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The relatively low cost of Next-Generation Sequencing (NGS) has enabled 

researchers to generate large amounts of sequencing data in order to identify disease-

causing mutations and to assemble simple genomes. However, NGS has inherent 

limitations due to the short DNA read lengths and high error rate associated with the 

technique. The short read lengths of NGS prevent the assembly of genomes with long 

stretches of repetitive DNA, and the high error rate prevents the accurate detection of rare 

mutations in heterogeneous populations such as tumors and microbiomes.  

I have co-developed new NGS methods to overcome these challenges. In order to 

increase the effective read length of NGS reads, local de novo assembly of short reads 

into long contigs can be achieved through the use of Paired-End Restriction-site 

Associated DNA Sequencing (RAD-PE-Seq). With the RAD-PE method, I sequenced a 

stickleback fosmid and generated contigs with an N50 length of 480 nucleotides. In order 

to eliminate false-positive mutations caused by the high error rate of NGS, the Paired-

End Low Error Sequencing (PELE-Seq) method was developed, which uses numerous 

quality control measures during the sequencing library preparation and data analysis steps 
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in order to effectively eliminate sequencing errors. Control testing of the PELE-Seq 

demonstrates that the method completely eliminates false-positive mutations at 

sequencing read depths below 20,000X coverage, compared to a ~20% false-positive rate 

obtained with previous methods. The high accuracy of the PELE-Seq method allows for 

the detection of ultra-rare mutations in a genome, which was previously impossible with 

NGS. 

This dissertation includes previously published and unpublished co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

 

The cost of genome sequencing has decreased dramatically in the last decade, and 

it is now possible to sequence a human genome for a few thousand dollars in a matter of 

days. Next-Generation DNA Sequencing (NGS) is a massively parallel, high-throughput 

process that generates sequence information for hundreds of millions of DNA molecules 

simultaneously. NGS has revolutionized molecular genetics, leading to the creation of the 

fields of transcriptomics and metagenomics, as well as others. The increased affordability 

of DNA and RNA sequencing has led to the generation of massive amounts of sequence 

data and new avenues of research. However, NGS is still a relatively new technique with 

some major limitations, namely, the short length of the sequencing reads (less than 500 

nucleotides) and the high error rates of the sequencer (~1%) [1,2,3]. The short read 

lengths of NGS platforms make it difficult to assemble genomes that contain highly 

repetitive regions, or to properly differentiate between alternative RNA isoforms[4,5]. 

The high error rates of the sequencing platform software and the polymerase enzymes 

used have led to an extremely high false positive rate, which makes it extremely 

challenging to accurately detect rare mutations present in a heterogeneous population, 

such as tumors or mitochondria [6,7]. The problems resulting from the short read lengths 

and high error rates associated with NGS pose challenges for researchers studying diverse 

topics ranging from evolutionary to clinical biology. This dissertation describes work 

done to address these problems through the development of new methods and techniques 

to overcome the inherent limitations of NGS. The first section describes a method 
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designed to overcome the problems associated with the short sequencing read length 

through the local assembly of short reads using restriction enzyme sites. The second 

section describes a method to reduce the error rate of NGS sequencing data using 

overlapping paired-end (PE) reads and a barcoding system. 

 

Local Assembly of Short Reads Using Restriction Sites 

 

One major shortcoming of the current high-throughput DNA sequencing methods 

is the short length of the sequence reads generated by the sequencing platforms [4,5]. For 

many applications, the short read length is not problematic and sequencing at a high read 

depth can generate enough information to assemble the short reads into contiguous 

sequences (contigs). Contigs are generated with programs that find where short 

sequencing reads overlap each other and then use that information to assemble them into 

one sequence. However, short sequencing read lengths are problematic in a variety of 

circumstances. Short read lengths interfere with genome assembly when the genome 

contains long stretches of repetitive regions, which is the case with most large genomes. 

If the stretches of repetitive sequences present in the genome are larger than the 

sequencing reads it is impossible to generate contigs by simply overlapping the sequence 

reads, as there is no way to know where the repetitive sequences begin and end. Another 

limitation resulting from short sequencing reads is the inability to infer information about 

the number and type of mRNA isoforms that have resulted from alternative splicing. 

Because each sequencing read is shorter than the length of a full mRNA transcript, it is 

impossible to piece together the various isoforms that were originally present in the 
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sample. Similarly, short sequencing read lengths also make it challenging to distinguish 

which homologous chromosome a sequencing read belongs to, hence it is difficult to 

determine haplotype information from a sample [3]. 

