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DISSERTATION ABSTRACT 
 
Adam Raymond Burns 
 
Doctor of Philosophy 
 
Department of Biology 
 
September 2016 
 
Title: Assembly of Microbial Communities Associated with the Developing Zebrafish 

Intestine 
 
 

The communities of microorganisms associated with humans and other animals 

are characterized by a large degree of diversity and unexplained variation across 

individual hosts. While efforts to explain this variation in host-associated systems have 

focused heavily on the effects of host selection, community assembly theory emphasizes 

the role of dispersal and stochastic demographic processes, otherwise known as 

ecological drift. In this dissertation, I characterize the communities of microorganisms 

associated with the zebrafish, Danio rerio, intestine, and assess the importance of 

microbial dispersal and drift to their assembly. First, I describe changes in the 

composition and diversity of the zebrafish intestinal microbiome over zebrafish 

development and show that while host development is a major driver of community 

composition over time, there remains a large amount of unexplained variation among 

similar hosts of the same age. I go on to show that random dispersal and ecological drift 

alone in the absence of host selection are sufficient to explain a substantial amount of this 

variation, but the ability of these processes to predict the distribution of microorganisms 

across hosts decreases over host development. Finally, I present an experimental test of 

dispersal in host-associated systems, and show that not only does dispersal among 
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individual zebrafish hosts have a large impact on the composition and diversity of 

associated microbial communities, but it can also overwhelm the effects of important host 

factors, such as the innate immune system. As a whole, this work demonstrates that the 

composition and diversity of microbial communities associated with animal hosts are not 

solely the result of selection by the host environment, but rather dispersal and stochastic 

processes have important and often overwhelming effects on their assembly. To fully 

understand the assembly of host-microbe systems, we must broaden our focus to include 

scales beyond that of an individual host and their associated microorganisms. 

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

 

Overview of the vertebrate microbiota 

The vast majority of life on earth is microbial, and animals and other multi-

cellular organisms have always existed in the context of microbial life. It is therefore 

unsurprising that some of the first microorganisms to be observed were ones associated 

with the human body. Microorganisms have shaped our evolution and biology throughout 

our entire history, both as antagonistic pathogens, but also, as is being increasingly 

understood, as commensals and even mutualists that form complex communities both on 

and within their hosts. These communities are important mediators of animal health and 

development. Unfortunately, the study of naturally occurring microbial communities, 

including those colonizing animal hosts, is hindered by both technical and conceptual 

limitations. Their small size, abundance, and recalcitrance to culturing means we often 

must rely on technological advances, such as high-throughput DNA sequencing, to be 

able to observe and characterize them. However, even once we are able to do so, the vast 

diversity, both in numbers and types of species but also in terms of evolutionary history 

and functional potential, of microbial communities is difficult to make sense of without a 

clearly conceptualized and tested understanding of the processes responsible for 

generating and maintaining the diversity of these systems. 

This last point has become increasingly evident through the exploration of 

microbial communities associated with vertebrate animals, including humans, mice, and 

fish, which is often referred to as the host’s “microbiome” or “microbiota”. Over the past 
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decade, many of the historical technical limitations of studying microbial communities 

have been overcome through high-throughput DNA sequencing of genetic “barcodes” 

used to identify microbial taxa. This has led to large scale sampling of the vertebrate 

microbiome, including the aptly named Human Microbiome Project (The Human 

Microbiome Project Consortium et al., 2012), with the goal of fully mapping the 

composition and function of host-associated communities. These projects quickly 

revealed what earlier studies had previously hinted at: the vertebrate microbiome is very 

diverse, both in terms of species composition as well as functional potential, and there is 

a large amount of variation in the composition of the microbiome even among genetically 

similar individuals within the same population. Much of this diversity occurs within fine 

phylogenetic scales, suggesting there may be a large number of similar microbial taxa in 

these systems. Furthermore, despite continual efforts through additional large scale 

sampling projects, few consistent host factors have emerged that can explain the variation 

in microbial community composition among hosts. These trends in diversity both within 

and among hosts are common for natural human and animal populations, but also even 

for model animals raised under controlled laboratory conditions, suggesting that it is a 

fundamental characteristic of these systems. 

On its own, this diversity is incredibly interesting and is a part of what makes 

ecological systems, including microbial ones, so compelling to study and experience. The 

vertebrate microbiota is certainly not unique in this regard. However, what is so striking 

in animal associated communities is that it seems at odds with the importance of these 

communities to the health and development of their hosts. If variations in the composition 

and dynamics of an individual’s microbiota can lead to abnormal development, disease, 
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and even death of the host, then one would expect the microbiota to be tightly controlled 

and regulated by the host. However, the variable nature of the microbiota and the lack of 

identifiable host factors with a strong effect on its composition suggest this may not be 

the case, at least not to the extent that we might expect. These discrepancies between the 

expected behaviors of the systems with observed patterns do not disprove the hypothesis 

that hosts strongly select their microbiota, but they do suggest that we are not accounting 

for some key processes, and that our conventional conceptual synthesis of the assembly 

of host-associated microbial communities is currently lacking. 

 

Ecological theory in host-microbe systems 

The diversity of the vertebrate microbiome is not unique to that system, but is a 

common theme across many ecological communities. Community ecology is a science 

largely devoted to understanding the processes that generate and maintain biological 

diversity at the level of communities of multiple, potentially interacting species. It is 

therefore perfectly suited to study the assembly of host-associated communities (Costello 

et al., 2012). Ecology provides a suite of analytical tools for dealing with complex, highly 

multidimensional, biological data, and more importantly, provides theoretical 

frameworks to both generate and test predictions about the processes driving community 

assembly. Many conceptual models exist that categorize these processes in different 

ways, however they typically differentiate the effects of ecological selection, in which the 

abundance and distribution of species in a community is determined by non-symmetrical 

interactions among species and between species and their environment, dispersal, or the 

movement of organisms within and among communities, and random demographic 
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processes, which are referred to as ecological drift (Vellend, 2010). The study of host-

associated microbial communities, particularly those associated with vertebrates, has 

focused heavily on selective processes, while largely ignoring the effects of dispersal and 

drift. This is in contrast with the field of community ecology as a whole, in which 

dispersal and chance have historically formed key components of many important 

theories of assembly (Gleason, 1926; Hubbell, 2001; Leibold et al., 2004; MacArthur and 

Wilson, 1967). This includes neutral theory, which focuses on the sole effects of random 

dispersal and drift, and metacommunity theory, which focuses on how dispersal interacts 

and mediates other factors. These theories have had large impacts on our understanding 

of how natural communities assemble and are formed. 

This raises the question as to whether these assembly models can be applied to 

host-associated communities and what the relative contribution of dispersal and drift are 

to their assembly. In this context, the host can be conceptualized as an environment 

within which a community of microorganisms assembles. The vertebrate microbiome has 

a number of attributes that make it an ideal system in which to study ecological 

phenomena and test ecological theory. The communities associated with each individual 

host have relatively clearly delineated boundaries (e.g. the inside of an animal’s gut 

compared to the outside) that are nevertheless open to migration. Since the microbiota of 

most vertebrates doesn’t form until after birth or hatching, each new individual animal 

along with their associated microbiota is a kind of natural experiment, making it easy to 

observe the assembly of many replicate communities. 

Animal hosts have several features which potentially make them unique from 

many other environments in nature, and thus interesting models with which to test the 
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robustness of ecological theory. Compared to abiotic environments, which are in general 

relatively static over short timescales, animals undergo rapid change during development, 

or ontogeny, especially early in life, and thus the environmental conditions that 

microorganisms experience when associated then can be highly dynamic. While some of 

these changes are independent of the microbiota, the ontogeny of the host is often 

influenced by interactions with associated microbes (Sommer and Bäckhed, 2013). 

Animals use microbial signals as cues to trigger a number of developmental changes, 

including proliferation and expansion of cells, morphogenesis of organs, and activation 

and priming of the immune system (Bates et al., 2007, 2006; Hooper et al., 2012). The 

immune system is a particularly unique feature which allows for the host environment to 

interact directly and reactively to the microorganisms in the community. Thus the host is 

able to simultaneously act as both an environment housing a community but also as an 

interacting member, adding an additional level of complexity to the system that isn’t 

present in most other environments or models of community assembly. 

 

The zebrafish, Danio rerio, microbiota 

The complexity and diversity of host-microbe systems is both a feature and an 

obstacle. The use of model systems can help in controlling this complexity and in 

isolating the influence of different assembly processes. Zebrafish, Danio rerio, and the 

microbial communities colonizing their intestines are an excellent model of the vertebrate 

microbiome to help accomplish this task for a number of reasons. Large numbers of 

genetically similar individuals can be raised relatively inexpensively, providing a degree 

of replication unattainable in many other model vertebrates. Zebrafish are genetically 
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tractable, and a wide variety of mutant genotypes are available, including fish lacking 

innate or adaptive immune responses. Zebrafish have an intestine that is analogous in 

structure and organization to the human gastrointestinal tract. Of particular interest to 

studies of microbe-host interactions, there exist well established protocols for raising 

“germ-free” zebrafish in completely sterile environments and inoculating them with 

defined microbial taxa to create “gnotobiotic” zebrafish. As a natural microcosm, the 

zebrafish intestinal community combines the experimental tractability of artificial 

systems while still remaining biologically relevant, thus providing an excellent model 

system for testing ecological theory concerning the assembly of host associated microbial 

communities (Srivastava et al., 2004). 

 

Assembly of the zebrafish microbiota 

The main goal of the research described here is to determine the role dispersal and 

ecological drift play in the assembly of the microbial communities associated with the 

zebrafish intestine, with a particular focus on how these processes interact with two 

factors that potentially make vertebrate-microbe systems unique: the development of the 

host and the host’s immune system. Chapter II characterizes changes in the composition 

and diversity of the zebrafish intestinal microbiome over zebrafish development and 

show that host development is a major driver of community composition.  This work 

helps establish the zebrafish intestinal microbiome as an ideal model for studying the 

assembly of host-microbe systems throughout host development and demonstrates that 

inter-individual variation is a key feature of the vertebrate microbiota across 

development. Chapter III explores these communities in more depth by using a neutral 
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model to determine how the relative importance of random dispersal and ecological drift 

to the assembly of the microbiota changes over the course of host development. This 

analysis also provides a framework for identifying features of these communities that 

depart from neutral predictions in ecologically informative ways. Chapter IV then 

explicitly tests the hypothesis that dispersal of microorganisms among hosts can have a 

significant influence on the structure and diversity of associated communities. 

Specifically, it describes an experiment showing how inter-host dispersal mediates the 

effects of another factor unique to animal hosts, the innate immune system, on the 

zebrafish microbiota. Finally, Chapter V synthesizes these findings together in the 

context of moving towards a conceptual model of host-microbe systems which 

incorporates factors and processes occurring beyond the scale of individual hosts. 

This dissertation includes previously published and unpublished co-authored 

material. Chapters II and III were previously published as two separate articles in The 

ISME Journal with W. Zac Stephens, Keaton Stagaman, Sandi Wong, John Rawls, Karen 

Guillemin, and Brendan Bohannan as co-authors. Chapter IV was prepared with Meghna 

Agarwal, Karen Guillemin, and Brendan Bohannan as co-authors. 
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CHAPTER II 

THE COMPOSITION OF THE ZEBRAFISH INTESTINAL MICROBIOTA 

VARIES ACROSS DEVELOPMENT 

 

This chapter was published as an article in the International Society of Microbial Ecology 

Journal (ISME J) in 2016, and was co-authored by myself along with W. Zac Stephens, 

Keaton Stagaman, Sandi Wong, John F. Rawls, Karen Guillemin, and Brendan J. M. 

Bohannan. W. Zac Stephens and I contributed equally to this work as lead authors. The 

experimental work in this study was designed and performed collectively by myself, W. 

Zac Stephens, and Keaton Stagaman. Data analysis and writing of the manuscript was 

primarily performed by both myself and W. Zac Stephens with help from Keaton 

Stagaman. Keaton Stagaman, Sandi Wong, and John Rawls provided editorial assistance, 

while Brendan Bohannan and Karen Guillemin filled advisory roles throughout the 

project and acted as principal investigators. Supplemental materials and methods and 

results for this chapter can be found in Appendix A, and supplemental figures and tables 

can be found in Appendix B. 

 

Introduction 

Animal development occurs in a dynamic microbial world. The resulting 

associations between animals and microbes profoundly influence the maturation of their 

tissues and the function of adult organs. In particular, the development of the vertebrate 

digestive tract, which harbors the vast majority of microbial cells in the body, is strongly 

influenced by the presence and composition of the gut microbiota (Bates et al., 2006; 
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Olszak et al., 2012; Semova et al., 2012; Sommer and Bäckhed, 2013). A comprehensive 

description of animal development must, therefore, include not only a catalog of the birth, 

specification and differentiation of the animal cells that comprise the body but also the 

associated microbial cells (McFall-Ngai et al., 2013). Here we present a comprehensive 

survey of the intestinal microbiota of a single large sibling group (sibship) of the model 

vertebrate zebrafish (Danio rerio) throughout development. 

Our study spanned major milestones in zebrafish development under common 

laboratory rearing conditions. Zebrafish are fertilized externally; therefore, 

developmental stages are often referenced as time post fertilization, with larval stages and 

beyond referred to in terms of days post fertilization (dpf). Zebrafish embryos initially 

develop in essentially sterile chorions and the larval stage begins when the organism 

hatches from its chorion and first encounters microbes in its external environment 

(between 2 and 3 dpf). By the time of hatching, most of the larva’s organs have been 

specified but will continue to grow and mature into the adult structures in interaction with 

associated microbes. This includes the maturation of the intestine, which is open to the 

surrounding environment between 3 and 4 dpf, allowing exposure to microbial colonists 

(Bates et al., 2006). At ~5 dpf, the yolk becomes depleted and larval zebrafish begin 

ingesting food. The development and differentiation of zebrafish continues into 

adulthood. Although juveniles of both sexes have ovary-like gonads, they differentiate 

into sex-specific gonads by ~4 weeks post fertilization and continue to develop secondary 

sex characteristics well into adulthood (~10-12 weeks post fertilization depending on the 

rearing conditions; Uchida et al., 2002). Initially, the ability of the host to defend against 

microorganisms is limited to innate immune activities, with the adaptive immune system 
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reaching functional maturity around 4 weeks post fertilization (Lam et al., 2004). Many 

of the attributes that make zebrafish an excellent model for studying vertebrate 

development, such as its early optical transparency, small size, high-fecundity and 

availability of genetic and genomic resources (Howe et al., 2013; Phillips et al., 2014), 

also lend it to studies of vertebrate host-microbiota interactions. Large numbers of 

zebrafish can be maintained in a shared and easily sampled aquatic environment, 

allowing a high degree of biological replication along with information from associated 

environmental microbial communities. 

 The large degree of biological replication that is possible with zebrafish is an 

important advantage in understanding the extensive interindividual variation observed in 

vertebrate-associated microbiota (Friswell et al., 2010; The Human Microbiome Project 

Consortium et al., 2012; Rogers et al., 2014). Interindividual variation in humans is 

greatest during early stages of infant colonization and decreases with age, while bacterial 

diversity within individuals generally increases from initial colonization at birth, 

stabilizing around 2-3 years of age (Avershina et al., 2014; Palmer et al., 2007; 

Yatsunenko et al., 2012). During this period, weaning marks a dramatic transition for the 

developing infant microbiota as dietary change, the removal of maternally provided 

immunologic factors and loss of breastfeeding-derived microbes begins to shift the 

intestinal microbiota towards an adult-like composition (Bergstrom et al., 2014). Thus, 

changes in diet and physiology over animal development are closely intertwined and 

likely interact to shape developmental changes in the associated microbiota. 

In the present study, we exploit the advantages of the zebrafish model system to 

determine how associated microbial communities change along with key developmental, 
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environmental and dietary transitions of the host. Ours is the largest study to date of 

vertebrate intestinal microbiota from a single sibship of animals throughout development. 

We observed stage-specific changes in microbiota composition over development. Within 

each developmental stage, there remained extensive interindividual variation, despite the 

fact that the hosts belonged to a single sibship and shared the same rearing conditions and 

environments. Across development, we observed that the intestinal bacterial communities 

became increasingly different among individual hosts and distinct from the surrounding 

environment. 

