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DISSERTATION ABSTRACT 

 

Teresa Marie Findley 

 

Doctor of Philosophy 

 

Department of Biology 

 

September 2020 

 

Title: Neural Mechanisms and Behavior in Unrestrained Mouse Olfactory Search 

 

 

For many organisms, searching the environment for food and mates entails active 

sensing. Finding odorous targets may be the most ancient search problem that motile 

organisms have evolved to solve. While chemosensory navigation has been well 

characterized in micro-organisms and invertebrates, spatial olfaction in vertebrates is 

poorly understood. Here, we developed an olfactory search assay where freely moving 

mice must navigate turbulent airborne odor gradients. Mice are concentration gradient-

guided and do not rely upon stereo olfaction to successfully search these gradients. 

Further, mice synchronize head movement with sniffing with 10s of milliseconds 

precision. Using unsupervised machine learning, we identified 11 behavioral motifs that 

make up the structure of search behavior in this task. The onset of these motifs align 

tightly with the sniff cycle. These motifs sort into two broad categories of search based 

on nose speed and sniff synchronization. We have defined these two categories as 

investigation and approach. This assay lays the foundational behavioral work to 

investigate the underlying neural mechanisms of olfactory search.  

Movement is pervasively encoded across the brain and sampling movements 

dictate future sensory input. We anticipate that features of sampling movement are 

therefore encoded in early sensory areas such as the olfactory bulb. We designed an 
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experimental assay that accommodates chronic local field potential recordings in 

olfactory bulb in the unrestrained mouse to investigate how olfactory bulb signals encode 

movement during olfactory search. Our system executes 3-dimensional tracking with 

high accuracy and can be generalized to accommodate many experimental techniques 

(electrophysiology, fiber photometry, optogenetics, etc.). This tracking is precisely 

aligned at the millisecond time scale with 16 channel electrophysiological recordings in 

the olfactory bulb and sniffing from an intranasally implanted thermistor. This assay 

development will accommodate future experiments into the neural mechanisms of 

olfactory search behaviors.  
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CHAPTER I 

INTRODUCTION 

Teresa Findley and Matt Smear 

Institute of Neuroscience, University of Oregon, Eugene, OR 97403 

Active sensation & unrestrained movement 

Animals function in highly dynamic environments. We successfully move 

through complex settings to forage, seek shelter, and reproduce.  As such, we intuitively 

consider movement to be the result of sensory input -- we react to our surroundings. If 

something tastes sweet, you will eat more of it. If you touch a hot stove, you will pull 

your hand away from it. However, such a model excludes the impact that movement has 

on our senses. Our sensory systems are not fixed objects in a landscape, but are part of a 

body that is constantly in motion. Body movements shape the content, direction, and 

intensity of sensory stimuli. Proactively moving our sensors to sample the surrounding 

environment in a task-oriented manner is called active sensation. In this case, movement 

drives sensation in the form of eye saccades, sniffing, antennal movements, vibrissae 

protraction, etc. These sampling movements are integral to the proper function of our 

senses and it is therefore crucial to incorporate them into our study and subsequent 

understanding of sensory processing.  

Traditionally, the nervous system has been regionally categorized into discrete 

sections thought to support sensory, decision, and motor signals. However, recent 
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evidence challenges this model – movement signals occur globally across the brain 

during both spontaneous and goal-directed behavior, occurring even in areas traditionally 

considered sensory regions (Musall et al., 2018; Steinmetz et al., 2018; Stringer et al., 

2019). This body of work supports a more comprehensive model of behavior: perception 

is a closed-loop process in which sensation and motion operate simultaneously and 

dependently (Ahissar & Assa, 2016; Churchland, P.S., Ramachandran, V.S., & 

Sjenowski, 1994; Gibson, 1962; Yarbus, 1967). Importantly, in this model of behavior, 

studying sensory processing requires unrestrained movement. Currently, the main body 

of sensory neuroscience literature is largely comprised of experiments that limit 

movement through head and/or body restraint. While advantageous for access, precision, 

breadth, and longevity of neural recordings, restraint causes changes in sampling 

behavior during vision (Wallace et al., 2013), somatosensation (O’Connor et al., 2010), 

and olfaction (Wesson et al., 2009). As it is still unclear whether sensory neural signals 

recorded in restrained animals generalize to freely moving paradigms, there is a vital 

need for investigation of sensory processing and behavior in the unrestrained animal. 

This dissertation presents such an investigation into active sensing behaviors during 

mouse olfactory search as well as an experimental system that can align discrete 

behavioral events with neural activity.   

The olfactory system 

 Olfaction is the principal sense through which many species forage, avoid 

predators, and socialize/reproduce. Using olfactory cues, wolves can identify individuals, 

communicate with each other, and track prey that is kilometers away (Mech, L.D., & 

Frenzel, 1971; Peters & Mech, 1975). In contrast, salmon use olfaction to identify their 
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home stream and return there for breeding (Hasler et al., 1978; Nevitt et al., 1994). 

Importantly, olfaction is driven by observable and quantifiable sampling behaviors, 

making it a powerful model system for studying active sensation. Movements of the 

head, body, nose, vibrissae, antennae, etc. can shape and tune sensory input, allowing 

organisms to navigate both stable and dynamic chemical environments. In mammals, 

sniffing regulates odor access to the nose via inhalation speed and volume (Adrian, 1942; 

Sobel & Tank, 1993; Wachowiak, 2011). Modulations in respiration rate and volume are 

dramatically different during unrestrained movement (Wesson et al., 2008) and known to 

influence neural responses to odors (Parabucki et al., 2019; Wachowiak, 2011). Given the 

known importance of sampling in olfactory sensory processing, the breadth of sampling 

behaviors, and its ethological relevance, the mammalian olfactory system is an ideal 

model for investigating active sensing search behaviors in the context of closed-loop 

perception.  

 Despite its versatility in application, the olfactory system is highly conserved 

across mammalian species. Olfactory sensory neurons (OSNs) embedded in the olfactory 

epithelium at the back of the nasal passages detect inhaled odorant molecules (Shepherd 

& Greer, 1998). Each of these OSNs expresses one type of odorant receptor (Malnic et 

al., 1999; Serizawa et al., 2000, 2003). OSNs that express the same receptor type all 

project onto the same glomerulus at the surface of the olfactory bulb (OB) (Ressler et al., 

1994; Royet et al., 1998). Each glomerulus in the OB contains both OSN axon terminals 

and dendritic projections from the deeper mitral and tufted (M/T) cell layer in the OB 

(Shepherd & Greer, 1998). The glomerular layer is also innervated by periglomerular 

interneurons (providing inter- and intra- glomerular connections). The granule layer, the 



4 
 

deepest layer of the OB, is made up of granule interneurons with dendrodendritic 

synapses onto mitral cells (Shepherd & Greer, 1998). These provide the possible 

infrastructure for widescale within-system signal modulation. Both mitral and tufted cells 

then project to the olfactory cortex and associated areas, relaying information to other 

parts of the brain (Shepherd & Greer, 1998). The cellular architecture of the OB suggests 

extensive early processing of incoming signals prior to olfactory cortex access, making it 

a unique and fascinating model system through which to study sensory processing.  

 To interpret the ethologically relevant features of the olfactory scene, the brain 

must efficiently and accurately encode odor identity and concentration. Specifically, 

information regarding odor concentration is essential for locating odor sources. M/T cells 

are projection neurons that receive direct input from OSNs. They are innervated by both 

periglomerular and granule cell interneurons allowing for extensive signal modulation. 

Further, odor identity can be decoded from a single M/T cell spiking pattern (Shusterman 

et al., 2011). This makes this population a viable candidate for the extraction and 

encoding of environmentally salient features like concentration and identity. M/T cells 

are also an ideal neuronal population in which to investigate the impact of sampling 

behavior on neural activity. The temporal pattern of M/T cell activity is locked in phase 

with the sniff cycle of awake, head-fixed mice (Shusterman et al., 2011). Recent work 

recording from OSN terminals and M/T cells simultaneously in the glomerular layer of 

awake, head-fixed mice shows that the activity of these two populations is tightly coupled 

(Moran et al., 2019). This suggests that much of the dynamics in M/T cell responses may 

largely be due to dynamics in OSN activity. Despite this, a sub-population of M/T cells 

have been shown to act as concentration change detectors, responding to either or both 
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increases and decreases in odor concentration in head-fixed, awake mice (Parabucki et 

al., 2019). This finding indicates that concentration change detecting M/T cells (ΔC cells) 

may play an important role in olfactory search. By investigating the population level 

activity of the M/T cell layer in the unrestrained mouse, we can reveal the relationship 

between active sensing movements and feature-relevant sensation during search behavior.  

Olfactory search 

The olfactory environment 

In the most simple, controlled conditions, odor molecules diffuse evenly along 

surfaces or through the air emanating away from an odor source. This results in a smooth 

gradient of odor concentration that peaks at the odor source. Experimentally, these are 

conditions where the stimuli are predictable. However, outside of these controlled 

settings, air turbulence disrupts these smooth gradients, creating complex and difficult to 

predict stimulus conditions. The resulting odor plumes rapidly fluctuate between pockets 

of high and low odor concentration (Connor et al., 2018; Crimaldi et al., 2002). This 

makes naturalistic olfactory scenes difficult to reliably reproduce and measure. Despite 

the dynamic nature of these stimuli, we know that many animals can use their olfactory 

systems to execute efficient and accurate searches. By capturing behavior, we can 

extrapolate some of the computational strategies for executing these searches in turbulent 

conditions and form hypotheses about the underlying neural mechanisms, even without 

knowing the stimulus. What follows is a summary outlining the current body of 

knowledge on the most relevant olfactory search strategies and behaviors to this 

dissertation. 
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Small-scale organisms: chemotaxis 

 Chemotaxis, one of the simplest forms of chemical navigation, does not require 

networks of neurons. During bacterial chemotaxis, when a bacterium experiences an 

increase in attractive odor concentration, their turning probability goes down and they 

travel in a straight line. If it experiences no odor or a decrease in concentration, turning 

probability increases. This is controlled by chemoreceptor-activated phosphorylation of a 

messenger protein, which controls turn probability via the flagellar motor. This system is 

further tuned to accommodate dynamic stimuli by a pair of enzymes that modulate the 

methylation of chemoreceptors (Falke et al., 1997). Chemotaxis has also been well-

characterized in the Drosophila melanogaster larvae and Caenorhabditis elegans 

(Gomez-Marin et al., 2011; Larsch et al., 2015; Lockery, 2011). Similarly, for these 

organisms the re-orientation algorithm is composed of two behavioral programs. Positive 

odor gradients result in runs whereas negative odor gradients result in stops. Drosophila 

larvae head cast back and forth to sense the gradient during runs and execute large head 

sweeps during stops to sample the gradient. Sensory input to just one of the two bilateral 

olfactory sensors on the head is sufficient to guide larval chemotaxis, suggesting that 

temporal concentration comparison across sampling movements plays an important role 

in this behavior (Gomez-Marin et al., 2011). In each of these examples of chemotaxis, 

olfactory search is executed using a two-state model of behavior (turns and runs).  

Small-scale organisms: odor-gated anemotaxis 

Turbulence increases with distance from a surface, meaning flying organisms must 

address odor gradient disruptions more so than those low to the ground. One popular 
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search strategy among flying insects is odor-gated anemotaxis (movement directed by air 

currents). Here, odor is not the positional cue, but instead acts as the trigger or gate for 

transition between behavioral states. Moths, for example, cast their bodies back and forth 

perpendicular to wind direction in search of attractive odorants. If they detect an 

attractive odor, they will surge upwind (Kennedy & Marsh, 1974; Vickers & Baker, 

1994). In this case, the positional cue is wind direction. Cast and surge are the two 

behavioral states that are gated by odor cues. Adult Drosophila have also been shown to 

navigate using odor-gated anemotaxis (Budick & Dickinson, 2006). In this species, there 

is a delay between the end of a surge and initiation of casting (van Breugel & Dickinson, 

2014). This is thought to mitigate the impact that temporary drops in concentration due to 

turbulence have on behavioral output. Anemotaxis is not the only type of directed 

movement that can be odor-gated. Recent research has shown that adult Drosophila can 

travel distances more than 10km over novel terrain to successfully locate banana traps. 

This suggests that they can use visual celestial cues as positional information during long 

range odor-gated search (Leitch et al., 2020). Notably, despite the added challenge that 

air turbulence presents to these insects, they still implement a two-state behavioral 

strategy reminiscent of the turns and runs of chemotaxis.  

Mammalian olfactory search: trail tracking 

 Mammalian olfactory navigation can be divided into two general broad 

categories: trail tracking and air scenting. When trail tracking, animals can track the exact 

path of another organism or object by following the odor molecules deposited on the 

ground during movement. Under these conditions, the concentration gradient is steep and 

stable. Previous work shows that rodents can reliably follow odor trails with rapid 
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sniffing accompanied by side to side head movements (akin to head casts during 

Drosophila larvae chemotaxis) (P. W. Jones & Urban, 2018; Khan et al., 2012). In rats, 

sniffing rate slows with distance from the odor track and naris stitching reduces the 

accuracy of tracking (Khan et al., 2012). This suggests that stereo olfaction (the 

comparison of concentration between the nares) plays a role in this form of search. Work 

in mice further supports the role of stereo olfaction, adding that serial comparisons (sniff 

by sniff) are also important to the execution of trail tracking (P. W. Jones & Urban, 

2018). Under these conditions, both serial and stereo comparisons drive movements of 

the nose.  

Mammalian olfactory search: air scenting & sampling movements 

 In contrast with ground tracking, air scenting relies on the diffusion of odor 

molecules through the air, which is heavily influenced and disrupted by air turbulence. 

Under controlled conditions, where chemical gradients evenly diffuse through the air, 

moles use both serial and stereo comparisons to execute air scenting olfactory search. 

Specifically, they implement a serial comparison strategy at a distance and depend 

increasingly on stereo comparisons as they approach the odor source (Catania, 2013). 

This is further supported by recent behavioral modeling in mice (Liu et al., 2020). 

However, olfactory computations executed under turbulent conditions have been more 

elusive. In these experiments thus far, when presented with odorant plumes, rodents adapt 

a memory-guided strategy of search (Bhattacharyya & Singh Bhalla, 2015; Gire, David H 

et al. 2017). As they learn the search task, they begin serially sampling odor ports 

regardless of the odor source location, reducing the task to one of odor detection rather 

than gradient-guided search.  
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Despite these findings, natural environments are dynamic and often unpredictable. 

Therefore, we know mammals cannot always rely on memory guidance to perform air 

scenting in turbulent conditions. Possible computations for executing such search 

behavior without memory cues are unknown. Further, the contributions of serial versus 

stereo comparison are also unknown. As mentioned previously, sampling movements 

dictate the future sensory input necessary to complete each of these olfactory 

computations. In mammals, sniffing and movements of the body, head, nose, and 

whiskers can all be used to actively sense the olfactory environment. Importantly, 

orofacial muscle groups often move in coordinated synchrony (Kurnikova et al., 2017; 

Moore et al., 2013) and sniffing gates olfactory access in mammals. Therefore, synchrony 

between orofacial movements and sniffing suggests that these movements play a role in 

shaping olfactory input. However, the breadth and utility of active sensing movements 

during unrestrained olfactory search are largely not understood.  

Neural mechanisms of mouse olfactory search 

 Despite the progress made in the study of unrestrained olfactory search, the 

computations used to execute olfactory search have remained elusive. We proposed that 

unrestrained olfactory search of a plume in mice would rely upon serial comparisons of 

the concentration gradient. We further hypothesized that head movements would 

synchronize with the sniff cycle during search, similar to orofacial movements. Finally, 

given the propensity of two-state models in search behavior, we proposed that our search 

could be categorized into discrete movement events and that these would fall into a two-

state model reminiscent of chemotaxis or odor-gated anemotaxis. 



