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DISSERTATION ABSTRACT 

Anya M. Hopple 

Doctor of Philosophy 

Department of Biology 

June 2018 

Title: Understanding Anaerobic Carbon Cycling in Tropical and Boreal Wetland 

Ecosystems 

 

 Understanding methane (CH4) cycling dynamics is of paramount importance 

because CH4 has 45 times the sustained-flux global warming potential of carbon dioxide 

(CO2) and is currently the second most important anthropogenic greenhouse gas. Wetland 

ecosystems emit one-third of total global CH4 emissions, making them the single largest 

natural CH4 source and placing them among the most important terrestrial ecosystems in 

the global carbon (C) cycle. Wetlands in tropical and boreal regions are drivers of recent 

inter-annual variation in atmospheric CH4 concentrations because they play vital roles in 

the global CH4 cycle by storing vast amounts of C (~31% of total soil C in boreal 

peatlands) and generating a significant proportion of total global wetland CH4 emissions 

(47-89% in tropical wetlands). However, despite the recognized importance of these 

ecosystems, tropical wetlands have received limited study concerning CH4 flux and, 

although boreal wetlands have been more thoroughly studied, significant questions 

remain surrounding the biogeochemical controls over CH4 dynamics in these systems.  

My dissertation addresses these concerns using a combination of in situ field 

measurements and controlled laboratory incubations across field sites in equatorial 

Gabon, Africa and at an experimentally-manipulated (surface and deep warming and 

atmospheric CO2 enrichment) peatland in northern Minnesota. Specifically, my research 
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provides novel information about the rates and abiotic and biotic controls over 

methanogenesis and methanotrophy in tropical African wetland and upland habitats 

(Chapter II). This chapter paired functional datasets with corresponding measurements of 

microbial community composition, using a holistic research approach that provided 

unique ecological insights into tropical ecosystem CH4 cycling. In northern Minnesota, I 

investigated the C source fueling anaerobic C mineralization across a variety of boreal 

peatlands, as well as if methanogenesis was limited by labile C availability at depth 

(Chapter III). Finally, my dissertation includes novel results on the response of boreal 

peatland CH4 and CO2 production, as well as anaerobic oxidation of CH4 (AOM), to deep 

peat heating (Chapter IV; does not include AOM) and whole-ecosystem warming with 

atmospheric CO2 enrichment (Chapter V), expanding our mechanistic understanding of 

how climate-driven variables affect peatland C mineralization. 

This dissertation includes previously published and unpublished coauthored 

material.  
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CHAPTER I 

 

INTRODUCTION 

 

The Global CH4 Budget 

 Methane (CH4) is a trace, greenhouse gas (GHG) that plays a critical role in the 

chemistry of Earth’s atmosphere. The atmospheric concentration of CH4 has increased by 

over 150% since pre-industrial times, making it responsible for about 20% of human-

induced radiative forcing and the second most important anthropogenic GHG after CO2 

(Myhre et al., 2013). A relatively recent, multi-decadal analysis of changes in 

atmospheric CH4 levels found that, after a period of stabilization in the early 2000s, CH4 

levels have begun rising again (Kirschke et al., 2013). 

 Traditionally, the potency of GHGs has been described by their global warming 

potential (GWP), a common metric for normalizing the radiative forcing of GHGs to CO2 

equivalents based on their respective atmospheric lifetimes, radiative characteristics, and 

cycling. However, it has recently been demonstrated that this methodology may provide 

misleading conclusions concerning the impact of ecosystems on climate because it 

assesses radiative forcing due to a one-time pulse of a GHG into the atmosphere, when, 

in reality, GHG fluxes are sustained over time. Neubauer and Megonigal (2015) 

developed a new metric – the sustained-flux global warming potential (SGWP) – which 

specifically models GHG emissions as persistent events. Using this improved approach, it 

was determined that CH4 has 45 times the SGWP of CO2 over a 100-year time frame 

(Neubauer and Megonigal, 2015); therefore, small changes in its atmospheric 

concentration have large implications for future climate (Myhre et al., 2013).  
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 The global atmospheric CH4 budget comprises numerous terrestrial and aquatic 

surface sources that are primarily balanced by a single atmospheric sink. Methane 

emissions are grouped into three broad categories that can be differentiated using their 

unique isotopic signatures (Monteil et al., 2011): biogenic, thermogenic, and pyrogenic. 

Biogenic CH4 is generated under anaerobic conditions by methanogens (CH4-producing 

microorganisms) in environments such as wetlands and rice paddies, digestive systems of 

ruminants and termites, and landfills. Fossil fuels represent thermogenic CH4 sources, 

which have been formed via geologic processes over millions of years. Thermogenic CH4 

can be emitted into the atmosphere through either the burning of coal, oil, and natural gas 

or through natural terrestrial and/or marine seeps. Finally, pyrogenic CH4 is formed from 

the incomplete combustion of organic material during wildfires. Ninety percent of the 

CH4 emitted into the atmosphere is oxidized by hydroxyl radicals in the troposphere, 

representing the largest sink in the global CH4 budget (Cicerone & Oremland, 1988). 

Methanotrophic (CH4-consuming microorganisms) bacteria in aerated soils are the 

second largest atmospheric CH4 sink, oxidizing roughly 4% of global CH4 emissions 

(Zhuang et al., 2004; Curry, 2007).  

 “Top-down” and “bottom-up” approaches are the primary methodologies for 

estimating global CH4 emissions and their geographic distribution. Top-down estimates 

emerged in the 1970s with the ability to directly measure atmospheric CH4 concentrations 

and reached global coverage by the 1980s (Blake et al., 1982). Currently, atmospheric 

CH4 concentrations are determined using discrete air samples collected regularly or 

continuously at the surface (e.g., Cunnold et al., 2002) or in the troposphere (e.g., Schuck 

et al., 2012) and remotely sensed measurements of atmospheric CH4 columns obtained 



3 
 

from the surface or space (e.g., Griffith et al., 2011). Regional estimates of CH4 

emissions are then determined using an ‘inverse’ Bayesian statistical approach that 

incorporates prior information on the spatial distribution of CH4 sources and sinks, as 

well as atmospheric transport models (Bridgham et al., 2013). While top-down 

methodologies act as an important, empirically-derived constraint on regional CH4 

sources, they are limited by several factors, including the sampling network density 

(Dlugokencky et al., 2009), the accuracy of a priori estimates used in Bayesian modelling 

(Neef et al., 2010), and a lack of data necessary to accurately resolve sources (Spahni et 

al., 2011). Additionally, this approach provides no mechanistic understanding of the 

abiotic or biotic drivers controlling CH4 emissions from specific sources. 

 Conversely, bottom-up methodologies scale CH4 fluxes acquired with empirical 

ground-based or model-derived techniques over a given area, providing site-specific 

estimates, as well as information on local process drivers. Ground-based measurements 

are typically collected using chambers or eddy-flux towers; however, these data are 

extremely spatially variable and underrepresented in many global regions, such as the 

tropics. Model-derived estimates are similarly limited by their ability to accurately 

capture CH4 dynamics, which can vary significantly based on the system of interest 

(Bridgham et al., 2013). A recent, multi-decadal synthesis of bottom-up and top-down 

methodologies found that bottom-up techniques yielded total global emissions of 678 Tg 

CH4 yr-1 in the 2000s, while top-down studies reported approximately 20% lower 

emissions of only 548 Tg CH4 yr-1 during this period (Kirschke et al., 2013). The 

discrepancy between these two values was attributed to the higher global source estimates 

for wetland, freshwater, and geologic sources derived from bottom-up techniques. 
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Overall, natural wetlands had the largest absolute uncertainty of any of the emission 

categories, with a range of 107 Tg CH4 yr-1 using bottom-up approaches (Kirschke et al., 

2013; Bridgham et al., 2013; Melton et al., 2014), highlighting both the importance of 

these systems in the global CH4 budget, as well as the difficulty associated with the 

accurate determination of their contribution to worldwide CH4 emissions. 

The Role of Wetlands in the Global CH4 Budget 

 Wetland ecosystems emit about a third of total global CH4 emissions, making 

them the single largest natural CH4 source and placing them among the most important 

terrestrial ecosystems in the global carbon (C) cycle (Bridgham et al., 2013). Anaerobic 

conditions promote slow decomposition rates of organic matter, accumulation of soil C, 

and production of CH4. Methane emissions from natural sources have been shown to be 

partially controlled by changes in climate from past glacial-interglacial cycles (Blunier et 

al., 1995; Loulergue et al., 2008) and, moreover, large recent inter-annual variability in 

atmospheric CH4 levels may be driven by climate effects on wetland CH4 emissions 

(Kirschke et al., 2013; Melton et al., 2014). The close coupling between climate and 

wetland CH4 emissions generates justifiable concern that wetland ecosystems will act as a 

positive feedback to anthropogenic-driven climate change. 

 Despite the significant inconsistencies that exist between top-down and bottom-up 

techniques, both methodologies highlight the importance of tropical and boreal wetlands 

as drivers of recent multi-year changes in atmospheric CH4 concentrations (Bousquet et 

al., 2006 and 2011; Bloom et al., 2010; Kirschke et al., 2013; Melton et al., 2014). 

Geographically, about 56% of global wetlands are located in tropical and subtropical 

humid regions (Melton et al., 2013). Recent studies estimate that 47-89% (median 73%) 
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of global wetland CH4 emissions originate in the tropics (Bridgham et al., 2013); 

therefore, this region plays a critical role in the global CH4 cycle. While extensive 

research has been conducted in temperate, boreal, and arctic zones to understand 

biogeochemical and microbial controls on wetland CH4 emissions, much less research 

has been conducted across tropical regions (Bridgham et al., 2013; Kirschke et al., 2013; 

Melton et al., 2014). Organic-soil wetlands (peatlands) dominate boreal regions and, 

conversely, mineral-soil wetlands are the most abundant wetland type in tropical areas. 

Soils are the foundation and a key controller of ecosystem function; thus, these two 

wetland types have distinctly different sets of ecosystem controls (Spahni et al., 2011) 

and responses to climate (Bloom et al., 2010; Hodson et al., 2011). It is unlikely that the 

anaerobic C mineralization relationships and CH4 cycling dynamics observed in other, 

more heavily researched, ecosystems will transfer to equatorial regions given their 

distinct differences in climate and soil type. Thus, net and gross ecosystem CO2 and CH4 

fluxes, as well as drivers of biogeochemical and microbial relationships remain unknown 

throughout the tropics. 

Although boreal wetlands have been more thoroughly studied, significant 

questions remain surrounding the biogeochemical controls over CH4 dynamics in these 

systems and their response to changing climate. The vast majority of global wetland C is 

stored in northern boreal peatland soils, which, by definition, have extensive soil C 

accumulation (≥40 cm) (Yu, 2012). Thus, despite covering <3% of the Earth’s surface, 

peatlands contain one-third of total global soil C and are responsible for approximately 

10% of global CH4 flux (Bridgham et al., 2013). Additionally, most peatlands occur 

above 40°N latitude, where the largest relative temperature changes are projected to 
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occur under current climate models and, therefore, are perceived to be particularly 

susceptible to climate change (Kirtman et al., 2013). Changes in temperature and 

hydrology throughout the boreal zone have the capacity to diminish the role of these 

ecosystems as C sinks by triggering the return of currently stored organic C to the 

atmosphere as CO2 and/or CH4, thereby amplifying the impacts of a changing climate. It 

is currently unknown whether or not a significant fraction of the large soil C pool in 

peatlands will be respired as CH4 in future climates, creating a pressing problem in global 

change biogeochemistry and modelling (Bridgham et al., 1995; Limpens et al., 2008; 

Frolking et al., 2011; Yu, 2012; Bridgham et al., 2013).  

To fully understand the difficulties associated with the accurate prediction of 

wetland CH4 emissions, it is necessary to comprehend the complex set of processes 

underlying CH4 cycling, as well as their unique abiotic and biotic controls. In the 

following section, I provide a brief review of current knowledge on this topic. 

A Primer on Methanogenesis and Methanotrophy 

Energy yield is a core difference between aerobic and anaerobic metabolism. 

Under aerobic conditions, the complete oxidation of glucose to CO2 and water (H2O) 

generates approximately 2,900 kJ mol-1 and can be performed by a single organism. 

Conversely, only roughly 400 kJ mol-1 are obtained from the oxidation of glucose in 

methanogenic environments and no single organism can complete this process alone 

(Megonigal et al., 2004). Instead, the mineralization of organic C to CO2 under anaerobic 

conditions is a multistep process performed by a diverse microbial consortium, with each 

group conserving a proportion of the total energy yield. Thus, anaerobic microorganisms 

are adapted to conserve quantities of energy near the theoretical minimum for metabolism 
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(20 kJ mol-1) and are often dependent upon other anaerobic taxa for their metabolic 

substrates.  

During anaerobic decomposition, high-molecular-weight carbohydrates are 

broken down through three major processes: respiration, fermentation, and 

methanogenesis. Anaerobic respiration utilizes alternative terminal electron acceptors 

(TEAs), such as NO3, Fe (III), and SO4
2-, during the final stages of the electron transport 

chain and generates CO2 as an end product. Fermentation occurs when organic matter 

simultaneously acts as the electron donor and acceptor in anaerobic respiration, forming 

various low-molecular-weight acids, alcohols, and H2 that can be exploited by other 

anaerobes. Finally, methanogens perform the terminal step in the anaerobic 

mineralization of organic C: methanogenesis. Methanogens are Archaea that can be 

divided into at least three functional groups: hydrogenotrophs (which use CO2 and H2 to 

produce CH4), acetoclasts (which use acetate to produce CH4), and methylotrophic 

methanogens (which use methanol, methyl-amides, or methyl-sulfides to produce CH4) 

(Costa & Leigh, 2014). Hydrogenotrophic and acetoclastic methanogenesis are 

considered to be the most important pathways of CH4 production as other substrates have 

never been shown to be responsible for more than 5% of CH4 production (Segers, 1998); 

although the potential for methylotrophic methanogenesis was recently demonstrated 

across a variety of Sphagnum-dominated peatlands (Zalman et al., 2018). Additionally, 

although hydrogenotrophy is more common among methanogen taxa, acetoclastic 

methanogenesis is thought to be responsible for approximately two-thirds of biogenic 

CH4 production globally (Conrad, 1999). These two methanogenic pathways are 

mediated by distinct methanogen groups with unique environmental controls, but their 
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actual rates have rarely been measured under realistic conditions in wetlands (Moore et 

al., 2011; Bridgham et al., 2013). 

Methane production is the result of a complex suite of microbial activities that 

include both syntrophic interactions and competition for key substrates, with these 

relationships further modified by the physiochemical environment. Main controllers over 

this process in wetlands include O2 concentration (Roulet and Moore, 1995; Sundh et al., 

1995), the amount and quality of organic matter (Christensen et al., 2003), the availability 

of alternative TEAs (Megonigal et al., 2004), and soil pH (Garcia et al., 2000) and 

temperature (Yvon-Durocher et al. 2014). Water table position is often a strong predictor 

of CH4 emissions as a higher water table both increases the potential for CH4 production 

by increasing the soil anaerobic zone and simultaneously decreases the potential for 

aerobic CH4 oxidation (Roulet and Moore, 1995; Sundh et al., 1995).  

Methanogens are dependent upon fermentative microorganisms to produce their 

simple substrates and must compete for these substrates with other microorganisms that 

use respiratory pathways with more thermodynamically favorable TEAs (i.e. NO3
-, 

Fe(III), SO4
-2, and even humic substances). Hence in most ecosystems, CH4 production 

rates are very low until these more favorable TEAs have been consumed (Megonigal et 

al., 2004). For example, methanogenesis rarely occurs in surficial soils of saline systems 

because of the abundance of SO4
-2, which allows sulfate-reducing bacteria to out-compete 

methanogens for C substrates. The fact that methanogenesis is often inhibited by 

alternative TEAs also provides evidence of competition for fermentation products and, 

thus, widespread C limitation of the process. Indeed, many studies have linked CH4 

production to the quantity and quality of organic compounds (Christensen et al., 2003).  
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Finally, as with most chemical reactions, the rate of an enzyme-catalyzed 

reaction, such as methanogenesis, increases as the temperature is raised. Typically, a 10 

°C temperature increase will approximately double the activity of most enzymes 

(Petrucci and Harwood, 1989). A recent meta-analysis has shown that the seasonal 

variation in CH4 emissions from a wide range of ecosystems exhibit an average 

temperature dependence similar to that of CH4 production derived from pure cultures of 

methanogens and anaerobic microbial communities (Yvon-Durocher et al. 2014). 

Furthermore, this study also found the CO2:CH4 ratio to decrease rapidly with increasing 

temperature, suggesting that CH4 production has a higher sensitivity to changes in 

temperature than other respiratory processes.  

Following its production, CH4 is then transported out of the anaerobic zone either 

through diffusion, ebullition, or vegetation-mediated transfer in vascular plants. In 

diffusive transport, CH4 is oxidized in the aerobic region of the soil, which has been 

shown to consume 40 and 70% of gross CH4 production on average (Megonigal et al., 

2004). Aerobic CH4 oxidation is carried out by obligate methanotrophic bacteria (Hanson 

& Hanson, 1996) that convert CH4 gas to CO2. This process occurs across non-flooded 

areas, as well as oxic horizons or microsites within the soil profile, and is limited by the 

diffusion rate of its required substrates (O2 and CH4) (Sundh et al., 1995). Most aerobic 

methanotrophs are members of the Proteobacteria or Verrucomicrobia, with the latter 

more recently described and less studied. The Proteobacteria methanotrophs are divided 

into two distinct classes: Gammaproteobacteria (a.k.a. Type I methanotrophs) and 

Alphaproteobacteria (a.k.a. Type II methanotrophs) (Hanson & Hanson, 1996). These 

two types of methanotrophs have distinct characteristics and ecological traits (Ho et al., 
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2013; Knief, 2015), including differences in activity, growth rate, stress tolerance, and 

affinity for CH4. Gammaproteobacteria methanotrophs tend to have higher activity and 

growth rates under optimal (i.e. high CH4) conditions but decline more quickly under 

stress (such as desiccation, low resource levels, or declining O2). Alphaproteobacteria 

methanotrophs tend to have lower rates of activity and growth, but can persist under 

stressful conditions, including low CH4 levels. 

Aerobic methanotrophy is not only the best-studied process of wetland CH4 

consumption, but has historically been assumed to be the only pathway of CH4 oxidation 

in freshwater ecosystems. In sulfate-rich marine environments, anaerobic oxidation of 

CH4 (AOM) is an important process, consuming as much as 90% of the CH4 produced 

(Hinrichs & Boetius, 2002; Reeburgh, 2007) through a reaction exclusively coupled to 

SO4
-2 reduction (Boetius et al 2000; Orphan et al., 2001; Michaelis et al., 2002). 

Freshwater ecosystems generally have low concentrations of SO4
-2 and, thus, AOM was 

thought to be negligible in these systems. However, recent studies have reported AOM 

driven through other TEAs, such as NO3
- (Hu et al., 2014) and Fe (III) (Crowe et al., 

2011), and suggest that this process is widespread in freshwater wetlands where it has the 

potential to consume as much as 50% of the CH4 produced (Segarra et al., 2015). Despite 

these recent advances in our understanding of AOM, global rates remain poorly 

constrained (1.6-49 Tg CH4 yr-1 in peatlands; Gupta et al., 2013) and the principal drivers 

of the process (Gupta et al., 2013) and potential impacts on ongoing environmental 

change remain unknown.  

Dissertation Research 
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 The overall objectives of my dissertation are to (1) provide critical knowledge 

about the rates of CH4 cycling processes across a variety of equatorial African habitats, as 

well as the microbial and biogeochemical controls over these processes, and (2) to 

expand our mechanistic understanding of how substrate- and climate-driven variables in 

northern peatlands affect anaerobic C mineralization and CH4 dynamics. Chapter II is 

entitled “Microbial community attributes drive methane-cycling dynamics across Congo 

Basin upland and wetland ecosystems” and is co-authored by Kyle M. Meyer, Brendan J. 

M. Bohannan, and Scott D. Bridgham. In this study, we conducted an ecosystem-scale 

investigation of the abiotic and biotic controls over tropical CH4 cycling processes across 

a variety of central African Gabonese ecosystems using a combination of in-situ field 

measurements and laboratory incubations with paired biogeochemical and microbial 

community analyses. Our specific goals were (1) to quantify in-situ Gabonese ecosystem 

CH4 fluxes, (2) to determine how abiotic variables contribute to variation in CH4 flux 

across ecosystem types, and (3) to assess the ability of physiochemical measurements and 

microbial community attributes to predict Gabonese ecosystem CH4 production and 

consumption and methanogenic pathways. 

 Chapter III is entitled “Does dissolved organic matter or solid peat fuel anaerobic 

respiration in peatlands?” and is co-authored by Laurel Pfeifer-Meister, Cassandra A. 

Zalman, Jason K. Keller, Malak M. Tfaily, Rachel M. Wilson, Jeffrey P. Chanton, and 

Scott D. Bridgham. In this study, we manipulated available C sources under laboratory 

conditions to empirically determine the primary C source – solid-phase peat or dissolved 

organic matter (DOM) – fueling anaerobic respiration at surface and deep depth 

increments within two bogs and a poor fen in northern Minnesota. We investigated (1) 
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whether DOM or solid-phase peat fuels peatland anaerobic respiration, (2) whether this 

varies in two bogs and a poor fen in northern Minnesota, and (3) if methanogenesis deep 

in the peatland profile is limited by the availability of surface-derived DOM. Based on 

radiocarbon profiles of C sources and products of respiration (Chanton et al., 2008), we 

hypothesized that DOM would act as a primary driver of anaerobic respiration in 

peatlands across depths, but that the influence of DOM would be less in the bogs. We 

also expected that CH4 production deep in the peatland profile would be stimulated by 

surface-derived DOM addition, and that the stimulatory response would be greater in fen 

vs. bog peatlands because of the greater lability of fen DOM. 

 Chapter IV is entitled “Stability of peatland carbon to rising temperatures” and is 

published in Nature Communications (2016). This publication is co-authored by Rachel 

M. Wilson, Malak M. Tfaily, Steven D. Sebestyen, Chris W. Schadt, Laurel Pfeifer-

Meister, Cassandra A. Zalman, Karis J. McFarlane, Joel E. Kostka, Max Kolton, Randy 

K. Kolka, Laurel A. Kluber, Jason K. Keller, Tom P. Guilderson, Natalie A. Griffiths, 

Jeffrey P. Chanton, Scott D. Bridgham, and Paul J. Hanson. We assessed how northern 

peatland ecosystems respond to a changing climate in collaboration with the Spruce and 

Peatland Responses Under Changing Environments (SPRUCE) project, a regression-

based, ecosystem-scale climate manipulation experiment. Our specific objective was to 

determine if the slow decomposition of deep peat C was due to kinetic constrains, which 

would result in parallel increases in CH4 and CO2 production rates as global temperatures 

increase. To address this objective, we combined multiple lines of evidence, including in 

situ greenhouse gas fluxes, laboratory incubations, in situ analyses of 14C and dissolved 
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gasses, and microbial community structure and metabolic potential, to evaluate the 

response of a northern Minnesota peatland following 13 months of deep-peat heating. 

 Chapter V is entitled “Rising temperatures increase peatland methane production 

and anaerobic oxidation throughout the entire soil profile” and is co-authored with Kaitlin 

Brunik, Laurel Pfeifer-Meister, Jason K. Keller, Glenn Woerndle, Cassandra A. Zalman, 

Paul Hanson, and Scott D. Bridgham. This chapter builds off the research conducted in 

Chapter IV by examining the response of peatland anaerobic CH4 cycling to whole-

ecosystem warming (WEW) and elevated atmospheric CO2 (eCO2) concentrations using 

controlled laboratory incubations, completed under near-in-situ conditions, of peat 

samples collected from surface (30 cm) to deep (200 cm) depth increments. Specifically, 

we investigated changes in peatland CH4 production, CO2:CH4 ratios, and AOM 

throughout the entire peatland profile following 14 months of WEW and initial responses 

to eCO2 (≤ 4 months). We hypothesized that (1) CH4 production rates would positively 

respond to increasing temperatures in surficial soil horizons, but that deeper soil layers 

would be unaffected by temperature increases during WEW. We expected that (2) eCO2 

would further stimulate surface rates of methanogenesis by increasing methanogenic 

substrate availability through heightened rates of plant root exudation. Taken together, 

we hypothesized that these effects would (3) decrease surface CO2:CH4 ratios, but that 

those of deeper soil layers would remain constant. Finally, we anticipated that (4) AOM 

would occur in surficial soil layers where organic TEAs could be periodically re-oxidized 

by water-table fluctuations.   

 Chapter VI summaries the results of the preceding chapters (II-V) and discusses 

implications for future research.  
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CHAPTER II 

 

MICROBIAL COMMUNITY ATTRIBUTES DRIVE METHANE-CYCLING 

DYNAMICS ACROSS CONGO BASIN UPLAND 

AND WETLAND ECOSYSTEMS 

 

 

Contributions 

This chapter is co-authored by myself, Kyle M. Meyer, Brendan J. M. Bohannan, and 

Scott D. Bridgham. Kyle M. Meyer and I are co-first authors on this paper. 

Biogeochemical data collection, analysis, and interpretation were performed by myself, 

while microbial community data collection, analysis, and interpretation were completed 

by Kyle M. Meyer. All four co-authors contributed to the experimental design and field 

work of this study. Brendan J. M. Bohannan and Scott D. Bridgham filled the advisory 

roles on this project and provided text edits. 

 

Introduction 

Methane is 45 times more effective in retaining heat in the atmosphere over a 

100-year time frame relative to carbon dioxide (CO2) (Neubauer & Megonigal, 2015); 

therefore, small changes in its atmospheric concentration have large implications for 

future climate (Myhre et al., 2013). The atmospheric concentration of CH4 has increased 

by over 150% since pre-industrial times, making it responsible for about 20% of human-

induced radiative forcing and the second most important anthropogenic greenhouse gas 

after CO2 (Myhre et al., 2013). A recent, multi-decadal analysis of changes in 

atmospheric CH4 levels found that, after a period of stabilization in the early 2000s, CH4 
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levels have begun rising again, partially due to increased emissions from wetlands 

(Kirschke et al., 2013). 

Wetlands are responsible for about one-third of global CH4 emissions (500 to 600 

Tg CH4 yr-1) and have the largest uncertainty of any CH4 emission source (Bridgham et 

al., 2013; Kirschke et al., 2013). Wetlands tend to show a bimodal distribution 

worldwide, with the largest concentrations occurring in the tropics and boreal/arctic 

areas. Tropical wetlands are responsible for 47 to 89% of global CH4 emissions, with 

equatorial Africa, the Amazon Basin, and Southeast Asia being particular emission “hot 

spots” (Kirschke et al., 2013). Additionally, although CH4 emission increases have 

recently been observed in boreal and arctic regions, the largest increases have occurred 

throughout tropical areas (Spahni et al., 2011). While extensive research has been 

conducted in temperate, boreal, and arctic zones to understand biogeochemical and 

microbial controls on wetland CH4 emissions, little research has been conducted across 

tropical regions (Bridgham et al., 2013; Kirschke et al., 2013; Melton et al., 2014). It is 

unlikely that the anaerobic carbon (C) mineralization relationships and CH4 cycling 

dynamics observed in other, more heavily researched, ecosystems will transfer to 

equatorial regions given the distinct differences in climate and soil type (Spahni et al., 

2011). Additionally, these different environments also likely select for dissimilar 

microbial traits relevant to CH4 cycling. Thus, net and gross tropical ecosystem CH4 

fluxes, as well as their biogeochemical and microbial drivers and interactions, remain 

largely unknown. 

Ecosystem CH4 emissions are regulated by a complex set of controls over two 

primary, counteracting processes: CH4 production (methanogenesis) and aerobic CH4 
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consumption (methanotrophy). Both processes are mediated by distinct microbial 

communities whose structure, function, and activity are tightly coupled to the 

physiochemical characteristics of their environment (Tfaily et al., 2014; Kotiaho et al., 

2010; Cadillo-Quiroz et al., 2006; Teh et al., 2005; Galand et al., 2003; Segers, 1998). 

Methanogens are Archaea that can be divided into at least three functional groups: 

hydrogenotrophs (which use CO2 and H2 to produce CH4), acetoclasts (which use acetate 

to produce CH4), and methylotrophic methanogens (which use methanol, methyl-amides, 

or methyl-sulfides to produce CH4) (Costa & Leigh, 2014). Hydrogenotrophic and 

acetoclastic methanogenesis are considered to be the most important pathways of CH4 

production as other substrates have never been shown to be responsible for more than 5% 

of CH4 production (Segers, 1998). Additionally, although hydrogenotrophy is more 

common among methanogen taxa, acetoclastic methanogenesis is thought to be 

responsible for approximately two-thirds of biogenic CH4 production globally (Conrad, 

1999). These two methanogenic pathways are mediated by distinct methanogen groups 

with unique environmental controls, but their actual rates have rarely been measured 

under realistic conditions in wetlands (Moore et al. 2011, Bridgham et al. 2013).  

Aerobic CH4 oxidation is carried out by obligate methanotrophic bacteria (Hanson 

& Hanson, 1996) that convert CH4 to CO2. This process occurs across non-flooded areas, 

as well as oxic horizons or microsites within the soil profile, and is limited by the 

diffusion rate of its required substrates (O2 and CH4) (Sundh et al., 1995). Most aerobic 

methanotrophs are members of the Proteobacteria or Verrucomicrobia, with the latter 

more recently described and less studied. The Proteobacteria methanotrophs are divided 

into two distinct classes: Gammaproteobacteria (a.k.a. Type I methanotrophs) and 
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Alphaproteobacteria (a.k.a. Type II methanotrophs) (Hanson & Hanson, 1996). These 

two types of methanotrophs have distinct characteristics and ecological traits (Ho et al., 

2013; Knief, 2015), including differences in activity, growth rate, stress tolerance, and 

affinity for CH4. For example, Gammaproteobacteria methanotrophs tend to have higher 

activity and growth rates under optimal (e.g., high CH4) conditions, but decline more 

quickly under stress (such as desiccation, low resource levels, or declining O2). 

Conversely, alphaproteobacteria methanotrophs tend to have lower rates of activity and 

growth, but can persist under stressful conditions, including low CH4 levels.  

 Individual ecosystem processes such as methanogenesis and methanotrophy face 

microbial community-level constraints that may act as important predictors of process 

rates. One commonly observed form of limitation is driven by numerical constraints (i.e. 

abundance-limitation), whereby the process can only proceed as quickly as the total 

number of microorganisms in the environment capable of carrying out that process. This 

has been shown for both methanogenesis (Ma et al., 2012) and methanotrophy (Freitag & 

Prosser, 2009), where a positive relationship occurred between functional group 

abundance and process rates. Additionally, distinguishing between active and inactive 

individuals may be especially important when considering that most soil organisms are in 

an inactive state at any given time (Lennon and Jones, 2011). Therefore, even when there 

may be more than enough microorganisms with the potential to carry out a process, the 

rate of that process could still be hindered by the level of activity exhibited by those 

microbes, and, thus, determining the total number of active individuals involved in a 

process should help us further refine our predictive capability of that process (as shown in 

Freitag et al., 2010).  
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 The composition (i.e. membership) of a community can impose additional 

constraints on important ecosystem processes (e.g., Nazaries et al., 2013). This level of 

control on process rates involves the suites of traits (i.e. organismal characteristics 

involved in growth, survival, or reproduction) exhibited by community members. Even 

closely related methanogen/methanotroph taxa can differ in traits, such as substrate 

affinity, substrate preference, disturbance tolerance, or competitive ability (Ho et al., 

2013), suggesting that communities differing in composition will likely differ in the rates 

by which they perform ecosystem processes.  

 Lastly, microbial functional group diversity may also play a role in predicting 

ecosystem processes. The abilities to produce and consume CH4 are both highly 

phylogenetically conserved (Martiny et al., 2013), suggesting that relatively few taxa 

possess the ability to carry out these processes. This implies that there are likely lower 

levels of functional redundancy in these groups, which could influence the rate, as well as 

the resilience or stability of this process through time, a trend that has been demonstrated 

experimentally in methanotroph communities (Schnyder et al., 2018). Thus, an important 

step towards better predicting ecosystem functions, such as methanogenesis and 

methanotrophy, is to elucidate and quantify the attributes of a community that may 

impose constraints on these process rates.  

While there has been extensive work focusing on the drivers of CH4 cycling from 

high latitude zones, there has been considerably less in tropical areas. This is especially 

true for tropical Africa, which has been the focus of few studies (Delmas et al., 1992; 

Tathy et al., 1992; MacDonald et al., 1998; MacDonald et al., 1999; Prieme & 

Christensen, 1999; Werner et al., 2007), despite its substantial contribution to global CH4 
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emissions (Kirschke et al., 2013). 

To address this knowledge gap, 

we conducted an ecosystem-scale 

investigation of the abiotic and 

biotic controls over tropical CH4 

cycling processes across a variety 

of central African Gabonese 

ecosystems using a combination 

of in-situ field measurements and 

laboratory incubations with 

paired biogeochemical and 

microbial community analyses. 

Our specific goals were (1) to 

quantify in-situ Gabonese 

ecosystem CH4 fluxes, (2) to 

determine how abiotic variables contribute to variation in CH4 flux across ecosystem 

types, and (3) to assess the ability of physiochemical measurements and microbial 

community attributes to predict Gabonese ecosystem CH4 production and consumption 

and methanogenic pathways. 

 

Methods 

Site selection and sampling: We investigated abiotic and biotic controls over ecosystem 

CH4 cycling dynamics along a wetland to upland gradient in the equatorial African nation 

Figure 2.1. Aerial view of Gabonese study site locations in (a) 

Rabi and (b) Gamba. Upland sites are denoted with green 

circles, wetlands sites are shown with blue squares, and 

seasonal wetlands are represented as pink triangles.  
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of Gabon. The southwestern (SW) region of Gabon, along the Atlantic coastline, is 

composed of a matrix of natural tropical ecosystems, including wetlands, riverine 

systems, swamps, mangroves, forests, grasslands, and lagoons. We conducted an 

ecosystem-scale survey of CH4 cycling dynamics throughout two locations, Gamba and 

Rabi, in SW Gabon in October and November 2014 (Figure 2.1). We selected a diverse 

assortment of 15 study sites, including 2 organic-soil wetlands, 4 mineral-soil wetlands, 2 

seasonally inundated mineral-soil forests, 2 upland grasslands (1 with termite mounds), 3 

upland forests, a 1-year old plantation, and 1 abandoned plantation, for biogeochemical 

and microbial analysis. Field sampling took place at the beginning of the rainy season 

and, thus, all upland and seasonal wetland sites were dry, with water tables ≥ 40 cm 

below the surface, while wetland water table positions were, on average, 10 cm below the 

surface. Seasonal wetlands were identified using established field identification criterion, 

such as tree water-marks and redoximorphic soil characteristics.  