 

Materials and Methods 

Experimental design and sample collection 

We surveyed the gut microbiota of a pair of adult zebrafish parents and 135 of 

their offspring reared concurrently under identical environmental conditions at multiple 

stages in their development, using high throughput sequencing of the 16S rRNA gene. To 

reduce potential effects of host genotypic variation, this population consisted solely of 

offspring from a single mating pair. These siblings were split evenly among four replicate 

tanks, resulting in 70 fish per tank, and were raised in a manner intended to generally 

reflect commonly used zebrafish husbandry practices, including diet and water type, flow 

rate and frequency of changes (Figure 1a, lower portion; details in Supplementary 

Information). We sampled zebrafish and their surrounding tank environment at multiple 

time points meant to capture important developmental transitions: when the entire 

intestinal tract is first open and microbial colonization of the lumen first occurs (4 dpf), 

once fish must rely on ingesting food for nutrition (10 dpf), the maturation of the adaptive 
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immune system (21, 28 and 35 dpf), sexual maturity and dimorphism (75 dpf), and 

senescence (380 dpf; Figure 1a, upper portion). At each time point, we sampled the 

dissected intestines of multiple fish sampled evenly across each of the four replicate 

tanks, resulting in 20 fish (five per tank) per time point for ages 4 through 35 dpf, 24 fish 

(six per tank, three male and three female) at 75 dpf, and 18 fish (six per each of three 

replicate tanks) at 380 dpf (Figure 1a; some samples were later removed owing to poor 

sequencing depth). We also measured the standard length (SL) of each fish as a metric of 

zebrafish staging and growth (Parichy et al., 2009). To examine the maturation of the 

adaptive immune system, we measured transcript levels of secreted immunoglobulin M 

(sIgM; Supplementary Information) from the carcasses of the 10, 21, 28, 35 and 75 dpf 

fish (time points spanning the course of immune maturation). Both SL and sIgM 

transcript levels increased with development (Figure 1b). Within a given age, there was 

much greater variation in sIgM transcript levels than in SL, which showed little variation 

until the last time point. 

Intestinal and environmental samples were collected and prepared in a manner 

that minimizes cross-contamination of samples, tanks and time points. Sampled animals 

from each time point were collected from the fish facility before they were fed, at 

approximately the same time of day (between 0930 and 1000 h). Animals were then 

transported to dissection stations in their own tank water and euthanized by the addition 

of tricaine (2.1 ml of 0.4% tricaine per 50 ml fish water; 0.22 μm filtered) before 

dissection. Each animal was dissected on a separate, sterile glass slide (larva) or Petri 

dish cover (juvenile, adults) under a dissecting microscope as previously described 

(Milligan-Myhre et al., 2011). Larval and juvenile fish dissections were performed using 
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individual-use insect pins, while sterile, individual-use scalpels were used for adult fish. 

The entire intestine from immediately posterior to the esophagus to the vent was removed 

intact. The swim bladder and liver were explicitly removed from the intestine, whereas 

no effort was made to remove the pancreas (if attached). The intestines were then placed 

in 2ml screw cap tubes containing 0.1mm zirconia–silica beads (Biospec Products, 

Bartlesville, OK, USA) and 200 (4, 10, 21 dpf) or 400 μl (28 dpf and older) of Enzymatic 

lysis buffer (ELB; Tris-EDTA pH 8.0 with 0.1% v/v Triton X-100; 0.22 μm filter 

sterilized) before freezing in liquid N2 and subsequent DNA extraction (as detailed in the 

Supplementary Information). The remaining carcass (without intestine, swim bladder, 

Figure 1: Experimental design and zebrafish development. (a) Experimental design 
showing important developmental events (top) and husbandry events (bottom) during the 
course of the study. The number of fish initially sampled among four tanks at each time 
point is shown, although post-sequencing rarefaction in some cases reduced this number 
for analyses (see Materials and Methods). Artemia are commonly called brine shrimp. 
Four and 10 dpf, fish are considered larvae, 21-35 dpf fish are juveniles and 75 and 380 
dpf fish are adults. (b) The mean standard length and secreted IgM (sIgM) transcript 
levels (a proxy for adaptive immune development) of fish at sampled time points are 
shown with standard deviations. dpf, days post fertilization; ND, not determined. 
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liver and likely the pancreas) of each fish was stored in TRIzol (Life Technologies, 

Carlsbad, CA, USA) at -80 °C for further host RNA extraction and quantification of 

sIgM transcripts. For each sample age group, DNA extractions were performed on the 

same day as dissection. 

Environmental samples collected at each time point included scrapings from two 

glass slides each (75 mm × 25 mm) that were affixed to the bottom (all time points) and 

sides (28, 35 and 75 dpf time points only) of tanks at the beginning of the study, as well 

as food samples and 500 ml of water per tank. Water samples were filtered through a 0.2 

μm cellulose nitrate filter, which was then exposed to bead beating and DNA extraction 

from the filter using the same method used for the other samples. Poor DNA extraction 

efficiency or low number of sequences obtained from several of the environmental 

samples led to the retention of environmental samples from 4, 10 and 75 dpf time points 

only in this study. We also measured multiple environmental parameters from each tank, 

including temperature, pH, and ammonia, nitrite and nitrate concentrations, but these 

were all found to vary too little over the course of the study to provide explanatory 

power. Thus, discrete diet changes and a single environmental change from static water 

in a nursery facility to recirculating water in an adjacent main facility were the only 

measured environmental variables that appreciably varied between time points. 

All zebrafish experiments were conducted in conformity with the Public Health 

Service Policy on Humane Care and Use of Laboratory Animals using standard protocols 

approved by the Institutional Animal Care and Use Committees of the University of 

Oregon and the University of North Carolina at Chapel Hill. 
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Illumina library preparation and 16S rRNA gene sequence analysis 

The microbial communities of individual samples were characterized by Illumina 

(San Diego, CA, USA) sequencing of 16S rRNA gene amplicons. To obtain Illumina 

compatible amplicons that were amenable to a high degree of multiplexing, we used a 

two-step PCR method to add dual indices and Illumina adapter sequences to the V4 

region of the bacterial 16S rRNA gene (see Supplementary Information for details and 

Supplementary Table 1 for oligonucleotide sequences) and obtain pairedend 150 

nucleotide reads on the Illumina HiSeq 2000 platform. Illumina sequence reads have 

been deposited under the NCBI SRA accession number SRP047327. 

The 16S rRNA gene Illumina reads were processed using methods implemented 

by mothur 1.28.0 (Schloss et al., 2009) and QIIME 1.6.0 (Caporaso et al., 2010) as 

detailed in the Supplementary Information. The final operational taxonomic unit (OTU) 

table was rarefied to a depth of 4250 sequences per sample, allowing us to retain all but 

seven (one each from 21, 28, 35 and 75 dpf groups and three from 380 dpf group 

discarded owing to low sequence depth) of the originally collected fish intestinal samples 

in subsequent analyses. Rarefaction curves showed that at this high depth of sampling, 

we were able to sample a large portion of the OTUs (defined using 97% sequence 

similarity) and diversity present while still retaining a large number of samples within 

fish of a given age (Supplementary Figure 1).  

 

Diversity measures and statistical tests 

All measures of community diversity and similarity, including OTU richness, 

phylogenetic diversity, Simpson’s index and unweighted UniFrac distances, were 
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calculated in R (R Core Team, 2014) using the vegan (Oksanen et al., 2016), picante 

(Kembel et al., 2010). Permutational multivariate analysis of variance tests were 

performed using the adonis function from the vegan package. Phylogenetic diversity was 

measured as the total shared branch length of OTUs within each community (Faith, 

1992). Tests for unimodality were done using Hartigans’ dip test for unimodality 

(Hartigan and Hartigan, 1985). Identification of significant differences in relative 

abundances in bacterial classes or KEGG (Kyoto Encyclopedia of Genes and Genomes) 

functional groups among age groups was accomplished using the Kruskal–Wallis test 

with the Benjamini–Hochberg FDR correction. Discriminatory analysis of taxonomic 

groups among zebrafish ages was performed with LEfSe (Segata et al., 2011). 

 

Results 

Zebrafish development is marked by major shifts in the dominant bacterial taxa of the 

intestinal microbiota  

We set out to characterize the zebrafish intestinal microbiota over key 

developmental time points under standard laboratory rearing conditions, including diet 

and environment changes during larval and early juvenile stages. Diet and environment 

were held constant during late juvenile and an early adult stage (75 dpf), whereas a late 

adult stage (380 dpf), after a facility diet change, was added to compare adult microbiota 

of aged fish (Figure 1). Over the course of zebrafish development, the diversity of 

observed intestinal microbiota decreased significantly, both in terms of the number of 

OTUs (Figure 2a; r2 = 0.19, P < 1×10-7), and phylogenetic diversity (Figure 2b; r2 = 0.15, 

P < 1×10-5), with the largest changes occurring between 35 and 75 dpf, during which 
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time diet and environment were held constant but the fish experienced major 

developmental changes, such as sexual differentiation. The evenness of communities, 

however, remained relatively constant over host development (Figure 2c; P = 0.288). We 

did not observe significant differences in diversity between the stages of adult fish. We 

noticed that the 10 dpf samples appeared to be bimodally distributed with respect to taxa 

richness, with half of the samples having high richness and half low. We explicitly tested 

the unimodality of each distribution, and found that only the 10 dpf distribution was 

significantly non-unimodal (Hartigans’ dip statistic D = 0.1336, P = 0.002 for 10 dpf 

samples and P >> 0.1 for all the other age groups). Although there was no significant 

difference between the means of the SLs of the two distributions (two tailed t-test: P = 

0.4159), we did observe that the community composition of samples belonging to the 

high richness distribution were significantly more similar to 4 dpf samples than were 

those belonging to the low richness distribution (measured by comparing pairwise 

UniFrac distances: P < 0.001). This suggests that at ~10 dpf, the zebrafish transition from 

a larval to a juvenile microbiota, and that the fish we sampled were at different stages of 

this process despite being the same age. One potential explanation for this pattern would 

be a difference between fish that had begun consuming exogenous food earlier or later. 

These changes in community diversity were accompanied by significant changes 

in the phylum level composition of larval (4 and 10 dpf), juvenile (21, 28 and 35 dpf) and 
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adult (75 and 380 dpf) fish, with particularly large differences in the taxonomic class 

composition of the Proteobacteria (Figure 3a, Supplementary Figure 3). The γ-

proteobacteria were the most abundant class of bacteria in the study, and were especially 

abundant in larval intestines as well as environmental samples. Concurrent with the 

change in food and environment at 21 dpf, a marked increase in the abundance of α-

proteobacteria was observed in the intestines and was followed by a decrease in 

abundance during the 28, 35 and 75 dpf age classes, during which time diet and 

environment were held constant. There was a decrease in the abundance of β-

proteobacteria during these same stages, from a peak at 28 dpf Interestingly, the β-

proteobacteria were particularly abundant in all food and environmental samples 

collected from 10 dpf fish and before (71% average; Supplementary Figure 3) yet were 

not consistently as abundant in intestinal samples until 35 dpf, suggesting a time lag 

Figure 2:  Significant changes in diversity of individual zebrafish intestinal communities 
throughout development. (a) Number of observed taxa. (b) Faith’s phylogenetic 
diversity. (c) Simpson’s diversity index. Black circles and error bars represent the means 
and 95% confidence intervals, respectively. Letters above age groups indicate significant 
differences in the means. 
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between initial exposure and detection of abundant colonization by this class. Although 

their relative abundances differed in environmental samples, the most abundant β-

proteobacteria OTUs in 35 dpf fish were also detected in environmental samples, with the 

notable exception of an OTU belonging to the family Neisseriaceae that contributed to an 

average of 5.4% of the reads from 35 dpf fish. The proportion of these Proteobacteria 

classes decreased strongly in 75 dpf fish, despite being fed the same diet as the juveniles. 

Consistent with previous studies of the adult zebrafish intestine (Rawls et al., 2004, 2006; 

Roeselers et al., 2011), we found Fusobacteria to be abundant in the adult stage (75 and 

380 dpf) intestinal samples (30% and 12%, respectively), although they accounted for 

<1% of the total community in the 21–35 dpf fish. Also in agreement with our previous 

study (Roeselers et al., 2011), we found a large diversity of Fusobacteria OTUs within 

intestines (168), with the majority of these OTUs (90%) being classified in the genus 

Cetobacterium, which was found in all 38 adult intestines. OTUs belonging to the 

Aeromonadaceae family (γ-proteobacteria class) that could not be further classified to 

genus were the only grouping found in all of the 137 intestinal samples analyzed (Table 

1). When broken down by developmental group, 10 more genera were found in all the 

larval intestines (4 and 10 dpf) and 11 more in all the juvenile (21, 28 and 35 dpf) 

intestines, whereas only the Plesiomonas and Cetobacterium genera were also found in 

all the adult intestines. Many of these genera were previously identified as part of a core 

microbiota of the adult zebrafish intestine (Roeselers et al., 2011). Additional core genera 

found in >90% of intestines from a given developmental stage group included 

Shewanella, Vibrio, Pseudomonas and Streptococcus. The overall abundance of these 

core taxa varied from nearly 14% for the OTUs within the Aeromonadaceae to < 1% for 
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the Streptococcus, with considerable variation in abundance observed among age groups. 

An abundant class of uncultured Firmicutes (placed as a separate phyla in some reference 

taxonomies) referred to as ‘CK-1C4-19’ was found in 89% of all intestinal samples and 

represented nearly 14% of the total reads in adult intestines. We detected 87 different 

OTUs from this uncultured class, which represented 3.8% of the total OTUs in the adult 

zebrafish intestines (Supplementary Figure 3). We next asked whether any of these 

taxonomic groups were strongly associated with particular stages of zebrafish 

development. For this analysis, we combined the 75 and 380 dpf fish intestinal 

communities together into a single class (‘adult’), and analyzed all the age classes using a 

nonparametric test of significance and linear discriminant analysis with the defaults 

implemented by LEfSe (Kruskal–Wallis; P < 0.05 and log 10 linear discriminant analysis 

score > 2.0). These analyses identified 184 discriminatory taxa, of which the majority 

(95) distinguished the youngest, nonfeeding (4 dpf) age class from all others. The 

discriminating taxa for the 4 dpf fish largely belonged to the Proteobacteria despite this 

phylum’s abundance in the entire data set. To determine the most highly discriminatory 

bacterial taxa for each age class, we implemented stricter cutoffs for LEfSe (P < 0.01, log 

10 linear discriminant analysis score > 3.5; Supplementary Figure 4). The 10 dpf age 

class, which had begun feeding on Paramecium, were distinguished by the consistent 

presence of the genus Mycobacterium. Notably, this genus contains the fish pathogens M. 

marinum and M. chelonae, which were known to be present in our facility during the 

time of the experiment, and which have recently been shown to be efficiently transmitted 

to zebrafish via ingestion of infected paramecia (Peterson et al., 2013). Although our 

sequences did not allow us to resolve the species-level identification of these 
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Mycobacterium OTUs, we detected Mycobacterium sequences in every environmental 

sample associated with Paramecium feeding (eight samples, average 4% abundance), 

including all three replicates of the Paramecium food samples, suggesting a possible 

transmission route. The juvenile age classes were largely discriminated by the presence 

of β-proteobacteria lineages, while the adult class was distinguished by the low 

abundance Bacteroidaceae family, the prevalent Fusobacteria (specifically the 

Cetobacterium genus) and by the CK-1C4-19 candidate class of Firmicutes. Differences 

in taxonomic composition throughout development were reflected by differences in the 

predicted functional capacity of these taxa (Supplementary Information), which included 

predicted differences in the representation of genes involved in cell motility and 

carbohydrate metabolism between adult and younger fish (Supplementary Figure 6c). 

 

 

 

  

Figure 3: Major shifts in bacterial taxa throughout development. Bacterial classes with 
41% average relative abundance across all ages, plotted on a log scale (All taxonomic 
classes P < 0.0001, Kruskal–Wallis). 
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Table 1: Genera found in greater than 90% of larval, juvenile or adult intestines. 
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Variation in microbial community composition changes over zebrafish development 

Despite the genetic similarity and shared environment of their hosts, the overall 

composition of microbial intestinal communities showed a substantial amount of 

variation among fish, as measured by the UniFrac distance (Figure 4). Communities 

associated with individual fish were more similar to communities associated with fish of 

the same age than they were to those associated with fish of different ages (Figure 4a; 

permutational multivariate analysis of variance; r2 = 0.18; P < 0.001). Over time, 

variation among hosts significantly increased, but the effect was small and non-

monotonic in the juvenile stages (Figure 4b; r2 = 0.10; P < 0.001). To determine whether 

there were possible tank effects, we performed a permutational multivariate analysis of 

variance with age, tank and age by tank as factors. Neither tank nor the interaction of age 

by tank produced significant effects (P = 0.930 and P = 0.363, respectively), suggesting 

there was little to no tank effect that would influence the interpretation of our results. 