10 
 

Here, we have developed a robust behavioral assay that captures sampling 

behaviors during turbulent air scenting in the mouse (Findley et al., 2020). We 

demonstrated that this search behavior is concentration gradient-guided and is not 

dependent upon stereo comparisons. We extracted movement motifs that underlie 

olfactory search and demonstrate that these motifs align with sniffing behavior. In fact, 

head movements are tightly synchronized with the sniff cycle and this phenomenon is 

specific to odor search conditions. We demonstrated that movement motifs divide into 

two general categories that we call ‘investigation’ and ‘approach’. These two states differ 

in overall movement speed, sniffing rate, and the degree of synchrony between head 

movement and sniffing. This categorization is reminiscent of the two-state models of 

search already established in smaller organisms. Finally, we present a new system with 

which we can align discrete behavioral states or individual sampling movements with 

neural activity at the mitral and tufted cell layer of the olfactory bulb to investigate local 

field potential encoding of behavioral state and sampling movements during olfactory 

search.   
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CHAPTER II 

SNIFF-SYNCHRONIZED, GRADIENT-GUIDED 

OLFACTORY SEARCH BY FREELY MOVING MICE 

 

JOURNAL STYLE INFORMATION 

Teresa M Findley*, David G Wyrick*, Jennifer L Cramer, Morgan A Brown, Blake 

Holcomb, Robin Attey, Dorian Yeh, Eric Monasevitch, Nelly Nouboussi, Isabelle Cullen, 

Jeremea Songco, Jared F King, Yashar Ahmadian, Matthew C Smear. Reproduced in part 

from a manuscript submitted to eLife 2020. Available on bioRxiv, Copyright 2020.  

*Authors contributed equally 

  

AUTHOR CONTRIBUTIONS 

TF and MS conceived the study. MB, TF, and MS designed, built, and maintained the 

behavioral rig. TF, JC, BH, RA, DY, EM, NN, IC, JS, and JK trained mice. JC and TF 

performed naris occlusion experiments. RA, DW, and TF established and implemented 

Deeplabcut tracking, DW and YA designed and performed the AR-HMM analysis. TF, 

DW, BH, YA, and MS analyzed data and wrote the manuscript.  

INTRODUCTION 

Sensory observations are often made in concert with movements (Ahissar & Assa, 

2016; Gibson, 1966). During active search behavior, animals make sampling movements 

in order to extract relevant sensory information from the environment (Gibson, 1962; 
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Schroeder et al., 2010). Sampling behavior is flexible, and can be customized for the 

problem the animal is trying to solve (Kleinfeld et al., 2006; Yarbus, 1967). In the brain, 

sensory and motor systems interact extensively (Andersen & Mountcastle, 1983; 

Duhamel et al., 1992; McGinley et al., 2015; Musall et al., 2019; Niell & Stryker, 2010; 

Poulet & Hedwig, 2006; Sommer & Wurtz, 2002; Stringer et al., 2019), which reflects 

the importance of interpreting self-induced stimulus dynamics (Sommer & Wurtz, 2008; 

Sperry, 1950; von Holst & Mittelstaedt, 1950; Webb, 2004). Here, we show how mice 

sample the environment while navigating a noisy odor gradient. 

Navigating by chemical cues may be one of the most ancient problems motile 

organisms evolved to solve, and it remains crucial in the lives of almost all modern 

species. Unicellular organisms and some invertebrates navigate chemical gradients by 

chemotaxis (Bargmann, 2006; Berg, 2000; Lockery, 2011). In essence, their movement 

programs can be described as having two states: they move straight when the 

concentration is increasing and reorient their movements when the concentration is 

decreasing. Whereas chemical gradients are stable and informative at the spatial scale of 

these organisms, for many larger or flying organisms, odor gradient cues do not provide 

useful positional information (Crimaldi et al., 2002; Murlis et al., 1992; Smear et al., 

2018). At this larger spatial scale, turbulent airflow moves odor molecules in dynamic 

spatiotemporal patterns, disrupting concentration gradients and nullifying classical 

chemotaxis strategies. Instead, olfactory cues often gate movements that depend on other 

sensory modalities. Here too, these organisms' behavioral structure can be described as 

transitions between two states: detection of odor promotes upwind movement while the 

absence of odor promotes crosswind casting movement (Kennedy & Marsh, 1974; van 
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Breugel & Dickinson, 2014; Vickers & Baker, 1994). In this behavioral program, known 

as odor-gated anemotaxis, odor cues gate behavioral responses to positional information 

provided by another modality. In both chemotaxis and odor-gated anemotaxis, search 

tasks can be described with a two-state search model. 

In comparison to invertebrates, our understanding of olfactory search behavior in 

vertebrates is more rudimentary, even in commonly-studied rodent models. In these 

animals, access to the olfactory environment is gated by respiration, which is in turn 

responsive to incoming olfactory stimulation (Kepecs et al., 2006; Wachowiak, 2011). 

Novel odors evoke rapid sniffing, during which respiration synchronizes with whisker, 

nose, and head movements on a cycle-by-cycle basis (Kurnikova et al., 2017; Moore et 

al., 2013; Ranade et al., 2013). Thus, during active mammalian olfaction, sensory and 

motor systems interact in a closed loop via the environment, as is true for other sensory 

modalities such as vision or somatosensation (Ahissar & Assa, 2016; Gibson, 1966). The 

cyclical sampling movements coordinated by respiration further synchronize with activity 

in widespread brain regions (Karalis & Sirota, 2018; Kay, 2005; Macrides et al., 1982; 

Vanderwolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016) similarly to correlates of 

locomotor, pupillary, and facial movements observed throughout the brain (McGinley et 

al., 2015; Musall et al., 2019; Niell & Stryker, 2010; Stringer et al., 2019). Respiratory 

central pattern generators may coordinate sampling movements to synchronize sensory 

dynamics across modalities with internal brain rhythms (Kleinfeld et al., 2014). 

Previous work has shown that rodents follow  odor trails, where the concentration 

gradient is steep and stable, with rapid sniffing accompanied by side-to-side head 

movements (P. W. Jones & Urban, 2018; Khan et al., 2012). In these conditions, serial 
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sniffing and stereo olfactory cues guide movements of the nose. Likewise, moles used 

concentration comparisons across space and time to locate a food source in a sealed 

experimental chamber in which a lack of airflow allowed for even diffusion of a chemical 

gradient (Catania, 2013). In this study, when input to the nares was reversed, moles 

navigated towards odor sources at a distance, but demonstrated significant deficits at 

identifying odor location when near the source. Behavioral modeling in mice further 

supports that inter-naris concentration comparison plays a more important role in search 

near the source (Liu et al., 2020). Thus, both serial sniffing and stereo cues can guide 

olfactory search behavior. The sensory computations and movement strategies employed 

during navigation of an airborne odor plume are less clear. In previous experiments 

where rodents searched in airborne odor plumes, mice developed a memory-based 

strategy of serially sampling each possible reward location for the presence of odor, 

turning search tasks into detection tasks (Bhattacharyya & Singh Bhalla, 2015; Gire, 

David H et al., 2017). Thus, it remains unclear whether mammals can follow noisy 

concentration gradients under turbulent conditions.  

To better understand the sensory computations and sampling strategies for 

olfactory search, we designed a two-choice behavioral assay where mice use olfactory 

cues to locate an odor source while we monitor sniffing and movements of the head, 

nose, and body. We found that mice use a concentration gradient-guided search strategy 

to navigate olfactory environments that contain turbulent flow. We found that these 

navigational behaviors are robust to perturbations including introduction of a novel 

odorant, varying the concentration gradient, and naris occlusion. Given the fundamental 

importance of sniffing to olfactory function, we hypothesized that mice would selectively 
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sample the environment such that nose movement would be tightly coupled to 

respiration. Consistent with this hypothesis, we found that mice synchronize rhythmic 

three-dimensional head movements with the sniff cycle during search. These sniff-

synchronized movement rhythms are prominent during trials, and largely absent during 

the inter-trial interval, suggesting that sniff synchronous movement is a pro-active 

strategy rather than a reactive reflex. To find structure in this search strategy, we used 

unsupervised computational methods to parse movement trajectories into discrete motifs. 

These movement motifs are organized into two distinguishable behavioral states 

corresponding to investigation and approach, reminiscent of the two-state olfactory 

search programs described in smaller organisms. Further, these motifs lock to the sniff 

cycle with precision at a tens of milliseconds scale. Our findings reveal the 

microstructure of olfactory search behavior in mice, identifying sensory computations 

and movement strategies that are shared across a broad range of species. 

RESULTS 

Olfactory search in noisy gradients of airborne odor 

We developed a two-alternative choice task in which freely-moving mice report 

odor source location for water rewards (Methods and Fig. 1A). 

 

Figure 1 (next page). Behavioral assay for freely-moving olfactory search. A) 
Diagram of experimental chamber where mice are tracked by an overhead camera while 
performing olfactory search. B) Top. Nose & head position are tracked using red paint at 
the top of the head. Sniffing is monitored via an intranasally implanted thermistor. 
Bottom. Example of sniffing overlaid on a trace of nose position across a single trial. C) 
Diagram of trial structure. Initiation. Mice initiate a trial via an initiation poke (grey 
oval). Search. Odor is then released from both odor ports (grey rectangles) at different 
concentrations. Outcome. Mice that cross the decision line (red) on the side delivering the 
higher concentration as tracked by the overhead camera receive a reward at the  
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corresponding water port (blue ovals). D) Color maps of average odor concentration 
across ~15 two-second trials captured by a 7x5 grid of sequential photoionization 
detector recordings. Rows represent side of stimulus presentation (left or right). Odor 
concentration beyond the decision line were not measured. E) Comparison of sniff 
recordings taken with an intranasally implanted thermistor and intranasally implanted 
pressure cannula. These are implanted on the same mouse in different nostrils.  Top. 
Example trace of simultaneous pressure cannula (blue) and thermistor (red) recordings 
with inhalation points (as detected in all future analyses) overlaid on the traces in their 
respective colors. Bottom Left. Histogram of peak latencies (pressure inhalation onset – 
thermistor inhalation onset). 14/301 inhalations (4.7%) were excluded as incorrect sniff 
detections. These were determined as incorrect, because they fell more than 2 standard 
deviations outside the mean in peak latency (mean = 1.61585ms, SD = ±14.93223ms). 
Bottom Right. Peak latencies, defined as the difference between pressure inhalation onset 
and thermistor inhalation onset, plotted against instantaneous sniff frequency. 
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To capture the search behavior, we measured respiration using nasal thermistors (McAfee 

et al., 2016) and video-tracked the animal’s body, head, and nose position in real time at 

80 frames/s (Fig. 1B,E; Fig. S1). The mouse initiates a trial by inserting its nose in a port 

(Fig 1C; “Initiation”), which activates odor release from two ports at the opposite end of 

the arena. The mouse reports the location of higher odor concentration by walking toward 

it (Fig. 1C; “Search”). In previous studies, rodents performing olfactory search tasks 

developed memory-guided foraging strategies. In essence, animals run directly to 

potential odor sources and sample each in turn, thus converting the search tasks to 

detection tasks (Bhattacharyya & Singh Bhalla, 2015; Gire, David H et al., 2017). To 

prevent mice from adopting sample-and-detect strategies, our task forces mice to commit 

to a decision at a distance from the actual source. Using real-time video-tracking (Lopes 

et al., 2015), we enforced a virtual “decision line”, such that the trial outcome is 

determined by the mouse’s location when it crosses this decision line (Fig. 1C; 

“Outcome”). For stimuli, we deliver odor from two separate flow-dilution olfactometers, 

giving independent control over odor concentration on the two sides. To test olfactory 

search over a range of difficulties, we presented four odor patterns, defined by the ratio of 

odor concentration released from the two sides (100:0, 80:20, 60:40, 0:0).  

 

Figure 2 (next page). Mice use concentration gradient cues in turbulent flow to 

perform search. A) Initial training steps. Water Sampling. In this task, mice alternate in 
sequence between the initiation, left, and right nose pokes to receive water rewards. Odor 
Association. Next, mice run the alternation sequence as above with without water 
rewards released from the initiation poke, making its only utility to initiate a trial. 
Further, odor is released on the same side of water availability to create an association 
between odor and reward. 
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Odor Search. Here, mice initiate trials by poking the initiation poke. Odor is then 
randomly released from the left or right odor port. Correct localization (see Fig. 1C, 
decision line) results in a water reward and incorrect is deterred by an increased inter-trial 
interval (ITI). B) Performance curve across sessions for the Odor Search (100:0) training 
step (n = 26). C-F) Session statistics for four different experiments. Each colored line is 
the average of an individual mouse across all sessions, black points are means across 
mice, and whiskers are ±1 standard deviation across mice. Top. Percent of correct trials. 
Middle. Average trial duration. Bottom. Average path tortuosity (total path length of nose 
trajectory/shortest possible path length). C) Odor omission. The 80:20 concentration ratio 
(Fig. 1) and odor omission (0:0) conditions randomly interleaved across a session. Data 
shown includes all sessions for each mouse (n = 19). D) Variable ΔC, Constant |C|. Three 
concentration ratio conditions (100:0, 80:20, 60:40) randomly interleaved across a 
session. Data shown includes all sessions for each mouse (n = 15). E) Constant ΔC, 
Variable |C|. Concentration ratio conditions 90:30 and 30:10 randomly interleaved across 
a session (n =  5). Data shown for first session only. F) Naris occlusion. 80:20 sessions 
for mice with no naris stitch, a sham stitch that did not occlude the nostril, and a naris 
stitch that occluded one nostril (n =  13). Data shown includes all naris occlusion 
sessions, even if the mouse did not perform under every experimental condition. 
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We measured the spatiotemporal distribution of odor using a photoionoization detector 

(PID) in a 5x7 grid of sampling locations (Fig. 1D; Fig. S2). Pinene was used for the 

majority of experiments, because it is a neutral-valence odorant that is sensitively 

detected by the PID. As designed, varying the concentration ratios produced across-trial 

averaged gradients of different magnitudes. Airflow in the arena is turbulent, imposing 

temporal fluctuations on the odor gradient. Thus, our assay tests an animal’s ability to 

navigate noisy odor gradients. 

Mice learn the olfactory search task rapidly and robustly. We trained mice in the 

following sequence (Fig. 2A): First, naïve, water-restricted mice obtained water rewards 

from all ports in an alternating sequence (Fig. S3A; “water sampling”). In the next phase 

of training, we added odor stimulation such that odor delivery alternated in the same 

sequence as reward, so that the mice would learn to associate odor with reward ports 

(Fig. S3B; “odor association”). Following these initial training steps, mice were 

introduced to the olfactory search paradigm. Odor was pseudo-randomly released from 

either the left or right odor source (“100:0“), signaling water availability at the 

corresponding reward port. Almost all mice performed above chance in the first session 

(binomial test, p<0.05 for 24 out of 25 mice, 75 ± 9.2% correct, mean  ±  s.d.; Fig. 2B). 

Within 4 sessions, most animals exceeded 80% performance (19 out of 26). Following 

100:0, mice were introduced to the 80:20 condition with mean performance across mice 

in the first session reaching ~60% (Fig. S3D). Most subjects improved to exceed 70% 

performance over the next 7 sessions (17 out of 24). The mice that did not were excluded 

from subsequent experiments.  
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Next, we tested whether mice trained to search pinene plumes would generalize 

their search behavior to a novel odorant. We chose vanillin as the novel odorant, because, 

unlike pinene, vanillin does not activate the trigeminal fibers of the nose (Cometto-Muniz 

& Abraham, 2010; Doty et al., 1978; Hummel et al., 2009). Thus we could test whether 

trigeminal chemosensation is necessary for performance in our task. We found no 

differences in performance between vanillin and pinene sessions for these mice 

(Wilcoxon rank-sum test, p = 0.827, Fig. 4A; n = 3). These data suggest that this search 

behavior generalizes across odors and does not rely on the trigeminal system.  

