table 3.2 Model II regression analysis (Major Axis): lateral plate count (square root 

transformed) and opercle PC1 scores. Within group regressions were with individuals with 

either high or low plate morphologies. Among group regressions grouped together all plate 

morphologies. Populations include all individuals on Middleton Island and only those used for 

GWAS 
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related to each other than they were from individuals sampled from the same 

environment which reveals the structured nature of the populations used for GWAS (Fig. 

3.5A). 

 We also evaluated relatedness and population structure with a second method that 

uses a PCA of 1000 randomly selection genotypes (see Methods). This method of 

analysis yielded a distribution of relatedness coefficients that was similar to those 

obtained by the mean-centered relatedness matrix. However, unlike the relatedness 

matrix generated in GEMMA, the PCA analysis did not appear to show the familial 

relationship between a few individuals (Fig. 3.5B).  

 

Controlling for Population Structure Created by Strong Divergent Selection in GWAS  

 Controlling for population structure is critical in GWAS, and if not done 

sufficiently can lead to spurious associations. While the general need to control 

population structure is well accepted for GWAS, the best way to do so is still unresolved. 

The chief reason is that population structure is often not generated equally across the 

genome (Charlesworth 2006) nor among species (Ellegren et al. 2012). Therefore, finding 

a single solution is now recognized as a significant challenge. If structure is primarily 

driven by drift, and the role of selection on specific genomic regions has been minor, then 

calculating average relatedness among individuals across the genome, is effective 

(Balding 2006; Astle and Balding 2009). However, if selection has played a prominent 

role in shaping genomes, controlling for population structure will be problematic because 

not only does the action of selection cause heterogeneity across the genome, but the mode 

of selection can create different kinds of population structure. In this scenario, calculating 

an average relatedness may be an ineffective method to control for structure (Price et al. 

2010; Price et al. 2013; Sul and Eskin 2013). At present, the most common methods 

estimate across many loci to derive an average, and presumably, stable point estimate 

(Sul and Eskin 2013). We evaluate these below.   
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Figure 3.5 Stacked density bar plot of relatedness coefficients between all pairwise 

combinations of 155 individuals used for GWAS (marine and FW-2). Mean center is 

0. Colors indicate from which environment the individuals were sampled. The 

freshwater individuals are from FW-2 population. A) Mean centered relatedness 

calculated within the GEMMA software (Zhou and Stephens 2012). B) Relatedness 

derived from PCA with 1000 random genotypes. The PC1 outer product was used to 

calculate the matrix (see Methods) (Sul and Eskin 2013).  
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 As described in the above section, we visualized relatedness among individuals 

using a mean-centered relatedness matrix produced in GEMMA and an PCA based 

matrix formed from the outer product of PC1. These methods are widely used in GWAS 

(Pallares et al. 2014; Delmore et al. 2016). We tested each method to determine if either 

method was more suitable for our stickleback system on Middleton Island. With the 

mean-centered relatedness matrix, we used several approaches to generate matrices from 

a variety of SNP combinations. When we assessed population structure by visualizing 

relatedness matrices using either all SNPs across the genome, or SNPs from linkage 

groups that were divergent (i.e. LG 4) between marine and freshwater populations, we 

found that individuals compared within groups (marine v. marine; freshwater v. 

freshwater) were more closely related (positive relatedness coefficients) to one another 

than comparisons between marine and freshwater groups (negative relatedness 

coefficients) (Fig. 3.5). Associations with these matrices to control for population 

structure showed regions associated with lateral plate count on linkage groups 4, 7, 11, 

12, 19, 20, 21 (Fig. 3.6C,E). Genomic regions associated with opercle PC1 shape were 

localized to linkage groups 4, 7, 11,12, 19, 20, and 21 (Fig. 3.7).  

 In contrast, when we used genomic regions where no population structure exists, 

the relatedness matrix was not effective in eliminating spurious associations. We 

evaluated population structure by visualizing a relatedness matrix generated only from 

SNPs in a genomic region where, based on Fst analysis, little divergence occurs. Using 

linkage group 15 we found that all combinations of comparisons among individuals and 

populations were normally distributed around a mean-centered relatedness coefficient of 

zero. This indicates that no population structure exists at this genomic region between the 

marine or freshwater populations (Fig. 3.6A,D). However, if this matrix is used to control 

for population structure in a GWAS, all divergent regions across the genome are strongly 

associated with lateral plate count. This suggests that using a genomic region which is not 

structured and does not reflect structure elsewhere in the genome is an inadequate control 

for GWAS in these stickleback populations.   

 Lastly, we assessed a relatedness matrix from the outer product of PC1 calculated 

from a PCA of 1000 randomly selected genotypes from all individuals. As described 

above, in visualizing this matrix we found that, like the ‘all SNP’ relatedness matrix 
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produced in GEMMA, the PC1 generated matrix nicely showed the lack of structure 

within populations (positive coefficients) and showed strong structure present between 

marine and freshwater populations (negative coefficients). When we used the PC1 matrix 

to control for population structure in a GWAS for lateral plate count we found that many 

of the more moderately associated peaks on linkage groups 11, 12, 19, and 20 fell away 

(Fig. 3.7).  

 Because we expected eda to be associated with lateral plate count, we were 

encouraged to see that the association at this genomic region on LG 4 was still present, 

and that the second two peaks on the right side of the linkage group had fallen away (Fig. 

3.7). Peaks on LG 7 and 21 were still present. When we used the PC1 matrix to control 

for population structure in an association with opercle shape, we found a similar pattern 

as we saw with lateral plate association, that many of the more moderately associated 

peaks on linkage groups 11, 12, and 19 disappeared. Interestingly, however, of the SNPs 

that remained associated on linkage groups 4, 7, 20, and 21, clusters of SNPs grouped to 

approximately the same p-value.  

 We determined that controlling for population structure was effective using either 

a relatedness matrix generated with GEMMA using all SNPs across the genome, or using 

the PC1 outer product matrix from 1000 randomly selected loci. However, the PC1 

matrix does appears to be more conservative.  
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A 

B 

C 

D 

E 

F 

G 

H 

Figure 3.7 GWAS to identify genomic regions associated with lateral plate count (blue) and 

opercle shape (purple) using an "all SNP” relatedness matrix calculated in GEMMA (A, C, E, 

G) and a relatedness matrix derived from the PC1 outer product of a PCA on genotypes (B, D, 

F, H). Significance is reported as -log10 p-values from Wald’s test. Genome wide significance 

line for each phenotype is represented as horizontal dashed lines (blue=lateral plate, 

purple=opercle shape). In (A), small horizontal black dashes represent the locations of known 

inversions (Jones et. al. 2012). Arrows identify genomic positions where previously identified 

genes have been implicated in traits contributing to the “freshwater syndrome” (see text for 

details). Alternating gray boxes represent chromosome boundaries with chromosome numbers 

identified. Individual chromosomes 4, 7, and 21 are shown to detail differences in GWAS 

results depending on relatedness matrix used. Genomic divergence (Fst) is shown above 

individual chromosomes. Horizontal dashed lines (G, H) depict large inversion on chromosome 

21.  
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Genomic Regions Associated with Lateral Plate Number and Opercle Shape are Co-

Localized  

 We identified significant associations for both lateral plate count and opercle PC1 

shape after controlling for population structure using a GEMMA generated relatedness 

matrix with all SNPs and a proximal contamination approach. The genome-wide 

significance threshold for lateral plate count was determined to be p < 3.74x10
-06

 through 

permutations (see Methods). In addition, SNPs above the defined significance level 

localize to linkage groups 1, 4, 7, 11, 12, 19, 20, and 21. Except for linkage group 1, 

genomic regions significantly associated with opercle PC1 shape variation (p < 1.64x10-

06
) appear to co-localize with genomic regions associated with lateral plate count (Fig. 