Before 75 dpf, we were unable to assign sex to each zebrafish using external traits; 

however, we did not see a significant effect of sex on community similarity at 75 or 380 

dpf (P = 0.11 and P = 0.12, respectively). Given these results, we grouped samples from 

fish raised in different tanks and fish of both sexes together for the remainder of the 

analyses. 

We next attempted to explain variation in community composition using measures 

of host age, SL, and sIgM transcript levels to disentangle the relative influence of time, 

development, and immune maturation. We used multiple regression analysis (Lichstein, 

2007) to partition the variation in pairwise UniFrac distances among hosts into the total 

amount of variation explained by the above host variables (that is, ‘total’), the variation 
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explained simultaneously by multiple variables (that is, ‘shared’) and the variation 

uniquely explained by each variable independent of the others (that is, ‘unique’; Table 2). 

Across the data set, differences in the SL of the zebrafish explained more variation in 

among-host UniFrac distances than did differences in host age, despite host age and SL 

themselves being strongly correlated (r2 = 0.60, P < 0.001; Figure 1b). To determine the 

Figure 4:  Phylogenetic dissimilarity of microbiota from fish and environmental samples. 
(a) A non-metric multidimensional scaling (NMDS) ordination of (unweighted) UniFrac 
distances among zebrafish intestinal communities across development. Host age is 
differentiated by the color of points, while husbandry conditions (diet and water flow) are 
described in the legend. The age class of the host is indicated by the shape of points: 
circles indicate larvae, triangles indicate juveniles and squares indicate adults. The effect 
of standard length on the spread of points is shown by a vector. (b) Pairwise Unifrac 
distances among fish within each age group. (c) Pairwise Unifrac distances between fish 
and environmental communities at each age group. For each boxplot, letters above age 
groups indicate significant differences in the means. 
 
 
 



 

25 

 

potential role of adaptive immune function in structuring communities, as well as isolate 

the effects of development from changes in diet and housing, we next compared the 

explanatory power of differences in SL and differences in sIgM transcript levels (for 

those samples with measurable sIgM transcription levels and that shared common 

husbandry conditions; that is, 28-75 dpf samples). We found that SL was a much stronger 

predictor than sIgM transcript abundance, which explained relatively little variation in 

UniFrac distances (Table 2). It is also worth noting that the explanatory power of SL was 

much higher for these age groups, possibly the result of housing conditions being 

constant for these time points, thus enhancing the relative contribution of host 

development. 

 

Table 2: Results of multiple regressions comparing community dissimilarity with 
differences in host age, standard length and sIgM concentrations. 
 

Host Variable R2 P-value* 

   

Across all ages:   

     DPF + Standard Length (total) 0.2818 0.001 

     DPF + Standard Length (shared) 0.0775 0.001 

     DPF (unique) 0.0057 0.029 

     Standard Length (unique) 0.1986 0.001 
   

For 10, 21, 28, 35, and 75 dpf 

zebrafish†:   

     Standard Length + [sIgM] (total) 0.5084 0.001 

     Standard Length + [sIgM] (shared) 0.0495 0.001 

     Standard Length (unique) 0.4427 0.001 
     [sIgM] (unique) 0.0162 0.037 

   

 
Abbreviations: days post fertilization, dpf; secreted immunoglobulin M, sIgM. 
* P-values were calculated from a distribution of 1000 random permutations. 
† These ages had measurable sIgM levels and shared common husbandry conditions. 
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We computed the pairwise dissimilarity between fish intestinal communities and 

each of the three communities associated with the external environment: the tank water, 

tank surfaces and food fed to the fish. Fish intestinal communities were more similar to 

other fish intestinal communities than they were to any environmental communities 

(Figure 4c; P < 0.001 for all comparisons post Bonferroni correction). The dissimilarity 

between intestinal communities and environmental communities increased over time, (P 

< 0.0001; r2 = 0.59, 0.52 and 0.13 for comparisons to tank water, surfaces and food 

samples, respectively). As a result, the intestinal communities associated with young 4 

and 10 dpf fish were significantly more similar to surrounding environmental 

communities than were older 75 dpf fish (P < 0.001 for tank water, surface and food 

environments). This pattern was further manifested by increased differentiation of 

predicted fish associated metagenomes from predicted environmental metagenomes 

(Supplementary Figure 6e). 

 

Discussion 

The microbial community of the animal gut has been described as an additional 

host ‘organ’; however, its assembly, analogous to the process of organ development, is 

poorly understood. Here we have characterized the development of the intestinal 

microbiota from a single sibship of zebrafish and show that while distinct bacterial 

communities assemble at different stages, the cellular composition is much less 

stereotyped than developing host tissue. Instead, we observe extensive interindividual 

variation in intestinal microbiota composition at each developmental stage, despite our 

ability to control host genotype and environment, that mirrors the interindividual 
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variation routinely observed in other vertebrate hosts, including humans (Caporaso et al., 

2011; The Human Microbiome Project Consortium et al., 2012) and mice (Benson et al., 

2010; Rogers et al., 2014). We conclude that interindividual variation in microbiota is a 

characteristic of vertebrates across development. 

This study was designed to understand developmental stage-specific intestinal 

microbiota composition and diversity under standard laboratory rearing conditions of the 

zebrafish, and provides a reference for future studies investigating the crosstalk between 

developing zebrafish hosts and their microbiota. We observed major compositional shifts 

both during periods of development when diet and environment were also changing (that 

is, from larval to juvenile stages) as well as when diet and environment remained 

constant (that is, from late juvenile to adult stages) suggesting that host physiological 

development likely has significant effects on the microbiota independent of the other 

factors. The appearance of an adult-like microbiota in mammals begins shortly after 

weaning, when the introduction of solid foods and the removal of maternally provided 

immune factors (in particular breast-milk-derived immunoglobulins) impact the 

composition of the infant gut microbiota (Bergstrom et al., 2014; Rogier et al., 2014). In 

this study, we detected bacterial taxa characteristic of adult zebrafish (such as 

Fusobacteria and the CK-1C4-19 class) early in development but they remained low until 

the adult stages. While we observed increased sIgM levels during the transition from 

juvenile to adulthood that could influence these compositional shifts, differences in sIgM 

levels explained far less variation among microbiota than did SL. This further supports 

the notion that morphological changes during development are likely the dominant 

drivers of changes in the microbiota, at least during periods when diet and environment 
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are constant. 

We found that the communities associated with larval fish were more similar to 

communities associated with the surrounding environment than were adult fish, 

indicating a greater role of environmental exposure early in development. This is 

consistent with observed correlations in humans between birth delivery mode and the 

composition of the intestinal microbiota (Dominguez-Bello et al., 2010), and the relative 

instability of the intestinal microbiota between early stages of postnatal development in 

human newborns (Mackie et al., 1999; Palmer et al., 2007; Koenig et al., 2011; Bäckhed 

et al., 2015) and in mice (Pantoja-Feliciano et al., 2013). These similarities suggest that 

the intestinal environments of mammals and fish may be similar in some key aspects (for 

example, relative changes in oxygen concentration through development), and that 

environmental exposures including diet can have significant impacts on the observed 

composition of intestinal microbiota early in development. 

The changes we observed in community composition during the development 

highlight the need for careful consideration of developmental context in studies of host-

microbe interactions. At the very least, comparisons across studies should strive to use 

consistent ages and development stages of the sampled hosts. It is well established that 

the presence and composition of the microbiota influences a wide array of host 

developmental and physiologic processes in zebrafish and other animal hosts (Rawls et 

al., 2004; Bates et al., 2006; McFall-Ngai et al., 2013). Our results highlight observations 

that some of the observed phenotypic variation in animal studies is, in part, owing to 

variations in the microbiota. For example, it was recently shown that differences in 

microbial community composition in wild-type mice alter the intestinal IgA levels, 
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thereby differentially influencing susceptibility to a chemically induced model of colitis 

(Moon et al., 2015). Likewise, it is possible that our observation of greater variation in 

sIgM transcript abundance in older fish, with little variation in size, is simply a reflection 

of increasing microbiota variation between individuals in response to widely varying 

microbial communities. In the future, it may be helpful to develop and deploy engineered 

communities of cultured microbes to provide reproducible microbiotas for broad use, or 

use experimental design strategies that control for microbial variation between 

individuals, stages, clutches, tanks, pedigrees and facilities. Our characterization of 

intestinal microbiota dynamics across zebrafish development and the genomes of 

representative members of these communities provide a useful resource and framework 

for such future studies. 
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BRIDGE 

In Chapter II, I characterized the microbial communities associated with zebrafish 

(Danio rerio) intestines and described how the composition and diversity of these 

communities changes over host development. This work is largely exploratory, but 

important in that it provides an ideal model system in which to study the assembly of 

microbial communities associated with vertebrate hosts. Of note is the observation that 

unlike the typical development of host tissues, these communities are characterized by 

high degrees of inter-host variation, and the magnitude of this variation changes over host 

development. Furthermore, while host factors, particularly standard length, could explain 

a large amount of this variation across age groups, none of the measured factors could 

explain a significant amount of variation among hosts of the same age. This raises the 

question of what the source of this variation is. In Chapter III, I attempt to answer this 

question by using a neutral model to determine whether random processes alone, 

specifically passive dispersal and ecological drift, are sufficient to explain variation 

among hosts in the distribution of microbial taxa. In doing so, I also test the hypothesis 

that the importance of these neutral assembly processes decreases as hosts undergo 

development. 
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CHAPTER III 

CONTRIBUTION OF NEUTRAL PROCESSES TO THE ASSEMBLY OF GUT 

MICROBIAL COMMUNITIES IN THE ZEBRAFISH OVER HOST 

DEVELOPMENT 

 

This chapter was published as an article in the International Society of Microbial Ecology 

Journal (ISME J) in 2016, and was co-authored along with W. Zac Stephens, Keaton 

Stagaman, Sandi Wong, John F. Rawls, Karen Guillemin, and Brendan J. M. Bohannan, 

with myself filling the role of lead author. The study described in this chapter uses the 

same dataset described in Chapter II above that was collected jointly by myself, W. Zac 

Stephens, and Keaton Stagaman. However, the analysis and writing of the manuscript 

was performed by myself with the other co-authors providing editorial assistance. Once 

again, Brendan Bohannan and Karen Guillemin filled advisory roles and Brendan 

Bohannan was the principal investigator of the study. Supplemental figures and tables 

can be found in Appendix B. 

 

Introduction 

The microorganisms that reside on and inside humans and other vertebrate 

animals are remarkable, not only because of their importance to host health and 

development (Bates et al., 2006; Fraune and Bosch, 2010; Sommer and Bäckhed, 2013), 

but also because they assemble into complex communities de novo in every new 

hatchling or infant host. The processes responsible for structuring these complex systems, 

often referred to as a host’s microbiota, are not well understood despite a strong interest 
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in manipulating them to improve human health. Recent advances in sequencing allow us 

to observe and describe microbial communities with unprecedented depth and accuracy, 

but using these data to make inferences about how they assemble remains challenging. 

One approach to addressing this issue is to adopt a conceptual framework where animal 

hosts are viewed as ecosystems and their associated microbiota are treated as ecological 

communities (Costello et al., 2012; Dethlefsen et al., 2006; Robinson et al., 2010). This 

approach is attractive because it allows researchers to borrow concepts and tools 

developed over decades of research in ecology. 

In host-associated systems there are a large number of specific factors that may 

contribute to community assembly. Many host specific factors have been studied, 

including host species, genotype, diet, and health (Benson et al., 2010; Rawls et al., 

2006; Goodrich et al., 2014; Turnbaugh et al., 2006), as well as microbe specific factors, 

including mutualistic and competitive (Levy and Borenstein, 2013; de Muinck et al., 

2013). While the list of potential factors is long, they can be divided into two major 

categories: selective processes, in which microbes establish and thrive in an environment 

(in this case the host itself) due to  differences in their relative ecological fitness; and 

neutral processes, which include the dynamics of passive dispersal (e.g. sampling 

individuals from a source pool of available colonists) and the effects of ecological drift 

(the stochastic loss and replacement of individuals; Chase and Myers, 2011). While 

considerable progress has been made to investigate the roles of specific interactions 

between microbes and their hosts, the relative roles of dispersal and ecological drift in 

shaping host-associated microbial communities has largely been ignored (but see Jeraldo 

et al., 2012; Lankau et al., 2012; Venkataraman et al., 2015). In contrast, these processes 
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have been studied in the general field of ecology for decades, with a renewed surge of 

interest in recent years (Caswell, 1976; Hubbel, 2001; Rosindell et al., 2011).  

Neutral and other sampling based theories provide an ideal starting place for 

investigating assembly patterns because of their relative simplicity. Neutral theory 

derives its name from its defining assumption of equivalent per-capita growth, death, and 

dispersal rates of species, thus assuming species are “neutral” in their ecological fitness. 

In the absence of such differences, community assembly is the result of the stochastic 

processes of dispersal and drift; organisms in the community are randomly lost, and are 

replaced at random by individuals from within the community or by dispersal of 

individuals from outside the community. While these assumptions of ecological 

equivalence may seem over-simplified, neutral models have successfully predicted the 

structures of many communities, including microbial communities (Östman et al., 2010; 

Ofiteru et al., 2010; Woodcock et al., 2007; Venkataraman et al., 2015). Such models are 

particularly useful in modeling microbial systems, where the immense diversity of 

communities makes characterizing the specific ecological traits of each individual taxon 

difficult. They also allow researchers to quantify the importance of processes which are 

difficult to observe directly, such as dispersal, but can nevertheless have large impacts on 

microbial communities (Kerr et al., 2002; Lindström and Östman, 2011). 

Given the variable nature of host-associated microbial communities, a 

comprehensive investigation of the role of neutral processes in structuring these 

communities requires a high degree of replication and control.  In this regard the 

intestinal microbiota of the zebrafish (Danio rerio) is an ideal experimental system. 

Zebrafish have historically been used to study vertebrate development, but have also 
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recently emerged as an ideal model for studying interactions between vertebrate hosts and 

their associated microbial communities (Rawls et al., 2006; Roeselers et al., 2011; Yan et 

al., 2012; Zac Stephens et al., 2016). This is in large part due to the feasibility of raising a 

large number of individuals from a single crossing and co-housing them throughout their 

lifespan in highly controlled environments, thereby minimizing the effects of inter-host 

variation and ensuring that all individuals are exposed to a shared source pool of 

microorganisms.  

In the present study we assess the ability of neutral models to explain the 

distribution of microorganisms among a population of zebrafish, and then determine the 

conditions leading to departures from neutral behavior. In doing so, we adopt a 

conceptual framework in which we consider the microorganisms associated with 

individual zebrafish hosts to be local communities that are a part of a broader 

metacommunity consisting of the microorganisms associated with all of the hosts in the 

population (Costello et al., 2012; Leibold et al., 2004). We hypothesized that the ability 

of hosts to differentially select their microbial inhabitants increases with developmental 

age, thereby decreasing the relative importance of neutral processes. Assuming that 

decreases in the fit of the neutral model are indicative of increased selection pressures, 

we expected that deviations from the neutral prediction should be compositionally and 

phylogenetically distinct, to the extent that ecological traits are phylogenetically 

conserved. In addressing these hypotheses, we also provide a framework for identifying 

communities and taxa of potential interest based on the degree to which they diverge 

from the predictions of neutral theory. 
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Materials and Methods 

Zebrafish Microbiota Longitudinal Study 

For the present study, we used a 16S rRNA gene sequence dataset from a 

previously reported longitudinal study of the developing zebrafish intestinal microbiome 

(Zac Stephens et al., 2016). A brief description of the study design and sample collection 

follows, and readers are referred to the previous chapter for additional details. A 

population of zebrafish resulting solely from a single mating pair was raised under 

identical conditions, in order to minimize both genetic and environmental heterogeneity, 

and sampled at multiple ages, conventionally measured by days post fertilization (dpf). 

Zebrafish embryos develop within sterile chorions and are not exposed to 

microorganisms in their environment until they hatch (between 2 and 3 dpf). This 

population was divided evenly among four replicate tanks (resulting in 70 fish per tank) 

prior to hatching in order to ensure a shared initial exposure and account for potential 

tank effects. These fish were then raised under standard laboratory rearing conditions. 