Mice can use gradient cues in turbulent flow 

We reasoned that mice would solve this task using odor gradient cues. To vary 

odor gradients between trials, we trained mice in sessions with interleaved concentration 

ratios (100:0, 80:20, 60:40) across the trials of a session. In addition to these 

concentration ratios, odor omission probe trials (0:0) were randomly interleaved into all 

experimental sessions. During these trials, airflow was identical to 80:20 trials, but air 

was directed through an empty vial rather than a vial containing odorant solution. These 

odor omission trials served a two-fold purpose: they acted as controls to ensure behavior 

was indeed odor-guided and they allowed us to observe how absence of odor impacts 

search behavior. On these probe trials, mice performed at chance (binomial test, 

p=0.9989), with longer trial durations (Wilcoxon rank-sum test, p<0.05) and more 

tortuous trajectories (Wilcoxon rank-sum test, p<0.05) than on non-probe trials (Fig. 2C; 

n =  19, all data from 80:20 condition with probe trials). Performance drops with the 

concentration ratio (ΔC), consistent with our reasoning that mice would use odor gradient 

cues in this task (pairwise Wilcoxon rank-sum tests, p<0.05; Fig. 2D; n =  15). Varying 
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the concentration ratio from 80:20 to 60:40 did not affect trial duration or path tortuosity, 

defined as actual path length divided by direct path length (pairwise Wilcoxon rank-sum 

tests, p>0.05; Fig. 2D). However, trial duration and path tortuosity were slightly, but 

statistically significantly longer in the 100:0 condition (pairwise Wilcoxon rank-sum 

tests, p<0.05).  

Given that these results were obtained using a single absolute concentration (|C|) 

across ratios, mice could be solving our task with two distinct categories of sensory 

computation. One possibility is that information about source location is extracted from 

the odor gradient. An alternative strategy would be to make an odor intensity judgement 

that gates a response to positional information from non-olfactory cues, such as wind 

direction, visual landmarks, or self-motion. This computation would be reminiscent of the 

odor-gated visual and mechanosensory behaviors observed in insects (Álvarez-Salvado et 

al., 2018; Kennedy & Marsh, 1974; van Breugel & Dickinson, 2014). To distinguish 

between these possible strategies, we tested mice in sessions interleaving the air dilution 

ratios 90:30 and 30:10. 30 is the correct answer in one condition and incorrect in the 

other, so that mice cannot use an intensity judgement strategy to perform well in both 

ratio conditions. In both conditions, mice performed equally well in the first session of 

training (Wilcoxon rank-sum test, p=0.465; Fig. 2E; n =  5). This equal performance is 

true within the first 20 trials of the session (Wilcoxon rank-sum test, p=0.296; Fig. 4B). 

These results indicate that odor gradients guide olfactory search under these conditions. 

We next asked how the mice are sensing the concentration gradient. Many 

mammals can use stereo-olfaction: comparing odor concentration samples between the 

nares (Catania, 2013; Parthasarathy & Bhalla, 2013; Porter et al., 2007; Rabell et al., 
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2017; Rajan et al., 2006). To test the role of stereo comparisons in our olfactory search 

task, we performed naris occlusion experiments. Mice were tested in three conditions on 

alternating days: naris occlusion, sham occlusion, and no procedure. We found that naris 

occlusion did not significantly impact performance or path tortuosity (pairwise Wilcoxon 

rank-sum tests, p>0.05). When compared with the no-stitch condition, the naris stitch 

condition resulted in a slight, but statistically significant, increase in trial duration 

(pairwise Wilcoxon rank-sum test, p<0.05).  

This is not true when the stitch condition is compared with the sham condition 

(pairwise Wilcoxon rank-sum test, p>0.05) indicating this may be a result of undergoing 

a surgical procedure. These overall results indicate that stereo comparison is not 

necessary in this task (Fig. 2F; n =  13), and that temporal comparisons  across sniffs 

(Catania, 2013; Parabucki et al., 2019) play a larger role under our task conditions.  

Sniff rate and occupancy are consistent across trials and gradient conditions 

To investigate active sampling over the time course of trials, we tracked the animals’ 

sniffing, position, and posture during behavioral sessions. Next, the mice emitted a rapid 

burst of sniffs, then sniffed more slowly as they approached the target (Fig. 3A). In this 

active behavioral state, inhalation and sniff durations were shorter during trials than 

during inter-trial intervals (p ≪ 0.01 for all mice; Kolmogorov-Smirnov test; Fig. 3B,C), 

and strikingly shorter than those observed in head-fixed rodents (Bolding & Franks, 

2017; Shusterman et al., 2011; Wesson et al., 2009). The overall sniff pattern was 

consistent across trials with an inhalation just before trial initiation followed by a long 

exhalation or pause at the beginning of the trial (Fig. 3A). 
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Figure 3. Distributions of sniffs and nose positions during search task. A) Above. 
Sniff raster plot for three sessions. Each black point is an inhalation, each row is a trial 
aligned to trial initiation (dashed line). Rows are sorted by trial length. Below. Mean 
instantaneous sniff rate across all trials for all mice aligned to time from trial initiation. 
Thin lines are individual mice, the thick line is the mean across mice, and shaded region 
is ±1 standard deviation. B) Histogram of inhalation duration time across all mice (n =  
11). Thick lines and shaded regions are mean and ±1 standard deviation, thin lines are 
individual mice. Green: within-trial sniffs, Pink: inter-trial interval sniffs. C) Histogram 
of sniff duration time across all mice (n =  11). D) The nose traces of each trial across a 
single session, colored by chosen side. E) Location of all inhalations across a single 
session, colored by chosen side. F) Two-dimensional histogram of occupancy (fraction of 
frames spent in each 0.5 mm2 bin). Colormap represents grand mean across mice (n =  
19). G) Grand mean sniff rate colormap across mice (n =  11). 
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During this sniffing behavior, the mice moved their nose through tortuous trajectories 

that were not stereotyped from trial to trial (Fig. 3D,E). Although individual mice showed 

position biases (Fig. S5), these biases were not systematic across mice, so that the across-

mouse mean occupancy distribution was evenly distributed across the two sides of the 

arena (Fig. 3F; n = 19). Consistent with this sniffing and movement pattern, the sniff rate 

was highest near the initiation port, and slower on the approach to target (Fig. 3G). These 

measures of active sampling were not statistically distinguishable across gradient or naris 

occlusion conditions, but changed significantly on odor omission probe trials, with more 

fast sniffing and head turns overall. 

Mice synchronize three-dimensional kinematic rhythms with sniffing during 

olfactory search 

To test the hypothesis that nose movement locks to respiration during olfactory 

search, we aligned movement dynamics with the sniff signal. Using Deeplabcut (Mathis 

et al., 2018; M. W. Mathis & Mathis, 2020), we tracked the position of three points: tip of 

snout, back of head, and center of mass (Fig. 4A). From the dynamics of these three 

points, we extracted the kinematic parameters nose speed, head yaw velocity, and Z-

velocity (Fig. 4B-D). Synchrony between movement oscillations and sniffing is apparent 

on a sniff-by-sniff basis (Fig. 5), consistent across mice, and selectively executed during 

olfactory search. On average, nose speed accelerates during exhalation, peaks at 

inhalation onset, and decelerates during inhalation (Fig. 5A.i). Head yaw velocity, which 

we define as toward or away (Fig. 4; centripetal or centrifugal) from the body-head axis, 

reaches peak centrifugal velocity at inhalation, decelerates and moves centripetally over 

the course of inhalation (Fig. 5A.ii). 
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Figure 4. Quantifying kinematic parameters during olfactory search. A) Schematic 
of kinematic parameters. Left. Two example frames from one mouse, with the three 
tracked points marked: tip of snout, back of head, and center of mass. B) Quantified 
kinematic parameters: “nose speed”: displacement of the tip of the snout per frame 
(12.5ms inter-frame interval). “Yaw velocity”: change in angle between the line segment 
connecting snout and head and the line segment connecting head and center of mass. 
Centrifugal movement is positive, centripetal movement is negative. “Z-velocity”: 
change in distance between tip of snout and back of head. Note that this measure 
confounds pitch angle and Z-axis translational movements. C) Segments of example 
trajectories. Left.  The trajectory of the nose during one second of trial time. Green: path 
during inhalations. Black: path during the rest of the sniff. Right. Same for an inter-trial 
interval trajectory. D) Traces of sniff and kinematic parameters during the time windows 
shown in C. Color scheme as in C. 
 

Although our videos are in two dimensions, we can approximate movement in depth by 

analyzing the distance between the tip of the snout and the back of the head (Fig. 4B). 



26 
 

This measure confounds pitch angular motion and vertical translational motion, so we 

conservatively refer to this parameter as “z-velocity”. Because mice point their head 

downward during task performance, shortening of the distance between the tip of the 

snout and the back of the head indicates downward movement, while increases in the 

distance correspond to upward movements. The z-velocity reaches peak upward velocity 

at inhalation onset, decelerates and goes downward during inhalation, and rises again at 

exhalation (Fig. 5A.iii). These modulations were absent from trial-shuffled data (1000 

shuffles; Fig. S6). Cross-correlation and spectral coherence analysis further demonstrate 

the synchrony between nose movement and sniffing (Fig. 5B,C). These results 

demonstrate that kinematic rhythms lock to sniffing with tens of millisecond precision, 

consistent with a previous report demonstrating that rats make similar movements during 

novel odor-evoked investigative behavior (Kurnikova et al., 2017). Our findings show 

that precise cycle-by-cycle synchronization can also be a feature of goal-directed odor-

guided behavior. Mice selectively deploy this pattern of sniff-synchronized three-

dimensional nose movement. For nose speed, yaw velocity, and z-velocity, sniff 

synchrony is significantly reduced during the inter-trial interval when the mouse is 

returning from the reward port to initiate the next trial, even when the mouse is sniffing 

rapidly.  

 

Figure 5 (next page). Kinematic rhythms synchronize with the sniff cycle selectively 

during olfactory search. i-iii) Nose speed, yaw velocity, and z-velocity respectively (see 
Fig. 4 for definitions).   
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A) Top. Color-plot showing movement parameter aligned to inhalation onset for within-
trial sniffs taken before crossing the decision line. Taken from one mouse, one behavioral 
session. Dotted line at time 0 shows inhalation onset, the second line demarcates the end 
of the sniff cycle, sorted by duration. Data are taken from one behavioral session. Middle. 
Color-plot showing each movement parameter aligned to inhalation onset for inter-trial 
interval sniffs taken before the first attempt at premature trial initiation. Bottom. Sniff-
aligned average of each movement parameter. Thin lines represent individual mice (n =  
11), bolded lines and shaded regions represent the grand mean ± standard deviation. 
Green: within-trial sniffs, Pink: inter-trial interval sniffs. B) Normalized cross correlation 
between movement parameter and sniff signal for the same sniffs as above. C) Spectral 
coherence of movement parameter and sniff signal for the same sniffs as above. 
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Modulations in nose speed were slightly different than trial-shuffled data, showing that 

sniff-synchronized movement is not totally absent during the inter-trial interval, whereas 

modulations in yaw velocity and z-velocity were indistinguishable from trial-shuffled 

data (Fig. S6). This reduction of kinematic synchrony when the mouse is not performing 

the task suggests that sniff synchronized movement is not an inevitable biomechanical 

accompaniment to fast sniffing, but rather reflects a strategic behavioral state. Further 

support for this idea comes from analyzing time intervals when the mouse attempts to 

initiate a trial before the end of the inter-trial interval. After such premature attempts at 

trial initiation, the mice execute sniff-synchronized movement, despite the absence of the 

experimenter-applied odor stimulus (Fig. S7). Lastly, sniff synchrony changes 

dramatically in the time interval between crossing the virtual decision line and entering 

the reward port, when odor is still present yet the animal has committed to a decision 

(Fig. S7). Taken together, our observations indicate that sniff synchronous movement is a 

proactive, odor-seeking strategy rather than a reactive, odor-gated reflex. 

State space modeling finds recurring motifs that are sequenced diversely across 

mice 

 

Figure 6 (next page). Recurring movement motifs are sequenced diversely across 

mice and consistently across stimuli. A) 8 example frames from one instance of a 
behavioral motif with tracking overlaid. B) Average motif shapes. Dots and lines show 
the average time course of posture for 8 frames of each of the 11 motifs (n =  9 mice). All 
instances of each motif are translated and rotated so that the head is centered and the 
head-body axis is oriented upward in the first frame. Subsequent frames of each instance 
are translated and rotated the same as the first frame. Time is indicated by color (dark to 
light). Background color in each panel shows the color assigned to each motif. 
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C) Across-trial motif sequences for two behavioral sessions for one mouse. Trials are 
separated into trials where the mouse chose left and those in which the mouse chose right. 
Trials are sorted by duration. Both correct and incorrect trials are included. Color scheme 
as in B. D) Linear classifier analysis shows that mice can be identified from motif 
sequences on a trial by trial basis. Grayscale represents the fraction of trials from a given 
mouse (rows) that are decoded as belonging the data of a given mouse (columns). The 
diagonal cells represent the accuracy with which the decoded label matched the true 
label, while off-diagonal cells represent trials that were mislabeled by the classifier. 
Probabilities along rows sum to 1. Cells marked with asterisks indicate above chance 
performance (label permutation test, p<0.01). E) Linear classifier analysis identifies odor 
omission trials above chance, but does not discriminate across odor concentration ratios 
(n =  9 mice). 
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In our olfactory search paradigm, the overall rhythm of nose movement 

synchronizes with sniffing (Fig. 4,5), and yet the mice move through a different trajectory 

on every trial (Fig. 3D). Given this heterogeneity, it was not obvious to us how to best 

quantify common features of movement trajectories across trials and subjects. Rather 

than guess at suitable features, we used an unsupervised machine learning tool, modeling 

the movement data with an Auto-Regressive Hidden Markov Model (AR-HMM) 

(Murphy, 2012; Poritz, 1982). This model parses continuous sequential data into a 

discrete set of simpler movement motif sequences, similarly to “Motion Sequencing” 

(MoSeq) (Wiltschko et al., 2015). We fit AR-HMMs to the allocentric three-point 

coordinate data (front of snout, back of head, and center of mass) pooled across a subset 

of mice and trial conditions (See Methods and Fig. 2; e.g. 80:20, 90:30, nostril stitch). 

Models were then tested for their ability to explain a separate set of held-out trials (see 

Methods). These models defined discrete movement patterns, or “motifs”, that recur 

throughout our dataset (e.g., Fig. 6A). We fit different AR-HMM models each 

constrained to find a particular number of motifs (between 6 and 100) and found that the 

cross-validated log-likelihood of these fits continued to rise up to 100 motifs (Fig. S8). 

For visualization, we will focus on a model with 16 states, which we narrow to 11, by 

excluding rare motifs that take up <5% of the assigned video frames (Fig. 6B; Fig. 

S8C,D). Models with more or fewer states gave equivalent results (Fig. S9 – S11). 

The motifs extracted by this model have interpretable spatiotemporal trajectories 

on average (Fig. 6B), although averaging masks considerable across-instance variability. 

Across trials for a given mouse, motifs occurred in consistent but non-stereotyped 

sequences (Fig. 6C). Across mice, these sequences appeared visually similar, but most 
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mice were uniquely identifiable from how they sequenced motifs across trials. A 

classifier trained to decode mouse identity from the motif sequences on a trial by trial 

basis was able to perform above chance for 8 out of 9 mice (p< 0.01; Fig. 6D). Across the 

different concentration ratios (Fig. 2D), movement sequences were not statistically 

distinguishable (Fig 6E). The only condition that gave distinguishable motif patterns were 

the odor omission trials (0:0), in which the mice made longer, more tortuous trajectories 

(Fig. 2C). Thus, although this model is sensitive enough to decode mouse identity (Fig. 