 

In-situ CH4 flux: Transects of six static chambers were established at each site to measure 

ecosystem CH4 flux. Due to the remote location of our field sites, we used a light-weight 

chamber design by retro-fitting 8 L opaque, plastic buckets (bottom diameter = 22 cm, 

top diameter = 21 cm) with 20-mm sampling ports, 15-mm ventilation ports, internal 

electric fans (120 x 120 mm, 12V, Allied Electronics, Fort Worth, Texas), and beveled 

edges. The chambers were installed at seven-meter intervals and 2.5 cm into the soil to 

ensure a gas-tight seal. After installation, we opened the ventilation port for 40 minutes to 

allow the internal chamber headspace to come to equilibrium with the external 

atmosphere. Upland site chambers were spiked with 5 ppmv CH4/mL headspace to 
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measure rates of in-situ CH4 oxidation, while wetland site chambers received no 

additional CH4. Then, 13-mL gas samples were pulled from the chamber headspace at 0, 

5, 10, 20, and 40 minutes and stored in pre-evacuated 12 mL Exetainers (LABCO Ltd.; 

www.labco.uk.com). Upon return to the University of Oregon (UO), CH4 concentrations 

were determined with an SRI 8610C gas chromatograph (GC; Torrance, CA) equipped 

with a methanizer and flame ionization detector. Flux rates were determined by the 

accumulation of CH4 over time, following adjustment for volume and temperature. Only 

CH4 fluxes with r2 ≥ 0.63 were included in subsequent analyses. One upland grassland 

site was not spiked with CH4 prior to sample collection and we were unable to measure 

changes in CH4 concentration because they were below our detection limits. 

Additionally, the thick root layer of one forested upland site resulted in a non-gas-tight 

chamber seal and prevented us from reporting flux estimates for this site. Therefore, flux 

estimates are given for 13 sites, while subsequent laboratory experiments encompass all 

15 sites.  

 

Potential CH4 oxidation: We collected three intact soil cores from above the water table 

at the beginning, middle, and end of each field transect. The samples were stored in PVC 

tubes (diameter = 5 cm, height = 8 cm) to maintain soil structure (aerobic and anaerobic 

microsites) and kept at in-situ air temperatures (~28 °C) until the end of the sampling trip 

(~3 weeks). Upon return to UO, each PVC core was placed into a gas-tight Mason jar that 

was retro-fitted with a headspace sampling port and incubated at 28 °C in the dark. Rates 

of aerobic CH4 oxidation were determined under initially low (5 ppmv CH4 in headspace) 

and high (1000 ppmv CH4 headspace) CH4 concentrations by injecting 1 cm3 of the 

http://www.labco.uk.com/
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headspace into the GC at 0.33, 3, 6, and 9 hours. The same soil cores were used to 

determine CH4 oxidation rates under low and high CH4 concentrations in quick 

succession, with low CH4 oxidation rates measured first to enhance our analysis 

sensitivity. We applied a pseudo-first-order exponential decay function to our 

measurements to determine the rate constant (k, units = d-1; i.e. dCH4/dt = k[CH4]) of the 

exponential decrease in CH4 at low initial CH4 concentrations. The high initial CH4 

concentration of 1000 ppmv should exceed the maximum capacity of the pMMO 

enzymes (Baani and Liesack, 2008), meaning we will have achieved substrate saturation, 

so we used a pseudo-zero-order linear equation to determine maximum velocity rates of 

CH4 consumption (Vmax, units = µmol CH4 cm-3 d-1) in these samples. Final rates of CH4 

oxidation represent the average of three replicates from each site. 

 

Potential CH4 and CO2 production and methanogenic pathways: Across all wetland sites 

(n = 6), we collected three soil samples from 0 – 10 cm below the water table at the 

beginning, middle, and end of each field transect. The samples were topped with site 

water and tightly sealed in 50 mL centrifuge tubes to ensure an anaerobic environment, 

stored at air temperature (~28 °C) to reflect near in-situ conditions, and shipped to UO at 

the end of the sampling trip (~3 weeks). Anaerobic incubations commenced at field 

temperatures within two days of returning to the USA. In a glove box filled with a N2 

atmosphere (<5% H2 in the presence of palladium catalyst; Coy Laboratory Products, 

Grass Lake, Michigan), approximately 10 g of wet weight soil were added to 120 mL 

serum bottles and mixed with 10 mL of deoxygenated, deionized water. Sample bottles 

were then flushed with N2 for 15 minutes to begin the incubation. Headspace samples 
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were analyzed over the course of three days (0, 1, 2, and 3 days) for CH4 and CO2 

simultaneously by GC. Total CH4 and CO2 were calculated using Henry’s Law, adjusting 

for solubility, temperature, and pH (Bridgham &Ye, 2013). Methane and CO2 production 

rates were calculated using the linear accumulation (r2 > 0.90 in all cases) of gasses 

through time. Additionally, a 14CO2 tracer method (Keller & Bridgham, 2007; Ye et al., 

2012) was used to measure hydrogenotrophic methanogenesis over three days with a gas 

chromatograph fitted with a radioactive gas proportional counter (IN/US Systems Inc., 

Pinebrook, NJ), with rates of acetoclastic methanogenesis determined by difference from 

total CH4 production. Rates of CH4 and CO2 production, as well as methanogenic 

pathways, represent the average of three replicates per site. 

 

Soil physical and chemical analysis: We measured a suite of abiotic variables across all 

sites to assess their relative ability to predict CH4 flux and potential CH4 production and 

oxidation. At wetland sites, we recorded pH (Oakton WP pHTestr 10, The Lab Depot, 

Dawsonville, GA), water table position, and soil temperature 5 cm below the surface 

from within each field chamber (n = 6). Total % N and organic C and moisture content, 

as well as soil texture, were determined in the laboratory using soil cores (n = 3 per 

depth) collected from 0 – 8 cm above and 0 – 10 cm below the water table at the 

beginning, middle, and end of each field transect. Total % N and organic C were 

measured on a Costech ECS 4010 Elemental Analyzer (Valencia, CA), with each sample 

analyzed in duplicate. Moisture content was measured by the change in weight of a soil 

sub-sample following 48 hours of drying at 60 °C. Finally, material from the three soil 
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cores was combined and homogenized for texture analysis using the hydrometer method 

(Gavlak et al., 2003), with 5% sodium hexametaphosphate as the dispersing solution. 

At seasonal wetland and upland sites, we measured the following abiotic 

variables: soil temperature, pH, moisture content, total % N and organic C, and soil 

texture. Soil temperature 5 cm below the surface was recorded from within each field 

chamber (n = 6), while all other abiotic variables were determined in the laboratory from 

soil cores collected 0 – 8 cm below the surface at the beginning, middle, and end of each 

transect. Total % N and organic C, moisture content, and soil texture were measured as 

described above. Soil pH was determined from a 1:1 soil to deionized water solution, 

with a Denver Instrument ultrabasic pH meter (Bohemia, NY).  

 

Soil RNA/DNA co-extraction and sequencing: At the beginning of anaerobic and the end 

of aerobic laboratory incubations, a subset of each soil sample was collected and 

preserved with Lifegaurd for microbial community analysis. We collected soil samples 

from the beginning of anaerobic incubations due to the addition of a radioisotope tracer 

and at the end of aerobic incubations because we did not want to disturb the intact soil 

cores. Soil DNA and RNA were co-extracted using MoBio’s Powersoil RNA Isolation 

Kit with the DNA Elution Accessory Kit (MoBio, California, USA) following 

manufacturer’s instructions. RNA was reverse transcribed to cDNA using Superscript III 

first-strand reverse transcriptase and random hexamer primers (Life Technologies, USA). 

Extractions were quantified using Qubit (Life Technologies, USA). All known 

methanogens express an isozyme of methyl-coenzyme M reductase; the gene encoding 

the α subunit of this enzyme (mcrA) is commonly used as a genetic marker for the 
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detection, enumeration, and classification of methanogens (Luton et al., 2002). We 

amplified two gene targets in sample DNA and cDNA: 1) the V4 region of the 16S SSU 

rRNA gene using the primers 515F and 806R (Caporaso et al., 2011), and 2) the mcrA 

gene using the mlas and mcrA-rev primer combination (Steinberg & Regan, 2008). 

Sequencing libraries were prepped using a dual-indexing approach (Kozich et al., 2013; 

Fadrosh et al., 2014). In short, each PCR reaction was performed using 12.5 μl NEBNext 

Q5 Hot Start HiFi PCR master mix (New England Biolabs, USA), 11.5 μl gene-specific 

primer mix (1.09 μM of each primer), and 1 μl template (DNA or cDNA). A sample 

subset was used to find 1) the optimal primer annealing temperature, and 2) the minimum 

number of cycles for adequate target amplification. For the 16S rRNA gene target this 

was 61° C and 20 cycles, for mcrA this was 67° C and 30 and 25 cycles for cDNA and 

DNA, respectively. The final reaction conditions were: 98° C and 30 seconds 

(initialization), 98° C and 10 seconds (denaturation), gene-specific annealing step for 20 

seconds (see above), and 72° C for 20 seconds (final extension). Reactions were followed 

by magnetic bead purification using 20 μl Mag-Bind RxnPure Plus isolation beads 

(Omega Bio-Tek, USA). Reactions were quantified using Qubit (Life Technologies, 

USA), then were pooled together at equimolar concentrations. Final pooled amplicon 

libraries were sequenced using the Illumina Miseq (300PE) platform at the Oregon State 

University Center for Genome Research and Biocomputing facility.   

 

Bioinformatic processing: Paired end reads were joined, then demultiplexed in QIIME 

(Caporaso et al., 2010) before quality filtering. Primers were removed using a custom 

script. UPARSE was used to quality filter and truncate sequences (Edgar, 2013). 
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Sequences were retained only if they had an identical duplicate in the database. 

Operational taxonomic units (OTUs) were clustered de novo at 97% similarity using 

USEARCH (Edgar, 2010). OTUs were checked for chimeras using the gold database in 

USEARCH. We used a custom script to format the UCLUST output for input into 

QIIME. To assign taxonomy, we used the repset from UPARSE in QIIME using 

greengenes version 13_5 (RDP classifier algorithm). 

The 16S community data were divided for previously reported methanogen and 

methanotroph taxa. Methanogen and methanotrophs community matrices were rarefied 

100 times each, to avoid problems associated with unequal sampling extent.  

 

Quantitative PCR: We quantified the abundance of methanogens in the laboratory soil 

samples used to determine rates of CH4 production using qPCR of the mcrA gene with 

the mlas-mcrA-rev primer combination (Steinberg & Regan, 2008). Samples were run on 

an ABI StepOnePlus thermocycler (ABI, USA), using Kapa SYBR reagents (Kapa 

Biosystems, USA) according to manufacturer recommendations. For each sample, 8 ng 

DNA was used, and the following amplification conditions were applied following 

optimization: 98° C for 10 minutes, 98° C for 15 seconds, 55.6° C for 15 seconds, and 

72° C for 60 seconds. A melt curve analysis was performed to verify target amplification. 

We used a similar approach to quantify methanotroph abundance and transcriptional 

activity by targeting pmoA in the sample DNA and cDNA, respectively, using the A189 

– mb661 primer combination (Bourne et al., 2001). Reactions were performed on a Bio-

Rad CFX96 real-time qPCR instrument, using SsoAdvanced Universal SYBR Green 

supermix (Bio-Rad, USA) following manufacturer instructions. For each sample, 2 ng of 
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template were used with the following reaction conditions: 98° C for 10 minutes, 98° C 

for 15 seconds, 55.6° C for 15 seconds, and 72°C for 60 seconds. All samples were 

amplified in triplicate. In both cases, sample amplification was compared to standard 

positive control to quantify total gene (or transcript) copy number. In the case of mcrA, 

the positive control was a mcrA plasmid and in the case of pmoA we used purified DNA 

from strain Methylococcus capsulatus (ATCC 33009D-5). We used LinRegPCR 

(Ramakers et al., 2003; Ruijter et al., 2009) to process amplification data, which allows 

for the calculation of individual PCR efficiencies. We tested whether individual PCR 

efficiencies differed among habitat types. This was not the case, so gene copy was 

calculated using the average PCR efficiency of all reactions. Finally, gene copy (or 

transcript) number was normalized to total ng DNA (or cDNA) used in the reaction.  

 

Statistical analysis: All statistical analyses were completed using R Statistical Software. 

Data were tested for normality and log-transformed where the transformation resulted in 

an improvement in the overall distribution. Transformed values were then used in 

subsequent analyses; however, non-transformed data are shown in figures to convey 

actual process rates. For all analyses, seasonal mineral-soil wetland sites were grouped 

with upland sites as they were dry with deep (≥ -40 cm) water tables at the time of 

sampling (and likely had been for some months prior during the dry season). 

 One-way analysis of variance (ANOVA) was used to determine whether CH4 

fluxes varied across wetland and upland sites, followed by Tukey’s HSD post-hoc tests (p 

< 0.05) to investigate pairwise differences when appropriate. Stepwise multiple linear 

regression with Akaike Information Criterion (AIC) as the model selection condition was 



28 
 

used to assess the ability of abiotic variables to predict wetland and upland CH4 flux. 

Abiotic variables collected for all wetland flux chambers included pH, water table 

position, soil temperature 5 cm below the soil surface, and soil texture (sand, silt, and 

clay content (%)). Additionally, total N and organic C (%) were also measured for a 

subset of the wetland flux chambers using the collected soil cores (n = 3). Thus, multiple 

linear regression analyses were run twice with the full and subset CH4 flux data sets for 

wetland sites. Conversely, only a subset of the CH4 flux values were used for this 

analysis in upland sites because the abiotic predictor variables could only be measured 

from the collected soil cores. For upland sites, pH, soil temperature 5 cm below the 

surface, soil texture (sand, silt, and clay content (%)), moisture content, and total % N 

and organic C were included as predictor variables. After removing predictor variables 

with correlations ≥ 0.7, model analyses included the following abiotic factors: (1) full 

wetland CH4 flux data set = soil pH and temperature, water table position, and soil clay 

and silt content, (2) subset CH4 flux data set = soil pH and temperature, water table 

position, organic C content, (3) upland CH4 flux data set = soil pH and temperature, 

organic C content, and soil silt and sand content.  

 We employed a similar statistical approach to investigate site-specific differences 

and potential ecosystem process predictor variables from our laboratory incubation data. 

One-way ANOVA was again used to investigate whether the exponential decay constant 

k (d-1) and Vmax values (µmol CH4 g soil-1 d-1) measured from CH4 oxidation laboratory 

experiments differed between wetland and upland sites, as well as whether CH4 

production rates, CO2:CH4 ratios, and methanogenic pathway dominances measured from 

anaerobic laboratory incubations varied across wetland sites. If sites differed 
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significantly, Tukey’s HSD post-hoc tests (p < 0.05) were used to find pairwise 

differences. Stepwise multiple linear regression with AIC as the model selection criteria 

was used to determine the ability of abiotic variables to predict rates of CH4 oxidation 

under low (k) and high (Vmax) initial CH4 concentrations in wetland and upland sites and 

rates of CH4 production in wetland sites. For all analyses using anaerobic and aerobic 

laboratory incubations, pH, soil texture (sand, silt, and clay content (%)), moisture 

content (%), and total % N and organic C were included as predictor variables. Water 

table position was also included as a predictor variable for analyses using anaerobic 

incubation data. Following the removal of predictor variables with correlations ≥ 0.7, 

model analyses included these abiotic factors: (1, 2) wetland low- and high-affinity CH4 

oxidation = soil pH and temperature, and organic C content, (3) upland low-affinity CH4 

oxidation = soil pH, temperature, sand content, and moisture content (4) upland high-

affinity CH4 oxidation = soil pH, temperature, sand content, and organic C content, (5) 

wetland CH4 production =  soil pH, temperature, organic C content, and water table 

position. 

We tested whether four main groups of community attributes were related to CH4 

cycling dynamics: 1) the abundance of functional groups (i.e. methanogen and 

methanotroph) -or their relative abundance in the prokaryotic community, 2) the diversity 

of methanogen/methanotroph communities (using species richness and Shannon 

diversity), 3) the composition of methanogen/methanotroph communities (using the 

relative abundance of individual taxa or broader taxonomic groups, (e.g., genera, or 

families), and 4) the activity of methanogens/methanotrophs, by inferring communities 

via RNA and using the aforementioned approaches, or in the case of methanotrophy, by 
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quantifying pmoA transcriptional level using qPCR. Community attributes were 

correlated with methane dynamics (i.e. CH4 production, pathway predominance, 

CO2:CH4 production ratio, low-affinity CH4 oxidation, or high-affinity CH4 oxidation) 

using a linear model assuming a Gaussian distribution. In the case of large numbers of 

variables (e.g., the relative abundance of many different taxa), we corrected for multiple 

comparisons by multiplying the p-value of each correlation by the total number of 

comparisons (i.e. the total number of taxa being tested).  

 

Results 

Soil physical and chemical analysis: Soil pH exhibited a wide range of variation (3.6-6.1) 

across upland and wetland sites, while soil temperature was relatively consistent (26.1 – 

31.0 °C) among sites (Table 2.1). Mineral soils were composed predominantly of sand 

(~86%), with little silt (~12%) and clay (~2%) content, resulting in the low N (~0.4%) 

and moderate organic C (~7%) concentrations typical of tropical ecosystems.  

 

Table 2.1. Characterization of the physical and chemical variables measured across all sites. Averages with 

standard errors shown, as well as the number of replicates for each analysis. WT = water table; T = 

temperature; MCa = moisture content above the water table. 

Ecosystem 

Type 
pH 

WT (± 

cm) 

Soil T 

(°C) 

% Total 

N 

% 

Organic 

C 

% 

Clay 

% 

Sand 

% 

Silt 

MCa 

(%) 

Open 

Peatland 

3.8 ± 

0.02 

(n=4) 

-11.3 ± 

3.1 

(n=4) 

29.6 ± 

0.3 

(n=4) 

1.6 ± 0.01 

(n=3) 

39.6 ± 

0.9 (n=3) 
0 0 0 

89.2 ± 

0.9 

(n=3) 

Forested 

Peatland 

3.6 ± 

0.1 

(n=3) 

-22.9 ± 

3.9 

(n=3) 

26.6 ± 

0.1 

(n=3) 

1.2 ± 0.1 

(n=2) 

45.7 ± 

1.6 (n=2) 
0 0 0 

74.7 ± 

3.1 

(n=3) 

Forested 

MSW 

6.1 ± 

0.1 

(n=5) 

-6.9 ± 

1.5 

(n=5) 

26.9 ± 

0.2 

(n=5) 

1.3 ± 0.7 

(n=2) 

24.7 ± 

16.0 

(n=2) 

1.2 95.1 3.7 

60.1 ± 

17.9 

(n=3) 

Forested 

MSW 

5.0 ± 

0.1 

(n=4) 

-1.7 ± 

7.2 

(n=4) 

26.1 ± 

0.1 

(n=4) 

0.4 ± 0.2 

(n=2) 

5.5 ± 2.8 

(n=2) 
3.2 84.2 12.6 

49.7 ± 

3.9 

(n=3) 
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Forested 

MSW 

4.7 ± 

0.3 

(n=5) 

-5.1 ± 

3.4 

(n=5) 

26.9 ± 

0.2 

(n=5) 

0.5 ± 0.4 

(n=2) 

9.9 ± 9.3 

(n=2) 
2.3 80.1 17.6 

49.1 ± 

13.3 

(n=3) 

Forested 

MSW 

4.8 ± 

0.1 

(n=6) 

-10.9 ± 

5.3 

(n=6) 

27.0 ± 

0.1 

(n=6) 

0.2 ± 0.04 

(n=3) 

5.1 ± 2.5 

(n=3) 
1.2 75.3 23.5 

31.9 ± 

10.4 

(n=3) 

Seasonal 

MSW 

4.2 ± 

0.1 

(n=3) 

N/A 

26.4 ± 

0.1 

(n=6) 

0.3 ± 0.05 

(n=3) 

3.6 ± 0.7 

(n=3) 
1.5 79.6 18.9 

22.9 ± 

2.1 

(n=3) 

Seasonal 

MSW 

4.1 ± 

0.1 

(n=3) 

N/A 

26.7 ± 

0.1 

(n=6) 

1.2 ± 0.2 

(n=3) 

23.6 ± 

4.2 (n=3) 
1.7 98.3 0 

53.5 ± 

3.7 

(n=3) 

Upland 

Grassland 

4.3 ± 

0.03 

(n=3) 

N/A 

29.6 ± 

0.11 

(n=6) 

0.1 ± 0.07 

(n=3) 

3.7 ± 2.9 

(n=3) 
0.4 99.2 0.4 

1.7 ± 

0.4 

(n=3) 

Upland 

Grassland 

(with 

termite 

mounds) 

4.7 ± 

0.2 

(n=3) 

N/A 

28.0 ± 

0.03 

(n=6) 

0.04 ± 

0.01 (n=3) 

0.8 ± 0.1 

(n=3) 
1.1 98.1 0.8 

4.6 ± 

0.5 

(n=3) 

Upland 

Forest 

3.9 ± 

0.03 

(n=3) 

N/A 

26.5 ± 

0.3 

(n=5) 

0.2 ± 0.02 

(n=3) 

2.1 ± 0.2 

(n=3) 
3.6 84.2 12.2 

11.1 ± 

1.2 

(n=3) 

Upland 

Forest 

4.1 ± 

0.1 

(n=3) 

N/A 

26.7 ± 

0.1 

(n=6) 

0.2 ± 0.01 

(n=3) 

2.0 ± 0.3 

(n=3) 
4.1 66.9 29.0 

12.9 ± 

0.1 

(n=3) 

Upland 

Forest 

4.0 ± 

0.06 

(n=3) 

N/A 

27.0 ± 

0.1 

(n=6) 

0.4 ± 0.2 

(n=3) 

7.3 ± 4.0 

(n=3) 
0 89.3 10.7 

23.5 ± 

7.3 

(n=3) 

Upland 

Plantation 

4.0 ± 

0.1 

(n=3) 

N/A 

31.0 ± 

0.3 

(n=5) 

0.1 ± 0.04 

(n=3) 

1.3 ± 0.5 

(n=3) 
8.1 66.0 25.9 

12.1 ± 

1.2 

(n=3) 

Upland Ab. 

Plantation 

4.1 ± 

0.03 

(n=3) 

N/A 

27.0 ± 

0.3 

(n=6) 

0.1 ± 0.03 

(n=3) 

1.8 ± 0.6 

(n=3) 
3.3 95.9 0.8 

6.2 ± 

1.6 

(n=3) 

 

 

In-situ CH4 flux: Gabonese wetland CH4 fluxes were extremely variable both across and 

within sites (Figure 2.2a), particularly in mineral-soil wetlands. We observed net 

consumption rates of up to 6.3 µmol CH4 m
2 d-1 and net emission rates of as much as 

121.6 µmol CH4 m
2 d-1, with an average flux of 16.1 ± 31.4 µmol CH4 m

2 d-1. Given this 

high variability, CH4 fluxes across wetland sites did not differ significantly (F = 0.57, p = 

0.72). Water table position was the best predictor of wetland CH4 flux with both the full 
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(F = 6.89, p = 0.015) and subset (F = 2.69, p = 0.127) data sets, explaining 18% and 12% 

of its variance, respectively.  

 Gabonese upland CH4 fluxes were less variable than those observed in wetland 

sites with an average net consumption rate of 2.6 ± 1.7 µmol CH4 m
2 d-1 (Figure 2.2b). 

Only one chamber installed in a seasonal wetland (out of 40 flux chambers total) showed 

net emission of 3.3 µmol CH4 m
2 d-1 CH4. Differences in CH4 fluxes across upland sites 

were marginally significant (F = 1.96, p = 0.101) and driven by a difference between the 

fluxes of a seasonal mineral soil wetland and a plantation (p = 0.049). Soil pH and % 

organic C were the most predictive abiotic variables of upland CH4 flux (F = 3.98, p = 

0.037), explaining 23% of its variation.   

Figure 2.2. Methane fluxes measured across a variety of Gabonese (a) wetland and (b) upland ecosystems 

in October 2014. Data from individual chambers (n ≤ 6 per site) are displayed to emphasize intra-site 

variability, particularly in mineral-soil wetlands. Wetland flux rates did not vary significantly across sites, 

while marginally significant differences in flux rates were found across upland sites (p = 0.101). Significant 

differences (p < 0.05) between upland sites are denoted with *. The thick black line represents the median 

value, the box edges denote the upper and lower 25% quartiles, and the whiskers show the maximum and 

minimum values (excluding outliers). Outliers are shown with open circles. MSW = mineral soil wetland; 

Seasonal MSW = seasonally inundated mineral soil wetland; Ab. Plantation = Abandoned Plantation. 
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Potential CH4 oxidation: 

High affinity CH4 oxidation: During aerobic laboratory incubations, rates of CH4 

consumption under initially low CH4 concentrations (5 ppmv CH4) were higher in upland 

sites relative to wetland sites (F = 13.77, p < 0.01; Figure 2.3a). Upland site oxidation 

rate constants were 4.2 ± 2.3 d-1, while wetland site rate constants were, on average, 

133% lower, with values of 1.8 ± 1.3 d-1. In upland sites, % sand and moisture content 

were the most predictive abiotic variables of k (F = 3.57, p = 0.049) and explained 20% 

of the variation. Conversely, none of the abiotic variables measured predicted wetland 

CH4 oxidation under low CH4 concentrations. Across all sites, the best explanatory 

variable for k was the relative abundance of a single OTU (Methylovirgula sp.) in the 

RNA-inferred community (Adj. R2 = 0.45, p < 0.001). The relative abundance of 

methanotrophs in the RNA-inferred community was negatively correlated with k (Adj. R2 

Figure 2.3. (a) Rate constant (k) for CH4 oxidation rates at low (5 ppmv) initial CH4 concentrations and (b) 

maximum velocity rate (Vmax) at high (1,000 ppmv) initial CH4 concentrations from aerobic laboratory 

incubations with intact Gabonese soil cores in October 2014 (n = 3). Standard error bars are shown. 

Wetland sites are shown in black and upland sites are shown in white. Note the different y-axes. MSW = 

mineral soil wetland; Seasonal MSW = seasonally inundated mineral soil wetland; Ab. Plantation = 

Abandoned Plantation.  
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= 0.12, p < 0.05, Figure 2.4a). 

Additionally, we observed a similar 

inverse relationship  between uptake 

rate and diversity of methanotrophs 

in both RNA- and DNA- inferred 

communities (Adj. R2 = 0.16, p < 

0.05, Adj. R2 = 0.15, p < 0.01, 

respectively, Figure 2.4b). 

  

Low affinity CH4 oxidation: During 

aerobic laboratory incubations under 

initially high CH4 concentrations 

(1,000 ppmv CH4), wetland sites 

consumed roughly 200% more CH4 

than upland sites (F = 5.83, p = 

0.002; Figure 2.3b). Rates of CH4 

consumption, measured as Vmax, in wetland sites were 0.3 ± 0.05 µmol CH4 g soil-1 d-1
 

and those of uplands were 0.1 ± 0.02 µmol CH4 g soil-1 d-1. Together, pH and total % 

organic C explained 15% of the variation in wetland Vmax values (F = 2.52, p = 0.11), 

whereas none of the abiotic variables measured predicted upland Vmax values.  

 

Potential CH4 production and methanogenic pathways: Wetland CH4 production rates 

varied across sites (F = 3.11, p = 0.05) and ranged from 0.1 – 6.7 µmol CH4 g soil-1 d-1, 

Figure 2.4. The negative relationship between k and (a) the 

relative abundance of methanotrophs in the RNA-inferred 

16S prokaryotic community and (b) the Shannon diversity 

of the DNA-inferred methanotroph community.  
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with an average rate of 1.1 ± 1.5 µmol CH4 g soil-1 d-1 (Figure 2.5). Mineral-soil wetlands 

produced 120% more CH4, on average, than peatlands; however, this difference was only 

marginally significant (p = 0.07). Of the abiotic variables measured, soil pH and moisture 

content explained 35% of the variation in wetland CH4 production rates (F = 5.56, p = 

0.02). Additionally, a number of microbial community attributes were also significantly 

correlated with potential wetland CH4 production. These included mcrA gene abundance 

(Figure 2.6a; derived from qPCR, Adj. R2= 0.62, p < 0.01), the relative abundance of 

Methanoregula sp. (a hydrogenotrophic methanogen) in the RNA- and DNA- inferred 

communities (Adj. R2= 0.75, p < 0.001, Adj. R2= 0.56, p < 0.001, respectively), and the 

relative abundance of Methanothrix sp. (an acetoclastic methanogen) in the RNA- and 

DNA- inferred communities (Adj. R2= 0.73, p < 0.001, Adj. R2= 0.86, p < 0.001, 

Figure 2.5. Gabonese wetland CH4 production rates measured from anaerobic laboratory incubations 

conducted at in situ air temperatures (28 °C) in October 2014 (n = 3). Significant differences (p < 0.05) are 

denoted with *. The thick black line represents the median value, the box edges denote the upper and lower 

25% quartiles, and the whiskers show the maximum and minimum values. MSW = mineral soil wetland. 
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respectively). Neither 

Methanoregula sp. 

nor Methanothrix sp. 

were particularly 

abundant members of 

the methanogen 

community, ranking 

46th and 38th most 

abundant, 

respectively. We 

performed stepwise 

model building using 

AIC to identify the 

most explanatory 

combination of 

abiotic and biotic 

variables. This analysis identified mcrA gene abundance (Figure 2.6a) plus the relative 

abundance of Methanoregula sp. (in the DNA-inferred community) to be the most 

explanatory combination of variables (Adj. R2=0.98, p < 0.001). However, these 

correlations were strongly driven by two higher samples on both axes.  

The dominant methanogenic pathway varied across wetland soil types (F = 23.22, 

p < 0.001), with peatland CH4 production dominated by hydrogenotrophic 

methanogenesis and mineral-soil wetland CH4 production dominated by acetoclastic 

R2 = 0.67, p < 0.001

A)

B)

R2 = 0.62, p = 0.001

Figure 2.6. The positive relationship between CH4 production rate and mcrA 

gene copy number (a) and between percent hydrogenotrophic pathway 

predominance and relative abundance of hydrogenotrophic taxa in the RNA-

inferred community (b). 
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methanogenesis (Figure 2.7). In peatlands, hydrogenotrophic methanogenesis was 

responsible for 55 – 100% of total CH4 production and averaged 76.7 ± 23.0 % of total 

CH4 production. Conversely, hydrogenotrophic methanogenesis was responsible for only 

30.7 ± 11.2 % of total CH4 production in mineral-soil wetlands, ranging from 12.7 – 

46.6% of total production. The percentage of methanogens using hydrogenotrophy as 

their predominant methanogenic pathway in the RNA-inferred community was positively 

correlated with the percent predominance of the hydrogenotrophic pathway across all 

sites, driven by the difference between mineral-soil wetlands and peatlands (Figure 2.6b; 

Adj. R2 = 0.67, p < 0.001). The best single predictor of pathway predominance, however, 

was the relative abundance of the hydrogenotrophic genus Methanobacterium in the 

RNA-inferred community (Adj. R2 = 0.77, p < 0.001). 

Figure 2.7. Proportion of hydrogenotrophic methanogenesis measured as a percent of total CH4 production 

from anaerobic laboratory incubations of Gabonese wetland soil samples (n = 3) in October 2014. The 

thick black line represents the median value, the box edges denote the upper and lower 25% quartiles, and 

the whiskers show the maximum and minimum values. Lower case letters represent significant differences 

(p < 0.05). MSW = mineral soil wetland. 
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Ratios of CO2:CH4 production were higher in peatlands relative to mineral-soil 

wetlands (F = 6.24, p = 0.004; Figure 2.8). The majority of mineral-soil wetland 

CO2:CH4 ratios were at or below 1. The CO2:CH4 ratio was positively correlated with the 

percent hydrogenotrophic pathway predominance (Adj. R2 =0.87, p < 0.001), indicating 

that samples with higher levels of hydrogenotrophic production tended to produce less 

CH4, relative to CO2. The relative abundance of the hydrogenotrophic genus 

Methanobacterium in the RNA-inferred community was strongly correlated with the 

CO2:CH4 production levels (Adj. R2 = 0.75, p < 0.001). 

 

Discussion 

Figure 2.8. Gabonese wetland CO2:CH4 production ratios measured from anaerobic laboratory incubations 

done at in situ air temperatures (28 °C) in October 2014 (n = 3). The dotted line represents a CO2:CH4 ratio 

of 1. Significant differences (p < 0.05) are denoted with lower case letters. The thick black line represents 

the median value, the box edges denote the upper and lower 25% quartiles, and the whiskers show the 

maximum and minimum values. MSW = mineral soil wetland. 
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Despite continued work to improve global wetland CH4 models, a recent 

comparison of current efforts determined that there is a lack of observational studies with 

appropriate mechanistic data to vet CH4 models against and singled out the need for more 

mechanistic research in the equatorial zone (Melton et al., 2014). Africa has been the 

focus of particularly few studies (Delmas et al., 1992; Tathy et al., 1992; MacDonald et 

al., 1998; MacDonald et al., 1999; Prieme & Christensen, 1999; Werner et al., 2007), 

which largely measured only CH4 and CO2 fluxes, providing no mechanistic data. Here, 

we help alleviate this knowledge gap by demonstrating that a combination of microbial 

community attributes provided greater explanatory power over methanotrophy and 

methanogenesis rate potentials across a variety of Gabonese uplands and wetlands rather 

than a suite of abiotic factors. CH4 production, in particular, was highly predicted by the 

abundance of a few non-dominant methanogen taxa. Additionally, although our in-situ 

CH4 measurements represent a single point in time, we provide evidence of the high 

intra- and inter-site variability of Gabonese wetland CH4 emissions, as well as the general 

uptake of CH4 from upland ecosystems. Taken together, our work contributes unique 

insights into how microbial community structure imposes constraints on CH4 cycling, as 

well as an impression of landscape-scale variation in in-situ CH4 fluxes across a variety 

of equatorial habitats.  