The intestines of individual fish from this population were aseptically removed (as per 

Milligan-Myhre et al., 2011), and the associated microbial communities were 

characterized by 16S rRNA gene amplicon sequencing at important developmental 

milestones: 4 dpf (complete opening of the digestive tract), 10 dpf (after feeding began), 

21, 28, and 35 dpf (activation of the adaptive immune system, Lam et al., 2004), 75 dpf 

(sexual maturity), and finally 380 dpf (onset of senescence). At each time point, twenty 

fish (five from each tank) were randomly selected for sampling, with the exception of the 

75 dpf time point at which time twenty-four fish (three male and three female from each 

tank; prior to 75 dpf the sex of fish could not be confidently determined), and the 380 dpf 
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time point, at which time six fish from each of three remaining tanks were sampled. In 

addition, the microbial communities of the surrounding water, tank surfaces, and food for 

4, 10, and 75 dpf time points were also sampled and characterized. 

The zebrafish used in this study were raised under conventional laboratory 

conditions. This involved a number of husbandry changes. Prior to 21 dpf, the zebrafish 

were raised in a nursery tank with uncirculated water that was exchanged manually on a 

daily basis. Just prior to sampling at 21 dpf, the fish were transferred to a main facility 

system where water was continuously recirculated at a fixed rate through a sand and UV 

filter. The diet also changed over the course of the study: prior to 6 dpf fish were not fed 

and subsisted off their yolks alone, after which time fish were feed live Paramecia from 6 

dpf to 10 dpf, live Artemia (brine shrimp) just after fish were sampled at 10 dpf to 21 dpf, 

and a standard dry fish food mixture from 21 dpf onward. Between 75 and 380 dpf, the 

manufacturer of this standard diet changed, but the feeding schedule remained the same. 

All zebrafish experiments were conducted in conformity with the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals using standard protocols 

approved by the Institutional Animal Care and Use Committees of the University of 

Oregon and the University of North Carolina at Chapel Hill.  

The microbial communities sampled in this study were characterized by Illumina 

sequencing of the 16S rRNA gene. 16S rDNA sequences from the V4 region of the 16S 

rRNA gene, subsequent 97% similarity operation taxonomic unit (OTU) tables rarefied to 

4,250 sequences per sample, and taxonomic classifications were taken directly from (Zac 

Stephens et al., 2016). 
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Sloan neutral community model for prokaryotes 

To determine the potential importance of neutral processes to community 

assembly, we assessed the fit of the Sloan Neutral Community Model for Prokaryotes to 

the distributions of microbial taxa in our data (Sloan et al., 2006). This neutral model 

predicts the relationship between the frequency with which taxa occur in a set of local 

communities (in this case individual zebrafish intestinal communities) and their 

abundance across the wider metacommunity (the intestinal communities of all zebrafish 

sampled at a given time point). In general, the model predicts that taxa that are abundant 

in the metacommunity will also be widespread, since they are more likely to disperse by 

chance and be randomly sampled by an individual host, while rare taxa are more likely to 

be lost from individual hosts due to ecological drift. In contrast to many other 

contemporary neutral models, namely the unified neutral theory of biodiversity (Hubbel, 

2001), the neutral model used here does not incorporate the process of speciation. 

However, while microbial speciation and diversification are no doubt important in 

generating the diversity of microorganisms in this system at the broad, regional level, our 

explicit focus is on the assembly of host-associated communities over the course of host 

development. As such, it is highly unlikely that microbial diversification will occur over 

that time span to an extent that it would impact diversity among communities at the 

resolution we observe them (i.e. 97% similarity in 16S gene sequences). 

The Sloan neutral model is fit to the observed frequency of occurrence of OTUs 

(i.e. the proportion of local communities in which each OTU is detected) and their 

abundance in the metacommunity (estimated in this case by the mean relative abundance 

across all local communities) by a single free parameter describing the migration rate, m. 
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This estimated migration rate is the probability that a random loss of an individual in a 

local community will be replaced by dispersal from the metacommunity, as opposed to 

reproduction within the local community, and can thus be interpreted as a measure of 

dispersal limitation. The fitting of this parameter was performed in R using non-linear 

least-squares fitting and the minpack.lm package (R Core Team, 2016). Binomial 

proportion 95% confidence intervals around the model predictions were calculated using 

the Wilson score interval (Brown et al., 2001). We assessed the overall fit of the model to 

observed data by comparing the sum of squares of residuals, SSerr, to the total sum of 

squares, SStotal: model fit = 1 - SSerr/SStotal (generalized R-squared; Östman et al., 2010). 

The fit of the neutral model was also compared to the fit of a binomial distribution model 

in order to determine whether incorporating drift and dispersal limitations improve the fit 

of a model beyond just random sampling of the source metacommunity (Sloan et al., 

2007). Sampling from a binomial distribution represents the case where local 

communities are random subsets of the metacommunity in the absence of processes of 

drift and dispersal limitations. While generalized r-squared is a useful measure for 

comparing the fit of multiple datasets to a single model, it is a poor choice for comparing 

the fit of multiple models to a single dataset (Spiess and Neumeyer, 2010). Therefore, to 

compare the fit of the neutral and binomial model, we compared the Akaike information 

criterion (AIC) of each model. Computation of the Akaike information criterion was done 

in R. Calculation of 95% confidence intervals around all fitting statistics were done by 

bootstrapping with 1000 bootstrap replicates. 

To analyze deviations from the neutral model predictions, we compared the 

composition and diversity of neutrally and non-neutrally distributed OTUs. To 
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accomplish this, samples belonging to the same age group were first pooled, and OTUs 

from this pool were subsequently sorted into three partitions depending on whether they 

occurred more frequently than (“above” partition), less frequently than (“below” 

partition), or within (“neutral” partition) the 95% confidence interval of the neutral model 

predictions. Each partition was then treated as a distinct community sample for further 

analysis, resulting in 21 total partitions (3 per each of the 7 age groups). To facilitate 

comparisons among partitions, each partition was rarefied to an equal number of OTUs 

corresponding to the number of OTUs in the smallest partition, unless otherwise noted.  

 

Diversity and taxonomic analysis 

To quantify the variation in phylogenetic composition we calculated pairwise 

unweighted UniFrac distances among neutral and non-neutral metacommunity partitions 

(Lozupone and Knight, 2005). Differences in this distance among groups was assessed by 

permutational multivariate analysis of variance (PerMANOVA) using 1000 random 

permutations, while differences in the degree of variation within groups was assessed by 

an analysis of variance (ANOVA) of average distance to centroid within groups 

(multivariate homogeneity of groups dispersions test; Anderson et al., 2006). Non-metric 

multidimensional scaling (NMDS) of UniFrac distances was performed to visualize 

difference among neutral and non-neutral partitions. Calculation of PerMANOVA, 

multivariate homogeneity of groups dispersion test, and NMDS were performed in R 

using the vegan package (Oksanen et al., 2016). 

In order to identify microbial taxonomic groups that distinguish neutral from non-

neutral partitions of the metacommunity, we performed logistic regression with partition 
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type (above, below, or within the neutral prediction) as a predictor and the presence or 

absence of each taxon as a binary response variable. To determine the significance of this 

relationship, we compared the deviation of the fitted regression model with that of an 

empty null model (chi-square test). 

An indicator taxa analysis was performed to identify OTUs associated with either 

fish or tank environment (i.e. water, surface, and food) samples. Each OTU was assigned 

an indicator value based on their abundance and occurrence frequency in either intestinal 

or environmental samples; OTUs found frequently in high abundance in one sample type 

but not the other would have a high indicator value for that sample type (Dufrêne and 

Legendre, 1997). Significance of this association with sample type was determined by 

comparing the observed value with the values from 1000 random permutations. 

Calculation of the indicator values and probability for OTUs was performed in R. Since a 

full set of environmental data was only available for the 4, 10, and 75 dpf age groups, this 

analysis was performed only for those time points. 

 

Phylogenetic sampling theory 

To further examine and compare the phylogenetic structure of neutral and non-

neutral partitions of the observed communities, we employed a phylogenetic sampling 

theory that analytically predicts the phylogenetic diversity in a local community 

assuming random sampling from the phylogenetic tree of the metacommunity (O’Dwyer 

et al., 2012). Observed measures of phylogenetic diversity for individual samples can be 

compared to these predictions to determine the degree to which communities appear 

random with respect to phylogeny as opposed to over-dispersed or clustered. If the 
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observed phylogenetic diversity is greater than the expected diversity, then we consider 

the community to be phylogenetically over dispersed, meaning that distantly related taxa 

were more likely to be sampled than closely related taxa. When the observed 

phylogenetic diversity is less than the expected diversity, then we consider the 

community to be phylogenetically clustered, meaning that closely related taxa were more 

likely to be sampled (Horner-Devine and Bohannan, 2006). 

Implementation of the phylogenetic sampling theory was performed in R using 

methods described in O’Dwyer et al. (2012) and the picante package (Kembel et al., 

2010). Phylogenetic diversity was defined as the sum of the total phylogenetic branch 

length for a sample (Faith, 1992). Random sampling of the regional phylogenetic tree 

was modeled by binomial sampling. A strength of this approach is that it can be used to 

compare samples of unequal sizes. As such, this analysis was applied to un-rarefied data, 

and differences between observed and expected phylogenetic diversity were compared by 

calculating and comparing standardized deviations, or z-scores, for each partition. 

 

Results 

Relative importance of neutral processes decreases over host development 
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Overall, the frequency with 

which microbial taxa occurred in 

individual communities was well 

described by the neutral model (Figure 

5; Supplemental Figure 7). However, the 

fit of the model varied over host 

development, and was negatively 

correlated with host age (Spearman’s 

rho = -0.93, p = 0.007; Figure 6a). In all 

cases the neutral model outperformed a 

binomial distribution model, suggesting 

that the processes of passive dispersal 

and ecological drift have an impact 

above and beyond just random sampling 

of the source community (Figure 6b). 

Overall, estimated migration rates 

tended to be higher in younger than 

older fish, suggesting that communities 

become increasingly dispersal limited 

with age (Spearman’s rho = -0.86, p = 

0.02; Figure 6c). 

 

Figure 5: Neutral model fit. The predicted 
occurrence frequencies for 4 (a), 28 (b), and 
380 (c) dpf zebrafish communities 
representing larval, juvenile, and adult 
developmental stages respectively. OTUs that 
occur more frequently than predicted by the 
model are shown in green while those that 
occur less frequently than predicted are shown 
in orange. Dashed lines represent 95% 
confidence intervals around the model 
prediction (blue line). 
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Deviations from neutral predictions are ecologically distinct 

For any age group of fish, there were a number of microbial taxa that occurred 

more or less frequently than predicted by the model given their overall abundance in the 

metacommunity (points above, in green, or below, in orange, the line in Figure 5). We 

would expect points that differ significantly from the neutral prediction to be indicative 

of taxa that are actively being selected for or against by the host. Specifically, points 

above the prediction represent taxa that are found more frequently than expected, 

suggesting that they are actively being maintained and selected for by the host, while 

points found below the prediction represent taxa found less frequently than expected, 

suggesting that they are either selected against by the host or are especially dispersal 

limited. We expect that these selective processes should be reflected in the taxonomic and 

phylogenetic composition of taxa that deviate from the neutral prediction. We tested this 

hypothesis explicitly and examined how these differences may be informative of the 

overall ecology of the intestinal community. 

Taxa found above, below, or within the prediction of the neutral model formed 

phylogenetically distinct partitions of the total metacommunity. For each age group, we 

Figure 6: Neutral model fit decreases over host development. The goodness-of-fit of the 
Sloan neutral (a), comparison of the maximum likelihood fit of the neutral and binomial 
models (b), and the estimated migration rate (c) for zebrafish associated communities. 
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separated the metacommunity into three partitions comprised of those OTUs found 

above, below, or not significantly different from the neutral prediction and calculated the 

phylogenetic dissimilarity among partitions (Supplemental Figure 8). We found that 

partitions clustered strongly based on whether and how they deviated from the neutral 

prediction (i.e. above, below, or within the neutral prediction) across host age 

(PerMANOVA r2 = 0.19, p < 0.001; Figure 7a). Thus, the phylogenetic composition of 

the sub-groups that diverge from neutral patterns remain relatively similar across host 

development, despite the composition of communities as a whole changing (Stephens et 

al. submitted). Across age groups, non-neutral partitions of the metacommunity were also 

much more homogeneous than the neutral partitions, (ANOVA, p < 0.01; illustrated by 

the spread of points in Figure 7a). A possible consequence of the heterogeneity is that we 

identified very few taxonomic groups that strongly distinguished neutral partitions. 

Partitions above the neutral prediction were most strongly distinguished by the presence 

of Fusobacteria (p < 0.001) and γ-Proteobacteria (p = 0.022), in particular the families 

Enterobacteriaceae (p = 0.003) and Aeromonadaceae (p < 0.001), while partitions below 

the neutral prediction were distinguished by the presence of Actinobacteria (p = 0.004), 

Bacilli (p = 0.004), and Clostridia (p = 0.031) and the genera Lactobacillus (p = 0.004), 

Staphylococcus (p = 0.037), and Stenotrophomonas (p = 0.012). 

The taxa comprising neutral and non-neutral partitions of the metacommunity also 

tended to be associated with different environments. We first performed an indicator taxa 

analysis to identify OTUs that were significantly associated with either intestinal or 

environmental (tank water, surfaces, or food) samples in our full dataset. We then 

compared the proportion of OTUs significantly associated with fish to those significantly  
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associated with the tank environment in each partition and found that this proportion was 

much higher above and below than it was within the model’s prediction (Figure 7b). This 

pattern was consistent across host development. In other words, non-neutral partitions of 

the metacommunities were more likely to be comprised of microbial taxa that were 

associated with zebrafish, while taxa largely associated with the tank environment were 

more likely to be neutrally distributed across fish intestinal communities. 

Figure 7: Neutral and non-neutral partitions of the metacommunity are compositionally 
and phylogenetically distinct. For each age group, communities were pooled and OTUs 
were then divided into separate partitions based on whether they were consistent with (in 
black) or deviated above (in green) or below (in orange) the neutral prediction (color 
coding is consistent for all panels). (a) Non-metric multidimensional scaling ordination 
based on UniFrac distances. (b) The proportion of fish associated to tank associated 
OTUs in each partition following an indicator taxa analysis. Results are shown for 4, 10, 
and 75 dpf fish only as environmental samples were not available for the other time 
points. (c) The standardized difference, in units of standard deviations (z-score), between 
observed and expected phylogenetic diversity assuming random sampling for each 
partition. Solid blue lines represent the expected phylogenetic diversity for each age 
group while dashed lines represent 95% confidence intervals. The distance points are 
either above or below the line represent the degree to which those partitions are 
phylogenetically over-dispersed or clustered respectively. 



 

46 

 

Finally, we found that non-neutral partitions were phylogenetically clustered with 

respect to the metacommunity as a whole. For this we calculated the phylogenetic 

diversity of each partition and compared these observed values to the phylogenetic 

diversity expected if taxa were sampled randomly with respect to phylogeny (O’Dwyer et 

al., 2012). As expected, the observed phylogenetic diversity for neutrally distributed 

groups was consistent with the random prediction across host development. In contrast, 

the phylogenetic diversity of the partitions that deviated above the neutral prediction was 

consistently less than expected, indicative of phylogenetic clustering, while those 

partitions below the neutral prediction were phylogenetically clustered in larval fish but 

became less so as the hosts aged (Figure 7c). Assuming that more closely related 

microorganisms are on average more ecologically or functionally similar than more 

distantly related ones (Burns and Strauss, 2011), this result reinforces the conclusion that 

taxa which deviate from the neutral prediction, particularly those more widespread than 

expected, are portions of the microbiota that are more likely to be actively selected (for or 

against) by the host. 

 

Discussion 

The neutral model used in this study was able to predict the microbial 

distributions across communities by incorporating only the effects of random dispersal 

and demographic processes. Even in adult zebrafish, where the fit of the model was 

relatively poor compared to the younger fish, the distribution of OTUs in the 

metacommunity still followed the same basic trend of abundant taxa being widespread, 

consistent with neutral theory (Supplemental Figure 7). These findings illustrate an 
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important point which is often ignored: not all of the variation among host-associated 

microbial communities need be the result of differences among hosts or associated 

microorganisms. On the contrary, neutral processes of drift and dispersal are powerful 

enough on their own to generate a large amount of diversity both within and among hosts, 

and these processes can explain a significant portion of the structure of communities 

observed in this study. This is not to say that neutral processes are the only important 

factors, but they can act alongside and may even swamp the effects of non-neutral forces. 

These results also indicate that in addition to local ecological factors (e.g. the 

environment of a zebrafish intestine, differential competitive fitness among 

microorganisms, etc.), host-associated microbial communities are heavily influenced by 

ecological dynamics occurring outside of an individual host at a broader scale. 

