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DISSERTATION ABSTRACT 
 
Emily Celestina Sales 
 
Doctor of Philosophy 
 
Department of Biology 
 
September 2019 
 
Title: Regulation of Drosophila Neural Circuit Assembly by Cell Surface Molecules 
 

Nervous systems assemble with remarkable organization and precision. 

Developmental mechanisms ensure that neurons identify and form specific synapses with 

the correct set of neurons at the appropriate subcellular locations. This precise 

connectivity determines how information flows within circuits and defines key aspects of 

neural circuit function. Understanding the molecular mechanisms that underlie synapse 

specificity has the potential to provide insight into neurodevelopmental disorders and 

their etiology, and to inform the development of treatments. Cell surface molecules 

(CSMs) are well positioned to regulate synaptic partner choice and have emerged as key 

regulators of axon guidance, cell recognition, and synapse formation. To better 

understand synapse specificity, it is critical to characterize CSM function and their roles 

in neural development. Here, I describe a model system designed to identify CSMs, or 

other classes of genes, that regulate synapse specificity in pairs of larval Drosophila 

neurons. Using this model system, I investigated the role of Dpr/DIP genes, cell adhesion 

molecules in the immunoglobulin family, in synapse formation. Furthermore, I explored 

the role of axon guidance molecules, Robo-2 and Unc-5, in the subcellular positioning of 

synapses in these neurons, and explored the contribution of dendritogenesis in the 
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regulation of synapse specificity. This dissertation contains previously published co-

authored material (Chapter IV). 
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CHAPTER I 

 

INTRODUCTION 

 

Assembling neural circuits with cellular and subcellular precision 

Nervous systems function to control animal behavior and are composed of many 

interconnected neurons. Throughout development, genetic programs ensure nervous 

systems assemble properly. Neural stem cells generate many different types of neurons, 

which then incorporate into neural circuits by forming specific synapses, specialized 

junctions that facilitate cell communication, with particular sets of neurons. Neural 

circuits also show remarkable subcellular synaptic specificity, where neurons form 

synapses on particular subcellular domains of their synaptic partners. The connectivity 

between neurons, or neural circuit architecture, dictates key aspects of information 

processing within neural circuits.  

Specific neural circuit functions are determined, in part, by the specific patterns of 

connectivity between neurons. For example, in vertebrates, the reflex arc circuit mediates 

a quick behavioral response to avoid a noxious stimulus. First, a sensory neuron detects a 

painful stimulus and sends information to small interneuron in the spinal cord. The 

interneuron then activates a motor neuron, which then pulls the limb away from the 

stimulus. This connectivity pattern, by avoiding higher processing centers in the brain, 

ensures a rapid and specific behavioral output. A second example shows that the 

subcellular positioning of synapses across neurons also impacts neural function. The CA1 

pyramidal neurons in mice receive input from several neuron types, with certain inputs 

localized to particular subcellular domains. Modeling work has shown that inputs to 

different subcellular domains of CA1 differentially affect firing rate, with distal synapses 

having a larger impact compared to proximal synapses (Bloss et al., 2016). Functioning 

neural circuits rely upon synaptic connectivity with precision on the cellular and 

subcellular scales. 

When neural connectivity is established improperly, aberrant behaviors can 

emerge. Many neural developmental disorders, such as Autism Spectrum Disorders 

(ASD) and schizophrenia, are related to synapse formation (Washbourne, 2015). Many 
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genes associated with ASD have synaptic functions (Giovedí et al., 2014). For example, 

members of the neuroligin and cadherin gene families, which function as synaptic cell 

adhesion molecules, and potassium gated voltage channel genes, which regulate neuronal 

excitability, have been associated with ASD. While these complex neural developmental 

disorders etiologies are not yet clearly defined, the genetic and behavioral changes 

associated with these disorders suggest that synaptic connectivity is abnormal. Further, 

therapies to effectively treat neural developmental disorders are currently lacking, as the 

genetic programs underlying normal neural connectivity are not well understood. 

 

Significance 

Understanding the genetic basis of neural circuit assembly has medical and social 

importance. It is critical for alleviating the burden of neural disorders on patients, 

caregivers and on society. For example, in a 2014 study, students with intellectual 

disabilities were 9% less likely to graduate from United States high schools (Allensworth 

et al., 2016), a well described predictor of health and life expectancy (Rostron et al., 

2010). People with mental illness are overrepresented in prisons and jails, with three 

times more persons incarcerated than in hospitals (Fuller et al., 2010). The homeless 

population in the United States also has an overrepresentation of people with mental 

disorders, with 26.2% of sheltered people with a severe mental illness compared to the 

national average of 4.5% (Merikangas et al., 2010; Samhsa, 2009). Mental illness 

healthcare expenditures are costly, with an estimated $57.5 billion spent nationally in 

2006 and individuals spending a 25% rate of out-of-pocket expenses, a remarkable 

burden for caretakers and families (Soni, 2009). Better understanding of the underlying 

disease mechanisms, both genetic and environmental factors such as education and 

judicial systems, could lead to better disease treatment through the identification of drug 

targets, novel biomarkers for early disease detection or progression. 

Furthermore, understanding developmental mechanisms of circuit assembly could 

lead to the treatment of non-developmental circuit related conditions, such as traumatic 

brain injury or neurodegenerative disease. For example, encouraging developmental 

genetic programs may allow for regeneration of a neural circuit to replace one that has 

been lost due to an injury (i.e. spinal cord trauma followed by regeneration). Encouraging 
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early developmental synaptogenesis programs could also stifle deleterious effects of 

neurodegeneration. A thorough understanding of the relationship between genetic 

programs that instruct nervous system assembly and overall neural circuit function will 

lead to a better understanding of both developmental and regenerative processes. 

Once the relationships between genetic programs and neural circuit function are 

defined, the generation of novel neural networks, either biological or computational, 

would be feasible, transforming technology, medicine, and society. The discipline of 

artificial intelligence, which is rooted in neuroscience, continues to apply neuroscience 

principles to generate more robust artificial neural networks. For example, advancements 

in artificial neural networks, such as deep learning algorithms, have enabled novel robust 

image recognition (i.e. self-driving cars and skin cancer diagnoses) and have impacted 

the analyses of financial markets (i.e. capital asset pricing models). Science fiction media 

has explored futures in which humans have the knowledge to generate biological neural 

circuits. For example, the movie “Blade Runner 2049” (2017) comments on the impacts 

of bio-engineered humans and explores ideas of perception, identity, power, and what it 

means to be human. While understanding neural circuit assembly has the potential to 

improve quality of life through the transformation of technology and medicine, it is 

critical to consider the ethical and biological implications of neural circuit generation, 

and its use by individuals, corporations, and governments. 

 Despite the dangerous potential of bioengineering, better characterization of 

neural circuit assembly can help individuals and society. This knowledge has the 

potential to describe the etiologies of nervous system related disorders and aid in the 

generation of novel therapeutics. The basic understanding of nervous system 

development can also lead to societal changes; such as informing police enforcement 

practices, developing effective education programs, or improving healthcare related 

practices.  Defining the relationship between genetic programs and neural circuits will 

transform society, inform humans understanding of themselves, and redefine human 

advancement. 
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Towards the identification of synapse specificity genes  

The assembly of neural circuits requires that developing neurons interact with 

their environment. Neurons must navigate through complex biological territories to reach 

and form synapses with the correct synaptic partners. Cell surface molecules (CSMs) are 

the interface between neurons and their surroundings, positioned to allow neurons to 

‘sense’ their environment, communicate with neighboring cells, and traverse biological 

landscapes. Not surprisingly, the evolution of complex multicellular organisms was 

accompanied by the vast expansion of CSM genes, allowing for the development of 

morphologically sophisticated heterogeneous tissues, such as neural circuits (Cheng et 

al., 2019; Vogel & Chothia, 2006).  CSMs have emerged as regulators of neural circuit 

assembly by playing critical roles in axon guidance, cell recognition, and synapse 

formation (reviewed in Washbourne, 2004; Yogev & Shen, 2014).  

It has been challenging to comprehensively characterize how CSM genes regulate 

synapse specificity. Eliminating gene function completely using whole animal mutants, 

risks compromising overall neural circuit development and function making it difficult to 

parse out the gene’s distinct role in cellular mechanisms. For example, without temporal 

resolution to eliminate gene function at particular developmental stages, it is difficult to 

determine if genes are required for axon guidance, initial synapse assembly, or 

maintenance of established synapses. And because neural circuits are highly 

interconnected, loss of gene expression could lead to compensatory mechanisms across 

the entire circuit, obscuring gene function.  

It can also be difficult to label cells of interest and observe their synaptic 

connectivity preferences. Many studies rely upon dye labeling or genetic labeling 

techniques that mark massive populations of unidentified, and often uncharacterized 

neuron types. Often without single cell resolution, researchers are left to assay general 

synaptic target regions (e.g., layers in the optic lobe of Drosophila, or general brain 

regions in the mouse cortex). Additionally, the inability to label specific synapses, 

especially in the central nervous system when neuronal processes are packed and 

intermingled, has limited studies. Due to these technical limitations, the genetic programs 

underlying synaptic connectivity (e. g., synaptic partner choices or synapse numbers) 

remain elusive.  
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Despite these technical challenges, some mechanisms that govern synapse 

specificity have emerged in recent years. Work in C. elegans and Drosophila has 

pioneered the identification of specificity genes through rigorous genetic analyses in 

defined populations of cells (Christensen et al., 2013). Many of these studies took 

advantage of peripheral neurons (e. g., motor neurons), whose morphology and synaptic 

connectivity can be easily identified due to their physical isolation from other neurons. 

Laminated structures, such as the optic lobe in Drosophila, have also been fruitful in 

identifying synapse specificity genes due to the ability to observe changes to a neuron’s 

innervation layer upon gene manipulation.  While these model systems are advantageous 

in many ways, peripheral nervous system assembly or laminated circuit assembly may 

not recapitulate circuit assembly in other types of circuit architectures, such as spinal cord 

assembly or cortical assembly.  

Here, with the aim of identifying additional synapse specificity genes, I define a 

model system in the larval ventral nerve cord of Drosophila that allows for the 

identification of genes that are necessary or sufficient for synapse formation in defined, 

single-pair, pre- and post-synaptic partners. By combining the genetic labeling of 

individual neurons and their synapses, light microscopy image acquisition and analyses, 

and gene manipulation, I was able to assess the role of genes in synapse formation and 

neuronal morphology. Using this system, I investigated the role of defective in proboscis 

extension response (dpr) genes in synapse formation and did not identify a synaptic 

function for these genes. Then, using the same model system, I investigated the role of 

axon guidance cues in subcellular synaptic specificity, and report that axon guidance 

cues, Robo-2 and Unc-5, are major determinates of synaptic specificity within the 

dendrites of my model neurons, dbd and A08a. 
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CHAPTER II 

 

METHODOLOGY TO IDENTIFY SYNAPSE SPECIFICITY GENES 

 

Rationale and strategy: 

The achievement of synapse specificity in developing neural circuits requires the 

orchestration of many biological processes, including axon guidance and activity 

dependent pruning of synapses. Synapse specificity genes, regardless of which step in the 

biological process they may participate, are necessary for synapse formation. For 

example, if a gene is required for synapse specificity between a pair of neurons, then 

removal of that gene should lead to a loss of synapse formation between those neurons. 

Importantly, while some genes may be important for the development of all synapses, 

others may regulate synapse formation between a neuron and only one of its synaptic 

partners; thus, loss of gene function would result in a specific loss of those synapses, 

while the remaining synapses are left intact. The ability to screen for this phenotype, 

instead of screening for genes that impact overall synapse formation likely due to defects 

in overall cell health, would be helpful in identifying genes that are specific for synaptic 

partner choice. 

Axon guidance cues are necessary for neurons to traverse an immensely complex 

nervous system to the same location as their synaptic partners; but once there, how do 

they recognize one another? One might predict that there is a cell-recognition event 

between a pair of neurons where neurons identify their appropriate synaptic partners 

preceding synapse formation. For example, binding of “matching” CSMs could result in 

the recruitment of synaptic proteins to the site of membrane contact, much like the 

chemoaffinity hypothesis proposed by Sperry (reviewed in Meyer, 1998; Sperry, 1963). 

If this were the case, then one might predict that misexpression of “matching”, or 

binding, CSMs in pairs of non-synaptically coupled neurons would act like a “lock and 

key” and result in ectopic synapse formation. 

I designed a model system to screen candidate genes for their requirement in 

synaptic specificity during CNS development. The requirements for this model system 

were to: 1) genetically access individual neurons to enable the visualization of neuron 



 

7 

 

membranes and synapses and manipulate CSM expression, and 2) quickly visualize and 

quantify changes in synaptic connectivity upon gene manipulation. To this end, using a 

pair of synaptically coupled neurons in the Drosophila ventral nerve cord, I can test 

which genes are necessary for synapse formation. If I knockdown gene expression from 

either the pre- or post-synaptic partner neurons (A or B) by expressing RNA interference 

(RNAi) constructs and then observe a loss of synapse formation, then that gene is 

required for synapse formation between neurons A and B (Figure 2.1, left). On the other 

hand, using a pair of non-synaptically coupled neurons (A and C), I can test which genes 

are sufficient for synapse formation by misexpressing genes in either neuron (Figure 2.1, 

right). If I misexpress genes in either neuron A or C, and observe an artificial synaptic 

coupling of these neurons, then that gene is sufficient for synapse formation. Using these 

complementary approaches, I can identify genes that are either necessary or sufficient for 

synapse formation.  

 

Figure 2.1. A model system to identify synapse specificity genes. Synaptically coupled neurons (A and 

B, left) can be utilized to identify genes necessary for synapse formation. If knockdown of a particular gene 

in neuron A or B via expression of an RNAi construct results in loss of synapse formation, then that gene 

can be identified as necessary for synapse formation between neurons A and B. Non-synaptically coupled 

neurons (A and C) can be utilized to identify genes that are sufficient for synapse formation. If 

misexpression of a particular gene via expression of a cDNA construct results in artificial synapses between 

neurons A and C, then that gene can be identified as sufficient for synapse formation. 

 

 

 



 

8 

 

Gaining genetic access to individual neurons 

 The first step in generating the model system was identifying neurons with the 

appropriate connectivity and sufficient genetic tools. I needed to identify pairs of 

synaptically coupled and non-synaptically coupled neurons, where each individual 

neuron had available genetic tools, including Gal4 and LexA binary expression systems. 

These Gal4 and LexA tools would enable the labeling of two different neurons with 

distinct fluorophores. The larval Drosophila ventral nerve cord was an attractive system 

because of the existence of an electron microscopy (EM) reconstruction database 

(Saalfeld et al., 2012), which described the connectivity between neurons within an early 

larval central nervous system, and the large collection of Gal4 and LexA lines to 

genetically access neurons. This strategy allowed me to identify one pair of synaptically 

coupled neurons (dbdA08a) (Figure 2.2) and four pairs of non-synaptically coupled 

neurons (dbd-A27j, dbd-A27l, A08a-A27j, and A08a-A27l) that are in close proximity 

but are not synaptically coupled (Figure 2.3). The morphology of these neurons observed 

at the light microscopic level qualitatively matched the morphology in the electron 

microscopy dataset (Figure 2.4). 
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Figure 2.2. dbd and A08a are synaptic partners. Electron microscopy reconstructions show the dbd 

sensory neuron contacts the membrane of A08a interneurons (posterior view, top panel; dorsal view, 

middle panel). dbd-A08a synapses are labeled by red ticks (bottom panel). 

 

Figure 2.3. dbd and A27j are not synaptic partners. Electron microscopy reconstructions show the dbd 

and A27j neuron membranes are in close proximity, but not touching (top left panel, posterior view; top 
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right panel, dorsal view). dbd pre-synapses are in close proximity to A27j postsynapses (bottom panels), 

which makes them a good neuron pair to artificially induce synapse formation. 

 

 

Figure 2.4. Morphology and synaptic connectivity of model neurons dbd, A08a, A27j, and A27l. dbd 

neurons form ~10 synapses with A08a in each hemisegment (left). A08a neurons from the left 

hemisegments form ~2 synapses with A08a on the right hemisegments (lower right). A27j forms ~1 

synapse with A27l (right). A27l forms ~8 synapses with A27l in an anterior hemisegment. Light 

micrographs show morphology of neurons are similar to the morphology of neurons in the EM 

reconstruction. 

 

Labeling neuron membranes and synapses 

 To quantify synaptic connectivity between pairs of neurons, I sought to label 

individual neurons and their shared synaptic contacts. I labeled the individual neuron 

membranes and the pre-synaptic neurons’ sites, then I assayed for proximity between the 

pre-synaptic sites and the post-synaptic neurons membranes. Although the proximity of 

these two signals does not ensure there is actual synaptic connectivity between these 

neurons, it allows for a faster identification of potential synapse specificity genes. 

 In order to label the neuron membranes, I used the neuron Gal4 and LexA lines to 

drive expression of myristolated epitope tags, namely UAS-myr::mGDP-HA and LexAop-

myr::smGDP-V5 tags respectively (Figure 2.5). The advantage to this strategy is that the 

covalently linked myristolated tag will localize the chimeric protein to the inner leaflet of 
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the plasma membrane (Van’t Hof & Resh, 2000), which might be less disruptive to cell 

surface molecule binding than if placed on the outside of the cell. The myristolated 

sequence is attached to a spaghetti monster Green Dark Protein (smGdP) sequence, a 

variant of green fluorescent protein that does not have a fluorophore but localizes well to 

fine neural processes (Pfeiffer et al., 2010; Viswanathan et al., 2015). And finally, the HA 

and V5 tags are short polypeptide sequences with high-affinity antibodies readily 

available. 