 

In-situ CH4 flux: Gabonese wetland CH4 emissions varied by an order of magnitude 

across sites, with this difference largely driven by high variation in mineral-soil wetlands 

(Figure 2.2a). Conversely, upland ecosystems exhibited much less intra- and inter-site 

variation and generally consumed CH4 (Figure 2.2b). For both ecosystem types, abiotic 
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factors only accounted for a modest amount of the variation in CH4 flux. For example, 

water table position, a variable of known importance in the regulation of higher latitude 

wetland CH4 emissions (Updegraff et al., 2001; Turetsky et al., 2008; Moore et al., 2011), 

explained only 18% of the variation in Gabonese wetland CH4 flux. Similarly, soil pH 

and total % organic C content explained roughly 20% of the variation in upland CH4 flux. 

These results suggest that variables beyond the typically measured abiotic factors, such as 

microbial community structure, may play a role in controlling Gabonese CH4 emissions. 

However, we must acknowledge that our CH4 flux measurements represent a single snap-

shot in time and, thus, we cannot address how abiotic seasonal factors affect Gabonese 

wetland CH4 fluxes or how they vary at inter-annual timescales. While temperatures are 

relatively constant in this area of Gabon, it does experience two distinct rainy seasons. 

Despite these caveats, our CH4 flux estimates provide an in-situ context for our gross 

laboratory process analyses and demonstrate the minimal predictive power of abiotic 

variables in this instance. 

 

Potential CH4 oxidation: Upland microbial communities were more effective at oxidizing 

CH4 at near-atmospheric concentrations relative to those of wetland ecosystems. Rates of 

CH4 oxidation under low CH4 concentrations (initial 5 ppmv CH4) were 133% greater in 

Gabonese uplands relative to wetlands (Figure 2.3a). The single best predictor of high-

affinity CH4 oxidation across all sites was the activity level of an Alphaproteobacteria 

methylotroph, Methylovirgula sp, which explained 45% of the variance in this metric. 

This taxon is not a known methanotroph, but rather a methylotroph (Dedysh, 2016). This 

correlation could either represent cross-feeding, whereby this taxon receives substrate 
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from another community member that is consuming CH4, or it could be that this taxon is 

indeed capable of utilizing CH4 as a substrate, but has not yet been reported to do so. 

While none of the abiotic variables explained the variation of this process at wetland 

sites, % sand and moisture content explained 20% of the variation high-affinity CH4 

oxidation in upland sites. Previous studies have also observed effects of soil texture and 

moisture content on rates of CH4 oxidation, as these two parameters control the rates of 

O2 and CH4 diffusion to methanotrophic microbial communities (Saari et al., 1997; Teh 

et al., 2005). However, neither of these variables significantly affected upland CH4 

fluxes, possibly because of the more controlled nature of the laboratory incubations 

which isolated a defined depth of the soil column. 

Interestingly, we saw an inverse relationship between methanotroph relative 

abundance in the RNA-inferred community and high-affinity CH4 uptake rates (Figure 

2.4a). This same inverse relationship was also observed for methanotroph community 

diversity (Figure 2.4b), suggesting that smaller populations of methanotrophs with fewer 

taxa consume low concentrations of CH4 at a higher rate. The ability to complete this 

process is likely much more narrow than low-affinity CH4 oxidation and, thus, would be 

performed by a smaller number of taxa (Knief, 2015). Methanotrophs in upland soils are 

largely dependent on low concentrations of atmospheric CH4 diffusing into the soil, 

leading to extreme substrate limitation despite possessing efficient CH4 oxidation 

enzymes, likely leading to lower abundance and diversity.  

 We found the opposite trend in aerobic laboratory incubations at initially high 

CH4 concentrations (1,000 ppmv CH4): maximum rates of Gabonese wetland CH4 

consumption were 200% greater than those of upland ecosystems (Figure 2.3b). Thus, 
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maximum rates of CH4 oxidation were found in environments that experienced higher 

rates of CH4 production and flux. Soil pH and total % organic C were the best predictors 

of this process in wetland sites (explaining 15% of the variation), while no abiotic 

variables were effective predictors of low-affinity CH4 oxidation in upland ecosystems. 

Methanotrophs have been shown to have an optimum pH of 6-7 (Dunfield et al., 1993) 

and, likewise, rates of wetland CH4 oxidation increased with rising pH in this study. 

Additionally, the growth and activity of methanotrophs has also been observed to be 

stimulated by increased mineral N availability (Bodelier et al., 2004). In our study, there 

was a strong positive correlation between total N and organic C content, which both 

increased with increasing low-affinity CH4 oxidation. It is likely that higher nutrient 

availability in some Gabonese soils enhanced the activity and growth of microbial taxa, 

including low-affinity methanotrophs. However, as we found direct measures of 

microbial community composition, abundance, activity, and diversity to be strong 

predictors of CH4 oxidation under initially low concentrations, we hypothesize that these 

biotic variables will be better predictors of this process at initially high CH4 

concentrations, relative to abiotic factors, and plan to investigate these relationships in the 

future. 

   

Potential CH4 and CO2 production and methanogenic pathways: Similar to 

methanotrophy, abiotic variables explained less variation in methanogenesis rates than 

microbial community attributes. For instance, we found that mcrA gene abundance plus 

the relative abundance of a single methanogen taxon (Methanoregula sp.) had 

exceptionally high explanatory power across our wetland sites (Adj. R2 = 0.98). An 
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important caveat to this finding is that Methanoregula sp. was only abundant in the sites 

with high CH4 production, and had very low abundance, or was absent, in most other 

samples. Nevertheless, the combination of overall gene abundance and composition 

information could represent two separate community-level constraints that limit CH4 

production across our wetland sites: numeric constraints and trait-based constraints. In 

other words, the rates by which CH4 is produced seem to be limited by the total number 

of microorganisms capable of producing CH4, as well as the presence of a single member 

of the community that may have very high activity under certain conditions.  

 Conversely, soil pH and moisture content explained much less of the variation in 

Gabonese wetland CH4 production (35% of variation). Methanogenesis is known to be 

very sensitive to acidity (Segers, 1998) and, accordingly, increased with increasing pH; 

however, we also observed substantial CH4 production in a Gabonese peatland with a pH 

of 3.3. Additionally, although all samples were incubated under 1:1 soil to deionized 

water conditions, CH4 production rates were positively correlated with increasing 

moisture content, indicating that the activity of either the methanogens and/or the 

microbial consortia controlling the anaerobic oxidation of CH4 may be mediated by soil 

moisture conditions. 

 Consistent with other studies (Updegraff et al., 1995; Bridgham et al., 1998), we 

saw a strong separation of methanogenesis pathway predominance across peatland and 

mineral-soil wetlands (Figure 2.7). In particular, we see that in peatlands the 

hydrogenotrophic pathway tended to predominate, whereas in mineral-soil wetlands, the 

acetoclastic pathway was dominant. Increased prevalence of the acetoclastic pathway, 

along with coincident shifts in microbial community composition and activity, have been 
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coupled to increased CH4 emissions from melting permafrost peatlands (McCalley et al. 

2014), indicating that the response of total peatland CH4 production to climate change is 

tightly linked to the relative importance of the two CH4 pathways and microbial 

community dynamics. Such results underpin the importance of better understanding the 

mechanisms underlying changes in pathway predominance.  

We found that by assessing the structure of the putatively active fraction of the 

communities in our study, we could predict methanogenesis pathway predominance. 

Simply by inferring communities from RNA, then categorizing methanogens based on 

their previously-reported ability to use hydrogenotrophic vs. acetoclastic pathways, we 

could predict the degree to which CH4 has been produced via a given pathway (Figure 

2.6b; Adj. R2 = 0.67). Moreover, the RNA relative abundance of a single group of 

methanogens (genus Methanobacterium) even more precisely predicted pathway 

predominance (Adj. R2 = 0.77). Furthermore, the relative abundance of this genus in the 

active community was also a strong predictor of CO2:CH4 production ratios (Adj. R2 = 

0.75), indicating that the relative activity levels of this genus may be useful for predicting 

both pathway predominance, as well as terminal C mineralization ratios. A parallel 

relationship has been reported in thawing permafrost, where the DNA-inferred relative 

abundance of a single OTU (M. stordalmirensis) was a key predictor of shifts in 

methanogenic pathway dominance, which in turn predicted the amount of C emitted as 

CH4 and as CO2 (McCalley et al., 2014). In our study, we observed CO2:CH4 ratios that 

approached or were at one, indicating extremely efficient methanogenesis (Figure 2.8). 

These results have large implications as the CO2:CH4 ratio is an ecologically relevant 
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ratio representing the flow of C through anaerobic pathways and, ultimately, the impact 

ecosystem emissions will have on future climate. 

  Overall, abiotic variables tended to be less predictive of gross processes of 

wetland and upland Gabonese CH4 cycling, relative to biotic variables. While we 

acknowledge that by bringing soil cores into a controlled laboratory setting, we are likely 

downplaying certain environmental factors that could be important (e.g., temperature 

fluctuations or rainfall events), the majority of our environmental variables were 

independent from our incubation conditions (e.g., %C, %N, pH, soil texture). 

Furthermore, field CH4 fluxes were also poorly predicted by abiotic variables in 

comparison to most other studies. Thus, our findings suggest that CH4 dynamics across 

these tropical ecosystems appear to be strongly regulated by microbial community 

attributes, such as abundance, diversity, activity, and composition. Whether our findings 

extrapolate to other tropical systems remains untested.  

 Much of the variation of CH4 dynamics in higher latitude systems is driven by 

seasonal fluctuations in temperature and water table depth (Updegraff et al., 2001; 

Turetsky et al., 2008; Olefeldt et al., 2017). It is possible that tropical CH4 dynamics may 

not be as influenced by external conditions as higher latitude ecosystems due to the 

constancy of temperatures in the tropics. For example, methanogen population growth 

rates are slow because all the methanogenic pathways have very low thermodynamic 

yields that often barely above the threshold for growth under in-situ conditions (Conrad, 

1999; Megonigal et al., 2004). Thus, methanogen populations are expected to recover 

slowly from unfavorable environmental conditions, such as freeze-thaw events. 

Therefore, the constancy of temperatures in tropical regions, as well as high rates of C 
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input, may lead to large active methanogen communities and unique taxa with high rates 

of activity, capable of producing low CO2:CH4 ratios during anaerobic heterotrophic 

respiration. Although our study does not directly test this, it is possible that biotic 

controls on CH4 dynamics are stronger in tropical areas than in higher latitude regions 

and future work could attempt to address this hypothesis by comparing drivers of CH4 

cycling across latitudes and gradients of environmental perturbation. 

   

Conclusions 

Microbial community structure and ecosystem function are notoriously difficult to 

connect. Methane-cycling is an ideal C-cycle process to study this connection because the 

microorganisms that produce and consume CH4 are phylogenetically constrained and 

relatively well studied. Tropical wetlands emit more than half of the global wetland CH4 

flux; yet, there have been comparatively fewer studies on controls over tropical wetland 

methane flux relative to boreal and temperate wetlands. Our study addressed this 

knowledge gap by (1) estimating rates of CH4 flux, production, consumption, and 

methanogenic pathway dominances in a variety of equatorial African habitats and (2) by 

using a suite of physiochemical and microbial community attributes to determine the 

relative ability of abiotic and biotic variables to predict these processes across ecosystem 

types. Here, we show that a combination of microbial community attributes, including 

composition, abundance, activity, and diversity, are better predictors of CH4 production, 

consumption, methanogenic pathway, and CO2:CH4 ratios relative to a standard set of 

physiochemical parameters. Of particular interest was that the relative abundance of 

Methanobacterium sp. in the active community explained 77 and 75% of the variation in 
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methanogenic pathway dominance and CO2:CH4 ratios, respectively. Methanogenic 

pathway predominance and CO2:CH4 ratios are important ecological indicators that 

provide insight into the underlying mechanisms and efficiency of ecosystem CH4 cycling. 

Thus, our research highlights the central role of microbial ecology in controlling 

ecosystem-scale processes, as well as the potential benefits of incorporating microbial 

dynamics into terrestrial CH4 modelling efforts. 

 

Bridge to Chapter III 

 Wetlands in tropical and boreal regions are globally important ecosystems due to 

their influence on the CH4 cycle. Despite this acknowledgement, little is known about the 

fundamental rates and controls over gross and net tropical wetland CH4 emissions and, 

although boreal wetlands have been more thoroughly studied, significant questions 

remain surrounding the biogeochemical controls over CH4 dynamics in these systems. 

Chapter II addressed this knowledge gap by providing novel data on the rates of CH4 

flux, production, consumption, and methanogenic pathway dominances in a variety of 

tropical Gabonese habitats and demonstrating that variation in many of these processes is 

better explained by microbial community attributes relative that of abiotic factors. In 

Chapter III, we continue to investigate the biogeochemical controls over anaerobic C 

cycling processes in wetlands; however, we transition to a study conducted across a 

variety of boreal peatlands. These ecosystems are also of critical importance to the global 

CH4 cycle and examining the C sources fueling methanogenesis in these systems will 

enhance our mechanistic understanding of peatland CH4 cycling.  
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CHAPTER III 

 

DOES DISSOLVED ORGANIC MATTER OR SOLID PEAT FUEL ANAEROBIC 

RESPIRATION IN PEATLANDS? 

 

 

Contributions 

This chapter is co-authored by myself, Laurel Pfeifer-Meister, Cassandra A. Zalman, 

Jason K. Keller, Malak M. Tfaily, Rachel M. Wilson, Jeffrey P. Chanton, and Scott D. 

Bridgham. I was responsible for the data collection, analysis, and writing of this 

manuscript. Laurel Pfeier-Meister, Scott D. Bridgham, Jason K. Keller, and myself 

designed this experiment. Malak M. Tfaily, Rachel M. Wilson, and Jeffrey P. Chanton 

provided the DOC and SUVA measurements. All co-authors gave text edits. 

 

Introduction 

Peatlands are among the most important terrestrial ecosystems largely due to their 

significant influence on the global carbon (C) cycle. In these systems, imbalances 

between net primary production and slow decomposition under cold, wet conditions have 

led to the accumulation of about one-third of the world’s soil C (Gorham, 1991; 

Bridgham et al., 2006) since the Last Glacial Maximum (Yu et al., 2010). Northern 

peatlands alone store half as much C (473-621 Pg C; Yu et al., 2010) in soil as the 

atmosphere stores as carbon dioxide (CO2) (829 Pg C; Ciais et al., 2013). However, 

despite their immense C storage capacity, peatlands are also responsible for roughly 13% 

of global emissions of methane (CH4) (Kirschke et al., 2013), a potent greenhouse gas 

with 45-times the sustained-flux global warming potential of CO2 over a 100-year time 

frame (Neubauer and Megonigal, 2015). Given the key role these ecosystems play as 
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both global C stores and CH4 sources, it is imperative to gain a comprehensive 

understanding of peatland C cycling to elucidate current and future biosphere-climate 

feedbacks and mechanisms.  

While solid-phase soil organic matter represents the largest C stock in peatlands, 

the much smaller pool of dissolved organic matter (DOM) is a key control of microbial 

activity (Bragazza et al., 2013) and may be particularly important in regulating the 

production of CH4 in peatlands (Pastor et al., 2003; Chanton et al., 2008). Climate change 

could have large effects on the quality and concentration of DOM, and thus microbial 

activity, in peatlands. For example, changes in precipitation will affect DOM retention 

and transport through the peat column, both of which affect respiration of CH4 and CO2 

(Pastor et al., 2003; Glaser et al., 2016). Additionally, studies have shown that peatland 

plant communities undergoing climate warming and/or drying experience decreases in 

the abundance of Sphagnum spp. and lichens and increases in the abundance of sedges 

and shrubs (Weltzin et al., 2000; Walker et al., 2006; Bragazza et al., 2013; McCalley et 

al., 2014), which may affect the type of DOM available, as well as the respiration of 

greenhouse gases (Corbett et al., 2013b; Wang et al., 2015). Despite the considerable 

attention peatlands have received, our understanding of the role of DOM in anaerobic C 

respiration is incomplete, limiting our ability to accurately predict climate forcing from 

peatlands (Bridgham et al., 2013a).  

Peatlands are typically classified along a hydrogeomorphic gradient of differing 

groundwater or surface-water inputs that influences a suite of factors, including water-

table dynamics, topography, water chemistry, peat characteristics, and plant community 

composition. Minerotrophic fens maintain some level of groundwater connectivity and 
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mineral-soil influence in an otherwise organic soil matrix, with porewater pH generally 

higher than that of bogs (CCELC, 1987). Fens with more minerotrophic features, such as 

higher soil pH and basic cation content, are often termed “rich”, while those with soil 

chemistries more similar to bogs are denoted as “poor”.  Rich fens also tend to have 

higher nitrogen and lower phosphorus availability than that of poor fens (Kolka et al., 

2016). Fen plant communities are dominated by varying proportions of graminoids, forbs, 

shrubs, and Sphagnum mosses depending on the degree of minerotrophy and 

hydroperiod. Conversely, extensive peat accumulation in ombrotrophic bogs, typically 

derived from Sphagnum moss, isolates the surface peat and vegetation from groundwater 

influence (CCELC, 1987). As a result, bog porewater pH is much lower than that of fens, 

with values generally < 4.0 (CCELC, 1987; Kolka et al., 2016). Finally, bog plant 

communities typically do not contain large abundances of graminoid and forb species, 

but instead have greater coverage of woody shrubs and trees. 

Several studies have characterized the source, reactivity, and transport of DOM 

with respect to vegetation and solid-phase peat along ombrotrophic-minerotrophic 

peatland gradients (Charman et al., 1994; Chanton et al., 1995; Corbett et al., 2013a).  

Radiocarbon data replicated across multiple northern peatlands from Alaska to Minnesota 

have linked changes in vegetation composition among bogs and fens to corresponding 

changes in the source of C driving heterotrophic anaerobic respiration (Chanton et al., 

2008). It has been suggested that modern (recently fixed plant photosynthate) DOM is 

driving anaerobic respiration throughout the peat column in fens, while solid-phase peat 

appears to have a comparable influence over these processes in Sphagnum- and woody-

dominated bogs. Moreover, fen DOM is generally more labile than bog DOM (Chanton 
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et al., 2008; Corbett et al., 2013a). For example, in a comparison of bog and fen DOM 

chemistry in northern Minnesota, Tfaily et al. (2013) found that the majority (>80%) of 

surface and deep (3 m) DOM in bogs had the same chemical composition, while a 

considerable number of new compounds were observed in the deep fen horizon relative 

to surface samples, indicating greater processing of fen DOM and overall labile C 

limitation of decomposition at depth in both systems. Solute transport mechanisms may 

also affect DOM chemistry and quantity, and hence anaerobic C mineralization. For 

example, decadal increases in precipitation flushed surface-derived DOM deep within the 

peat column of bogs and fens in northern Minnesota, enriching labile C compounds and 

increasing the methanogenic potential at depths where microbial metabolism was likely 

previously limited by labile C availability (Glaser et al., 2016). The observed differences 

in C sources and reactivity suggest that these systems may respond to climate change 

very differently. These findings are also important in evaluating the stability of peat 

buried deep in the peatland profile (Wilson and Hopple et al., 2016). If the bulk of 

heterotrophic respiration in deep subsurface peat is supported by surface production 

conveyed to depth by DOM, then the C stored in these deeper layers is more stable than 

evidence for respiration rates would indicate.   

Here, we investigate (i) whether DOM or solid-phase peat fuels peatland 

anaerobic respiration, (ii) whether this varies in two bogs and a poor fen in northern 

Minnesota, and (iii) if methanogenesis deep in the peatland profile is limited by the 

availability of surface-derived DOM. Based on radiocarbon profiles of C sources and 

products of respiration (Chanton et al., 2008), we hypothesized that DOM would act as a 

primary driver of anaerobic respiration in peatlands across depths, but that the influence 



52 
 

of DOM would be less in the bogs. We also expected that CH4 production deep in the 

peatland profile would be stimulated by surface-derived DOM addition, and that the 

stimulatory response would be greater in fen vs. bog peatlands because of the greater 

lability of fen DOM. While there is a body of literature consistent with our hypothesis 

(Chanton et al., 1995; Chanton et al., 2008; Corbett et al., 2013a; Tfaily et al., 2014; 

Glasar et al., 2016; Wilson and Hopple et al., 2016), these studies are primarily field 

observations. In this study, we conducted a direct test of the hypotheses by conducting a 

series of controlled incubation studies.   

 

Methods 

Study Sites – We examined the extent to which DOM or solid-phase peat fuels anaerobic 

respiration in three Sphagnum-dominated peatlands, two bogs and one poor fen, in 

northern Minnesota. The site characteristics of Bog Lake (BL) Fen, S1 Bog, and Zim Bog 

have previously been described in Medvedeff et al. (2015). BL Fen (N 47º30.304’; W 

93º29.339’) and S1 Bog (N 47º30.388’; W 93º27.256’) are located within the U.S. Forest 

Service’s Marcell Experimental Forest. S1 Bog is the site for the whole-ecosystem 

warming and CO2-enrichment experiment, Spruce and Peatland Responses Under 

Changing Environments (SPRUCE) (Krassovski et al., 2015; Wilson and Hopple et al., 

2016; Hanson et al., 2017). Zim Bog (N 47º10.745’; W 92º42.877’) is ~95 km to the 

southeast of the other sites, within a large peatland complex that has developed in the 

glacial Lake Upham basin.  

BL Fen is a poor fen with a soil pH of ~4.2 and a water table that is typically 

fairly close to the surface (-7.0 cm in July 2013 at the time of sampling; Kolka et al., 
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2011). It is a relatively open Sphagnum “lawn” with a plant community dominated by S. 

papillosum (also S. capillifolium and S. magellanicum), sedges (Carex spp., Eriophorum 

chamissonis), and ericaceous shrubs (Chamaedaphne calyculata, Vaccinium 

macrocarpun). S1 Bog and Zim Bog are both black spruce (Picea mariana) bogs with 

soil pH values < 4.0, but the trees in S1 Bog are taller (5-8 m tall) and denser despite 

having undergone experimental strip cutting in 1969 and 1970 (Kolka et al., 2011). All 

sites have an average peat depth of 2 - 3 m. 

 

Experimental Design and Sampling Protocol – In June 2013, we completed a pilot 

experiment to investigate whether DOM or solid-phase peat is the primary driver of 

heterotrophic respiration in peatlands. Peat and porewater samples were collected from 

25-50, 75-100, 150-200 cm depths at each site. Peat cores were extracted in triplicate 

using a Russian corer, stored on ice, and frozen within three days after transport to the 

University of Oregon. Two months later, we thawed the peat samples, homogenized 

replicate cores, and removed visible roots from the samples in an aerobic environment. 

Porewater samples were collected with a peristaltic pump from 1.25 cm-diameter PVC 

piezometers installed at 25, 75, and 150 cm depth increments below the hollow surface. 

They were then immediately frozen on dry ice and stored frozen in 500 mL 

polycarbonate bottles. Porewater samples were thawed, filtered through 0.7 µm glass-

fiber filters (Whatman) to remove particulate C upon return to the laboratory, and re-

frozen until we initiated anaerobic incubations.  

 In July 2013, additional porewater samples were taken (using the above collection 

method) at 10, 25, 50, 75, 100, 150, and 200 cm depth increments across all three sites 
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for in-situ dissolved organic carbon (DOC) analysis. The concentration of DOC was 

measured by high-temperature catalytic oxidation using a Shimadzu Total Organic 

Carbon analyzer equipped with a non-dispersive infrared detector. Samples were 

analyzed in triplicate with a coefficient of variance < 2%. As an index of DOC 

aromaticity or humification, we measured sample specific UV absorbance (SUVA) at 254 

nm and then divided the absorbance by DOC concentration (Weishaar et al., 2003). The 

UV absorbance was measured with a Cary Varian 100 dual beam UV/Vis spectrometer 

using a 10 mm Suprasil cuvette. Purified Milli-Q system water was used to blank-correct 

sample spectra. 

Figure 3.1. Illustrative schematic of our experimental 

design that manipulates available C sources during 

anaerobic laboratory incubations of peat samples 

collected from two bogs and a poor fen in northern 

Minnesota. In our June 2013 pilot experiment, we 

compared CH4 and CO2 production rates of (a) DI-

washed peat samples with liquid phases containing 0 

and 50% DOM, (b) non-manipulated peat samples 

with aqueous phases of 50 and 100% DOM, and (c) 

deep DI-washed peat samples incubated with either 

surface (25 cm) or deep (150 cm) DOM. Incubations 

were done with peat and porewater samples collected 

from 25-50, 75-100, and150-200 cm depth increments 

and included three experimental replicates. Peat 

samples were frozen for two months prior to analysis. 

In July 2014, we further explored the effects of DOM 

on CH4 and CO2 production rates in anaerobic 

incubations of (d) DI-washed peat samples with liquid 

phases containing 0, 25, and 50% DOM and (e) deep 

DI-washed peat samples incubated with surface (25 

cm) or deep (100 cm) DOM. In July 2014, incubations 

were completed with peat and porewater samples 

collected at 25-50 and 75-100 cm depths increments 

and included five experimental replicates. Fresh, non-

frozen peat samples were used in this analysis. DI = 

deionized water; DOM = dissolved organic matter.  
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 We used a variety of experimental treatments to manipulate available C sources 

under laboratory conditions in an effort to establish the primary substrate controlling 

anaerobic respiration across peatlands and depths. To address our principal hypothesis – 

that DOM acts as a primary driver of heterotrophic anaerobic respiration in peatlands, we 

compared the anaerobic CH4 and CO2 production rates in incubations with liquid phases 

composed of either 0 or 50% DOM (Figure 3.1a). This was accomplished by first 

removing the majority of DOM from field-moist peat samples (protocol described below) 

and then creating a slurry with either deionized water (0% DOM) or piezometer-extracted 

porewater (50% DOM) from the same site and depth. The latter treatment is referred to as 

50% DOM because manipulated peat samples were saturated with deionized water 

following DOM removal; thus, half of the liquid phase was deionized water and the other 

half was piezometer-extracted porewater. We also tested this hypothesis at DOM 

concentrations above 50% in surface peat by adding either deionized water or surface 

porewater from the same site to non-manipulated (i.e., non-washed) surface peat samples 

(50 and 100% DOMnm; nm = non-manipulated peat) (Figure 3.1b). These treatments are 

denoted as 50 and 100% DOMnm because the 100% DOMnm contains double the 

concentration of surface-derived DOM.  

We found no difference between surface anaerobic respiration rates from 

incubations using peat- or piezometer-extracted DOM (peat-extracted: CH4 = 0.14  0.05 

µmol C g soil-1 d-1, CO2 = 2.9  0.19 µmol C g soil-1 d-1; piezometer-extracted: CH4 = 

0.15  0.03 µmol C g soil-1 d-1, CO2 = 2.6  0.21 µmol C g soil-1 d-1). Peat-extracted 

DOM was acquired through vacuum filtration using 0.7 µm glass-fiber filters (Whatman) 

and piezometer-extracted DOM was collected as previously described. The lack of 



56 
 

difference indicates that the two DOM sources supported comparable rates of microbial 

respiration, thereby justifying the use of piezometer-extracted DOM in our incubation 

experiments. 

 To test our secondary hypothesis – that methanogenesis deep within the peatland 

profile is limited by the availability of high quality surface-derived DOM, we added 

surface-derived DOM in incubations of deep (150-200 cm) peat from each site and 

compared rates of CH4 and CO2 production between treatments. We again removed the 

majority of DOM from field-moist peat samples collected from 150-200 cm within the 

peatland profile and then created a slurry with either surface (25 cm; 50% Surface DOM) 

or deep (150 cm; 50% Deep DOM) piezometer-extracted porewater from the same site 

(Figure 3.1c). As previously stated, these treatments are referred to as 50% DOM 

treatments because the manipulated peat samples are saturated with deionized water 

following DOM removal and, therefore, contain aqueous phases composed of equal parts 

deionized water and porewater. If methanogenesis deep within the profile was limited by 

DOM quantity and/or chemistry, then CH4 production rates should be higher with 

surface-derived DOM vs. deep-derived DOM. This assumes that surface-derived DOM 

has greater C lability and concentration than deep-derived DOM based on previous 

studies (see Introduction), but our experimental design does not eliminate potential 

effects of other surface-derived DOM properties. 

Based on intriguing, but marginally significant findings (see Results) from our 

pilot study in June 2013 suggesting that DOM is an important driver of surface CH4 

production, we further investigated the influence of C source on peatland anaerobic 

respiration in July 2014 using a slightly modified experimental design and increased 
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replication from three to five replicates to enhance our statistical power. All three sites 

were included in this set of experiments, and we compared the CH4 and CO2 production 

rates of peat samples with aqueous phases containing 0, 25 (a new treatment), and 50% 

DOM. We focused on surface (25-50 cm) and deep (75-100 cm) peat depth increments 

with porewater samples collected at 25 and 100 cm (Figure 3.1d). Peat and porewater 

sample collection and storage followed the same procedures used in June 2013, except 

that peat was refrigerated, not frozen, prior to laboratory analyses and incubations 

commenced within two weeks of field collection, not two months.  

We also continued to examine our hypothesis that deep methanogenesis is limited 

by surface-derived DOM by repeating an experiment from June 2013 with experimental 

replicates increased from three to five. In this experiment, we removed the majority of 

DOM from deep (75-100 cm) peat samples and then added either surface (25 cm; 50% 

Surface DOM) or deep (100 cm; 50% Deep DOM) porewater from the same site and 

compared rates of CH4 and CO2 production between the two treatments (Figure 3.1e).  

 

DOM Removal – After homogenizing the three (2013) or five (2014) replicate peat cores 

collected at each site and depth, samples were separated into two treatments. The 

majority of DOM was removed from one portion, while the other was set aside for our 

non-manipulated peat treatments. To remove DOM, we washed peat samples held in 

mesh nylon stockings with multiple rinses of deionized water over 24-72 hours. 

Ultraviolet absorbance at 320 nm was used to monitor the loss of DOM from sample 

leachate over the course of the washing using the DOC (mg C L-1) and A320 regression 

equation established by Pastor et al. (2003) for northern Minnesota bogs and fens, 
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including Zim Bog. Initial DOC concentrations ranged from 29.7-61.0 mg C L-1 for 

surface (25-50 cm) peat, 31.4-70.2 mg C L-1 for intermediate (75-100 cm) peat, and 18.0-

38.9 mg C L-1 for deep (75-100 cm) peat. All samples were washed until DOC 

concentrations at A320 were no longer detectible. Absorbance measurements were 

determined on a Shimadzu UV-1700 spectrophotometer (Kyoto, Japan) at room 

temperature at a 10 mm path length with nanopure water serving as a blank.  

When using frozen peat samples in June 2013, we observed a significant washing-

associated disturbance effect between the 50% DOM and 50% DOMnm that reduced 

surface CH4 production by 56% (p < 0.05), but did not affect methanogenesis in deeper 

peat or CO2 production (Supplemental Table 1). No washing-associated disturbance 

effect was observed when using fresh, non-frozen peat samples (Supplemental Table 1). 

 

Anaerobic Respiration – For all experiments, approximately 8 g of wet-weight peat were 

added to 120 mL serum bottles and flushed with N2 for 15 minutes to create anaerobic 

conditions. All samples were then pre-incubated at 18°C for three weeks to reduce 

terminal electron acceptors as the peat samples had been exposed to aerobic conditions 

for a considerable amount of time. After the pre-incubation period, peat samples were 

moved into a glove box filled with a N2 atmosphere (<5% H2 in the presence of a 

palladium catalyst; Coy Laboratory Products, Grass Lake, Michigan) to maintain 

anaerobic conditions. Peat samples were brought to field moisture levels with either 

deoxygenated porewater or deionized water. The sample pH was adjusted to in situ pH 

using small aliquots of either 0.5 M HCl or 0.1 M NaOH. Sample bottles were then 

flushed with N2 for 15 minutes to begin the incubation. Headspace samples were 
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analyzed over the course of two weeks (days 2, 4, 7, and 13) for CH4 and CO2 

simultaneously using an SRI gas chromatograph equipped with a methanizer and flame 

ionization detector. Total CH4 and CO2 were calculated using Henry’s Law, adjusting for 

solubility, temperature, and pH (Bridgham and Ye, 2013b). Methane and CO2 production 

rates were calculated using the linear accumulation (r2 > 0.90 in all cases) of gasses 

through time.  

 

Statistical Analyses – Two-way Analysis of Variance (ANOVA) was used to determine 

the effects of site and treatment (as fixed effects) on CH4 and CO2 production rates 

between experimental treatments within statistically different depth increments using 

SPSS Statistics version 22. If no significant interaction was observed, we combined sites 

and analyzed differences among experimental treatments using Tukey’s HSD tests (p < 

0.05). Two-way ANOVA was also used to test for the effects of site and depth on DOC 

and SUVA measurements. Data were tested for normality and log-transformed where the 

transformation resulted in a significant improvement in overall distribution. 

 

Results 

In-situ DOC concentration and aromaticity – In July 2013, in-situ porewater DOC 

concentrations changed significantly with depth (p < 0.001), but this difference depended 

on the site (p < 0.001). DOC concentrations decreased with depth at BL Fen and S1 Bog; 

however, there was little change in DOC concentration throughout the peat profile at Zim 

Bog (Figure 3.2a). Dissolved organic carbon concentrations ranged from 36.9-53.4 mg C 

L-1 at BL Fen, 49.7-84.3 mg C L-1 at S1 Bog, and 53.5-61.1 mg C L-1 at Zim Bog. In the 
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surface (10-50 cm), BL 

Fen and Zim Bog had 

similar DOC 

concentrations (~55 mg C 

L-1), while those of S1 Bog 

were approximately 33% 

higher (~80 mg C L-1). 

However, at deeper depths 

(150-200 cm), Zim Bog exhibited the highest DOC concentrations (53 mg C L-1), 

followed by S1 Bog and BL Fen with 46 and 38 mg C L-1, respectively.  