I have co-developed a new method to assemble short sequencing reads based on 

their position relative to restriction enzyme sites. Because restriction enzyme sites are 

found at specific sites throughout a genome, the short reads generated by sequencing each 

site can be grouped together and assembled locally into contigs. In order to generate 

longer contigs, it is useful to sequence as much of the genome space next to a restriction 

site as possible. The method, called RAD Paired-End Sequencing (RAD-PE Seq) is 

described in Chapter II, which is reproduced with permission from Etter PD, Preston JL, 

Bassham S, Cresko WA, Johnson EA, 2011, 6(4): e18561. Copyright 2011, PLoS ONE.  

 

Identifying and Filtering Next-Generation Sequencing Errors 

 

It is currently very challenging to detect rare mutations in genetically 

heterogeneous populations such as tumors and microbiomes with NGS, due to the 

relatively high error rates of NGS sequencing platforms and polymerase enzymes [6,7]. 

When sequencing a sample at 100x depth of coverage, the 1% error rate of current 

Illumina sequencers can lead to the generation of one error at every position in the 

genome. These sequencing and PCR errors are difficult to distinguish from true rare 

genetic variants using current methods. I have co-developed a new variant-calling method 

that drastically reduces the incidence of sequencing errors, called Paired-End Low Error 

Sequencing (PELE-Seq). The PELE-Seq method is described in Chapter III, which has 
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been submitted for publication as Preston JL, Royall A, Randel MA, Sikkink KL, Phillips 

PC, and Johnson EA, 2015 “High-Specificity Next-Generation Sequencing of Minor 

Alleles with Paired-End Low Error Sequencing (PELE-Seq)” (submitted to BMC 

Genomics). 
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CHAPTER II 

LOCAL GENOME ASSEMBLY OF SHORT SEQUENCING READS USING 

RESTRICTION SITES 

 

This work was published as Etter PD, Preston JL, Bassham S, Cresko WA, 

Johnson EA. Local De Novo Assembly of RAD Paired-End Contigs Using Short 

Sequencing Reads. 2011, 6(4): e18561. Copyright 2011, PLoS ONE. Eric Johnson and 

Paul Etter developed the RAD-PE method. I generated the data (partial-digest RAD-PE 

in stickleback fosmids). Eric Johnson performed data analysis. Eric Johnson and Bill 

Cresko were the principal investigators for this work. 

 

Introduction 

 

Despite the power of massively parallel sequencing platforms, de novo assembly 

of genomes with the short reads produced remains difficult. We demonstrate that short 

reads can be locally assembled into larger contigs using paired-end sequencing of 

restriction-site associated DNA (RAD-PE) fragments. We use this RAD-PE contig 

approach to sequence E. coli and stickleback genomic DNA with overlapping contigs of 

several hundred nucleotides. RAD-PE contigs mitigate the problem of short reads by 

creating much longer high-quality contigs appropriate for SNP discovery or the de novo 

assembly of genomes. 

The decreased cost and throughput increases offered by next-generation 

sequencing platforms create the ability to produce high coverage of a genome in a short 
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time.  However, it remains difficult to move from many millions of short reads to a high-

quality assembled genome, as the short sequence read lengths and the high error rates 

create computational difficulties. Several algorithms have been developed to more 

efficiently work with short read datasets [1,2,3], but these approaches require costly 

computing resources to compare each sequence read against all others [1,2,3,4].  

One difficulty in assembling a genome from short reads is bridging repetitive 

sequences. These sequences may exist in thousands to millions of locations in a genome, 

and are nearly indistinguishable in the context of a short sequence read. Without a way to 

place each repetitive sequence in its proper genomic location, it is difficult to move 

beyond producing a genome sequence made of many shorter contigs. Traditional 

solutions to this problem have included physically breaking the genome into smaller 

fragments, then cloning and sequencing each fragment independently, thereby ensuring 

that each repetitive sequence can be localized to a small region of the genome. The 

complexity reduction created by physically isolating a shorter genomic fragment is 

laborious, but remains one of the few true solutions to the challenges of assembling a 

complex genome.  

RAD tags are based on a different sort of complexity reduction step that samples 

the DNA flanking each instance of a particular restriction site in the genome [5,6,7,8]. 