 

 

Figure 2.5. Genetic strategy to label A08a membrane, dbd pre-synapses, and dbd membrane. EM 

reconstruction shows dbd neuron skeleton (green), dbd presynaptic sites (red), and A08a skeleton (blue). 

Inset (top panel, right) shows a schematic of potential dbd-A08a synapses, where dbd presynaptic sites are 

in close proximity to A08a membrane. Genetic constructs (bottom panel) can be used to label these 

structures for subsequent light microscopy image acquisition. 

  

In order to label the pre-synaptic neuron sites, I used the neuron Gal4 and LexA 

lines to drive expression of a truncated presynaptic protein gene construct labeled with a 

fluorophore, namely UAS-bruchpilot-short-mstrawberry (brp-short-mstraw) and LexAop-

brp-short-mcherry respectively. The advantage to this system is that the truncated form 

of Brp can still localize to presynaptic sites, but expression of this construct in a brp null 
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background does not rescue synapses, suggesting that it is not functional (Fouquet et al., 

2009). This is an important feature because if a gene required for synapse formation is 

removed, then overexpression of a functional synaptic protein may rescue the phenotype 

and therefore obscure the role of that gene in synapse formation. Notably, while the Brp-

short-mstraw localized to pre-synaptic sites, there also was faint expression in the cytosol 

of dbd neurons, suggesting that some proteins were not targeted properly. This 

localization pattern could be due to an overabundance of Brp-short-straw resulting from 

overexpression, or possibly, newly synthesized proteins getting transported to the 

synaptic terminals. This faint expression was mostly disregarded in the image analyses 

pipeline (see below).  

In summary, these genetic strategies enable the synaptic and membrane labeling 

of neuron pairs, either synaptically coupled or non-synaptically coupled. This strategy is 

also amendable to gene manipulation, allowing for the identification of genes that not 

only instruct synapse specificity, but more generally regulate synapse formation. 

 

Manipulating gene expression in individual neurons 

 As aforementioned, the goal of this model system was to identify genes that are 

necessary or sufficient for synapse formation between pairs of neurons. My strategy was 

to a) artificially couple normally non-coupled neurons and b) to uncouple normally 

coupled neurons by manipulating expression of genes that are key to synapse formation. 

In order to manipulate gene expression, I expressed UAS controlled RNAi and cDNA 

constructs in individual neurons (Figure 2.5). The advantage to this strategy is that I can 

manipulate gene expression in individual neurons, while leaving the rest of the nervous 

system relatively intact. The Gal4 and LexA drivers used in these studies were quite 

sparse, though there was sometimes ‘off-target’ expression in other neurons or different 

cell types in the animal. The other advantage to this system is temporal control of gene 

expression. Depending on when the enhancers or promoters are active, Gal4 will be 

produced which can then drive expression of RNAi or complementary DNA constructs. 

For example, the dbd-Gal4 driver is expressed in dbd before axon extension, while the 

A08a driver is expressed after the final cell morphology has been determined. In addition 

to timing of these drivers, it is possible to couple the heat shock controlled Gal80 to the 
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Gal4-UAS system prevent UAS activity and further control temporal expression of 

genetic constructs.  

 

Assembling the genetic toolkit  

 Once I identified neurons that had the appropriate connectivity and genetic tool 

requirements for the model system, I assembled the genetic components into the fly 

genome. In order to identify synapse specificity genes rapidly, I needed to add all of the 

genetic components to one fly, then outcross this fly to either a fly stock containing UAS-

RNAi or UAS-cDNA (overexpression constructs). For example, for the synaptically 

coupled pair, dbd and A08a, I put all five genetic constructs into one fly, then in one 

cross, could add the RNAi or overexpression construct (Figure 2.5, bottom panel). In 

order to test gene function in the context of all neuron pairs (both synaptically and non-

synaptically coupled), I generated flies containing all possible combinations of neuron 

Gal4 and LexA with membrane and synaptic reporters.  

 

Preparing tissue for imaging 

 After dissecting animals with RNAi or overexpression constructs, I needed to 

label the neuron membranes and synapses with fluorescently tagged antibodies. Once the 

tissue was stained, I needed to clear the tissue for imaging, as biological structures are 

difficult to resolve in the dense, thick, larval nerve cord neuropil. I used the DPX tissue 

clearing strategy, which involves tissue dehydration, to bring the refractive index of the 

nerve cords to 1.52, similar to the refractive index of glass. The DPX tissue clearing 

process does result in changes in tissue size, namely non-isomorphic shrinkage, and 

results in fluorescence quenching. Despite these downsides, the DPX protocol permitted 

the high-resolution imaging of neurons and synapses in the larval ventral nerve cord. 

 

Imaging the nerve cords on the microscope 

 Once the tissue was cleared, I imaged the samples on a point scanning confocal 

microscope, which allowed me to take thin optical sections throughout the sample and 

assemble a 3D image of the nerve cords. A critical component of the image acquisition 

was to assign the appropriate pixel size, which informs the image analyses pipeline (see 
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below). As mentioned before, I wanted to identify the amount of presynaptic material in 

close apposition to the post-synaptic neuron membranes. In other words, I wanted to ask, 

how many voxels containing pre-synaptic material are near voxels containing post-

synaptic membrane material? This required me to set a distance threshold between the 

pre-synaptic marker and the post-synaptic membrane, to assign potential sites of synaptic 

connectivity, which I termed “putative synapse voxels” (Figure 2.6). Assigning this 

distance threshold required me to consider two important aspects, the size of the synaptic 

cleft and the amount of chromatic aberration between the two colors that label the pre-

synaptic sites and the post-synaptic membrane (Figure 2.6A, B). The sum of these two 

distances would be a reasonable threshold to assign putative synapse voxels. Previous 

electron microscopy studies have shown that the synaptic cleft is about 20nm (Zhan et al., 

2016). In order to measure the chromatic aberration between the two channels I was 

imaging in the ventral nerve cord, I labeled the pre-synaptic sites with two fluorescently 

labeled secondary antibodies, 488nm and 555nm. Although I labeled the same structures 

with the two different wavelengths, they appear to be in different locations due to 

chromatic aberration in the microscope (Figure 2.6C, D). I performed a line scan across 

individual synaptic sites, fitted a curve to estimate the location of peak signal intensity, 

and measured the distance between these two peaks to be around 70nm (Figure 2.6D’, 

D’’). Taken together with the size of the synaptic cleft, I assigned a distance threshold 

criterion of 90nm to assign putative synapse voxels.  Therefore, I assigned a pixel size of 

90nm on the image acquisition settings to support the image analyses pipeline. 
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Figure 2.6. Measurement of chromatic aberration between 488nm and 555nm fluorophores. A) 

Schematic showing dbd pre-synapses (Brp, magenta) and A08a membrane (green). Some dbd synapses are 

far away from A08a membrane, suggestive of synaptic contacts with other neurons. Some dbd synapses are 

in very close proximity to A08a, suggestive of a putative dbd-A08a synaptic contact. B) The appropriate 

distance threshold between dbd pre-synapses and A08a membrane labels must be assigned to identify 

putative dbd-A08a synaptic contacts. C) Schematic showing chromatic aberration between the channels 

(488nm and 555nm) used to label the dbd pre-synapses and the A08a membrane. To measure the amount of 

aberration, Brp-short-mstraw was labeled by both 488nm and 555nm. D) Micrograph showing diffraction 
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limited Brp-short-mstraw positive pre-synapses labeled in 488nm and 555nm. D’-D’’) A line scan was 

performed across an individual Brp-short-mstraw positive pre-synapse (top panels). To identify the location 

of each diffraction limited spot, a gaussian curve was fitted to estimate the location of maximum voxel 

intensity (bottom panels). The distance between these two maxima was calculated (~70nm). 

 

Quantification of putative synapse voxels 

 In order to determine if changes in gene expression resulted in changes in 

synaptic connectivity, I needed to measure the amount of putative synapse voxels across 

different experimental conditions for each synaptic pair (Figure 2.7). I first identified the 

voxels, or 3D pixels, that contain intensity in the pre-synaptic channel by assigning a 

threshold (Figure 2.8A, C). The FIJI thresholding toolkit (ImageJ 1.50d, 

https://imagej.net/Fiji) was not suitable for assigning relevant thresholds (data not 

shown), most likely due to the nature of the pixel intensity distribution (i.e. not binary in 

nature), so manual thresholding was required. Then, I assigned a threshold to the post-

synaptic membrane channel (Figure 2.8B, D). In order to identify the amount of pre-

synaptic containing voxels within 90nm, or one voxel length away from the post-synaptic 

membrane containing voxels, I dilated the segmented pre-synaptic channel one iteration 

(Figure 2.8E) and then asked how many of the voxels in this channel overlapped with 

voxels in the segmented post-synaptic membrane channel (Figure 2.8F). This gave me the 

putative synapse voxel count for each synaptic pair (Figure 2.8G-H). 

 

Figure 2.7. Image analyses pipeline to quantify putative synapse voxels. (1) Identify voxels containing 

brp intensity (mask), (2) Identify voxels containing A08a membrane (mask), (3) Dilate brp mask by one 

iteration (90nm), (4) Identify the number of voxels where the dilated brp mask and the A08a membrane 

mask colocalize. 
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It is important to note that putative synapse voxels analysis is not a replacement 

for EM level analyses; it only describes the number of voxels containing presynaptic 

material within a close distance (less than 90nm) from the post-synaptic membrane. Since 

both the pre-synapse and post-synaptic neuron membrane channel were made binary 

through the assignment of a threshold, information regarding the amount of pre-synaptic 

material revealed by voxel intensity was lost. Furthermore, in Drosophila, many synapses 

are polyadic (i.e., each pre-synaptic site can have several post-synaptic sites), oftentimes 

with several synaptic partners. For example, a pre-synaptic site on dbd connects to A08a 

and several other neurons. It is also important to note that although the distance threshold 

of 90nm is much below the resolution limit of light microscopy (about 200nm depending 

on the wavelength), distances smaller than the resolution limit can be resolved by 

comparing measurements using two different wavelengths, in this case between 488nm 

and 555nm. 
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Figure 2.8. Example of image analyses pipeline to quantify putative synapse voxels. A) Micrograph of 

Brp-short-mstraw (single z-slice). B) Micrograph of A08a membrane (single z-slice). C) Binary image of 

brp mask after manual thresholding. D) Binary image of A08a mask after manual thresholding. E) Image of 

of brp mask after dilation (expansion of voxels by 90nm). F) Image of voxels containing intensity in the 

A08a mask channel and the dilated Brp mask channel (putative synapse voxels). G) Merge of original Brp-

short-mstraw and A08a membrane channels. H) Overlay of putative synapse voxels onto original 

micrograph shows voxels where Brp-short-mstraw is within 90nm of voxels containing A08a membrane. 
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Limitations and advantages of the putative synapse voxel analyses 

 There are many limitations with this model system. The variability of Gal4 and 

LexA systems results in variability in the amount of neuron membrane and pre-synapse 

marker expression, which in turn effects the putative synapse voxel analyses by making it 

difficult to segment channels. The tissue clearing process also leads to shrinkage in nerve 

cord size, complicating distance measurements. Also, it is difficult to identify specific 

synapses between defined synaptic partners because the neuropil is so dense, and many 

synapses are polyadic.  

Despite these challenges, the model system I describe here has great value 

because of its speed. Although EM reconstruction provides more detailed information on 

synaptic connectivity and morphology, it does not allow for a high throughput method to 

test gene function. While this model system is useful to identify CSMs that regulate 

synapse specificity, it also allows for the investigation of genes in any class, including 

genes that are upstream or downstream from CSM interactions. This model system, 

aiming to identify synapse specificity genes, takes advantage of the Drosophila genetic 

toolkit to label individual pre and postsynaptic neurons, manipulate gene expression in 

those neurons, and the light microscopy acquisition and analyses enables the rapid 

quantitation of putative synapse voxels. 
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CHAPTER III 

 

TOWARDS IDENTIFYING SYNAPSE SPECIFICITY GENES IN DROSOPHILA 

 

One approach to identify synapse specificity genes would be to perform an 

unbiased RNAi screen using the model system. Namely, one could express RNAi 

constructs that would knock down individual genes in synaptically coupled neurons, dbd 

or A08a, to determine which genes are required for synapse formation. Alternatively, one 

could misexpress individual gene cDNAs in non-synaptically coupled neurons, dbd and 

A27j, to determine which genes are sufficient for synapse formation. This approach 

would be a costly and time intensive endeavor, however, because there are ~15,500 genes 

in the Drosophila genome in total, with ~1000 genes predicted to encode CSMs (Kurusu 

et al., 2008). 

 

CSMs initiate cell-cell interactions 

Genes that regulate synapse specificity can theoretically belong to any class of 

genes, but CSMs have been a major research focus due to their subcellular position at the 

cell membrane, which is a prime position for cell recognition events. There are many 

classes of CSMs, including enzymes, receptors, channels, and adhesion molecules, that 

enable the cell to interact with its environment. Adhesion molecules contain a 

transmembrane domain or a glycosylphosphatidylinositol domain, that anchors them to 

the plasma membrane. Their extracellular domain can either bind homophilically with 

itself on adjacent cell membranes, or heterophilically either with another CSM, or with 

the extracellular matrix. Adhesion molecules have intracellular domains, which vary in 

size and function, where some of them have protein binding sites and some have kinase 

functionality, both of which can lead to downstream signaling cascades. Their position at 

the surface of the cell makes CSMs good candidates for cell recognition events because 

they can bind CSMs on other cells, then pass on that signal to other parts of the cell 

(Özkan et al., 2013). 

 In the context of the nervous system, many have hypothesized the importance of 

cell recognition events in the establishment of synapse specificity, including Roger 
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Sperry in the mid-1900s. Sperry hypothesized that synapse specificity arose from a ‘lock 

and key’ mechanism, where neurons destined to become synaptic partners express a 

complementary set of cell adhesion molecules. In a simple example, a neuron A 

expresses a cell adhesion molecule and its synaptic partner, neuron B, expresses the 

binding adhesion molecule. When these two neurons interact with each other, they will 

then stick to each other due to the complementary expression of cell adhesion molecules. 

Recent work in culture and other model organisms showed that this cell-cell adhesion 

leads to the recruitment of synaptic machinery to that site of membrane contact 

(Washbourne, 2015). If this model is correct, in its simplest form, one would predict that 

synaptic partners express binding cell adhesion molecules, and non-synaptically coupled 

neurons would not express binding cell adhesion molecules. 

 

Towards the identification of CSMs that regulate synapse formation in Drosophila  

Valiant efforts have been made to identify CSMs in Drosophila that bind to each 

other, with the aim to determine which might act as ‘locks and keys’. In 2013, Ozkan and 

colleagues developed a novel in vitro binding assay to define the full repertoire of 

Drosophila cell adhesion molecule binding interactions, or ‘interactome’. They tested 

203 adhesion molecules in the leucine rich repeat, immunoglobulin superfamily, and 

fibronectin type III families. Of the 20,503 unique cell adhesion molecule pairs, they 

identified 106 detectible binding interactions (Özkan et al., 2013). These binding cell 

adhesion molecules, if expressed complimentarily in potential synaptic partners, are good 

candidates for regulating synapse specificity. 

 To identify potential cell adhesion molecules that regulate synapse specificity in 

my model system, I aimed to identify the binding molecules expressed in the synaptically 

coupled neuron pair, dbd and A08a, using single cell RNA sequencing (scRNAseq). 

Using this method, one could theoretically identify all of the cell adhesion molecules in 

these neurons, then cross reference the in vitro binding assay by Ozkan et al. to determine 

which cell adhesion molecules have binding interactions, and then test their function in 

synapse formation. One caveat with this technique is that scRNAseq is technically 

challenging, as a very small population of cells of interest would have to be isolated, and 

furthermore, isolating cell bodies would miss transcripts that are not present in the cell 
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body. One advantage to this strategy is that many transcripts would be identified, 

including cell adhesion molecules, but also molecules in any gene family, including 

genes that may participate in upstream or downstream of cell adhesion events, which 

could enable the identification of complete cellular signaling pathways. 

One approach to identify RNA transcripts in single cells is to gather cells using 

fluorescence activated cell sorting (FACS), then sequence the transcripts. The model 

neurons dbd and A08a are such a rare population, with only one neuron per hemisegment 

in the larval ventral nerve cord (~14-20 neurons), this pipeline was not a feasible 

technique to obtain transcripts due to low signal to noise. The second approach to identify 

transcripts in single cells, dbd and A08a, was to manually isolate the cells, group them 

into a larger population, then amplify and sequence the transcripts. First, we labeled the 

neurons with very bright fluorescence membrane labels in the first instar larvae using the 

Gal4-UAS system, then we collaborated with an expert in micromanipulation, Torsten 

Bossing at the University of Plymouth, to manually collect A08a cell bodies using a 

micropipette. The dbd cell body was unamendable to manual cell collection and RNA 

sequencing due to the physical interference of the thick body wall making it impossible to 

collect the cell, and because the dbd cell body and dendrites are completely encased by 

supporting glia, which would also potentially contaminate the dbd transcripts. 