 Additionally, SUVA measurements showed systematic decreases in DOC 

aromaticity with depth across all sites (p < 0.001); however, this decrease was much more 

muted at Zim Bog (range = 3.5-3.8 L mg C-1 m-1) relative to BL Fen and S1 Bog (Figure 

3.2b). SUVA values ranged from 2.8-3.6 L mg C-1 m-1 and 3.1-4.2 L mg C-1 m-1 at BL 

Fen and S1 Bog, respectively. In surface peat (10-50 cm), S1 Bog had the highest 

aromaticity measurements (~4 L mg C-1 m-1), while BL Fen and Zim Bog both had lower 

SUVA values of approximately 3.5 L mg C-1 m-1. At depths below 100 cm, Zim Bog had 

the highest DOC aromaticity (3.5 L mg C-1 m-1), followed by S1 Bog (3.2 L mg C-1 m-1) 

and BL Fen (2.8 L mg C-1 m-1). 

 

Carbon source fueling anaerobic respiration - In our June 2013 pilot study, both CH4 

and CO2 production decreased with depth in the peat column (p < 0.01, Supplemental 

Table 2). The interaction between site and treatment was marginally significant (p = 

Figure 3.2. Dissolved organic carbon (DOC; a) and specific UV 

absorbance (SUVA; b) of porewater samples collected from multiple 

depth increments (10-200 cm) across three northern Minnesota 

peatlands in July 2013. 
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0.094), but obvious differences among sites were not evident; therefore, we analyzed CH4 

and CO2 production responses to DOM removal and addition across all sites. Surface (25-

50 cm) CH4 production was 53% lower in incubations containing 0% DOM than in those 

with 50% DOM across all peatland types (p < 0.07). However, we observed no 

significant DOM treatment effects on CH4 production at any other depth, and there were 

no treatment effects on CO2 production (Supplemental Table 2, p  0.05). Additionally, 

surface CH4 and CO2 production rates did not increase when DOM concentrations were 

doubled from 50% to 100% in non-manipulated peat samples (50% DOMnm: CH4 = 0.34 

 0.07 µmol C g soil-1 d-1
 and CO2 = 2.3  0.13 µmol C g soil-1 d-1; 100% DOMnm: CH4 = 

0.36  0.07 µmol C g soil-1 d-1
 and CO2 = 2.7  0.21 µmol C g soil-1 d-1). 

In our more replicated study from July 2014, there were highly significant site and 

DOM treatment effects in surface peat (site: p < 0.01; treatment: p < 0.001), but treatment 

Figure 3.3. Methane production in peat samples collected at 25-50 cm in July 2014 from BL Fen (a), S1 

Bog (b), and Zim Bog (c). The thick black line represents the median value, the box edges denote the upper 

and lower 25% quartiles, and the whiskers show the maximum and minimum values (excluding outliers). 

Outliers are shown with open circles. DOM content significantly increased CH4 production across all sites 

(p < 0.001). 
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effects did not differ among sites (p = 0.981) for CH4 production (Figure 3.3). Across all 

sites, average rates of CH4 production increased from 0.93  0.28 µmol C g soil-1 d-1
 in 

the 0% DOM treatment to 1.21  0.26 and 1.75  0.29 µmol C g soil-1 d-1 in the 25 and 

50% DOM treatments, respectively, representing 30 and 88% increases in surface 

methanogenesis with increasing DOM content. Regardless of treatment, there was no 

measurable CH4 production in anaerobic incubations of deep (75-100 cm) peat in July 

2014. Consistent with June 2013 results, DOM treatment, site, and their interaction had 

no significant effects on surface (Figure 3.4) or deep (Figure 3.5) CO2 production.  

 

Increasing surface-derived labile carbon availability – In our June 2013 pilot study, deep 

peat samples incubated with surface porewater from the same site did not show increases 

in their rates of CH4 production (50% Deep DOM: CH4 = 3.1  0.013 nmol C g soil-1 d-1 

Figure 3.4. Carbon dioxide production in peat samples collected at 25-50 cm in July 2014 from BL Fen 

(a), S1 Bog (b), and Zim Bog (c). The thick black line represents the median value, the box edges denote 

the upper and lower 25% quartiles, and the whiskers show the maximum and minimum values (excluding 

outliers). Outliers are shown with open circles. No significant differences were observed within treatments 

or across sites. 
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and CO2 = 0.85  0.043 µmol C g soil-1 d-1; 50% Surface DOM: CH4 = 3.0  0.099 nmol 

C g soil-1 d-1 and CO2 = 0.88  0.075 µmol C g soil-1 d-1). When we repeated this 

experiment with increased replication in 2014, we found no measurable CH4 production 

in anaerobic incubation of deep (75-100 cm) peat samples that were combined with 

surface (25 cm) or deep (100 cm) porewater. Throughout this incubation, sample CH4 

concentrations were often at or below our methodological detection limits (~0.25 ppmv 

CH4). 

 

Discussion 

In-situ DOC concentration and aromaticity – DOC concentration and aromaticity 

decreased with depth in BL Fen and S1 Bog, suggesting that these peatlands contain 

Figure 3.5. Carbon dioxide production in peat samples collected at 75-100 cm in July 2014 from BL Fen 

(a), S1 Bog (b), and Zim Bog (c). The thick black line represents the median value, the box edges denote 

the upper and lower 25% quartiles, and the whiskers show the maximum and minimum values (excluding 

outliers). Outliers are shown with open circles. No significant differences were observed within treatments 

or across sites. 
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reactive DOC that is utilized by microbial communities. Conversely, the lack of change 

in DOC concentration and aromaticity at Zim Bog indicates that this C source is fairly 

non-reactive. Previous studies in northern Minnesota peatlands, including S1 Bog, have 

shown that decreases in DOC aromaticity with depth are often associated with the 

formation of new compounds with low O/C and high H/C elemental ratios, indicating 

humification of peat and its utilization as a microbial C source (Tfaily et al., 2013; Tfaily 

et al., 2014). The DOC concentration and SUVA values reported here are in line with 

previous studies and highlight the differences in DOC quantity and chemistry across 

peatland types and with depth (Pastor et al., 2003; Leifeld et al., 2012; Corbett et al., 

2013a; Tfaily et al., 2014; Wilson and Hopple et al., 2016). 

 

Carbon source fueling anaerobic respiration – Our experimental, laboratory-based study 

confirms the importance of DOM as a primary driver of methanogenesis by 

demonstrating that increasing DOM content significantly increased surface CH4 

production rates across all peatland types. However, we observed no effect of increasing 

DOM content on rates of CH4 production when DOM was doubled from 50 to 100% in 

non-manipulated surface peat samples, suggesting a saturating function of DOM past 

50% concentrations and indicating that some other unknown factor limits surface 

methanogenesis. Perhaps a longer incubation time allowing methanogen population 

growth would have resulted in a positive response at higher DOM concentrations. This 

result is consistent with field studies of radiocarbon ages of CH4, CO2, DOM, and peat, 

which suggest that anaerobic respiration in peatlands is fueled by DOM (Chanton et al., 

1995; Chanton et al., 2008; Corbett et al., 2013a; Tfaily et al., 2014; Hoyt et al., 2014; 
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Wilson and Hopple et al., 2016). Furthermore, a mesocosm study that incorporated 

warming and water-table manipulations in a Minnesota bog (monoliths were from Zim 

Bog) and fen found that greater DOM retention was correlated with a large increase in 

CH4 and dark CO2 flux (Pastor et al., 2003). 

Overall, our results suggest that the response of methanogenesis to changes in 

DOM content is consistent across peatland type, contrary to our expectations. However, 

site-specific analyses provide weak evidence that fen CH4 production may respond more 

strongly to increasing DOM than that of bogs. For example, when examined within each 

site in July 2014, the influence of DOM on CH4 production was only statistically 

significant in BL Fen (p < 0.05), where methanogenesis increased by 54 and 68% as 

DOM concentration increased from 0 to 25 and 50%, respectively (Figure 3.3a). There 

was a stepwise increase in mean CH4 production with increasing DOM addition in Zim 

Bog and the highest mean CH4 production occurred in the 50% DOM treatment in S1 

Bog (Figure 3.3b and c), but large variation within treatments made these effects 

nonsignificant.  

DOM chemical quality has been cited as a main factor for controlling its use as a 

C substrate for microbial respiration in peatlands (e.g., Glaser et al., 2016) and was found 

to vary across the three peatlands included in this study (Figure 3.2b). Fen DOM has a 

lower molecular weight, is 3-12 times more photo-reactive, and has lower C/N ratios than 

that of bog DOM and, furthermore, fen DOM aromaticity decreases with depth, but 

aromaticity remains constant in bogs (Leifeld et al., 2012; Corbett et al., 2013a; Tfaily et 

al., 2013; Tfaily et al., 2014). All of these properties indicate that fen DOM is more labile 

and reactive than bog DOM, leading to its preferential utilization as a C source in fens 
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relative to bogs.  However, our results provide only weak evidence supporting this 

hypothesis, possibly because our washing process likely removed soluble compounds, 

such as nutrients, that could be important in controlling microbial respiration. 

Nevertheless, further study is necessary to better understand how different peatland types 

respond to changes in DOM availability and chemistry. 

Field studies employing radiocarbon analyses have also found that the age of CO2 

is very similar to that of DOM in fens and intermediate between the ages of DOM and 

solid-phase peat in bogs –demonstrating the importance of DOM as a driver of CO2 

production in addition to CH4 production. In contrast, we found no influence of DOM 

manipulation on CO2 production rates at any site or depth in either experiment. The 

radiocarbon field studies were observing the net effect of production and transport 

pathways of gasses within the peat profile that are likely temporally and spatially 

variable, but are measured at a single (or a few at most) point in time, which may provide 

different dynamics than observed in our laboratory study.  

Nonetheless, it is intriguing that methanogens in our study responded to the DOM 

treatments in surface peat while the CO2-producing microbial consortia did not. This 

study emphasizes the sensitivity of methanogenesis to differences in DOM availability 

and chemistry, which may be substantially altered under current and future climate 

change. Most peatlands occur above 40 °N latitude, where the largest relative temperature 

changes are projected to occur under current climate models and, therefore, are perceived 

to be particularly susceptible to climate change (Kirtman et al., 2013). Climate warming 

has been shown to decrease the abundance of Sphagnum spp. and lichens and increase the 

abundance of sedges and shrubs in peatland plant communities, which could alter organic 
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matter reactivity and humification rates. For example, Medvedeff et al. (2015) found that 

Sphagnum-derived leachates, collected from the three peatlands used in our study, played 

a role in regulating peatland CH4 production and that the various Sphagnum-derived 

extracts produced responses that differed based on peatland type. Similarly, our results 

indicate that DOM is a major driver of peatland methanogenesis and that this process is 

particularly sensitive to differences in DOM availability; however, DOM measurements 

are not widely quantified nor incorporated into ecosystem process models or climate 

forcing predictions (Bridgham et al., 2013a). 

 

Increasing surface-derived labile carbon availability  

While we provide evidence of the importance of DOM as a substrate for CH4 

production in surface peat, we were unable to document any effect of DOM manipulation 

on rates of CH4 production in deeper peat. Although both fen and bog DOM at depth are 

relatively young in age compared to the solid peat matrix, only deep fen DOM has been 

shown to have lower lability and reactivity than surface DOM, while bog DOM exhibits 

similar C chemistry throughout the peat profile (D’Andrilli et al., 2010; Tfaily et al., 

2013; Corbett et al., 2013a,b; Tfaily et al., 2014). Numerous studies have documented 

similar low CH4 production rates in deep peat (Galand et al., 2003; Cadillo-Quiroz et al., 

2006; Kotiaho et al., 2010), and we recently found that even one year of in situ warming 

of deep peat did not increase the low rates of methanogenesis in S1 Bog (Wilson and 

Hopple et al., 2016). While radiocarbon data show that most anaerobic mineralization at 

depth is derived from relatively young DOM (Chanton et al., 2008), CH4 production is 

apparently proximally inhibited by unknown factors beyond temperature and substrate 
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availability. We have observed a large decrease in gene and transcript number for the α-

subunit of the methyl coenzyme M reductase (mcrA), a functional gene common to all 

methanogens, from a peak at 20 cm depth in these sites (Zalman et al., in review), 

suggesting lower methanogen abundance and activity with increasing peat depth. It is 

likely that the methanogen population was unable to respond to increased labile DOM 

availability over the two-week incubation.  

 

Conclusions 

Traditionally, peat C mineralization is quantified on a per solid-gram basis and is 

used in this form to determine ecosystem respiration rates. However, peatlands have two 

forms of C reservoirs (as do other wetland ecosystems): solid-phase organic matter (peat) 

and DOM. This DOM pool is not widely incorporated into ecosystem process models or 

climate forcing predictions because peat has been presumed to be the major contributor 

of CH4
 and CO2 emissions since it is the primary form of C storage (Bridgham et al., 

2013a). However, our study confirms the importance of DOM as a primary driver of 

methanogenesis by demonstrating that increasing DOM content significantly increased 

surface CH4 production rates across a variety of peatland types. These findings generally 

support the conclusions of recent radiocarbon studies which suggest that anaerobic 

respiration in peatlands is fueled by DOM (Chanton et al., 2008; Corbett et al., 2013a; 

Hoyt et al., 2014). Additionally, the lack of response of CO2 production to DOM 

manipulation highlights the sensitivity of CH4 production to change in DOM quantity and 

quality, which are likely to occur under future climate change scenarios and emphasizes 

the importance of continued study into the controls of heterotrophic peatland respiration. 
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Finally, we also show that increasing surface-derived DOM content in incubations of 

deep peat does not stimulate deep methanogenesis, suggesting that this process is limited 

by additional factors beyond labile C limitation.  

 

Bridge to Chapter IV 

 Predicting the fate of stored C and future CH4 emissions from peatlands is 

particularly challenging due to the mechanistic complexity of CH4 cycling in these 

systems. We can begin to tackle this issue by addressing a deceptively basic question – 

what is the C source fueling CH4 production in peatlands? Traditionally, solid peat has 

been presumed to be the major contributor of peatland CH4 emissions since it is the 

primary form of C storage; however, Chapter III demonstrates the importance of DOM as 

a driver of surface methanogenesis across a variety of boreal peatlands, in-line with 

recent radiocarbon studies. Yet, this variable is not currently incorporated in any 

ecosystem process models. In addition to re-parameterizing our Earth system models to 

incorporate DOM as a primary methanogenic substrate, it is imperative that we also 

expand our mechanistic understanding of peatland CH4 cycling in the context of 

environmental change. As the majority of peatland C is stored at depth, it is particularly 

important to understand the variables controlling deep peatland methanogenesis - as 

Chapter III showed, it is limited by factors beyond simple labile C availability, so what 

exactly is limiting methanogenesis at depth? How will peatland responses to 

environmental change vary throughout the entire soil profile? In Chapter IV, I address 

these questions in collaboration with the Spruce and Peatland Responses to Under 

Changing Environments (SPRUCE) experiment, a regression-based, ecosystem-scale 
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climate manipulation experiment. This chapter integrates measures of in situ greenhouse 

gas flux, laboratory incubations, in situ analyses of 14C and dissolved gasses and 

microbial community structure and metabolic potential throughout the soil profile to 

assess the response of a boreal peatland to 13 months of deep-peat heating. 
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CHAPTER IV 

STABILITY OF PEATLAND CARBON TO RISING TEMPERATURES 

 

From Wilson, R. M. and Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., 

Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. 

K., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., 

Bridgham, S. D., & Hanson, J. P. (2016). Stability of peatland carbon to rising 

temperatures. Nature communications, 7, 13723. 
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Introduction 

Peatlands store a globally significant fraction of the world’s carbon (C) in deep 

recalcitrant peat1 which, if destabilized, could result in catastrophic positive feedbacks to 

climate warming.  However, all soil warming experiments exploring the response of 

peatland C banks to climate forcing to date have utilized limited surface warming 

techniques (generally +1°C), ignoring the effects on deeper buried layers2, 3.  Thus, 

despite the established significance of peatlands in the global C cycle, their response to 

future climate change remains poorly constrained4, 5, because under long-term warming, 

deep soil temperatures will increase in parallel with atmospheric temperatures6, 7, 8, 9.  The 

large reservoirs of C at depth (well over a meter) mean that this largely ignored C fraction 

could play a significant—though as yet unquantified— role in future climate change.  

To address this gap, the Spruce and Peatland Responses Under Climatic and 

Environmental Change (SPRUCE; http://mnspruce.ornl.gov) experiment is assessing how 

northern peatland ecosystems react to a changing climate with a regression-based, 

ecosystem-scale climate manipulation that incorporates deep peat heating to a depth of 2 

m10. The SPRUCE experiment is located at the S1 bog within the Marcell Experimental 

Forest (Minnesota, USA) 11.  Ultimately, the SPRUCE experiment will include both 

above- and below-ground warming, as well as ambient and elevated air CO2 

concentrations in a multifactorial experimental design.  However, belowground deep peat 

heating (DPH) was initiated first and is the sole treatment reported here. DPH represents 

a novel experiment that provides the first field-scale examination of the response of deep 

C and associated heterotrophic microbial communities to warming.  From June 2014 

through August 2015, DPH treatments to > 2 m depth were established within ten, 12 m 

http://mnspruce.ornl.gov/
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diameter plots (0, +2.25, +4.5, +6.75 and +9 °C, relative to ambient, in duplicate, see 

Extended Data Figure 4.1 for schematic of the site) within the S1 bog, following the 

approach described in Hanson et al.6.  Briefly, low-wattage, 3 m long belowground 

heaters were installed equidistant around the circumference and beneath each treatment 

plot to heat the soil to the desired temperature differential10. Target temperature 

differentials were achieved at 2 m depth by September 2014 (Extended Data Figure 4.2a).  

The absence of air warming during this phase of the experiment resulted in heat loss at 

the surface, creating less separation among temperature treatment plots in the shallow 

peat relative to the 2 m depths (Extended Data Figure 4.2b).  Deep peat is expected to 

warm naturally, in parallel with surface warming, due to the propagation of heat 

downwards into the peat column.  However, to achieve this effect in a tractable timescale 

for experimentation, active heating of the peat at depth is required7.  While the highest 

climate trajectories project temperature increases up to +8.3°C (±1.9°C) in the Arctic 

between 2081 and 210012, the +9°C treatment employed in this study is an upper limit on 

what can be expected under the most extreme scenarios.  We employ this treatment to 

explore threshold response surfaces to temperature change (e.g., Epping et al. 13) and 

because the multiple treatment effects above the median +2°C temperature projection 

allow for non-linear curve response fitting.  During the DPH experiment, we measured 

water table depth in each plot (30-min measurement frequency), and did not observe—

nor did we expect—any changes in water table elevation that was attributable to the deep 

peat warming treatment.  Water tables were usually within 20 cm of the mean hollow 

surface and fluctuated over an approximately 40 cm range due to rainfall, snowmelt 

inputs, near-surface lateral flow, and evapotranspiration, but with no apparent effect of 
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DPH.  In addition, water table dynamics inside 

experimental plots mirrored those measured in 

ambient reference plots and the surrounding bog.    

 

Results and Discussion 

Once the experimental plots reached 

target temperature differentials, CH4 flux 

increased exponentially with deep soil 

temperature (Figure 4.1a) despite reduced 

warming at the surface due to energy losses.  CH4 

flux was dramatically reduced by snow and ice 

cover during the winter (Figure 4.1b) and the 

temperature response was maximal during the 

peak growing season (Figure 4.1c).  Net 

ecosystem respiration—as measured by dark CO2 

flux—was not correlated with deep soil 

temperature during any measurement time 

(Extended Data Figure 4.3).     

Consistent with these field emission 

results, when peat was incubated anaerobically 

within 1°C of in situ temperatures, CH4 

production in surface peat (20-30 cm below the 

hollow surface) increased with temperature 

Figure 4.1. Seasonal CH4 flux vs. in situ 

temperatures from 1.2 m diameter collars 

during (a) fall 2014, (b) winter 2015, and 

(c) summer 2015.  Black and gray dots 

distinguish between daily averages for two 

different sampling times during each season.  

Significant correlations between flux and 

temperature are indicated on the graphs by 

exponential regressions. 
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(p < 0.001) (Figure 4.2a).  This layer is 

within the acrotelm14, but was 

consistently anaerobic at the time of 

sampling.  Surface peat had greater CH4 

production rates than peat from deeper 

depths except at the coldest experimental 

treatment temperatures.  Importantly, no 

relationship between temperature and 

CH4 production was observed in 

incubations of peat from deeper depths 

(p  0.97, Figure 4.2b), implying that the 

increased CH4 emissions observed in the 

field were largely driven by surface peat 

warming.  In situ microbial data support 

this conclusion.  The majority of 

Archaea in the shallow peat were 

methanogens whose relative abundance 

declined with depth, in concert with 

methanogenesis rates (Extended Data 

Figure 4.4).  Correspondingly, the 

functional methanogen gene methyl coenzyme A reductase (mcrA) was more than ten-

times higher at depths 20-40 cm than at depths below 50 cm (Extended Data Figure 

4.5d).  No temperature effect was observed on the relative abundance of methanogens or 

Figure 4.2 Temperature response of CH4 production 

from surface (a) and deep (b) peat samples that were 

anaerobically incubated within 1ºC of in situ 

temperatures after approximately 4 (closed symbols, 

September 2014) and 13 (open symbols, June 2015) 

months of deep peat warming.  Temperatures reflected 

in situ temperatures at time of collection.  The 

temperature response of deep peat (b) for each season 

was analyzed separately due to a distinct bimodal 

distribution. NS = not significant.  
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Archaea (Extended Data Figures 4.4 and 

5), suggesting that factors other than 

temperature are limiting decomposition 

in the deep peat.   

CO2 production in the surface 

peat incubations was greater than that at 

other depths (GLM, p < 0.001), and 

increased with temperature (p < 0.001; 

Extended Data Figure 4.6a), reflecting 

only the response of heterotrophic 

processes to temperature since 

photosynthetic and aerobic processes 

were excluded by the incubation design.  

These results differ from the field, where 

dark CO2 flux did not correlate with 

temperature treatment, possibly because 

autotrophic processes were excluded in 

the incubations, or because CO2 

production in the field was greatest at 

depths shallower than 20 cm.  No 

consistent response of CO2 production to 

temperature was observed in incubations 

of deeper peat (Extended Data 

Figure 4.3. Isotopic composition of respiration products 

and substrates prior to and during DPH.  Depth profiles 

of 14C for solid peat, dissolved organic carbon (DOC), 

CH4, and dissolved CO2 (DIC) (a).  In panel (a) closed 

symbols represent values from control plots prior to 

DPH when no treatment (i.e. +0°C) was applied, open 

symbols represent values from +9°C treatment plots 

during DPH (June 2015).  Note the age difference 

between solid peat and all DOC and DIC values.  

Difference in stable carbon isotopic (δ13C) composition 

between DIC and methane (C = [(δ13CO2 + 

1000)/(δ13CH4 +1000)]) with depth during DPH (June 

2015) (b).  
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Figure 4.6b).  The CO2:CH4 ratio was negatively correlated with temperature in the 

surface (p < 0.01, Extended Data Figure 4.7), indicating that anaerobic respiration may 

become increasingly methanogenic with warming in agreement with results from 

previous incubation studies15, 16. 

Enclosure water table positions did not fluctuate due to DPH, indicating that the 

ecosystem responses we observed were driven solely by warmer temperatures.  However, 

direct warming of surface peat is expected to lead to a decrease in water table depth, 

increasing O2 availability throughout this soil horizon. Greater O2 availability will 

Figure 4.4. Characterization of in situ microbial community structure by non-metric multidimensional 

scaling (NMDS) indicates no significant effect of temperature or time on community diversity or 

composition.  Values represent each plot/depth within each temperature treatment plot from pre-DPH (2014, 

closed symbols) and 13 months post-initiation of the DPH (2015, open symbols) experiment.  Final sequence 

data were normalized by cumulative sum scaling (CSS), and beta diversity indices were estimated based on 

Bray–Curtis and weighted as well as unweighted Unifrac distances.  Significant differences in beta diversity 

were analyzed by a PERMANOVA test on weighted Unifrac distance metrics with 1000 permutations 

followed by Bonferroni correction of p-values. 
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enhance decomposition and aerobic CH4 oxidation, likely resulting in an overall 

reduction of CH4 emissions17.  

Replicate anaerobic incubations from each treatment/depth were conducted at 

20°C to determine if any “legacy effects” following 13 months of temperature treatment 

persisted after removing the direct effects of temperature.  In agreement with the 

incubations at in situ temperatures, we observed greater CH4 and CO2 production in 

surface peat relative to that of deeper peat.  Although CH4 and CO2 production rates were 

higher at 20°C than in the incubations at in situ temperatures, there was no correlation 

between production rates and the initial treatment temperature (Extended Data Figure 

4.8).  The lack of a legacy warming effect in the surface peat after the first 13 months 

suggests that the warming treatment did not have a lasting effect—relevant to CO2 and 

CH4 production rates—on the microbial community or the peat itself.  

To further verify the role of surficial processes in the field CH4 flux response, we 

compared the natural abundance Δ14C of the CO2 (DIC) and CH4 dissolved in peat 

porewater with the dissolved organic carbon (DOC) and solid peat.  DOC at S1 bog is 

younger than the peat at all depths14, indicating that it is largely derived from recent 

photosynthate as opposed to the progressively older solid phase peat at depth (Figure 

4.3a).  Increasing temperatures are likely to stimulate photosynthesis rates and increase 

root exudation of organic C available for decomposition18.   The young age of the DOC 

and the lack of a temperature effect on DOC concentrations (Extended Data Figure 4.9) 

show that there was not significant leaching of ancient catotelm C into the dissolved pool 

after 13 months of warming.  Thus, we could use DOC and the peat as endmembers to 

differentiate the source of organic matter fueling heterotrophic respiration—either recent 
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photosynthate or ancient catotelm peat19, 20.  In all plots and depths, the Δ14C indicate that 

CH4 and DIC were relatively young, 14C-enriched relative to the peat, and 

indistinguishable from the Δ14C of the DOC (Figure 4.3a).  These results are consistent 

with respiration fueled by younger surface-derived C sources, rather than by degradation 

of ancient catotelm C19, 20. DIC and dissolved CH4 concentrations were also stable across 

all treatments (not shown).   

The difference in stable C isotope values of DIC and CH4, represented by αC 

[(δ13CO2 + 1000)/(δ13CH4 +1000)], identifies shifts in the dominant methanogenic 

pathway because hydrogenotrophic methanogens fractionate C more than acetoclastic 

methanogens21.  The C increased with depth in all treatment plots consistent with a shift 

from acetoclasty in the shallow (<50 cm) to hydrogenotrophy at depth.  The magnitude of 

the isotopic shift as well as the depth at which the shift occurred was similar across 

temperature treatments (Figure 4.3b), suggesting that DPH did not significantly influence 

the depth distribution of dominant CH4 production pathways.  This finding is contrary to 

what Dorrepaal et al.22 and McCalley et al.23 found following warming-induced 

permafrost thaw in peatlands and suggests that the response of heterotrophic respiration 

to climatic warming may differ between peatlands with different cryogenic histories, 

mineral contents, microbial population dynamics, and plant community compositions24.  

In particular, our results contrast those of permafrost peatlands exposed to thaw.  In 

permafrost settings—particularly syngenetic permafrost—the organic matter is frozen at 

a partially decomposed state, that is, decomposition is suspended preserving labile 

material.  As permafrost thaws, that labile material becomes available enhancing 

decomposition rates.  In contrast, non -permafrost peatlands only experience seasonal 
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freezing in surface peat, leading to millennia of slow decomposition of deep peat.  In the 

case of S1 bog over at least the time frame of this study, the result is temperature 

insensitivity of the decomposition of recalcitrant deep peat. 

Microbial community data corroborate findings from laboratory incubations and 

porewater chemistry.  Based on 12 million gene sequences retrieved from 220 samples, 

microbial community composition and diversity were similar across all temperature 

treatments and between years (Figure 4.4, Extended Data Figure 4.10).  Both C 

decomposition and microbial community structure exhibited strong vertical stratification, 

similar to pre-treatment findings25.  The majority of microbial populations (~70%) were 

taxonomically affiliated with Proteobacteria and Acidobacteria (Extended Data Figure 

4.11), and microbial diversity decreased with depth (not shown).  Members of the 

Alphaproteobacteria and Acidobacteria, classes—which in peat contain abundant aerobic 

heterotrophs26—decreased in relative abundance with depth, while putative anaerobes 

(e.g,. Deltaproteobacteria and TM1) increased in the catotelm (Extended Data Figures 

4.12 and 4.13).  One year after treatment initiation, quantitative PCR of the 16S and 18S 

rRNA genes also showed decreasing overall bacterial, archaeal and fungal abundance 

with depth but no significant response to temperature (Extended Data Figure 4.5).   

Degradation of recalcitrant, lignin-like compounds that are abundant in peatland 

soils is mediated by the activity of extracellular oxidative enzymes, namely phenol 

oxidases and peroxidases27, 28.  In agreement with sequence-based results, the metabolic 

potential of microbial communities, as determined by enzyme activity potentials, was 

consistent across temperature treatments after 13 months of heating (Extended Data 

Figures 4.14 and 4.15).  A clear vertical stratification in phenol oxidase activity occurred 
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with peat depth likely reflecting differences in dissolved O2 availability.  While the 

highest phenol oxidase activity occurred in shallow peat (0-30 cm), the highest phenol 

peroxidase activity occurred in the catotelm (>30 cm) (Extended Data Figure 4.15). 

Deep peat heating up to 9°C above ambient failed to stimulate catotelm C 

decomposition in this ombrotrophic bog within the first 13 months of this experiment.  It 

should be noted that the lack of response reported here may be specific to ombrotrophic 

bogs and does not necessarily reflect the expected or observed response from peatland 

habitats such as fens or permafrost peatlands.  While there is evidence of kinetic control 

on surface peat decomposition in our experiment, non-kinetic factors—such as chemical 

recalcitrance14—appear to be controlling the decomposition of deep C at S1 bog.  Tfaily 

et al.14 report a marked decrease in the o-alkyl C content of catotelm peat relative to 

acrotelm peat at S1 bog, indicating intensive decomposition of carbohydrates.  Previous 

studies have linked o-alkyl C content to peat reactivity29, 30 and have observed clear 

decreases in o-alkyl peat content from northern peatlands to tropical peatlands (S. 

Hodgkins, pers. comm., 2016).  Thus, we hypothesize that the lack of reactivity of 

SPRUCE deep peat was due to the low o-alkyl C content of the soil organic matter. 

Therefore, future warming will likely have little effect on the conversion of catotelm C to 

CO2 and CH4. However, catotelm peat recalcitrance is a relative term.  We have shown 

that catotelm peat is recalcitrant with respect to temperature under its present 

conditions—water saturated, with fermentation and methanogenesis as the dominant 

organic matter decomposition processes.   

Other climate-induced perturbations to the ecosystem—changes in water-table 

depth, increased plant productivity, belowground exudation of labile plant compounds, or 
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changes in plant communities—could have cascading effects on peatland C dynamics.  

For example, lowering of the water table due to increased evapotranspiration could 

increase O2 availability providing the necessary conditions for degradation of recalcitrant 

phenolic compounds in the catotelm, which have been proposed to protect the global C 

bank in deep peat through inhibition of microbial heterotrophy according to the “enzyme 

latch” hypothesis31.  However, recent studies have shown that temperature, water-table 

depth, and perhaps even nutrient availability may control the strength of the enzyme latch 

and that therefore the response of phenolic compound degradation to climate drivers may 

be more complicated than originally hypothesized32, 33.  While peat decomposition was 

enhanced in incubations of surface peat, our results provide evidence that C 

decomposition in deep anaerobic peat is not kinetically constrained; therefore, peat 

decomposition is most likely thermodynamically limited by the absence of suitable 

electron acceptors.   

However, even if global warming-induced increases in CH4 production are 

confined to surface processes in ombrotrophic bogs, this could still represent a substantial 

natural feedback to anthropogenic climate forcing.  Specifically, the exponential increase 

in CH4 flux observed in the field plots coupled with the decrease in CO2:CH4 ratios in the 

surface peat incubations is troubling given that CH4 has a sustained global warming 

potential (SGWP) 45-times that of CO2 on a 100-year timescale34.  Further, these surface 

responses were underestimated due to energy loss at the surface that muted the warming 

treatment in surface peat.  With surface warming, it is likely that the surficial response 

will be even greater.  Thus, even if warming stimulates plant biomass production and 

enhances soil C sequestration it is unlikely these effects will completely offset the 
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increases in CH4 flux on this time scale.  However we must temper our interpretation 

because the observed surface response may be a transient perturbation effect as has been 

seen in other climate manipulation experiments35, 36, 37.   In addition, increased frequency 

and duration of low water table elevations and flow along near-surface lateral flowpaths 

are most likely to affect surface peat, which may exacerbate or mitigate the responses that 

we observed38, 39.  For example, even with a temperature increase, a lowered water table 

could reduce CH4 production, enhance oxidation and result in lowered CH4 emissions.  In 

peatlands feedbacks exist among plant communities, water table dynamics, and physical 

properties of the peat resulting in a tight coupling between C and water cycling35,40 that 

allows the system to self-regulate, resisting gradual environmental change until a 

catastrophic tipping point is reached and the system shifts towards a new steady-state13,35.  

For example, Sphagnum and vascular plants, respectively, alter environmental conditions 

such as light and nutrient availability, water table depth, temperature, and pH13, 35.  The 

long-term SPRUCE experiment will enable us to examine whole-ecosystem warming, 

enhanced atmospheric CO2 and water table feedbacks to these treatments, allowing us to 

clarify the internal mechanisms that control C cycling in a bog over a decade-long 

manipulative climate change study.   

 

Methods 

Site description: The SPRUCE experimental site, S1 bog (8.1 ha), is located in northern 

Minnesota, USA within the Marcell Experimental Forest (MEF: N 47°30.476´; W 

93°27.162´).  The S1 bog has been the subject of extensive past research and has been 

described previously10, 14, 25.  This precipitation-fed, ombrotrophic bog has an average pH 
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of 4.1 at the surface that increases with depth to an average value of 5.1 at 2 m.  