3.7).  

 For each SNP the significance of the association in a p-value from three tests can 

be calculated in GEMMA: the Wald test, likelihood ratio test (LR), and the score test. 

Wald’s test consistently showed the most significant associations, followed by the LR 

test, followed by the score test which reported that no SNPs were significantly associated 

with either phenotype. The most highly associated SNPs were largely the same across 

tests, but the p-values fluctuated. We were concerned about which test statistic to report 

given the variation in number of, and degree to which, SNPs were associated with the 

phenotype, and because p-values can be unstable depending on effect size and sample 

size. We evaluated the -log10(restricted maximum likelihood estimates) and determined 

that these estimates were most congruent with p-values calculated with Wald’s test (Fig. 

3.8). P-values from Wald’s test and the LR test are most commonly reported in GWAS 

(Pallares et al. 2014; Pirie et al. 2015), and based on the restricted maximum likelihood 

estimates, we report Wald’s test. 
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 To determine if any genomic regions significantly co-varied between lateral plate 

count and opercle PC1 shape, we used a multivariate linear mixed model approach in 

GEMMA. We again controlled for population structure using the GEMMA generated 

relatedness matrix with proximal contamination control, and we found that genomic 

regions on linkage groups 4, 7, 11, 12, 19, 20, and 21 were significantly associated with 

covariation between lateral plate and opercle PC1 shape. This finding supports our 

previous finding that dermal bone evolution is correlated among marine and freshwater 

populations. Our result also extends our findings with univariate analysis to suggest that 

the genomic regions responsible for correlated dermal bone evolution corresponded to a 

subset of regions which are most divergent between populations as calculated by the 

population genetic differentiation statistic, Fst  (Fig. 3.9). 

 

 

 

 

 

 

 

 

 

 

________________________________________________________________________ 

Figure 3.9 Univariate (A, B) and multivariate (C) GWAS are colocalized to genomic regions of 

divergence (D). Lateral plate number (A) and opercle shape (B) variation individually map to 

genomic regions of divergence (Fst, D). Covariation between lateral plate number and opercle 

shape is also associated with genomic regions most divergent between the marine and freshwater 

populations (C).  
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Extensive Genomic Covariation among Marine and Freshwater Populations  

 We tested for long-range linkage disequilibrium (LD) by calculating r
2 

correlations between all pairwise combinations of SNPs across the genome (see 

methods). Within the group of individuals sampled from marine populations, we did not 

find evidence for widespread LD, however we did find a segment of LD within linkage 

group 19 in the non-recombining region which indicates the both males and females were 

present our sample. Furthermore, a portion of this block appeared to be in long-range LD 

with small regions on linkage group 7 and 9 and could suggest assembly error. LD was 

present within linkage blocks, but was minimal. Individuals from the FW-2 population 

were sampled from ponds on adjacent sides of the island and display slightly stronger 

genomic covariation within linkage groups than individuals from the marine population. 

Within linkage group LD may represent local adaption in each of the ponds, however, 

overall genome wide covariation was minimal except for long-range LD between linkage 

group 19 and linkage groups 7 and 9.  

 We also calculated long-range LD among individuals pooled from marine and 

freshwater populations which made up the sample population used for GWAS. Even 

within only 50 years of evolution, we found evidence for extensive genomic covariation, 

both short-range (within linkage groups) and long-range (across the genome), which 

highlights the dramatic and rapid creation of structure between marine and freshwater 

populations (Fig. 3.10). The blocked and heterogeneous nature of the LD between these 

populations strongly implicates natural selection as a major driver of population structure 

rather than drift which would largely affect the whole genome uniformly. Additionally, 

the large blocks of LD co-localize to regions of divergence, as measured by Fst, and 

house genomic regions of association with lateral plate number and opercle shape 

identified through GWAS (Fig. 3.10). 
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DISCUSSION 

Opercle Shape and Lateral Plate Phenotypes Can Evolve in a Coordinated Fashion in 

Decades  

 Historically phenotypic evolution was thought to take many thousands of 

generations to generate discernible differences among populations or species of 

organisms (Bell 2001). More recently, that view has been challenged with numerous case 

studies of rapid evolution across a variety of taxa (Hendry and Kinnison 1999; Hendry 

2000; O'Steen et al. 2002; Kopp and Matuszewski 2013; Lescak et al. 2015). The 

tremendous phenotypic diversification of marine stickleback into post-glacial freshwater 

environments has received considerable attention as a model system to study rapid 

evolution on the order of only about 10,000-15,000 years (Bell 2001; Peichel et al. 2001; 

Colosimo et al. 2004; Cresko et al. 2004). However, it is now known that nearly the same 

extent of phenotypic evolution seen in 10-15,000 years can actually occur on the order of 

decades (Bell et al. 2004; Aguirre and Bell 2012; Lescak et al. 2015). Several studies in 

stickleback have investigated the very rapid evolution of lateral plate loss, gill raker 

number, body shape change, cold tolerance, and opercle shape changes (Aguirre et al. 

2004; Albert et al. 2008; Barrett et al. 2011; Kimmel et al. 2012a) that can occur over 

ecological time scales. Our findings, in which we show that lateral plate count and 

opercle shape are correlated across populations, integrate into this body of literature and 

show that a coordinated evolution of trophic morphologies and body armor can occur 

during a time frame of only decades. Although these are only two phenotypes, Lescak et. 

al. (2015) showed similar patterns of rapid evolution across many phenotypes in these 

population. These and other results in different populations of stickleback indicates that 

the phenotypes that comprise the freshwater syndrome, including trophic morphology 

and body armor, and likely physiological and behavioral traits as well, can evolve very 

rapidly. The degree to which this coordinated evolution over mere decades is facilitated 

by genetic and genomic modularity is largely unknown.    

 

Independent Genetic Architectures Underlie Coordinated Phenotypic Evolution 
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 Our data argue that rapid, coordinated phenotypic evolution of lateral plate 

number and opercle shape is not due to selection on completely independent loci, nor is it 

due to loci that exhibit pleiotropic effects for the genetic architecture of both traits. We 

showed that among marine and freshwater populations the correlation between lateral 

plate number and opercle shape was strong, but that within the marine or freshwater 

populations, the correlation was quite weak (Fig. 3.4). If pleiotropy were the primary 

contributor to correlated phenotypic variation, we would expect these correlations to be 

present both among and within populations (Armbruster and Schwaegerle 1996). Our 

findings may not be surprising when we consider that the way we measured the traits, 

meristic vs. morphometric, likely reflects aspects of the traits that may be regulated by 

fundamentally different genetic or developmental mechanisms.  

 Even within the same stickleback trait, the genetic basis can be different 

depending on the perspective from which the trait is analyzed. For example, stickleback 

laboratory mapping studies have identified the major effect locus of lateral plate count to 

be eda on chromosome 4 but that the major effect locus of lateral plate height and width 

is located on chromosome 20 and includes gdf6 (Colosimo et al. 2004; Colosimo 2005; 

Indjeian et al. 2016). Differences in the genetic architectures of meristic and shape 

phenotypes within lateral plates supports our interpretation that opercle shape is likely 

regulated by different mechanisms than lateral plate count. 

 While we argue that pleiotropy does not make a major contribution to the 

correlation of phenotypic variation present at the time of sampling, we recognize that 

pleiotropy may still play a role perhaps early in the process of phenotypic divergence. 