6E), it does not detect stimulus-dependent modifications of sampling behavior, 

suggesting that the mice do not modify their sampling behavior in a gradient-dependent 

manner, at least in the movement parameters we measured.  

Movement motifs reveal two-state organization of olfactory search 

Many behaviors have hierarchical structure that is organized at multiple temporal 

scales. Brief movements are grouped into progressively longer modules, and are 

ultimately assembled into purposive behavioral programs (Berman et al., 2016; Gallistel, 

1982; Tolman, 1932; Weiss, 1968).  

 

Figure 7 (next page). Behavioral motifs can be categorized into two distinct groups, 

which we putatively label as investigation (blue) and approach motifs (orange). A) 
Transition probability matrix. Grayscale represents the log probability with which a given 
motif (rows) will be followed by another (columns). Clustering by minimizing Euclidean 
distance between rows reveals two distinct blocks of motifs. We label the top-left block 
as “investigation” and the bottom-right block as “approach”. B) Distribution of onset 
times for each motif, normalized by trial duration. Investigation motifs tend to occur 
early in trials, while approach motifs tend to occur later (n = 9 mice). C) Across-trial 
motif sequences for two behavioral sessions for one mouse, with motifs classified into 
investigation and approach. Trials are separated into trials where the mouse chose left and 
those in which the mouse chose right. 



32 
 

 

Both correct and incorrect trials are included. Motif sequences are sourced from the same 
data as Fig. 6C. D) Temporal details of investigation-approach transitions with overlaid 
sniff signal. Data come from a subset of trials shown in Fig. 7C. In the sniff signal, green 
represents inhalations, black represents the rest of the sniff. E) Investigation and approach 
motifs differ in nose speed and sniff rate. Individual markers represent one motif from 
one mouse. Marker shapes correspond to the individual mice (n =  4). Sniff rate and nose 
speed are normalized within mice. F) Investigation and approach motifs differ in the 
kinematic rhythms (same parameters as in Figures 4 & 5). Thin lines represent individual 
mice (n =  4), thick lines and shaded regions represent the grand mean ± standard 
deviation. Blue: within-trial sniffs, orange: inter-trial interval sniffs. Top. Nose speed 
modulation, defined by a modulation index (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚𝑚𝑚) 
calculated from the grand mean, is significantly greater for investigation motifs than 
approach motifs (p<0.001, permutation test; Fig. S12). Middle: Yaw velocity modulation 
is significantly greater for investigation motifs than approach motifs (p<0.001, 
permutation test; Fig. S12). Bottom: Z-velocity modulation does not significantly differ 
between approach motifs and investigation motifs (p=0.31, permutation test). 
 



33 
 

Olfactory search programs in smaller organisms are often organized into two overarching 

states: move straight when concentration is increasing, and reorient when concentration is 

decreasing (Bargmann, 2006; Berg, 2000; Gomez-Marin et al., 2011; Kennedy & Marsh, 

1974; Lockery, 2011; van Breugel & Dickinson, 2014; Vickers & Baker, 1994). We 

hypothesized that olfactory search motifs in mice are organized similarly. To reveal 

higher-order structure in the temporal organization of these motifs, we applied a 

clustering algorithm that minimizes the Euclidean distance between rows of the Markov 

transition matrix (i.e., purely based on the conditional probabilities of motifs following 

them). This clustering separated motifs into two groups (Fig. 7A), with several distinct 

properties. These properties were present in models with more or fewer states (Fig. S9 – 

S11). Based on these differences (see below), we label these groups as putative 

“investigation” and “approach” states. First, investigation and approach motifs cluster 

their onset times in the trial, with investigation motifs tending to occur early in the trial, 

while approach motifs tend to begin later (Fig. 7B). Grouping motifs into these higher-

order states shows a consistent trial sequence, with trials beginning with investigation and 

ending with approach (Fig. 7C,D). Importantly, entering the approach state is not a final, 

ballistic commitment to a given water port – switches from approach back to 

investigation were common (Fig. 7C,D). This pattern suggests that the mice are 

continuously integrating evidence about the odor gradient throughout their trajectory to 

the target. Second, these states correlated with distinct sniff rates and movement speeds. 

During investigation motifs, the mice moved more slowly and sniffed more rapidly, 

whereas the approach states were associated with faster movement and slower sniffing 

(Fig. 7E). Third, the sniff-synchronized kinematic rhythms (Fig. 4; Fig. 5) were distinct 



34 
 

in the two states (Fig. 7F; Kolmogorov-Smirnov test, p<0.01). Given the consistent 

sequence from investigation to approach and given that mice sniff faster during the early 

part of trial, these differences in kinematic parameters could reflect across-trial 

tendencies instead of within-trial synchrony. To test this possibility, we calculated the 

Kolmogorov-Smirnov statistic, which quantifies the difference between two cumulative 

distributions, for real and trial-shuffled data (Fig. S12). This analysis showed that nose 

speed and yaw velocity modulation exceeded what would be expected from across-trial 

tendencies (1000 shuffles, p<0.001), while the z-velocity modulation did not (p=0.31). 

Switches between the investigation and approach state mark behavioral inflection points 

that can be identified from trial to trial. We reason that these behavioral inflection points 

are a signature of key moments in the mouse’s evolving decision process. Thus, our 

analysis can provide a framework for temporal alignment of diverse movement 

trajectories with simultaneously-recorded physiological data (Markowitz et al., 2018). 

Investigation motif onsets are precisely locked to sniffing 

If motif transitions correspond to relevant behavioral events, their temporal 

structure should correlate with the temporal structure of neural activity (Markowitz et al., 

2018) During fast sniffing, respiration matches with the rhythms of head movement (Fig. 

4; Fig. 5), whisking, and nose twitches (Kurnikova et al., 2017; Moore et al., 2013; 

Ranade et al., 2013). These motor rhythms correlate with activity in numerous brain 

regions, including brainstem, olfactory structures, hippocampus, amygdala, and 

numerous neocortical regions (Karalis & Sirota, 2018; Kay, 2005; Macrides et al., 1982; 

Vanderwolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016). We hypothesized that 

movement motifs would lock with these behavioral and neural rhythms, so we aligned 
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sniff signals with motif onset times. Importantly, the breath signal was not input to the 

model.   

 

Figure 8. Motif onsets synchronize to the sniff cycle. A) Alignment of the sniff signal 
to an example motif. Top. Color scheme shows sniff cycles aligned to the onsets of motif 
6 (blue). Motif instances are in chronological order. Green: inhalation, black: rest of sniff. 
Bottom. Peristimulus time histogram of inhalation times aligned to the onset of motif 6. 
B) Alignment of sniff signal to onset times of all motifs across mice (n =  4). Colormap 
represents the grand means for peristimulus time histograms of inhalation times aligned 
to the onset of motifs. C) Alignment of motif onset times in sniff phase. Colormap 
represents peristimulus time histograms of motif onsets (bin width = 12.5ms) times 
aligned to inhalation onset, with all sniff durations normalized to one. Dotted line shows 
the mean phase of the end of inhalation. D) Motifs alignment to sniff phase is consistent 
across mice. Thin lines represent individual mice, black points are means, and whiskers 
are ±1 standard deviation (n =  4 mice). E) Investigation motifs are more synchronized to 
the sniff cycle than approach motifs. Dots represent the modulation index in time on the x 
coordinates and in phase on the y-coordinates. Filled dots represent motifs that are 
significantly modulated in both time and phase (p<0.01, permutation test). Half-filled 
dots represent motifs that are significantly modulated in time (left half filled) or phase 
(right half filled). 
 
This alignment revealed a striking organization of motif sequences relative to the sniff 

rhythm. For example, the onset times of motif 6 (dark blue) occurred in a precise timing 
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relationship with sniffing (Fig. 8A). To visualize the timing relationship between onsets 

of all motifs and sniffing, we calculated the equivalent of a peri-stimulus time histogram 

for inhalation times relative to the onset time of each motif, and took the grand mean 

across all mice (n =  4; Fig. 8B). Further, to determine how motif onset times are 

organized relative to the sniff cycle, for each motif we calculated a histogram of motif 

onset in sniff phase coordinates (relative position in the sniff cycle; Fig. 8C). Sharp peaks 

are apparent in both histograms for investigation motifs, and less so for approach motifs 

(quantified below; Fig. 8B,C). Importantly, these timing relationships are consistent 

across mice, with some motifs tending to occur early in the sniff cycle during inhalation, 

and others occurring later in the sniff cycle (Fig. 8D). Thus, parsing diverse movement 

trajectories into sequences of recurring movement motifs reveals additional sniff-

synchronized kinematic structure in a consistent manner across mice. 

Are motif onsets timed with respect to inhalation times, or do they coordinate 

with the entire sniff cycle? In other words, is motif onset probability more modulated in 

time or phase? To quantify the sniff synchronization of motif onset times, we calculated a 

modulation index (𝑀𝑀𝑀𝑀 = (𝑚𝑚𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚𝑚𝑚)) for each motif’s across-mouse 

mean histogram (n =  4). To test whether these trial-by-trial modulation indices exceeded 

what would be expected from across-trial tendencies, we compared real and trial-shuffled 

data (Fig. S13). All investigation motifs were significantly modulated for both time and 

phase coordinates (filled symbols, Fig. 8E; permutation test, p<0.001), with some having 

higher MI in time, and others in phase. One approach motif was significantly modulated 

in time coordinates (Fig. 8E, right-half filled symbol; p=0.003), while two approach 

motifs were significantly modulated in phase coordinates (Fig. 8E, left-half filled 
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symbols; p=0.015 and p<0.001). Comparing the modulation indices between time and 

phase coordinates does not reveal a consistent pattern of modulation in time vs phase -- 

some motifs had higher MI in phase, others in time. Thus, our data are inconclusive as to 

how motif onsets organize relative to the sniff cycle. Nevertheless, these analyses 

demonstrate that kinematic inflection points synchronize with breathing during olfactory 

search. Given that breathing synchronizes to other motor and brain rhythms, these motifs 

likewise correlate to the structure of activity of many neurons. We propose that the 

behavioral inflection points revealed by motif transition times indicate “decisive 

moments” when the animal chooses its next move. Thus our analysis will be a useful tool 

to pinpoint behaviorally relevant activity in widespread brain regions. 

DISCUSSION 

This study elucidates sensory computations and movement strategies for olfactory 

search by freely-moving mice. Mice learn our behavioral task in days, after which they 

perform approximately 150 trials daily, sometimes for months. Task performance 

worsens for shallower odor gradients at a fixed absolute concentration, but is unaffected 

by varying absolute concentrations at a fixed concentration gradient. Taken together, 

these results show that mice can navigate noisy gradients formed by turbulent odor 

plumes. This gradient-guided search is robust to perturbations including novel odorant 

introduction and naris occlusion. These results give insight into sensory computations for 

olfactory search and constrain the possible underlying neural mechanisms. 

Mice perform this task with a strategic behavioral program. During search, mice 

synchronize rapid three-dimensional head movements with fast sniffing. This synchrony 

is not a default accompaniment of fast sniffing – synchrony is absent when the mice are 
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not searching. Movement trajectories are not stereotyped, but vary considerably across 

trials. To manage this complexity, we took an unsupervised computational approach to 

parse heterogeneous trajectories into a small number of movement motifs that recur 

across trials and subjects. This analysis captures common movement features across 

mice, but individual mice can be identified by how they sequence these motifs. Our 

model was not constrained to find structure at a specific timescale, and consequently 

identified very brief, simple motifs. To find higher-order temporal structure in the data, 

we clustered motifs by their transition probabilities, which revealed two clear categories, 

putatively corresponding to investigation and approach. Investigation motifs tend to be 

executed early in the trial, and entail slower movement, faster sniffing, and more sniff 

synchrony than approach motifs. Even so, approach motifs are not ballistic commitments 

to an answer – switches from approach to investigation occurred on many trials. Lastly, 

the onset times of motifs were precisely locked to sniffing, with investigation motifs 

starting at characteristic phases of the sniff cycle. Taken together, the discrete 

categorization of movement motifs and their precise alignment with the sniff cycle 

provide a robust framework for the temporal alignment of behavior and neural activity. 

Olfactory navigation can be either guided or gated by odor (Smear et al., 2018). 

Some organisms operate in a regime where diffusion forms smooth chemical gradients, in 

which classical chemotaxis strategies can be effective (Bargmann, 2006; Berg, 2000; 

Gomez-Marin & Louis, 2012; Lockery, 2011). In contrast, other organisms, such as 

flying insects, often operate in a highly turbulent regime where concentration gradients 

are not reliably informative (Crimaldi et al., 2002; Murlis et al., 1992; Riffell et al., 

2008). By design, mice in our task operate in an intermediate regime, where turbulent 
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odor plumes close to the ground form noisy gradients (Gire, David H et al., 2017; Riffell 

et al., 2008). By varying the absolute concentration and the concentration difference 

between the two sides, we tested whether performance in this regime is guided or gated 

by odor. Because behavior varies with the gradient and not the absolute concentration 

(Fig. 2C-E), we have shown that mice are guided by gradient cues in this regime.  

Our naris occlusion experiments demonstrate that performance is statistically 

indistinguishable with naris occlusion, suggesting that stereo olfaction does not play a 

major role in our task. This finding contrasts with previous studies of olfactory navigation 

in a different regime: following a depositional odor trail. In these studies, stereo 

manipulations had small but significant effects on performance, and led to changes in 

movement strategy (P. W. Jones & Urban, 2018; Khan et al., 2012). Importantly, a study 

of olfactory search in moles showed that stereo reversal did not affect navigation at a 

distance from the target, but reversed turning behavior in the target’s immediate vicinity 

(Catania, 2013). These results suggest that stereo cues may be informative near a source, 

where gradients are steep, but that stereo cues play less of a role at a greater distance 

from the source where gradients are more shallow. In this more distant condition, serial 

sniff comparisons have been hypothesized as a potential sensory computation for odor 

gradient following (Catania, 2013). We propose that our task design, in which mice must 

commit to a side at a distance from the source, forces mice out of the stereo regime, and 

perhaps into the serial sniff comparison regime. Neurons sensitive to sniff-to-sniff odor 

concentration changes have been observed in the olfactory bulb of head-fixed mice 

(Parabucki et al., 2019), providing a potential physiological mechanism for this sensory 

computation.  
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On the other hand, physiological mechanisms revealed in head-fixed mice may 

not generalize to the freely-moving search condition. The external stimulus obtained by 

moving the nose through a noisy gradient differs dramatically from the square odor 

pulses delivered during head-fixed or odor-poke olfactory tasks. Further, the sniff 

statistics we observe in our mice are qualitatively faster than those reported in head-fixed 

mice under most conditions (Bolding & Franks, 2017; Shusterman et al., 2011; Wesson et 

al., 2009). One exception is that mice sniff fast in response to a novel odor (Wesson et al., 

2009). Such fast stimulation impacts the responsiveness of olfactory sensory neurons 

(Esclassan et al., 2012; Ghatpande & Reisert, 2011; Verhagen et al., 2007). In addition to 

the temporal properties of odor transduction, short- and long-term synaptic and network 

plasticity mechanisms will influence the olfactory bulb’s responses during fast sniffing 

(Beshel et al., 2007; D’iaz-Quesada et al., 2018; Gupta et al., 2015; Jordan et al., 2018; 

Mandairon & Linster, 2009; Patterson et al., 2013; Zhou et al., 2020). Without tapping 

into this stimulus regime, the understanding we can gain from head-fixed studies in 

olfaction will be incomplete at best. In the future, it will be necessary to complement 

well-controlled reductionist behavioral paradigms with less-controlled, more natural 

paradigms like ours.  