While the model’s general success highlights the potential importance of neutral 

processes, it is also useful as a null model to identify the conditions under which the 

model’s predictions fail, which can lead to a better understanding of specific additional 

factors structuring these communities. Within each age group there were a number of 

microbial taxa whose distributions deviated from neutral predictions. These taxa were not 

randomly distributed throughout the total metacommunity, implying they are distinct in 

ways that are ecologically informative. The taxa whose deviations from the neutral 

pattern led them to be more widespread than expected are likely taxa that are specifically 

adapted to, and selected by, the host environment. This is supported by the dominance of 

intestinal associated OTUs within non-neutral partitions and is consistent with these 

partitions being phylogenetically clustered, suggesting the host habitat selects microbial 

taxa based on a specific set of phylogenetically conserved traits (Figures 7b and c). 
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Likewise, abundant taxa that occurred less frequently than expected may be characteristic 

of “invasive” microorganisms and potential pathogens that are selected against by the 

zebrafish hosts overall, but are nevertheless able to proliferate in a few susceptible 

individuals. If true, this would explain why these taxa were more likely to be significantly 

associated with fish despite having distributions suggesting that they are being selected 

against. This is in contrast to neutrally distributed taxa, which were more likely to be 

associated with exogenous environmental tank samples as well as exhibiting greater 

phylogenetic variation and diversity across age groups. Such patterns suggest these 

neutrally distributed taxa are less likely to be specifically adapted to the host and their 

presence in any given community is largely the result of their abundance in the 

surrounding metacommunity and source pool. It is worth emphasizing, however, that this 

does not mean that these taxa are functionally unimportant or even that they are not 

interacting intimately with their hosts. Rather the host environment is not differentially 

selecting them, and consequently their distributions are the result of neutral dispersal and 

drift. 

As hosts aged the ability of the neutral model to predict the distribution of 

associated microbial taxa decreased, indicating that neutral processes become relatively 

less important as the host ages (Figure 6a). We suspect this pattern is largely the result of 

the development of the host. The 4 dpf time point, for example, occurs shortly after the 

intestinal tract of the zebrafish is fully opened and colonized by bacteria but before the 

fish develops an active adaptive immune response (between 21 and 35 dpf) and reaches 

sexual maturity (between 35 and 75 dpf). It is also probable that husbandry changes over 

the course of the experiment had an impact on this pattern. The strongest evidence of 
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neutral dynamics occurred before the fish began eating (4 dpf) and while the fish were 

housed in nursery tanks unconnected to the main facility water system (from 4 to 21 dpf). 

At 21 dpf fish were not only moved from nursery tanks to the main facility system tanks, 

but also had their diet significantly changed (see methods). These changes to the host’s 

physiology and environment gradually accumulate over development, and likely 

differentiate the ability of microbial taxa to establish and thrive within them. While it is 

difficult to disentangle whether the observed patterns are driven mostly by developmental 

or husbandry changes, we note that the decrease in the fit of the model continues between 

28 and 380 dpf, during which time the zebrafish continue to develop (see above), but 

their housing conditions remain unchanged. The decrease in the fit of the model was 

accompanied by a decrease in the estimated migration rate, which suggests that these 

changes in the hosts may also decrease the ability of microorganisms to disperse into and 

among hosts. This is further supported by our previous observation that communities 

associated with 4 dpf and 10 dpf fish were more similar to environmental communities 

than those associated with the older 75 dpf fish (Zac Stephens et al., 2016), as well as the 

observation that within-host diversity decreased over the same time span, which is a 

predicted consequence of decreased dispersal rates (Cadotte, 2006). 

The patterns of neutral assembly in the zebrafish intestinal microbiota described 

here are consistent with and provide possible explanations for observed patterns in human 

associated microbial communities. In general, large-scale studies of human intestinal 

microbiota have revealed high variation in community composition, both across 

individuals and within individuals over time (Costello et al., 2009; The Human 

Microbiome Project Consortium et al., 2012; Yatsunenko et al., 2012). Often, this 
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variation is not easily explained by measured host factors, suggesting that much of it 

might be explained by neutral assembly processes. Our observation that communities 

associated with young fish were the most neutrally assembled could also explain 

observations that variation is greater among communities associated with young humans 

(Kurokawa et al., 2007; Palmer et al., 2007; Yatsunenko et al., 2012), the general 

variable nature of infant microbiota over time (Koenig et al., 2011), and observations that 

the infant microbiota is heavily influenced by exogenous microbial communities, 

specifically those of the mother (Dominguez-Bello et al., 2010; Funkhouser and 

Bordenstein, 2013). 

These results may also be extended more broadly beyond animal associated 

communities. Using a similar conceptual framework to the one used here (multiple local 

communities sampling from a broader metacommunity), Jabot et al. (2008) found that the 

distribution of young saplings in a tropical forest was better fit by a neutral model than 

that of older trees. Likewise, Dini-Andreote et al. (2015) found that the relative 

importance of stochastic processes decreased over the succession of microbial salt marsh 

communities. The consistency of this pattern across these different systems may be 

indicative of more fundamental ecological processes. Even if the structure of 

communities is ultimately determined by differential selection, many communities in 

nature may exist in transitory, non-equilibrium states such that these selective processes 

do not have the opportunity to fully play out and manifest their effects (Manceau et al., 

2015). 

Despite extensive research on microbial communities associated with animal 

hosts, it has remained difficult to explain the high levels of variation in these systems. We 
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addressed this question by adopting a framework that recognizes that these questions are 

ecological in nature and can be addressed through the use of established ecological 

theory. Because this framework is grounded in ecological theory, it provides hypotheses 

that can be tested in an explicit manner. For example, it would be interesting to see 

whether the neutral and non-neutral partitions of the metacommunity are physically 

delineated in the intestine, wherein we might expect neutral taxa to be found in the lumen 

while deviations from neutral patterns might be more intimately attached to the epithelial 

layer where interactions between host and bacterial cells may be more likely to occur. 

Additionally, it is possible that non-neutral behavior in these communities is driven by 

differences among taxa in dispersal rates, in which case partitioning the communities on 

the basis of differences in immigration rates would likely improve neutral predictions 

(Janzen et al., 2015). It might also be fruitful to compare the neutral patterns seen in 

healthy hosts to those seen in diseased, infected, or diet-altered individuals which we 

predict will be characterized by deviations from neutral predictions. Similarly, we predict 

that infectious or pathogenic microorganisms could be identified by their deviations from 

neutral predictions, occurring much less frequently than expected given their relative 

abundance in a metacommunity. 

Ultimately, one of the goals of studying host-associated communities is to better 

understand how they might be altered or manipulated to improve health and prevent 

disease. At their core, our results demonstrate a relationship between the abundance of a 

microorganism and how widespread that microorganism is in a population of hosts. In 

other words, the distribution of microorganisms in these systems is the result of both 

local factors specific to individual hosts and those processes occurring at a broader 
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metacommunity scale linking multiple hosts. Attempts to manipulate a host’s microbiota 

must therefore focus on understanding not only the communities within an individual 

host, but also on the communities of microorganisms present around them. 
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BRIDGE 

Neutral theory has had a controversial, yet nevertheless substantial, impact on the 

field of community ecology. The assumption of ecological equivalence of species 

intuitively seems unrealistic, yet the strength of neutral theory is that it highlights the 

importance of processes that are otherwise difficult to study in natural communities, 

random dispersal and ecological drift, and it can serve as a useful null model to infer the 

relative importance of ecological selection. In Chapter III, I showed that neutral processes 

were sufficient to explain a large amount of the variation in the distribution of microbial 

taxa across zebrafish hosts, but that the relative importance of neutral processes 

decreased as hosts accumulated developmental changes, suggesting that the impact of 

selection by the host environment increases. Thus, the assembly of these communities is 

a balance between neutral and non-neutral processes, and this balance shifts as host 

factors change. In Chapter IV, I attempt to explore the balance between dispersal and host 

factors further by experimentally testing the hypothesis that inter-host dispersal can 

mediate and override the effects of host factors, namely the innate immune system. 
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CHAPTER IV 

INTER-HOST DISPERSAL MEDIATES THE ASSEMBLY OF MICROBIAL 

COMMUNITIES ASSOCIATED WITH WILD-TYPE AND IMMUNE 

DEFICIENT ZEBRAFISH 

 

This experiment was designed by me and carried out by both myself and Meghna 

Agarwal under my direction. The analysis of data and writing of the manuscript was 

performed by me. Brendan Bohannan and Karen Guillemin filled advisory roles 

throughout the entire process and Brendan Bohannan was the principal investigator of the 

study. 

 

Introduction 

The microbial communities associated with animal hosts are highly dynamic, 

variable, and malleable, leading to the perception that the rules governing their assembly 

are idiosyncratic (Bashan et al., 2016). However, unlike many other attributes of an 

animal’s biology that are important to its health and fitness, the microbiota is subject to 

migration both from external abiotic sources and transmission from other hosts. If the 

influence of this dispersal among hosts is substantial, then a comprehensive model of 

determinates of community structure must include consideration of not just the local 

factors associated with individual hosts, but also the composition and structure of the 

population of hosts to which they belong. Such a model would ultimately allow us to 

better predict and manipulate animal associated communities to an extent that has thus far 
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eluded researchers, but building one will first require a careful and explicit test of the 

effects of dispersal that is guided by a broader predictive framework. 

Research on animal associated communities has increasingly utilized frameworks 

from general ecological theory to guide experiments and interpret patterns (Costello et 

al., 2012). Much of the modern conceptual synthesis of community ecology emphasizes 

the role of dispersal in the assembly of communities and the maintenance of diversity 

(Vellend, 2010), from island biogeography theory (MacArthur and Wilson, 1967), to 

neutral theory (Hubbell, 2001), and metacommunity theory (Leibold et al., 2004). 

Metacommunity theory is especially focused on dispersal among multiple discrete “local” 

communities, and is thus particularly well suited to describing host-microbe systems, 

where hosts act as environments that are home to and select local communities of 

microorganisms embedded in a broader “metacommunity” associated with a population 

of hosts that are linked by inter-host dispersal. In such a system, dispersal can allow for 

the persistence of species in hosts in which they would otherwise go extinct by 

immigrating from hosts or environments in which they are abundant (i.e. “mass effects”), 

or through tradeoffs between dispersal and competitive ability (Livingston et al., 2012). 

Empirically, dispersal has been shown to be an important determinate of the structure and 

functioning of bacterial communities both experimentally (Lindström and Östman, 2011; 

Declerck et al., 2013; Zha et al., 2016) as well as in naturally occurring communities 

(Lear et al., 2014; Martiny et al., 2011; Yeh et al., 2015). 

The incorporation of dispersal into studies of microbial communities associated 

with animal hosts has been limited, however there are several emerging observations and 

phenomena that suggest it is likely important. At the broad scale, for example, 
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biogeographic patterns in the distribution of commensal microorganisms have begun to 

be observed for communities associated with natural populations of humans and mice 

(Linnenbrink et al., 2013; Martínez et al., 2015). Furthermore, for pathogenic 

microorganisms at least, there is a long history of work showing how dispersal and 

transmission among hosts influences not only the spread but the diversity and function of 

pathogen, though this work has largely been limited to individual species and surprisingly 

little of these advances have been applied to the study of communities of commensal (i.e. 

non-pathogenic) microorganisms (Faith et al., 2015). Despite these preliminary but 

converging lines of evidence, experimental studies explicitly testing the importance of 

dispersal in microbial communities associated with animal hosts remain rare. 

Many manipulative experiments, however, have been indirectly testing the effects 

of dispersal on the microbiota, where so called “cage effects” routinely explain 

significant amounts of variation in the composition of communities associated with 

laboratory animals housed in separate units, as well as in phenotypes known or suspected 

to be mediated by the microbiota (Arthur et al., 2012; Deloris Alexander et al., 2006; 

Hildebrand et al., 2013; McCafferty et al., 2013; Campbell et al., 2012). Interestingly, 

experiments studying the innate immune system have often shown that cohousing of 

healthy and immune-deficient animals can transfer phenotypes associated with immune 

pathway mutants, including increased inflammation, colitis, and obesity-related 

metabolic abnormalities (Brinkman et al., 2013; Vijay-Kumar et al., 2010; Wen et al., 

2008; Zenewicz et al., 2013). Similar investigations of the link between innate immunity 

and associated microbial communities have had conflicting or inconclusive results, with 

some finding little to no effect of innate immune pathways on community composition or 
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diversity, especially in cases were both wild type and immune-deficient animals are 

cohoused or from the same litter (Dimitriu et al., 2013; Elinav et al., 2011; Loh et al., 

2008; Albert et al., 2009; Ubeda et al., 2012). Taken together, these patterns not only 

reinforce the notion that dispersal has an important impact on the assembly of host-

associated microbial communities, but further that an explicit accounting of dispersal in 

these systems could resolve their inconsistencies and idiosyncratic behavior. 

The lack of studies on dispersal in host-microbe systems can in part be attributed 

to the difficulties in both measuring and manipulating dispersal among animal hosts. 

Studies involving humans and other natural populations of animals cannot control inter-

host transmission for extended periods of time and are thus limited to natural 

experiments. Even in the popular mouse model system, it can be impractical to separately 

house large numbers of individuals and identifying the medium or vectors through which 

inter-host dispersal occurs can be difficult. To overcome these challenges, zebrafish, 

Danio rerio, together with the microorganisms inhabiting their intestines provide an ideal 

model system in which to study how inter-host dispersal interact with individual host 

factors to shape the composition of associated microbial communities. Doing so allows 

us to raise large numbers (>100) of individuals in housing conditions that control the 

transmission of microbes among fish as well as sample and characterize the microbial 

communities associated with their environment (i.e. tank water and food). The genetic 

malleability of zebrafish also enables us to alter host characteristics in order to set up 

populations consisting of varying levels of host heterogeneity, specifically for factors 

which we suspect interact directly with microorganisms such as innate immune function. 
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Finally, the ease with which zebrafish embryos can be made “germ-free” means we can 

easily control the initial microbial exposure and source pool (Pham et al., 2008). 

We performed an experiment using zebrafish to determine how inter-host 

dispersal interacts with individual host factors to shape the communities of 

microorganisms associated with the zebrafish intestine. We were particularly interested in 

such interactions with the host innate immune system, given its ability to directly sense 

and interact with commensal microorganisms, its overall importance to host health, and 

the previously described inconsistent effects on associated microbial communities. 

Therefore, our first goal was to assess the impact of innate immunity on the composition 

and diversity of communities in the zebrafish intestine by comparing communities 

associated with wild type (WT) zebrafish that possess a fully functional immune system 

to those associated with immune-deficient myd88- mutant zebrafish. The myeloid 

differentiation primary response gene 88, or MyD88, encodes a universal adapter protein 

in the Toll-Like Receptor (TLR) pathway and is responsible for activating several 

immune responses in response to signaling from the microbiota including the production 

of pro-inflammatory cytokines and antimicrobial peptides and the detoxification of the 

bacterial product lipopolysaccharide (Bates et al., 2006; Karmarkar and Rock, 2013; 

Janssens et al., 2002). Thus, while mutants lacking MyD88 still have some innate 

immune functionality through other pathways, overall the ability of zebrafish to mount a 

normal innate immune response is compromised. However, given the inconsistencies 

among previously reported studies of the effects of host immunity, including the 

TLR/MyD88 pathways on the microbiota, our ultimate goal was to ask whether dispersal 

among hosts was a powerful enough process to mediate, or even overwhelm, the effects 
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of the host innate immune system. Here we show that not only does the presence or 

absence of dispersal among zebrafish have a substantial impact on microbial community 

composition and diversity, but inter-host dispersal also overwhelms the effects of the 

MyD88 pathway such that the impact of myd88 deletion on intestinal microbial 

communities is only apparent in the absence of inter-host dispersal. 

 

Materials and Methods 

Zebrafish husbandry 

To study the effects of innate immunity on the zebrafish intestinal microbiota, we 

employed wild type (WT) AB/Tübingen heterozygous fish with a fully functional 

immune system and isogenic immunocompromised mutant myd88- zebrafish. Because 

there is no practical or non-invasive method to reliably distinguish myd88- from WT 

zebrafish embryos, the embryos for each genotype were generated from two crosses of 

homozygous parents. To eliminate potential maternity effects, standard gnotobiotic 

zebrafish protocols were used to make the embryos “germ-free” (free of microorganisms) 

prior to beginning the experiment. 