Because our correlation analysis only reflects phenotypic variation currently present, it is 

possible that some loci with pleiotropic effects on the phenotype were fixed between 

populations prior to sampling. Regardless, our results suggest that pleiotropy is not a 

predominate force facilitating rapid, correlated evolution on Middleton Island only 50 

years after invasion of marine stickleback into freshwater ponds. Although such rapid, 

coordinated evolution could occur through the independent action of uncorrelated loci, 

another possibility is that loci for the two traits are genomically localized. 
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Genetic Architectures of Phenotypic Variation Co-Localize to Genomic Regions  

 Despite the finding of independent loci contributing to each trait, our GWAS 

show that the genetic architecture of the phenotypic variation clusters to similar genomic 

regions on LG 4, 7, 21 and additionally to LG 11, 12, 19, and 20 depending on how 

population structure is controlled (Fig. 3.7). Previous QTL mapping studies in threespine 

stickleback have generally implicated these linkage groups as housing genetic variation 

for the traits that comprise the freshwater syndrome (Colosimo et al. 2004; Miller et al. 

2014; Conte et al. 2015; Erickson et al. 2016). However, these different mapping studies 

reveal that the observed relationship among linkage groups and these phenotypes varies 

geographically. This variability is probably due to a combination of differences in 

methodology - such as how the traits are measured and crossing design - as well as true 

biological differences such as the populations from which individuals were sampled for 

genetic crosses or the genetic variants captured in particular crosses. For example, QTLs 

associated with opercle shape changes, captured by linear measurements, localized to LG 

19 and 3 in an F2 derived from a cross between marine and freshwater individuals from 

South Central Alaska (Kimmel et al. 2005). However, QTLs associated with opercle 

shape captured by slightly different linear measurements than in Kimmel et. al. (2005), 

were identified on LGs 1 and 7 in an F2 family derived from a cross between a Japanese 

Pacific marine and a Paxton Lake (British Columbia) benthic freshwater pair (Miller et 

al. 2014). Furthermore, when opercle shape was measured using a landmark based 

analysis in F2 progeny from a cross between a freshwater benthic and a limnetic species 

pair in British Columbia, QTL were identified on LGs 2, 4, 6, 7, 9, and 13 (Conte et al. 

2015).  

 These differences in QTL mapping results could reflect inter-population 

variability. Unlike lateral plate count, opercle shape is thought to be a more complex 

polygenic trait (Kimmel et al. 2005), and it is plausible that the contribution of each locus 

to shape may differ between populations. These data also suggest that different aspects of 

shape changes are governed by several different genomic regions (Huycke et al. 2012). 

Regardless, previous studies show the clear trend that QTL associated with multi-trait 

evolution are localized to similar LGs and often cluster to similar genomic regions within 

those LGs (Malek et al. 2012; Miller et al. 2014; Conte et al. 2015). Our GWAS data 
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extend previous research by showing that the loci identified in laboratory QTL studies 

also cluster and contribute to trait variation in natural populations. 

 

Genetic Structure in These Young Populations is Created Primarily by Divergent 

Natural Selection  

 Both the pattern and the speed at which population structure (measured by LD 

quantified as r
2
) is generated between marine and freshwater individuals on Middleton 

Island are striking. We found large LD blocks that are congruent with divergent regions 

(Fst) and span adaptive chromosomal regions known to harbor genes involved in repeated 

lateral plate loss (eda, LG 4) and pelvic structure loss (pitx1, LG 7) (Cresko et al. 2004; 

Shapiro et al. 2004). The speed at which these linkage blocks were created precludes the 

role of de novo mutation or drift as major drivers. Instead, extensive intra-chromosomal 

LD suggests that mechanisms that suppress recombination, such as inversions or 

translocations, may play an important role in coordinate phenotypic evolution via linked 

selection (Hohenlohe et al. 2012a). If alleles that contribute to multiple traits critical in 

the marine to freshwater transition are located in proximate genomic regions, reduced 

recombination would lead to these alleles being linked and allow them to segregate as a 

unit in the oceanic population (Hohenlohe et al. 2012a). For example, we showed in our 

GWAS that alleles that contribute to both lateral plate count and opercle shape may be 

harbored within a known 2Mb inversion on LG 21 which is encompassed by a large 

block of LD and which is divergent between marine and freshwater populations. Any 

mechanisms of reduced recombination, whether genetic or genomic, would serve to 

facilitate linked selection. 

 Unlike observations made by Hohenlohe and colleagues (2012a), we did not find 

evidence for intra-chromosomal or long-distance LD within the marine populations. 

Common to the stickleback system is that gene flow will occur from freshwater to marine 

populations (Hohenlohe et al. 2012a), constantly replenishing the panmictic marine 

population with freshwater alleles which aids in the maintenance of standing genetic 

variation (Barrett and Schluter 2008; Terekhanova et al. 2014). Similar to expectations 

expressed by Colosimo et. al. (2005) and Barrett et. al. (2008) that freshwater alleles are 
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present in the marine population, but at a very low frequency (estimated at ~1%), our 

results suggest that the frequency at which the freshwater alleles segregate in marine 

populations is remains low enough to go undetected in LD patterns. Given the relatively 

few fish sampled (20 individuals) by Hohenlohe et. al. (2012a), we suggest that LD found 

in marine populations in that study was the result of the stochasticity of sampling. The 

freshwater populations do show some intra-chromosomal LD patterns but nearly no long-

distance LD (Fig. 3.10). LD at linkage group 19 indicates the non-recombining region of 

the sex chromosome and suggests the presence of both males and females in the sample.  

 

GWAS Results for the Phenotypes Are Not Only due to the Underlying Population 

Structure  

 Correctly inferring genetic causation from GWAS depends on the appropriate 

control of underlying population structure to minimize spurious associations (Astle and 

Balding 2009). Examining stickleback populations that span marine-freshwater habitats 

and phenotypes is a strength of our GWAS design. However, because of the strong 

patterns of LD created by selection, one concern is that the associations we identified 

may only reflect the underlying population structure of pooled marine and freshwater 

populations and not the genetic architecture of the phenotypic variation of interest 

(Mezmouk et al. 2011). We addressed this concern by controlling for population structure 

in a variety of ways. These included using freshwater populations that cluster together on 

a neighbor joining tree to reduce within freshwater population structure (Lescak et al. 

2015), a mean centered relatedness matrix generated within GEMMA which included all 

SNPs across the genome, a mean centered relatedness matrix generated from SNPs only 

within linkage groups that were heavily divergent (i.e. LG 4, 7) and alternatively from 

linkage groups with no divergence (i.e. LG 15) (Zhou and Stephens 2012), and a PC1 

outer product relatedness matrix generated from 1000 random loci across the genome (for 

details see Methods) (Price et al. 2010; Sul and Eskin 2013).  

 If the associations identified in our GWAS only reflected population structure due 

to the marine-freshwater transition, we would expect that lateral plate count and opercle 

shape would associate with all genomic regions that are shown to be divergent between 
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stickleback in oceanic and freshwater habitats. In fact, when we control for population 

structure using only SNPs from a genomic region where we know there is little structure 

between marine and freshwater individuals (LG 15), we show that for each lateral plate 

and opercle shape phenotype, we identify significant associations that recapitulate 

divergence across all genomic regions that diverge between marine and freshwater 

populations (Fig. 3.6A). Conversely, when we control for structure using SNPs from a 

genomic region that we know to be highly divergent and displays population structure 

between marine and freshwater individuals, we show that only a subset of the peaks for 

each phenotype remain (Fig. 3.6B). Taken together, these results suggest that although it 

is challenging, by choosing the appropriate genomic regions we can control for 

underlying population structure and that we can minimize spurious associations. 