Overstory vegetation is dominated by two tree species, Picea mariana (black spruce) and 

Larix laricina (larch), while the understory is composed mainly of low ericaceous shrubs, 

such as Rhododendron groenlandicum (Labrador tea) and Chamaedaphne calyculata 

(leatherleaf), as well as the herbaceous perennials Maianthemum triflorum (three-leaved 

Solomon’s seal) and Eriophorum vaginatum (cottongrass).  The bog surface is 

characterized by hummock and hollow microtopography, with Sphagnum magellanicum 

colonizing the hummocks and S. angustifolium the hollows.  Typically, the hummocks 

are 10-30 cm higher than the hollows.  Plant cover varies only slightly among the plots 

measured for surface CO2 and CH4 efflux.  All plots have a nearly uniform cover of 

Sphagnum over the hummock-hollow complex over which an ericaceous shrub layer is 

present.  During the summer months, limited populations of the forb Maianthemum and 

some sedges also occupy the plots.   

 

Deep-peat heating: The SPRUCE project involves an ecosystem-scale climate 

manipulation in the S1 bog.  The experimental design includes ten 12 m diameter 

chambers that are warmed to 5 temperatures (+0, +2.25, + 4.5, +6.75, and +9 °C), with 

duplicate plots to be subjected to ambient and ~ +500 ppmv CO2.   In the most novel 

aspect of this experiment, the peat is warmed throughout the peat column to depths of 2 - 

3 m6, providing the first field-scale examination of the responses of deep peat to climate 

forcing.  The open-top chamber design allows surface warming and enhancement of 

atmospheric CO2; while sub-surface corrals hydrologically isolate each experimental plot 

and allow for changes in water table associated with warming and elevated CO2 to 
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develop. However, DPH was the only experimental treatment applied during this 

study. 

DPH was initiated between June 17 and July 2, 2014 as the electrical systems for 

each plot became available.  Stable target treatment temperature differentials at 2 m deep 

were achieved in all plots by early September 2014.  DPH is accomplished by an array of 

3-m vertically installed low wattage (100 W) heating elements housed within plastic 

coated iron pipes and placed throughout the plots in circles of 48, 12, and 6 heaters at 5.4, 

4 and 2 m radii, respectively.  A single heater was also installed at the plot center.  

Exterior heaters in the circle of 48 apply 100 W across the full linear length of the heater, 

and all interior heaters apply 100 W to the bottom one third of each resistance heater 

(pipe thread core heaters, Indeeco, St. Louis, MO).  DPH within the experimental plots is 

achieved through proportional-integral-derivative (PID) control of three exterior (the 

circle of 48 split into alternating thirds) and two interior circuits of the resistance heaters.  

The reference depth for temperature control is 2 m deep. 

Temperature differentials within a treatment pair were typically within 0.5 °C of 

the target temperatures throughout the measurement period.  Temperature variation in the 

no-energy-added control plots was likely driven by differences in tree canopy cover with 

greater cover leading to warmer peat temperatures (i.e., less heat loss to the sky).  Once 

deep peat temperature differentials were achieved, they were largely maintained from 1 

m to 2 m deep during large seasonal shifts in temperatures (Extended Data Figure 4.2).   

 

Analysis of CH4 and CO2 flux: Measurement of CO2 and CH4 emissions from the 

peatland was conducted in 1.2 m diameter permanent collars embedded 10 cm into the 
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peat.  Briefly, collars were covered with an opaque dome under which headspace 

accumulation techniques were applied.  Gas accumulation under the darkened dome was 

measured with open path CO2/H2O (LiCor 7500) and CH4 analyzers (LiCor 7700).  An 

individual observation lasted only minutes without dramatic changes in temperature, 

pressure or target gas concentration above the surface of the peat.  Seasonal flux 

measurements were fit against the average temperature from 1 to 2 m below the hollow 

surface with an exponential regression model using SigmaPlot v 12.3 and significant 

relationships identified at p < 0.05.  

 

Analysis of CH4 and CO2 production with anaerobic incubations: Intact soil cores were 

collected at 20-30, 50-75, 100-125, 125-150, and 175-200 cm depths from each 

experimental plot in September 2014 and June 2015, after approximately four and 

thirteen months of DPH, respectively, to discern how rates of CO2 and CH4 production 

varied with depth.  All depths were measured relative to the surface of the hollows.  To 

prevent compression of surface peat samples, a serrated knife was used to collect a 10cm-

diameter core from the hollow surface to approximately 20cm within the peat profile. A 

5cm-diameter Russian corer was subsequently used to extract the remaining samples up 

to a 2m depth.  The soil cores were kept anaerobic, stored on ice, and shipped overnight 

to the University of Oregon, where incubations commenced immediately within 1°C of in 

situ temperatures.  Samples were slurried with a 1:1 mixture of peat and porewater 

collected from the same plot and depth.  CO2 and CH4 production concentrations were 

determined42 during the course of the 10 day incubation. 
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All statistical analyses were conducted using SPSS Statistics version 22.  Data 

were tested for normality and log-transformed where the transformation resulted in a 

significant improvement in overall distribution.  General Linear Model (GLM) analysis 

was used to investigate the effect of temperature, depth, and the interaction of these two 

variables on CH4 and CO2 production, as well as the CO2:CH4 ratio.  If significant 

differences among depths were detected (p < 0.05), pairwise comparisons using Tukey’s 

HSD (honest significant difference) test (p < 0.05) were conducted.  If not significantly 

different, depths were combined for linear regression analysis.  If normally distributed, 

CH4 and CO2 production rates and CO2:CH4 ratios were combined across sampling time 

points and linear or exponential regression was used to determine the temperature 

response of each process.   

 

Analyses of porewater gas and isotopic composition: Porewater samples were collected 

in June 2015 for analysis of CH4 and CO2 concentrations, δ13C and 14C using 

permanently installed piezometers at 25, 50, 75, 100, 150, and 200 cm depths within each 

experimental plot.  Piezometers were covered, but not sealed, when not being actively 

sampled, the diameter of the piezometers was less than 1 cm which limited oxygen 

diffusion, and piezometers tubes were pumped dry 24 hours prior to sampling to ensure 

that the sampled water was not in prolonged contact with the atmosphere prior to 

sampling.  Surface water samples were collected using perforated stainless steel tubes 

that were inserted into the peat to 10 cm or the top of the water table, whichever was 

shallowest.  Porewater was immediately filtered to 0.7 m in the field using Whatman 

glass-fiber filters, then stored in pre-evacuated glass vials sealed with butyl stoppers.  
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Phosphoric acid (1 mL of 20%) was added to each sample to preserve for shipment to 

Florida State University.  Samples were analyzed for CH4 and CO2 concentrations and 

stable isotopic composition (δ13C) on a ThermoFinnigan Delta-V Isotope Ratio Mass 

Spectrometer using the headspace equilibration method with He.  Each sample was 

analyzed twice and the average results for each sample were recorded.  Analytical 

precision was 0.2‰.   

Preparation of Δ14C-DOC, Δ14C-DIC and Δ14C-CH4 and Δ14C-peat samples was 

done at Florida State University.  DOC was freeze dried in combusted 9mm Pyrex glass 

tubes.  Oxidizing agents, cupric oxide, copper shots, and silver, were added and the tubes 

evacuated and flame sealed on a vacuum line.  The sealed tubes were then combusted at 

580˚C for 18 hours to convert the organic carbon to CO2 gas43.  Following combustion, 

the produced CO2 was taken back to the vacuum line, cryogenically purified and sealed 

into 6mm glass tubing.  Δ14C-DIC and Δ14C-CH4 samples were prepared by He stripping 

and subsequent combustion (for CH4 and cryogenic trapping).  The 6mm tubes for Δ14C 

analysis were sent to National Ocean Sciences Accelerator Mass Spectrometry Facility 

(NOSAMS) for analysis.   

Porewater samples for measurement of total organic carbon (TOC) concentrations 

were collected every two weeks beginning in late August 2013 and continuing throughout 

the DPH experiment.  These samples were collected from a set of 5-cm internal diameter 

PVC piezometers installed in each experimental plot.  The piezometers had 10-cm 

screened intervals that opened at depths of 0, 30, 50, 100, 200, and 300 cm.  Water was 

pumped using a peristaltic pump via flexible sections of Salastic and silicon tubing that 

was attached to a static 0.6 cm internal diameter PVC tube inside each piezometer (a 
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design that was intended to reduce contamination via intermittent tube insertion into 

piezometers for sampling). Samples were collected in 250 mL low-density polyethylene 

(LDPE) bottles that were chilled and transported to the Forestry Sciences Laboratory of 

the USDA Forest Service.  Samples were then refrigerated until analyzed, typically 1 to 4 

days after collection for TOC concentration.  Total organic carbon concentration was 

measured on unfiltered water samples using the non-purgeable organic carbon (NPOC) 

method on a Shimadzu TOC-VCP using Standard Method 5310 B44 (equivalent to EPA 

215.1).  The method detection limit was 0.5 mg/L for TOC concentration. 

 

Microbial Community Analyses: Intact soil core samples were collected from 11 depth 

intervals (0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175 

and 175-200 cm) at each of the 10 SPRUCE experimental plots in June 2014 and June 

2015, prior to and 13 months into deep peat heating, respectively, to elucidate the 

microbial community response to warming.  Soil samples were frozen immediately and 

shipped on dry ice to the Georgia Institute of Technology, where they were stored 

at -80°C until analysis.  Total DNA was extracted from homogenized peat samples with 

the MoBio PowerSoil DNA extraction kit (MoBio, Carlsbad, CA) according to the 

manufacturer's protocol followed by cleaning with the MoBio PowerClean Pro DNA 

Cleanup Kit (MoBio, Carlsbad, CA).  Abundance of bacterial, archaeal, and fungal 

populations were determined by quantitative polymerase chain reaction (qPCR) using 

primers targeted to amplify their respective SSU r-RNA genes45,46,47,48, and the mcrA 

gene was targeted to assess the methanogen population49.  Reactions were performed in 

triplicate on a CFX96TM Real-Time PCR Detection System (Bio-Rad Laboratories) with 
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iQ SYBR Green Supermix (Bio-Rad, CA, USA) using previously described standards, 

and conditions (Extended Data Table 1).  DNA extractions were quantified with the 

Qubit HS assay (Invitrogen) and 20 ng per reaction was applied.  The diversity and 

composition of prokaryotic communities was determined by applying a high-throughput 

sequencing-based protocol that targets PCR-generated amplicons from V4 variable 

regions of the 16S rRNA gene using the bacterial primer set 515F (5′-

GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-

3′)50.  Amplicons were barcoded with unique 10-base barcodes (Fluidigm Corporation), 

and sequencing was conducted on an Illumina MiSeq2000 platform at the Research 

Resources Center (RRC) at the University of Illinois at Chicago following standard 

protocols51,52 (http://www.earthmicrobiome.org/emp-standard-protocols/16s/).  The 

generated sequence data are available from the National Center for Biotechnology 

Information at SRP071256. 

 

Sequence processing and analysis: Initially Illumina-generated 16S rRNA gene 

sequences were paired with PEAR53 and primers were trimmed with the software Mothur 

v1.36.154.  Resulting sequences were quality filtered using a Q30 minimum and 

processed using the standard QIIME 1.9.1 pipeline46,47.  Sequences were clustered into 

operational taxonomic units (OTUs) with a threshold of 97% identity.  Chimeric 

sequences, identified by ChimeraSlayer, chloroplast, mitochondria, singletons, 

unclassified and eukaryotic sequences were removed from the final data.  Taxonomies of 

these high-quality sequences were assigned via the greengenes database using the RDP 

classifier55 with a minimum confidence threshold of 50%.  Sequences of known 
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methanogens were extracted from all sequences according to recent methanogen 

databases 56, 57.  The sequences that did not match any taxonomic Class were also 

removed.  Taxonomic-based alpha diversity was calculated using the total number of 

phylotypes (richness) and Shannon’s diversity index (H′).  Faith’s phylogenetic diversity 

(PD) was calculated to assess phylogenetic based alpha diversity. Final sequence data 

were normalized by cumulative sum scaling (CSS)58 and beta diversity indices were 

estimated using Bray–Curtis and weighted as well as unweighted UniFrac distances59,60.  

Significant differences in beta diversity were analyzed by a PERMANOVA test with 

1000 permutations followed by Bonferroni correction of P-values.  To determine changes 

in microbial community composition, results from core sections were grouped based on 

beta-diversity groups (0-10, 10-30, 30-75, 75-200 cm) and significant differences 

between years (pre- and during heating) were assessed with a Mann-Whitney test. 

 

Enzymatic activities: Enzymatic assays were performed following published microplate 

protocols46,61.  Peat suspensions from 7 core sections (0-10, 10-20, 20-30, 30-40, 40-50, 

50-75, 75-100 cm) were prepared by homogenizing 2 g of peat in 20 ml of 50 mM acetate 

buffer (pH 4.0).  Peat homogenates were centrifuged for 5 minutes at 5000×g and clear 

supernatants were used for measurements of phenol oxidase and peroxidase activities.  

Enzymatic activities were measured by combining 1 mL of clear peat suspension with 1 

mL substrate solution (10 mM ATBS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic 

acid)) in 50 mM acetate buffer, pH 4.0).  For measurements of peroxidase activity, peat 

suspensions were diluted 1:20 with 50 mM acetate buffer (pH 4.0) and reaction was 

initiated by adding 80 μL of 0.3% hydrogen peroxide.  Assays were incubated for 12 to 
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24 h at room temperature.  Enzymatic reaction propagation was monitored 

spectrophotometrically at 420 nm.  Maximal reaction rates were calculated from linear 

reaction stage and expressed as μmol or mmol h−1 g−1 wet peat for phenol oxidase or 

peroxidase respectively.  Statistically significant differences between years were 

determined by Student T-test.   

Bridge to Chapter V 

 In Chapter IV, we saw that 13 months of deep-peat heating (DPH) exponentially 

increased CH4 emissions from a northern Minnesota peatland. Laboratory incubations 

conducted across multiple depths, as well as radiocarbon data, determined that this 

increase was due to increased surface CH4 production and not decomposition of deep C. 

Increases in CH4 flux and surface production occurred despite muted warming of surficial 

soil horizons during the DPH-only phase of the SPRUCE experiment. This raises the 

questions – will this response remain unchanged or be enhanced with the addition of 

surface warming (i.e. whole-ecosystem warming)? Or, conversely, is this a transient 

perturbation effect that will diminish with time as the ecosystem equilibrates to 

temperature manipulations? Will changes in other ecosystem abiotic factors, such as 

elevated atmospheric CO2 concentrations, modify these responses? Chapter V addresses 

these questions by investigating how CH4 production and CO2:CH4 ratios vary across 

depths at the SPRUCE site following 14 months of whole-ecosystem warming and 4 

months of elevated atmospheric CO2 concentrations. Additionally, Chapter V expands 

our knowledge of peatland CH4 cycling by providing the first-ever measurements of 

anaerobic oxidation of CH4 (AOM) throughout an entire soil profile of a peatland 

experiencing ongoing environmental change. Until recently, this novel microbial process 
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has received very limited study and its climate-related controls remain poorly understood; 

thus, this chapter takes an important step forward in enhancing our knowledge of the 

rates and mechanistic drivers of peatland CH4 cycling. 
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CHAPTER V 

 

RISING TEMPERATURES INCREASE PEATLAND METHANE PRODUCTION 

AND ANAEROBIC OXIDATION THROUGHOUT 

THE ENTIRE SOIL PROFILE 

 

 

Contributions 

This chapter is co-authored by myself, Kaitlin Brunik, Laurel Pfeifer-Meister, Jason K. 

Keller, Glenn Woerndle, Cassandra A. Zalman, Paul Hanson, and Scott D. Bridgham. I 

was responsible for the data collection, analysis, and interpretation, as well as the writing 

of this manuscript. Scott D. Bridgham, Jason K. Keller, and myself designed the 

experiments. Scott D. Bridgham and Jason K. Keller served as advisors on this project. 

Kaitlin Brunik and Glenn Woerndle assisted in sample collection in the field and 

anaerobic incubations in the laboratory. Laurel Pfeifer-Meister and Cassandra A. Zalman 

provided input on data analysis and interpretation. Paul Hanson managed all field and 

SPRUCE-related activities. 

 

Introduction 

As global temperatures and atmospheric carbon dioxide (CO2) concentrations 

continue to rise, it is critical to examine the responses of natural ecosystems that could 

generate significant biosphere-climate feedbacks, further exacerbating global climate 

forcing. Wetland methane (CH4) emissions have been shown to be partially controlled by 

changes in climate from past glacial-interglacial cycles (Blunier et al., 1995; Loulergue et 

al., 2008) and, moreover, large recent inter-annual variability in atmospheric CH4 levels 

may be driven by climate effects on wetland CH4 emissions (Kirschke et al., 2013; 
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Melton et al., 2013). The vast majority of global wetland carbon (C) is stored in northern 

boreal peatland soils, which, by definition, have extensive soil C accumulation (≥40 cm) 

(Yu, 2012). Thus, despite covering <3% of the Earth’s surface, peatlands contain one-

third of total global soil C and are responsible for approximately 13% of global CH4 flux 

(Bridgham et al., 2013a). Additionally, most peatlands occur above 40°N latitude, where 

the largest relative temperature changes are projected to occur under current climate 

models and, therefore, are perceived to be particularly susceptible to climate change 

(Kirtman et al., 2013). Changes in temperature and hydrology have the capacity to 

diminish the role of peatlands as C sinks by triggering the return of currently stored 

organic C to the atmosphere as CO2 and/or CH4, thereby amplifying the impacts of a 

changing climate. Additionally, while other field experiments in wetlands have observed 

positive effects of elevated atmospheric CO2 (eCO2) concentrations on CH4 emissions 

and production (Dacey et al., 1994; Hutchin et al., 1995; Megonigal & Schlesinger, 1997; 

Vann & Megonigal, 2003; Cheng et al., 2006) the effects eCO2 in concert with 

simultaneous warming on CH4 cycling have not yet been considered. This is concerning 

because CH4 is a potent greenhouse gas with 45 times the sustained-flux global warming 

potential of CO2 over a 100 year time frame (Neubauer and Megonigal, 2015); thus, it is 

critical to examine CO2:CH4 ratios resulting from anaerobic mineralization in peatlands. 

It is currently unknown whether or not a significant fraction of the large soil C pool in 

peatlands will be respired as CH4 in future climates, creating a pressing problem in global 

change biogeochemistry and modelling (Bridgham et al., 1995; Limpens et al., 2008; 

Frolking et al., 2011; Yu, 2012; Bridgham et al., 2013a).  
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The accuracy of Earth system model projections hinges on our mechanistic 

understanding of peatland CH4 cycling in the context of environmental change. However, 

despite the extensive study of CH4 cycling and fluxes in peatlands, emissions are 

notoriously difficult to predict (Melton et al., 2013). Earth system models conceptualize 

CH4 emissions as the balance between CH4 production in anaerobic zones and aerobic 

CH4 consumption in aerobic zones, mediated by CH4 transport mechanisms from the soil 

to the atmosphere. However, CH4 emissions are infrequently explained by the balance 

between anaerobic CH4 production and aerobic CH4 oxidation (Bridgham et al., 2013a), 

suggesting the possibility of a previously unknown or ignored process(es) involved in 

peatland CH4 cycling.  

One such process is the anaerobic oxidation of methane (AOM), which is 

completely ignored for freshwater systems in terrestrial Earth system models. AOM is a 

dominant process in sulfate-rich marine sediments (Martens & Berner, 1974; Barnes & 

Goldberg, 1976). Methanotrophic archaea and bacteria have been shown to anaerobically 

oxidize CH4 using a range of terminal electron acceptors (TEAs), including sulfate (SO4
2-

), ferric iron (Fe3+), and nitrate (NO3
-) (Valentine, 2002). AOM was thought to be 

unimportant in peatlands because these systems typically lack high concentrations of 

oxidized inorganic electron acceptors (Pester, 2012); however, recent studies suggest that 

this process is widespread in freshwater wetlands (Segarra et al., 2015), but report a wide 

range (1.6-49 Tg CH4 yr-1) in the global rate of AOM in peatlands (Gupta et al., 2013). 

Although this process has not been linked to inorganic TEA availability in peatlands, it 

has been suggested that organic TEAs may fuel AOM in these organic-rich systems 

(Keller et al., 2009; Gupta et al., 2013). Thus, the importance of AOM in peatlands is 
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understudied, and the principal drivers of the process and potential impacts of ongoing 

environmental change remain unknown. 

The Spruce and Peatland Responses Under Changing Environments (SPRUCE) 

experiment provides an opportunity to explore climate-driven impacts on northern 

peatland CH4 cycling under in-situ conditions (Hanson et al., 2017). The SPRUCE 

project uses a regression-based experimental design to increase air and soil temperatures 

(+0 to +9 °C above ambient) to a depth of 3 m with and without enhanced atmospheric 

CO2 concentrations. All prior soil-warming experiments that have investigated the effects 

of changing climate on peatland C cycling have used only surface-warming techniques 

(general +1 °C) and, therefore, have been unable to examine the responses of deeper peat 

horizons (Chen et al., 2008; Turetsky et al., 2008). Thus, SPRUCE provides the first-ever 

ecosystem-scale insights of how northern peatland ecosystems respond to a changing 

climate throughout the majority of the soil profile. Following 13 months of deep-peat 

heating (DPH) at the SPRUCE site, Wilson and Hopple et al., (2016) observed an 

exponential increase in CH4 emissions that was driven by enhanced surface processes but 

not the mineralization of deep C, despite only muted warming of surface peat in the DPH 

phase of the experiment. While no temperature response was observed at depth (≥ 75 

cm), surface CH4 production rates increased with rising temperatures, decreasing 

CO2:CH4 ratios in surficial soil horizons (Wilson and Hopple et al., 2016). 

 In collaboration with the SPRUCE project, we investigated the response of 

peatland anaerobic CH4 cycling to whole-ecosystem warming (WEW) and elevated 

atmospheric CO2 concentrations (eCO2) using controlled laboratory incubations at in-situ 

temperatures of peat samples collected from surface (30 cm) to deep (200 cm) depth 
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increments. Specifically, we investigated changes in peatland CH4 production, CO2:CH4 

ratios, and AOM throughout the entire peatland profile following 14 months of WEW 

and initial responses to enhanced CO2 concentrations (≤ 4 months). We hypothesized that 

(1) CH4 production rates would continue to positively respond to increasing temperatures 

in surficial soil horizons, but that deeper soil layers would remain unaffected by 

temperature increases during WEW, as was observed after 13 months of DPH. We 

expected that (2) eCO2 would further stimulate surface rates of methanogenesis by 

increasing methanogenic substrate availability through heightened rates of plant root 

exudation. Taken together, we hypothesized that these effects would (3) decrease surface 

CO2:CH4 ratios, but that those of deeper soil layers would remain constant. Finally, we 

anticipated that (4) AOM would be quantitatively important in surficial soil layers where 

organic TEAs could be periodically re-oxidized by water-table fluctuations.   

 

Methods 

Site description: The SPRUCE experimental site (http://mnspruce.ornl.gov/), S1 bog (8.1 

ha), is located in north-central Minnesota, USA within the Marcell Experimental Forest 

(N 47°.476´; W 93°27.162´). For the past several decades, extensive scientific 

investigations have been done at this site and include in-depth descriptions of its 

physiochemical and biotic characteristics (Nichols and Brown, 1980; Urban et al., 1989; 

Lin et al., 2014; Tfaily et al., 2014; Krassovski et al., 2015; Wilson and Hopple, et al., 

2016; Zalman et al., in press). This precipitation-fed, ombrotrophic bog has a perched 

water table with an average pH of 4.1 at the surface which increases with depth to 

roughly 5.1 at 2 m. The overstory vegetation is primarily dominated by Picea mariana 
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(black spruce) and secondarily by Larix laricina (larch), while the understory is 

composed of low ericaceous shrubs, such as Rhododendron groenlandicum (Labrador 

tea) and Chamaedaphne calyculata (leatherleaf), and herbaceous perennials, such as 

Maianthemum triflorum (three-leaved Solomon’s seal) and Eriophorum vaginatum 

(cottongrass). The bog surface is characterized by hummock and hollow 

microtopography, with a typical relief of 10 to 30 cm between the tops of the hummocks 

and the hollows. Sphagnum magellanicum generally colonizes the hummocks, while S. 

angustifolium and S. fallax cover the hollows. The belowground peat profile and 

geochemistry are described in Tfaily et al. (2014). 

 

Whole-ecosystem warming and elevated atmospheric CO2 enrichment:  The SPRUCE 

project is a novel, manipulative experiment designed to address climate-driven questions 

on an ecosystem-scale and under in-situ conditions over the span of a decade. This study 

Figure 5.1. Aerial view of the SPRUCE site located in northern Minnesota (a). Experimental enclosures 

are positioned along three boardwalks that transect the ombrotrophic bog (S1 Bog). Colors denote 

temperature differentials targeted within each enclosure and hatching identifies those exposed to elevated 

atmospheric CO2 concentrations. We collected peat and porewater from multiple depth during six sampling 

events to discern how climate manipulation affected peatland CH4 cycling (b). These events occurred 

following 2 weeks to 14 months of WEW, as shown on the timeline, and samples were used to complete 

various anaerobic laboratory incubations, as described by the differing symbols. PW = porewater.   
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uses a regression-based experimental design that warms the vegetation and peatland soil 

profile to 3 m depth within ten 12 m diameter enclosures to five target temperature 

differentials (+0, +2.25, +4.5, +6.75, and +9°C), with duplicate enclosures subjected to 

ambient and ~ +500 p.p.m.v. atmospheric CO2 concentrations (Figure 5.1a). Whole-

ecosystem warming (WEW) is achieved within open-topped enclosures (7 m tall by 12.8 

m in diameter) by combining air and belowground warming. Air is warmed with propane 

heaters, whereas belowground warming is attained using low-wattage, 3 m long, 

belowground concentric rings of heaters (Hanson et al., 2017). The open-top enclosure 

design allows for surface air warming and enhancement of atmospheric CO2, while sub-

surface corrals hydrologically isolate each experimental enclosure and allow for changes 

in water-table level associated with climate manipulation to occur.  

Whole-ecosystem warming was initiated 12 August 2015, following 14 months of 

deep peat heating (DPH). During the DPH phase of this experiment, deep-soil 

Figure 5.2. Snapshot temperature depth profiles associated with the (a) DPH and (b) WEW phases of the 

SPRUCE experiment. Temperature profiles were measured during coring events, which took place 13 and 

10 months into DPH and WEW, respectively. Target temperature differentials are denoted with different 

shape and color combinations. Note muted surface temperature separation during DPH and the consistent 9 

°C temperature spread throughout the entire peatland soil profile during WEW. 
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temperature targets were successfully maintained throughout the year following a gradual 

treatment equilibration period (~3 months); however, the lack of air warming resulted in 

reduced temperature separation among treatments at the surface (Figure 5.2a; Hanson et 

al., 2017). After the introduction of air warming (which signaled the start of WEW), we 

attained 9 °C temperature separation and differentials across treatment enclosures from 

the tops of the trees to peat depths of at least 2 m (Figure 5.2b). Temperature differentials 

have largely been maintained thought the WEW period, with some variation observed in 

surficial peat zones due to rain and snow events (Hanson et al., 2017). Finally, elevated 

atmospheric CO2 concentrations were introduced in a subset of the enclosures on 15 June 

2016, completing the full set of experimental climatic manipulations planned by the 

SPRUCE project. 

 

Analysis of CH4 and CO2 production and CO2:CH4 ratios in anaerobic incubations: 

Following the same protocol to that was used throughout the DPH experimental phase 

(Wilson and Hopple, et al., 2016), during six sampling events completed over 14 months 

of WEW (August 2015 – October 2016), intact soil cores were collected from multiple 

depths within each experimental enclosure to discern how rates of CH4 and CO2 

production and CO2:CH4 ratios varied with climate treatment and depth (Figure 5.1b). In 

2015, soil cores were collected from 20-30, 50-75, 100-125, 125-150, and 175-200 cm 

depth increments, following 2 weeks and 2 months of WEW (depth increments are 

denoted with the lower end of their range in figures). We used the same sampling 

approach in 2016, but collected soil cores at 40-50 cm instead of 125-150 cm to better 

capture variation in surficial peat horizons. These sampling events took place following 
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10, 11, 12, and 14 months of WEW, with the last three sampling events also subjected to 

1, 2, and 4 months of elevated atmospheric CO2 concentrations. All depths were 

measured relative to the surface of the hollows. We began to observe water table 

drawdowns (~30 – 50 cm below the hollow surface) in 2016 as a result of increased 

temperatures in experimentally manipulated enclosures (Hanson et al., 2017). We focus 

here only on depth increments that were anaerobic at the time of sampling. To prevent 

compression of surface peat samples, a serrated knife was used to collect a 10 cm 

diameter core from the hollow surface to ~20 cm within the peat profile. A 5 cm diameter 

Russian corer was subsequently used to extract the remaining samples up to 2 m deep. 

Soil cores were immediately flushed with nitrogen (N2) in the field to minimize exposure 

to aerobic conditions. Additionally, porewater samples were anaerobically collected from 

1.25 cm-diameter PVC piezometers at corresponding depth increments (25, 50, 75, 100, 

150, and 200 cm below the hollow surface) using a peristaltic pump. Both soil cores and 

porewater were stored on ice and shipped overnight to the UO. 

At the UO, soil samples were incubated within 1 °C of in-situ temperatures within 

24 hours of field collection and anaerobic incubations commenced the following day. 

This rapid turnaround time was intended to generate depth-specific CH4 and CO2 

production rates that were as representative of in situ conditions as possible (however, 

note the porewater/headspace caveats described in the discussion section). Samples were 

slurried with a 1:1 mixture of peat and porewater collected from the same enclosure and 

depth in a glove box filled with N2 atmosphere (<5% H2 in the presence of a palladium 

catalyst; Coy Laboratory Products, Grass Lake, Michigan) to maintain anaerobic 

conditions. Sample bottles were then flushed with N2 for 15 minutes to begin the 
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incubation. Headspace samples were analyzed over the course of 8 days (days 2, 4, 6, and 

8) for CH4 and CO2 simultaneously using an SRI gas chromatograph equipped with a 

methanizer and flame ionization detector. Total CH4 and CO2 were calculated using 

Henry’s Law, adjusting for solubility, temperature, and pH (Bridgham and Ye, 2013b). 

Methane and CO2 production rates were calculated using the linear accumulation (r2 ≥ 

0.83 in all cases) of gasses through time.  

In 2016, we included a complementary set of anaerobic incubations to test the 

effects of porewater addition on CH4 production rates (Figure 5.1b). In these 

experiments, peat samples were incubated without additional porewater, which 

approximated field moisture conditions (≥85% water content in all cases), except in the 

30 cm increment where the very low bulk density peat made drainage of porewater very 

difficult to avoid. Finally, we also completed a high frequency sampling event on a subset 

of samples in October 2016 to capture early (<48 hours) CH4 production responses 

during anaerobic incubations (Figure 5.1b). Peat samples were collected from each 

enclosure (n = 10) at random depths and incubated anaerobically without porewater 

addition at in situ temperatures. Headspace CH4 and CO2 concentrations were measured 

after 4, 6, 12, 18, and 24 hours and 2, 3, 4, 6, 7, and 9 days.  

Because we consistently observed net CH4 consumption in samples without 

porewater addition (see results), we verified in bottles with deionized water that we could 

quantitatively recover added CH4 and CO2 over the 8 day sampling period. This was 

indeed the case, and there was no evidence of gas leakage. 
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Analysis of Anaerobic Oxidation of Methane in anaerobic incubations: In 2016, we 

directly measured rates of peatland AOM using a radioisotope tracer technique that 

involved adding a tritiated CH4 tracer (C3H4) (Valentine et al., 2001) to our previously 

described anaerobic incubations done at 1:1 peat to porewater ratios and in situ 

temperatures following 10, 11, 12, and 14 months of WEW (Figure 5.1b). The tracer 

could not be properly mixed in non-slurried samples, so these were not run. These 

measurements were done at multiple depths (30-200 cm) within each experimental 

enclosure. 

 In the process of AOM, C3H4 is oxidized to CO2 and tritiated water (3H2O) is 

formed as a byproduct (Eqn. 1): 

                                       C3H4 + Electron Acceptor → CO2 + 3H2O                   (1) 

Thus, AOM can be measured by adding C3H4 during an anaerobic incubation, removing 

the unreacted C3H4 after a specified amount of time, and counting the 3H2O product as 

described below. A set of “dead” controls (n = 8) with deionized water were autoclaved 

twice (45-minute gravity cycle at 121 °C and 14 PSIG; Steris/AMSCO Sterilizer 3011, 

Sanford, FL). These dead controls served to measure background abiotic isotopic 

exchange which, if unaccounted for, could falsely inflate rates of AOM. We added 0.2 

µCi of C3H4 to sample bottles following 2 days of anaerobic incubation to allow time for 

CH4 and CO2 to accumulate in the headspace prior to the tracer addition. Gaseous and 

aqueous-phase samples were then pulled over the course of 2-3 weeks (2, 4, 8, and 16 

days post-tracer addition) to assess changes in CH4 and CO2 headspace concentrations 

with gas chromatography (described above) and 3H2O accumulation with liquid 

scintillation counting. We present 48-hour rates of AOM to provide the most in-situ 
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estimates; however, we also demonstrate how rates of surface (30 cm) AOM changed 

during the laboratory incubation. 

Unreacted C3H4 was removed from aqueous samples by adding 4 M KCl solution 

to samples and placing them under a strong vacuum (≥ -9 PSIG) for 48 hours. 