Without a complete understanding of the modes and vectors by which 

microorganisms disperse from one zebrafish host intestine to another, it is difficult to 

know how to manipulate inter-host dispersal. We therefore took an implicit approach, and 

either allowed dispersal to occur among hosts or prevented all inter-host dispersal. This 

was done by cohousing or isolating zebrafish in glass Erlenmeyer flasks, such that 

microorganisms could disperse among hosts in the same flasks, but not among hosts in 

different flasks. Beginning as germ-free embryos, zebrafish were raised in flasks alone 
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(“solitary”), or cohoused with ten total zebrafish of the same genotype (“segregated”), or 

five of each genotype (“mixed”), per flask (Figure 8a). Initially, 20 fish of each genotype 

were raised alone in solitary flasks, 40 fish of each genotypes were raised across four 

replicate segregated cohoused flasks, and 20 fish of each genotype were raised across 

four replicate mixed cohoused flasks, resulting in a total of 160 zebrafish at the beginning 

of the study. The volume of embryo media and size of flask was scaled to the number of 

fish, i.e. 50mL of embryo media in a 125mL Erlenmeyer flask for solitary conditions and 

500mL of embryo media in a 1L Erlenmeyer flask for cohoused conditions. Doing so 

allowed the density of fish and the surface area to volume ratio of liquid in the flask to be 

equivalent across housing conditions. In order to maintain water quality, 75-90% of the 

embryo media in each flask was removed and replaced with fresh, but not sterilized, 

embryo media every day. During this time, the majority of food debris and zebrafish 

feces, as well as any dead fish carcasses, were removed as well. Once the zebrafish fully 

hatched from their chorions (by 4 days post fertilization or “dpf”), fish were fed live 

rotifers to a concentration of 20 individuals per mL, followed by the addition of live brine 

shrimp beginning at 10 dpf once per day. The zebrafish were raised in this manner until 

21 dpf, at which point the experiment was ended. 

 

Sampling and DNA/RNA extractions 

At 21 dpf, the juvenile zebrafish were euthanized and dissected in order to sample 

their intestinal communities by 16S rRNA gene sequencing, as well as to characterize 

their innate immune response by qPCR of two genes encoding innate immune cytokines: 

il-1β and c3. Each individual intestine was aseptically removed and placed in a sterile 
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2mL screw cap tube with 200mL nuclease-free water while the remainder of the 

zebrafish carcass was placed in a 2mL screw cap tube with 1mL of TRIzol (Life 

Technologies, Carlsbad, CA, USA). Both sample types were then immediately frozen in 

liquid nitrogen and stored at -80°C until DNA/RNA extractions were performed. In order 

to identify the genotype of mixed-cohoused zebrafish, mixed-cohoused samples were 

genotyped by PCR of the myd88 gene. 

DNA and RNA was co-extracted from intestinal samples using the MoBio 

PowerMicrobiome RNA Isolation kit (product number: 26000-50) with the addition of β-

Mercaptoethanol (Sigma product number: M3148-25ML) using the manufacturer’s 

suggestions for co-extraction of both DNA and RNA. Unfortunately, the resulting 

concentrations of RNA from intestinal samples were too low for reliable measurements 

of il-1β and c3 expression by qPCR. Therefore we estimated systemic responses by 

measuring gene expression of il-1β and c3 in RNA extracted from the remaining 

zebrafish carcasses. RNA was extracted from carcasses using a standard laboratory 

TRIzol extraction protocol. 

The water from each flask was collected and individually passed through 2 μm 

cellulose nitrate filters in order to collect the microbial biomass for DNA extraction and 

subsequent community profiling. DNA was then extracted off of the filters using the 

MoBio PowerWater DNA Isolation kit (product number: 14900-50-NF) as per the 

manufacturer’s instructions. 

 

cDNA conversion and qPCR 
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Extracted zebrafish RNA was converted into cDNA using the Superscript IV 

reverse transcriptase kit (Invitrogen) following the manufacturer’s instructions. qPCR 

assays were performed in 20 ul reactions with 20 ng of cDNA, and 400 nM gene-specific 

or control primers. Gene-specific primers were ordered from Eurofins Genomics with the 

following sequences: IL-1B: F: 5’CATCAAACCCCA ATCCACAG-3’, R: 5’-

CACCACGTTCACTTCACGCT-3’; C3: F: 5’-CGGACGCTG ACATCTACCAA-3’, R: 

5’-TCCAGGTCTGCTCT CCCAAG-3’. Primers for the housekeeping genes SDHA and 

ElF-1B (used to normalize the results) were ordered from PrimerDesign. All reactions 

were performed using a Bio-Rad CFX96 Real-Time PCR (qPCR) Thermocycler.  

 

16S rRNA gene sequencing and processing 

We characterized the microbial communities of individual samples via Illumina 

(San Diego, CA, USA) sequencing of 16S rRNA gene amplicons. The V4 region of the 

16S rRNA gene was targeted using the following primers: 515F (5’-

TATGGTAATTGTGTGCCAGCMGCCGCGGTAA-3’) and 806R (5’- 

AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’). To generate amplicons that 

could be used for Illumina sequencing, we used a single-step PCR to add dual indices and 

adapter sequences to the V4 region of the bacterial 16S rRNA gene and generate paired-

end 150 nucleotide reads on the Illumina HiSeq 2500 platform. The resulting 16S rRNA 

gene sequences were quality filtered and processed using methods implemented by 

FLASH (Magoc and Salzberg, 2011) and the FASTX Toolkit (Hannon Lab, 2010). 

Operational taxonomic units (OTUs) were defined de novo using 97% sequence 
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similarity in the USEARCH pipeline (Edgar, 2010). Read assembly, quality control, and 

OTU table building were done on the University of Oregon ACISS cluster. 

 

Community analysis and statistics 

Prior to analysis, OTU abundance tables were rarefied to 13700 sequences per 

sample and then Hellinger transformed in order to standardize counts (Legendre and 

Gallagher, 2001). We measured differences in community composition using the 

Canberra distance. In order to assess whether different treatments or host factors had a 

significant effect on community composition, we performed permutational multivariate 

analysis of variance (PerMANOVA) with 1000 random permutations using these 

distances. To measure the overall variation in community composition within groups, we 

performed a multivariate homogeneity of group dispersions test, which briefly measures 

the average distance of each community from the group centroid in multivariate space 

followed by analysis of variance (ANOVA) to assess the significance of differences 

among groups (Anderson et al., 2006). Variance partitioning on community composition 

by host factors (standard length and il-1β and c3 gene expression) was done by canonical 

redundancy analysis to measure both the unique and shared contributions of each host 

factor (Legendre, 2008). Calculation of the Canberra distance, PerMANOVA, Shannon 

diversity, multivariate dispersions test, and redundancy analysis were all performed in R 

(R Core Team, 2016) using the vegan package (Oksanen et al., 2016). All other statistical 

analyses were performed in base R, while plots were made with the help of the ggplot2 

package (Wickham, 2009). 
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Results 

We raised two types of zebrafish, immunocompetent wild type (WT) zebrafish 

and immune deficient myd88- zebrafish, under three distinct housing conditions designed 

to either allow or restrict dispersal among hosts: solitary conditions in which each 

individual zebrafish was raise alone with no exposure to other individuals (i.e. no inter-

host dispersal), or cohoused, either with other members of the same genotype only 

(segregated) or with members of both genotypes (mixed; Figure 8a). Like all jawed 

vertebrates, zebrafish also have an adaptive immune system, however the adaptive 

immune system in zebrafish does not become active until the fish are approximately 28 

dpf (Lam et al., 2004). Therefore, to isolate the effects of the innate immune system 

while still allowing the fish to grow and develop into juveniles, we raised fish to 21 dpf. 

At this point we euthanized the fish and characterized both the microbial communities 

associated with their intestines and those associated with their food and flask water. As 

one might expect given the importance of host immunity to defense against pathogens, 

immune-deficient myd88- fish had higher mortality rates, and notably, their mortality 

rates were higher in the cohoused treatments compared to the solitarily treatment (Figure 

8b). Interestingly, mortality rates for WT fish were also higher when cohoused, especially 

when cohoused with myd88- fish. Because of this, by the end of the experiment the 

number of fish in each flask were no longer equal. However we did not observe a 

significant effect of the ultimate number of fish per flask on community composition 

within or across treatments (PerMANOVA: p > 0.05). 
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Figure 8: (a) Experimental design. WT and myd88- zebrafish were raised in one of three 
housing conditions in order to manipulate the degree of inter-host dispersal: housed alone 
with no inter-host dispersal (solitary), cohoused with only individuals of the same 
genotype (segregated), or cohoused with individuals of both genotypes (mixed). (b) 
Proportion of surviving individuals in each genotype by housing treatment over time 
(days post fertilization, d.p.f). For the mixed housing treatment, the genotype of 
individuals could not be determined until the end of the experiment, so the survivorship 
curve represents both genotypes until the last time point. 
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Overall, there was a significant but weak difference in the composition of 

communities associated with WT and myd88- zebrafish across the entire dataset (Table 3; 

Figure 9a). However, overall this effect was subtle, and there was no significant 

difference between genotypes in terms of either within-host diversity (ANOVA of the 

effect of genotype on Shannon diversity index: p > 0.05; Figure 9b) or the overall 

similarity of communities (Multivariate dispersion test; p > 0.05; Figure 9c). This 

changed once dispersal limitations among hosts were considered. Not only did the 

housing condition alone explain a greater amount of variation in community composition, 

but there was also a strong interaction between housing and genotype such that there was 

a much greater difference in microbial community composition between genotypes when 

hosts were raised solitarily compared to cohoused, either within or across genotypes 

(Table 3). This was true both in terms of overall composition as well as differences in 

diversity (ANOVA of effect of housing conditions on Shannon diversity index: F-statistic 

= 36.6, p < 0.001). Communities associated with solitary fish of both genotypes were 

significantly less diverse than cohoused communities and bore less of a similarity to 

communities in the surrounding flask water (Figure 9d). 

The strong effect of housing conditions on community composition and diversity 

is consistent with our predictions of how inter-host dispersal would mediate the assembly 

of host-associated communities. To further investigate, we measured the relationship 

between individual host factors and community composition within each housing 

treatment. We hypothesized that dispersal among heterogeneous hosts would dilute the 

effects of local host factors, and therefore the relationship would be strongest for solitary 

hosts and weakest for mixed-genotype cohoused hosts. We first measured the standard  
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Table 3: Results of a PerMANOVA analysis on the effects of genotype and housing 
conditions on community composition. P-value calculated from a distribution of 1000 
random permutations. 
 

 

 

length of each zebrafish (Figure 10a), which is known to be an overall indicator of fish 

development and health (Parichy et al., 2009), and which we had previously shown was a 

strong predictor of intestinal microbial communities across zebrafish development 

(Stephens et al. 2016). To characterize the level of innate immune activity of each host, 

we also measured the transcriptional levels of two immune genes: one, c3, in the MyD88-

independent complement pathway, and one, il-1β, in the MyD88-dependent pathway. As 

expected given their genotype, we found expression of il-1β to be lower in myd88- 

compared to WT hosts, while expression of c3 was similar between the two genotypes 

(ANOVA: F-statistic = 13.9,  p < 0.001 for il-1β and F-statistic = 0.11, p = 0.74 for c3; 

Figure 10b and c). It is noteworthy that despite having a strong effect on the microbiota, 

housing conditions had no clear effect on host innate immune response (ANOVA: p > 

0.05 for both il-1β and c3). This led us to believe that inter-host dispersal mainly altered  
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the ability of microorganisms to track the local host environment rather than changing the 

host environment itself. To test this, we performed a redundancy analysis to determine 

the unique and shared contribution of each host factor to explaining the variance in 

community composition. Consistent with our hypothesis, a greater amount of variance in 

community composition was explained by host factors in solitary, but not segregated- or 

mixed- cohoused, WT and myd88- hosts (Figure 10d). 

Figure 9: Effects of host genotype and housing conditions on the composition and 
diversity of associated microbial communities. (a) NMDS ordination of Canberra 
distances among individual intestinal communities. (b) Shannon diversity, (c) beta-
dispersion, and (d) similarity to water communities. For b-d, blue and orange points 
represent values for individual WT and myd88- samples, black points represent group 
means with standard error bars. 
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Interestingly, cohousing hosts had a similar effect on communities regardless of 

whether hosts were cohoused with only members of the same genotype or with members 

of both genotypes, such that there was no difference between segregated-cohoused and 

Figure 10: Relationship between host factors and microbial community composition. 
Observed standard length (SL) of zebrafish hosts (a), the relative expression of host c3 
(b) and il-1β (c) genes, and partitioned variance explained following a redundancy 
analysis (d). Shown are the adjusted R-square values for the unique and shared 
contribution of multiple host factors: il-1β expression (IL1B), c3 expression (C3), and 
standard length (SL). Negative adjusted R-square values are not shown (considered as 
null). 
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mixed-cohoused hosts either within or across genotypes (PerMANOVA: p > 0.05). This 

suggests that the homogenizing effect of cohousing isn’t just due to exchange among 

hosts diluting the effects of immune activity, but it is also likely that inter-host dispersal 

alone allows for the persistence of taxa that would otherwise be excluded from a system 

with only a single host. In support of this explanation, we found that the majority of taxa 

that occurred in solitary communities were also detected in their cohoused counterparts 

(86% and 88% for solitary WT and myd88- hosts respectively), while a much smaller 

proportion of taxa that occurred in cohoused communities were also detected in their 

solitary counterparts (59% and 64% for cohoused WT and myd88- hosts respectively). 

 

Discussion 

Dispersal in ecological communities is a notoriously difficult process to study, 

and this is no less true for the communities of microorganisms that colonize human and 

other animal hosts. This is in large part due to the technical and logistical difficulties in 

observing, measuring, and manipulating the movement of organisms in nature. It is 

perhaps for this reason that there are few empirical studies on the effects of dispersal on 

host-associated microbial communities, despite the fact that inter-host transmission is a 

key feature defining the fitness of pathogenic organisms as well as a large body of 

ecological theory and empirical work predicting its importance in communities in 

general. Our approach was thus to utilize a model system, the zebrafish gut microbiota, 

wherein we could manipulate inter-host dispersal to assess its relative importance 

compared to individual host factors. Doing so, we showed that not only is inter-host 

dispersal a strong determinate of the structure of the gut microbial communities, but it 
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can also mediate and even negate the effects of host factors, such as innate immunity, that 

directly interact with microorganisms. Specifically, inter-host dispersal weakened 

differences between immune-deficient and wild type hosts such that host innate immune 

activity was only able to predict community composition in the absence of inter-host 

dispersal. 

The majority of the patterns in microbial diversity we observed were consistent 

with both predictions from metacommunity theory and empirical observations in other 

systems: namely lower diversity within individual solitary hosts, as well as dispersal 

limitations increasing the difference in community composition between host genotypes 

(Cadotte, 2006; Declerck et al., 2013; Lear et al., 2014). Taken together, these results 

provide some of the first experimental evidence that metacommunity theory provides an 

appropriate framework for the study of host-associated microbial communities, as has 

previously been suggested but not tested (Costello et al., 2012). However, contrary to our 

hypothesis and general predictions from metacommunity theory, there was no difference 

in the variation in community composition among solitary hosts compared to cohoused 

hosts (Figure 9c). We suspect that this discrepancy might be due to the seemingly subtle 

but important distinction that our experiment was designed to only manipulate the degree 

of dispersal among hosts, but explicitly not the rate of dispersal into and out of each 

individual host, whereas conventional metacommunity models from which our 

predictions were derived generally assume dispersal only occurs among local 

communities. Thus, each individual solitary host is experiencing equal migration from a 

shared source (in this case, communities associated with exchanged embryo media and 

rotifer/brine shrimp cultures). This could lead to their homogenization compared to 
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cohoused hosts, which despite also sharing the same source pool, have additional 

metacommunity dynamics at play to introduce heterogeneity (e.g. colonization-

competition tradeoffs). This would also explain why we observed a stronger relationship 

between local host factors (standard length and expression of inflammatory cytokine 

genes il-1β and c3) and community composition in solitary compared to cohoused hosts 

(Figure 3d), whereas the strength of environmental filtering often increases with dispersal 

rates in other metacommunity systems, presumably because of the increased probability 

that each species in the system will have the opportunity to colonize their preferred niche 

(Heino, 2013; Yeh et al., 2015). This suggests that when cohoused, dispersal rates among 

hosts are high enough that the metacommunity dynamics are dominated by “mass 

effects”, which refers to the persistence of species in local communities through 

immigration from communities in which they are abundant, rather than by dispersal 

limitations (Ng et al., 2009). 

At a practical level, these results are important in that they can inform both the 

interpretation and design of manipulative experiments on host-microbe interactions. At 

the very least, when reporting experimental results, researchers should explicitly describe 

the housing conditions used, which unfortunately is currently not always the case. Often 

cohousing is considered a control to ensure all individuals are exposed to the same source 

pool of microorganisms. While likely true, our results demonstrate that doing so can also 

have an impact on the dynamics of associated microorganisms and therefore potentially 

alter host-microbe interactions and ultimately the inferences that are made about the 

importance of various host factors. We also anticipate that there will be variation in the 

degree to which microbially mediated host phenotypes are impacted by inter-host 
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dispersal. If true, it will be interesting to see what factors best predict whether such 

factors are influenced by microbial dispersal. 