 Our GWAS results also contain one positive and several negative controls. 

Previous studies demonstrated that eda is the major effect locus for lateral plate count 

during the marine to freshwater transition (Colosimo et al. 2005). In our study, we 

identified a genomic region on LG 4 that is significantly associated with lateral plate 

count and that contains the eda gene (Fig. 3.7). Other traits associated with the marine to 

freshwater transition, such as pelvic structure loss, pigmentation changes, and differences 

in lateral plate width and height have been attributed to pitx1, kitlg, and a region 

containing gdf6, respectively (Shapiro et al. 2004; Miller et al. 2007; Indjeian et al. 

2016). None of the genomic regions that contain these genes was significantly associated 

with either lateral plate loss or opercle shape change (Fig. 3.7). Together, these data 

provide additional strength to our argument that the genomic regions associated with 

lateral plate count and opercle shape reflect the underlying genetic architecture of the 

traits.  

 

Variation in Method for Controlling Population Structure Subtly Affects Mapping 

Results  

 We found that using two different methods to control for population structure, 

mean centered relatedness matrix and PC1 relatedness matrix, provided differences in the 

number of genomic regions associated with each phenotype, as well as the width and 
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number of SNPs within those regions. When we used the centered relatedness matrices 

calculated within the program GEMMA (Zhou and Stephens 2012), and account for 

“proximal contamination” (Listgarten et al. 2012; Pallares et al. 2014; Yang et al. 2014), 

we identified seven large, wide peaks associated with lateral plate count and opercle 

shape which localize to similar genomic regions (Fig. 3.7). However, when we use a PC1 

relatedness matrix, which Sul and Eskin (2013) argue more adequately corrects for 

population structure than a centered relatedness matrix in a linear mixed model with a 

highly structured population, only three of these peaks contained SNPs that reached our 

estimated genome wide significance level (Fig. 3.7). All of the peaks we identified using 

each relatedness matrix co-localize to regions of divergence between marine and 

freshwater populations (Fig. 3.7C-H). Furthermore, where we found large, wide peaks 

across genomic regions using a centered relatedness matrix, we found narrow peaks. We 

were still unable to untangle specific genomic regions associated with lateral plate count 

and opercle shape using a PC1 relatedness matrix, however.  

 We speculate these differences in the identified associations were due to how well 

population structure was controlled in each case. Our results suggest that Sul and Eskin 

(2013) were correct in their interpretation that a PC1 relatedness matrix may better 

control for highly structured populations, which may be particularly true in situations as 

we encounter here where the population structure and phenotypic divergence are both 

created by the actions of natural selection. Using a PC1 relatedness matrix, we found that 

many of the associations that we saw when using the mean relatedness matrix fall away 

and leave only the peaks at genomic regions with the strongest association. While the 

PC1 relatedness matrix appears to work better in structured populations, it still may not 

be adequate for situations where populations show very high genetic structure either due 

to neutral or adaptive processes.  

 Irrespective of the method used to control for population structure, the genomic 

regions we found to be associated with lateral plate count and opercle shape co-localize 

to a subset of divergent regions both across the genome and within chromosomes. These 

findings support the hypothesis that regions subject to divergent selection contain alleles 

that contribute to phenotypes important in the marine to freshwater evolution, and that the 
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alleles associated with lateral plate count and opercle shape are housed within a subset of 

those regions (Jones et al. 2012; Terekhanova et al. 2014).  

 We do not suggest that the identified genomic regions associated with the 

phenotypes are the only ones that contribute to the phenotypes. GWA studies are best 

able to identify associations with moderate to large effect (Korte and Farlow 2013). Thus, 

loci containing alleles that have small effects on the phenotype will often go undetected. 

We, therefore, conclude that associations we identified likely underrepresent the regions 

that contribute to the phenotypes. However, our phenotypic correlation data and our 

GWAS data together show that opercle shape and lateral plate phenotypes have largely 

independent, but clearly clustered, genetic architectures. 

 

Not All Population Structure is Created - nor Can be Controlled - the Same Way  

 Our findings highlight an important consideration about the nature and extent of 

population structure to be controlled in GWA studies, particularly whether it is created by 

neutral processes or the action of natural selection. The way population structure is 

controlled experimentally can alter the associations observed if the phenotypic diversity 

and population structure are both created by natural selection. In fact, an alternative 

explanation for our GWAS findings, despite the evidence from positive controls, as 

mentioned previously, is that we have not adequately controlled for population structure. 

Support for this point comes from the observation that the remaining associated peaks 

coincide with the most highly divergent genomic regions as measured by Fst, and points 

to the need for new methods for appropriately controlling population structure created by 

very strong selection. 

 Performing GWAS in a system where some genomic regions are highly divergent 

while others are nearly identical, and using a mean relatedness matrix as a point estimate 

to control for the entirety of population structure between two individuals, can create a 

significant issue. The population structure point estimate will be unable to capture those 

genomic regions which are most highly divergent. If the causative loci for traits of 

interest reside within the most highly divergent genomic regions, the GWAS method 

would easily detect these regions. If the traits of interest, however, vary with population 



 103 

structure, and the causative loci are located outside of the most highly divergent regions, 

the genetic signal that contributes to the traits will be removed because it is contained in 

the genomic signal that is controlled. The effect is that associations at the most highly 

divergent regions are spurious and the causative loci are unidentifiable. This will occur 

using either a mean relatedness matrix, a genetic PC1 matrix, or any matrix that controls 

for genome wide population structure with a point estimate. To determine if the 

associations we identified in our GWAS are due to inadequate control of population 

structure by current methods or if these regions do in fact contain the loci that that 

contribute to lateral plate loss and opercle shape change will require further study. One 

experiment might include simulations of structured genomic data with known causative 

loci to determine if the genomic regions could or could not be identified with current 

methods.  

 An alternative method to those employed here is to perform GWAS at local 

genomic regions for which population structure is controlled based on the genomically 

local population structure. It is becoming more clear that within a genome, various 

regions can have different evolutionary histories (He et al. 2011). An assumption made 

when employing genome wide relatedness matrices is that averaging over many 

evolutionary histories will produce a summary relatedness estimate that is stable and 

reflects the average population structure (Li and Ralph 2016). However, in populations 

such as those on Middleton Island, where population structure is clearly determined by 

the action of natural selection, there is no guarantee that selection is acting in the same 

way at each genomic region. It is likely not, and so, controlling for population structure in 

the same way across the genome may be insufficient. Further investigations about 

controlling local population structure should enhance our understanding about the 

genealogical histories and the role of selection at different genomic locations, which 

would be interesting on its own. Such work may also allow us to identify types of 

population structure which could be binned into categories and enable a more accurate 

and powerful GWAS approach (Li and Ralph 2016).  

 

Transporter Hypothesis Revisited  
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 Schluter and Conte (2009) proposed the ‘Transporter Hypothesis’: that repeated, 

independent, and relatively rapid evolution of ancestral marine stickleback to freshwater 

environments occurs through the influx of many independent freshwater alleles into the 

marine population. Each individual of the marine population harbors at most a small 

number of freshwater-adapted alleles. During adaptation, these myriad alleles must be 

transported and reassembled when marine fish colonize a new freshwater environment. 

The fundamental concept of the “transporter hypothesis” is in accord with our findings. 