Contrasting, the A08a cell body is positioned on the outer surface of the ventral nerve 

cord, and upon protease application to untether the cell body from cortex glia, the A08a 

cell body is much more accessible for capture. Using this strategy, Bossing collected 5-10 

A08a cell bodies in a tube, amplified the transcripts, and sent them back to us for 

sequencing analyses. Upon analyses, we still did not have enough signal to noise to 

reliably detect transcripts in this small population of cells (data not shown). Ultimately, 

neither FACS nor manually picking cells were not successful at determining cell 

adhesion molecule expression in dbd or A08a.  

 

A candidate gene approach: The Dpr and DIP families of cell adhesion molecules 

Next, I took a candidate gene approach to identify regulators of synapse 

specificity between dbd and A08a. The extracellular interactome of cell adhesion 

molecules provided a good candidate list of potential ‘lock and keys’ that might be 
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utilized by the developing nervous system. If these molecules regulated synapse 

specificity, one would expect them to be expressed in synaptic partners, where a 

presynaptic neuron expresses a cell adhesion molecule, and a postsynaptic neuron 

expresses the binding, or complementary, adhesion molecule. To this end, I started 

investigating the Dpr and DIP families of genes, by first characterizing their expression 

pattern in dbd and A08a neurons, and then testing their role in dbd-A08a synapse 

formation. 

Dpr and DIP gene families are promising candidates for regulating synapse 

specificity due to their protein structure, binding interactions, expression in the nervous 

system, and role in synapse formation. Dpr and DIP genes are in the immunoglobulin 

superfamily and contain two or three extracellular immunoglobulin domains respectively. 

Researchers have characterized the adhesive properties of Dpr and DIP proteins both in 

terms of their dissociation constants (Kd) and their binding interactions (Figure 3.1) 

(Carrillo et al., 2015; Cosmanescu et al., 2018; Özkan et al., 2013).  

 

Figure 3.1. In vitro binding interactions of the Dpr and DIP cell adhesion molecules. The Dpr proteins 

(Dpr-1 through Dpr-21, top row, circles) have unique binding interactions with the DIP proteins (DIP-alpha 

through DIP-iota, bottom row, ovals). Lines between proteins indicate binding interactions. Dotted lines 

indicate week interactions and bold lines indicate strong interactions. Some DIP proteins bind 

homophilically, arced arrows. A subset of Dpr and DIP proteins interact with cDIP (not shown here), a 

secreted leucine rich repeat protein. Figure adapted from Carrillo et al., 2015; Cosmanescu et al., 2018; 

Özkan et al., 2013. 

 

The outermost, N-terminal immunoglobulin domain on DIP-alpha, termed the D1 

domain, binds to the D1 domain of the binding molecule dpr-6 at a 1300 angle (Cheng et 

al., 2019). This binding interaction resembles other well-known Ig-type interactions, 

including the JAML-CAR complex, an immune system signaling complex, the SYG-1-
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SYG-2 complex, a complex reported to initiate synapse formation, and Nectin 

complexes. While most of these binding interactions rely upon charge complementary 

salt-bridges, Dpr-DIP binding relies on hydrophobic interactions and shape 

complimentarily (Carrillo et al., 2015). 

Although the Dpr and DIP genes have no clear mammalian homolog, the Dpr-DIP 

interactions structurally resemble Necl-Nectin interactions, the closest vertebrate 

homologs are the IgLON family. IgLON family members mediate many aspects of neural 

development, including dendritogenesis, neurite outgrowth, and synapse formation 

(reviewed in Kubick et al., 2018) While these proteins have intracellular domains that 

lead to downstream signaling cascades, Dpr and DIP proteins contain very small 

intracellular domains with no predicted protein binding sites or phosphorylation abilities 

(personal communication). It is alternatively possible Dpr-DIP proteins purely participate 

in adhesive activities, or they could potentially interact with other proteins, including 

non-CSMs, that do have signaling capabilities. Many dpr and DIP proteins bind to 

common DIP, or cDIP, a secreted leucine rich repeat protein with unknown function.   

The dpr family was first described by Nakamura and colleagues, who showed that 

dpr-1 is required for salt aversion in a proboscis extension response assay (Nakamura et 

al., 2002). First, they showed that loss of dpr-1 function resulted in defective salt, but not 

sugar, gustatory response in adult flies. Furthermore, expression of a dpr-1 reporter gene 

was localized to chemosensory sensilla in the adult wing, legs, and the taste organs on the 

distal end of the proboscis, while all mechanosensory sensilla were absent of reporter 

staining. Staining was also observed in other sensory neurons, including R8 

photoreceptors and olfactory cells, and non-sensory neurons, including subsets of neurons 

in the central nervous system (Nakamura et al., 2002). While they showed that dpr-1 is 

required for a gustatory response to salt, the specific roles of Dpr-1 adhesion in gustation 

or sensory information processing, have yet to be elucidated. 

More recent work in Drosophila has started to characterize Dpr and DIP function 

in neural development. Dpr and DIP proteins have been confirmed to interact in live 

embryonic neurons (Özkan et al., 2013). In the adult peripheral nervous system (PNS), 

DIP-alpha and Dpr-10 binding mediate terminal axon branching of leg motor neurons 

(Venkatasubramanian et al., 2019), while in the larval PNS, DIP-alpha and Dpr-10 
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mediate motor neuron targeting specificity (Ashley et al., 2019). In the central nervous 

system, several Dpr and DIP members are expressed in layers of the medulla, and loss of 

gene function affects the targeting of neurons to specific layers and cell survival (Carrillo 

et al., 2015; Tan et al., 2015)  

Taken together, the dpr and DIP genes are good candidates to mediate synaptic 

specificity due to their binding interactions (possible ‘locks and keys’) and their known 

roles in laminar neural circuit assembly (layer specificity) and motor neuron targeting 

(muscle targeting). Here, I aimed to test their role in synapse formation in a different 

neural circuit architecture, the larval ventral nerve cord, and began by investigating their 

expression pattern and function in dbd and A08a neurons. 

 

Determining the expression of Dpr and DIP proteins in dbd and A08a neurons 

 In order to identify which Dpr and DIP binding interactions may regulate synapse 

specificity, I needed to identify which Dpr and DIP family members are expressed by 

synaptic partners, dbd and A08a. I hypothesized, that if Dpr and DIP binding interactions 

are necessary for synaptic partner choice, then dbd and A08a 1) will express known 

binding Dpr and DIP proteins and 2) that Dpr-DIP binding will be necessary for dbd-

A08a synapse formation. In order to determine which Dpr and DIP molecules were 

expressed by these neurons, I utilized the MiMIC genetic toolkit to visualize expression 

patterns of these molecules (Li-Kroeger et al., 2018; Venken et al., 2011). The MiMIC 

toolkit is a large collection of fly lines that contain insertions into genes, in both exon and 

intron locations, that contain various genetic constructs. 

The MiMIC-GFP lines contain a green fluorescent protein reporter construct, 

which allows for the visualization of gene expression or nearby enhancer activity. Some 

MiMIC-GFP insertions are in exons, resulting in expression of a truncated protein tagged 

with GFP, while some insertions are in introns, resulting in GFP sandwiched in the 

middle of the protein. First, I combined the various types of MiMIC-GFP lines for the 

dpr and DIP genes in with the dbd- and A08a-Gal4 lines, which I used to drive 

expression of membrane bound reporters to identify and visualize the neurons. Then, I 

utilized immunohistochemistry to amplify both the MiMIC-GFP and neuron signals, then 

looked for colocalization of these two reporters in the cell body to determine which dpr 
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and DIP genes where expressed in dbd and A08a neurons. One limitation to this 

approach is that Dpr or DIP GFP expression might be localized to the neuron processes, 

as opposed to the neuron cell body, making expression difficult to assess due to the close 

apposition to other neurons in the dense neuropil. Despite amplification of the signal with 

antibodies, many Dpr::GFP and DIP::GFP constructs were faint and difficult to visualize. 

Next, I switched to using MiMIC-Gal4 lines to more robustly amplify the signal.  

The MiMIC-Gal4 lines contain insertions of Gal4 within my gene of interest, 

rather than GFP, and can be used with the UAS system to drive expression of membrane 

bound reporters. Some insertions contain T2A constructs, a bicistronic component, to 

separate the endogenous gene product from the inserted Gal4, resulting in normal protein 

production and expression of a detached Gal4 that can enter the nucleus. I then used the 

dbd- and A08a-LexA lines in combination with a different membrane reporter to label the 

dbd and A08a neurons. This genetic approach resulted in much brighter expression of 

Dpr and DIP MiMIC lines. I found that dbd expressed dpr-1 (Figure 3.2A-A’’) and DIP-

eta (data not shown, summarized in Figure 3.3), while A08a neuron expressed dpr-8 

(Figure 3.2B-B’), DIP-gamma, and DIP-delta (data not shown, summarized in Figure 

3.4).  
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Figure 3.2. Expression of Dpr and DIP MiMIC lines in dbd and A08a neurons. A) Embryonic dbd 

neurons (yellow arrowheads) express dpr-1 Gal4 (merge). A’) 22C10 labels sensory neurons, including 

dbd, in the body wall. A’’) dpr-1 Gal4 drives expression of 10xUAS-myristolated-green fluorescent protein 

(GFP) reporter in most dbd neurons. B) Larval A08a neurons (yellow arrowheads) express Dpr-8::GFP 

(merge). B’) The 26F05-Gal4 drives expression of a 10xUAS-myristolated-tandom tomato reporter in A08a 

neurons. B’’) Dpr8::GFP labels many cells in the ventral nerve cord, including A08a (yellow arrowheads). 

 

 

Figure 3.3. Expression summary of Dpr- and DIP-Gal4 lines in embryonic dbd neurons. dbd neurons 

express Dpr-1 Gal4 and DIP-eta Gal4 lines. Figure adapted from Carrillo et al., 2015; Cosmanescu et al., 

2018; Özkan et al., 2013. 
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Figure 3.4. Expression summary of Dpr:: and DIP::GFP lines in larval A08a neurons. A08a neurons 

express DIP-delta::GFP, DIP-gamma::GFP, and dpr-8::GFP. Figure adapted from Carrillo et al., 2015; 

Cosmanescu et al., 2018; Özkan et al., 2013. 

  

While I hypothesized the synaptic partners dbd and A08a would express binding 

dpr and DIP molecules, I did not observe that expression pattern with the reporters I 

tested. It is possible, however, that dbd and A08a do express complementary dpr and DIP 

genes, but the reporter lines used here were either too weak for visualization. I was also 

not able to prioritize testing all of the Dpr and DIP reporter lines and some lines are not 

available due to a lack of MiMIC insertion in that gene region. Regardless, I proceeded to 

test if Dpr-1 or DIP-eta was necessary for dbd-A08a synapse formation. 

 

Determining if Dpr-1 or DIP-eta expression in dbd is necessary for dbd-A08a synapse 

formation 

 In order to determine if Dpr-1 or DIP-eta expression in dbd is required for dbd-

A08a synapse formation, I used the model system described above to drive expression of 

the respective RNAi constructs in dbd. Then I looked to see if there were still synapse 

voxels present between dbd and A08a in larval stages. I found that knockdown of Dpr-1 

or DIP-eta via RNAi expression did not result in a complete loss of putative synaptic 

contacts, suggesting they are not required for dbd-A08a synapse formation (Figure 3.5).  
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Figure 3.5. Expression of Dpr-1 RNAi or DIP-eta RNAi does not eliminate dbd-A08a putative 

synaptic contacts. Top panels show single z-slice through ventral nerve cord in control, DIP-eta RNAi, 

and Dpr-1 RNAi experimental conditions. A08a membrane (magenta) is labeled by a V5 tag. dbd pre-

synapses (green) are labeled by mcherry (brp-short-mstraw). Lower panels show enlarged regions where 

dbd pre-synapses (brp-short-mstraw, green) are in close proximity to A08a membrane (V5, magenta). 

 

In future experiments it will be important to determine the effectiveness of gene 

knockdown and characterize the timing of the knockdown relative to neuron 

development, as incomplete penetrance or expressivity could alternatively explain my 

RNAi results. One additional possibility for not observing synapse loss upon Dpr-1 and 

DIP-eta RNAi expression, is if DIP-eta and Dpr-1 are acting redundantly. Combined 

expression of both RNAi constructs in dbd would potentially reveal a function for DIP-

eta and Dpr-1 in synapse formation. It is also a possibility that dbd-A08a synapses were 

compromised (ie. disorganized T-bars) upon Dpr-1 or DIP-eta knockdown, but the model 

system was unable to detect these changes. Future studies might benefit from synapse 

analyses at the electron microscopy level, which would allow for ultrastructural analyses 

of the synapse, but also more details regarding synapse number changes upon gene 
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knockdown. Another possibility is that DIP-eta and Dpr-1 do not regulate synapse 

specificity between dbd and A08a neurons, but rather function in a different aspect of dbd 

cell biology, such as participating in a different cell-cell interaction. 

 

On the expression and putative function of DIP-eta in dbd neurons 

 I determined the expression of DIP-eta in dbd by driving expression of a 

membrane reporter under the control of the DIP-eta MiMIC-Gal4. This technique 

allowed me to see if the dbd neuron expressed the DIP-eta gene but did not allow me to 

visualize the subcellular location of DIP-eta protein expression (Figure 3.2). One reason I 

may not have observed a role for DIP-eta in dbd-A08a synapse formation, is that DIP-eta 

might not function in the dbd axon, where it synapses with A08a, but rather, might be 

important for different subcellular structures, such as the dendritic domain of dbd. 

Towards this end, I wanted to determine the subcellular location of DIP-eta proteins in 

dbd neurons. First, I labeled the dbd cell body with a pan-sensory neuron marker, the 

22C10 antibody, then labeled DIP-eta expression with a custom antibody. While I found 

expression of DIP-eta along the dendrites of dbd, I did not observe strong DIP-eta 

expression in the axons of dbd (Figures 3.6 – 3.8). This expression pattern suggests DIP-

eta may have a dendritic function.  
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Figure 3.6. DIP-eta antibody is localized to the dendrites of dbd. A-A’’) Micrograph of embryonic body 

wall showing dbd (white arrows) labeled by 22C10 (magenta). The DIP-eta antibody (green) localizes to 

the dendrites of dbd (not labeled by 22C10 antibody). B) Micrograph of larval dbd neurons labeled by the 

165-Gal4 line in a fillet preparation shows the anatomy of dbd neurons. dbd extends two dendrites, one 

anteriorly and one posteriorly. C) Figure adapted from Schrader and Merritt, 2006. The dbd dendrites are 

wrapped completely by the dbd-glial cell. 
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Figure 3.7. Comparison of DIP-eta-Gal4 and DIP-eta antibody in Drosophila embryos. Top panel 

shows DIP-eta Gal4 driving expression of UAS-GFP. Bottom panel shows DIP-eta antibody labeling. 
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Figure 3.8. Comparison of DIP-eta-Gal4 and DIP-eta antibody in Drosophila embryos II. DIP-eta 

Gal4 expression (top panel) can be visualized in many neurons, including dbd (yellow arrowheads). The 

DIP-eta antibody (bottom panel) strongly labels the dendrites of chordotonal neurons on the body wall and 

also labels unidentified cells in the embryonic head (bottom left panel, yellow circles). 

  

The dbd neurons are proprioceptive neurons that respond to changes in body wall 

stretching (Suslak et al., 2015). Each dbd neuron has two dendrites that span the body 

wall segment, one extends anteriorly, and one extends posteriorly. dbd is ensheathed by 

two glial cells: the dbd glia, a sibling cell to dbd, which encircles the dendrites of dbd, 

and the pg3 glia, which is adjacent to the dbd cell body (Schrader & Merritt, 2000). dbd 

itself does not contact the body wall, but rather is indirectly tethered to the body wall 

folds through the its glial sheath, which contacts the epidermis. Together, these three cells 

make up a very small stretch receptor organ, termed the longitudinal stretch receptor 

(Schrader & Merritt, 2000; Suslak & Jarman, 2016). Due to this anatomy, I hypothesized 
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that DIP-eta may function to adhere the dbd dendrites to the dbd glial cell. Furthermore, 

disrupting dbd-dbd glia cell adhesion may prevent dbd from attaching to the body wall 

and adopting its bipolar dendritic morphology. Towards this end, I wanted to determine if 

DIP-eta is necessary for dbd dendritic morphology. 