Mice execute a strategic behavioral program when searching, synchronizing fast 

sniffing with three-dimensional head movements at a tens of milliseconds timescale. It 

has long been known that rodents investigate their environment with active sniffing and 

whisking behaviors (Kepecs et al., 2006; Wachowiak, 2011; Welker, 1964). More recent 

work has established that under some conditions sniffing locks with whisking, nose 

twitches, and head movement on a cycle-by-cycle basis (Kurnikova et al., 2017; Moore et 
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al., 2013; Ranade et al., 2013). Sniffing also synchronizes with brain oscillations not only 

in olfactory regions, but also in hippocampus, amygdala, and neocortex (Karalis & Sirota, 

2018; Kay, 2005; Macrides et al., 1982; Vanderwolf, 1992; Yanovsky et al., 2014; 

Zelano et al., 2016). Respiratory central pattern generators may coordinate sampling 

movements to synchronize sensory dynamics across modalities with internal brain 

rhythms (Kleinfeld et al., 2014). Further, locomotor and facial movement, which are 

often synchronized to respiration, drive activity in numerous brain regions, including 

primary sensory areas (McGinley et al., 2015; Musall et al., 2019; Niell & Stryker, 2010; 

Stringer et al., 2019). Why are respiration and other movements correlated with activity 

in seemingly unrelated sensory regions? In the real world, sensory receptors operate in 

closed loop with movement (Ahissar & Assa, 2016; Gibson, 1966). Consequently, 

sensory systems must disambiguate self-induced stimulus dynamics from changes in the 

environment. Further, active sampling movements can provide access to sensory 

information that is not otherwise available to a stationary observer (Gibson, 1962; 

Schroeder et al., 2010; Yarbus, 1967). Widespread movement-related signals may allow 

the brain to compensate for and capitalize on self-induced stimulus dynamics (Poulet & 

Hedwig, 2006; Sommer & Wurtz, 2008; Sperry, 1950; von Holst & Mittelstaedt, 1950; 

Webb, 2004). Our work advances understanding of how sensation and movement interact 

during active sensing.  

Rigorously quantifying the behavior of freely-moving animals is more feasible 

than ever, thanks to recent developments in machine vision, deep learning, and 

probabilistic generative modeling (Datta et al., 2019; Gomez-Marin et al., 2014; M. W. 

Mathis & Mathis, 2020), as our work shows. In particular, the motifs we have defined 
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provide a compact description of the behavior, while still capturing the idiosyncrasies of 

individual mice. Importantly, these motifs can be grouped into two larger-scale 

behavioral states that we putatively call “investigation” and “approach”. Two-state search 

strategies are common across phylogeny (Bargmann, 2006; Berg, 2000; Kennedy & 

Marsh, 1974; Lockery, 2011; van Breugel & Dickinson, 2014; Vickers & Baker, 1994). 

In smaller organisms, state switches have provided a useful behavioral readout for 

understanding the neural mechanisms of odor-guided behavior (Bi & Sourjik, 2018; 

Larsch et al., 2015; Smear et al., 2018). In mice, switches between investigation and 

approach may be similarly revealing. The transition points between ‘investigation’ and 

‘approach’ serve as a principled template against which to compare neural activity. Our 

work thus establishes a framework for studying neural mechanisms of active sensing in 

an unrestrained mammal. 

METHODS AND MATERIALS 

Animals: Housing & Care 

All experimental procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Oregon and are compliant with the 

National Institutes of Health Guide to the Care and Use of Laboratory Animals. 

C57BL/6J mice (2-14 months old) from the Terrestrial Animal Care Services (TeACS) at 

University of Oregon (19 male, 7 female) were used for behavioral experiments. Mice 

were housed individually in plastic cages with bedding & running wheels provided by 

TeACS. Mice were fed standard rodent chow ad libitum, and were water restricted, 

receiving a daily allotment (1mL - 1.5mL) of acidified or chlorinated water. Animal 
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health was monitored daily, and mice were taken off water restriction if they met the 

‘sick animal’ criteria of a custom IACUC-approved health assessment.  

Behavioral Assay Design 

Arena & Task Structure. Mice were trained to perform a two-choice behavioral 

task where they must locate an odor source for a water reward. This 15 x 25cm 

behavioral arena was largely custom designed in lab (all designs available upon request). 

The behavioral arena contains a custom designed and 3D-printed honeycomb wall 

through which continuous clean air is delivered to the arena and a latticed wall opposite 

to the honeycomb allowing airflow to exit the arena. Two odor tubes (Cole-Parmer 

Instrument Company, #06605-27) are embedded inside the honeycomb wall and 

consistently deliver either clean or odorized air. There are three nose pokes in the arena: 

one trial initiation poke and two reward pokes. The initiation poke is embedded inside the 

latticed wall (where airflow exits) and is poked to initiate trials. The left and right reward 

pokes are embedded in the left and right arena walls against the honeycomb airflow 

delivery and are used for water reward delivery. Mice initiate odor release by entering the 

initiation poke. If the mouse locates the odor source successfully (by entering the 

quadrant of the arena containing the correct odor port), water (~6µL - 8µL) is available at 

the corresponding nose poke. An intertrial interval of 4 seconds is then initiated. If the 

mouse goes to the incorrect side, water is not made available and they must wait an 

increased intertrial interval of 10 seconds.  

Odor Delivery. Odor is delivered to the arena using two custom designed and 

built olfactometers. For a single olfactometer, air and nitrogen are run through separate 

mass flow controllers (MFCs) (Alicat Scientific, #MC-100SCCM-RD) that can deliver 
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1000mL/min and 100mL/min at full capacity, respectively. We can use these MFCs to 

control the percentage of total nitrogen flow (100mL/min) that runs through liquid 

odorant. Consequently, we can approximately control the amount of odor molecules in 

the resulting odorized air stream. Total flow is maintained at 1000mL/min (for example, 

if we are delivering 80mL/min of nitrogen, we will deliver 920mL/min of air). Nitrogen 

MFC output is directed through a manifold (NResearch Incorperated, #225T082) with 

embedded solenoids that direct flow to one of four possible vials. These vials contain 

odorant diluted in mineral oil or are empty. To odorize air, nitrogen is directed through a 

vial containing liquid odorant. The nitrogen aerosolizes the odorant and combines with 

airflow MFC output at the exit point of the manifold. If nitrogen is directed through an 

empty vial, un-odorized nitrogen will combine with airflow at the exit point. The 

resulting combined flow of air and nitrogen is then directed to a final valve (NResearch 

Incorporated, #SH360T042). Odorized air continuously runs to exhaust until this final 

valve is switched on at which point clean air is directed to exhaust and odorized air to the 

behavioral assay. Therefore, we can control the percentage of odorized flow (using the 

MFCs), the presence or absence of odorized flow (using the vials & solenoids), and the 

flow of odorized air to the assay (using the final valve). There are two olfactometers (one 

for each odor port), which are calibrated weekly to match outputs using a photoionization 

detector (PID).  

Video tracking. We use a Pointgrey Fly Capture Chameleon 3.0 camera (FLIR 

Integrated Imaging Solutions Inc, #CM3-U3-13Y3C) for video tracking. We capture 

frames at 80Hz at 1200x720 pixel resolution. All real-time tracking is executed using a 

custom Bonsai program. We isolate the mouse’s centroid by gray scaling a black mouse 



45 
 

on a white background and finding the center of the largest object. We track head 

position by applying red paint on the mouse’s implant between the ears and thresholding 

the real-time HSV image to identify the center of the largest red shape. We can then 

identify nose position by calculating the extremes of the long axis of the mouse shape and 

isolating the extreme in closer proximity to the head point. These three points are sent to 

python at 80 Hz for real-time tracking in our assay.  We use this real-time tracking to 

determine successful odor localization; if the mouse enters the quadrant of the arena that 

contains the correct odor port, it has answered correctly. Bonsai is an open source 

computer vision software available online (Lopes et al., 2015), and our custom code is 

available upon request.  

For more rigorous behavioral analysis, we increased our tracking accuracy by 

using the open source tracking software Deeplabcut (Mathis et al., 2018; M. W. Mathis & 

Mathis, 2020). All Deeplabcut tracking occurred offline following experimentation.  

Sniff Recordings. We record sniffing using intranasally implanted thermistors (TE 

Sensor Solutions, #GAG22K7MCD419; see Methods: Surgical Procedures). These 

thermistors are attached to pins (Assmann WSW Components, #A-MCK-80030) that can 

be connected to an overhead commutator (Adafruit, #736) and run through a custom-built 

amplifier (Texas Instruments, #TLV2460, amplifier circuit design available upon 

request). 

Software. All behavioral experiments were run using custom code in Python, 

Bonsai, and Arduino. Behavioral boards designed at Janelia Research Farms that use 

Arduino software and hardware were used to control all hardware. Bonsai was used to 

execute real-time tracking of animals, and Python was used run the assay, communicate 
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with Arduino and Bonsai, and save data during experiments. All programs used are open 

source, and all custom code is available upon request. 

Surgical Procedures 

For all surgical procedures, animals were anesthetized with 3% isoflurane; 

concentration of isoflurane was altered during surgery depending on response of the 

animal to anesthesia. Incision sites were numbed prior to incision with 20mg/mL 

lidocaine.  

Thermistor Implantation. To measure respiration during behavior, thermistors 

were implanted between the nasal bone and inner nasal epithelium of mice. Following an 

incision along the midline, a small hole was drilled through the nasal bone to expose the 

underlying epithelium ~2mm lateral of the midline in the nasal bone. The glass bead of 

the thermistor was then partially inserted into the cavity between the nasal bone and the 

underlying epithelium. Correct implantation resulted in minimal damage the nasal 

epithelium. The connector pins were fixed upright against a ~3cm headbar (custom 

designed and 3D printed) placed directly behind the animals’ ears and the thermistor wire 

was fixed in place using cyanoacrylate. The headbar was secured against a small skull 

screw (Antrin Minature Specialties, #B002SG89OI) implanted above cerebellum. A 

second skull screw was placed at the juncture of the nasal bones to secure the anterior 

portion of the implant. All exposed skull and tissue were secured and sealed using 

cyanoacrylate. At the end of surgery, a small amount of fluorescent tempera red paint 

(Pro Art, #4435-2) was applied to the center of the headbar for tracking. Immediately 

following surgery, animals received 0.1mg/kg buprenorphine followed by 3 days of 

0.03mg/kg ketoprofen. All but 9 mice were implanted prior to training. Mice that were 
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implanted post-training were taken off water restriction at least 2 days prior to surgery 

and were not placed back on water restriction for at least one week following all 

analgesic administration.  

Naris Occlusion. To test the necessity of stereo olfaction as a sampling strategy, 

we occluded the nostrils of C57BL/6J mice using 6-0 gauge surgical suture (SurgiPro, 

#MSUSP5698GMDL). Mice were given 0.03mg/kg ketoprofen and topical lidocaine on 

the nostril prior to induction. Suture was either pulled through the upper lip of the nostril 

and maxillary region to fully occlude the desired nostril or looped at the upper lip of the 

nostril for a sham stitch. Commercially available VetBond was applied to protect the 

suture knot. To ensure full occlusion, a small water droplet was placed on the occluded 

nostril. The absence of bubbles or seepage indicated a successful occlusion. Occlusion 

was re-tested in the same manner directly before each experimental session. All stitches 

were removed within a week of application, and animals were stitched a total of 3 times 

per nostril.   

Behavioral Training 

All mice were trained to locate an odor source from one of two possible sources 

in the olfactory arena. Mice were removed from training and future experiments if they 

lost sniff signal or did not exceed 50 trials/perform above 60% correct in 15 sessions. The 

training process was divided into four primary stages.   

Water Sampling. Mice were trained to alternate between the three pokes in the 

behavioral arena. Water (~5 - 8µL) was made available at the nose pokes in the following 

order: initiation port, left reward port, initiation port, right reward port (repeat). Mice 

were trained in this task for 30 minutes per session until the mouse completed 70 
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iterations. This took mice 2-9 sessions. Data are only shown for 19 mice, because earlier 

iterations of the system did not save training data.  

Odor Association. Mice were trained in the same sequence as water sampling. 

However, in odor association, water availability was removed from the initiation poke, 

and odor was released from whichever side water was available. Therefore, the mouse 

must initiate water availability by poking the initiation poke and then is further guided to 

the correct reward port by odor release. This task taught mice to initiate trials using the 

initiation poke and to associate odor with reward. However, in this step, odor is not 

required for reward acquisition as the task alternates left and right trials. Mice were 

trained in this task for 30 minutes per session until the mouse completed 70 iterations. 

This took mice 1-5 sessions. Data are only shown for 19 mice, because earlier iterations 

of the system did not save training data. 

100:0. Mice were given the same task as odor association, but with odor now 

randomly being released from the left or right odor port following an initiation poke. 10% 

of these trials were randomly 0:0 condition trials. To correctly answer, animals had to 

enter the quadrant of the arena (as tracked by the overhead camera) where odor was being 

released. If they answered correctly, water was made available at the reward port on the 

corresponding side. If they answered incorrectly, water was not made available and the 

mouse received an increased intertrial interval. Mice were trained in this task for 40 

minutes per session until they exceeded 80% accuracy, which took 1-4 sessions (n = 26). 

80:20. When trials were initiated in this task, odor was released from both odor 

ports, but at differing concentrations. The animal had to enter the quadrant containing the 

odor port releasing the higher concentration. In this case, 80 means that the nitrogen MFC 
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was set to 80mL/min on one olfactometer (see Methods: Behavioral Assay). Therefore, 

one odor port would release roughly 80% of the total possible odorant concentration. If 

one olfactometer was set to 80, then the other olfactometer would be set to 20 in this 

condition. 10% of these trials were randomly 0:0 condition. Mice were trained in this task 

for 40 minutes per session, taking 1-9 sessions to exceed 60% performance (n = 24).   

Behavioral Experiments 

Variable ΔC, Constant |C|. This experiment tested how performance and sampling 

strategy changes with task difficulty. In this experiment, mice performed a two-choice 

behavioral task where they located an odor source for a water reward at varying 

concentration differences between the two ports. This experiment interleaved several 

possible conditions: 100:0 (all odor released from one port or the other), 80:20 (odor is 

released from both ports at different concentrations: 80% of the total possible airborne 

concentration & 20% of the total possible airborne concentration), and 60:40 (60% and 

40%). Additionally, there was a control condition where all system settings were the 

same as the 80:20 condition, but nitrogen flow was directed through a clean vial so that 

the final flow was not odorized. 10% of the total number of trials were the 0:0 condition. 

Mice ran 40 minute experimental sessions and totaled 5-50 sessions (n = 19). These 

experiments were run with 1% liquid dilution of pinene.  

Novel Odorant. This experiment tested how mice generalized our olfactory search 

task. A subset of mice were run with 1% liquid dilution of vanillin, which, unlike pinene, 

does not activate the trigeminal system (n =  3). 

Constant ΔC, Variable |C|. This experiment tested if the animals use a thresholding 

strategy based on a fixed concentration threshold to solve the localization task. We ran 
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this experiment using air dilution delivering the concentration ratios 90:30 and 30:10 

interleaved randomly (n = 5). Mice ran 40 minute sessions and we analyzed data from the 

first session.     

Naris Occlusion. This experiment tested the necessity of stereo olfaction in our 

localization task. Mice were run in the interleaved experiment (see above) initially. 

However, after observing no differences between concentration groups, we continued this 

experiment running mice in the 80:20 and 0:0 conditions only. Mice were run in one of 

five categories: left occlusion, left sham stitch, right occlusion, right sham stitch, and no 

stitch (see Methods: Surgical Procedures). Mice ran 40 minute experimental sessions and 

totaled 5-30 sessions (n =  13). Stitches were always removed after 4 days. These 

experiments were run using 1% pinene dilutions.  

Mapping the Olfactory Environment 

We used a photoionization detector (PID, Aurora Scientific Inc, #201A) to 

capture real time odor concentration at a grid of 7x5 sampling locations in the assay. 

Using vials of 50% liquid dilution of pinene, we captured ~15 two-second trials per 

sampling point. Odor maps were generated using the average concentration detected 

across all trials at each location. These maps were smoothed via interpolation across 

space.  