However, our findings of clustered genetic architectures, co-localized genomic regions of 

divergence and statistical linkage disequilibrium, and extremely rapid evolution in 

freshwater suggests that freshwater-adapted alleles are not atomized into hundreds or 

thousands of individual alleles, but may persist as fewer, larger loci of cluster alleles that 

could facilitate such a rapid pace of freshwater adaptation that we see on Middleton 

Island. Still, rapid reassembly of freshwater-adapted alleles, in the correct combination, is 

likely difficult unless each pond were colonized by a large number of stickleback 

followed by significant mortality of unfit genotypic combinations in the first few 

generations. In fact, empirical work in artificial ponds (similar in size to those on 

Middleton) by Barrett et. al. (2008) showed that early in the F1 generation after wild 

caught fish, heterozygote for the low plated eda allele were introduced into freshwater 

ponds, the frequency of the low plated eda allele declined from 50% to as low as ~25% in 

the first three months, most likely as a result of such significant mortality. However, only 

8 months later, and at the approximate time of first reproduction, the low plated allele had 

increased to frequencies as high as ~70%. A similar case could occur in the freshwater 

ponds on Middleton Island where introduction of large numbers of fish followed by high 

mortality, could create a population of individuals with the correct combination of 

genomic building blocks to fuel adaptation in subsequent generations.  

  

Conclusion  

 Stickleback on Middleton Island offer a unique, natural experiment of populations 

before and after selection. In this study, we investigated lateral plate loss and opercle 

shape change, two traits which are classically associated with threespine stickleback 

adaption to freshwater environments. Rather than using QTL mapping crosses to uncover 
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the developmental genetic basis of traits, the populations on Middleton Island combined 

into a GWAS framework provide a glimpse into the evolutionary genetic basis of traits 

that repeatedly undergo parallel evolution and the processes that act to shape the genomic 

architectures that may facilitate rapid evolution. We showed that lateral plate loss and 

opercle shape change exhibit correlated evolution even over a short 50-year period. 

Despite the patterns of phenotypic covariance in these traits across populations, we find 

that the two phenotypes are underlain by largely independent genetic architectures but 

which cluster to similar genomic regions. The genomic regions associated with the traits 

are nested within a larger set of genomic regions that tightly covary with one another, and 

which are divergent between marine and freshwater populations. The congruence 

between Fst divergence peaks and regions of high long-distance correlation (LD) on 

nearly homogeneous backgrounds within chromosomes suggests that these regions 

represent genomic archipelagos, potentially maintained by mechanisms which reduce 

recombination such as chromosomal rearrangements. When marine stickleback colonize 

freshwater ponds, combinations of freshwater loci may be rapidly produced through 

epistatic selection. Unfortunately, the very interesting rapid and extensive phenotypic and 

genomic evolution in these populations, most likely due to the action of natural selection, 

creates significant population structure that is difficult to control and which clouds our 

ability to identify the specific loci that contribute to rapid evolution of lateral plate loss 

and opercle shape change. Despite these difficulties, we have found that while these two 

key traits in the evolutionary syndrome of phenotypic changes to life in freshwater may 

not share genetic architecture, that they do share a genomic architecture may facilitate the 

action of natural selection to promote rapid adaptation to freshwater environments. 
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BRIDGE 

 In Chapter III, I used newly formed and rapidly evolving population of 

stickleback fish on Middleton Island to try to identify the genetic architectures of skeletal 

traits which are rapidly diverging. We showed that despite the genetic architectures of 

phenotypic variation being largely independent, also observed in Chapter II, the genomic 

regions which contribute to lateral plate number and opercle shape largely co-localize. 

Our analyses identify that the strong population structure among populations on 

Middleton Island, largely driven by selection, may hamper our ability to identify the 

genomic and genetic architectures of these traits. I conclude in Chapter IV with a 

summary of the findings presented in this dissertation and a discussion about when going 

after the genes to link the genotype-to-phenotype map may or may not be appropriate.  
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CHAPTER IV 

 

GWAS OR: HOW I LEARNED TO STOP WORRYING AND EMBRACE 

POPULATION STRUCTURE IN LINKING GENOMES TO PHENOMES  

 

Finding the Genes that Matter for Evolution When it Matters for Understanding 

Evolution  

 Understanding how phenotypes adapt to novel environments has persisted as a 

fundamental challenge for biologists since Darwin (Gardner 2009). We now know that 

realized phenotypes are the product of genes and the environment, and so inquiry into the 

genetics and genomics of phenotypic evolution provides insight into this enduring 

question (Pigliucci 2010). Natural genetic variation among populations is critical to 

provide the creative template upon which selective forces can act and shape phenotypic 

evolution (Rockman 2008). As such, there is a strong interest in the field to identify the 

genetic and molecular basis of evolving phenotypes in natural populations in the hopes of 

gaining further insight into the role of selection and the mechanisms of evolution 

(Schluter et al. 2010). In doing so, a major goal has been to identify not only the gene but 

also the causal nucleotide(s) that contribute to phenotypic variation and evolution [i.e. the 

quantitative trait nucleotide (QTN) program (Rockman 2012)]. But, is that goal even 

possible for the phenotypes that matter to evolution?  

 Rockman (2012) makes the point that it really depends on the distribution of 

effect sizes. While theory suggests that evolution is largely driven by many loci of small 

effect (Fisher’s infinitesimal model), the majority of QTN identified have large 

phenotypic effects (Orr 2005; Rockman 2012). In this way, the QTN program likely 

biases our understanding about the nature of the relevant mutations underlying evolution. 

If the goal is to understand the entire range of phenotypic effect sizes that mutations have 

on evolutionary relevant traits with one or a few approaches, the QTN program will fall 

short. However, if gaining an understanding of how genotypes affect phenotypes through 

the vetting process of development and environmental conditions in natural populations 

is still an interesting question - as it is for many of us - then the QTN program might be a 

reasonable approach. Even though methods are advancing, the QTN program is still quite 
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difficult to achieve, and researchers should undertake it with full knowledge of the efforts 

required. It must also still be recognized, though, that successful QTN efforts cannot fully 

represent the complexity of evolution, but they do provide an important piece of the 

evolutionary puzzle.   

 

Major Methods for Defining the Genotype-to-Phenotype Map in Evolutionary 

Genomics  

 Quantitative trait locus (QTL) mapping studies have been a fruitful approach to 

link an individual’s genotype to a phenotype of interest (G-P map), which allows the 

genomic regions and in some cases the underlying genetics of phenotypic evolution to be 

identified (Colosimo et al. 2005; Reed et al. 2011). However, this method suffers in the 

respect that in most cases, organisms must be brought into the laboratory which, from a 

practical standpoint, limits the species available to use, and, of biological concern, 

releases the constraints of selective forces on the G-P map [but see Arnegard et al. 

(2014)]. As new and cheaper genomic tools have become increasingly available, genome 

wide association studies (GWAS) have become a dominant method to connect the 

breadth of natural genetic variation with phenotypic variation among populations in 

context with their environments and selective forces (Delmore et al. 2016).  

 As GWAS has become an accessible method in natural populations, researchers 

have identified some key considerations to ensure the method is successful. Among the 

major considerations are population structure and linkage disequilibrium (Astle and 

Balding 2009; Stranger et al. 2011). Successful GWAS often use populations where 

structure does not contribute to the major axis of phenotypic variation so that any 

structure that does exist can be easily controlled without removing the genetic signal 

which contributes to phenotypic variation. Most often, these populations are hybrid zones 

(Pallares et al. 2014; Delmore et al. 2016). Within these populations, the marker density 

necessarily is dictated by the patterns of linkage disequilibrium (Malek et al. 2012). With 

any reduced representation sequencing method, having some linkage disequilibrium 

within linkage groups is beneficial to ensure that markers will be linked to causal loci. If 

the populations are in linkage equilibrium, whole genome sequencing will likely be 

necessary, but this approach is still cost prohibitive for the large sample sizes needed 
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(Spencer et al. 2009). In addition to these challenges, finding a population which meets 

these requirements and which display the kinds of phenotypic variation in which one is 

interested can pose an additional hurdle. 