Experimental trails found this to be the most effective process for C3H4 removal without 

losing any aqueous sample to evaporation. Aqueous samples were then combined with 

50% ScintiSafe liquid scintillation cocktail, vigorously shaken, and allowed to react 

overnight. After 24 hours, sample radioactivity was measured using a Beckman LS 9800 

Series Liquid Scintillation Counter. Quench was determined for each sample by adding 

small aliquots of known radioactivity and re-measuring the radioactivity using liquid 

scintillation counting. We used a similar procedure to determine the dilution of 

radioactivity levels from the addition 4 M KCl. Final estimates of radioactivity were 

corrected for quench, source material decay, dilution with 4 M KCl, and background 

isotopic exchange (based on median radioactivity levels in control samples). Soil dry 

weight was determined by measuring the change in weight of a soil sub-sample following 

48 hours of drying at 60 °C. The amount of CH4 anaerobically oxidized and the rate of 

AOM were determined using equation:  

                            CH4ox = (3H2O * CH4ave) / (C
3H4added * wt * t)                          (2) 

where CH4ox = the amount of CH4 that was anaerobically oxidized (µmol CH4 g
-1 soil d-

1); 3H2O = the total amount of 3H2O radioactivity/sample bottle (µCi); C3H4added = the 

amount of tritiated CH4 added (µCi); CH4ave = the average amount of available CH4 

between the measurement time points (µmol); wt = the dry mass of the soil; and t = 

incubation time. 
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Despite extensive experimentation, this technique had very high and variable 

abiotic isotopic transfer of the tritium on CH4 molecules to H2O molecules that we were 

unable to effectively minimize. Consequently, only the June and July 2016 sampling 

dates were consistently above background rates, and we focus on these data here as 

support of concept that AOM was actually occurring in our samples.   

Figure 5.3. Comparison of CH4 production temperature responses in (a, c) surface and (b, d) deep peat 

samples that were anaerobically incubated within 1 °C of in-situ temperatures and at 1:1 peat to porewater 

ratios during DPH (a, b) and WEW (c, d). Different depths are represented by varying shapes and sampling 

events are denoted by colors. Note the positive temperature response observed at depth (≥ 50 cm) during 
WEW which was not observed during DPH. Data from the DPH period were taken from Wilson and 

Hopple et al. (2016). 
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Statistical analyses: General linear mixed-effect models (GLMM) were used to 

determine the effects of depth, temperature, elevated CO2 concentrations, season, and 

time since WEW initiation on CH4 and CO2 production rates, CO2:CH4 ratios, and AOM 

rates. Enclosure was treated as a random effect and all other predictor variables were 

analyzed as fixed effects. Season was categorized based on time into the growing season 

and coded as early (June), mid (July and August), or late (September and October). If 

significant differences among depths were detected (p < 0.05), pairwise comparisons 

using Tukey’s honest significant difference test (p < 0.05) were conducted. If not 

significantly different, depths were combined for linear regression analysis. Data were 

tested for normality and log-transformed where the transformation resulted in an 

Figure 5.4. Carbon dioxide production temperature responses in (a) surface and (b) deep peat samples that 

were anaerobically incubated within 1 °C of in-situ temperatures and at 1:1 peat to porewater ratios during 

14 months of WEW. Different depths are represented by varying shapes and sampling events are denoted by 

colors. NS = not significant. 
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improvement in overall distribution. 

All statistical analyses were 

completed using R 3.2.2 Statistical 

Software.  

 

Results 

CH4 and CO2 production and 

CO2:CH4 ratios: Surface (30 cm) CH4 

production rates were much greater 

than those observed at deeper depths 

(≥ 50 cm) during anaerobic laboratory 

incubations of 1:1 peat to porewater 

mixtures at in-situ temperatures (p < 0.0001; Figure 5.3c and d). Rates at 50 cm depth 

visually appeared higher than deeper depths, but this difference was not statistically 

significant (p = 0.62). There was a strong interaction between temperature and depth (p < 

0.0001), but rates of methanogenesis across all depths increased with increasing 

temperatures (p  0.002; Figure 5.3c and d). Rates of methanogenesis were lower late 

into the growing season when compared to early and mid-growing season rates (p = 

0.031). Additionally, methanogenesis was 27% higher in samples exposed to enhanced 

atmospheric CO2 concentrations in the field (p = 0.11; eCO2 CH4 production = 0.19 ± 

0.05 µmol C g peat-1 d-1, no eCO2 CH4 production = 0.15 ± 0.03 µmol C g peat-1 d-1). 

Time since initiation of WEW did not affect rates of CH4 production (p = 0.83).  

Figure 5.5. CO2:CH4 ratios from peat samples that were 

anaerobically incubated within 1 °C of in-situ temperatures 

and at 1:1 peat to porewater ratios following 2 weeks to 14 

months of WEW. Depth increments are denoted with 

shapes and sampling events are shown as various colors. 

Note the log-scale on the y axis. 
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In October 2015 and 2016, seven 

incubation samples showed linear rates of 

net CH4 consumption under anaerobic 

conditions (Figure 5.3c and d). When 

these net CH4 consumption samples were 

removed from the data analysis, CH4 

production rates responded to temperature 

consistently across all depths (p = 0.96), 

and rates of methanogenesis were highest 

in mid-growing season and lowest in the 

early-growing season (p < 0.0001). 

Additionally, rates of net CH4 production 

were highest at 30 cm, intermediate at 50 

cm, and lowest at depths ≥ 75 cm (p < 

0.0001). 

Rates of CO2 production decreased with each increasing soil depth (p < 0.0001) 

except the 125 and 200 cm depths were not significantly different (p = 0.48). There was a 

strong interaction between temperature and depth (p < 0.0001); only CO2 production 

from soil horizons at 75 cm or below positively responded to increasing temperatures (p 

≤ 0.01; Figure 5.4). Surficial CO2 production was unaffected by WEW (30 cm: p = 0.15; 

50 cm: p = 0.79). Carbon dioxide production decreased from early- to mid-growing 

season and was the highest late into the growing season (p < 0.0001). Additionally, over 

the course of our six sampling events, CO2 production appeared to first increase and then 

Figure 5.6. Methane production and consumption 

from peat samples taken from 30-200 cm depths and 

anaerobically incubated at in-situ temperature with 

(blue symbols) and without (red symbols) additional 

porewater. Each point represents average net CH4 

production or consumption of all samples from a 

specific depth following 10-14 months of WEW. 

Across all groups, the standard error of the mean was 

less than 0.07. 
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decrease with time since the initiation of WEW (p < 0.0001). Ratios of CO2:CH4 

production increased with depth (p < 0.0001) and were negatively correlated with 

temperature across all depths (p = 0.0012; Figure 5.5); however, the effect of temperature 

was not dependent upon depth (p = 0.91). 

Surprisingly, lack of porewater addition during anaerobic laboratory incubations 

resulted in consistent reductions in CH4 production rates and often led to net CH4 

consumption across all depths (p < 0.0001; Figure 5.6). High frequency sampling from a 

subset of samples in October 2016 consistently revealed that CH4 is initially produced in 

anaerobic incubations over the first 48 

hours, but is then rapidly consumed 

(Figure 5.7). Surface (30 cm) net CH4 

consumption rates were greater than 

those observed at deeper depth (p < 

0.0001); however, both surface (p = 

0.036; Figure 5.8a) and deep (p < 

0.0001; Figure 5.8b) peat horizons 

positively responded to increasing 

temperatures. The effect of 

temperature on net CH4 consumption 

was highly dependent upon depth increment (p < 0.001).  Additionally, samples exposed 

to enhanced CO2 concentrations in the field had 80% higher net CH4 consumption than 

those that were not (p = 0.10; eCO2 CH4 consumption = 0.09 ± 0.03 µmol C g peat-1 d-1, 

no eCO2 CH4 consumption = 0.05 ± 0.01 µmol C g peat-1 d-1). There were no notable 

Figure 5.7. A representative sample of frequent 

measurements of changes in CH4 concentration in samples 

without porewater addition (shown +9 °C enclosure at 30 

cm) during October 2016. Note that CH4 was initially 

produced and was then consumed after approximately 24-

48 hours. 
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changes in rates of net CH4 consumption across season or with time since WEW 

initiation (p ≥ 0.36). 

 

Anaerobic oxidation of methane: We observed AOM occurring throughout the entire 

peatland soil profile in June and July 2016, despite the high rates of abiotic isotopic 

exchange in the dead controls. Rates of AOM were not affected by season or time since 

WEW initiation (p ≥ 0.78) and were thus combined for statistical analyses. Surface (30 

and 50 cm) rates of AOM were the highest and sharply decreased with depth (p < 0.0001; 

Figure 5.9a). Additionally, rates of surface CH4 consumption remained constant over one 

week (p = 0.15; Figure 5.9b), but were not detectable above background levels after two 

weeks. Rates of AOM positively responded to increasing temperature across all depths (p 

Figure 5.8. Temperature responses of (a) surface and (b) deep CH4 production or consumption from peat 

samples anaerobically incubated at approximately in-situ temperatures and without porewater addition 

following 10-14 months of WEW. Sampling events are represented as different colors and depth are shown 

as different shapes.  
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< 0.01; Figure 5.10a and b) and the response to temperature was not dpendent upon depth  

(p = 0.78). Despite the difficulty with this method, it did indicate that AOM is an 

important process in S1 bog. Overall, AOM was responsible for consuming 17.2 ± 1.4% 

of the total amount of CH4 produced and ranged from 2-74% consumption of total CH4 

production.  

 

Discussion 

CH4 and CO2 production and CO2:CH4 ratios: Here, we present the first-ever evidence 

of increasing temperatures stimulating rates of methanogenesis throughout the entire soil 

profile of a non-permafrost boreal peatland (Figure 5.3c and d), as well as rates of deep 

peatland (≥ 75 cm) CO2 production (Figure 5.4b). This contrasts with previous results 

Figure 5.9. Direct measurements of AOM rates with a H3CH4 tracer (a) throughout the soil profile acquired 

from samples incubated at 1:1 peat to porewater ratios with a radioisotope tracer and at in-situ 

temperatures. Changes in the (b) rate of surface AOM over incubation time; although there is a gradual 

increase, no significant differences were observed (p = 0.15). AOM was no longer detectible above control 

background levels after two weeks. Lower case letters represent significant differences (p < 0.05) between 

depth increments. Note the log-scale on the x-axis of panel a. 
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from the SPRUCE experiment which showed no temperature effect on CH4 and CO2 

production in deeper peat following more than one year of deep-peat warming (DPH) 

(Figure 5.3b; Wilson and Hopple et al., 2016). While surface methanogenesis remained 

greater than that at depth during whole-ecosystem warming (WEW), the lower 150 cm of 

the soil profile (a much larger volume) positively responded to increased temperatures 

during the second year of warming. We hypothesize that this very delayed response is 

due to the slow growth of methanogen populations given the low thermodynamic yield of 

methanogenesis (Beer & Blodau, 2007; Thauer et al., 2008; Blodau, 2012). A laboratory 

experiment supported this hypothesis by showing increased CH4 production from deep 

peat in S1 Bog after the addition of a surface microbial inoculum but not with warming 

and/or the addition of labile substrates (Keller et al., unpublished data). We also show in 

Figure 5.10. Temperature responses of (a) surface and (b) deep AOM rates observed from peat samples 

anaerobically incubated at in-situ temperatures and 1:1 peat to porewater ratios following 10 and 11 months 

of WEW. Sampling events are represented as different colors and depth are shown as different shapes.  
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Chapter 3 that the addition of surface DOM has no effect on CO2 and CH4 production in 

deep peat.  

 It should be noted that a positive temperature response at depth does not 

necessarily indicate enhanced mineralization of ancient (~8,000-10,000-year-old) 

peatland C. Previous research has shown that almost all heterotrophic respiration in deep 

peat at S1 Bog is driven by relatively young, surface-derived dissolved organic matter 

(DOM) with the solid matrix peat remaining essentially unchanged over thousands of 

years (Wilson and Hopple et al., 2016). However, porewater CO2, and presumably CH4, 

in 2017 was slightly older than DOM in the warmest plots (Chanton and Wilson, 

unpublished data), suggesting that deep peat has begun to make a contribution to 

anaerobic respiration, but this took years to be observed.   

 Interestingly, surface CO2 production was unaffected by WEW, contrasting with 

the positive response that was observed following one year of DPH (Wilson and Hopple 

et al., 2016) and highlighting the higher temperature sensitivity of methanogens 

compared to other anaerobic microorganisms. This is further demonstrated by decreasing 

CO2:CH4 production ratios observed throughout the entire peatland profile (Figure 5.5), 

which also been observed in porewater concentrations of these two gasses (Chanton and 

Wilson, unpublished data), suggesting that this ecosystem is becoming more 

methanogenic with warming, in-line with results from previous studies (Updegraff et al., 

2001; Yvon-Durocher et al., 2014). 

Rates of surface (30 cm) methanogenesis were an order of magnitude greater than 

those observed deeper into the peatland soil profile (≥ 50 cm: Figure 5.3c and d). 

Numerous studies have documented similar low rates of CH4 production in deep peatland 
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soil horizons and have linked this sharp decrease to an array of abiotic and biotic factors 

(Galand et al., 2003; Cadillo-Quiroz et al., 2006; Kotiaho et al., 2010; Tfaily et al., 2014; 

Zalman et al., in press), highlighting the tight coupling between distinct microbial 

communities and depth-associated changes in the physiochemical environment. For 

example, microbial community abundance, composition, and activity have been 

associated with changing soil pH, O2 availability, DOM and nitrogen availability, and 

DOM source and reactivity through depth in a variety of northern peatlands (Galand et 

al., 2003; Cadillo-Quiroz et al., 2006; Kotiaho et al., 2010; Lin et al., 2012; Wilson and 

Hopple et al., 2016). Furthermore, in a high-resolution molecular study of soil C 

mineralization at S1 Bog, Tfaily et al. (2014) attributed low rates of CH4 production deep 

in the soil profile to a combination of low lability C sources, the accumulation of 

inhibitory metabolic end products, and lower population levels of methanogens and/or 

shifts in the methanogen community with depth. We also previously observed a close 

correspondence over peat depths between CH4 production rates and the abundance of the 

total (via DNA-based techniques) and active (via RNA-based techniques) methanogens in 

S1 bog and two other nearby peatlands (Zalman et al., in press). As discussed above, we 

have substantial evidense to suggest that long lag in anaerobic microbial respiration 

response to warmer temperature is due to slow grow of methanogen populations, but 

these other factors lead to the initial small methanogen population size. 

Although we observed direct temperature effects on rates of surface 

methanogenesis during both DPH (Figure 5.3a) and WEW (Figure 5.3c), temperature 

explained much less of the variation in CH4 production during WEW (r2 = 0.16) relative 

to the DPH phase (r2 = 0.71). Climate-induced perturbations to the ecosystem, such as 
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changes in water-table depth, increased below-ground exudation of labile plant 

compounds, or changes plant and/or microbial community composition, may have had 

cascading ecological effects on peatland CH4 production (Updegraff et al., 2001; 

Turetsky et al., 2008), muting the effects of temperature on this process in surface soils. 

For example, water-table drawdowns observed under WEW (Hanson et al., 2017) likely 

oxidized organic and inorganic terminal electron acceptors and intermittently decreased 

the soil anaerobic zone, suppressing rates of surface methanogenesis. However, water-

table drawdowns may have also stimulated rates of CH4 production deeper into the 

peatland soil profile by increasing root exudations deeper in the peat and vertically re-

distributing methanogenic microorganisms and labile C substrates. Substantial changes 

with warming in the organic chemistry of porewater were observed in 2017 at SPRUCE 

(Chanton and Wilson, unpublished data). Thus, climate-driven changes in water-table 

position may have numerous effects on rates of methanogenesis.  

Furthermore, as the SPRUCE climate manipulations continue for the next decade, 

these temperature effects will likely be further modified by the impact of atmospheric 

CO2 enrichment on rates of plant community productivity and root exudation. Here, we 

show a marginally significant, yet suggestive, 27% increase in rates of methanogenesis 

attributed to enhanced atmospheric CO2 concentrations. Fertilization with CO2 has been 

shown to increase rates of plant root exudation (Dacey et al., 1994; Hutchin et al., 1995; 

Megonigal & Schlesinger, 1997; Cheng, 1999; McLeod and Long, 1999; Vann & 

Megonigal, 2003; Cheng et al., 2006), which could increase the availability of C 

substrates for methanogens. Supporting this explanation, we found a marginally 

significant (p = 0.07) increase in porewater acetate concentrations in the elevated CO2 
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treatment during the WEW phase (control = 3.73 ± 2.47 μM acetate-C; eCO2 = 5.22 ± 

7.70 μM acetate-C (mean ± 1 s.e.m.), unpublished data). While these cascading 

ecological effects likely played a role in modifying the response of CH4 production to 

increasing temperatures, our study also identifies AOM as a potentially ubiquitous and 

important constraint on peatland methanogenesis. 

 

Indirect measurements of anaerobic oxidation of methane: To determine rates of CH4 

production, we mainly used a methodology that is common throughout much of the 

peatland literature. Briefly, peat samples are incubated at a 1:1 peat to porewater ratio in 

gas-tight serum bottles with a headspace thoroughly flushed with N2 to ensure anaerobic 

conditions. We have generally observed CH4 production during these experiments; 

however, we occasionally saw net CH4 consumption (Figure 5.3c), suggesting that AOM 

is simultaneously occurring alongside CH4 production and that this methodology is 

actually capturing net CH4 production and/or consumption. As discussed below, this 

method likely minimizes AOM rates and thus more closely approximates gross CH4 

production rates. 

We saw further evidence that AOM was occurring when peat samples collected 

from multiple depths were anaerobically incubated at approximately in-situ moisture 

conditions (≥ 85% in all cases) and without porewater addition. Using this protocol, we 

consistently observed reduced rates of CH4 production and often net CH4 consumption 

(Figure 5.6). This trend occurred across all depths and sampling events (n = 4) in which 

we did not add additional porewater to our anaerobic incubations. We extensively tested 

for and found no gas leakage from serum bottles during these experiments. Rather, high 
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frequency sampling of a subset of bottles revealed that CH4 concentrations initially 

increased over 48 hours and then quickly decreased over the next several days (Figure 

5.7). These results suggest that methanogenesis and AOM are occurring simultaneously 

and that the occurrence of AOM is driven by the availability of CH4 as a primary 

substrate. We hypothesize that porewater addition during anaerobic incubations generally 

results in net CH4 production because, as CH4 is extremely insoluble, the additional 

porewater inhibits the diffusion of CH4 from the headspace to the AOM microbial 

consortia, suppressing AOM. Likewise, we hypothesize that anaerobic incubations done 

without additional porewater often result in net CH4 consumption because of the rapid 

transfer of CH4 to the microbes performing AOM. The addition of porewater could also 

serve as a labile C substrate that would be broken down by fermentation reactions to form 

CO2, H2, and acetate to fuel methanogenesis (e.g., Medvedeff et al., 2015). These coupled 

experiments strongly suggest that the diffusion of CH4, as dictated by water content and 

headspace availability, partially controls net CH4 production and consumption.  

Our results also suggest that the many previous studies of CH4 production in 

wetlands (including the authors’) are highly dependent on their particular incubation 

conditions, provided AOM is as important as the few previous studies in freshwater 

wetlands suggest (Smemo and Yavitt, 2007; Gupta et al., 2013; Seggara et al., 2015). In 

situ wetland porewater often has very high concentrations of CH4 (typically 0.10 to 1.5 

mM at S1 bog, unpublished data), which would rarely be achieved in relatively short-

term laboratory incubations that started with headspaces and liquid-phases initially 

flushed with N2 or He to remove CH4. Additionally, the majority of these incubations are 

done within serum bottles with substantial headspaces where most of the CH4 that is 
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produced would reside, further complicating CH4 transfer dynamics. Thus, it is 

imperative to gain a better understanding of the controls over and rates of gross AOM 

and methanogenesis. 

 

Direct measurements of anaerobic oxidation of methane: We used a radioisotope tracer 

technique to verify high rates of AOM at SPRUCE. We found this previously published 

method (Valentine et al., 2001) to be highly problematic because of high and variable 

abiotic isotopic exchange between the tritiated CH4 tracer and water. Nevertheless, we 

did observe on two sampling dates that AOM was occurring throughout the entire 

peatland profile, with the highest rates in surficial soil horizons (Figure 5.9a). This is the 

first time AOM has been documented in deeper soil layers as previous studies have been 

limited to the top 40 cm or shallower (Blazewicz et al., 2012; Gupta et al., 2013; Seggara 

et al., 2015). However, Seggara et al. (2015) also noted that rates of AOM were the 

greatest in surface samples (0-10 cm) and decreased with depth (up to 40 cm) in three 

freshwater wetlands (two mineral-soil wetlands and one peatland). We hypothesize that 

this depth effect is driven by the greater availability of oxidized organic and inorganic 

TEAs at the surface, relative to deeper soil layers, due to periodic fluctuations in water-

table position and release of oxygen from roots. Other studies have also suggested that 

AOM is driven by TEA availability in freshwater systems (Gupta et al., 2013; Seggara et 

al., 2015); however, the exact mechanism remains unknown (Gupta et al., 2013). As S1 

Bog is an ombrotrophic peatland with very low nutrient inputs and concentrations of 

inorganic TEAs, such as nitrate and sulfate (Lin et al., 2014), we suggest that humic 

substances are facilitating AOM in this study. We saw no change in the rate of AOM 
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over the course of 

one week; however, 

radioactivity was 

no longer 

detectable above 

background levels 

after two weeks 

(Figure 5.9b), 

suggesting that we 

exhausted our 

supply of TEAs 

between one and 

two weeks. We have 

observed a similar timeframe for the reduction of all peatland organic TEAs in laboratory 

studies investigating the potential for humic acids to act as electron acceptors in wetland 

decomposition (Keller, unpublished data). 

We found that rates of AOM increased with temperature across all depths using 

both indirect (Figure 5.8) and direct (Figure 5.10) measurement techniques. This 

contrasts with previous studies which have found no effect of temperature on this process 

(Gupta et al., 2013; Segarra et al., 2015), although these previous studies did not directly 

manipulate in-situ temperatures. For example, in a study of 15 North American peatlands 

that differed in climate, no relationship was found between temperature and rates of 

AOM (Gupta et al., 2013). These results were corroborated by a similar study that 

Figure 5.11. A comparison of published estimates of AOM, as a percent of 

total methanogenesis, observed in freshwater wetlands. 
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examined rates of AOM in three freshwater wetlands located along a climate gradient 

which also found no correlation between climate-driven variables and AOM (Segarra et 

al., 2015). This result has important implications for understanding the mechanisms 

underlying anaerobic CH4 cycling and emissions. For example, although we have shown 

that peatland methanogenesis will increase with temperature, we also show simultaneous 

increases in its consumption via AOM under the same conditions, which also would 

affect the response in the CO2:CH4 ratio to temperature that we observed (Figure 5.5). 

Overall, AOM was responsible for consuming approximately 17% of the total amount of 

CH4 produced; however, we observed as much as 74% consumption of total CH4 

production. These percentages are within the wide range of estimates reported throughout 

the literature (Figure 5.11), which span from 0.27% (Blazewicz et al., 2012) to 284% 

(Gupta et al., 2013) total consumption, although we suspect the high rates of abiotic 

isotopic exchange with the method that we used underestimates actual rates of AOM.  

If AOM rates are as high as we observed in this study, it sets up a conundrum of 

how wetlands can maintain high porewater CH4 concentrations and atmospheric 

emissions which can only be solved if gross CH4 production rates are much higher than 

previously thought. Similarly, the hotly debated question over the past several decades of 

why many wetlands produce much higher ratios of CO2:CH4 under anaerobic conditions 

than the theoretical ratio of 1:1 when all TEAs are reduced could be explained by high 

rates of AOM (Conrad, 1989; Bridgham et al., 1998; Yavitt & Seidman-Zager, 2006; 

Keller & Bridgham, 2007; Wilson et al., 2017). This study represents an important step 

towards gaining a mechanistic understanding of the climate-driven controls over peatland 
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AOM. This process is not currently incorporated into Earth system CH4 models and 

doing so requires modelling of a much more dynamic system than currently envisioned.  

 

Conclusions 

In this study, we show that rising temperatures increased rates of peatland 

methanogenesis throughout the entire soil profile following 14 months of WEW. 

Increased CH4 production drove a decrease in CO2:CH4 ratios across all depths, 

indicating that this ecosystem in becoming more methanogenic as it warms. There is also 

preliminary evidence of increased CH4 production with enhanced atmospheric CO2. The 

direct effects of temperature on methanogenesis were likely modified by cascading 

ecological effects, such as changes in water-table position and rates of below-ground root 

exudation, that could have had contrasting, depth-specific effects on peatland CH4 

production. Additionally, our results emphasized the role of AOM in peatland CH4 

cycling, a historically understudied and often ignored process in freshwater systems. We 

provide the novel evidence showing that this process occurred throughout the entire 

peatland soil profile and positively responded to increases in temperature. Our usage of 

multiple incubation techniques revealed that AOM is likely ubiquitously occurring 

alongside CH4 production and that CH4 production rates measured in previous studies are 

likely actually net rates of CH4 production that are highly dependent on the incubation 

conditions. Anaerobic oxidation of CH4 is not currently incorporated into Earth system 

CH4 models and this may explain why CH4 emissions are notoriously difficult to predict 

from CH4 production and aerobic CH4 oxidation alone. Continued research efforts in 

collaboration with projects such as the SPRUCE experiment will enable us to examine 
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the dynamic response of peatland CH4 cycling to climate forcing in the long-term, as well 

as to develop concerted efforts to better parameterize predictive models from empirical, 

field- and laboratory-based conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

CHAPTER VI 

CONCLUSIONS 

 

Wetlands in tropical and boreal regions are among the most important terrestrial 

ecosystems due to their influence on the global carbon (C) cycle. Anaerobic conditions in 

these systems promote the sequestration of massive amounts of atmospheric carbon 

dioxide (CO2) in soils and vegetation and, as anaerobic mineralization occurs, this C can 

be released to the atmosphere as the greenhouse gasses CO2 and/or methane (CH4) 

through microbial respiration. Methane is much more effective at trapping heat in the 

atmosphere relative to CO2 (Neubauer and Megonigal, 2015) and is currently responsible 

for approximately 20% of human-induced radiative forcing (Myhre et al., 2013). Thus, as 

global temperatures continue to rise, it is critical to understand the mechanisms 

underlying anaerobic C mineralization and CH4 cycling in natural ecosystems that could 

generate significant biosphere-climate feedbacks, further accelerating global climate 

change.  

Tropical wetlands emit approximately 47-89% of global CH4 emissions 

(Bridgham et al., 2013) and boreal wetlands store roughly one-third of the world’s total 

soil C (Bridgham et al., 2006). However, despite the importance of these ecosystems, 

tropical wetlands have received limited study concerning CH4 flux and, although boreal 

wetlands have been more thoroughly studied, significant questions remain surrounding 

the biogeochemical controls over CH4 dynamics in these systems. Therefore, our 

understanding of the fundamental processes and controls underlying anaerobic C cycling 
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across ecosystems is incomplete, limiting our ability to accurately predict climate forcing 

on ecosystem and global scales.  

The overall objectives of this dissertation are to help alleviate these knowledge 

gaps by (1) providing critical knowledge about the rates of and biogeochemical controls 

over gross and net CH4 cycling processes across a variety of equatorial African habitats, 

and (2) expanding our mechanistic understanding of how climate-driven variables in a 

northern peatland affect anaerobic C mineralization and CH4 dynamics. 

 Chapter II investigated the abiotic and biotic controls over ecosystem CH4 cycling 

dynamics across a variety of sites located along a wetland to upland gradient in the 

central African nation of Gabon. Using a landscape-scale sampling approach, we 

measured CH4 flux, production, consumption, and methanogenic pathways at each site 

and used a suite of physiochemical and microbial community attributes to determine the 

relative ability of abiotic and biotic variables to predict these processes across ecosystem 

types. In Chapter II, we show that a combination of microbial community attributes, 

including composition, abundance, activity, and diversity, are better predictors of CH4 

production, consumption, methanogenic pathway, and CO2:CH4 ratios relative to a 

standard set of physiochemical parameters. Of particular interest was that the relative 

abundance of Methanobacterium sp. in the active community explained 77 and 75% of 

the variation in methanogenic pathway dominance and CO2:CH4 ratios, respectively. 

Methanogenic pathway dominance and CO2:CH4 ratios are important ecological 

indicators that provide insight into the flow of C through ecosystems, as well as the 

underlying mechanisms controlling ecosystem CH4 cycling. Thus, our research highlights 

the central role of microbial ecology in controlling ecosystem-scale processes, as well as 
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the potential benefits of incorporating microbial dynamics into terrestrial CH4 modelling 

efforts. 

In Chapters III-V, we transition to the examination of substrate- and climate-

driven controls over boreal peatland anaerobic C mineralization and CH4 cycling. 

Chapter III begins by asking – is anaerobic C decomposition in peatlands fueled by 

dissolved organic matter (DOM) or solid-phase peat? Solid-phase soil organic matter has 

long been assumed to be the primary substrate driving peatland anaerobic respiration as it 

represents the largest C pool in these systems and, as such, has been used to estimate 

rates of ecosystem respiration. However, recent radiocarbon data suggest that DOM plays 

a key, and often dominant, role in fueling heterotrophic respiration across a variety of 

peatlands (Chanton et al., 2008). In this study, we manipulated available C sources under 

laboratory conditions to empirically determine the primary C source – solid-phase peat or 

DOM – fueling anaerobic respiration at surface and deep depth increments within two 

bogs and a poor fen in northern Minnesota. We found that increasing DOM concentration 

from 0 to 50% during anaerobic incubations significantly increased rates of surface CH4 

production, but not CO2 production, indicating that DOM acts as a primary driver of 

surface methanogenesis in peatlands. Contrary to our expectations, this response was 

consistent across all three sites despite differences in plant communities and 

biogeochemical characteristics. However, we observed no effect of DOM availability on 

CH4 or CO2 production at any other depth. The lack of response of CO2 production to 

DOM manipulation highlights the sensitivity of surface CH4 production to changes in the 

DOM pool quality and quantity, which are likely to occur under future climate change 
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scenarios. However, CH4 production in deeper peat appears to be limited by additional 

factors beyond labile C availability. 

Chapter IV delves more deeply into understanding the constraints over anaerobic 

C mineralization at depth in peatlands and with ongoing environmental change. The vast 

majority of peatland C is stored at depth in the permanently anoxic zone (Bridgham et al., 

2006), where its decomposition may be partially suppressed by low temperatures; yet, all 

soil warming experiments to date have focused on the response of peatland C degradation 

to surface warming (Chen et al., 2008; Turetsky et al., 2008). If the slow decomposition 

of deep peatland C is due to kinetic constraints, then increasing temperatures at depth 

should cause parallel increases in CO2 and/or CH4 production rates. However, it is 

currently unknown whether the large C reservoirs at depth in peatlands will be released 

into the atmosphere as CO2 and/or CH4, potentially playing a significant, yet 

unquantified, role in future climate change.  

To alleviate this knowledge gap, the Spruce and Peatland Responses Under 

Changing Environments (SPRUCE) experiment, is assessing how northern peatland 

ecosystems react to a changing climate using a novel, regression-based, ecosystem-scale 

climate manipulation that incorporates deep peat heating (DPH) of the soil profile up to a 

depth of 3 m. In collaboration with this project, we show that 13 months of DPH 

exponentially increased peatland CH4 emissions, but not ecosystems respiration of CO2 

(Wilson and Hopple et al., 2016). However, this response was due solely to surface 

processes and not degradation of deep C. Anaerobic incubations showed that only the top 

20-30 cm of peat from experimental plots had higher CH4 production rates at elevated 

temperatures. Additionally, radiocarbon analyses demonstrated that CH4 and CO2 are 
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produced primarily from decomposition of surface-derived modern photosynthate, not 

deep C. Furthermore, differences in microbial community structure, dissolved organic 

matter concentration, and degradative enzymes activities were driven by depth rather 

temperature treatment. These results suggested that although surface peat will respond to 

increasing temperature, the large reservoir of deep C is stable under current anoxic 

conditions. However, these conclusions were drawn during the DPH-only phase of the 

SPRUCE experiment. This raises the questions – will this response remain unchanged or 

be enhanced with additional time of surface and deep warming (i.e. whole-ecosystem 

warming)? Or, conversely, is this a transient perturbation effect that will diminish with 

time as the ecosystem equilibrates to temperature manipulations? Will changes in other 

ecosystem abiotic factors, such as elevated atmospheric CO2 concentrations, modify these 

responses? What about other processes important to the CH4 cycle? 

Chapter V addresses these questions through continued work with the SPRUCE 

project, investigating the response of peatland anaerobic CH4 cycling to whole-ecosystem 

warming (WEW) and elevated atmospheric CO2 concentrations (eCO2) using controlled 

laboratory incubations, completed under near-in-situ conditions, of peat samples 

collected from surface (30 cm) to deep (200 cm) depth increments. Specifically, we 

investigated changes in peatland CH4 production, CO2:CH4 ratios, and AOM throughout 

the entire peatland profile following 14 months of WEW and initial responses to 

enhanced CO2 concentrations (≤ 4 months). In this chapter, we show that rising 

temperatures increased rates of peatland methanogenesis throughout the entire soil profile 

following more than a year of WEW. Increased CH4 production drove a decrease in 

CO2:CH4 ratios across all depths, indicating that this ecosystem in becoming more 
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methanogenic as it warms. There is also preliminary evidence of increased CH4 

production with enhanced atmospheric CO2. The direct effects of temperature on 

methanogenesis were likely modified by cascading ecological effects, such as changes in 

water-table position and rates of below-ground root exudation, that could have had 

contrasting, depth-specific effects on peatland CH4 production.  

Additionally, our results emphasized the role of AOM in peatland CH4 cycling, a 

historically understudied and often ignored process in freshwater systems. We provide 

the novel evidence showing that this process occurred throughout the entire peatland soil 

profile and positively responded to increases in temperature. Our usage of multiple 

incubation techniques revealed that AOM is likely ubiquitously occurring alongside CH4 

production and that CH4 production rates measured by typical laboratory techniques are 

likely actually net rates of CH4 production that are highly dependent on the incubation 

conditions. Anaerobic oxidation of CH4 is not currently incorporated into Earth system 

CH4 models and this may explain why CH4 emissions are notoriously difficult to predict 

from CH4 production and aerobic CH4 oxidation alone. Continued research efforts in 

collaboration with projects such as the SPRUCE experiment will enable us to examine 

the dynamic response of peatland CH4 cycling to climate forcing in the long-term, as well 

as to develop concerted efforts to better parameterize predictive models from empirical, 

field- and laboratory-based conclusions. 
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APPENDIX A 

SUPPLEMENTARY INFORMATION FOR CHAPTER III 

 

Supplemental Table 3.1. Characterization of the disturbance effect generated for surface 

CH4 production from freezing peat samples and DOM removal process across three sites. 

Significant differences (p < 0.05) between treatments are denoted with *. 