 Using the Gal4 driver that is expressed in dbd neurons before axon extension, I 

drove expression of DIP-eta-RNAi, then qualitatively assayed dendritic morphology at 

larval stages in a fillet preparation. I found that DIP-eta-RNAi expression resulted in 

some morphological changes, including the presence of filopodia-like protrusions from 

the dendrites, and a less orderly dendritic domain (Figures 3.9 - 3.10). Notably, the region 

where dbd-glia resides, a pocket in between the dbd soma and dbd dendrites, was 

variably reduced. Some neurons showed a regular sized pocket, and some completely 

lacked the pocket. The bipolar nature of dbd dendrites remained upon expression of DIP-

eta-RNAi, suggesting the contact between dbd and the dbd-glia was still strong enough 

for the dbd-glia to tether the dendrites of dbd to the epidermis. I did observe one severely 

disrupted dbd, which had the axonal terminal adjacent to one dendritic terminal (Figure 

3.10, bottom panel). Further experiments with more sample numbers and careful analyses 

of DIP-eta knockdown would be necessary to confirm the role of DIP-eta in dbd dendritic 

morphology.  
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Figure 3.9. Larval dbd neurons expressing control RNAi (empty vector) in a fillet preparation. The 

dendrites of dbd are connected by cell membrane (yellow arrow) to house the dbd-glia soma (not shown). 
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Figure 3.10. Larval dbd neurons expressing DIP-eta RNAi in a fillet preparation. Some dbd neurons 

retain the membrane connecting the dendrites of dbd (yellow arrows, top panel), while other neurons have a 

smaller membrane connection, or no connection at all. Some dendritic domains also show filopodia like 
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extensions (yellow asterisks). One severe instance shows a mistargeting of dbd dendrites towards the dbd 

axonal domain (lower panel). 

 

On the expression of DIP-eta in other sensory neurons  

Upon further analyses of DIP-eta expression, I noticed that other sensory neurons 

with proprioceptive function also express DIP-eta, such as a subset of ciliated stretch 

receptors called chordotonal neurons (Figure 3.8). The dendrites of chordotonal neurons 

are partially ensheathed by scolopale cells and are held in tension between the cuticle by 

a ligament and a cap cell. The tension of chordotonal neurons is necessary for their 

mechanotransduction properties (Prahlad et al., 2017). Cell adhesion molecules, such as 

DIP-eta shown here, are well positioned to mediate the chordotonal-cap cell interaction 

and generate this tension. Surprisingly, not all chordotonal neurons expressed DIP-eta 

(summarized in Figure 3.11), suggesting heterogeneity within the chordotonal neuron 

population in the larval body wall. I also observed strong DIP-eta labeling in a few cells 

in the central embryonic head, possibly located in the internal taste organs of the pharynx 

(ventral pharyngeal sense organ), and labeling of subsets of cells in the external 

chemosensory organs on the anterior tip of the head (Figure 3.8, bottom left panel). The 

expression of DIP-eta, a binding partner to Dpr-1, in gustatory receptor neurons, suggests 

Dpr-1/DIP-eta binding may be necessary for salt aversion in adults, and that DIP-eta 

mutants may phenocopy dpr-1 mutants in the proboscis extension response assay 

(Nakamura et al., 2002).  
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Figure 3.11. Summary of DIP-eta-Gal4 and DIP-eta antibody expression in embryonic sensory 

neurons. The DIP-eta Gal4 driver (yellow) is expressed in dbd neurons, ch1 neurons, and vchA neurons. 

The DIP-eta antibody (magenta) is localized to the dendrites of dbd neurons, ch1 neurons, ich5 neurons, 

vchA neurons, and vchB neurons. Figure adapted from Suslak and Jarman, 2015. 

 

Expression of DIP-eta in several types of sensory neurons, such as dbd, 

chordotonal, and gustatory receptor neurons, suggests that DIP-eta may regulate 

important aspects of chemo- and mechano-transduction. I did observe differences in DIP-

eta MiMIC Gal4 expression and DIP-eta antibody localization, suggesting that post-

transcriptional regulatory mechanisms may further refine DIP-eta expression patterns in 

Drosophila sensory neurons. Further characterization of the DIP-eta expression patterns 

and function in these neurons may provide insight into how these neurons sense stretch 

and how other ciliated sensory neurons, such as the inner hair cell of vertebrates, function 

in wild-type and diseased states.  
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Determining the role of Dpr and DIP function in A08a neurons 

 While the expression pattern of Dpr and DIP proteins in synaptic partners dbd and 

A08a were not suggestive of a requirement for these proteins in dbd-A08a synapse 

specificity, it is possible that the dpr and DIP genes expressed by A08a may play a role in 

synapse specificity between A08a and its downstream synaptic partners. Towards this 

end, I wanted to test the role of DIP-gamma, DIP-delta, and Dpr-8 in A08a axonal 

morphology and pre-synapse amount. I expressed RNAi constructs for each of these 

genes, and cDIP-RNAi, using the A08a-Gal4 driver, which turns on at larval hatching 

and assayed for A08a neuron morphology and presence of presynaptic sites in later larval 

stages. I found that expression of these RNAi constructs qualitatively does not result in 

aberrant axonal morphology, presynapse number, or position (Figure 3.12). All major 

subcellular domains, including the dendritic domain, maintained its wildtype 

morphological features. Although, I was unable to test for RNAi effectiveness, these 

results suggest that these Dpr and DIP genes do not regulate synapse specificity in my 

model neurons. It is possible that these Dpr and DIP genes function at earlier stages when 

the A08a-Gal4 driver is not expressed. Further investigations that measure synapse 

number and synaptic partner choice upon manipulation of Dpr and DIP genes across 

developmental stages would be needed to fully characterize the role of these genes in 

A08a synapse specificity.  
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Figure 3.12. Expression of Dpr- or DIP-RNAi constructs does not disrupt A08a morphology or 

subcellular position of pre-synaptic sites. A08a neurons are labeled by the 26F05-Gal4 driver (white in 

top panel, green in bottom panel). Presynaptic sites are labeled by UAS-brp-short-GFP (magenta, bottom 

panel). 

 

Regulating the expression of Dpr and DIP genes in different neurons across development 

 I found that dpr and DIP expression is tightly regulated across development, with 

some genes showing expression in small subsets of neurons at early stages (eg. DIP-eta 

expressing in some motor neurons at early stage 16) and large subsets of neurons 

expressing at late larval stages (eg. DIP-eta expressing in many motor neurons, 

interneurons, and sensory neurons at ~72 hours after larval hatching) (Figure 3.13). The 

functional relevance of this expression pattern is not characterized. For example, do 

neurons that first express Dpr and DIP genes act as “pioneer neurons” to establish 

specific fasciculation patterns? Do these fasciculation patterns influence the organization 

of functional domains within the larval ventral nerve cord neuropil? Furthermore, do 

neurons that express a particular set of Dpr and DIP genes process a particular type of 

neural information, such as proprioception in the body wall? Do neural stem cells 

regulate expression of Dpr and DIP genes in their progeny? Further analyses of Dpr and 

DIP genes in individual neurons in the context of developmental stages and neural circuit 

establishment will help define their role in neural circuit function. 
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Figure 3.13. DIP-eta-Gal4 expression in the ventral nerve cord expands during development. Early 

stage 16 embryonic ventral nerve cords show DIP-eta-Gal4 expression in small subsets of neurons, 

including motor neurons (left, anterior up). Stage ~72 hours after larval hatching ventral nerve cords show 

DIP-eta-Gal4 expression in a larger subset of neurons (right).  

 

Summary 

 In order to identify genes that regulate synapse specificity, I focused on testing the 

role of CSMs in the model neurons dbd and A08a. The first approach I took to identify 

relevant CSMs was to first perform scRNAseq to characterize all CSM transcripts 

expressed by dbd and A08a, then use biochemical interaction data to identify which of 

these CSMs bind each other and could potentially participate in cell-cell interactions. 

Since scRNAseq turned out to be technically infeasible, and a whole genome RNAi 

screen would be resource intensive, I decided to take a candidate gene approach focusing 

on the Dpr and DIP proteins. 

The Dpr and DIP proteins are prime candidates to regulate synapse specificity in 

Drosophila based on their expression patterns in the nervous system and their potential 

role as CSMs to initiate cell-cell contact and recognition. I tested the role of DIP-eta and 

Dpr-1 in the context of dbd-A08a synapse formation. While further investigations will be 

necessary to elucidate their synaptic role, I preliminarily conclude that these genes do not 

regulate synapse specificity between dbd and A08a neurons. DIP-eta however does 

localize to dbd dendrites and may play a role establishing dbd-dbd glial cell contact and 

therefore dbd dendritic morphology. DIP-eta expression in the dendrites of other 
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proprioceptive and gustatory neurons may suggest a common function of this cell 

adhesion molecule in the transduction of sensory information. 

Further experiments can utilize the model system I developed to identify genes 

that are either necessary or sufficient for synapse formation. For example, one can 

perform an RNAi screen targeting CSMs in synaptically coupled neurons, dbd and A08a, 

to determine which genes are necessary for synapse formation. On the contrary, one 

could utilize non-synaptically coupled neurons to perform an overexpression screen and 

identify genes that may be sufficient for synapse formation. Future studies may benefit 

from knocking down or misexpressing several different genes simultaneously in these 

neurons to overcome redundancy of large gene families and identify gene function. The 

further development of a Gal4/UAS controlled Crispr-cas9 systems would be well 

positioned to simultaneously knockdown entire gene families with cellular and temporal 

control. Finally, with the better characterization of synaptic connectivity through electron 

microscopy studies and the development and characterization of additional neuron-

specific Gal4 and LexA driver lines, the role of synapse specificity genes can be tested in 

additional neurons, with varying developmental origins, morphologies, and circuit 

functions to create a more comprehensive understanding of the genetic control of synapse 

specificity.  
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CHAPTER IV 

 

REGULATION OF SUBCELLULAR DENDRITIC SYNAPSE SPECIFICITY BY 

AXON GUIDANCE CUES 

 

From Sales, E. C., Heckman, E. L., Warren, T. L., Doe, C. Q. 2019. Regulation of 

subcellular dendritic synapse specificity by axon guidance cues. eLife 2019;8:e43478 

DOI: 10.7554/eLife.43478 

 

Abstract 

Neural circuit assembly occurs with subcellular precision, yet the mechanisms underlying 

this precision remain largely unknown. Subcellular synaptic specificity could be achieved 

by molecularly distinct subcellular domains that locally regulate synapse formation, or by 

axon guidance cues restricting access to one of several acceptable targets. We address 

these models using two Drosophila neurons: the dbd sensory neuron and the A08a 

interneuron. In wild-type larvae, dbd synapses with the A08a medial dendrite but not the 

A08a lateral dendrite. dbd-specific overexpression of the guidance receptors Unc-5 or 

Robo-2 results in lateralization of the dbd axon, which forms anatomical and functional 

monosynaptic connections with the A08a lateral dendrite. In addition, dbd lateralization 

results in a corresponding lateral shift in A08a dendritic membrane, indicating that dbd 

can induce or stabilize dendrites. We conclude that axon guidance cues, not molecularly 

distinct dendritic arbors, are a major determinant of dbd-A08a subcellular synapse 

specificity.   

 

Introduction  

 Nervous system function is determined by the precise connectivity of neurons. 

From the Drosophila larva with 10,000 neurons to the human with 80 billion neurons, all 

neurons are faced with the challenge of identifying the correct subset of synaptic partners 

among many potential target neurons. In addition to specificity at a cellular level, neural 

circuits also exhibit synaptic specificity at the subcellular level (reviewed in Yogev & 

Shen, 2014). In Drosophila, the giant fiber descending neuron targets a specific dendritic 

domain of the tergotrochanteral motor neuron in a fast jump escape circuit 
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(Godenschwege et al., 2002; Godenschwege & Murphey, 2009). In mammals, cortical 

pyramidal neurons receive input from martinotti neurons on their distal dendrites and 

basket neurons on their proximal dendrites (Huang et al., 2007) (Figure 4.1A). The 

precise targeting of inhibitory neurons to distinct subcellular domains of their target 

neurons has profound effects on neural processing and circuit function by gating action 

potential initiation, providing a substrate for plasticity, altering mEPSP amplitude, and 

modulating dendritic integration (Bloss et al., 2016; Hao et al., 2009; Miles et al., 1996; 

Pouille et al., 2013; Tobin et al., 2017). Although the precise subcellular positioning of 

synapses is important for proper circuit function, the mechanisms necessary to achieve 

such specificity are just starting to be explored (Telley et al., 2016). 

 

Figure 4.1. Mammalian and insect neurons display subcellular synaptic specificity. 

(A) Schematic of mouse neocortical pyramidal neuron (green) with a martinotti neuron (magenta) 
forming synapses onto the distal dendrite and the bitufted neuron (orange) forming synapses onto the 
proximal dendrite.  

(B) Schematic of fly A08a neuron (green) with a dbd neuron (magenta) forming synapses onto the 
medial dendrite and an A02l neuron (orange) forming synapses onto the lateral dendrite. 
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(C) Electron microscopy reconstruction of dbd neurons (magenta) and A08a neurons (green) 
morphologies in one abdominal (A) segment (A1 left and A1 right) of the Drosophila ventral nerve 
cord (posterior view). dbd forms synapses specifically with the medial dendritic domain, and does not 
synapse with the lateral dendritic domain or the output domain. 

 

Two distinct developmental models could explain subcellular synaptic 

specificity. The first model relies on molecular differences between two subcellular 

domains to restrict synapse formation to one domain (the ‘labeled arbor’ model). This 

model is supported by evidence in mouse and C. elegans whereby local clustering of 

CSMs on a postsynaptic neuron dictates synapse position (Ango et al., 2004; Colon-

Ramos, Margeta, & Shen, 2007; Klassen & Shen, 2007; Mizumoto & Shen, 2013). 

An alternative mechanism relies on axon guidance cues to restrict pre-synaptic access 

to one of several acceptable postsynaptic targets (the ‘guidance cue’ model). 

Guidance cues have a well-characterized role in axon and dendrite guidance 

(Chisholm et al., 2016; Dickson, 2002; Keleman & Dickson, 2001; Tessier-Lavigne 

& Goodman, 1996; Zlatic et al., 2009), but their role in regulating the subcellular 

position of synapses has yet to be tested.  

We sought to test which of these two models generate dendritic subcellular 

synaptic specificity using a pair of synaptically coupled neurons in the Drosophila 

larval ventral nerve cord (VNC): the dbd sensory neuron and A08a interneuron 

(Itakura et al., 2015; Schneider-Mizell et al., 2016). A08a has two spatially distinct 

dendritic arbors, one medial and one lateral, and dbd synapses specifically with the 

medial dendritic arbor (Figure 4.1B,C). Is this subcellular target choice due to 

molecular differences between the medial and lateral A08a dendritic arbors? Or are 

both dendritic arbors competent to accept dbd synaptic input, but axon guidance cues 

restrict dbd targeting to the medial arbor? Our results support the guidance cue 

model: we find that when the when the dbd axon is lateralized in the neuropil by 

misexpression of the axon guidance receptor Unc-5, it forms functional synapses with 

the A08a lateral dendritic arbor. Changes in dbd-A08a subcellular targeting are 

accompanied by changes in the distribution of A08a dendritic membrane, suggesting 

that the dbd axon terminal can induce or stabilize dendrite outgrowth. Taken together, 

our data suggest that axon guidance cues establish subcellular synaptic targeting and 
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that there are no molecular differences in the A08a medial and lateral dendritic arbors 

that restrict dbd synapse formation. 

 

Results 

A08a interneuron has two dendritic arbors that receive distinct synaptic input 

To determine which of our proposed developmental mechanisms regulates 

subcellular synaptic specificity, we focused on the A08a interneuron as a model 

system. A08a has spatially distinct medial and lateral dendrites, and receives distinct 

input to each of these dendrites (Figure 4.2). A08a interneurons can be visualized by 

light microscopy using the R26F05(A08a)-LexA line in larvae (24 ± 4 hours after 

larval hatching; ALH) in abdominal segments (A) 1-7 (Figure 4.2A-A’,B). By 

expressing molecular markers, we determined that A08a has a distinct distal axonal 

(output) domain (mixed pre- and post-synapses) and a more proximal dendritic 

domain (predominantly post-synapses). A08a targets the dendritic marker 

DenMark::mCherry (Nicolaï et al., 2010) to the dendritic domain which includes two 

spatially distinct medial and lateral arbors. The A08a output domain forms a 

characteristic V-shaped projection at the midline, which is specifically labeled by the 

pre-synaptic marker Synaptotagmin::GFP (Wang et al., 2007) (Figure 4.2C-C’’).  

A08a can also be visualized by electron microscopy (EM) in first instar larvae 

(~5 hours ALH, Figure 4.2D-D’) (Gerhard et al., 2017; Itakura et al., 2015; 

Schneider-Mizell et al., 2016). The EM reconstruction of A08a has been completed in 

four hemisegments (A1 left/right, A2 left/right) and in all cases the A08a neuron has 

the same arbors as seen in light microscopy: two spatially distinct dendritic arbors 

that contain only post-synapses, and a V-shaped output domain that contains both 

pre- and post-synapses (Figure 4.2E). Moreover, the same output and dendritic 

subcellular compartments as seen with DenMark::mCherry and Synaptotagmin::GFP 

can also be detected in the EM reconstructed A08a neuron using the synapse flow 

centrality algorithm (Schneider-Mizell et al., 2016), which considers path 

directionality between synaptic input and output locations in the A08a neuron (Figure 

4.2F). 