 

Quantitative Trait Loci Mapping in Stickleback: Findings and Limitations  

 The threespine stickleback is a preeminent evolutionary model system to 

interrogate the genetics underlying phenotypic evolution. The analyses completed in this 

dissertation to connect the G-P map were performed to help usher the threespine 

stickleback system from a predominantly QTL based system into the genomics era with 

GWAS. We focused on two well-studied and ecologically relevant traits, lateral plate loss 

and opercle shape change, which repeatedly undergo stereotypical changes as stickleback 

adapt to new, freshwater environments. By focusing on traits for which we have 

expectations about the underlying genetic architectures from QTL studies (Colosimo et 

al. 2004; Kimmel et al. 2005), we were able to assess the quality of our analyses. 

Additionally, because we performed the same analyses in two stickleback systems, we 

were able to learn about and evaluate GWAS performance in populations which 

experience different selective forces.  

 Stickleback QTL mapping studies aimed at identifying the genetic basis of 

diverging traits have been laborious. In some cases, the labor paid off and the causal loci 

contributing to traits commonly associated with stickleback evolution were identified. 

First, though, the genomic regions contributing to the now classic examples including 

lateral plate loss, lateral plate width and height, pelvic structure reduction, and 

pigmentation changes, were identified using enormous mapping families, and the 

identified regions regularly spanned large swaths of the linkage group. Then, narrowing 

down to causal genes, often required even more and different mapping families 

(Colosimo et al. 2004; Cresko et al. 2004; Shapiro et al. 2004; Colosimo et al. 2005; 

Miller et al. 2007; Indjeian et al. 2016). While the genetic basis of traits are still being 

investigated (Kusakabe et al. 2016), often the attention has turned more towards 

investigating the repeatability of QTL use across many traits and modularity of 

phenotypic evolution (Miller et al. 2014; Conte et al. 2015; Glazer et al. 2015; Erickson 

et al. 2016). 
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 Despite this shift in attention among many researchers, there is still much to be 

learned about evolving traits in stickleback. Because stickleback show such dramatic 

phenotypic evolution during adaptation from marine and to freshwater environments 

(Bell and Foster 1994; Bell 2001), still, of primary interest among stickleback researchers 

is to understand the genetic underpinnings of this particular divergence (Schluter et al. 

2010). With improved genomic technologies, it is far easier to address questions 

regarding the genetic architectures of traits, large effect QTN, and the modularity of 

evolution within the context of natural populations and evolutionary forces. 

 

Genome Wide Association in Stickleback: Success and Lessons Learned  

 In Chapter II, we described our efforts to identify a population(s) of freshwater 

stickleback in the McKenzie River which satisfy the considerations about population 

structure and linkage disequilibrium, but which also show the range of phenotypes 

between the marine to freshwater transition. We showed that among four populations 

along the McKenzie River, lateral plate count covered the desired range of phenotypes 

between the classic, monomorphic populations of Alaska and British Columbia (Bell 

2001). Variation in opercle shape, however, appeared to be confined to freshwater shapes 

which suggested that the either the action of selection differs between the two phenotypes 

or that the environment has caused the distribution of opercle shapes to shift. Although 

the ranges of phenotypic variation were promising, and which were largely similar 

among populations, we found evidence for population structure most likely due to spatial 

differentiation. Interestingly, when we evaluated genomic correlation between all 

pairwise combinations of markers among all populations pooled, we found a genome 

wide elevation of linkage disequilibrium which suggested that population structure was 

due to neutral evolutionary processes. A common assumption is that so long as 

population structure can be modeled and controlled, GWAS linear mixed models (LMM) 

should be effective (Price et al. 2010; Sul and Eskin 2013). Despite this, we focused on 

only one population to be sure we were not confounding our results. The Riverbend 

population reflected the phenotypic variation of all McKenzie River populations, largely 

lacked structure, and had genomic regions of linkage disequilibrium within, but not 

among, linkage groups.  
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 During the stickleback marine to freshwater transition, many traits including 

lateral plates and opercle shape are modified in unison. One hypothesis is that many of 

these traits which make up the “freshwater syndrome” share, to some degree, a genetic or 

developmental basis which contributes to a modularity among traits (Barrett et al. 2008; 

Barrett et al. 2009). Our assessment of the correlations between lateral plate count and 

opercle shape variation suggested that phenotypic variation present in the Riverbend 

population have independent genetic architectures. We showed that this expectation was 

reflected in our GWAS results by identification of non-overlapping genomic regions 

associated with each of the traits.  

 Even given the limited sample size of this study, we found that GWAS was 

effective in identifying the genomic regions which we expected to be associated with 

each of the traits. Our study also shows the merits of using a GWAS approach to uncover 

aspects of genetic architectures of simple traits because we were easily able to identify 

eda as a potential candidate gene for lateral plate loss with far less effort than what was 

needed to identify and fine map the same region with multiple large QTL mapping 

crosses (Colosimo et al. 2004; Colosimo et al. 2005). In addition, our approach also 

facilitated the identification of a locus which is potentially epistatic to the locus of major 

effect at eda. We identified β-catenin as a candidate gene which, to our knowledge, has 

never been previously implicated in lateral plate number variation from QTL studies, and 

may modify plate number variation in the low plated ecomorph. Our study also showed 

that by using GWAS we could identify genomic regions associated with traits that are 

presumed to have more complex genetic architectures such as opercle shape. Although 

much less of the genetic variation could be explained by our markers, this suggests that 

opercle shape is polygenic and that each locus has a small to moderate effect on the 

phenotype. Even though linkage disequilibrium is present within linkage groups, more 

markers will be necessary to capture a larger percentage of the genetic variation 

contributing to the shape.  

 In Chapter II, we showed that GWAS can used be successfully in stickleback 

populations, and that we can gain insight into the genetic architectures of ecologically 

relevant traits. However, an aspect that makes the stickleback system fascinating is that, 

not only do the same traits evolve in similar ways repeatedly and independently during 
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the marine to freshwater transition, but they can do so very rapidly— on the order of 

years or decades (Lescak et al. 2015). If we are interested, as a field, in understanding the 

genetic architectures which contribute to and facilitate very rapid divergence of traits, the 

freshwater Riverbend population is not quite the appropriate system. Although lateral 

plate number spans the range of phenotypes between marine and freshwater divergence, 

opercle shape does not. A better place to look to might be to a stickleback system which 

had only very recently diverged from marine populations and where we could hopefully 

capture divergence in action before alleles that contribute to divergence are fixed.  

 

Genome Wide Association in Very Young Stickleback Populations: A Cautionary Tale  

 In Chapter III we investigated a population of stickleback which recently diverged 

from the marine ancestors after the Great Alaskan Earthquake of 1964. We used 

stickleback on Middleton Island from marine habitats and nearby, newly formed 

freshwater habitats to span phenotypic, genetic, and habitat space common among 

stickleback populations and in which we are interested. Although we found correlations 

between phenotypic variation among populations, we did not find correlations within 

populations. This finding suggested that phenotypic modularity of the “freshwater 

syndrome” may not be created by a shared genetic or developmental basis but through 

alternative explanations. The independence of genetic architectures was also reflected in 

our findings detailed in Chapter II. Despite this result, we identified overlapping and 

covarying genomic regions associated with lateral plate number and opercle shape 

variation with our GWAS. One explanation is that although phenotypic variation for the 

two traits are likely independent, the alleles are genomically co-localized which might act 

to facilitate rapid divergence through linked selection. While genomic co-localization is 

an attractive biological hypothesis, an alternative explanation is that the methods by 

which we controlled for population structure were inadequate.   