These results have wider implications for the assembly of host-associated 

communities as well. Ecological communities assemble at multiple scales with different 

processes acting at each (Lindström and Langenheder, 2012; Cadotte and Fukami, 2005; 

Münkemüller et al., 2014). To date, most research on host-microbe systems has focused 

on the local scale and the interactions between an individual host and the microorganisms 

that reside within them, or at the even finer scale of specific host cell types (Donaldson et 

al., 2015; Spor et al., 2011). These studies have and continue to discover novel 

mechanisms that shape the animal microbiota at fine scales, but there remains the almost 

frustrating inability to identify clear and strong factors shaping it at broad scales (Falony 

et al., 2016; Zhernakova et al., 2016). Our results demonstrate that this approach alone is 

insufficient to fully understand the assembly and dynamics of these systems. Instead, 

such an understanding will require us to expand our focus to the processes shaping these 

systems at the scales of populations of hosts or even communities of multiple host 

species.  
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CHAPTER V 

CONCLUSION 

  

Synthesis 

Some of the oldest debates in community ecology concern the relative importance 

of chance and stochastic processes compared to deterministic forces in the formation of 

communities. Is the assemblage of species occurring at a site the “best” possible 

combination of species that could occur in that environment, or is the composition of that 

assemblage a function of varying dispersal rates and probabilities, stochastic birth-death 

processes, and the unique history of that particular site? Perhaps one reason these debates 

have been featured so prominently over the past century is that one of the ultimate goals 

of community ecology is to be able to accurately predict, manipulate, and engineer 

communities with specific compositions, behavior, and functions. This has certainly been 

a main goal of animal-microbiome studies: to understand the mechanisms of their 

assembly well enough that they can be manipulated to improve the health of the animal 

host. 

The aim of the research presented in this dissertation has been to further this 

understanding by testing the importance of two assembly mechanisms that have often 

been overlooked in animal-microbiome studies, namely microbial dispersal and 

ecological drift. Furthermore these mechanisms were studied in the context of factors 

common to animal hosts but relatively rare in other environments, such as ontogenetic 

development and the immune system. The results of this research have reflected some of 

the historical tension between deterministic and individualistic models of community 
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assembly. It is interesting, for example, that early community ecologists compared the 

assembly of communities to the development of an organism, while more recently the 

assembly of the animal-microbiome was proposed to be analogous to the development of 

a host’s organ. In Chapter II, I showed that while the composition and diversity of 

zebrafish intestinal communities changed in a predictable manner as a function of host 

development, these communities were characterized by a high degree of inter-individual 

variation and their assembly was far less stereotyped than the development of a host 

organ. In Chapter III, I explored the assembly of these communities in more depth and 

showed that a neutral model incorporating only the effects of random dispersal and drift 

could explain a large amount of this variation. However, the ability of the model to do so 

decreased over host development, and microbial taxa whose distributions deviated from 

neutral predictions were ecologically and phylogenetically distinct, showing signs of 

selection by the host environment. Finally, in Chapter IV, I showed that dispersal of 

microorganisms among zebrafish hosts can not only heavily alter the effects of the host 

immune system, but even override it, such that the effect of the immune system on 

community composition was much stronger in the absence of migration from other hosts. 

 

No man is an island, a microbiome unto itself… 

A common theme of this dissertation is that while host-specific factors certainly 

help shape the composition of host-associated microbial communities, they are 

insufficient to fully explain the assembly of these communities. Instead, dispersal and 

chance can have surprising large effects on animal associated microbial communities, and 

can even heavily modify the effects of host-specific factors. This seems like a simple 
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conclusion, but it is important because animals in nature typically do not exist in a 

vacuum. Instead, they are members of populations and those populations form complex 

communities of multiple interacting species. Thus the assembly and dynamics of 

communities associated with any given animal host are not isolated to that individual, but 

are instead influenced by the assembly and dynamics occurring in the communities 

associated with all the other animal hosts and abiotic environments with which the 

individual interacts. A complete model of the assembly of animal associated microbial 

communities will therefore require understanding both the ecology of associated 

microorganisms as well as the ecology of their hosts, and an explicit consideration of 

dispersal in order to link the two. Building such a model will likely be an enormous task, 

and will likely require some conceptual shifts that can be informed by the history of 

community ecology. Hopefully this dissertation will help us move closer towards that 

goal. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER II 

 

SUPPLEMENTAL MATERIALS AND METHODS 

Animal husbandry 

Multiple pairs from a cohort of 320 dpf Tü strain zebrafish maintained at the 

University of Oregon zebrafish facility were set up overnight in separate, autoclaved 

spawning cages containing system water at the University of Oregon’s zebrafish facility 

with dividers separating male and female in order to obtain enough embryos from a 

single pair for the duration of the study. The following day, dividers were removed from 

each of the separate spawning cages and fish were allowed to spawn for 2.5 hours, at 

which point embryos were removed from spawning cages (where adults remained, each 

pair in a separate cage) and allowed to develop until 8 hours post-fertilization in embryo 

medium (EM). A single sibship was identified which contained 280 fertilized, developing 

embryos and was divided evenly among four previously autoclaved tanks containing 

standard, non-sterile EM as well as sterile glass slides for collecting surface 

environmental samples. The parents of the sibship used were euthanized 8 hours after 

spawning, their intestines dissected and frozen in liquid nitrogen and stored at -80ºC for 

later DNA extraction. 

From 8 hours post-fertilization until 21 dpf, fish were maintained in tanks with 

uncirculated system water that was manually changed to remove debris and uneaten food 

on a daily basis by siphoning and replacing approximately one third of the tank volume. 

At 21 dpf, the tanks were transferred to the main facility that housed other zebrafish lines 
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and utilized a recirculating water system, where they remained for the remainder of the 

study. The 21 dpf sampled fish were briefly exposed to the recirculating water system 

before being sampled, but had otherwise been on the closed system of the nursery for the 

entirety of their prior development. Prior to 6 dpf, larval zebrafish were not fed and 

subsisted off yolk alone. At 6 dpf fish were fed with live Paramecium (prepared 

according to methods described by ZIRC, Zebrafish International Resource Center) only 

until 10 dpf. After the 10 dpf sampling until 21 dpf, fish were fed Artemia (brine shrimp; 

Artemia International LLC; cultured according to methods described by ZIRC) 

supplemented with Larval AP100 (Aquatic Eco-Systems, now Pentair Aquatic Eco-

Systems). After the 21 dpf sampling, fish were fed a facility-standard dry food mixture 

twice per day (once in the morning and once in the late afternoon; ~5 hours apart) in the 

main fish facility. The dry diet consisted of a mix of 50% Tetramin Flake (Tetra, 

Blacksburg, VA), 25% Nelson Silver Cup Trout Pellet (Nelson and Sons, now Skretting, 

Tooele, UT) and 25% Zeigler Adult Zebrafish Diet (Zeigler Brothers Inc., Gardners, PA), 

supplemented with a small amount of Cyclop-Eeze (Argent Chemical Laboratories, 

Redmond, WA). Between the 75 dpf sampling and 380 dpf, the standard dry food diet fed 

to fish in the facility was changed to New Life Spectrum Small Fish Formula while fed 

according to the same schedule. While on the main recirculating water system, tanks 

were not cleaned or changed until after 75 dpf to reduce the introduction of bacteria from 

the facility staff.   

 

DNA extraction, 16S rRNA gene amplification and sequencing 
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Dissected intestinal samples were flash frozen in liquid nitrogen then thawed at 

65ºC and DNA extracted using a protocol modified from the Qiagen DNeasy kit to 

include a bead-beating step. After thawing, the samples were bead-beat on high on a 

Mini-Beadbeater-16 instrument (Biospec, Bartlesville, OK) for 1 minute once (4, 10, 21 

dpf), or twice (28 dpf and older), with chilling on ice in between beatings. Subsequently, 

lysozyme was added to a concentration of 20mg/ml and the samples incubated for 45 

minutes at 30ºC. Then, 220 μl (4, 10, 21 dpf) or 440 μl (28 dpf and older) buffer AL 

(Qiagen) was added in addition to 10 μl (4, 10, 21 dpf) or 20 μl (28dpf and older) 

proteinase K (supplied with Qiagen kit), samples vortexed well and incubated for 30 

minutes at 56ºC. After enzymatic digestions, 220 μl (4, 10, 21dpf) or 440 μl (28dpf and 

older) of 100% ethanol was added, samples vortexed, and beads allowed to settle to 

prevent addition to the DNA-binding columns. Then, up to 700 μl of digestion mix was 

added to a Qiamp DNA micro (4, 10, 21 dpf) or Qiagen DNeasy (28 dpf and older) 

column and spun 30 seconds at 6,000 x g. Flow-through was discarded and remaining 

digestion mix was added to columns and spun down again if necessary. In order to ensure 

maximum recovery of DNA, we then rinsed the beads with a 1:1:1 (v/v/v) mix of ELB, 

buffer AL and ethanol and allowed the beads to settle again.  The supernatant was then 

gently removed to avoid sucking up beads, and was applied to the column and spun 

again. Following binding of DNA to column the manufacturer’s guidelines for washing 

were followed and DNA was eluted in 34 μl (4, 10, 21 dpf) or 100 μl buffer AE. 

DNA templates were used in a two-step PCR method to sequence the V4 region 

of the bacterial 16S rRNA gene. The first round of PCR employed primers that were 

comprised of (in 5’ to 3’ direction) partial Illumina adapter sequences, a 6 nucleotide 
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index (each index contained 2 or more mismatches from one another) and the V4 

targeting forward or reverse primer sequence. In order to target the V4 region and obtain 

as much useful sequence as possible from our paired-end 150 nucleotide sequencing runs, 

we used the “V4-reverse” primer identified by (Claesson et al., 2010) along with a 

slightly modified (to reduce anneal temperature range closer to the reverse primer) 

version of the V4 forward primer used by (Caporaso et al., 2011) (see Supplementary 

Table 2 for full oligonucleotide sequences). The first round of PCR was performed in 

triplicate for each sample with approximately equal amounts of DNA template (up to 250 

ng per reaction) for each sample. The reactions were carried out with a 2 minute denature 

step at 98ºC, followed by 22 cycles of denature at 98ºC for 20 seconds, annealing at 50ºC 

for 30 seconds and extension at 72ºC for 20 seconds, with a final extension at 72ºC for 2 

minutes. Triplicate reactions were pooled and cleaned using Zymogen (Irvine, CA) 96-

well format spin columns and eluted in 30 μl. Six microliters of this eluate was used as 

template in the second round of PCR which utilized primers complementary to the partial 

Illumina adapters added in the first round, and added the rest of the Illumina adapter 

sequences. The cycling conditions for the second round of PCR were as before except a 

66ºC anneal step was employed with only 12 cycles. Both PCR reactions used Phusion 

HotStart II polymerase (Thermo Scientific), GC buffer, 200 nM each primer (primers 

were HPLC purified) and Mo Bio (Carlsbad, CA) certified DNA-free water in a total 

reaction volume of 25 μl. The product from the second round PCRs were run out on a 

1.5% agarose gel in 0.5X TBE to separate out low molecular weight primer-dimers as 

well as a smaller than expected band that was cloned and identified as containing 

zebrafish mitochondrial sequences. DNA product in the range of approximately 320 – 
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600 base-pairs was excised from the gel and cleaned up using Zymogen’s ZR-96 

Zymoclean Gel DNA Recovery Kit. Cleaned products were quantified using a Qubit 

(Life Technologies) flourometer then mixed in equal amounts and submitted for 

sequencing on two lanes of the Illumina HiSeq 2000 platform at the University of 

Oregon’s genomics core facility with paired-end 150 nucleotide reads. Samples that 

returned poor numbers of sequences despite good amplification were remixed and 

sequenced on part of a third lane. 

 

Isolate genome DNA extraction and preparation for sequencing 

For sequencing of zebrafish isolated bacterial genomes, genomic DNA was 

isolated from cultures using either the Qiagen DNeasy or Mo Bio Ultraclean Microbial 

DNA Isolation kits. Genomic DNA was prepared for paired-end 150 cycle Illumina 

sequencing using standard paired-end shotgun sequencing library methods. Briefly, 2 μg 

of cleaned genomic DNA in a 100 μl volume of elution buffer was sheared to a median 

size of approximately 300 base-pairs using a Bioruptor (Diagenode; Denville, NJ), then 

cleaned up and concentrated to 35 μl with a Qiagen MinElute column. The entire eluted 

DNA volume was then end-repaired for 30 minutes at room temperature in a 50 μl 

reaction using the NEB (Ipswich, MA) Quick Blunting Kit as per the manufacturer’s 

recommendations. The end-repair reaction was then cleaned up and eluted in 32 μl using 

a Qiagen MinElute column. In order to add A-overhangs, the entire elution volume was 

mixed with 5 l of NEB buffer 2, 10 l of 1mM dATP, and 3 l of NEB Klenow (exo-) 

enzyme and incubated for 30 minutes at 37ºC. This reaction was again cleaned up with a 

Qiagen MinElute column, eluted in 20 l elution buffer and quantified with a Qubit 
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fluorometer. Next, in a 60 l total volume reaction, Illumina adapters containing 5 base-

pair indices and T-overhangs were ligated to the cleaned genomic DNA fragments with 

A-overhangs by adding a 10-fold molar excess of adapters to genomic DNA along with 1 

l T4 DNA ligase (NEB), 6 l of NEB Buffer 2 and 6 l of 10mM rATP and then 

incubated 2 – 4 hours at room-temperature. The entire reaction was cleaned and 

concentrated on a Qiagen MinElute column, eluting in 20 l. From the cleaned ligation, 5 

l was used as template for PCR with Phusion polymerase and primers “PE_Amp1/2” 

(Supplementary Table 2) to generate the asymmetrical adapters. Cycling conditions were 

as follows: 2 minute denature step at 98ºC, followed by 16 cycles of denature at 98ºC for 

10 seconds, annealing at 65ºC for 30 seconds and extension at 72ºC for 30 seconds, with 

a final extension at 72ºC for 2 minutes. Reactions were subsequently cleaned and run on 

a 2% (w/v) agarose gel with 0.5X TBE and a gel fragment in the range of 150 – 600 base-

pairs excised to avoid adapter-dimers, then DNA was extracted using the Qiagen gel 

extraction kit and eluted in 35 l volume. 

 

16S rRNA gene sequence processing and analysis 

Raw reads were end-trimmed at their first nucleotide below quality score 5 in 

order to remove very low-quality nucleotides at the ends that are characteristic of 

Illumina reads. After trimming barcodes and primer sequences, a sliding window quality 

filtering was used with a cutoff of an average of 20 quality score over a 15-nucleotide 

window to trim low quality regions, and the remaining read pairs were subsequently 

trimmed to 100 nucleotides on each end. The high-quality, 100-nucleotide reads were 

then aligned to the zebrafish genome using Bowtie (Langmead et al., 2009) to remove 
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host-derived reads, then to the Greengenes core bacterial alignment using mothur to filter 

reads that did not align to the 16S rRNA gene region targeted by our primers. Pairs of 

100-nucleotide sequences that passed all quality and alignment filters were then selected 

and concatenated prior to demultiplexing using the combined 12 nucleotide index (6 from 

each end). For the analysis of microbial community composition, an open-reference OTU 

picking approach using UCLUST (Edgar, 2010) was used to bin sequences into 97% 

similar OTUs against the Greengenes October 2012 reference set (McDonald et al., 

2012), followed by de novo OTU clustering of the remaining reads that failed to cluster 

against the reference. A minimum OTU cluster size cutoff of four was used based on 

simulations of expected error rates, in which a minimum cutoff of two sequences per 

OTU was required to minimize the creation of spurious OTUs in a dataset the size of the 

one used in this study. The most abundant sequence in each OTU cluster was picked as 

the representative sequence. Representative sequences were aligned against the trimmed 

Greengenes core set, filtered with the Lane mask and used to build a phylogeny with 

FastTree 2 (Price et al., 2010). Taxonomy of representative sequences was assigned using 

Rtax (Soergel et al., 2012) with the Greengenes reference set trimmed to the sequenced 

region to improve taxonomic calls (Werner et al., 2012). After taxonomic assignment 

OTUs that were assigned as chloroplast were removed in addition to those that were not 

assigned as at least “k__Bacteria”. The latter set was determined by BLAST against 

NCBI’s nr/nt database to consist mainly of host-derived sequences that escaped our 

previous Bowtie alignment filter, as well as some fungal mitochondrial sequences. 
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Genomic ancestral state reconstruction sets and metagenomic predictions with 

PICRUSt 

The accuracy of metagenome inferences by PICRUSt (Langille et al., 2013) can 

be affected by the relatedness of observed OTUs to the genomes used as references. This 

relationship can be measured by the phylogenetic distance between each OTU (weighted 

by its abundance) in the sample and its closest relative among the reference genomes, 

resulting in the nearest sequence taxon index (NSTI). In order to decrease this index, and 

thus increase the likely predictive value of PICRUSt inferences, we selected a subset of 

our culture collection of zebrafish gut-associated bacteria and sequenced their genomes 

(deposited under NCBI umbrella BioProject number PRNA202207; see Supplementary 

Table 3 for individual NCBI and IMG accession numbers) for incorporation into the 

reference database (Table 1). We chose 26 isolates that represented the diversity of taxa 

present at different developmental stages (Supplementary Table 3) including a unique 

strain from the previously uncultured class of Firmicutes, CK-1C4-19. 