 

47 

 

Next, we used the EM reconstruction to identify neurons with the most inputs 

onto A08a. We characterized the four neurons with the most synapses onto A08a 

dendrites (Table 4.1), and observed that dbd and A02d selectively synapse onto the 

A08a medial dendrite, whereas A02l and A31x selectively synapse onto the A08a 

lateral dendrite (Figure 4.2G; Table 4.1). A08a also receives synaptic input from 

additional neurons at its medial and lateral dendritic arbors, and these neurons also 

show a preference for either the medial or lateral dendritic arbor; a different set of 

neurons has synaptic input on the V-shaped output domain (data not shown). We 

conclude that the A08a neuron is an ideal model system to investigate the 

mechanisms generating subcellular synaptic specificity due to (a) Gal4 and LexA 

lines specifically expressed in A08a, (b) spatially distinct dendritic arbors with highly 

specific neuronal inputs onto each arbor, and (c) our ability to visualize A08a 

morphology by both light and electron microscopies. In addition, we have highly 

specific Gal4 and LexA lines for the dbd sensory neuron, which has specific synaptic 

input onto the A08a medial arbor (see below). 
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Figure 4.2. The A08a neuron receives arbor-specific synaptic inputs. 

(A-C’’) Light microscopy (point scanning confocal) imaging of A08a neurons. 

(A) Dorsal view of the light micrograph (LM) 3D reconstruction of A08a neurons in the larval ventral 
nerve cord segmentsA1-7. The A08a neurons are visualized by 26F05(A08a)-LexA > LexAop-

myr::smGdP::V5. Midline, dashed line in all panels. 
(A’) Posterior view of the LM 3D reconstruction of paired A08a neurons in segment A1 left/right.  
(B) Posterior view of a single A08a labeled by MultiColor FlpOut (MCFO), visualized by A08a-Gal4 

> UAS-MCFO.  
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(C-C’’) A08a-Gal4 drives expression of UAS-DenMark::mCherry (dendrite marker) and UAS-

synaptotagmin::GFP (presynaptic marker). Note the complementary expression in the dendritic and 
output domains.  
(D-G) Electron microscopy (EM) reconstruction of A08a and four synaptic partner neurons.  

(D) Dorsal view of A08a neurons in segments A1-2.  
(D’) Posterior view of A08a neurons in segment A1. 
(E) A single A08a with presynaptic and postsynaptic sites labeled in red and blue respectively 
highlight a distinct dendritic domain and a mixed pre- and post-synaptic output domain.  
(F) Synapse flow centrality analyses (Schneider-Mizell et al., 2016) shows that A08a has distinct 
mixed axonal (output) and dendritic compartments.   

(G) A08a receives dendritic arbor-specific input: dbd (yellow) and A02d (orange) synapse specifically 
on the medial dendrite, whereas A02l (blue) and A31x (cyan) synapse specifically on the lateral 
dendrite. 
 

A08a inputs 

(hemisegment) 

Pre-synapse number A08a arbor 

targeted Total with A08a  
dbd (A1L) 79  10 medial only 

dbd (A1R) 78 13 medial only 

A02d (A1L) 66 22 medial only 

A02d (A1R) 63 8 medial only 

A02l (A1L) 38 12 lateral only 

A02l (A1R) 31 4 lateral only 

A31x (A1L) 19 3 lateral only 

A31x (A1R) 26 9 lateral only 
Table 4.1. Summary of inputs to A08a medial and lateral dendritic arbors from the first instar 
larval EM reconstruction. Neurons with the most synapses to A08a medial and lateral arbors shown. 
Neurons with fewer synapses also show specificity for medial or lateral dendritic arbors. 

 

Quantifying dbd-A08a synapse voxel position by light microscopy 

The EM reconstruction allows precise quantification of synapse number and 

position between dbd and A08a, but EM is not a high-throughput method for 

experimental analysis of synaptic contacts. Thus, we developed a light microscopy 

method for quantifying the position of dbd-A08a putative synapse contacts. We used 

the genetics described above to label A08a, and additionally used the 165(dbd)-Gal4 

line (Gohl et al., 2011) to label the dbd sensory neuron in 24 ± 4 hours ALH larvae. 

We conclude that dbd and A08a morphology seen in light microscopy precisely 

matches dbd and A08a morphology seen in the EM reconstruction (Figure 4.3A-B’’, 

Video 1).  

We next quantified the position of dbd pre-synaptic contacts along the medio-

lateral axis of the A08a dendrite. We used dbd-Gal4 to express the active zone 

marker Bruchpilot-Short::mStrawberry (Brp-Short-mStraw, Owald et al., 2010) in the 
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dbd neuron; the truncated Brp protein localizes to presynaptic sites but is not 

functional for inducing synapse formation, making it an excellent reporter for pre-

synapses (Fouquet et al., 2009). In the same larvae we used the 26F05(A08a)-LexA 

line to label the A08a interneuron to express a myristoylated::V5 epitope. The dbd 

neuron forms synapses with many neurons in addition to A08a, so we considered only 

the Brp signal in close proximity (<90nm) to the A08a membrane to define the 

position of dbd-A08a “synapse voxels” (Figure 4.3C-C’’’).  Note that this is not 

designed to count individual synapse numbers, which are below the resolution limit 

of standard light microscopy, but rather to measure the position of putative synapses 

along the medio-lateral axis of the A08a dendrite. Quantifying synapse voxels across 

the medial-lateral axis of A08a dendrites in wild-type larvae (Figure 4.3D, n=27 

hemisegments, N=18 animals) mirrors the position of synapses seen by EM (Figure 

4.3F). In contrast, we do not observe synapse voxels between the dbd and the A08a 

output domain, consistent with lack of dbd synapses on the A08a output domain in 

the EM reconstruction (data not shown). Thus, we have established a light 

microscopy method for imaging and quantifying the position of dbd pre-synapses 

along the A08a dendritic membrane, which is a necessary prerequisite for 

investigating the mechanisms regulating dbd-A08a subcellular synaptic specificity.   
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Figure 4.3. dbd and A08a neurons are synaptic partners by light and electron microscopy analyses. 

(A) Dorsal view, light microscopy 3D reconstruction showing dbd (magenta) and A08a (green) 
neurons. A08a is visualized with A08a-LexA > LexAop-myr::smGdP::V5. dbd is visualized with dbd-

Gal4 > UAS-myr::smGdP::HA. Anterior to left; midline, dashed line in all panels. 

(A’-A’’) Posterior view, light microscopy 3D reconstruction showing dbd and A08a neurons. dbd 
projects to the A08a medial dendritic arbor but not the A08a lateral dendritic arbor. Apparent 
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colocalization of dbd with the A08a output domain is an artifact of the 3D projection. Asterisk, ventral 
off target expression of dbd-Gal4. C, focal plane shown in panel C, below.  
(B-B’’) EM reconstruction of dbd and A08a neurons; B, dorsal view, (A1-A2); B’-B’’, posterior view, 
(A1).   

(C-C’’’) Single optical section showing a subset of dbd pre-synapses (magenta, labeled with dbd-Gal4 

> UAS-brp-short-mstraw) positioned in close proximity to the A08a membrane (green, labeled with 

A08a-LexA > LexAop-myr::smGdP::V5). Voxels containing A08a membrane within 90nm of voxels 
containing Brp-mstraw are defined as “synapse voxels” (C’’’, yellow). 
(D) Quantification of synapse voxel position across A08a dendritic domain shows enrichment on the 
A08a medial dendritic arbor.    

(E) Representative chemical synapse between dbd and A08a (arrowhead) in the EM volume. 
(F) EM reconstruction showing that the dbd neuron (magenta) synapses specifically with the A08a 
medial but not lateral dendritic arbor (green); synapses, yellow circles. 

 

Lateralized dbd has Brp+ synapse voxels at the A08a lateral dendritic arbor  

 To determine if the lateral dendritic arbor of A08a is competent to receive 

input from the dbd neuron, we needed a way to re-direct dbd to a lateral location, 

giving it the opportunity to interact with the lateral dendrite of A08a. In Drosophila, 

neurons expressing the Netrin receptor Unc-5 or the Slit receptor Robo-2 have a 

repulsive response to midline-secreted Netrin and Slit ligands, respectively (Keleman 

& Dickson, 2001; Simpson et al., 2000a; Simpson et al., 2000b; Wang et al., 2007; 

Zlatic et al., 2003). Here we used dbd-Gal4 to express either Unc-5 or Robo-2 and 

found that both receptors could lateralize the dbd axon terminal to varying degrees, 

with Unc-5 being most effective and Robo-2 having a milder effect (Figure 4.4 – 

Supplement 1).  
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Figure 4.4. Lateralizing dbd results in Brp+ putative synapses at the A08a lateral dendritic 

arbor.  
(A-A’) In control animals, dbd membrane (magenta, labeled with dbd-Gal4 > UAS-smGdP::myr::HA) 
are positioned in close proximity to the A08a medial dendritic arbor membrane (green, labeled with 
A08a-LexA > LexAop-myr::smGdP::V5). (A) Posterior view of one segment; midline, dashed line in 
all panels; box, area enlarged in A’. (A’) Posterior view of the dbd and the A08a medial dendritic 
arbor; A’’ line, optical section shown in A’’.  
(A’’) Single z-slice shows a subset of dbd pre-synapses (magenta, labeled with dbd-Gal4 > UAS-brp-

short::mstraw in close proximity to the A08a medial dendritic arbor membrane.  
(B-B’) Overexpression of Unc-5 in dbd can lateralize the axon terminal of dbd. B’’ line, position of 
optical section shown in B’’ below. See Figure 4.4 – Supplement 1E for quantification of lateralization 
classes. 
(B’’) Single z-slice shows a subset of dbd pre-synapses (magenta, labeled with dbd-Gal4 > UAS-brp-

short::mstraw) positioned in close proximity to A08a membrane (green, labeled with A08a-LexA > 
LexAop-myr::smGdP::V5). 
(C-D) Quantification of synapse voxel position across the dendritic domain of A08a. (C) In control 
animals, dbd forms synapse voxels on the medial dendritic arbor of A08a; n = 27 hemisegments from 

18 animals. Data reproduced from Figure 3D. (D) In hemisegments with full lateralization of dbd (as 
shown in B’), dbd forms synapse voxels on the lateral dendritic arbor of A08a; n = 5 hemisegments 
from 5 animals. See Figure 4.4 – Supplement 1E for quantification of lateralization classes.  



 

54 

 

  

Wild-type dbd forms synapse voxels with the A08a medial dendritic arbor 

(Figure 4.4A-A’’,C; Figure 4.4 – Supplement 1B,E). In contrast, overexpression of 

Unc-5 in dbd can lateralize the dbd axon terminal, positioning dbd adjacent to the 

A08a lateral dendritic arbor (Figure 4.4B-B’; Figure 4.4 – Supplement 1D,E). These 

lateralized dbd terminals formed synapse voxels with the lateral dendritic arbor of 

A08a (Figure 4.4B’’). Similarly, overexpression of Robo-2 in dbd resulted in 

lateralization of the dbd axon terminal; the majority of dbd terminals formed synapse 

voxels in the intermediate zone between the medial and lateral dendrites (Figure 4.4 – 

Supplement 1C,E). The close apposition of dbd presynaptic Brp to the A08a dendritic 

membrane is consistent with, but does not prove, that there is functional connectivity 

between dbd and A08a at this arbor. Taken together, these results suggest that dbd 

can form Brp+ putative synapses throughout the entire A08a dendritic domain, which 

is more consistent with the “guidance cue” model and less consistent with the 

“labeled arbor” model. 
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Figure 4.4 – Supplement 1. dbd axons can be variably lateralized by expression of axon guidance 

receptors Unc-5 and Robo-2. 

(A) The A08a neuron in the EM reconstruction can be divided into medial, intermediate, and lateral 

dendritic domains.  

(B-D) The dbd neuron membrane (magenta) can target different subcellular domains of A08a (green), 
posterior view of one hemisegment. (B) Control: dbd contacts the A08a medial dendritic arbor (dbd-

Gal4 > UAS-lacZ). Data reproduced from Figure 3D. (C) Partial lateralization example: dbd contacts 
the intermediate dendrite domain (dbd-Gal4 > UAS-robo-2). (D) Full lateralization example: dbd 
contacts that lateral A08a dendritic arbor (dbd-Gal4 > UAS-unc-5). Data reproduced from Figure 
4B’,D. Right panels show the distribution of synapse voxels for each genotype. Control, UAS-lacZ, 

n=27 hemisegments from 18 animals; UAS-robo-2, n=21 hemisegments from 15 animals; UAS-unc-5, 
n=20 hemisegments from 17 animals.  
(E) Frequency of dbd membrane lateralization by genotype. dbd will either target mostly the medial, 
intermediate, or lateral dendritic domains, or not enter the neuropil (‘nerve’ category). See methods for 
full genotypes. 

 

Lateralization of dbd results in a lateral shift of A08a dendritic membrane 

In wild-type A08a neurons, there is little or no arborization present in the 

intermediate domain of the main dendritic process (Figure 4.2C’,F; Figure 4.4 – 

supplement 1A,B). In contrast, when the dbd axon terminal was lateralized to be 
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adjacent to the intermediate domain, dendritic arbors present in the intermediate 

domain and were intimately associated with the dbd axon terminal (Figure 4.4 – 

supplement 1B,C). This raised the question of whether the dbd axon terminal might 

induce or stabilize dendritic arbors. Therefore, we quantified the position of A08a 

dendritic membrane across the medial-lateral axis in control larvae, where dbd 

targeted the A08a medial dendritic domain (Figure 4.5A,D), and in larvae 

overexpressing Robo-2 or Unc-5 in dbd, where dbd was positioned at the 

intermediate or lateral domain respectively (Figure 4.5B-D). When dbd was shifted to 

the A08a intermediate domain by Robo-2 overexpression, the A08a arbors were 

reduced medially and increased in the intermediate domain, where there is usually 

little or no arbor material; in addition, the new intermediate arbor was closely 

associated with the dbd axon terminal (Figure 4.5B,D).  When dbd was shifted to the 

A08a lateral domain by Unc-5 overexpression, the A08a arbors were reduced 

medially and increased laterally, again showing close association with the lateralized 

dbd axon terminal (Figure 4.5C,D). Analyzing dendritic arbor position by weighted 

mean analysis confirms the lateral shift in arbor material following Robo-2 or Unc-5 

overexpression (Figure 4.5E). These changes in A08a dendrite distribution suggest 

that axon guidance cues position the dbd axon terminal at a particular neuropil 

domain, where it may induce or stabilize dendrites at the appropriate subcellular 

domain of its synaptic partner, A08a. 
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Figure 4.5. Lateralization of the dbd axon terminal results in lateralization of A08a dendrites. 

(A-C) Confocal maximum intensity projection of the dbd axon terminal (magenta) and the A08a 

dendritic domain (green) in one hemisegment; lateral to the left, midline on the right (dorsal view). (A) 
In wild type, dbd targets the A08a medial arbor. (B) In UAS-robo-2, dbd often contacts the A08a 
intermediate domain; (C) In UAS-unc-5, dbd often contacts the A08a lateral arbor. Control, n=17 

hemisegments from 11 animals; UAS-robo-2, intermediate class only, n=20 hemisegments from 10 
animals; UAS-unc-5, lateral class only, n=11 hemisegments from 10 animals. 
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(D) Quantification of the distribution of A08a dendrite position in the context of medial, intermediate, 
and lateral innervating dbd neurons. Each transparent line represents one hemisegment and each solid 
line represents the average for the cohort.  
(E) Weighted mean of the dendrite distributions shown in D. Each circle represents the weighted mean 

for each hemisegment and the bar represents the average weighted mean for each cohort. Average 
weighted mean: UAS-lacZ: 10.63 µm; UAS-robo-2, intermediate: 12.33 µm; UAS-unc-5, lateral: 12.38 

µm. P-values were obtained using an unpaired t-test. 

 

Lateralized dbd forms functional synapses with the A08a lateral dendritic arbor 

Our finding that the lateralized dbd axon terminal localizes Brp+ puncta in 

close apposition to the lateral A08a dendritic arbor suggests that these two neurons 

are synaptically connected, but falls short of proving functional connectivity. To test 

for functional connectivity between the lateralized dbd and A08a, we took an 

optogenetics approach. We used the Gal4/UAS and LexA/LexAop binary expression 

systems (Brand & Perrimon, 1993; Lai & Lee, 2006) to express the light-gated cation 

channel CsChrimson (Chrimson) in dbd, and the calcium indicator GCaMP6m in 

A08a. For technical feasibility, all optogenetic experiments were done at the third 

instar larval stage (72 ± 4 hours ALH). Note that the A08a neuron at this stage retains 

its morphological features, including medial and lateral dendritic arbors plus a V-

shaped output domain (Figure 4.6 – Supplement 1).  
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Figure 4.6 – Supplement 1. dbd and A08a neuronal morphology is similar at 24 hours and 72 

hours after larval hatching (ALH). 

(A-A’’) Posterior view of a 3D light microscopy reconstruction in Imaris showing dbd (magenta) and 
A08a (green) neurons at 24 ± 4 hours ALH.  Midline, dashed line in all panels. Asterisk, ventral off-

target neurons. 

(A’) The dbd neurons are visualized by 165(dbd)-Gal4 > UAS-myr::smGdP::HA. 

(A’’) The A08a neurons are visualized by 26F05(A08a)-LexA > LexAop-myr::smGdP::V5.  

(B-B’’) Posterior view of a 3D light microscopy reconstruction in Imaris showing dbd (magenta) and 
A08a (green) neurons at 72 ± 4 hours ALH.  Yellow dashed line indicates the imaging focal plane used 

to record GCaMP6m fluorescence changes in A08a neurons. Asterisk, position of ventral off-target 

neurons. 