 Further inspection of the structure among the populations analyzed suggested that 

even though the freshwater populations were only recently formed, by the action of very 

strong selection, large portions of the genome were in inter- and intra-chromosomal 

linkage disequilibrium leaving the remaining regions at linkage equilibrium. As we 

detailed in Chapter III, the current point estimates of relatedness between pairwise 
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combinations of individuals used to control for structure maybe insufficient to account 

for the heterogeneity of structure and range of relatedness coefficients seen across these 

genomes. Whether or not the population structure present on Middleton Island would 

completely cloud our ability to identify the genomic regions which contribute to variation 

is an open question which requires further study. 

 Although we were unable to make conclusive statements about the nature of the 

genetic architectures of rapidly evolving traits in Chapter III, our analyses have revealed 

interesting questions about the nature and role of population structure in rapid adaptation. 

As discussed in Li and Ralph (2016), in using relatedness matrices, GWAS assumes that 

population structure across the genome is similar, or at least that by assessing many 

markers to derive a relatedness coefficient, that the coefficient accurately reflects 

relatedness across the genome. However, in reality, different evolutionary histories of 

each genomic region can leave a unique signature of relatedness on it and surrounding 

regions (Li and Ralph 2016). We do not yet understand the subtleties of population 

structure on Middleton Island, the range of evolutionary histories across genomic regions, 

or if selection has acted in the same way across all divergent genomic regions, all of 

which can result in varying patterns of realized relatedness unable to be captured by one 

point estimate. Generally, divergence has been described largely by summary statistics 

and broad scale methods to determine structure (Pritchard et al. 2000a; Li and Ralph 

2016). On Middleton Island, we have an opportunity to learn about the kinds of structure 

that may be present which would provide insight into the role of selection in adaptive 

divergence. Furthermore, by investigating and modeling structure in a way that captures 

the range of structures across the genome, we may be able to advance GWAS in natural 

populations where current methods to control population structure fall short.  

 The work described in this dissertation demonstrates the utility of using GWAS in 

one stickleback system to address fundamental questions in evolutionary biology and the 

limitations in another. Population structure can have profound effects on our ability to 

ascertain the genetic architectures of diverging traits, and a single method to investigate 

these questions may not be appropriate for every situation. Truly answering questions 

about the genetic basis of rapidly diverging phenotypes may require a combination of 

approaches. To understand the genetic architectures of phenotypic variation within a 
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limited range but within the context of the environment and selective forces, GWAS 

might be most fruitful, however to identify the genetic architectures of divergent traits 

between habitats, QTL mapping may be most efficient, and to understand the effect of 

genes within divergent genomes will require transgenic approaches. However, the ease of 

access to populations which are amenable to all these approaches is one of the strengths 

of the stickleback system. 

 Clearly, lessons were learned about the utility of association mapping approaches 

in different situations. From an immediate and practical standpoint, a good GWAS study 

will benefit from upfront, detailed analysis of population structure and linkage 

disequilibrium to identify a system which will be most lucrative, rather than a polar 

plunge into what can be harsh GWAS waters. Currently, we simply do not have the tools 

to deal with localized population structure in a GWAS framework, especially for traits 

under selection. Though, in instances where we are trying to understand the mechanisms 

of coordinated rapid evolution in diverging populations, perhaps identifying the genetic 

mechanisms is not only impractical, but less important. Rather, a focus on the larger 

evolutionary processes might be most fruitful and interesting. If identifying the QTN is 

important, we have shown that in populations like Riverbend, the fruit will be plenty. 
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APPENDIX  

 

SUPPORTING INFORMATION FOR CHAPTER II 

 

Table S2.1 Annotated genes within narrow region around SNP most highly associated with 

lateral plate count. Bold gene names indicate interesting candidates based on previous studies. 

 

Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

Second most highly associated SNP: snp4028_8 (location: 12,350,223 bp) 	

groupIV 12353365 12364750 kctd12b ENSGACG00000018268 

groupIV 12395669 12396211 rhogd ENSGACG00000018271 

groupIV 12424107 12436050 ogt.2 ENSGACG00000018273 

groupIV 12438010 12441598 acrc ENSGACG00000018279 

groupIV 12442336 12444314 cetn2 ENSGACG00000018281 

groupIV 12445321 12448373 nsdhl ENSGACG00000018285 

groupIV 12451969 12456614 protein_coding ENSGACG00000018286 

groupIV 12459458 12462500 protein_coding ENSGACG00000018287 

groupIV 12463399 12467598 fut11 ENSGACG00000018289 

groupIV 12468117 12468728 rab9b ENSGACG00000018291 

groupIV 12472918 12477723 plp1a ENSGACG00000018292 

groupIV 12500111 12585904 nlgn3a ENSGACG00000018296 

groupIV 12660845 12838539 vma21 ENSGACG00000018298 

groupIV 12700707 12768384 gria3b ENSGACG00000018300 

Top most highly associated SNP: snp4072_28 (location: 12,797,184 bp) 	

groupIV 12800220 12810446 eda ENSGACG00000018311 

groupIV 12811602 12817008 protein_coding ENSGACG00000018312 

groupIV 12822782 12824676 protein_coding ENSGACG00000018313 

groupIV 12826542 12827369 cx31.7 ENSGACG00000018314 

groupIV 12843597 12851169 mtnr1c ENSGACG00000018315 
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Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupIV 12857678 12861775 neurl1b ENSGACG00000018316 

groupIV 12886001 12888151 dusp1 ENSGACG00000018318 

groupIV 12891471 12904168 ergic1 ENSGACG00000018319 

Third most highly associated SNP: snp4088_51 (location: 12,909,486 bp) 	

groupIV 12904952 12925251 flt4 ENSGACG00000018320 

groupIV 12941555 12943706 protein_coding ENSGACG00000018322 

groupIV 12948567 12950365 npy7r ENSGACG00000018324 

groupIV 12951906 12955107 prelid1a ENSGACG00000018325 

groupIV 12957378 12959627 mxd3 ENSGACG00000018331 

groupIV 12962154 12969566 fam193b ENSGACG00000018332 

groupIV 12971182 12976506 DDX41 ENSGACG00000018334 

groupIV 13161092 13215854 unc5a ENSGACG00000018337 

groupIV 13220801 13248223 pdlim7 ENSGACG00000018344 

groupIV 13247849 13251404 cltb ENSGACG00000018348 

groupIV 13252044 13253484 higd2a ENSGACG00000018350 

groupIV 13258735 13265652 protein_coding ENSGACG00000018351 

groupIV 13282319 13287248 hnrnph1 ENSGACG00000018352 

groupIV 13287303 13292669 rufy1 ENSGACG00000018354 

groupIV 13294516 13295502 hbegfa ENSGACG00000018355 

groupIV 13331270 13336566 rmnd5b ENSGACG00000018357 

groupIV 13339769 13343280 n4bp3 ENSGACG00000018359 

groupIV 13360790 13361899 protein_coding ENSGACG00000018361 

groupIV 13367495 13372511 protein_coding ENSGACG00000018362 

groupIV 13375789 13385299 anxa6 ENSGACG00000018367 

groupIV 13389317 13398176 tnip1 ENSGACG00000018374 

groupIV 13399031 13400196 protein_coding ENSGACG00000018378 

groupIV 13399655 13402595 gpx3 ENSGACG00000018379 
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Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupIV 13403603 13410822 dctn4 ENSGACG00000018383 