 

Date 
Pre-

Treatment 
Manipulation DOM % 

CH4 (µmol C g 

soil-1 d-1)  SE 

CO2 (µmol C g 

soil-1 d-1)  SE 

June 

2013 

Frozen 2 

mo. 

DOM removed 

and added back. 
50 0.15*  0.03 2.6  0.21 

June 

2013 

Frozen 2 

mo. 
Non-manipulated. 50 0.34*  0.07 2.3  0.13 

      

July 

2014 
Fresh 

DOM removed 

and added back. 
50 1.7  0.28 3.7  0.36 

July 

2014 
Fresh Non-manipulated. 50 2.0  0.21 3.3  0.17 

 

Supplemental Table 3.2. Methane and CO2 production from anaerobic incubations of 

peatland samples containing either 0 or 50% DOM in June 2013. Data represent the 

combination of anaerobic respiration rates across three sites. Marginally significant 

differences (p < 0.07) between treatments within each depth are denoted with *m. 

 

Depth (cm) DOM % CH4 (µmol C g soil-1 d-1)  SE CO2 (µmol C g soil-1 d-1)  SE 

25-50 0 0.072*m  0.023 2.8  0.3 

25-50 50 0.15*m  0.033 2.6  0.2 

    

75-100 0 1.3 x 10-2  6.1 x 10-3 1.4  0.2 

75-100 50 4.3 x 10-3  7.8 x 10-4 1.5  0.1 

    

150-200 0 2.9 x 10-3  5.02 x 10-5 0.84  0.1 

150-200 50 3.1 x 10-3  1.3 x 10-4 1.1  0.1 
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APPENDIX B 

 

SUPPLEMENTARY INFORMATION FOR CHAPTER IV 

 

 

 

Extended Data Figure 4.1: Schematic of the SPRUCE site, located in northern 

Minnesota.  Three boardwalks transect the site, with experimental treatments plots 

branching radially off of those boardwalks.  Numbers indicate the target temperatures, 

relative to ambient conditions, established within each enclosure. “Amb” plots indicate 
that no temperature treatment has been added.  Inset shows an aerial overview of the site 

with the experimental chambers installed in the context of the surrounding bog.  



132 
 

 

Extended Data Figure 4.2: The seasonal progress of absolute peat temperatures at 2 m 

below the hollow surface throughout the DPH treatment period (a) and the temperature 

depth profiles associated with the June 16, 2015 coring event (b).  This coring event took 

place 10 months after the deep peat temperature differentials were stable.  In the absence 

of air warming during this phase of the experiment, anticipated energy loss at the surface 

reduced the separation among treatment temperatures. 
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Extended Data Figure 4.3: The seasonal CO2 flux from 1.2 m diameter collars during 

fall 2014(a), winter 2015(b), and summer 2015(c) across temperature treatments.  Black 

and gray dots distinguish between daily averages for two different sampling points during 

the season.  No significant correlations between CO2 flux and temperature were observed 

during these measurement periods. 



134 
 

 

Extended Data Figure 4.4: Depth dependence of known methanogenic Archaeal groups 

in treatment plots prior to and after exposure to deep peat heating (DPH).  Apparent zero 

abundances (e.g., pre-DPH 0-10cm in the +2.25°C plot) reflect missing data.  Abundance 

of known methanogens gradually decreases with peat depth, while no significant effect of 

temperature treatment or time on relative abundance of methanogens was observed.  Pre-

DPH is represented by closed bars and during DPH by open bars. 
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Extended Data Figure 4.5: The abundance of fungal (a), bacterial (b), and 

archaeal (c) populations was determined by quantitative PCR using primers targeted to 

amplify their respective SSU rRNA genes, and targeting the mcrA gene (d) for 

methanogen populations.  After thirteen months of deep peat heating (DPH) treatment, 

the in situ abundance of microbial groups (bacteria, archaea, fungi, and methanogen 

populations) shows no clear response to temperature, while strong vertical stratification is 

observed with peat depth. Microbial abundance is expressed for core samples from 

control (+0⁰C) and +9⁰C plots as gene copies per gram dry peat.   
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Extended Data Figure 4.6:  The temperature response of CO2 production observed from 

peat samples taken from 25 cm (a) and at depth (75 – 200 cm) (b).  Anaerobic 

incubations were completed within 1ºC of in situ temperatures after approximately 4 

(closed symbols September 2014) and 13 (open symbols, June 2015) months of DPH.  

The temperature response at depth was analyzed by season due to a distinct bimodal 

distribution.  NS = not significant.   
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Extended Data Figure 4.7: CO2:CH4 ratios determined from incubations.  Peat samples 

were collected from 5 depths and anaerobically incubated within 1ºC of in situ 

temperatures after approximately 4 (closed symbols; September 2014) and 13 (open 

symbols; June 2015) months of deep peat warming.  Note the log scale.  
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Extended Data Figure 4.8:  Test for legacy effects of experimental warming on CH4 (a) 

and CO2 (b) production from peat samples taken at multiple depths and anaerobically 

incubated at a common temperature (20°C) after approximately 13 months of DPH.  Data 

are plotted against the temperature treatment from which the peat was collected.  Note the 

lack of response found across all depths. 
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Extended Data Figure 4.9: Total dissolved organic carbon (DOC) concentrations in the 

peat porewater prior to (a) and during deep peat heating (b).  The relative deviation of 

TOC was calculated to account for pre-treatment differences in TOC concentrations 

across plots.  The deviation was calculated by dividing the TOC concentration at a given 

temperature treatment and a given depth by the mean TOC concentration at that same 

depth in the two control (0° C) plots prior to DPH (c).  Points represent the averages of 

weekly (pre-DPH) or biweekly (during DPH) sampling and standard deviations of 

temporal variability are indicated by the whiskers. 
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Extended Data Figure 4.10: Depth dependence of soil microbial community structure in 

SPRUCE site enclosures prior to and after exposure to deep peat heating (DPH).  Closed 

symbols represent pre-DPH samples while open symbols indicate during-DPH 

conditions.  Community structure exhibits strong vertical stratification in the peat column 

as visualized in a nonparametric multidimensional scaling plot (NMDS).  Pairwise 

community distances were determined using the weighted Unifrac algorithm.  A total of 

5.35 million of rRNA gene sequences were normalized by cumulative sum scaling (CSS) 

methods and grouped by depth.  As shown in Figure 4, no significant effect of 

temperature treatment or time is observed on community diversity or composition. 

 

 



141 
 

 

Extended Data Figure 4.11: Depth dependence of soil microbial groups detected at the 

phylum level (> 1 % divergence in gene sequences) in treatment plots prior to and after 

exposure to deep peat heating (DPH).  Bars are stacked by date such that pre-DPH and 

during DPH results are proximate.  The majority of microbial populations (~70%) are 

taxonomically affiliated to Proteobacteria and Acidobacteria phyla.  A total of 5.35 

million of rRNA gene sequences were assigned to the greengenes database by RDP 

Classifier at 50% confidence thresholds.  Phyla which represented < 1% of relative 

abundance were not displayed and are summarized as “Other”. 
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Extended Data Figure 4.12: Depth dependence of soil microbial groups detected at the class 

level in treatment plots prior to (closed symbols) and after (open symbols) exposure to deep peat 

heating (DPH).  Putative aerobic heterotrophs affiliated with the Alphaproteobacteria decreased 

in average relative abundance with depth, while putative anaerobes in the Deltaproteobacteria 

increase with depth. 
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Extended Data Figure 4.13: Depth dependence of soil microbial groups affiliated with Class 

Acidobacteria in treatment plots prior to (closed symbols) and after (open symbols) exposure to 

deep peat heating (DPH).  Putative aerobic heterotrophs affiliated with the Acidobacteriia 

decreased in relative abundance with depth, while putative anaerobes in the TM1 class increase 

with depth. 
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Extended Data Figure 4.14: Potential oxidative enzyme activity (phenol oxidase) in SPRUCE 

site enclosures prior to (June 2014, closed circles) and after (June 2015, open circles) exposure to 

deep peat heating (DPH).  Temperatures indicated on panels indicate in situ temperature 

treatment.  No significant effect of temperature or time on enzymatic activities was observed.  

Values are the mean of two cores with four technical replicates.  
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Extended Data Figure 4.15: Potential oxidative enzyme activity (phenol peroxidase) in 

treatment plots prior to (June 2014, closed circles) and after (June 2015, open circles)—exposure 

to deep peat heating (DPH).  Temperatures indicated on panels indicate in situ temperature 

treatment.  No significant effect of temperature or time on enzymatic activities was observed.  

Values are the mean of two cores with four technical replicates.  
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Extended Data Table 4.1: Parameters for qPCR analysis of peat microbial communities.  

Reactions were performed in triplicate on a CFX96TM Real-Time PCR Detection System (Bio-

Rad Laboratories) with iQ SYBR Green Supermix (Bio-Rad, CA, USA). 

 
Microbial 

Group 

Gene 

Target 
Primer Primer Reference 

Organism for 

qPCR Standard 

Eubacteria 16S 
Eub 338 

Eub518 

Lane, 1991 

Muyzer et al., 1993 
Escherichia coli 

Archaea 16S 
915F 

1059R 
Yu et al., 2005 

Methanococcus 

maripaludis S2 

Fungi 18S 
nu-SSU-1196F 

nu-SSU-1536R 

Borneman & Hartin, 

2000 

Saccharomyces 

cerevisiae 

Methanogens mcrA 
mcrA_F 

mcrA_R 
Luton et al., 2002 

Methanococcus 

maripaludis S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

 REFERENCES CITED 

 

 

CHAPTER I 

 

Blake, D. R., Mayer, E. W., & Tyler, S. C. (1982). Global increase in atmospheric 

methane concentrations between 1978 and 1980. 9(4), 477–480. 

Bloom, A. A., Lee-Taylor, J., Madronich, S., Messenger, D. J., Palmer, P. I., Reay, D. S., 

& McLeod, A. R. (2010). Global methane emission estimates from ultraviolet 

irradiation of terrestrial plant foliage. New Phytologist, 187(2), 417–425.  

Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., & Raynaud, D. (1995). Variations 

in atmospheric methane concentration during the Holocene\nepoch. Nature.  

Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., … 
Pfannkuche, O. (2000). A marine microbial consortium apparently mediating 

anaerobic oxidation of methane. Nature, 407(6804), 623–626.  

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., 

… White, J. (2006). Contribution of anthropogenic and natural sources to 

atmospheric methane variability. Nature, 443(7110), 439–443.  

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E. G., Carouge, C., … 
Ciais, P. (2011). Source attribution of the changes in atmospheric methane for 2006-

2008. Atmospheric Chemistry and Physics, 11(8), 3689–3700.  

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane 

emissions from wetlands: biogeochemical, microbial, and modeling perspectives 

from local to global scales. Global Change Biology, 19(5), 1325–1346.  

Bridgham, S. D., Johnston, C. A., Pastor, J., & Updegraff, K. (1995). Potential Feedbacks 

of Northern Wetlands on {Climate-Change} - an Outline of an Approach to Predict 

{Climate-Change} Impact. Bioscience, 45(4), 262–274.  

Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., … 
Cooper, W. T. (2008). Radiocarbon evidence for the importance of surface 

vegetation on fermentation and methanogenesis in contrasting types of boreal 

peatlands. Global Biogeochemical Cycles, 22(4), 1–11.  

Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., … 
Oskarsson, H. (2003). Factors controlling large scale variations in methane 

emissions from wetlands. Geophysical Research Letters, 30(7), 10–13.  



148 
 

Cicerone, R. J., & Oremland, R. S. (1988). Biogeochemical aspects of atmospheric 

methane. Global Biogeochemical Cycles, 2(4), 299–327.  

Conrad, R. (1999). Contribution of hydrogen to methane production and control of 

hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology 

Ecology, 28(3), 193–202.  

Costa, K. C., & Leigh, J. A. (2014). Metabolic versatility in methanogens. Current 

Opinion in Biotechnology, 29(1), 70–75.  

Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., … Fowle, D. 
A. (2011). The methane cycle in ferruginous Lake Matano. Geobiology, 9(1), 61–78.  

Cunnold, D. M. (2002). In situ measurements of atmospheric methane at GAGE/AGAGE 

sites during 1985–2000 and resulting source inferences. Journal of Geophysical 

Research, 107(D14), 4225. 

Curry, C. L. (2007). Modeling the soil consumption at atmospheric methane at the global 

scale. Global Biogeochemical Cycles, 21(4), 1–15.  

Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., 

Montzka, S. A., … Gatti, L. V. (2009). Observational constraints on recent increases 
in the atmospheric CH4 burden. Geophysical Research Letters, 36(18), 3–7.  

Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E.-S., & 

Roulet, N. (2011). Peatlands in the Earth’s 21st century climate system. 
Environmental Reviews, 19, 371–396.  

Garcia, J. L., Patel, B. K. C., & Ollivier, B. (2000). Taxonomic, phylogenetic, and 

ecological diversity of methanogenic Archaea. Anaerobe, 6(4), 205–226.  

Gupta, V., Smemo, K. A., Yavitt, J. B., Fowle, D., Branfireun, B., & Basiliko, N. (2013). 

Stable isotopes reveal widespread anaerobic methane oxidation across latitude and 

peatland type. Environmental Science and Technology, 47(15), 8273–8279.  

Hanson, R. S., Hanson, T. E., & Hanson, R. S. (1996). Methanotrophic bacteria. 

Microbiology and Molecular Biology Reviews, 60(2), 439–471. 

Hinrichs, K. U., Boetius, A. (2002). The anerobic oxidation of methane: new insights in 

microbial ecology and biogeochemistry. In: Ocean Marine Systems (eds Wefer, G., 

Billett, D., Hebbeln, D., Jorgensen, B.B., Schluter, M., Van Weering, T.C.E.) pp. 

457-477. Springer-Verlag, Berlin. 

Ho, A., Kerckhof, F. M., Luke, C., Reim, A., Krause, S., Boon, N., & Bodelier, P. L. E. 

(2013). Conceptualizing functional traits and ecological characteristics of methane-



149 
 

oxidizing bacteria as life strategies. Environmental Microbiology Reports, 5(3), 

335–345.  

Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C., & Kaplan, J. O. (2011). The 

El Nio-Southern Oscillation and wetland methane interannual variability. 

Geophysical Research Letters, 38(8), 3–6.  

Hu, B. -l., Shen, L. -d., Lian, X., Zhu, Q., Liu, S., Huang, Q., … He, Y. -f. (2014). 

Evidence for nitrite-dependent anaerobic methane oxidation as a previously 

overlooked microbial methane sink in wetlands. Proceedings of the National 

Academy of Sciences, 111(12), 4495–4500.  

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., … 
Zeng, G. (2013). Three decades of global methane sources and sinks. Nature 

Geoscience, 6(10), 813–823.  

Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic 

methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers 

in Microbiology, 6. 

Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., … 
Schaepman-Strub, G. (2008). Peatlands and the carbon cycle: from local processes 

to global implications - a synthesis. Biogeosciences, 5, 1475–1491.  

Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., … 
Chappellaz, J. (2008). Orbital and millennial-scale features of atmospheric CH4 over 

the past 800,000 years. Nature, 453(7193), 383–386.  

Megonigal J.P., Mines M.E., & Visscher P.T. (2004) Anaerobic Metabolism: Linkages to 

Trace Gases and Aerobic Processes. Biogeochemistry pp. 350–362. Gulf 

Professional Publishing. 

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., … Kaplan, 
J. O. (2013). Present state of global wetland extent and wetland methane modelling: 

Methodology of a model inter-comparison project (WETCHIMP). Biogeosciences, 

10, 753–788.  

Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., … Gulin, 
M. B. (2002). Microbial reefs in the black sea fueled by anaerobic oxidation of 

Methane. Science, 297, 1013–1015.  

Monteil, G., Houweling, S., Dlugockenky, E. J., Maenhout, G., Vaughn, B. H., White, J. 

W. C., & Rockmann, T. (2011). Interpreting methane variations in the past two 

decades using measurements of CH4 mixing ratio and isotopic composition. 

Atmospheric Chemistry and Physics, 11(17), 9141–9153.  



150 
 

Moore, T. R., De Young, A., Bubier, J. L., Humphreys, E. R., Lafleur, P. M., & Roulet, 

N. T. (2011). A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern 

Canada. Ecosystems, 14(4), 646–657.  

Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., … 
Rettinger, M. (2011). Preliminary validation of column-averaged volume mixing 

ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength 

infrared spectra. Atmospheric Measurement Techniques, 4(6), 1061–1076.  

Myhre, G., et al. Anthropogenic and natural radiative forcing in T. F. Stocker, et al. 

editors. Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA (2013). 

Neef, L., Van Weele, M., & Van Velthoven, P. (2010). Optimal estimation of the present-

day global methane budget. Global Biogeochemical Cycles, 24(4), 1–10.  

Neubauer, S. C., & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials 

to Quantify the Climatic Role of Ecosystems. Ecosystems, 18(6), 1000–1013. 

https://doi.org/10.1007/s10021-015-9879-4 

Orphan, V. J., Sylva, S. P., Hayes, J. M., & Delong, E. F. (2001). Comparative Analysis 

of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine 

Sediments Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-

Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental 

Microbiology, 67(4), 1922 – 1934.  

Petrucci, R. and W. Harwood. General chemistry: principles and modern applications. 

New York: Macmillan Publishing Company. 1989. 

 

Reeburgh, W. S. (2007) Oceanic methane biogeochemistry. Chemical Reviews, 107, 486-

513. 

Roulet, N. T., & T.R. Moore. (1995). The effect of forestry drainage practices on the 

emission of methane from northern peatlands. Canadian Journal of Forestry 

Research, 25, 491–499. 

Schuck, T. J., Ishijima, K., Patra, P. K., Baker, A. K., MacHida, T., Matsueda, H., … 
Lelieveld, J. (2012). Distribution of methane in the tropical upper troposphere 

measured by CARIBIC and CONTRAIL aircraft. Journal of Geophysical Research 

Atmospheres, 117(19), 1–14.  

Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K.-U., & 

Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater 



151 
 

wetlands reduce potential atmospheric methane emissions. Nature Communications, 

6, 7477.  

Segers, R. (1998). Methane production and methane consumption--a review of processes 

underlying wetland methane fluxes [Review]. Biogeochem., 41, 23–51.  

Spahni, R., Wania, R., Neef, L., Van Weele, M., Pison, I., Bousquet, P., … Van 
Velthoven, P. (2011). Constraining global methane emissions and uptake by 

ecosystems. Biogeosciences, 8(6), 1643–1665.  

Sundh, I., Mikkela, C., Nilsson, M., & Svensson, B. H. (1995). Potential aerobic methane 

oxidation in a sphagnum-dominated peatland - controlling factors and relation to 

methane emission. Soil Biology and Biochemistry, 27(6), 829–837.  

Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: A review. 

Biogeosciences, 9(10), 4071–4085.  

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., … 
Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence 

across microbial to ecosystem scales. Nature, 507(7493), 488–491.  

Zalman, C. A., Meade, N., Chanton, J., Kostka, J. E., Bridgham, S. D., & Keller, J. K. 

(2018). Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil 

Biology and Biochemistry, 118, 156–160. 

Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. 

A., … Hu, S. (2004). Methane fluxes between terrestrial ecosystems and the 
atmosphere at northern high latitudes during the past century: A retrospective 

analysis with a process-based biogeochemistry model. Global Biogeochemical 

Cycles, 18(3).  

 

 

 

 

 

 

 

 

 

 



152 
 

CHAPTER II 

Baani, M., & Liesack, W. (2008) Two isozymes of particulate methane monooxygenase 

with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. 

Proceedings of the National Academy of Sciences, 105, 10203–10208.  

Blagodatskaya E. & Kuzyakov Y. (2013) Active microorganisms in soil : Critical review 
of estimation criteria and approaches. Soil Biol. Biochem., 67, 192–211.  

Bloom A.A., Palmer P.I., Fraser A., Reay D.S., & Frankenberg C. (2010) Large-scale 

controls of methanogenesis inferred from methane and gravity spaceborne data. 

Science (80-. )., 327, 322–325.  

Bodelier P.L.E., Meima-Franke M., Hordijk C. a, Steenbergh A.K., Hefting M.M., 

Bodrossy L., von Bergen M., & Seifert J. (2013) Microbial minorities modulate 

methane consumption through niche partitioning. ISME J., 7, 2214–28.  

Bourne D.G., Donald I.A.N.R.M.C., & Murrell J.C. (2001) Comparison of pmoA PCR 

Primer Sets as Tools for Investigating Methanotroph Diversity in Three Danish 

Soils. Appl. Environ. Microbiol., 67, 3802–3809.  

Bousquet P., Ringeval B., Pison I., Dlugokencky E.J., Brunke E.-G., Carouge C., 

Chevallier F., Fortems-Cheiney A., Frankenberg C., & Hauglustaine D.A. (2011) 

Source attribution of the changes in atmospheric methane for 2006–2008. Atmos. 

Chem. Phys., 11, 3689–3700.  

Bridgham S.D., Cadillo-Quiroz H., Keller J.K., & Zhuang Q. (2013) Methane emissions 

from wetlands: Biogeochemical, microbial, and modeling perspectives from local to 

global scales. Glob. Chang. Biol., 19, 1325–1346.  

Bridgham, S. D., & Ye, R. (2013) Organic matter mineralization and 

decomposition. Methods in Biogeochemistry of Wetlands, (methodsinbiogeo), 385-

406. 

Bridgham S.D., Updegraff K., & Pastor J. (1998) Carbon, Nitrogen, and Phosphorus 

Mineralization in Northern Wetlands. Ecology, 79, 1545–1561.  

Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., Sun, C., Yavitt, J., & Zinder, S. (2006). 

Vertical profiles of methanogenesis and methanogens in two contrasting acidic 

peatlands in central New York State, USA. Environmental Microbiology, 8(8), 

1428–1440.  

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., 

Fierer N., Gonzalez Peña A., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., 

Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., 

Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., 

Yatsunenko T., Zaneveld J., & Knight R. (2010) QIIME allows analysis of high- 

throughput community sequencing data Intensity normalization improves color 



153 
 

calling in SOLiD sequencing. Nat. Methods, 7, 335–336.  

Caporaso J.G., Lauber C.L., Walters W.A., Berg-lyons D., Lozupone C.A., Turnbaugh 

P.J., Fierer N., & Knight R. (2011) Global patterns of 16S rRNA diversity at a depth 

of millions of sequences per sample. Proc. Natl. Acad. Sci., 108, 4516–4522.  

Conrad R. (1999) Contribution of hydrogen to methane production and control of 

hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. 

Ecol., 28, 193–202.  

Costa K.C. & Leigh J.A. (2014) Metabolic versatility in methanogens. Curr. Opin. 

Biotechnol., 29, 70–75.  

Costello A.M. & Lidstrom M.E. (1999) Molecular Characterization of Functional and 

Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments. 

Appl. Environ. Microbiol., 65, 5066–5074.  

Couwenberg, J., Dommain, R., & Joosten, H. (2010) Greenhouse gas fluxes from tropical 

peatlands in south-east Asia. Global Change Biology, 16, 1715–1732. 

Davidson, E. A., Ishida, F. Y., & Nepstad, D. C. (2004) Effects of an experimental 

drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide 

in a moist tropical forest. Global Change Biology, 10, 718–730.  

Dedysh S.N., Liesack W., Khmelenina V.N., Suzina N.E., Trotsenko Y.A., Semrau J.D., 

Bares A.M., Panikov N.S., & Tiedje J.M. (2000) Methylocella palustris gen. nov., 

sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, 

representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evol. 

Microbiol., 50, 955–969.  

Dedysh, S. N. (2016). Methylovirgula. In Bergey's Manual of Systematics of Archaea and 

Bacteria (eds W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. 

DeVos, B. Hedlund and S. Dedysh).  

Delmas, R. A., Servant, J., Tathy, J. P., Cros, B., & Labat, M. (1992). Sources and sinks 

of methane and carbon-dioxide exchanges in mountain forest in Equatorial Africa., 

97, 6169–6179. 

Dunfield, P., Knowles, R., Dumont, R., & Moore, T. (1993). Methane production and 

consumption in temperate and subarctic peat soils: Response to temperature and pH. 

Soil Biology and Biochemistry, 25, 321–326.  

Edgar R.C. (2010) Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics, 26, 2460–1.  

Edgar R.C. (2013) UPARSE : highly accurate OTU sequences from microbial amplicon 
reads. Nature, 10, 996–1000.  

Fadrosh D.W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R.M., & Ravel J. (2014) 



154 
 

An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing 

on the Illumina MiSeq platform. Microbiome, 2, 1–7.  

Freitag T.E. & Prosser J.I. (2009) Correlation of methane production and functional gene 

transcriptional activity in a peat soil. Appl. Environ. Microbiol., 75, 6679–87.  

Freitag T.E., Toet S., Ineson P., & Prosser J.I. (2010) Links between methane flux and 

transcriptional activities of methanogens and methane oxidizers in a blanket peat 

bog. FEMS Microbiol. Ecol., 73, 157–165.  

Galand, P. E., Fritze, H., & Yrjälä, K. (2003). Microsite-dependent changes in 

methanogenic populations in a boreal oligotrophic fen. Environmental 

Microbiology, 5(11), 1133–1143. 

Gavlak, R., Horneck, D., Miller, R. O., & Kotuby-Amacher, J. (2003) Soil, plant and 

water reference methods for the western region. WCC-103 Publication, WREP-125, 

17-36. 

Garcia J.L., Patel B.K., & Ollivier B. (2000) Taxonomic, phylogenetic, and ecological 

diversity of methanogenic Archaea. Anaerobe, 6, 205–26.  

Hanson R.S. & Hanson T.E. (1996) Methanotrophic bacteria. Microbiol. Rev., 60, 439–
71.  

Ho A., Kerckhof F.-M., Luke C., Reim A., Krause S., Boon N., & Bodelier P.L.E. (2013) 

Conceptualizing functional traits and ecological characteristics of methane-oxidizing 

bacteria as life strategies. Environ. Microbiol. Rep., 5, 335–45.  

Hodson E.L., Poulter B., Zimmermann N.E., Prigent C., & Kaplan J.O. (2011) The El 

Niño–Southern Oscillation and wetland methane interannual variability. Geophys. 

Res. Lett., 38.  

Keller, J. K., & Bridgham, S. D. (2007) Pathways of anaerobic carbon cycling across an 

ombrotrophic‐minerotrophic peatland gradient. Limnology and 

Oceanography, 52(1), 96-107. 

Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., 

Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L., Cameron-Smith P., 

Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E.L., Houweling 

S., Josse B., Fraser P.J., Krummel P.B., Lamarque J.-F., Langenfelds R.L., Le Quere 

C., Naik V., O’Doherty S., Palmer P.I., Pison I., Plummer D., Poulter B., Prinn R.G., 
Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D.T., Simpson I.J., Spahni 

R., Steele L.P., Strode S.A., Sudo K., Szopa S., van der Werf G.R., Voulgarakis A., 

van Weele M., Weiss R.F., Williams J.E., & Zeng G. (2013) Three decades of 

global methane sources and sinks. Nat. Geosci., 6, 813–823.  

Knief C. (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic 

methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. 



155 
 

Microbiol., 6, 1–38.  

Kotiaho, M., Fritze, H., Merilä, P., Juottonen, H., Leppälä, M., Laine, J., … Tuittila, E. S. 
(2010). Methanogen activity in relation to water table level in two boreal fens. 

Biology and Fertility of Soils, 46(6), 567–575.  

Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., & Schloss P.D. (2013) 

Development of a dual-index sequencing strategy and curation pipeline for 

analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. 

Appl. Environ. Microbiol., 79, 5112–20.  

Lehner B. & Döll P. (2004) Development and validation of a global database of lakes, 

reservoirs and wetlands. J. Hydrol., 296, 1–22.  

Lennon J.T. & Jones S.E. (2011) Microbial seed banks: the ecological and evolutionary 

implications of dormancy. Nat. Rev. Microbiol., 9, 119–30.  

Loulergue L., Schilt A., Spahni R., Masson-Delmotte V., Blunier T., Lemieux B., 

Barnola J.-M., Raynaud D., Stocker T.F., & Chappellaz J. (2008) Orbital and 

millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 

453, 383–386.  

Luton P.E., Wayne J.M., Sharp R.J., & Riley P.W. (2002) The mcrA gene as an 

alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in 

landfill. Microbiology, 148, 3521–3530.  

Ma K., Conrad R., & Lu Y. (2012) Responses of methanogen mcrA genes and their 

transcripts to an alternate dry/wet cycle of paddy field soil. Appl. Environ. 

Microbiol., 78, 445–54.  

Martiny A.C., Treseder K., & Pusch G. (2013) Phylogenetic conservatism of functional 

traits in microorganisms. ISME J., 7, 830–8.  

McCalley C.K., Woodcroft B.J., Hodgkins S.B., Wehr R. a., Kim E.-H., Mondav R., Crill 

P.M., Chanton J.P., Rich V.I., Tyson G.W., & Saleska S.R. (2014) Methane 

dynamics regulated by microbial community response to permafrost thaw. Nature, 

514, 478–481.  

Macdonald, J. a, Jeeva, D., Eggleton, P., Davies, R. G., Bignell, D. E., Fowler, D., … 
Maryati, M. (1999). The effect of termite biomass and anthropogenic disturbance on 

the CH4 budgets of tropical forests in Cameroon and Borneo. Global Change 

Biology, 5, 869–881. 

Macdonald, J. A., Eggleton, P., Bignell, D. E., Forzi, F., & Fowler, D. (1998). Methane 

emission by termites and oxidation by soils, across a forest disturbance gradient in 

the Mbalmayo Forest Reserve, Cameroon. Global Change Biology, 4, 409–418.  

Megonigal J.P., Mines M.E., & Visscher P.T. (2004) Anaerobic Metabolism: Linkages to 



156 
 

Trace Gases and Aerobic Processes. Biogeochemistry pp. 350–362. Gulf 

Professional Publishing. 

Moore, T. R., et al. A multi-year record of methane flux at the Mer Bleue Bog, Southern 

Canada. Ecosystems 14 (2011): 646-657. 

Murrell J.C. & Smith T.J. (2010) Biochemistry and molecular biology of methane 

monooxygenase. Handb. Hydrocarb. lipid Microbiol., 1045–1055.  

Myhre, G., et al. (2013) Anthropogenic and natural radiative forcing in T. F. Stocker, et 

al. editors. Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA. 

Nazaries L., Pan Y., Bodrossy L., Baggs E.M., Millard P., Murrell J.C., & Singh B.K. 

(2013) Evidence of microbial regulation of biogeochemical cycles from a study on 

methane flux and land use change. Appl. Environ. Microbiol., 79, 4031–40.  

Neubauer S.C. & Megonigal J.P. (2015) Moving beyond global warming potentials to 

quantify the climatic role of ecosystems. Ecosystems, 18, 1000–1013.  

Olefeldt, D., Euskirchen, E. S., Harden, J., Kane, E., McGuire, A. D., Waldrop, M. P., & 

Turetsky, M. R. (2017). A decade of boreal rich fen greenhouse gas fluxes in 

response to natural and experimental water table variability. Global Change Biology, 

23, 2428–2440.  

Priemé, A., & Christensen, S. (1999). Methane uptake by a selection of soils in Ghana 

with different land use. Journal of Geophysical Research, 104, 23617–23622.  

Ramakers C., Ruijter J.M., Deprez R.H.L., & Moorman A.F.. (2003) Assumption-free 

analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. 

Lett., 339, 62–66.  

Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff 

M.J.B., & Moorman  a F.M. (2009) Amplification efficiency: linking baseline and 

bias in the analysis of quantitative PCR data. Nucleic Acids Res., 37, e45.  

Saari, A., Martikainen, P. J., Ferm, A., Ruuskanen, J., De Boer, W., Troelstra, S. R., & 

Laanbroek, H. J. (1997) Methane oxidation in soil profiles of Dutch and Finnish 

coniferous forests with different soil texture and atmospheric nitrogen deposition. 

Soil Biology and Biochemistry, 29, 1625–1632. 

Schnyder E., Bodelier P., Hartmann M., Henneberger R., & Niklaus P. (2018) Positive 

diversity-functioning relationships in model communities of methanotrophic 

bacteria. Ecology, 99, 714–723.  

Segers, R. (1998) Methane production and methane consumption--a review of processes 



157 
 

underlying wetland methane fluxes [Review]. Biogeochem., 41, 23–51. 

Spahni R., Wania R., Neef L., Weele M. van, Pison I., Bousquet P., Frankenberg C., 

Foster P.N., Joos F., & Prentice I.C. (2011) Constraining global methane emissions 

and uptake by ecosystems. Biogeosciences, 8, 1643–1665.  

Steinberg L.M. & Regan J.M. (2008) Phylogenetic comparison of the methanogenic 

communities from an acidic, oligotrophic fen and an anaerobic digester treating 

municipal wastewater sludge. Appl. Environ. Microbiol., 74, 6663–71.  

Sundh, Ingvar, et al. (1995) Potential aerobic methane oxidation in a Sphagnum-

dominated peatland—controlling factors and relation to methane emission. Soil 

Biology and Biochemistry 27, 829-837. 

Teh Y.A., Silver W.L., & Conrad M.E. (2005) Oxygen effects on methane production 

and oxidation in humid tropical forest soils. Glob. Chang. Biol., 11, 1283–1297.  

Tathy, J. P., Cros, B., Delmas, R., Marenco, A., Servant, J., Labat, M., (1992). Methane 

emission from flooded forest in central Africa. Journal of Geophysical Research, 97, 

6159–6168. 

Tfaily, M. M., Cooper, T. C., Kostka, J. E., Chanton, P. R., Schadt, C. W., Hanson, J. P., 

… Chanton, J. P. (2014). Organic matter transformation in the peat column at 

Marcell Experimental Forest: Humification and vertical stratification. Journal of 

Geophysical Research: Biogeosciences, 119, 661–675.  

Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., … 
Wilmking, M. (2014) A synthesis of methane emissions from 71 northern, 

temperate, and subtropical wetlands. Global Change Biology, 20, 2183–2197. 

Updegraff, K., Pastor, J., Bridgham, S. D., & Johnston, C. A. (1995). Environmental and 

Substrate Controls over Carbon and Nitrogen Mineralization in Northern Wetlands. 

Ecological Applications, 5, 151–163. 

Updegraff, K., Bridgham, S. D., Pastor, J., & Weishampel, P. (2001). Response of CO2 

and CH4 Emissions from Peatlands to Warming and Water Table Manipulation.  