(B’) The dbd neurons are visualized by 165(dbd)-Gal4 > UAS-myr::smGdP::HA. 

(B’’) The A08a neurons are visualized by 26F05(A08a)-LexA > LexAop-myr::smGdP::V5.  
 

We first tested for functional connectivity between the wild-type dbd and 

A08a, which had not yet been documented. In wild-type, Chrimson-induced 

activation of dbd resulted in a significant increase in GCaMP6m fluorescence in 

A08a, but not in the absence of the Chrimson co-factor all-trans retinal 

(ATR) (Figure 4.6A, quantified in D; Video 2), or in the absence of the dbd-Gal4 

transgene (Figure 4.6E; quantified in F). We measured GCaMP6m levels in the 

output domain of A08a, which emitted a larger fluorescence signal compared to the 
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arborizations in the dendritic domain (Figure 4.6C). This is the first experiment 

showing functional, excitatory connectivity between dbd and A08a. Next, we sought 

to determine whether the putative synapses between the lateralized dbd and the A08a 

lateral dendritic arbor are also functional. Using the same paradigm as in wild-type 

controls, we find that Chrimson activation of lateralized dbd resulted in an increase in 

GCaMP6m fluorescence in A08a that is statistically indistinguishable from wild-type 

controls (Figure 4.6B, quantified in D; Video 3). These data are consistent with dbd 

activating A08a equally well using medial arbor connectivity (control) or lateral arbor 

connectivity (following Unc-5 expression).  
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Figure 4.6. Confocal activation of Chrimson in control and lateralized dbd increases A08a GCaMP6m 

fluorescence.  
(A-A’) In wild-type animals, Chrimson activation of dbd neurons results in increased GCaMP6m 
fluorescence in the A08a output domain. For all figures, +ATR is shown in green, -ATR is shown in gray, 
and timing of Chrimson activation is represented with a pink bar.  
(A) A08a GCaMP6m ΔF/F0 traces from individual A08a pairs resulting from wild-type dbd activation. 

Non-evoked spontaneous activity is present in -ATR control.   
(A’) Average A08a GCaMP6m ΔF/F0 traces, before and after Chrimson activation of dbd neurons. Solid 
black lines represent the mean ΔF/F0. Shaded regions represent the standard deviation from the mean. 

+ATR, n=28 A08a pairs, from 10 animals; -ATR, n=11 A08a pairs, from 5 animals.   
(B-B’) In animals with fully lateralized dbd, Chrimson activation of dbd results in increased GCaMP6m 
fluorescence in A08a axon terminals.  
(B) A08a GCaMP6m ΔF/F0 traces from individual A08a pairs resulting from activation of lateralized dbd. 
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(B’) Average A08a GCaMP6m ΔF/F0 traces, before and after Chrimson activation of dbd neurons. Solid 
black lines represent the mean ΔF/F0. Shaded regions represent the standard deviation from the mean. 
+ATR, n=6 A08a pairs, from 5 animals; -ATR, n=4 A08a pairs, from 3 animals. 
(C) Example ROI used for quantification drawn around A08a axon terminals in segment A5.   

(D) Quantification of the mean post-stimulus ΔF/F0 for lacZ control and unc-5. Error bars represent the 
standard deviation from the mean. Mean post-stimulus ΔF/F0: lacZ Control +ATR, 0.62 ± 0.28, n=28 A08a 

pairs, from 10 animals; lacZ Control -ATR, -0.0172 ± 0.07, n=11 A08a pairs, from 5 animals; unc-5 +ATR, 
0.68 ± 0.24, n=6 A08a pairs, from 5 animals; unc-5 -ATR, -0.035 ± 0.02, n=4 A08a pairs, from 3 animals.  
(E-E’) dbd-Gal4 is required to produce Chrimson-evoked responses in A08a. A08a expresses GCaMP6m 
in a genetic background containing UAS-lacZ and 20XUAS-CsChrimson. 

(E) A08a GCaMP6m ΔF/F0 traces from individual A08a pairs.  

(E’) Average A08a GCaMP6m ΔF/F0 traces before and after light stimulus (pink bar). Solid black line 

represents the mean ΔF/F0. Shaded region represents the standard deviation from the mean. +ATR is 

represented in green (n=10 A08a pairs).   

(F) Quantification of the mean post-stimulus ΔF/F0 for lacZ control +ATR, lacZ control -ATR, and no dbd-

gal4 control. Error bars represent the standard deviation from the mean. Mean post-stimulus 

ΔF/F0: lacZ Control +ATR, 0.62 ± 0.28, n=28 A08a pairs, from 10 animals (Data reproduced from Figure 

6D); lacZ control -ATR, -0.0172 ± 0.07, n=11 A08a pairs, from 5 animals (Data reproduced from Figure 

6D); No dbd-gal4Control +ATR, 0.013 ± 0.17, n=10 A08a pairs, from 5 animals. Significance between two 

groups was determined using a Mann-Whitney test.  

 
We observed that the Gal4 line used to express Chrimson in dbd also has 

expression in a subset of ventral neurons (Figure 4.3; Figure 4.6 – Supplement 1), 

which may provide indirect activation of A08a. Thus, we used two-photon 

microscopy (Figure 4.7A,B) to specifically activate dbd or the ventral off-target 

neurons by selecting regions of interest (ROIs) that were specific for each without 

overlapping in the xy-axis (Figure 4.7C). We sequentially activated the dbd and off-

target neurons within the same larva, and found that A08a had significantly larger 

GCaMP6m responses following Chrimson activation of dbd compared to the off-

target neurons (Figure 4.7E, quantified in F). Similar results were observed for larvae 

where Unc-5 misexpression was used to lateralize the dbd axon (Figure 4.7G, I; 

quantified in J). We conclude that Chrimson activation of dbd neurons is able to 

increase GCaMP6m fluorescence in A08a neurons in both wild-type and Unc-5 

misexpression genotypes.  
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Figure 4.7. Two photon activation of dbd, but not off-target neurons, increases A08a GCaMP6m 

fluorescence. 

(A) Schematic of two photon microscope used for Ca+2 imaging and holographic photostimulation. We 

used a separate imaging (940 or 1040 nm) and stimulation laser (1040 nm). Holographic photostimulation 
patterns were constructed with a spatial light modulator (SLM). Stimulation targeted either dbd neurons 
(black circles) or off-target neurons (red circles), separated on average by 20 µm in the z-axis.  
(B) XY and XZ profile of fluorescence induced by a holographic stimulation pattern consisting of two 10 
µm diameter circles separated center-to-center by 26 µm. Fluorescence profiles were obtained by moving 
microscope objective systematically relative to a fixed fluorescent rhodamine slide and imaging with a sub-

stage camera. Blue lines indicate fluorescence summed across respective axes (arbitrary units). 
(C-F) Targeting of Chrimson stimulation and Ca+2 imaging of A08a neurons in wild-type 72h ALH larvae. 
(C-C’) Two photon image (1040 nm) of fluorescent mCherry marker at two imaging planes 20 µm apart. 
Stimulation ROIs used for targeting dbd (C, yellow dots) and off-target (C’, cyan dots) neurons are 
overlaid. Dashed white line indicates midline. Scale bars, 10μm. 
(D) Summed GCaMP6m fluorescence in A08a neurons (940 nm). White polygon depicts spatial region 

used to quantify fluorescence for traces in E. The stimulation regions shown in C are overlaid (outlines: 
yellow, dbd; cyan, ventral off-targets). Scale bars, 10μm.  
(E) Example Ca+2 responses from the wild-type larva shown in C, D. Black trace shows raw A08a 
fluorescence (arbitrary units) prior to and following 150 ms holographic stimulation of dbd targets. Red 
trace shows A08a fluorescence in response to ventral off-target stimulation. Stimulation timing depicted 
with pink rectangle.  
(F) Mean Ca+2 responses (ΔF/F0) in A08a for each animal to dbd stimulation (black dots) or ventral off-
target stimulation (red dots). Triangles are means for each group (dbd, 0.29 +/- .07; off-target, 0.06 +/- 
0.07). N= 8 animals. Scale bars, 10μm. 
(G-J) Targeting of Chrimson stimulation and Ca+2 imaging of A08a neurons in Unc-5 misexpression larvae 
at 72h ALH. (G-G’) Two photon image (1040 nm) of fluorescent mCherry marker at dbd (G) and off-target 
imaging planes (G’), separated by 20 µm. Stimulation ROIs overlaid (dbd, G, yellow dots; off target, G’, 
cyan dots). 
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(H) Summed GCaMP6m fluorescence in A08a neurons. Stimulation regions and measurement region 
plotted as in D. 
(I) Example Ca+2 responses from Unc-5 larva shown in G, H as in E.  Black trace shows raw A08a 
fluorescence in response to dbd stimulation; red trace is A08a fluorescence in response to off-target 

stimulation. 
(J) Mean Ca+2 responses (ΔF/F0) in A08a for each animal to dbd stimulation (black dots) or ventral off-
target stimulation (red dots). Triangles are means for each group (dbd, 0.60+/-.17; off-target, 0.02+/.03).  
N = 5 animals. Scale bars, 10μm. 
 

To determine whether the lateralized dbd provides monosynaptic input to 

A08a, we performed the same optogenetic experiments in the presence of 

tetrodotoxin (TTX), a sodium channel blocker that eliminates neuronal action 

potentials (Narahashi et al., 1964). First, we applied TTX to isolated larval CNS 

preparations and observed loss of the spontaneous rhythmic neuronal activity 

characteristic of fictive locomotion (Pulver et al., 2015), confirming that TTX was 

effective (Figure 4.8A; Videos 4,5). Next, we assayed the effect of TTX on dbd-A08a 

connectivity. If dbd-A08a connectivity is monosynaptic, then Chrimson activation of 

dbd should induce A08a GCaMP activity even in the presence of TTX; in contrast, if 

dbd-A08a connectivity is indirect (e.g. via feedforward excitation) then A08a 

GCaMP6m activity should be blocked by TTX (summarized in Figure 4.8B) 

(Petreanu et al., 2009). We found that TTX does not block dbd-induced A08a 

activity, in wild-type (Figure 4.8C-C’’) or when the dbd axon terminal is lateralized 

by Unc-5 (Figure 4.8D-D’’), showing that the dbd synapses on the lateral dendritic 

arbor of A08a are functional and monosynaptic. Interestingly, A08a GCaMP 

responses are significantly greater following TTX application in both wild-type and 

unc-5 conditions; this may be due to the elimination of feedforward inhibition (see 

Discussion). We conclude that the lateralized dbd-A08a synapses are monosynaptic 

and functional. Our data therefore support a model in which axon guidance cues are 

the major determinants of dbd-A08a subcellular dendritic synaptic specificity. 
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Figure 4.8. Lateralized dbd forms direct, monosynaptic connections with the A08a lateral dendrite. 

(A) TTX eliminates spontaneous rhythmic neuronal activity in A08a (in which activity is part of an inter-
segmental activity wave moving in the anterior or posterior direction representing fictive motor waves; 
Itakura et al., 2015). Representative traces show the ΔF/F0 for individual pairs of A08a neurons over the 

course of 3 minutes in lacZ control animals. Purple trace shows A08a ΔF/F0 without TTX present. Black 
trace shows A08a ΔF/F0 in the presence of 3μM TTX, in which 20/20 A08a pairs from 8 animals where 
rhythmic activity was eliminated. In 8/20 of these A08a pairs, non-rhythmic, non-intersegmentally 

coordinated changes in GCaMP6m fluorescence were observed, exemplified by the gray trace (see 
Discussion).  
(B) Experiment to test for monosynaptic dbd-A08a connectivity. TTX eliminates action-potential-mediated 
activity, preventing stimulation of non-Chrimson expressing neurons. Light-activation of Chrimson induces 

action-potential-independent neurotransmitter release from dbd. If dbd is monosynaptically connected to 
A08a, increases in A08a GCaMP fluorescence will result.   
(C-C”) Wild-type dbd has excitatory, monosynaptic connection to A08a medial dendritic arbor.  
(C) A08a GCaMP6m ΔF/F0 traces from individual A08a pairs resulting from wildtype dbd activation in the 
presence of TTX. 
(C’) Average A08a GCaMP6m ΔF/F0 traces in the presence of 3μM TTX, before and after Chrimson 
activation of dbd neurons. Solid black lines represent the mean ΔF/F0. Shaded regions represent the 
standard deviation from the mean. +ATR, n=20 A08a pairs, from 9 animals; -ATR, n=9 A08a pairs, from 4 
animals.  
(C”) Quantification of the mean post-stimulus ΔF/F0 for lacZ control and lacZ +TTX animals. Mean post-
stimulus ΔF/F0: lacZ Control +ATR, 0.62 ± 0.28, n=28 A08a pairs, from 10 animals (Data reproduced from 
Figure 6D); lacZ control -ATR, -0.0172 ± 0.07, n=11 A08a pairs, from 5 animals (Data reproduced from 
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Figure 6D); lacZ control +TTX +ATR, 1.48 ± 0.70, n=20 A08a pairs, from 9 animals; lacZ control +TTX -
ATR, 0.019 ± 0.055, n=9 A08a pairs, from 4 animals.  
(D-D”) Lateralized dbd has excitatory, monosynaptic connection to A08a lateral dendritic arbor.  
(D) GCaMP6m ΔF/F0 traces from A08a pairs after activation of lateralized dbd in the presence of TTX.  

(D’) Average A08a GCaMP6m ΔF/F0 traces in the presence of 3μM TTX, before and after Chrimson 
activation (pink bar) of dbd neurons. Solid black lines represent the mean ΔF/F0. Shaded regions represent 

the standard deviation from the mean. +ATR, n=17 A08a pairs, from 14 animals; -ATR, n=5 A08a pairs, 
from 4 animals.  
(D”) Quantification of the mean post-stimulus ΔF/F0 for Unc-5 and Unc-5 +TTX animals. Mean post-
stimulus ΔF/F0: Unc-5 +ATR, 0.68 ± 0.24, n=6 A08a pairs, from 5 animals (Data reproduced from Figure 

6D); Unc-5 -ATR, -0.035 ± 0.02, n=4 A08a pairs, from 3 animals (Data reproduced from Figure 6D); Unc-
5 +TTX +ATR, 2.00 ± 0.76, n=17 A08a pairs, from 14 animals; Unc-5 +TTX -ATR, 0.023 ± 0.03, n=5 
A08a pairs, from 4 animals. Significance between two groups was determined using a Mann-Whitney test. 

 

Discussion    

Achieving subcellular synaptic specificity 

The ability of a presynaptic neuron to form synapses with a specific 

subcellular domain of its post-synaptic partner is well established in mammals 

(reviewed in Yogev & Shen, 2014), and has been described previously in Drosophila, 

although not at a mechanistic level. For example, the Drosophila giant fiber (GF) 

descending neuron targets a specific dendritic domain of the tergotrochanteral motor 

neuron, TTMn (Borgen et al., 2017). The transmembrane Sema-1a protein is required 

for both GF pathfinding to the motor neuropil, but also for establishing synaptic 

contact with the TTMn (Godenschwege et al., 2002; Godenschwege & Murphey, 

2009). However, it remains unknown if Sema-1a protein is restricted to the specific 

dendritic domain of TTMn chosen by the GF, as predicted by the “labeled arbor” 

model. Similarly, the Jaam1 and Jaam3 interneurons target different domains of their 

post-synaptic EL neuron partners (Heckscher et al., 2015), but the mechanism is 

unknown.  

Here, we provide evidence that axon guidance cues are the major determinants 

of subcellular dendritic synaptic specificity between dbd and A08a neurons, and that 

all regions of the A08a dendrite are competent to receive dbd synaptic inputs. Our 

findings expand upon the known mechanisms that generate subcellular synapse 

specificity to include guidance cues that restrict synaptic inputs to one region of a 

larger dendritic domain that is competent to receive synaptic input. We observed that 

the dbd axon is positioned close to the A08a output domain but never forms 
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presynaptic contacts with this domain, as assayed by light and electron microscopy 

(data not shown). We speculate that the A08a output domain contains cell surface 

molecules (CSMs) that locally prevent dbd synapse formation. This is similar to work 

in C. elegans that identified secreted proteins that cluster CSMs to restrict synapse 

position on the DA9 motor neuron (Klassen & Shen, 2007). Similarly, NF186 

expression is confined to the axon initial segment of Purkinje cells and determines the 

location of basket cell synapses (Ango et al., 2004). These observations suggest that 

synaptically coupled neurons may utilize both axon guidance cues and arbor-specific 

molecular cues to achieve subcellular synaptic specificity. We anticipate both 

“labeled arbors” and “guidance cues” play a role in determining subcellular synaptic 

specificity – possibly both acting in the same neuron, such as CSMs potentially 

regulating connectivity between coarse subcellular domains, such as the A08a axon 

versus dendrite, and guidance cues refining connectivity within a particular 

subcellular domain, such as the medial and lateral A08a dendritic domains. 