groupIV 13445086 13445994 protein_coding ENSGACG00000018384 

groupIV 13448609 13449604 protein_coding ENSGACG00000018386 

groupIV 13452992 13465259 TSPAN17 ENSGACG00000018387 

	

groupXX 5267357 5288282 trak1 ENSGACG00000006003 

groupXX 5304723 5353897 ulk4 ENSGACG00000006021 

groupXX 5362441 5375095 ctnnb1 ENSGACG00000006037 

Second most highly associated SNP: snp35149_61 (location 5,422,940bp)	

groupXX 5426871 5428558 ZG16 ENSGACG00000006045 

groupXX 5442149 5444002 protein_coding ENSGACG00000006051 

groupXX 5451351 5459490 trmt11 ENSGACG00000006060 

groupXX 5553263 5564403 rspo3 ENSGACG00000006080 

groupXX 5566021 5567034 mdh2 ENSGACG00000006087 

groupXX 5568218 5569363 rnf146 ENSGACG00000006092 

groupXX 5571962 5574407 ECHDC1 ENSGACG00000006095 

groupXX 5581980 5584362 protein_coding ENSGACG00000006118 

groupXX 5591517 5595182 soga3a ENSGACG00000006121 

groupXX 5602022 5606254 elovl4a ENSGACG00000006127 

groupXX 5607034 5609358 prelid3a ENSGACG00000006144 

groupXX 5611594 5616828 fbxo32 ENSGACG00000006161 

groupXX 5618666 5622627 klhl38b ENSGACG00000006167 

groupXX 5642987 5643790 zgc:110182 ENSGACG00000006198 

groupXX 5646549 5649676 nsmce2 ENSGACG00000006200 

groupXX 5649839 5661632 strumpellin ENSGACG00000006206 

Top most highly associated SNP: snp35176_18 (location: 5,665,015 bp) 	

groupXX 5668131 5691885 ext1a ENSGACG00000006234 
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Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupXX 5696334 5703744 rad21a ENSGACG00000006276 

groupXX 5705002 5746913 eif3ha ENSGACG00000006293 

groupXX 5803916 5829129 csmd1a ENSGACG00000006303 

groupXX 5843406 5955450 CSMD3 (1 of many) ENSGACG00000006307 

groupXX 5969700 5976203 zgc:110410 ENSGACG00000006328 

groupXX 5978144 5999605 ankib1a ENSGACG00000006337 

groupXX 6003650 6006502 eomesb ENSGACG00000006345 

groupXX 6019972 6025247 cmc1 ENSGACG00000006355 

groupXX 6027235 6035227 AZI2 ENSGACG00000006371 

groupXX 6102582 6161999 rbms3 ENSGACG00000006377 

groupXX 6166089 6172879 entpd3 ENSGACG00000006387 

groupXX 6176973 6190798 ddc ENSGACG00000006397 

groupXX 6202336 6235349 grb10b ENSGACG00000006438 

groupXX 6253039 6282798 cobl ENSGACG00000006446 
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Table S2.2 Annotated genes within narrow region around SNP most highly associated with 

opercle shape. 

 

Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupVIII 10670600 10676404 zgc:85936 ENSGACG00000008902 

groupVIII 10677035 10682682 alpi.2 ENSGACG00000008908 

groupVIII 10684744 10692177 alpi.1 ENSGACG00000008915 

groupVIII 10701650 10702660 srek1ip1 ENSGACG00000008958 

groupVIII 10768726 10769846 nppc ENSGACG00000008966 

groupVIII 10775000 10780521 ncl ENSGACG00000008970 

groupVIII 10783233 10785335 b3gnt7 ENSGACG00000008999 

groupVIII 10794678 10809981 armc9 ENSGACG00000009002 

groupVIII 10811451 10813116 polr2h ENSGACG00000009019 

groupVIII 10815897 10821342 protein_coding ENSGACG00000009042 

groupVIII 11024707 11048659 EPHB3 (1 of many) ENSGACG00000009051 

Top most highly associated SNP: snp11139_28 (location: 11213998)	

groupVIII 11265078 11267742 HYKK (1 of many) ENSGACG00000009059 

groupVIII 11269682 11272240 HYKK (1 of many) ENSGACG00000009062 

groupVIII 11278291 11279836 nmur1a ENSGACG00000009069 

groupVIII 11289636 11290485 protein_coding ENSGACG00000009076 

groupVIII 11296839 11300017 protein_coding ENSGACG00000009077 

groupVIII 11301927 11305001 protein_coding ENSGACG00000009078 

groupVIII 11312464 11328558 rubcn ENSGACG00000009086 

groupVIII 11336696 11356157 protein_coding ENSGACG00000009134 

groupVIII 11368224 11373962 pfn2l ENSGACG00000009139 

groupVIII 11375616 11376881 protein_coding ENSGACG00000009177 

groupVIII 11376567 11401655 rnf13 ENSGACG00000009180 

groupVIII 11403293 11405044 protein_coding ENSGACG00000009187 

groupVIII 11407029 11415653 ppp1r2 ENSGACG00000009192 

Second most highly associated SNP: snp11153_57 (location: 11445066)	
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Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupVIII 11419321 11452012 acap2 ENSGACG00000009198 

	

groupVII 7721652 7723223 arl2 ENSGACG00000019812 

groupVII 7739783 7745404 protein_coding ENSGACG00000019819 

groupVII 7754154 7757339 b3gat3 ENSGACG00000019824 

groupVII 7760650 7763469 naa40 ENSGACG00000019828 

groupVII 7771903 7781711 rcor2 ENSGACG00000019834 

groupVII 7786266 7809439 mark2b ENSGACG00000019840 

groupVII 7825878 7829862 krcp ENSGACG00000019844 

groupVII 7831193 7837026 cct7 ENSGACG00000019847 

Top most highly associated SNP: snp15154_46 (location: 7836168)	

groupVII 7838207 7846302 hspa12b ENSGACG00000019861 

groupVII 7853665 7861393 paip2b ENSGACG00000019867 

groupVII 7869640 7872620 nagk ENSGACG00000019870 

groupVII 7873702 7882009 dok1b ENSGACG00000019876 

groupVII 7888611 7907687 m1ap ENSGACG00000019877 

groupVII 7969174 7974020 protein_coding ENSGACG00000019881 

groupVII 7974727 7975780 protein_coding ENSGACG00000019883 

groupVII 7989463 7995317 syt4 ENSGACG00000019884 

groupVII 8008457 8018407 si:dkey-183c6.7 ENSGACG00000019886 

groupVII 8020685 8031725 si:dkey-183c6.8 ENSGACG00000019888 

groupVII 8044555 8045812 protein_coding ENSGACG00000019893 

groupVII 8067799 8083111 protein_coding ENSGACG00000019894 

groupVII 8092741 8096609 protein_coding ENSGACG00000019895 

groupVII 8099373 8106000 rpgrip1 ENSGACG00000019896 

groupVII 8107491 8109576 fam113 ENSGACG00000019900 

groupVII 8116198 8127941 dctn1a ENSGACG00000019902 
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Linkage 

Group 

Start (bp) Stop (bp) Name Ensembl ID 

groupVII 8130248 8142689 TDRD7 (1 of many) ENSGACG00000019913 

groupVII 8143647 8147227 CABP4 (1 of many) ENSGACG00000019917 

groupVII 8149984 8153267 tmem88b ENSGACG00000019919 

groupVII 8160493 8164391 protein_coding ENSGACG00000019920 

groupVII 8166832 8167860 protein_coding ENSGACG00000019921 
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