Ecological Applications, 11, 311–326. 

Werner, C., Kiese, R., & Butterbach-Bahl, K. (2007). Soil-atmosphere exchange of N2O, 

CH4, and CO2 and controlling environmental factors for tropical rain forest sites in 

western Kenya. Journal of Geophysical Research, 112, D03308. 

Ye R., Jin Q., Bohannan B., Keller J.K., McAllister S.A., & Bridgham S.D. (2012) pH 

controls over anaerobic carbon mineralization, the efficiency of methane production, 

and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic 

gradient. Soil Biol. Biochem., 54, 36–47.  



158 
 

 

CHAPTER III 

Bragazza, L., Parisod, J., Buttler, A., & Bardgett, R. D. (2013). Biogeochemical plant-

soil microbe feedback in response to climate warming in peatlands. Nature Climate 

Change, 3(3), 273–277.  

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013a). Methane 

emissions from wetlands: biogeochemical, microbial, and modeling perspectives 

from local to global scales. Global Change Biology, 19(5), 1325–1346.  

Bridgham, S. D., & Ye, R. (2013b). Organic matter mineralization and 

decomposition. Methods in Biogeochemistry of Wetlands, (methodsinbiogeo), 385-

406. 

Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The 

carbon balance of North American wetlands. Wetlands, 26(4), 889–916.  

Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., Sun, C., Yavitt, J., & Zinder, S. (2006). 

Vertical profiles of methanogenesis and methanogens in two contrasting acidic 

peatlands in central New York State, USA. Environmental Microbiology, 8(8), 

1428–1440.  

Canada Committee on Ecological (Biophysical) Land Classification. National Wetlands 

Working Group. (1987). The Canadian wetland classification system. Lands 

Conservation Branch, Canadian Wildlife Service, Environment Canada. 

Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., … 
Lazrus, A. (1995). Radiocarbon evidence for the substrates supporting methane 

formation within northern Minnesota peatlands. Geochimica et Cosmochimica Acta, 

59(17), 3663–3668.  

Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., … 
Cooper, W. T. (2008). Radiocarbon evidence for the importance of surface 

vegetation on fermentation and methanogenesis in contrasting types of boreal 

peatlands. Global Biogeochemical Cycles, 22(4), 1–11.  

Charman, D. J., Aravena, R., & Warnert, B. G. (1994). Carbon Dynamics in a Forested 

Peatland in North-Eastern Ontario. British Ecological Society Stable, 82(1), 55–62. 

Ciais, P., et al. (2013). Carbon and Other Biogeochemical Cycles in T. F. Stocker, D. 

Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, 

and P. M. Midgley, editors. Climate Change 2013: The Physical Science Basis. 

Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA. 



159 
 

Corbett, E. J., Burdige, D. J., Tfaily, M. M., Dial, A. R., Cooper, W. T., Glaser, P. H., & 

Chanton, J. P. (2013a). Surface production fuels deep heterotrophic respiration in 

northern peatlands. Global Biogeochemical Cycles, 27(4), 1163–1174.  

Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H., & Chanton, J. 

P. (2013b). Partitioning pathways of CO2 production in peatlands with stable carbon 

isotopes. Biogeochemistry, 114(1-3), 327–340.  

D’Andrilli, J., Chanton, J. P., Glaser, P. H., & Cooper, W. T. (2010). Characterization of 

dissolved organic matter in northern peatland soil porewaters by ultra high-

resolution mass spectrometry. Organic Geochemistry, 41(8), 791–799.  

Galand, P. E., Fritze, H., & Yrjälä, K. (2003). Microsite-dependent changes in 

methanogenic populations in a boreal oligotrophic fen. Environmental 

Microbiology, 5(11), 1133–1143. 

Glaser, P. H., Siegel, D. I., Chanton, J. P., Reeve, A. S., Rosenberry, D. O., Corbett, J. E., 

… Levy, Z. (2016). Climatic drivers for multidecadal shifts in solute transport and 

methane production zones within a large peat basin. Global Biogeochemical Cycles, 

30(11), 1578–1598.  

Gorham, E. (1991). Role in the Carbon Cycle and Probable Responses to Climatic 

Warming. Ecological Applications, 1(2), 182–195.  

Hanson, P. J., Riggs, J. S., Robert Nettles, W., Phillips, J. R., Krassovski, M. B., Hook, L. 

A., … Barbier, C. (2017). Attaining whole-ecosystem warming using air and deep-

soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14(4), 861–
883.  

Hoyt, A. et al. (2014). Methane production and transport in a tropical peatland. AGU Fall 

Meeting Abstracts. Vol. 1. 

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., … 
Zeng, G. (2013). Three decades of global methane sources and sinks. Nature 

Geoscience, 6(10), 813–823.  

Kirtman, B., et al. (2013) Near-term climate change: projections and predictability.in T. 

F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, 

Y. Xia, V. Bex, and P. M. Midgley, editors. Climate Change 2013: The Physical 

Science Basis.  Contribution of Working Group I to the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridgh, UK and New York, NY, USA. 

Kolka, R., et al. (2016) Soils of peatlands: histosols and gelisols. Pages 277-310 in M. J. 

Vepraskas and C. B. Craft, editors. Wetland soils: genesis, hydrology, landscapes, 

and classification. Second Edition. CRC Press, Boca Raton, Florida, USA.  



160 
 

Kolka, R., Sebestyen, S., Verry, E. S., & Brooks, K. (Eds.). (2011). Peatland 

biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC 

Press. 

Kotiaho, M., Fritze, H., Merilä, P., Juottonen, H., Leppälä, M., Laine, J., … Tuittila, E. S. 
(2010). Methanogen activity in relation to water table level in two boreal fens. 

Biology and Fertility of Soils, 46(6), 567–575.  

Krassovski, M. B., Riggs, J. S., Hook, L. A., Nettles, W. R., Hanson, P. J., & Boden, T. 

A. (2015). A comprehensive data acquisition and management system for an 

ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific 

Instrumentation, Methods and Data Systems, 4(2), 203–213. 

Leifeld, J., Steffens, M., & Galego-Sala, A. (2012). Sensitivity of peatland carbon loss to 

organic matter quality. Geophysical Research Letters, 39(14), 1–6.  

McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E. H., Mondav, 

R., … Saleska, S. R. (2014). Methane dynamics regulated by microbial community 
response to permafrost thaw. Nature, 514(7253), 478–481.  

Medvedeff, C. A., Bridgham, S. D., Pfeifer-Meister, L., & Keller, J. K. (2015). Can 

Sphagnum leachate chemistry explain differences in anaerobic decomposition in 

peatlands? Soil Biology and Biochemistry, 86, 34–41.  

Neubauer, S. C., & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials 

to Quantify the Climatic Role of Ecosystems. Ecosystems, 18(6), 1000–1013.  

Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel, P., & 

Dewey, B. (2003). Global warming and the export of dissolved organic carbon from 

boreal peatlands. Oikos, 100(2), 380–386.  

Tfaily, M. M., Hamdan, R., Corbett, J. E., Chanton, J. P., Glaser, P. H., & Cooper, W. T. 

(2013). Investigating dissolved organic matter decomposition in northern peatlands 

using complimentary analytical techniques. Geochimica et Cosmochimica Acta, 112, 

116–129. 

Tfaily, M. M., Cooper, W. T., Kostka, J. E., Chanton, P. R., Schadt, C. W., Hanson, P. J., 

... & Chanton, J. P. (2014). Organic matter transformation in the peat column at 

Marcell Experimental Forest: humification and vertical stratification. Journal of 

Geophysical Research: Biogeosciences, 119(4), 661-675. 

Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, 

J. M., … Wookey, P. A. (2006). Plant community responses to experimental 
warming across the tundra biome. Proceedings of the National Academy of Sciences 

of the United States of America, 103(5), 1342–6.  



161 
 

Wang, H., Richardson, C. J., & Ho, M. (2015). Dual controls on carbon loss during 

drought in peatlands. Nature Climate Change, 5(6), 584–587.  

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. 

(2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical 

composition and reactivity of dissolved organic carbon. Environmental Science and 

Technology, 37(20), 4702–4708.  

Weltzin, J. F., Pastor, J., Harth, C., Bridgham, S. D., Updegraff, K., & Chapin, C. T. 

(2000). Response of bod and fen plant communities to warming and water table 

manipulations. Ecology, 81(12), 3464–3478. 

Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-

Meister, L., … Hanson, P. J. (2016). Stability of peatland carbon to rising 
temperatures. Nature Communications, 7, 1–10. 

Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. (2010). Global peatland 

dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13), 

1–5.  

 

 

 

 

 

 

 

 

 

 

 

 

 



162 
 

CHAPTER IV 

1. Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. The 

carbon balance of North American wetlands. Wetlands. 26, 889-916 (2006). 

2. Weltzin, J. F., Pastor, J., Harth, C., Bridgham, S. D., Updegraff, K., & Chapin, C. 

T. Response of bog and fen plant communities to warming and water-table 

manipulations. Ecology. 81, 3464-3478 (2000). 

3. Turetsky, M. R., et al. Short‐term response of methane fluxes and methanogen 
activity to water table and soil warming manipulations in an Alaskan 

peatland. Journal of Geophysical Research: Biogeosciences. 113, (2008). 

4. Frolking, S. et al. Peatlands in the Earth’s 21st century climate 
system. Environmental Reviews. 19, 371-396 (2011). 

5. Melton, J. R., et al. Present state of global wetland extent and wetland methane 

modelling: conclusions from a model intercomparison project 

(WETCHIMP). Biogeosciences. 10, 753-788 (2013). doi:10.5194/bg-10-753-

2013. 

6. Hanson, P.J. et al. A method for experimental heating of intact soil profiles for 

application to climate change experiments.  Global Change Biology. 17, 1083-

1096 (2011). 

7. Amthor, J.S., Hanson, P.J., Norby, R.J., & Wullschleger, S.D. A comment on 

“Appropriate experimental ecosystem warming methods by ecosystem, objective, 
and practicality” by Aronson and McNulty.  Agricultural Forest Meteorology. 

150, 497-498 (2010). 

8. Huang, S.  1851-2004 annual heat budget of the continental landmasses.  

Geophysical Research Letters. 33, L04707 (2006). 

9. Hu, Q. & Feng, S. A daily soil temperature dataset and soil temperature 

climatology of the contiguous United States.  Journal of Applied Meteorology. 42, 

1139-1156 (2003). 

10. Krassovski M.B., Riggs J.S., Hook L.A., Nettles W.R., Boden T.A., & Hanson 

P.J.  A comprehensive data acquisition and management system for an ecosystem-

scale peatland warming and elevated CO2 experiment. Geoscientific 

Instrumentation Methods and Data Systems. 4, 203–213 (2015). 

11. Kolka, R.K., Sebestyen, S.D., Verry, E.S., & Brooks, K.N. Peatland 

biogeochemistry and watershed hydrology at the Marcell Experimental Forest, 

488 pp., CRC Press, Boca Raton, FL (2011). 

12. Shädel, C., et al. Potential carbon emissions dominated by carbon dioxide from 

thawed permafrost soils.  Nature Climate Change. in press 1-5pp. (2016). 

13. Eppinga, M.B., Reitkerk, M., Wassen, M.J. & De Ruiter, P.C. Linking habitat 

modification to catastrophic shifts and vegetation patterns in bogs.  Plant ecology. 

200, 53-68 (2009). 

14. Tfaily, M. M. et al. Organic matter transformation in the peat column at Marcell 

Experimental Forest: Humification and vertical stratification. Journal of 

Geophysical Research: Biogeosciences. 119, 661-675 (2014). 

15. Updegraff, K., Pastor, J., Bridgham, S.D. & Johnston, C.A. Environmental and 

substrate controls over carbon and nitrogen mineralization in northern wetlands.  

Ecological Applications. 5(1), 151-163 (1996). 



163 
 

16. Yvon-Durocher, G., et al. Methane fluxes show consistent temperature 

dependence across microbial to ecosystem scales.  Nature. 507(7493), 488-491 

(2014). 

17. Updegraff, K., et al. Response of CO2 and CH4 emissions in peatlands to warming 

and water-table manipulation. Ecological Applications. 11(2), 311-326 (2001). 

18. Uselman, S.M., Qualls, R.G., & Thomas, R.B.  Effects of increased atmospheric 

CO2 temperature, and soil N availability on root exudation of dissolved organic 

carbon by a N-fixing tree (Robinia pseudoacacia L.).  Plant and Soil. 222(1), 

191-202 (2000). 

19. Chanton, J. P. et al. Radiocarbon evidence for the importance of surface 

vegetation on fermentation and methanogenesis in contrasting types of boreal 

peatlands. Global Biogeochemical Cycles. 22, (2008). 

20. Corbett, E. J, et al. Surface production fuels deep heterotrophic respiration in 

northern peatlands. Global Biogeochemical Cycles. 27, 1163-1174 (2013). 

21. Whiticar, M. J., Faber, E., & Schoell, M. Biogenic methane formation in marine 

and freshwater environments: CO2 reduction vs. acetate fermentation—isotope 

evidence. Geochimica et Cosmochimica Acta. 50, 693-709 (1986). 

22. Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by 

climate warming in the subarctic. Nature. 460, 616-619 (2009). 

23. McCalley, C. K. et al. Methane dynamics regulated by microbial community 

response to permafrost thaw. Nature. 514, 478-481 (2014). 

24. Walker, T. N. et al. Vascular plants promote ancient peatland carbon loss with 

climate warming. Global Change Biology. In Press (2016). 

25. Lin, X. et al. Microbial community stratification linked to utilization of 

carbohydrates and phosphorus limitation in a boreal peatland at Marcell 

Experimental Forest, Minnesota, USA. Applied and Environmental 

Microbiology. 80, 3518-3530 (2014). 

26. Dedysh, S.N., Cultivating uncultured bacteria from northern wetlands: knowledge 

gained and remaining gaps. Frontiers in Microbiology. 2,184 (2011). 

27. Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of 

soil. Soil Biology and Biochemistry. 42, 391-404 (2010). 

28. Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with 

pyrogallol, L-DOPA, and ABTS: effect of assay conditions and soil type. Soil 

Biology and Biochemistry. 67, 183-191 (2013). 

29. Baldock, J.A., et al. Aspects of the chemical structure of soil organic materials as 

revealed by solid-state 13C NMR spectroscopy.  Biogeochemistry. 16(1), 1-42. 

(1992). 

30. Leifeld, J., Steffens, M., & Galego-Sala, A.  Sensitivity of peatland carbon loss to 

organic matter quality.  Geophysical research Letters. 39, L14704 (2012). 

31. Freeman, C., Ostle, N., & Kang, H. An enzymic 'latch' on a global carbon 

store.  Nature. 409, 149-149 (2001). 

32. Pinsonneault, A.J., Moore, T.R., Roulet, N.T., & Lapierre, J.-F. Biodegradability 

of vegetation-derived dissolved organic carbon in a cool temperature 

ombrotrophic bog.  Ecosystems.  in press (2016). 



164 
 

33. Pinsonneault, A.J., Moore, T.R., & Roulet, N.T. Temperature the dominant 

control on the enzyme-latch across a range of temperate peatland types.  Soil 

Biology and Biochemistry. 97, 121-130 (2016). 

34. Neubauer, S.C. & Megonigal, J.P. Moving beyond global warming potentials to 

quantify the climatic role of ecosystems. Ecosystems. 1-14 (2015). 

35. Bridgham, S. D., J. Pastor, et al. Rapid carbon response of peatlands to climate 

change. Ecology. 89, 3041-3048 (2008). 

36. Luo, Y., Wan, S., Hui, D. & Wallace, L.L. Acclimatization of soil respiration to 

warming in a tall grass prairie.  Nature. 413, 622-625 (2001). 

37. Melillo, J.M., Steudler, P.A., Aber, J.D., Newkirk, K., Lux, H., Bowles, F.P., 

Catricala, C., Magill, A., Ahrens, T., & Morrisseau, S.  Soil warming and carbon-

cycle feedbacks to the climate system.  Science. 298(5601), 2173-2176 (2002). 

38. Verry, E.S., Brooks, K.N., Nichols, D.S., Ferris, D.R., & Sebestyen, S.D. 

Watershed hydrology, in Peatland biogeochemistry and watershed hydrology at 

the Marcell Experimental Forest, edited by R. K. Kolka, et al., pp. 193-212, CRC 

Press, Boca Raton, FL (2011). 

39. Brown, M. G., Humphreys, E.R., Moore, T.R., Roulet, N.T., & Lafleur, P.M. 

Evidence for a nonmonotonic relationship between ecosystem-scale peatland 

methane emissions and water table depth. Journal of Geophysical Research: 

Biogeosciences. 119(5), 2013JG002576 (2014). 

40. Frolking, S. et al. A new model of Holocene peatland net primary production, 

decomposition, water balance, and peat accumulation.  Earth System Dynamics. 1, 

1-21 (2010). 

41. Ye, Rongzhong, et al. pH controls over anaerobic carbon mineralization, the 

efficiency of methane production, and methanogenic pathways in peatlands across 

an ombrotrophic–minerotrophic gradient. Soil Biology and Biochemistry. 54, 36-

47 (2012). 

42. Peterson, B., B. Fry, M. Hullar, S. Saupe, and R. Wright. This distribution and 

stable carbon isotopic composition of dissolved organic carbon in estuaries. 

Estuaries. 17,111–121 (1994). 

43. American Public Health Association. Standard methods for the examination of 

wastewater. Water Environment Federation, Washington D.C. 19th edition, 

(1995). 

44. Lane D.J. 16S ⁄ 23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. 
Nucleic acid techniques in bacterial systematics. Chichester, UK: J. Wiley & 

Sons, 115–175 (1991). 

45. Muyzer G., Dewaal E.C., Uitterlinden A.G. Profiling of complex microbial- 

populations by denaturing gradient gel-electrophoresis analysis of polymerase 

chain reaction-amplified genes-coding for 16s ribosomal- RNA. Applications in 

Environmental Microbiology. 59, 695–700 (1993). 

46. Yu, Y., Lee, C., Kim, J., Hwang, S., Group‐specific primer and probe sets to 
detect methanogenic communities using quantitative real‐time polymerase chain 
reaction. Biotechnology and Bioengineering. 89, 670-679 (2005). 

47. Borneman J., Hartin R.J. PCR primers that amplify fungal rRNA genes from 

environmental samples. Applications in Environmental Microbiology. 66, 4356–
4360 (2000). 



165 
 

48. Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. The mcrA gene as an alternative 

to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. 

Microbiology- (UK). 148, 3521–3530 (2002). 

49. Caporaso, J.G. et al. Global patterns of 16S rRNA diversity at a depth of millions 

of sequences per sample. Proceedings of the National Academy of Sciences USA. 

108, 4516–4522 (2011). 

50. Caporaso, J.G., et al. Ultra-high-throughput microbial community analysis on the 

Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). 

51. Gilbert, J.A., Jansson, J.K., and Knight, R. The Earth Microbiome project: 

successes and aspirations. BMC Biology. 12, (2014). 

52. Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A.: PEAR: a fast and accurate 

Illumina paired-end reAd mergeR. Bioinformatics. 30, 614-620 (2014). 

53. Schloss, P.D., et al. Introducing mothur: open-source, platform-independent, 

community-supported software for describing and comparing microbial 

communities. Applied Environmental Microbiology. 75, 7537–7543 (2009). 

54. Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. Naïve Bayesian classifier for 

rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied 

Environmental Microbiology. 73, 5261–67 (2007). 

55. Jablonski, S., Rodowicz, P., & Lukaszewicz, M. Methanogenic archaea database 

containing physiological and biochemical characteristics. International Journal of 

Systems Evolutionary Microbiology. 65, 1360-1368 (2015). 

56. Seedorf, H., Kittelmann, S., Henderson, G., & Janssen, P.H. RIM-DB: a 

taxonomic framework for community structure analysis of methanogenic archaea 

from the rumen and other intestinal environments. PeerJ.  2, e494 (2014). 

57. Paulson, J.N., Stine, O.C., Bravo, H.C., and Pop, M.  Differential abundance 

analysis for microbial marker-gene surveys.  Nature Methods. 10, 1200-1202 

(2013). 

58. Lozupone, C. and Knight, R.  UniFrac: a new phylogenetic method for comparing 

microbial communities.  Applied and Environmental Microbiology. 71, 8228-

8235 (2005). 

59. Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., and Knight, R.  

UniFrac: an effective distance metric for microbial community comparison. 

ISME. 52, 169-172 (2011). 

60. Floch, C., Alarcon-Gutiérrez, E., & Criquet, S. ABTS assay of phenol oxidase 

activity in soil. Journal of Microbiological Methods. 71, 319-324 (2007). 

 

 

 

 

 



166 
 

CHAPTER V 

Barnes, R. O., & Goldberg, E. D. (1976). Methane production and consumption in anoxic 

marine sediments. Geology, 4(5), 297-300. 

Beer, J., & Blodau, C. (2007). Transport and thermodynamics constrain belowground 

carbon turnover in a northern peatland. Geochemistry and Cosmochemistry Acta, 

71(12), 2989–3002.  

Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., & Firestone, M. K. (2012). Anaerobic 

oxidation of methane in tropical and boreal soils: Ecological significance in 

terrestrial methane cycling. Journal of Geophysical Research: Biogeosciences, 

117(2), 1–9. 

Blodau, C. (2012). Transfer and methanogenesis. Pages 65-83 in P. Tratnyek, t. Grundl, 

and S. Haderlein, editors. Aquatic Redox Chemistry. Oxford University Press, Inc., 

Oxford, United Kingdom. 

Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., & Raynaud, D. (1995). Variations 

in atmospheric methane concentration during the Holocene. Nature, 374, 46-49. 

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013a). Methane 

emissions from wetlands: biogeochemical, microbial, and modeling perspectives 

from local to global scales. Global Change Biology, 19(5), 1325–1346.  

Bridgham, S. D., & Ye, R. (2013b). Organic matter mineralization and 

decomposition. Methods in Biogeochemistry of Wetlands, (methodsinbiogeo), 

385-406. 

Bridgham, S. D., Updegraff, K., & Pastor, J. (1998). Carbon, Nitrogen, and Phosphorus 

Mineralization in Northern Wetlands. Ecology, 79(5), 1545–1561.  

Bridgham, S. D., Johnston, C. A., Pastor, J., & Updegraff, K. (1995). Potential Feedbacks 

of Northern Wetlands on Climate-Change: an Outline of an Approach to Predict 

Climate-Change Impact. Bioscience, 45(4), 262–274.  

Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., Sun, C., Yavitt, J., & Zinder, S. (2006). 

Vertical profiles of methanogenesis and methanogens in two contrasting acidic 

peatlands in central New York State, USA. Environmental Microbiology, 8(8), 

1428–1440.  

Chen, J., Bridgham, S., Keller, J., Pastor, J., Noormets, A., & Weltzin, J. F. (2008). 

Temperature responses to infrared-loading and water table manipulations in peatland 

mesocosms. Journal of Integrative Plant Biology, 50(11), 1484–1496.  



167 
 

Cheng, W. (1999). Rhizosphere feedbacks in elevated CO2. Tree Physiology, 19(4-5), 

313–320. 

Cheng, W., Yagi, K., Sakai, H., & Kobayashi, K. (2006). Effects of elevated atmospheric 

CO2 concentrations on CH4 and N2O emission from rice soil: An experiment in 

controlled-environment chambers. Biogeochemistry, 77(3), 351–373. 

Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., … 
Oskarsson, H. (2003). Factors controlling large scale variations in methane 

emissions from wetlands. Geophysical Research Letters, 30(7), 10–13.  

Conrad, R. (1989). Control of methane production in terrestrial ecosystems. Pages 39-58 

in M. O. Andreae and D. S. Schimel, editors. Exchange of trace gases between 

terrestrial ecosystems and the atmosphere. John Wiley and Sons, Chichester, United 

Kingdom. 

Dacey, J. W. H., Drake, B. G., & Klug, M. J. (1994). Stimulation of methane emission by 

carbon dioxide enrichment of marsh vegetation. Nature, 370, 47-49. 

Deutzmann, J. S., & Schink, B. (2011). Anaerobic oxidation of methane in sediments of 

Lake Constance, an oligotrophic freshwater lake. Applied and Environmental 

Microbiology, 77(13), 4429–4436.  

Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E.-S., & 

Roulet, N. (2011). Peatlands in the Earth’s 21st century climate system. 
Environmental Reviews, 19, 371–396.  

Galand, P. E., Fritze, H., & Yrjälä, K. (2003). Microsite-dependent changes in 

methanogenic populations in a boreal oligotrophic fen. Environmental 

Microbiology, 5(11), 1133–1143. 

Garcia, J. L., Patel, B. K. C., & Ollivier, B. (2000). Taxonomic, phylogenetic, and 

ecological diversity of methanogenic Archaea. Anaerobe, 6(4), 205–226.  

Glaser, P. H., Siegel, D. I., Chanton, J. P., Reeve, A. S., Rosenberry, D. O., Corbett, J. E., 

… Levy, Z. (2016). Climatic drivers for multidecadal shifts in solute transport and 
methane production zones within a large peat basin. Global Biogeochemical Cycles, 

30(11), 1578–1598. 

Gupta, V., Smemo, K. A., Yavitt, J. B., Fowle, D., Branfireun, B., & Basiliko, N. (2013). 

Stable isotopes reveal widespread anaerobic methane oxidation across latitude and 

peatland type. Environmental Science and Technology, 47(15), 8273–8279. 

Hanson, P. J., Riggs, J. S., Robert Nettles, W., Phillips, J. R., Krassovski, M. B., Hook, L. 

A., … Barbier, C. (2017). Attaining whole-ecosystem warming using air and deep-



168 
 

soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14(4), 861–
883. 

Hutchin, P. R., Press, M. C., Lee, J. A., & Ashenden, T. W. (1995). Elevated 

concentrations of CO2 may double methane emissions from mires. Global Change 

Biology, 1(2), 125-128. 

Keller, J. K., Weisenhorn, P. B., & Megonigal, J. P. (2009). Humic acids as electron 

acceptors in wetland decomposition. Soil Biology and Biochemistry, 41(7), 1518–
1522.  

Keller, J. K., & Bridgham, S. D. (2007). Pathways of anaerobic carbon cycling across an 

ombrotrophic-minerotrophic peatland gradient. Limnology and Oceanography, 

52(1), 96–107. 

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., … 
Zeng, G. (2013). Three decades of global methane sources and sinks. Nature 

Geoscience, 6(10), 813–823. 

Kirtman, B., et al. Near-term climate change: projections and predictability.in T. F. 

Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. 

Xia, V. Bex, and P. M. Midgley, editors. Climate Change 2013: The Physical 

Science Basis.  Contribution of Working Group I to the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridgh, UK and New York, NY, USA (2013). 

Kotiaho, M., Fritze, H., Merilä, P., Juottonen, H., Leppälä, M., Laine, J., … Tuittila, E. S. 
(2010). Methanogen activity in relation to water table level in two boreal fens. 

Biology and Fertility of Soils, 46(6), 567–575.  

Krassovski, M. B., Riggs, J. S., Hook, L. A., Nettles, W. R., Hanson, P. J., & Boden, T. 

A. (2015). A comprehensive data acquisition and management system for an 

ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific 

Instrumentation, Methods and Data Systems, 4(2), 203–213.  

Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., … 
Schaepman-Strub, G. (2008). Peatlands and the carbon cycle: from local processes 

to global implications - a synthesis. Biogeosciences, 5, 1475–1491.  

Lin, X., Tfaily, M. M., Steinweg, J. M., Chanton, P., Esson, K., Yang, Z. K., … Kostka, 
J. E. (2014). Microbial community stratification linked to utilization of 

carbohydrates and phosphorus limitation in a Boreal Peatland at Marcell 

Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 

80(11), 3518–3530.  



169 
 

Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., … 
Chappellaz, J. (2008). Orbital and millennial-scale features of atmospheric CH4 over 

the past 800,000 years. Nature, 453(7193), 383–386.  

Martens, C. S., & Berner, R. A. (1974). Methane production in the interstitial waters of 

sulfate-depleted marine sediments. Science, 185(4157), 1167-1169. 

McLeod, A. R., & Long, S. P. (1999). Free-air carbon dioxide enrichment (FACE) in 

global change research: a review. In Advances in ecological research, 28, 1-56. 

Academic Press. 

Medvedeff, C. A., Bridgham, S. D., Pfeifer-Meister, L., & Keller, J. K. (2015). Can 

Sphagnum leachate chemistry explain differences in anaerobic decomposition in 

peatlands? Soil Biology and Biochemistry, 86, 34–41. 

Megonigal, J. P., & Schlesinger, W. H. (1997). Enhanced CH4 emissions from a wetland 

soil exposed to elevated CO2. Biogeochemistry, 37(1), 77–88.  

Megonigal, J. P., et al. Linkages to Trace Gases and Aerobic 

Processes. Biogeochemistry 8 (2005): 317. 

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., … Kaplan, 
J. O. (2013). Present state of global wetland extent and wetland methane modelling: 

Methodology of a model inter-comparison project (WETCHIMP). Biogeosciences, 

10, 753–788.  

Neubauer, S. C., & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials 

to Quantify the Climatic Role of Ecosystems. Ecosystems, 18(6), 1000–1013.  

Nichols, D. S., & Brown, J. M. (1980). Evaporation from a sphagnum moss surface. 

Journal of Hydrology, 48(3-4), 289–302.  

Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M., & Loy, A. (2012). Sulfate-

reducing microorganisms in wetlands - fameless actors in carbon cycling and 

climate change. Frontiers in Microbiology, 3, 1–19.  

Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K.-U., & 

Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater 

wetlands reduce potential atmospheric methane emissions. Nature Communications, 

6, 7477.  

Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. 

(2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. 

Limnology and Oceanography, 56(4), 1536–1544. 



170 
 

Smemo, K. A., & Yavitt, J. B. (2007). Evidence for Anaerobic CH4 Oxidation in 

Freshwater Peatlands. Geomicrobiology Journal, 24(7-8), 583–597.  

Tfaily, M. M., Cooper, T. C., Kostka, J. E., Chanton, P. R., Schadt, C. W., Hanson, J. P., 

… Chanton, J. P. (2014). Organic matter transformation in the peat column at 

Marcell Experimental Forest: Humification and vertical stratification. Journal of 

Geophysical Research: Biogeosciences, 119, 661–675.  

Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). 

Methanogenic archaea: Ecologically relevant differences in energy conservation. 

Nature Reviews Microbiology, 6(8), 579–591.  

Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & 

McGuire, A. D. (2008). Short-term response of methane fluxes and methanogen 

activity to water table and soil warming manipulations in an Alaskan peatland. 

Journal of Geophysical Research: Biogeosciences, 113(3).  

Updegraff, K., Bridgham, S. D., Pastor, J., & Weishampel, P. (2001). Response of CO2 

and CH4 emissions from peatlands to warming and water table manipulation. 

Ecological Applications, 11(2), 311–326. 

Urban, N. R., Eisenreich, S. J., & Grigal, D. F. (1989). Sulfur Cycling in a Forested 

Sphagnum Bog in Northern Minnesota, 7(2), 81–109. 

Valentine, D. (2001). Biogeochemistry and microbial ecology of methane oxidation in 

anoxic environment: a review. Antonie van Leuwenhoek, 271–282.  

Valentine, D. L., Blanton, D. C., Reeburgh, W. S., & Kastner, M. (2001). Water column 

methane oxidation adjacent to an area of active hydrate dissociation, Eel River 

Basin. Geochimica et Cosmochimica Acta, 65(16), 2633–2640.  

Vann, C. D., & Megonigal, J. P. (2003). Elevated CO2and water depth regulation of 

methane emissions: Comparison of woody and non-woody wetland plant species. 

Biogeochemistry, 63(2), 117–134.  

Wilson, R. M., Tfaily, M. M., Rich, V. I., Keller, J. K., Bridgham, S. D., Zalman, C. M., 

… Kostka, J. E. (2017). Hydrogenation of organic matter as a terminal electron sink 
sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic 

Geochemistry, 112, 22–32. 

Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-

Meister, L., … Hanson, P. J. (2016). Stability of peatland carbon to rising 
temperatures. Nature Communications, 7, 1–10. 

Yavitt, J. B., & Seidman-Zager, M. (2006). Methanogenic conditions in northern peat 

soils. Geomicrobiology Journal, 23(2), 119–127. 



171 
 

Yu, Z. C. (2012). Northern peatland carbon stocks and dynamics: A review. 

Biogeosciences, 9(10), 4071–4085.  

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., … 
Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence 

across microbial to ecosystem scales. Nature, 507(7493), 488–491. 

Zalman, C., Keller, J. K., Tfaily, M. M., Pfeifer-Meister, L., Wilson, R. M., Kolton, M., 

Lin, X., Chanton, J. P., Kostka, J. E., Gill, A., Finzi, A., Hopple, A. M., Bohannan, 

B. J. M. & Bridgham, S. D. Small differences in ombrotrophy control regional-scale 

variation in methane cycling among Sphagnum-dominated peatlands. 

Biogeochemistry. In Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

CHAPTER VI 

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane 

emissions from wetlands: biogeochemical, microbial, and modeling perspectives 

from local to global scales. Global Change Biology, 19(5), 1325–1346.  

Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The 

carbon balance of North American wetlands. Wetlands, 26(4), 889–916.  

Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., … 
Cooper, W. T. (2008). Radiocarbon evidence for the importance of surface 

vegetation on fermentation and methanogenesis in contrasting types of boreal 

peatlands. Global Biogeochemical Cycles, 22(4), 1–11.  

Chen, J., Bridgham, S., Keller, J., Pastor, J., Noormets, A., & Weltzin, J. F. (2008). 

Temperature responses to infrared-loading and water table manipulations in peatland 

mesocosms. Journal of Integrative Plant Biology, 50(11), 1484–1496.  

Neubauer, S. C., & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials 

to Quantify the Climatic Role of Ecosystems. Ecosystems, 18(6), 1000–1013.  

Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & 

McGuire, A. D. (2008). Short-term response of methane fluxes and methanogen 

activity to water table and soil warming manipulations in an Alaskan peatland. 

Journal of Geophysical Research: Biogeosciences, 113(3).  

Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-

Meister, L., … Hanson, P. J. (2016). Stability of peatland carbon to rising 
temperatures. Nature Communications, 7, 1–10. 

 

 