 

Formation of functional lateralized dbd-A08a synapses  

We have shown that the lateralized dbd axon not only makes close Brp 

contacts with the A08a lateral dendrite, but more importantly also makes functional 

synapses. Interestingly, there appear to be fewer synapse voxels between the 

lateralized dbd and A08a than between the medial dbd and A08a, yet functional 

connectivity is indistinguishable. This may be due to homeostatic mechanisms that 

increase the efficacy of the lateral dbd-A08a synapses. The fact that the dbd-A08a 

optogenetic activation occurs even in the presence of TTX, together with the 

observation of direct dbd-A08a synapses in EM, strongly suggests that dbd and A08a 

have direct, monosynaptic excitatory connectivity. Interestingly, dbd induced 

activation of GCaMP6m in A08a is greater in the presence of TTX (in both wild-type 

and after dbd lateralization), suggesting that dbd may activate an inhibitory feed-

forward circuit that is silenced by TTX. A good candidate for such feed-forward 

inhibition is the A02d neuron, which is an inhibitory neuron that receives input from 

dbd and has output to A08a (Fushiki et al., 2016; Kohsaka et al., 2014) (Figure 4.2G). 

In some cases, we detected fluctuations in A08a GCaMP6m activity following TTX 
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application (8/20 A08a pairs; Figure 4.8A); it is unclear if these represent cases of 

incomplete A08a inactivation, graded Ca2+ potentials, or Ca2+ release from internal 

organelles. It is also important to consider that not all insect neurons produce sodium-

dependent spikes; therefore, we cannot fully rule out the possibility that the A08a 

activation we observe in the presence of TTX is due to indirect stimulation from non-

spiking interneurons (Pearson & Fourtner, 1975; Pippow et al., 2009). 

We also note that animals fed ATR (+ATR) have a statistically significant 

higher baseline level of calcium activity than -ATR controls (Videos 2,3 and data not 

shown). This is likely due to our illumination with 488nm light between 561nm 

stimulus pulses (see optogenetic Methods), because 488nm light was shown 

previously to weakly activate Chrimson (Klapoetke et al., 2014). It therefore follows 

that +ATR animals would have a higher baseline level of fluorescence. Importantly, 

this does not change our interpretation that lateralized dbd neurons form functional 

synapses with the A08a lateral dendrite. 

We have shown that the lateralized dbd maintains synaptic contact with A08a 

by remapping synaptic connectivity to the lateral arbor of A08a. However, we are 

unable to determine if dbd still maintains cellular synaptic specificity with its other 

synaptic partners. In contrast to A08a, other dbd target neurons only have a medial 

dendritic arbor, such as Jaam-3 (Heckscher et al., 2015). It would be interesting to 

know how these neurons respond to dbd lateralization; they m ay extend novel 

dendrite branches laterally, or may simply lose dbd synaptic inputs. The development 

of genetic tools to specifically label additional dbd target neurons will be required to 

understand if cellular synaptic specificity of dbd is maintained upon its remapping in 

the neuropil. 

 

Axonal induction of dendritic arbors 

It was proposed ~50 years ago that presynaptic axons can induce or stabilize 

specific post-synaptic dendritic arbors (Altman & Anderson, 1972; Berry et al., 1980; 

Kimmel et al., 1982; Morest, 1969; Redmond & Ghosh, 2005). In particular, otic 

capsule inputs to the Mauthner neuron target a stereotyped lateral dendritic arbor, 

which is specifically reduced following otic capsule ablation (Kimmel et al., 1982). 
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Our experiments are consistent with these findings, but involve retargeting of inputs 

rather than their ablation. We show that in wild-type larvae, the intermediate domain 

of the A08a dendrite has few or no arborizations, but that partial lateralization of dbd 

(following Robo-2 or Unc-5 overexpression) results in the induction or stabilization 

of dendritic arbors in the intermediate domain. It is currently unknown how dbd 

induces and/or stabilizes A08a dendrites. It is possible that Robo-2 or Unc-5 directly 

promote dendritogenesis, although we think it is unlikely because we see the same 

effect following overexpression of two different receptors (Unc-5 and Robo-2). We 

also think it is unlikely that arbor outgrowth is a homeostatic response to loss of 

excitatory input, because we have shown that the wild-type and lateralized dbd are 

both functional at inducing A08a activity, and because the ectopic arbors appear 

closely associated with the dbd axon terminal. In contrast, it is possible that dbd 

neural activity positively regulates A08a dendritogenesis, a mechanism that has been 

reported in Drosophila motor neurons (reviewed in Lefebvre et al., 2015). Additional 

studies are needed to identify the molecular mechanisms used by A08a to achieve the 

appropriate dendritic morphology during development. 

 

Functional consequences of subcellular synaptic specificity 

In other systems, it is well established that subcellular location of synapses 

has a profound impact on how a neuron propagates information within a circuit 

(Bloss et al., 2016; Hao et al., 2009; Miles et al., 1996; Pouille et al., 2013; Tobin et 

al., 2017). From the Drosophila larval EM reconstruction, we show that A08a 

receives distinct input into its medial and lateral dendritic arbors, which is likely to 

influence how A08a integrates incoming synaptic activity. dbd is a proprioceptive 

sensory neuron, and A08a is rhythmically active during fictive motor waves (Itakura 

et al., 2015). Thus, the proper targeting of dbd and A02d to the medial arbor, and 

A02l and A31x to the lateral arbor, may be important for processing proprioceptive 

sensory input during locomotion. Although the dbd-Gal4 line used in our study has 

ventral sensory “off-target” expression that precludes a behavioral analysis following 

dbd lateralization, if this off-target expression could be removed, it is possible that the 

behavioral consequences of dbd lateralization could be determined using recently 
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developed high resolution quantitative behavior analysis tools (Almeida-Carvalho et 

al., 2017; Kabra et al., 2013; Klein et al., 2017; Risse et al., 2017). Furthermore, 

future electrophysiological studies could directly test the functional consequences of 

the subcellular positioning of A08a inputs on neural processing (e.g. dendritic 

integration, coincidence detection, and noise suppression).  

 

Materials and Methods 

Key Resources Table  

Reagent type 

(species) or 

resource 

Designation 
Source or 

reference 
Identifiers 

Additional 

information 

Species 
(Drosophila  

melanogaster)  
26F05-LexA BDSC 54702 

Expressed in A08a 
neurons 

Species (D.  

melanogaster) 
26F05-Gal4 BDSC 49192 

Expressed in A08a 
neurons 

Species (D.  

melanogaster) 
165-Gal4 W. Grueber N/A 

Expressed in dbd 
neurons 

Species (D.  

melanogaster) 
UAS-LacZ BDSC 8529 Control transgene 

Species (D.  

melanogaster) 
UAS-LacZ BDSC  8530 Control transgene 

Species (D.  

melanogaster) 
UAS-unc-5::HA B. Dickson N/A UAS drives unc-5   

Species (D.  

melanogaster) 
UAS-robo-2::HA BDSC 66886 UAS drives robo-2 

Species (D.  

melanogaster) 

UAS-

bruchpilot(short)-

mstrawberry 

S. Sigrist N/A 
UAS drives 
fluorescently labeled 
truncated bruchpilot 

Species (D.  

melanogaster) 

10xUAS-IVS-

myr::smGdP::HA, 

13xLexAop2-IVS-

myr::smGdP::V5 

BDSC 64092 

UAS drives HA 
membrane tag, 
LexAop drives V5 
membrane tag 

Species (D.  

melanogaster) 
UAS-MCFO BDSC 64090 

UAS drives multi-
colored-flip-out 

Species (D.  

melanogaster) 
UAS-DenMark, 

UAS-syt.eGFP 
BDSC 33064 

UAS drives 
DenMark, UAS 
drives 
synaptotagmin::GFP 

Species (D.  

melanogaster) 

13XLexAop2-IVS-

p10-GCaMP6m, 

20xUAS-

CsChrimson-

mCherry 

V. Jayaraman N/A 
LexAop drives 
GCamp6m, UAS 
drives Chrimson 

Antibody, 
monoclonal 

Mouse anti-V5 tag  
Invitrogen, 
Carlsbad, 

Cat. 
R96025, Lot 

(1:1000) 
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CA,  1949337 

Antibody, 
polyclonal 

Rabbit anti-

mCherry  

Novus 
Biologicals, 

Littleton, 

CO  

Cat. NBP2-
25157, Lot 
102816 

(1:500) 

Antibody, 
monoclonal 

Rat anti-HA tag 

Roche 
Holding, AG, 
Basel, 
Switzerland  

Cat. 
1186742300
1, Lot 
27573500 

(1:100, after 
suggested dilution) 

Antibody, 
monoclonal 

Rat anti-

OLLASDyLight-650 
conjugated 

antibody  

Novus 
Biologicals, 
Littleton, CO 

Cat. NBP1-
06713C, Lot 
F-090517c 

(1:100) 

Antibody, 
polyclonal 

Chicken anti GFP  
Aves Labs, 
Inc, Tigard, 

OR  

Cat. GFP-
1020, Lot. 
GFP697986 

(1:1000) 

Antibody, 
polyclonal 

Rabbit anti-

mCherry  

Novus 
Biologicals, 

Littleton, 
CO 

Cat. NBP2-
25157, Lot 
102816 

(1:500) 

Antibody, 
secondary 

Alexa FluorⓇ  

488 AffiniPure 
Donkey Anti-

Mouse IgG (H+L)  

Jackson 

ImmunoRes
earch, West 

Grove, PA 

Cat. 715-
545-151 

(1:400) 

Antibody, 
secondary 

Rhodamine 

RedTM-X (RRX) 

AffiniPure 
Donkey Anti-

Rabbit IgG (H+L)  

Jackson 
ImmunoRes

earch, West 

Grove, PA 

Cat. 711-

295-152 
 

(1:400) 

Antibody, 
secondary 

Alexa FluorⓇ  

647 AffiniPure 

Donkey Anti-Rat 
IgG (H+L) 

Jackson 

ImmunoRes

earch, West 
Grove, PA 

Cat. 712-
605-153 

(1:400) 

Antibody, 
secondary 

Alexa Fluor® 488 
AffiniPure 

Donkey Anti-

Chicken IgY 
(IgG) (H+L)  

Jackson 

ImmunoRes
earch, West 

Grove, PA 

Cat. 703-

545-155 

 

(1:400) 
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Fly stocks 

All flies were raised at 25°C on standard cornmeal fly food. 

Genotypes Figure 

Females containing 10xUAS-IVS-myr::smGdP::HA, 13xLexAop2-IVS-

myr::smGdP::V5 (BDSC# 64092); GMR26F05-LexA (A08a neurons) 

(BDSC# 54702), UAS-bruchpilot (short)-mstraw; 165-Gal4 (dbd 

neurons) were crossed to males containing UAS-lacZ.Exel (control) 

(BDSC# 8529) 

4.2A-A’; 
4.3A-A’’, 
4.3C-D; 

4.4A-A’’, 
4.4C, 4.4Sup. 

1B, E; 4.5A, 

4.5D-E 

Females containing 10xUAS-IVS-myr::smGdP::HA, 13xLexAop2-IVS-

myr::smGdP::V5 (BDSC# 64092); GMR26F05-LexA (A08a neurons) 

(BDSC# 54702), UAS-bruchpilot(short)-mstraw; 165-Gal4 (dbd 

neurons) were crossed to males containing UAS-robo-2::HA (BDSC# 

66886) 

4.4Sup 1C, E; 

4.5B, 4.5D-E 

Females containing 10xUAS-IVS-myr::smGdP::HA, 13xLexAop2-IVS-

myr::smGdP::V5 (BDSC# 64092); GMR26F05-LexA (A08a neurons) 

(BDSC# 54702), UAS-bruchpilot(short)-mstraw; 165-Gal4 (dbd 

neurons) were crossed to males containing UAS-unc-5::HA  

4.4B-B’’, 
4.4D, 4Sup. 

1D-E;  4.5C-

E 

Females containing GMR57C10-FLPL;; 

10xUAS(FRT.stop)myr::smGdP-OLLAS, 

10xUAS(FRT.stop)myr::smGdP::HA, 

10xUAS(FRT.stop)myr::smGdP::V5-THS-

10xUAS(FRT.stop)myr::smGdP-FLAG (MCFO) (BDSC# 64090) 

were crossed to males containing GMR26F05-Gal4 (BDSC# 49192) 

4.2B 

Females containing GMR26F05-Gal4 (BDSC# 49192) were crossed 

to males containing UAS-DenMark, UAS-syt.eGFP; In(3L)D, 

mirr/TM6C, Sb (BDSC# 33064)  

4.2C-C’’ 

Females containing GMR26F05-LexA (BDSC# 54702); 165-Gal4 

were crossed to males containing UAS-lacZ.Exel; 13XLexAop2-IVS-

p10-GCaMP6m, 20xUAS-CsChrimson-mCherry (control) 

4.6A-A’, 
4.6D, 4.6F, 

4.7C-F, 4.8A, 

4.8C-C” 
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Females containing GMR26F05-LexA (BDSC# 54702); 165-Gal4, 

UAS-unc-5::HA were crossed to males containing 13XLexAop2-IVS-

p10-GCaMP6m, 20xUAS-CsChrimson-mCherry 

4.6B-B’, 
4.6D, 4.7G-J, 

4.8D-D” 

Females containing UAS-lacZ.Exel; 13XLexAop2-IVS-p10-

GCaMP6m, 20xUAS-CsChrimson-mCherry were crossed to males 

containing GMR26F05-LexA (BDSC# 54702) (No Gal4 control) 

 

4.6E-F 

Immunohistochemistry and sample preparation 

Larval Preparation 

Collection of timed larvae: embryos and larvae were raised at 25°C. Embryos 

were collected on 3.0% agar apple juice caps with yeast paste for 4 hours and then aged 

for 21 hours.  Embryos were transferred to a fresh 3.0% agar apple juice cap and then 

aged for 4 hours. Hatched larvae were transferred to standard cornmeal fly food vials 

and aged until dissection. 

 

Immunohistochemistry 

Larval brains were dissected in PBS, mounted on 12mm #1.5 thickness poly-L-

lysine coated coverslips (Neuvitro Corporation, Vancouver, WA, Cat# H-12-1.5-PLL) 

and fixed for 23 minutes in fresh 4% paraformaldehyde (PFA) (Electron Microscopy 

Sciences, Hatfield, PA, Cat. 15710) in PBST.  Brains were washed in PBST and then 

blocked with 2.5% normal donkey serum and 2.5% normal goat serum (Jackson 

ImmunoResearch Laboratories, Inc., West Grove, PA) in PBST overnight. Brains were 

incubated in primary antibody for two days at 4°C. The primary was removed and the 

brains were washed with PBST, then incubated in secondary antibodies overnight at 4°C.  

The secondary antibody was removed following overnight incubation and the brains were 

washed in PBST. Brains were dehydrated with an ethanol series (30%, 50%, 75%, 100%, 

100%, 100% ethanol; all v/v, 10 minutes each) (Decon Labs, Inc., King of Prussia, PA, 

Cat. 2716GEA) then incubated in xylene (Fisher Chemical, Eugene, OR, Cat. X5-1) for 

2x 10 minutes.  Samples were mounted onto slides containing DPX mountant (Millipore 

Sigma, Burlington, MA, Cat. 06552) and cured for 3 days then stored at 4°C until 

imaged. 

The following primary and secondary antibodies were used:   
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Primary Antibody (concentration) Source Figure 

Mouse anti-V5 tag monoclonal 

antibody (1:1000) 

Rabbit anti-mCherry polyclonal 

antibody (1:500) 

Rat anti-HA tag monoclonal antibody 

(1:100, after suggested dilution) 

Invitrogen, Carlsbad, CA, 

Cat. R96025, Lot 1949337 

Novus Biologicals, 

Littleton, CO, Cat. NBP2-

25157, Lot 102816 

Roche Holding, AG, Basel, 

Switzerland, Cat. 

11867423001, Lot 

27573500 

4.2A-A’, 
4.3A-A’’, 
4.3C-C’’’, 
4.4A-B’’, 
4.4-Sup. 1B-

D, 4.5A-C  

Rat anti-OLLASDyLight-650 conjugated 

antibody (1:100) 

Novus Biologicals, 

Littleton, CO, Cat. NBP1-

06713C, Lot F-090517c 

4.2B 

Chicken anti GFP polyclonal antibody 

(1:1000) (labels Syt:GFP) 

Rabbit anti-mCherry polyclonal 

antibody (1:500) (labels DenMark) 

Aves Labs, Inc, Tigard, OR, 

Cat. GFP-1020, Lot. 

GFP697986 

Novus Biologicals, 

Littleton, CO, Cat. NBP2-

25157, Lot 102816 

4.2C-C’’ 

 

Secondary Antibody (concentration) Source Figure 

Alexa FluorⓇ  488 AffiniPure 

Donkey Anti-Mouse IgG (H+L) 

(1:400) 

Rhodamine RedTM-X (RRX) 

AffiniPure Donkey Anti-Rabbit IgG 

(H+L) (1:400) 

Alexa FluorⓇ  647 AffiniPure 

Donkey Anti-Rat IgG (H+L) 

Jackson ImmunoResearch, 

West Grove, PA, Cat. 715-

545-151 

Jackson ImmunoResearch, 

West Grove, PA, Cat. 711-

295-152 

Jackson ImmunoResearch, 

West Grove, PA, Cat. 712-

605-153 

4.2A-A’, 
4.3A-A’’, 
4.3C-C’’’, 
4.4A-B’’, 
4.4-Sup. 