Data Analysis 

Analyses of odormaps, sniffing, DLC tracking, and motif sequences were 

performed in MATLAB. Inhalation and exhalation times were extracted by finding peaks 

and troughs in the temperature signal after smoothing with a 25ms moving window. 

Sniffs with duration less than the 5th percentile and greater than the 95th percentile were 
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excluded from analysis. For alignment of movement with sniffing, tracking and motif 

sequences were shifted forward in time by 25ms (two frames), the temporal offset 

revealed by video calibration (Fig. 1). 

Figure 1. Odormaps were visualized by smoothing the PID sampling grid with a 

gaussian, and colored using Cubehelix (Green, 2011). 

Figure 2. Sessions where mice performed less than 60% correct on 80:20 (90:30 

for Constant ΔC, Variable |C|), were less than 80 trials, or had any missing folders or 

files were excluded. Trials longer than 10s were excluded. Percent correct was calculated 

by dividing the correct trials by total trials in a single session and was averaged across all 

sessions, all mice. Trial duration was measured between nose poke initiation and reward 

poke and was averaged across all trials, all sessions, all mice. Tortuosity was measured 

by dividing the total path length by the shortest possible path length and was averaged 

across all trials, all sessions, all mice. 

Statistical tests were performed in python using the scipy package (E. Jones et al., 

2001). A binomial test was used to test statistical significance of above chance 

performance. Wilcoxon rank-sum tests were used for all group comparisons with 

pairwise comparisons for more than two groups. Two group comparisons were tested 

using all trials pooled together and pairwise comparisons of three groups or more were 

tested across mice using individual mouse averages.  

Figure 3. Occupancy and sniff rate colormaps were generated by down-sampling 

the tracking data to a 50x30 grid of bins. Occupancy colormaps are a 2D histogram of the 

nose position data. Sniff rate histograms were generated by dividing the sniff count in 

each position bin by the corresponding bin in the occupancy histogram. Both histograms 
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were gaussian-smoothed, and colored using Cubehelix (Green, 2011). Grand means are 

shown in Fig. 3F,G, while individual mouse occupancy heatmaps are shown in Fig. 4. 

Maps were colored using Cubehelix (Green, 2011). 

Figure 4 & 5. Nose speed, yaw velocity, and z velocity were calculated from the 

3-point position time-series generated by Deeplabcut. For analysis, a 400ms window 

centered on each inhalation time was extracted from the kinematic timeseries. Colormaps 

in Fig. 4 show traces surrounding individual sniffs, while colormaps were generated 

using Bluewhitered (Childress, 2020). For within-trial sniffs, only those inhaled before 

the decision line were included. The inter-trial interval sniffs are taken from the time of 

reward port entry to the time of the first initiation port entry in the inter-trial interval. For 

cross-correlation and coherence analysis, we aligned the time-series of sniffing and 

kinematic parameters from the entire trial, or from the interval between reward and 

initiation port in the inter-trial interval. Tracking glitches were excluded by discarding 

trials or inter-trial intervals that contained frames with nose speed above a criterion value 

(100 pixels per frame). 

Figure 6. Average motif shapes were generated from the mean positions of the 

nose, head, and body points from the first 8 frames of every instance of a given motif as 

determined by the AR-HMM. Decoding analysis is described in the following section. 

Figure 7. The transition probability matrix was clustered by minimizing Euclidean 

distance between rows. For analyses separating investigation and approach sniffs, sniffs 

were defined as investigation or approach sniffs based on the state at the inhalation time. 

Colors for investigation and approach were selected from the Josef Albers painting, 

Tautonym, (B) (Albers, 1944). 
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Figure 8. Figures are generated by motif-onset triggered averages of inhalation 

times determined as described above. Fig. 8B,C are the grand mean of the motif onset-

triggered average for each motif. Maps were colored using Cubehelix (Green, 2011). 

Sniff phase (relative time in sniff) was determined by dividing the motif onset latency 

from inhalation by the total duration (i.e., inhalation time to inhalation time) of each sniff. 

Modulation index was calculated as the difference between maximum and minimum 

instantaneous sniff rate, divided by the sum  (𝑚𝑚𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚𝑚𝑚). 

Sniff synchronization. Sniff cycles were compared with kinematics to determine 

the extent of movement modulation at individual sampling points. Individual sniffs were 

cross-correlated with each kinematic signal (i.e. nose speed) at -200ms from inhalation 

onset to +200ms from inhalation onset. To further determine synchrony between the two 

signals, we measured the coherence of signal oscillation between sniff signals and 

individual kinematic measurements at -200ms from inhalation onset to +200ms from 

inhalation onset. 

Auto-Regressive Hidden Markov Model 

Let 𝑚𝑚𝑡𝑡 denote the 6-dimensional vector of nose-head-body coordinates at video-

frame t (sampled at 80 Hz), with components (𝑚𝑚nose,𝑦𝑦nose, 𝑚𝑚head,𝑦𝑦head, 𝑚𝑚body, 𝑦𝑦body). We fit 

an auto-regressive hidden Markov model (AR-HMM) to mouse trajectory data, {𝐱𝐱𝑡𝑡(𝑖𝑖)}, 

across  trials (indexed by i) from 13 out of 15 mice (two mice were excluded a priori due 

to low task performance). These mice performed olfactory search under the following 

experimental conditions: Variable ΔC, Constant |C|. (9 mice); naris occlusion (7 mice); 

and Constant ΔC, Variable |C| experiments (5 mice).  
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The generative view: Viewed as a generative model (that generates simulated 

data), the AR-HMM has two “layers”: a layer of hidden discrete states (corresponding to 

discrete movement motifs), and an observed layer which is the continuous trajectory 𝑚𝑚𝑡𝑡. 
We denote the temporal sequence of discrete states by 𝑧𝑧𝑡𝑡. In each time-step, 𝑧𝑧𝑡𝑡 ∈
{1,2, … , 𝑆𝑆}, i.e. it is one of an S number of states, or movement motifs. The discrete 

hidden states evolve in time according to a Markov chain: going from time-step t to t + 1, 

the discrete state may change to another state according to a transition probability matrix 𝜋𝜋𝑧𝑧1,𝑧𝑧2, which denotes the conditional probability of switching to 𝑧𝑧2 having started in 𝑧𝑧1. 

The probability distribution over the initial state, 𝑧𝑧𝑡𝑡=1, of the Markov chain at the start of 

each trial was taken to be the uniform distribution.  

Now suppose for time steps 𝑡𝑡1 to 𝑡𝑡2 (inclusive) the discrete layer remained in state 

z. The continuous or autoregressive part of the model dictates that, over this time interval, 

the continuous trajectory, 𝒙𝒙𝑡𝑡, evolves according to a linear autoregressive (AR) process. 

The parameters of this AR process can be different in different states or motifs, z. In other 

words, 𝒙𝒙𝑡𝑡 is governed by 

Eq. (1):  

𝒙𝒙𝑡𝑡 = 𝐴𝐴𝑧𝑧𝒙𝒙𝑡𝑡−1 + 𝒃𝒃𝑧𝑧 + 𝜀𝜀𝑡𝑡 .                𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2 

Where 𝐴𝐴𝑧𝑧 is a 6x6 matrix and b is a 6x1 vector, and the noise vector 𝜀𝜀𝑡𝑡is sampled from 

the multi-variate zero-mean gaussian distribution 𝑁𝑁(0,𝑄𝑄𝑧𝑧) where 𝑄𝑄𝑧𝑧 is a 6 x 6 noise 

covariance matrix. Moroever, the parameters 𝐴𝐴𝑧𝑧, 𝒃𝒃𝑧𝑧, and 𝑄𝑄𝑧𝑧 depend on the discrete state 

z, and in general are different in different discrete states. The simple stochastic linear 

dynamics described by Eq. (1) can describe simple motions of the mouse, such as turning 

left/right, dashing towards a certain direction, freezing (when 𝐴𝐴𝑧𝑧 is the identity matrix 
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and 𝒃𝒃𝑧𝑧 is zero), etc. The switches between these simple behaviors allow the model to 

generate complex trajectories. 

The AR-HMM model is an example of a model with latent variables, which in 

this case are the discrete state sequence 𝑧𝑧𝑡𝑡(𝑖𝑖) in each trial. The model, as a whole, is 

specified by the set of parameters (𝜋𝜋, {𝐴𝐴𝑧𝑧}, {𝒃𝒃𝑧𝑧}, {𝑄𝑄𝑧𝑧}), which we will denote by 𝜃𝜃. For a 

d-dimensional trajectory (d = 6 here) and S states, comprises 𝑆𝑆(𝑆𝑆 − 1) + 𝑆𝑆(𝑚𝑚2 + 𝑚𝑚 +𝑚𝑚(𝑚𝑚 + 1)/2) = 𝑆𝑆(𝑆𝑆 − 1 + 3𝑚𝑚(𝑚𝑚 + 1)/2) parameters.  

Model fits: Models with latent variables are often fit using the expectation-

maximization (EM) algorithm which maximizes the likelihood of the model in terms of 

the parameters 𝜃𝜃 ≡ (𝜋𝜋, {𝐴𝐴𝑧𝑧}, {𝒃𝒃𝑧𝑧}, {𝑄𝑄𝑧𝑧}) for a given set of observed data {𝒙𝒙𝑡𝑡(𝑖𝑖)}. In this 

work, we did not use the EM algorithm, but adopted a fully Bayesian approach in which 

both the hidden variables   

and the model parameters were inferred by drawing samples from their posterior 

distribution (\cite{Wiltschko2015Mapping}). The posterior distribution combines the 

model likelihood and Bayesian priors imposed on its parameters, according to Bayes' 

rule. If we denote the joint-likelihood of observed trajectories, {𝒙𝒙𝑡𝑡(𝑖𝑖)}, and the latent 

variables, {𝑧𝑧𝑡𝑡(𝑖𝑖)}, by 𝑃𝑃�{𝐱𝐱𝑡𝑡(𝑖𝑖), z𝑡𝑡(𝑖𝑖)}�𝜃𝜃� and the prior distribution over model parameters by 𝑃𝑃(𝜃𝜃), then up to normalization, the joint posterior distribution of latent variables and 

model parameters is given by 

Eq. (2):  

𝑃𝑃�{𝑧𝑧𝑡𝑡(𝑖𝑖)},𝜃𝜃�{𝒙𝒙𝑡𝑡(𝑖𝑖)}� ∝ 𝑃𝑃 �{�𝒙𝒙𝑡𝑡(𝑖𝑖), 𝑧𝑧𝑡𝑡(𝑖𝑖)�}�𝜃𝜃� 𝑃𝑃(𝜃𝜃). 

For the AR-HMM model, the (logarithm of the) joint log-likelihood is given by 
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Eq. (3):  

log𝑃𝑃 �{𝒙𝒙𝑡𝑡(𝑖𝑖), 𝑧𝑧𝑡𝑡(𝑖𝑖)}�𝜃𝜃� = ��[

𝑇𝑇𝑖𝑖
𝑡𝑡=2𝑖𝑖 log𝜋𝜋𝑧𝑧𝑡𝑡−1(𝑖𝑖)

,𝑧𝑧𝑡𝑡(𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 �𝒙𝒙𝑡𝑡(𝑖𝑖)�𝐴𝐴𝑧𝑧𝑡𝑡(𝑖𝑖)𝒙𝒙𝑡𝑡−1(𝑖𝑖)
+ 𝒃𝒃𝑧𝑧𝑡𝑡(𝑖𝑖) ,𝑄𝑄𝑧𝑧𝑡𝑡(𝑖𝑖)�]. 

Where 𝑇𝑇𝑖𝑖 is the length of trial i, and we use the notation 𝑁𝑁(𝒙𝒙|𝜇𝜇,𝑄𝑄) = 𝑚𝑚−12(𝑥𝑥−𝜇𝜇)𝑇𝑇𝑄𝑄−1(𝑥𝑥−𝜇𝜇)
/�|2𝜋𝜋𝑄𝑄| to denote the density at point x of a multivariate gaussian with mean vector 𝜇𝜇 

and covariance matrix Q.  

We imposed loose conjugate priors on the model parameters, which were 

factorized over the parameters of the AR process, ({𝐴𝐴𝑧𝑧}, {𝒃𝒃𝑧𝑧}, {𝑄𝑄𝑧𝑧}), in different discrete 

states z, and the different rows of the Markov transition matrix, 𝜋𝜋. On the rows of 𝜋𝜋, we 

imposed Dirichlet distribution priors with uniform distribution means, and concentration 

hyperparameter 𝛼𝛼, which was set to 4. We imposed matrix normal inverse-Wishart priors 

on the AR parameters, independently for different discrete states. Under this prior, the 

noise covariance 𝑄𝑄𝑧𝑧 has an inverse Wishart distribution with a “scale matrix” 

hyperparameter, which was set to the d x d (= 6 x 6) identity matrix, and a “degrees-of-

freedom” scalar hyperparameter set to d + 2 = 8. Conditional on 𝑄𝑄𝑧𝑧, the remaining AR 

parameters, (𝐴𝐴𝑧𝑧,𝒃𝒃𝑧𝑧), have a joint multivariate normal distribution under the prior, which 

can be specified by the prior mean and joint prior covariance matrix of 𝐴𝐴𝑧𝑧 and 𝑏𝑏𝑧𝑧. The 

prior means of 𝐴𝐴𝑧𝑧 and 𝒃𝒃𝑧𝑧 were set to the d x d identity matrix and the d-dimensional zero 

vector, respectively, while the prior covariance matrix of the concatenation (𝐴𝐴𝑧𝑧,𝒃𝒃𝒛𝒛) was 

given by the tensor product of 𝑄𝑄𝑧𝑧 and the (d + 1) x  (d + 1)(= 7 x 7) identity matrix 

(equivalently, under this prior, 𝑏𝑏𝑧𝑧 and different columns of 𝐴𝐴𝑧𝑧 are independent and 

uncorrelated, while each of these column vectors has a prior covariance equal to the 

(prior) AR noise covariance, 𝑄𝑄𝑧𝑧). 
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Bayesian model inference was carried out by sampling from (instead of 

maximizing) the joint posterior distribution of the model parameters and latent state 

variables conditioned on the observed trajectory data, Eq. (2). We did this by Gibbs 

sampling (an example of Markov Chain Monte Carlo; not to be confused with the 

Markov Chain in the AR-HMM model), which works in a manner conceptually similar to 

the EM algorithm: it switches between sampling 𝑧𝑧𝑡𝑡(𝑖𝑖) in all trials, conditioned on 

previously sampled parameters, and then sampling the parameters 𝜃𝜃 given the previous 

sample of {𝑧𝑧𝑡𝑡(𝑖𝑖)}. To carry out this model inference procedure, we used the Python 

package developed by M. J. Johnson and colleagues, publicly available at 

https://github.com/mattjj/pyhsmm. 

We ran the Gibbs sampler for 300 iterations, and burned the first 200 samples, 

retaining 100. We used the remaining samples to obtain the posterior probabilities of 

hidden discrete states at each time step of each trial (by calculating the frequency of 

different state in that time step and trial, across the retained Gibbs samples), as well as 

posterior expectation of the model parameters (by calculating their averages over the 

retained Gibbs samples). We refer to the AR-HMM with parameters given by these latter 

posterior expectations as the “fit model”.    