In order to rebuild genomic predictions for PICRUSt (Langille et al., 2013) we 

first obtained KEGG Orthology (KO) term counts and 16S rRNA gene counts from 12 

899 bacterial genomes on the Integrated Microbial Genomes (IMG) database version 4.2 

(including our zebrafish-isolated strain genomes and publicly available genomes), as well 

as the 16S rRNA gene sequences from the May 2013 Greengenes release. We first used 

the Greengenes provided IMG to Greengenes ID map to extract all the 16S rRNA gene 

sequences in Greengenes that had a corresponding IMG genome and place them at the 

top of sequence files containing the rest of the Greengenes 99% OTU representative 

sequences so that sequenced genomes would preferentially form the cluster seeds. These 
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sequences were then reclustered at 99% similarity, and representative sequences were 

used to build a phylogeny (now preferentially represented by sequenced genomes) for de 

novo genome predictions by ancestral state reconstruction. To determine which zebrafish 

isolated bacterial genomes already had closely related organisms with available genome 

sequences, we first obtained full-length 16S rRNA gene Sanger sequences directly from 

each of our isolate strains (GenBank accession numbers listed in Supplementary Table 3). 

We then used open-reference clustering of the zebrafish isolated bacterial 16S rRNA 

gene sequences against our newly created reference set at 99% similarity against the 99% 

Greengenes OTUs representative sequences which had a corresponding IMG genome 

sequence, to identify the zebrafish isolates strains that were unique as well as those that 

clustered with already sequenced genomes. This resulted in 3 unique strains (ZOR0006, 

ZWU0021 and ZOR0020) that were added to the zebrafish isolate genome incorporated 

dataset and 23 that clustered with an already sequenced genome, of which 22 (1 pair of 

isolates clustered together) were used to replace the corresponding already sequenced 

IMG genome in the zebrafish isolate genome incorporated dataset (Supplementary Table 

3). 

For each of the four different sets of NSTI values from metagenomic inferences 

shown in Supplementary Figure 2, a separate phylogeny was created from 16S rRNA 

gene sequences (accession numbers in Supplementary Table 3) and unique genome 

predictions made with or without different zebrafish isolated bacterial genomes included 

replacing the IMG genome closest relative. Metagenomic predictions were then made for 

the microbial community OTU tables from closed-reference OTU picking. The inclusion 

of genomes from zebrafish isolated strains significantly reduced the NSTI values at 21, 
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35, 75 and 380 dpf time points (p < 0.01, Wilcoxon rank sum test) and had the greatest 

impact on the adult fish where the previously uncultured CK-1C4-19 class of bacteria 

was most abundant. This reduction was not simply due to the inclusion of the novel CK-

1C4-19 genome, as when we replaced only the 23 IMG reference genomes with closely 

related zebrafish isolate genomes (“ZIG included – no novel” in Supplementary Figure 2) 

there were still significant decreases in the NSTI values at late-juvenile and adult time 

points. As the inclusion of all zebrafish isolated bacterial genome sequences provided the 

lowest NSTI values, all subsequent analyses of predicted metagenomes were based off 

these PICRUSt inferences. Analysis of differences in metagenomic profiles was 

performed using STAMP v2.0.5 (Parks and Beiko, 2010). Analysis of discriminatory 

genes among genomes of zebrafish isolated strains was performed with LEfSe (Segata et 

al., 2011). 

 

Isolation of and naming convention of zebrafish bacterial strains 

All bacterial isolates were initially cultured directly from zebrafish intestinal 

samples from a variety of developmental stages (Supplementary Table 3). Strains were 

isolated from fish at the University of Oregon (prefixed ZOR) and the University of 

North Carolina at Chapel Hill (prefixed ZNC) or obtained from a previously published 

collection at Washington University in St. Louis (prefixed ZWU; Rawls et al., 2006). All 

strains were able to grow on general-purpose brain heart infusion (BHI) media under 

aerobic conditions at 30°C with the exception of ZOR0034 and ZWU0022 which 

required anaerobic conditions. 
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Genome sequencing, assembly and annotation of zebrafish bacterial strains 

Raw Illumina reads were first quality trimmed and filtered then screened for 

remaining adapter sequences with Cutadapt (Martin, 2011). The quality filtered reads 

were then put through FLASH (Magoč and Salzberg, 2011) to assemble any overlapping 

pairs of reads into longer contigs. Overlapping FLASH assembled contigs, non-

overlapping paired reads and remaining quality-filtered, unpaired reads were assembled 

using velvet (Zerbino and Birney, 2008). All gene calling and annotation of the velvet 

assembled contigs was done by IMG except for ZWU0020 which was previously 

annotated on RAST and gene calls on contigs were imported into IMG and further 

annotation was performed by IMG. 

 

Taxonomic placement of novel zebrafish bacterial strains 

In order to confidently assign the taxonomic relationship of the 26 isolate 

genomes we determined their phylogenetic relationships among sequenced genomes 

based on the alignment of 400 proteins as implemented by PhyloPhlAn (Segata et al., 

2013).  The resulting taxonomies were in agreement with assignments from full length 

16S rRNA gene sequences derived from each of the strains, which were used to extend 

the taxonomic assignments where high confidence results were obtained (Supplementary 

Table 3) using SINA (Pruesse et al., 2012) alignment and SILVA taxonomy inference 

and RDP classification (Wang et al., 2007). The CK-1C4-19 strain full taxonomic string 

was not confidently inferred by PhyloPhlAn due to an absence of closely related 

genomes, but its phylogenetic placement was in agreement with it being part of the 

Firmicutes and its nearest neighbor being the class Erysipelotrichia. Given the abundance 
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of the CK-1C4-19 class in our study, its candidate status, and the lack of previous 

description of it outside of high-throughput sequencing datasets, we also investigated if 

these 16S rRNA gene sequences were present in the high-quality full length clone library 

derived from our previous zebrafish study (Roeselers et al., 2011). We found a single 

clone isolated from the University of North Carolina at Chapel Hill facility that clustered 

at 97% similarity (NCBI Accession: HM780377.1) with the ZOR0006 16S rRNA gene 

sequence and was also classified only as a Firmicutes, with other known Firmicutes 

clones clustering together with ZOR0006 at the shallower 82% similarity. Taken 

together, these independent pieces of evidence suggest that the uncultured and previously 

unsequenced CK-1C4-19 bacteria are commonly found in zebrafish intestines and are 

most appropriately placed as a class within the Firmicutes, in line with the Greengenes 

taxonomy. 

 

Quantification of secreted IgM (sIgM) expression 

Three fish from each tank from timepoints 10, 21, 28, 35, and 75 dpf (60 fish 

total) were analyzed for sIgM expression via qRT-PCR. Total RNA extraction was 

performed on the fish carcasses (after gut dissection described above) using a 

TRIzol/chloroform extraction protocol. cDNA was synthesized using an oligo-dT primer 

and SuperScript® III Reverse Transcriptase (Life Technologies) following the 

accompanying protocol, including an addition of RNaseH (Life Technologies) at the end. 

Each sample was run in duplicate (including the two controls). This required 

spreading the samples across 3 different runs, divided such that run was not covarying 

with tank or timepoint. The controls were housekeeping genes SDHA and ElF1β (primers 
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purchased from PrimerDesign). The master mixed used was KAPA SYBR® FAST ABI 

Prism® 2X qPCR Master Mix (KK4605). Primers targeting sIgM were as identified in 

(Danilova and Steiner, 2002), and are listed in Supplementary Table 2.  

 

SUPPLEMENTAL RESULTS 

Discriminatory genes in zebrafish isolated strain genomes 

Amongst our culture collection of 26 zebrafish isolated bacterial strains with 

sequenced genomes we identified 8 strains that belonged to genera that were highly 

discriminatory of the larval (4 and 10 dpf), 35 dpf and adult (75 and 380 dpf) age classes 

(Supplementary Figure 4), as well as a representative of the previously uncultured CK-

1C4-19 candidate class that discriminated adult fish microbiotas. We asked what genes 

distinguished these isolates representative of each age class from the others within our 

culture collection. We identified a few genes overrepresented among isolates 

discriminating each age class, including two KO (KEGG Orthology) groups involved in 

chemotaxis among isolates discriminating larval fish (K03406; methyl-accepting 

chemotaxis protein, K03408; purine-binding chemotaxis protein CheW) and two ferrous 

iron transport proteins (K04758, K04759) in isolates discriminating adult fish. Because 

the strength of this analysis is limited due to the few isolate genome comparisons, we 

asked if these differentially abundant genes within isolates were also changing 

throughout development when all the predicted genomes of reference OTUs identified by 

16S rRNA gene sequencing (the predicted metagenome) were considered. PICRUSt 

derived metagenomic predictions for each age class showed a corresponding increase in 

abundance of KO groups identified as enriched in isolates discriminating a given age 
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class (Supplementary Figure 6d), showing the ability of PICRUSt to reproduce expected 

changes in gene abundances on the scale of the entire predicted metagenome. 

 

Predicted metagenomes suggest functional shifts by the microbiota during 

development. 

While most broad predicted functional categories exhibited relatively little 

variation (Supplementary Figure 5) compared to variations in taxonomic abundances, we 

found that larval, juvenile and adult metagenomes had distinct abundances of predicted 

KO groups that clustered these age classes together (Supplementary Figure 6a), and some 

significant differences in functional categories between larval and adult microbiota were 

apparent (Supplementary Figure 6b). In particular, we noted that cell motility, including 

the aforementioned bacterial chemotaxis genes, was predicted to be enriched in larval 

microbiotas and carbohydrate metabolism enriched in adult microbiotas (Supplementary 

Figure 6c). While KO terms summarized by functional categories showed little 

differences between environmental and intestinal samples (data not shown), there was a 

significant increase in the overall dissimilarity in abundance of predicted KO terms in the 

environment and intestines throughout development (Supplementary Figure 6e; Pearson's 

r = 0.255; p < 0.0001).  Additionally, there was an increase in predicted KO term 

dissimilarity between individuals throughout development (Supplementary Figure 6e; 

Pearson's r = 0.457; p < 0.0001). 
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APPENDIX B 

SUPPLEMENTAL FIGURES AND TABLES 

 

Supplementary Figure 1 (following page): Rarefaction curves showing the average 
number of OTUs (a), phylogenetic diversity (b), and Simpson’s diversity index (c) for 
intestinal samples from each age group as the number of sequences used per sample 
increases. Slight, non-monotonic behavior in the curves at high rarefaction depths are the 
result of the number of samples decreasing with depth (d). Dotted vertical lines indicate 
the rarefaction depth used for the majority of the analysis in this study (4250 sequences 
per sample). Error bars indicate 95% confidence intervals. 
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Supplementary Figure 2: Inclusion of zebrafish-specific genomes is predicted to 
increase inferred metagenome accuracy.  NSTI values from PICRUSt derived 
metagenomic predictions with and without zebrafish isolate genomes (ZIG). Letters 
denote significant differences (P < 0.01; Wilcoxon rank sum test) in NSTI values 
between one of the three groups including ZIG data and the original IMG 4.2 data 
without ZIGs. 
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Supplementary Figure 3: Class level composition of microbiotas from individual 
samples. The composition of microbiotas from individual fish and environmental 
samples. Individual Samples under “Embryo Media” represent the initial environments of 
embryos. Sample w0MF is from the water the embryos were spawned into while samples 
w0EM1, 2 and 3 represent replicate samples from the embryo media before the embryos 
were added immediately after collection from spawning tanks (see Supplementary Table 
3 for sample name descriptions). 
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Supplementary Figure 4: Highly discriminatory taxa among developmental time points. 
Adult class includes 75 and 380 d.p.f. fish. Circles represent discriminatory taxa colored 
by their respective fish age with color underlay extended to outer circle where taxonomic 
alphanumeric key is listed. Non-significant lineages have been trimmed for clarity 
(except parent taxa, open-white circle). Bacterial orders, families and genera are denoted 
by alphanumerics, while phylum and class names are shown directly on the cladogram. 
Asterisks (*) denote discriminatory genera that have a zebrafish isolated strain 
representative with a sequenced genome. 
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Supplementary Figure 5: Functional categories inferred in individual fish microbiotas. 
KO term categories summarized at level 2 within the KO hierarchy show few major 
changes throughout development. Shown for zebrafish gut samples only. 
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Supplementary Figure 6 (following page): PICRUSt predicted metagenomes reflect 
unique functions of discriminatory isolate genomes and show increasing dissimilarity 
among predicted metagenomes throughout development. (a) PCoA plot from the 
abundance of all individual KO terms from PICRUSt predictions of intestinal 
communities with all ZIG included shows clustering of larval, juvenile and adult 
metagenomes. (b) Significantly differentially abundant (those with P < 0.01) level 2 
summarized KO groups between larval and adult intestines. Average abundances of KO 
terms belonging to each functional group are shown along with Benjamini-Hochberg 
corrected q-values from Welch’s t-test. (c) Boxplots showing the change in the relative 
abundance of KO terms belonging to two of the most significantly changed functional 
groups between larval and adult intestines (Kruskal-Wallis, P < 0.0001; cell motility and 
carbohydrate metabolism). (d) Abundances of three KO terms in PICRUSt predicted 
metagenomes throughout development. K03406 was found to be enriched in isolate 
genomes discriminatory of larval (4 and 10 d.p.f.) fish, K03321 in genomes 
discriminatory of 35 d.p.f. fish and K04758 in genomes discriminating adults (75 and 380 
d.p.f.). (e) Predicted metagenome’s Bray-Curtis dissimilarity between fish and between 
fish and environment increases as the host develops. 
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Supplemental Figure 7: Fit of neutral model across zebrafish development. The 
predicted occurrence frequencies for 10 (A), 21 (B), 35 (C), and 75 (D) dpf zebrafish 
communities. OTUs that occur more frequently than predicted by the model are shown in 
green while those that occur less frequently than predicted are shown in orange. Dashed 
lines represent 95% confidence intervals around the model prediction (blue line). 
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Supplemental Figure 8: Partitioning of metacommunities into neutral and non-

neutral groups. A) The neutral model was fit to the metacommunity of each age group. 
B) OTUs were then divided into separate partitions based on whether they were 
consistent with (in black) or deviated above (in green) or below (in orange) the neutral 
prediction. This resulted in 3 partitions per each of 7 age groups (21 total). C) Partitions 
were analyzed to test the hypothesis that deviations from neutral predictions are 
ecologically informative. 
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Primer Name Oligonucleotide Sequence (1) Use 

V4F_b CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATXXXXXXGTGTGCCAGCMGCCGCGG 16S PCR, round 1 

V4R_b ACACTCTTTCCCTACACGACGCTCTTCCGATCTXXXXXXTACNVGGGTATCTAATCC 16S PCR, round 1 

16S_ill_step2_P2 AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC 16S PCR, round 2 

16S_ill_step2_P1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG 16S PCR, round 2 

sIgM_f ATGGAGCAATGGCACTGTG sIgM qPCR 

sIgM_r  CCAAGTCACAAACACCTCCTTGGGC sIgM qPCR 

PE_Amp1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC 

Genome 
sequencing 

PE_Amp2 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC 

Genome 
sequencing 

1.  Bold characters denote the sequences targeting the 16S rRNA gene.  
     Underlined Xs illustrate the 6 base-pair index positions.  
     Corresponding colored characters indicate overlapping bases in round 1 and round 2 PCR primers. 

 

Supplemental Table 1: Primers used in the study. 
 
 
Supplemental Table 2 (following page): Identity and taxonomic placement of 26 
zebrafish isolated strains used in this study. 
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