RAD tags were developed to speed discovery of SNPs and have been particularly 

attractive in systems lacking a reference genome. However, moving from SNPs identified 

by sequencing RAD tags to a high-throughput genotyping platform is difficult without a 

reference genome, as these platforms typically require more than 60 nucleotides of 

flanking genomic DNA on both sides of the SNP of interest.   
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A distinctive feature of RAD tags is the asymmetric nature of the DNA fragments. 

Each RAD tag has one end defined by the restriction enzyme recognition site, and the 

other end defined by random shearing. Next-generation sequencers now have the 

capability to carry out paired-end reads, in which the two ends of a DNA fragment are 

sequenced and the two end sequences are known to belong to the same fragment. Paired-

end sequencing enables RAD fragments to be used for local de novo assembly. A typical 

RAD library may contain 10,000 to 100,000 RAD sequences. The sheared-end sequences 

that share a common RAD-site sequence are all derived from the same small region near 

the RAD site. This small set of sheared-end sequences can be assembled into a larger 

contig. Instead of a single, computationally intense assembly using the many sequence 

reads from the entire genome, RAD paired-end contig assembly is performed using only 

a small portion of the data at a time. Because the sequence reads come from a small 

region, the difficulties of finding significant sequence overlap and dealing with sequence 

errors become simpler. To demonstrate the power of this approach, we have created 

created RAD-PE contigs after a partial digest with a restriction enzyme that cuts at high 

frequency to generate overlapping contigs in stickleback.  

 

RAD Paired-End Contig Library Generation 

 

The DNA fragments created by RAD tag library preparation have a restriction site 

at one end and are randomly sheared at the other. This arrangement, when combined with 

Illumina paired-end sequencing, results in each instance of a restriction site sequence 

being sampled many times by the first reads and the genomic DNA sequence in the 
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nearby region being randomly sampled at a lower coverage by the second reads. We 

hypothesized that the explicit linking of second reads that sample a genomic region with 

a common first read RAD sequence would allow the second reads to be assembled on a 

local basis, one RAD site at a time (see Figure 2.1). 

We tested this approach by modifying the sequenced RAD tag protocol [6] in 

order to create paired-end compatible libraries. We altered two key aspects of the RAD 

protocol. First, a wider size range of fragments (300-800 bp) was isolated after shearing. 

The size of contigs assembled from the paired-end reads is dependent on the size range of 

fragments selected during library construction. Second, a longer, divergent P2 adapter 

that contains the reverse sequencing primer sequence was ligated to the variable end of 

the RAD tags before amplification, allowing the randomly sheared end of the RAD 

fragments to be sequenced by the second read. In order to make RAD-PE contigs useful 

for de novo assembly of whole genomes, and to achieve high coverage of a whole 

genome, libraries were created by partially digesting with a high-frequency restriction 

enzyme, which produced overlapping DNA fragments several kb long that were suitable 

for shearing (Figure 2.2A). As a result, RAD cut sites are typically only a few hundred 

base pairs apart, but the sheared ends sample 500 bp regions to the left and right of each 

RAD site.  

 

Partial-Digest RAD Paired-End Libraries for De Novo Assembly in Stickleback  

 

We tested the performance of this partial-digest RAD-PE contig protocol by 

sequencing a fosmid from stickleback. After partially digesting the DNA using two 
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restriction enzymes with different 4 bp recognition sequences, NlaIII and Sau3AI, 1.0-5.0 

kb DNA fragments were isolated prior to P1 ligation and shearing. Partially digested 

DNA samples were then carried through the RAD-PE contig protocol as described above. 

 

 

Figure 2.1. RAD paired-end contig libraries. (A) DNA fragments created by RAD tag 

library preparation have a restriction site (orange) at one end and a random sheared-end 

sequence (light brown) at the other. (B) Paired-end sequencing of RAD tag libraries 

allows the assembly of the sheared-end sequences from each RAD tag (dark brown) to be 

locally assembled into contigs on an individual basis (C). The distance at which the 

random end sequence lies, and hence the length of the contigs assembled, is dictated by 

the amount of shearing and the size of fragments isolated during the gel extraction step in 

the protocol. 

 

 

Because the samples were over-sequenced (>3 million reads total), we removed 

reads that increased coverage over a 30x threshold, leaving 2 million reads for the 

assembly. We also tuned the Velvet parameters for each RAD site using a script that 

A)

B)

Restriction sites in genome

RAD tag sequence read  Sheared-end reads

Variable length RAD tags isolated

Contigs assembled for each RAD tag fr om the sheared-end reads

C)
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tested three different word lengths and chose the assembly with the longest total contig 

lengths for that site (Figure 2.2B). The partial-digest strategy produced overlapping 

contigs as predicted (see Figure 2.2C) with an N50 length of 481 nucleotides; however, 

the assembled contigs mapped to two different regions of the genome, suggesting there 

were two fosmids present in the original prep. 