1B-D, 

4.5A-C   

Alexa Fluor® 488 AffiniPure Donkey 

Anti-Chicken IgY (IgG) (H+L) 

(1:400) 

Rhodamine RedTM-X (RRX) 

AffiniPure Donkey Anti-Rabbit IgG 

(H+L) (1:400) 

Jackson ImmunoResearch, 

West Grove, PA, Cat. 703-

545-155 

Jackson ImmunoResearch, 

West Grove, PA, Cat. 711-

295-152 

4.2C-C’’ 
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Light Microscopy 

 Fixed larval preparations were imaged with a Zeiss LSM 800 laser scanning 

confocal (Carl Zeiss AG, Oberkochen, Germany) equipped with an Axio Imager.Z2 

microscope. A 63x/ 1.40 NA Oil Plan-Apochromat DIC m27 objective lens and GaAsP 

photomultiplier tubes were used. Software program used was Zen 2.3 (blue edition) (Carl 

Zeiss AG, Oberkochen, Germany). For each experiment, all samples were acquired using 

the same acquisition parameters (see below). 

 

 

Voxel size 

Excitation 

wavelength 

(laser power) 

 

Detection 

wavelength 

 

 

Pinhole size (AU) 

 

 

Figure 

0.090 x 

0.090 x 

0.280 µm3 

488 nm (0.13%) 

561 nm (0.07%) 

640 nm (0.14%) 

410-541 nm 

541-627 nm 

656-700 nm 

35µm for all channels 

(488 nm: 0.82AU, 

561nm: 0.71AU, 

647nm: 0.63AU) 

4.2A-A’, 
4.3A-A’’, 
4.3C-C’’’, 
4.4A-B’’, 
4.4-Sup. 1B-

D, 4.5A-C’  

0.067 x 

0.067 x 

0.280 µm3 

640 nm (0.65%) 656-700 nm 40µm (0.72AU) 4.2B  

0.067 x 

0.067 x 

0.280 µm3 

488 nm (0.13%) 

561 nm (0.25%) 

410-540 nm 

540-772 nm 

43µm (0.99AU) 

38µm (0.77AU) 

4.2C-C’’  

 

Image processing and analyses 

 

Quantification of dbd-A08a synapse voxel distribution 

The “synapse voxel” image analyses pipeline identifies Brp voxels that are either 

one voxel away or already overlapping with membrane containing voxels. Since each 

voxel size is 90nm, then the “synapse voxels” represent the voxels that have Brp less than 

90nm away from membrane voxels.  

Image processing and analysis was performed using FIJI (ImageJ 1.50d, 

https://imagej.net/Fiji). Stepwise, images were rotated 
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(Image>Transform>Rotate(bicubic)) to align A08a dendrites along the X-axis, then a 

region of interest was selected in 3D to include A08a dendrites in one hemi-segment 

(Rectangular selection>Image>Crop). The Brp and A08a dendrite channels were isolated 

(Image>Color>Split channels). To quantify the amount of voxels containing A08a 

dendrite signal within 90nm of voxels containing Brp signal, a mask was manually 

applied to each channel (Image>Adjust>Threshold). The threshold was assigned to 

include Brp positive voxels and minimize contribution from background. Because of the 

inherent variability in pixel intensity between different samples (most likely due to the 

variability of the Gal4 and LexA systems), we could not assign the same threshold to 

different samples. We found that manually assigning thresholds was a more accurate 

method of identifying Brp or membrane containing voxels compared to automatic 

thresholding methods available in FIJI. Importantly, the Brp and membrane thresholds 

were assigned separately and prior to quantifying the number of overlapping voxels. The 

Brp mask channel was dilated one iteration (Process>Binary>Dilate). We assigned the 

90nm distance threshold to account for the size of the synaptic cleft (~20nm, measured in 

EM) and the chromatic aberration between 488nm and 555nm wavelengths used to 

visualize A08a membrane and dbd pre-synapses (~70nm, measured in our light 

microscope). Then image arithmetic was used to identify the voxels that contain intensity 

in both the masked A08a dendrite and dilated Brp channels (Process>Image 

Calculator>Operation “AND”). Images were reduced in the z-dimension 

(Image>Stacks>Z-project>Sum Slices) and a plot profile was obtained to measure the 

average voxel intensity across the medial-lateral axis of A08a dendrites (Rectangular 

selection>Analyze>Plot profile). Distance from the midline was calculated by setting a 

starting point at the midline and then calculating distance along the medio-lateral axis 

perpendicular to the midline. 

 

Quantification of A08a dendrite distribution 

Image processing and analysis was performed using FIJI (ImageJ 1.50d, 

https://imagej.net/Fiji). Stepwise, images were rotated 

(Image>Transform>Rotate(bicubic)) to align A08a dendrites along the X-axis, then a 

region of interest was selected in 3D to include A08a dendrites in one hemi-segment 
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(Rectangular selection>Image>Crop). To identify the voxels that contain dendrite 

intensity a mask was manually applied (Image>Adjust>Threshold). The threshold was 

assigned to include A08a dendrite positive voxels and minimize contribution from 

background.  To quantify the amount of A08a dendrite positive voxels across the medial-

lateral axis, images were reduced in the z-dimension (Image>Stacks>Z-project>Sum 

Slices) and a plot profile was obtained to measure the average voxel intensity 

(Rectangular selection>Analyze>Plot profile). An unpaired t-test was used to calculate p-

values in Microsoft Excel (Microsoft Corporation, Redmond, WA). 

 

Figure preparation 

 Images in figures were prepared as either 3D projections in Imaris 9.2.0 (Bitplane 

AG, Zurich, Switzerland) or maximum intensity projections in FIJI (ImageJ 1.50d, 

https://imagej.net/Fiji). Scale bars are given for reference on maximum intensity 

projections and single z-slice micrographs, but do not necessarily represent actual 

distances, as the tissue samples undergo changes in size during the tissue clearing 

protocol. Pixel brightness was adjusted in some images for better visualization; all such 

adjustments were made uniformly over the entire image. 

 Scale bars were included in all single focal planes and standard maximum 

intensity projections. In some cases, figures were “3D projected” images exported from 

the Imaris software, where the scale bars are assigned to match the scale at the “center” 

of the 3D projection. In these cases, we did not add a scale bar because it would not be 

accurate for all parts of the image. 

 

Data collection 

 A power analysis was not performed to determine the appropriate sample size. 

Many samples were dissected to account for low penetrance of dbd lateralization and to 

account for damaged samples that were not suitable for image analyses. All sample 

numbers represent biological replicates. However, we did perform the same experiment 

on multiple days. We did not exclude any outliers from the data sets. The criteria for 

excluding samples were as follows. For the fixed tissue preparation, samples with poor 

dissection quality or poor mounting on slides were excluded as they were unsuitable for 

https://imagej.net/Fiji


 

78 

 

the image analyses pipeline. Samples were also excluded if random “off-target” neuron 

expression interfered with image analysis. For optogenetic experiments, samples were 

excluded if sample movement in the z-axis precluded accurate quantification of changes 

in fluorescence. For lateralized dbd optogenetics, brain segments were excluded from 

analysis if A08a received input from dbd on the medial dendrite. Samples were allocated 

into groups by genotype; every genotype was treated as an independent group. 

 

Functional connectivity assays 

Newly hatched larvae were aged for 48 ± 4 hours ALH on standard cornmeal fly 

food at 25°C. At this time, larvae were transferred to apple caps containing wet yeast 

supplemented with 0.5mM all-trans retinal (Sigma-Aldrich, R2500-100MG) and aged at 

25°C in the dark. Following another 24 hours (72 ± 4 hours ALH) animals were dissected 

in HL3.1 saline solution. All dissections were performed in low lighting to prevent 

premature Chrimson activation. Freshly dissected brains were mounted in HL3.1 saline 

on 12mm round Poly-L-Lysine coated coverslips.  

 

Confocal experiments (Figures 4.6, 4.8) 

GCaMP6m signal in postsynaptic A08a axon terminals was imaged using 0.01% 

power of the 488nm laser with a 40x objective on a Zeiss LSM800 confocal microscope 

(NA: 1.4; pinhole size: 32 µm (1AU); detection wavelength: 450-550nm, voxel size: 

0.782 x 0.782 x 1µm3). Chrimson in presynaptic neurons was activated with three pulses 

of 561 nm laser at 100% power delivered via the same 40x objective using the bleaching 

function in the ZEN Zeiss software. The total length of the 561nm pulses was about 

450msec. After individual recording sessions of unc-5 expressing samples, Z-stacks of 

the brain were taken to verify the segments in which A08a exclusively received dbd input 

onto the lateral dendrite and were therefore permissible for analysis; the few larvae where 

Chrimson+ off-target neurons were close to A08a neurons were excluded, although due 

to low signal we can’t exclude the possibility of rare or fine contacts. A08a neurons from 

abdominal segments 3-5 were used for our analyses, as no statistically significant 

difference in post-stimulus ΔF/F0 was detected among these neurons.    
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To quantify ΔF/F0 traces we used a custom MATLAB script (The MathWorks, 

Natick, MA). The script first performs rigid registration to correct for movement artifacts 

during recording, and then allows for ROI selection. ROIs were drawn around A08a axon 

terminals in individual segments, and ROI size was constant across all experiments 

(Figure 4.6C). F0 was set as the average fluorescence of the 3 frames acquired before 

each 561nm light stimulus. For a single animal, we first average ΔF/F0 traces for six 

consecutive 561nm stimuli separated by 20 488nm acquisition frames (4 frames/sec). 

These 20 frames are enough time to allow GCaMP6m fluorescence to return to baseline. 

Traces were then averaged across animals to determine the mean ΔF/F0 for each 

experimental group. Mean post-stimulus ΔF/F0 was calculated by first subtracting the 

mean F0 from the mean F in the first frame post-stimulus, then dividing the resulting ΔF 

by the mean F0. The mean was then calculated for each experimental group. 

For demonstrating monosynaptic connectivity between dbd and A08a, brains were 

dissected and mounted in 3µM TTX (Abcam, Cambridge, MA, ab120055) diluted in 

HL3.1. Brains were incubated for 5 minutes in the TTX solution prior to the recording 

session. To first determine the effectiveness of TTX, spontaneous A08a GCaMP6m 

activity was recorded over 5 minutes with and without TTX (in lacZ control animals). 

Spontaneous GCaMP6m activity was recorded on an LSM800 with a 40X objective (NA: 

1.4; excitation wavelength: 488nm; detection wavelength: 492-555nm; pinhole size: 32 

µm (1AU)). Once it was established that TTX eliminates spontaneous rhythmic A08a 

activity, we dissected fresh brains in TTX and performed the same Chrimson activation 

paradigm (using the same bleaching protocol and image acquisition settings) as described 

above to test monosynaptic connectivity.  

 

Two photon experiments (Figure 4.7) 

Images were generated using a galvanometric and resonant scan mirror-based 

two-photon microscope (VIVO Multiphoton™ Movable Objective RS+ Microscope and 

Vector™ resonant galvo scanner, 3i Intelligent Imaging Innovations, Denver, CO). A W 

Plan-Apochromat 20x/1.0NA Water Dipping Objective (apochromatically corrected 

480nm-1300nm) with a working distance of 2.3mm was used for delivery of excitation 

and stimulation laser excitation. The imaging system utilizes the Chameleon Discovery 
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duel wavelength laser system (Coherent, Santa Clara, CA) as the pump laser. The pump 

laser supplies 100fs pulses at an 80MHz repetition with an output power of 1.3W at 

940nm and 3.9W at 1040nm. Imaging was accomplished at 40Hz frame rate while 

averaging 5 frames per image with a scan range of 578um x 571um and a pixel size of 

1.47um x 1.42um. GCaMP6m and mCherry were excited using 940 nm (27mW) and 

1040nm (200-244mW) radiation respectively while the fluorescence was collected with 

two fast-gated GaAsP PMTs having filter sets that selectively collect fluorescence 

between 490-560nm for the green channel and 570-640nm in the red channel.  

Sample stimulation was based around a 5W, 192fs, 10MHz laser system for 

excitation of Chrimson at 1040nm (FemtoTrain 1040-5, Spectra-Physics, Santa Clara, 

CA). Excitation was delivered through the objective with a phase-only spatial light 

modulator (SLM) (Phasor, computer—generated holography system, 3i Intelligent 

Imaging Innovations, Denver, CO) for precise patterned and 3D photomanipulation. 

Between 21mw and 66mw were used in 100ms stimulation pulses for Chrimson 

activation. Stimulation ROIs were 10um diameter circles localized over regions of 

interest. Holographic based stimulation allowed for Chrimson activation at arbitrary 

depths within the sample while continuously monitoring the imaging plane for an A08a 

response. 

 

Statistical analyses 

Statistical analyses for optogenetic experiments were performed with MATLAB and R. 

For analyzing the statistical significance of mean post-stimulus ΔF/F0 , an H-test was 

used to determine whether the data for each experimental group were normally 

distributed. Because these data were non-normally distributed, a Mann-Whitney test was 

performed to determine whether there were statistically significant differences in mean 

ΔF/F0 among experimental groups. To analyze potential differences in F0 among + and -

ATR groups we used a Pairwise Wilcox Test to calculate comparisons between each 

experimental group. This was followed by a Benjamini & Hochberg correction for 

multiple testing. All code for analysis of optogenetic data in Figures 5-7 is deposited at 

the following GitHub repository https://github.com/timothylwarren/elife_larvae_2019. 

 

https://github.com/timothylwarren/elife_larvae_2019
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CHAPTER V 

 

CONCLUSION 

  

Understanding how developing neural circuits assemble with cellular and 

subcellular precision will impact society through the advancement of technology and 

medicine. Characterizing the genes that govern synapse specificity will enable the 

exploration of the underlying cellular mechanisms that mediate this specificity. For 

example, one can study gene function within the context of particular mechanisms that 

influence specificity, such as: developmental origins of diverse cell types, neural activity 

dependent refinement of circuits, or environmental contributions to circuit architecture. 

The understanding of how these biological processes regulate synapse specificity will 

support the development of medicinal treatments (eg. biomarkers, drug targets, 

therapeutics) and the development of novel neural circuits (eg. regeneration of biological 

circuits, generation of novel computational neural circuits). 

 The genes underlying synapse specificity have been difficult to identify. 

Establishing model systems, like the one described here, will be critical to speed up the 

identification of these genes. Model systems spanning different model organisms, circuit 

types, and neuron types will provide a more comprehensive understanding of this 

process. An interdisciplinary approach will also be critical to identify these genes. Single 

cell RNA sequencing advances will lead to the better characterization of gene expression 

in individual neurons. Biotechnologies to manipulate genes or entire gene families with 

precise spatial and temporal control will inform how genetic programs are used by 

neurons. Computational approaches, such as machine learning algorithms, will better 

predict relevant cellular pathways and protein interactions. Taken together, these 

strategies will better define the relationship between genes and neural circuits. 

 Here, using a novel model system in the Drosophila larval nerve cord, I was able 

to test the role of genes in synapse formation. I took a candidate gene approach, focusing 

on CSMs with unique and specific binding interactions. I tested the role of genes in the 

Dpr and DIP families in synaptic partners, dbd and A08a, and did not identify a role for 

them in synapse formation. Other genes remain to be tested, both in the context of both 
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synaptically coupled and non-synaptically coupled neurons. For example, an RNAi 

screen could be performed to identify genes necessary for synapse formation between 

synaptic partners, and a misexpression screen could be performed to identify genes that 

are sufficient for synapse formation between neurons that are normally not synaptically 

coupled, such as dbd and A27j. 

 The better characterization of Dpr and DIP genes in several neural processes is 

warranted. Many open questions remain, including: Do Dpr and DIP genes regulate axon 

fasciculation and contribute to parsing out neuropil domains into anatomical regions that 

process specific kinds of information? Do neurons that express Dpr and DIP genes early 

in development act as pioneer neurons? How do neural stem cells assign neurons 

different Dpr and DIP expression profiles? Can Dpr and DIP proteins mediate 

mechanotransduction in the peripheral nervous system? Describing the various roles of 

these gene families will help define their function and also broadly increase our 

understanding of neural circuit assembly, function, and maintenance. 

 Understanding how neural circuits assemble at the subcellular level is also 

important. The studies I presented here, emphasize the role of axon guidance cues in the 

subcellular positioning of dbd along the dendritic domain of A08a neurons. Most likely 

there are molecular labels on the axon of A08a that prevent ectopic dbd synapse 

formation. Future studies might be able to identify these molecular labels and 

characterize their expression on the subcellular level. For example, how are CSMs 

localized to particular subcellular domains? Is the subcellular localization of these 

proteins dependent on non-cell autonomous mechanisms, neural activity, or neural stem 

cell lineage? Future studies can also focus on how developmental processes to establish 

synapse specificity contribute to neural circuit structure and function. 

 It will also be important to characterize the role of dendritogenesis with respect to 

synapse specificity and neuronal morphology. Manipulations of dbd neuropil position 

resulted in changes in A08a dendritic morphology, suggesting dbd may actively regulate 

dendrite formation on its post-synaptic partner, A08a. How these morphological changes 

of the dendritic structure of A08a impact synaptic input integration remain to be 

explored. The dbd-A08a model system, coupled with electrophysiological and modeling 
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approaches, would be a tractable in vivo model system to investigate the functional 

consequences of subcellular synaptic specificity.  
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