Model selection: We fit AR-HMM's with different numbers of states (motifs),  S, 

to mouse trajectory data pooled across animals. To evaluate the statistical goodness-of-fit 

of these fit model and select the best S (the number of states or motifs), we evaluated  the 

log-likelihoods of fit models on trajectory data from a held-out set of trials, not used for 

model fitting. The corresponding plot of log-likelihoods is shown in Figure S8C. As seen, 

the log-likelihood keeps increasing with S, up to S = 100. This shows that, up to at least  

https://github.com/mattjj/pyhsmm
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S = 100, additional motifs do have utility in capturing more variability in mouse 

trajectories. These variabilities may include differences in movement across mice, as well 

as movement variations in the same mouse but across different trials or different 

instances of the same movement; for example, a clockwise head turn executed with 

different speeds in different instances or trials. In the AR-HMM model, the AR 

observation distribution of a given Markov state corresponds to a very simple (linear) 

dynamical system which cannot capture many natural and continuous variations in 

movement, such as changes in movement speed. Nevertheless AR-HMM models with 

higher S can capture such variations with more precision, by specializing different 

discrete Markov states, with different AR distributions,  to movement motifs of different 

mice, or, for example, to capture different speeds of the same qualitative movement 

motif.  

The goal for this modelling was to give a compact description of recurring 

movement features across animals and conditions, suitable for visualization and 

alignment. For these purposes, the goodness-of-fit did not provide a suitable criterion, 

because the log-likelihood plots did not peak or plateau even at very large numbers of 

states. Guided by visual inspection, we thus chose the model with S = 16, for the main 

figures (Fig. 6-8). Although this was a somewhat arbitrary choice, we show that the 

findings in Figures 6, 7, and 8 do not depend on the choice of S – models with S = 6, 10, 

or 20 gave equivalent results (Fig. S9 – S11).  

MAP sequences: The Gibbs sampling algorithm which we used for model 

inference yields (timewise marginal) Maximum A Posteriori (MAP) estimates of the 

latent variables {𝑧𝑧𝑡𝑡(𝑖𝑖)}, as follows. Using the Gibbs samples for the latent variables we can 
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estimate the posterior probability of the mouse being in any of the S states in any given 

time-step of a given trial. We made MAP sequences by picking, at any time step and trial, 

the state with the highest posterior probability. The inferred MAP motifs tended to have 

high posterior probability, which exceeded 0.8 in 66.2% of all time-steps across the 

17195 trials in the modeled dataset. 

Decoding Analysis 

We decoded experimental conditions and animal identities from single-trial MAP 

motif sequences inferred using the AR-HMM model. Specifically, we trained multi-class 

decoders with linear decision boundaries (Linear Discriminant Analysis) to decode the 

above categorical variables from the single-trial empirical state transition probability 

matrices derived from the MAP sequence of each trial. If 𝑧𝑧𝑡𝑡(𝚤𝚤)� is the motif MAP sequence 

for trial i, the empirical transition probability, 𝜋𝜋𝑎𝑎,𝑏𝑏(𝚤𝚤)� , from state a to state 𝑏𝑏(𝑚𝑚, 𝑏𝑏 ∈
{1, … ,𝐾𝐾}), for that trial was calculated by: 

Eq. (4):  

𝜋𝜋𝑎𝑎,𝑏𝑏(𝚤𝚤)� ≡ 𝑚𝑚𝑎𝑎,𝑏𝑏(𝑖𝑖)∑ 𝑚𝑚𝑎𝑎,𝑐𝑐(𝑖𝑖)𝐾𝐾𝑐𝑐=1 . 

Eq. (5):  

𝑚𝑚𝑎𝑎,𝑏𝑏(𝑖𝑖) ≡ � 𝑀𝑀(𝑧𝑧𝑡𝑡� = 𝑚𝑚)𝑀𝑀(𝑧𝑧𝑡𝑡+1� = 𝑏𝑏)

𝑇𝑇(𝑖𝑖)−1
𝑡𝑡=1 . 

where  𝑇𝑇(𝑖𝑖) is the length of trial i, and 𝑀𝑀(⋅) is an indicator function, returning 1 or 0 when 

its argument is true or false, respectively. 
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We used the decoder to either classify experimental condition or mouse identity, 

in different trials (Fig. 6D,E). For decoders trained to classify the trials' experimental 

condition, we used pooled data across mice. For decoders trained to classify mouse 

identity, we only used data from the 80:20 odor condition. Data was split into training 

and test dataset in a stratified 5-fold cross-validation manner, ensuring equal proportions 

of trials of different types in both datasets. The trial type was the combination of left vs 

right decision, experimental condition, and mouse identity. 

To calculate the statistical significance of decoding accuracies, we performed an 

iterative shuffle procedure on each fold of the cross-validation. In each shuffle, the 

training labels which the classifer was trained to decode were shuffled randomly across 

trials of the training set, and the classifer's accuracy was evaluated on the unshuffled test 

data-set. This shuffle was performed 100 times to create a shuffle distribution of 

decoding accuracies for each fold of the cross-validation. From these distributions we 

calculated the z-score of decoding accuracy for each class in each cross-validation fold. 

These z-scores were then averaged across the folds of cross-validation and used to 

calculate the overall p-value of the decoding accuracy obtained on the original data. 
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SUPPLEMENTARY MATERIAL 

 
Supplementary Figure 1. Calibrating alignment of video frames with sniff signal. A) 
Sinusoidal signals (5, 8, 10, and 15 Hz) were simultaneously sent to the analog input 
channel (used to capture sniffing) and to a phosphor-display oscilloscope (Tektronix). 
The display of the oscilloscope was reflected by mirrors to allow it to be video-captured 
inside the behavioral arena. B) The timing relationship is given by the lag between peaks 
in the analog input channel and the vertical peaks in the position of the oscilloscope trace. 
Analog input led video frames by 23.5 ± 15.7 ms (mean ± sd; approximately two frames 
at 80 frames/second). 
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Supplementary Figure 2. Color maps of average odor concentration across ~15 two-

second trials captured by a 7x5 grid of sequential photoionization detector 

recordings. - Each row represents trial type (left correct or right correct). A) 80:20 odor 
condition (see Methods: Behavioral Training: 80:20). B) 60:40 odor condition (see 
Methods: Interleaved: 60:40). 
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Supplementary Figure 3. Session statistics across trainer sessions. - Individual mice 
are depicted by colored lines, average across mice are black points, and whiskers are ±1 
standard deviation from the average across mice. Mice 2054-2062 did not have trainer 1 
and 2 recorded (this accounts for increasing n) and mice were commonly removed from 
the experiment if they lost sniff signal (this accounts for the reducing n). Above. Number 
of trials performed or percent of correct trials. Middle. Average trial duration. Below. 
Average trial path tortuosity (total path length/shortest possible path length). A) Session 
statistics for the first trainer, water sampling (n = 19). B) Session statistics for the second 
trainer, odor association (n = 19). C) Session statistics for the third trainer, 100:0 or 
olfactory search (n = 26). Mice perform above 70\% in first session. D) Session statistics 
for final training step, 80:20, that preceded experiments shown in Figure 2 (n  = 24). 
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Supplementary Figure 4. Mice generalize search task to novel odorants and variable 

|C| session. – A) Performance, trial duration, and trial tortuosity (total path 
length/shortest possible path length) for the last session of pinene training in 80:20 and 
the first session of vanillin in 80:20 across mice (n = 3). B) Grouped by stimulus 
condition (90:30, 30:10, 0:0), each line represents the rolling average across mice 
(window=10) for the first session (n = 5). Shaded regions represent ±1 standard 
deviation. 
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Supplementary Figure 5. Idiosyncratic occupancy distributions across individual 

mice.  Two-dimensional histogram of occupancy (fraction of frames spent in each 
0.5mm2 bin). 
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Supplementary Figure 6. Sniff synchronization shuffle test. Sniff-aligned grand mean 
(n = 11 mice) of A) nose speed, B) yaw velocity, and C) Z-velocity for within-trial (Top) 
and inter-trial interval (Bottom) sniffs, overlaid on 1000 iterations of trial-shuffled grand 
means.  Thin black lines represent individual iterations, all of which are shown. 
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Supplementary Figure 7. Kinematic rhythms for premature initiations during the 

intertrial interval and between decision line and reward port during trials. Sniff-
aligned average of A) nose speed, B) yaw velocity, and C) z-velocity. Thin lines 
represent individual mice (n = 11), bolded lines and shaded regions represent the grand 
mean ± standard deviation. Green: within-trial sniffs from the time between crossing the 
decision line and entering the reward port. Pink: inter-trial interval sniffs from the time 
between the first premature trial initiation attempt and the successful initiation of the next 
trial. 
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Supplementary Figure 8. Motif statistics and examples and linear decoder results 

for 80:20 experiments. - A) Example nose trace across a single trial colored by motif 
identity. B) Linear decoder (Fig. 6; Methods: Linear decoding section) results for 
Variable |C| experiments (n = 5). C) Cross-validated log-likelihood (evaluated on trials 
not used for model fitting) for fit AR-HMM models with different numbers of motifs, S,  
shows that model log-likelihood does not peak or plateau up to S = 100. D) Fraction of 
motif usage across all mice (n = 8) for the model with S = 16.  Black points are individual 
mice, black line is average across mice, and shaded region is ±1 standard deviation. 
Colors on x axis represent motifs used in analysis (Fig. 6) and y axis are fractions of 
frames that motif occupies. E) The average dwell time of each motif across all mice (n = 
8) for the model with S = 16. Black points are individual mice, black line is average 
across mice, and shaded region is ±1 standard deviation. Colors on x axis represent 
motifs used in analysis (Fig. 6) and y axis are fractions of frames that motif occupies.} 
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Supplementary Figure 9. Motif shapes, sequences, transition matrices, and sniff 

synchronization for an AR-HMM capped at a maximum of 6 states. 
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Supplementary Figure 10. Motif shapes, sequences, transition matrices, and sniff 

synchronization for an AR-HMM capped at a maximum of 10 states. 
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Supplementary Figure 11. Motif shapes, sequences, transition matrices, and sniff 

synchronization for an AR-HMM capped at a maximum of 20 states.  
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Supplementary Figure 12. Shuffle test for the difference in sniff synchronization 

between investigation and approach motifs for movement parameters. We quantified 
the difference by calculating the Kolmogorov-Smirnov statistic for the comparison 
between the sniff triggered averages in the two states, first for real data, and then for 1000 
iterations of trial-shuffled data. Red shows the value for the real data, while the black 
histogram plots the distribution of Kolmogorov-Smirnov statistic for the 1000 iterations. 
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Supplementary Figure 13. Shuffle test for sniff synchronization of motif onset for 

investigation and approach motifs. We calculated a modulation index (𝑀𝑀𝑀𝑀 =  (𝑚𝑚𝑚𝑚𝑚𝑚 −
 𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑚𝑚𝑚𝑚𝑚𝑚) for each motifs’ across-mouse mean histogram (n = 4), and 
calculated the same for 1000 trial-shuffled across-mouse mean histograms. Blue and 
orange lines give the value from the real data, while the black histogram shows the 
distribution of MI across shuffle iterations. 
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CHAPTER III 

UNRESTRAINED ELECTROPHYSIOLOGICAL ASSAY 

DEVELOPMENT 

 

INTRODUCTION 

 Motor actions play a pivotal role in sensory processing. Self-movement pervasively 

drive cortical activity, even in regions traditionally considered sensory areas (Musall et 

al., 2018; Steinmetz et al., 2018; Stringer et al., 2019). In the previous chapter of this 

dissertation, we characterized movements associated with olfactory search behavior in 

mice. Rhythmic oscillations were observed in nose and head movements that synchronize 

reliably with sniffing during olfactory search (Findley et al., 2020). Further, we identified 

two categories of behavioral state during our search task which exhibit distinct motor 

features (Findley et al., 2020). Because self-movement influences sensory processing and 

is a vital component of closed-loop active sensing, this section takes the next steps to 

further elucidate how sampling movements correlate with and influence neural activity in 

the olfactory bulb of mice. We built a system to synchronize precise pose tracking to 

electrophysiological recordings in unrestrained mice performing search. This system will 

be used to examine how local field potentials in the olfactory bulb encode sampling 

movements, sensory features, and behavioral state. 

 The aggregate electrical activity across a neural region of interest, or the local field 

potential (LFP), is oscillatory by nature. The power, frequency, and coherence of these 
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oscillations have been implicated in neural network communication (Engel et al., 2001; 

Fries, 2005; Kay & Freeman, 1998; Lachaux et al., 1999), selective attention (Börgers et 

al., 2005; Fries et al., 2001; Jensen et al., 2007), and feature encoding (Barbieri et al., 

2014; Henrie & Shapley, 2005; Jia et al., 2013; Ray & Maunsell, 2010). Coherence in 

LFP signals between brain regions is commonly used as an indicator of increased 

communication between neural regions (Engel et al., 2001; Fries, 2005; Kay & Freeman, 

1998; Lachaux et al., 1999). The phase of these oscillations also plays an important role 

in communication; faster bands in one brain region that nest within slower bands in 

another region can phase-modulate each other (Canolty et al., 2006; Lakatos et al., 2005). 

At the scale of single neurons, the spike timing of individual cells with respect to LFP 

phase in sensory cortical regions has been shown to correlate with the muscle activity in 

the whisker pads and elsewhere in the body (Cardin et al., 2009; Siegel et al., 2009; Van 

Elswijk et al., 2010). LFP frequency bands can also encode the presence or absence of 

sensory input and selective attention. In the absence of visual stimuli, visual cortex 

activity fluctuates at a low frequency. Upon visual stimulation, fast oscillations in gamma 

band dominate LFP signals in visual cortex  (Fries et al., 2001; Pesaran et al., 2002) while 

individual neurons begin to phase-lock to the gamma band (Berens et al., 2008; Rasch et 

al., 2008; Ray et al., 2008). In humans, gamma-band phase synchronization is more 

prevalent in the visual cortex areas that encode selectively attended sections of the visual 

field versus unattended sections, indicating that selective attention drives gamma band 

activity in cortex (Bauer et al., 2006; Doesburg et al., 2008; Gruber et al., 1999). This is 

further supported by gamma-band bursts during movement preparation (Schoffelen et al., 

2011) and trial anticipation (Kay & Freeman, 1998). Finally, LFP can encode specific 
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features of sensory input, such as image contrast in visual cortex activity (Henrie & 

Shapley, 2005; Jia et al., 2013; Ray & Maunsell, 2010) as well as other quantifiable 

image features (Barbieri et al., 2014). Given the breadth of information LFP signals can 

encode, we ask how LFP represents behavioral state and sampling movements in the 

olfactory bulb during search.  

 The oscillatory nature of respiration makes the olfactory system ideal for LFP 

encoding. Sniffing couples tightly with LFP theta oscillations in the olfactory bulb 

(Adrian, 1950; Cury & Uchida, 2010; Fontanini et al., 2003; Rojas-Líbano et al., 2014). 

Further, respiration phase drives delta and gamma waves in barrel cortex (Ito et al., 

2014), which controls whisking movements. Accordingly, whisking phase-locks with 

sniffing during exploratory fast sniffs with the onset of a sniff cycle resetting the 

whisking phase (Moore et al., 2013). In fact, the breathing cycle has been hypothesized to 

serve as a global clock for orofacial movements and sensation (Kleinfeld et al., 2014). 

This hypothesis is supported by evidence that rodents move their nose and face muscles 

in synchronization with their breathing cycle and, during exploratory movement, 

whisking cycle (Kurnikova et al., 2017). Additionally, rodents rotate their heads during 

exploratory behavior in synchronization with the sniff cycle (Kurnikova et al., 2017), 

which has been further supported and elaborated on by our recent behavioral work in 

olfactory search (Findley et al., 2020). Finally, computational work specific to the 

olfactory system suggests spike timing within field activity phase can operate as an 

efficient means for pattern recognition (Hopfield, 1995).  

 In summary, from the movement of individual nares to the motion of the head, active 

sampling movements synchronize with sniffing and, therefore, the theta oscillations of 
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the olfactory bulb. Are these movements more specifically represented at the level of the 

olfactory bulb population activity? Do higher frequency bands such as gamma encode 

behavioral state (in our task, investigation versus approach)? Do the micro-movements of 

the head and nose synchronize with other bands of LFP oscillation besides theta? Are 

features of movement (such as a right turn versus a left) represented in the LFP power, 

peak frequency, or shape? In order to address these questions, we built a system that can 

track small movements with even greater accuracy than our original behavioral system 

and that can align with electrophysiological recordings at the millisecond timescale. Our 

system uses cutting-edge tools to execute robust 3D tracking, reliable sniff 

measurements, and long-term electrophysiological recordings where we can directly 

compare head-fixed and freely moving activity and address the above questions in a 

comprehensive and naturalistic task. Future experiments will use this system to 

investigate how LFP encodes movement during olfactory search behavior.  