 

Methods 

 

Stickleback genomic DNA was isolated from pectoral fin clips using the DNeasy 

Tissue Kit (Qiagen). E. coli genomic DNA was acquired from the REL606 strain 

(provided by the Bohanan lab, UO) and from type B cells, ATCC 11303 strain (USB 

Corporation). Stickleback fosmids were isolated from genomic DNA using the 

CopyControl™ Fosmid Library Production Kit (Epicentre). 

1.0 μg of genomic DNA from each individual (H2 -141, L2-110) was digested for 

60 min at 37° C in a 50 μl reaction volume containing 5.0 μl 10x Buffer 4 and 10 units 

(U) SbfI-HF (New England Biolabs [NEB]). Samples were heat-inactivated for 20 min at 

65° C. 4.0 μl of barcoded SbfI-P1 Adapter (100 nM), a modified Illumina adapter 

(2006 Illumina, Inc., all rights reserved; top oligo:  5’- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCTxxxxxTGC*A-3’ [xxxxx = barcode (AGAGT-H2; CAGTC-L2), * = 

phosphorothioate bond]; bottom oligo:  5’-Phos-

xxxxxAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCG

CCGTATCAT*T-3’), was added to each sample along with 0.6 μl rATP (100mM, 
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Promega), 1.0 μl 10x NEB Buffer 4, 0.5 μl (1000 U) T4 DNA Ligase (high 

concentration, NEB), 3.9 μl H2O and incubated at room temperature (RT) for 30 min. 

Samples were again heat-inactivated for 20 min at 65° C, combined, and randomly 

sheared (Bioruptor) to an average size of 500 bp. The sheared sample was purified using 

a QIAquick Spin column (Qiagen) and run out on a 1.25% agarose (Sigma), 0.5x TBE 

gel. 

 

Figure 2.2. De novo assembly of a fosmid using Partial-digest RAD paired-end libraries 

in stickleback. (A) Incomplete digestion of DNA with a frequently cutting restriction 

enzyme creates overlapping restriction fragments. Preparing RAD-PE libraries from a 

stickleback fosmid following partial digestion with two frequent cutters resulted in 

contigs up to 1000 bp long and an N50 length of 481 nucleotides. (B) Shows the 

distribution of contigs built from the two libraries. (C) Mapping the contigs (black bars) 

from each RAD tag (grey boxes) back to the stickleback reference sequence 

demonstrated overlapping coverage over an ~40 kb stretch of the genome with a zoom on 

part of the assembly displayed below. 

Restriction sites in genome

Partial digest

Full digest

A) B)

C)

9345k      9346k            9347k               9348k   9349k         9350k               9351k               9352k     9353k           9354k               9355k 9356k       9357k    
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A smear of DNA approximately 300-800 bp was isolated with a clean razor blade 

and purified using the MinElute Gel Extraction Kit (Qiagen). The Quick Blunting Kit 

(NEB) was used to polish the ends of the DNA in a 25 μl reaction volume containing 2.5 

μl 10x Blunting Buffer, 2.5 μl dNTP Mix and 1.0 μl Blunt Enzyme Mix. The sample was 

purified and incubated at 37° C for 30 min with 10 U Klenow Fragment (3-5 exo-, 

NEB) in a 50 μl reaction volume with 5.0 μl NEB Buffer 2 and 1.0 μl dATP (10 mM, 

Fermentas), to add 3 adenine overhangs to the DNA. After another purification, 1.0 μl of 

Paired-End-P2 Adapter (PE-P2; 10 μM), a divergent modified Illumina adapter (2006 

Illumina, Inc., all rights reserved; top oligo: 5’-Phos-

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACAA-3, 

bottom oligo: 5-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATC*T-3), was ligated to the DNA fragments at RT. The sample was purified 

and eluted in 50 μl. 25 μl of the eluate was digested again with SbfI for 30 min to remove 

rare genomic DNA concatemers formed from re-ligation of short fragments with two SbfI 

restriction sites within 500 bp. The sample was purified, eluted in 50 μl and quantified 

using the Quant-iT™ dsDNA HS Assay Kit and Qubit™ fluorometer (Invitrogen). ~40 

ng was used as template in a 100 μl PCR amplification with 50 μl Phusion Master Mix 