RESULTS 

 We designed a system intended to address questions about the neural mechanisms 

that underlie olfactory search behaviors. Our first goal was to capture 3D motion of the 

nose, head, and body of a freely moving mouse with minimal errors in tracking and 

accommodation for a wide range of experimental techniques (i.e. electrophysiology, 

optogenetics, fiber photometry, etc.). We have shown z-axis head movement that 

synchronizes with sniffing (Findley et al., 2020) (see Ch. II), and this system will allow 

us to more accurately measure vertical head movements. To this end, we improved our 

system design from Chapter I by implementing semi-transparent flooring, video capture 

from below, and an angled mirror to capture z-axis movement of the mouse (Fig. 1A). By 
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imaging from below, we eliminate possible tracking errors due to cable obstruction and 

can easily change the features/mechanics/cabling of the head implant without impacting 

our tracking network.  

 

Figure 1. Electrophysiological assay for freely-moving olfactory search. A) 
Behavioral assay for capturing movement aligned with electrophysiological recording 
and sniffing. Camera captures from below one-directional transparent flooring and side 
profile mirror allowing 3-dimensional tracking using a single camera. Build 
accommodates future olfactory search assay (see Ch. II). B) Schematic of implant for 
electrophysiological and sniff recordings. Signals from NeuroNexus 16 channel electrode 
array implanted in the M/T layer of the olfactory bulb are locally amplified and digitized. 
Lightweight, minimally invasive thermistor records sniffing. Titanium headbar 
accommodates head-fixation. C) Schematic of data workflow for electrophysiological 
assay. Camera frames are recorded separately through SpinView software, but are 
synchronized with data recording via a frame capture trigger sent to the Open Ephys data 
acquisition board. This allows for precise post-hoc alignment of all data.  
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Further, we installed one-direction privacy film on the transparent flooring to prevent 

mice from viewing the open platform while allowing the camera to capture images from 

below (Fig. 1A; Fig. 2A). This reduces the risk of fearful behaviors that may confound 

our behavioral results. Finally, we installed an angled mirror to capture z-axis movement 

of the mouse using the same camera capturing the bottom profile. This simplistic design 

eliminates the need to synchronize two cameras, while greatly improving the 3-

dimensional accuracy of our tracking. Using the most recent release of the open source 

program Deeplabcut (M. W. Mathis & Mathis, 2020), we can precisely and accurately 

track the nose, head, and body of mice in this system. Further, using their latest 3D 

tracking additions, we can accurately triangulate body positions in 3-dimensional space 

with ease.  

 Free moving neural recordings were performed in the olfactory bulb of a single 

mouse using standard Si-based electrodes on a custom built microdrive in conjunction 

with an Intan headstage, thermistor, and standard titanium headbar (~ 3g). We chose to 

use these NeuroNexus probes, because multiple shanks increase lateral sensitivity across 

the brain and, given the depth of the M/T cell layer, the number of tetrodes allow us to 

encompass the brain region of interest and filter for individual units. Further, these probes 

will accommodate parallel experiments in our lab comparing single cell responses in 

head-fixed versus freely moving mice. As detailed in Figure 1B, the thermistor bead was 

implanted intranasally to dynamically record sniff (Fig. 1B). Open Ephys software was 

used to capture and align data from an Open Ephys Intan technology-based data 

acquisition board, FLIR BlackFly camera, and analog thermistor during experimentation 

(Fig. 1C; Fig. 2B). Future experiments will use the open source computer vision program 
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Bonsai (Lopes et al., 2015) to incorporate the SpinView software (used to operate the 

FLIR camera) and Open Ephys software into a single, easily executable program.   

 

 

Figure 2. Preliminary recordings in an unrestrained mouse. A) Example frame of 
bottom and side profile tracking with nose position in red, head position in green, and 
body position in blue. Right. Schematic of calculated body part triangulation using 
Deeplabcut3D. B) Example data from single freely moving recording. Top. Extracted 
GPIO triggers that act as a camera frame counter (30 Hz) through the Open Ephys data 
acquisition board. Middle. Example sniff trace in red. Bottom. 16 electrode channels in 
green aligned with above sniff trace and frame counter. C) Coherence of each electrode 
channel signal against sniffing. Black traces are signal coherence and red traces are 
coherence where the electrode signal is randomly shuffled.  
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 Preliminary recordings were obtained from a freely moving mouse using our chronic 

preparation in the olfactory bulb (Fig. 2). While COVID-19 related lab closures have 

significantly impacted this work, this data from our single chronic implantation provides 

a proof of concept. We demonstrate an example frame of x, y, and z axis tracking of the 

nose, head, and body and a schematic of the triangulation of those body parts (Fig. 2A). 

We show an example of extracted camera frame GPIO triggers aligned with sniffing and 

electrophysiological signals from 16 electrode channels (Fig. 2B). While there is still 

work to be done on noise reduction in our electrophysiological recordings, the sniff signal 

is coherent with each of our electrode channels within the frequency band of sniffing (~5-

12 Hz), as should be expected (Fig. 2C). This is not true when the electrode channel data 

is randomly shuffled (Fig 2C). Despite this promising preliminary analysis, we have not 

yet ruled out that this coherence is due to unwanted motion artifacts. As we regain lab 

operations during the summer of 2020, further preliminary recordings will be taken using 

newly implanted mice to ensure reliable theta band LFP synchronization with sniffing 

and to reduce noise by grounding the system.  

DISCUSSION 

 We developed a system for investigating the neural mechanisms that underlie active 

sampling behaviors during olfactory search,. Our system accurately and precisely tracks 

3-dimensional nose, head, and body movement of the mouse and accommodates a wide 

variety of experimental techniques and assays. This is a novel and important 

technological development for the field of olfaction. Our sniffing and 

electrophysiological recordings align to camera frame capture with high temporal 

resolution. Further, our preliminary data demonstrates the viability of extracting LFP 
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from the olfactory bulb which synchronizes with sniffing. Subsequent experiments will 

serve to both verify and fine-tune our chronic preparation and neural recordings in 

preparation for investigation of LFP signals during olfactory search.  

 Specifically, we plan to use this system to interrogate LFP in the olfactory bulb 

during the search task detailed in Chapter II. In doing so, we can investigate how 

sampling behaviors are encoded in early sensory areas and, consequently, how they drive 

sensory input. Despite the established nature of LFP in the field of neuroscience, the 

difficulty of developing a robust search assay that can produce many trials has prevented 

investigation of this kind in the past. Our extensive behavioral work from Chapter II of 

this manuscript lays the foundation for the success of this assay; we can record neural 

activity in a controlled search task across many trials, sessions, and days. Finally, our 

work described in Chapter II not only provides the behavioral assay, but our 

characterization of the behavior has identified two distinct behavioral states during our 

search task. This allows us to ask how neural activity is impacted by attentional state 

during olfactory search. We anticipate that the prominence of gamma band activity will 

alter between investigative and approach states during our search task.  

 This assay offers both versatility and adaptability. Using it, we can conduct 

investigations that were previously inaccessible to the field. For example, one principal 

challenge in olfaction is control and accurate detection of naturalistic olfactory stimuli; 

the nature of odor plumes is dynamic and unpredictable. This system can be used to 

record from OSNs using either electrophysiological techniques or fiber photometry. 

Recording OSN activity not only acts as a proxy for odor concentration, but incorporates 

the fine-tuning movements of the head, nose, and whiskers into the incoming sensory 
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signal, making it a powerful tool for comparing sensory input against behavior. Another 

experimental method for addressing complex odor gradients is the optogenetic generation 

and delivery of fictive odor gradients. This has already been implemented in Drosophila 

larvae (Tastekin et al., 2018). The versatility of our system easily accommodates both 

optogenetic and fiber photometry techniques (with the addition of a fiber commutator) 

that would allow us full access or control of odor gradients during odor search.  

 This assay is a step within a larger movement towards unrestrained recordings in the 

field of sensory neuroscience. We have demonstrated in this manuscript that oscillatory 

movement is pervasive in olfactory search. Further, current literature demonstrates that 

motion is globally encoded across sensory signaling and that it drives sensory input in the 

form of active sampling (Ahissar & Assa, 2016; Churchland, P.S., Ramachandran, V.S., 

& Sjenowski, 1994; Gibson, 1962; Musall et al., 2018; Steinmetz et al., 2018; Stringer et 

al., 2019; Yarbus, 1967). Investigation into unrestrained sensation is therefore key to 

comprehensively understanding sensory processing. Our first manuscript represents a 

modern approach to sensory neuroscience research; it accesses natural behaviors and 

allows freedom of movement while exercising the experimental rigor in data collection, 

replication, and analyses necessary to draw conclusions. Our future experiments will 

contribute greatly to the field’s understanding of the role motion plays in directed sensory 

search and how it influences sensory processing.  

MATERIALS & METHODS 

Animals: Housing & Care 

All experimental procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Oregon and are compliant with the 
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National Institutes of Health Guide to the Care and Use of Laboratory Animals. 

C57BL/6J mice (2-14 months old) from the Terrestrial Animal Care Services (TeACS) at 

University of Oregon were used for electrophysiological experiments. Mice were housed 

individually in plastic cages with bedding & running wheels provided by TeACS. Mice 

were fed standard rodent chow and chlorinated water ad libitum. Animal health was 

monitored daily, and mice were taken off water restriction if they met the ‘sick animal’ 

criteria of a custom IACUC-approved health assessment.  

Assay Design 

Arena. All experiments were conducted in a 38x20cm custom designed 

behavioral arena (all designs available upon request). The floor of the arena is glass that 

is covered in one-way privacy viewing film. This prevents mice from seeing through the 

glass (as they are fearful of open platforms) while permitting video capture from below. 

By tracking from below, we can easily change implants/connecting wires without 

affecting our tracking or needing to re-train the tracking network. A mirror on the side of 

the arena allows a single camera from below to capture both bottom and side profiles of 

the mouse, resulting in precise 3D tracking of the nose, head, and body. The arena cover 

is easily removeable for cleaning and to accommodate future adaptations.  

Our arena contains a custom designed and 3D-printed honeycomb wall through 

which continuous clean air can be delivered to the arena and a latticed wall opposite to 

the honeycomb that allows airflow to exit the arena. Odor ports can be embedded inside 

the honeycomb wall for odor delivery. There are three nose pokes in the arena: one trial 

initiation poke and two reward pokes. The initiation poke is embedded in the latticed wall 

where airflow exits and is poked to initiate trials. the left and right reward pokes are 
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embedded in the left and right arena walls against the honeycomb airflow delivery and 

are used for water reward delivery. For further details on the long-term experimental set 

up and task structure, see Chapter I, Methods.  

For head-fixed experiments, we use a removeable 3D-printed mouse holder with 

metal screws that fix the headbar in place. This holder can be easily and quickly removed 

from the chamber for head-fixed to freely moving recordings.  

3D video tracking. We use a FLIR Blackfly S USB3 camera (FLIR Integrated 

Imaging Solutions Inc, #BFS-U3-16S2M-CS) for video capture. We capture frames at 

150 Hz at 1440x1080 pixel resolution. Raw video is captured and saved using SpinView 

recording software. We synchronize frames with electrophysiological data collection by 

sending a frame-activated GPIO trigger to an Open Ephys analog input. Following data 

collection, videos are cropped into bottom and side profiles and run through a Deeplabcut 

(M. W. Mathis & Mathis, 2020) 3D tracking network for tracking of the nose, head, and 

body.  

Sniff recordings. We record sniffing using intranasally implanted thermistors (TE 

Sensor Solutions, #GAG22K7MCD419; see: Surgical Procedures). These thermistors are 

attached to pins (Assmann WSW Components, #A-MCK-80030) that can be connected to 

an overhead commutator and run through a custom-built amplifier (Texas Instruments, 

#TLV2460, amplifier circuit design available upon request). 

Electrophysiological recordings. We acquire electrophysiological recordings 

using a chronically implanted NeuroNexus probe (16 or 32 channel, tetrode 

configuration, H package, see: Surgical Procedures) in the mitral and tufted cell layers of 

the olfactory bulb. To minimize noise and crosstalk, an Intan amplification/digitation 
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chip is plugged directly into the headstage. Custom thin 12 wire cable then passes the 

signal to the main board with excess length provided in the box to prevent twisting during 

behavior. The open Ephys data acquisition board, utilizing Intan chip technology, 

simultaneously records and synchronize the analog sniff, camera GPIO triggers, and 

electrode signals. This recording system is viable for both head-fixed and freely-moving 

experiments. 

Software. All data was recorded using the Open Ephys GUI and FLIR SpinView 

software (both freely available online). Camera frames were synchronized with Open 

Ephys recordings via a frame capture-triggered GPIO trigger run through the Open Ephys 

data acquisition board. Body parts were tracked using Deeplabcut (Mathis et al., 2018) 

offline. All electrophysiological, sniffing, and frame counter data were analyzed using 

custom code in Python and MATLAB. All custom code is available upon request.  

Surgical Procedures 

For all surgical procedures, animals were anesthetized with 3% isoflurane; 

concentration of isoflurane was altered during surgery depending on response of the 

animal to anesthesia. Incision sites were numbed prior to incision with 20mg/mL 

lidocaine.  

Chronic Electrode Implantation. Recordings were performed with microdrives 

prepared at Janelia (generous gift of Josh Dudman) in conjunction with standard 16 or 32 

unit silicon shank electrodes with a tetrode configuration (NeuroNexus H package 

configuration). The electrode tips were disinfected by 3% hydrogen peroxide solution for 

15 minutes and rinsed with 70% ethanol directly before implantation. A craniotomy was 

made directly above the olfactory bulb and recording electrodes were gently lowered into 
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the brain region of interest with an electrical manipulator. Once properly positioned, the 

microdrive was fixed in place using dental cement. The exposed brain area was covered 

in a mixture of wax and paraffin. A titanium headbar was fixed using cyanoacrylate 

directly behind the ears and the connector pins for the electrodes were fixed against this 

headbar. All exposed skull and tissue were secured and sealed using cyanoacrylate. 

Immediately following surgery, animals received 0.1mg/kg buprenorphine followed by 3 

days of 0.03mg/kg ketoprofen.  

Thermistor implantation. To measure respiration during behavior, thermistors 

were implanted between the nasal bone and inner nasal epithelium of mice. Following an 

incision along the midline, a small hole was drilled through the nasal bone to expose the 

underlying epithelium ~2mm lateral of the midline in the nasal bone. The glass bead of 

the thermistor was then partially inserted into the cavity between the nasal bone and the 

underlying epithelium. Correct implantation resulted in minimal damage the nasal 

epithelium. The connector pins were fixed upright against the headstage (see electrode 

implantation) and the thermistor wire was fixed in place using cyanoacrylate. A skull 

screw was placed at the juncture of the nasal bones to secure the anterior portion of the 

implant. All exposed skull and tissue were secured and sealed using cyanoacrylate. 

Immediately following surgery, animals received 0.1mg/kg buprenorphine followed by 3 

days of 0.03mg/kg ketoprofen.  

Data analysis  

All data was analyzed using custom code in Python and MATLAB. Data pre-

processing was done using the SciPy package in Python (E. Jones et al., 2001). All data 

signals were read into Python and smoothing using a rolling average. GPIO triggers were 
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identified using peak detection. Data shuffling was done using the standard random 

shuffle SciPy package in Python. Coherence between two signals was measured using the 

SciPy coherence package using Welch’s method.   
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