(NEB) and 4.0 μl modified Illumina amplification primer mix (10 μM, 2006 Illumina, 

Inc., all rights reserved; P1-forward primer:  5-AATGATACGGCGACCACCGA-3, P2-

reverse primer:  5-CAAGCAGAAGACGGCATACGA-3). Phusion PCR settings 

followed product guidelines (NEB) for a total of 14 cycles with an annealing temperature 
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of 65° C. The library was cleaned through a column and gel purified, excising DNA 

~350-850 bp in size in an inverted triangle shape. PCR amplification of a wide-range of 

fragment sizes often results in biased representation of amplified products with an 

increased number of short fragments. We found this to be true in our current protocol, but 

reduced the effects by selecting a triangular slice during gel extraction to reduce the level 

of short fragment lengths from the PCR reaction. The sample was diluted to 10 nM and 

sequenced on the Paired-end module of the Genome Analyzer II following Illumina 

protocols for 2x60 bp reads. Sequences are available at the NCBI Short Read Archive 

(http://www.ncbi.nlm.nih.gov/Traces/sra; accession number SRA024496.1). 

Raw sequence reads were processed using custom Perl scripts (by Eric A. 

Johnson), to optimize read number and reduce artifacts within the data. Barcodes, if 

present, were trimmed from the raw reads.  Reads with many poor quality scores were 

removed. The number of reads from each RAD site was tracked, and RAD sequences 

above a threshold were considered repetitive and removed. Single mismatch derivatives 

of these repetitive RAD sequences were also removed. RAD sites with a number of reads 

below a threshold were also removed from further analysis, as the associated paired-end 

reads would therefore lack sufficient coverage for calling SNPs or were likely to be 

sequence-error created artifacts. 

The paired-end reads from each passing RAD site passing the above tests were 

sent to the Velvet assembler with a word length parameter that increased with increasing 

depth. Separate Velvet assemblies were also run with a fixed low and high word length, 

and the best assembly was chosen from the three trials based on the total assembled 

length of contigs. For the long insert assembly, the paired-end reads from each RAD site 

http://www.ncbi.nlm.nih.gov/Traces/sra
http://trace.ncbi.nlm.nih.gov/Traces/sra_sub/sub.cgi?subid=27242&from=submission&action=show:editsubmission
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were assembled with a word length of 41. The paired-end reads were re-assembled with a 

predicted optimal word length based on coverage and the first assembly contigs included 

as long read sequences to help guide the assembly at repeats. 

SNP calling was performed by aligning the sequence reads from each individual 

to the assembled contigs with Novoalign. Mismatches were filtered to include only high 

quality nucleotides and tracked by sample. SNPs were called using a simple thresholding.    

Multiple digestion reactions were set up for each DNA sample containing either 

1.0 μg of each fosmid DNA sample (BP11.12H 7e2 sox9) or 2.0 μg of E. coli REL606 

genomic DNA, 5.0 μl 10x Buffer 4, 100 μg/ml BSA and 2 U of NlaIII or Sau3AI (NEB). 

The reactions were incubated at 37° C in a 50 μl reaction volume for multiple lengths of 

time in order to achieve a spectrum of partially-digested to fully-digested DNA 

fragments. Digested samples were heat-inactivated for 20 min at 65° C and run out on a 

1.0% agarose gel. A smear of DNA approximately 1.0-5.0 kb was isolated for each 

sample with a clean razor blade and purified. The isolated samples were quantified and 

the remaining DNA was ligated to enzyme-specific P1 Adapters (1.0 μM), modified 

Illumina adapters (2006 Illumina, Inc., all rights reserved; NlaIII-P1 top oligo:  5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCTCATG-3’; NlaIII-P1 bottom oligo:  5’-Phos--

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT

ATCATT-3’; Sau3AI-P1 top oligo:  5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCT-3’; Sau3AI-P1 bottom oligo:  5’-Phos-

GATCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCG
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CCGTATCATT-3’), as described above, at a 10:1 molar ratio of adapter to DNA ends 

(assuming an average genomic DNA fragment length of 3.25 kb). Samples were heat-

inactivated for 20 min at 65° C and randomly sheared to an average size of 500-800 bp. 

Sheared samples were purified, run out on a 1.0% gel and DNA smears 200-800 bp (200-

1200 bp for the E. coli samples) were isolated and purified. DNA polishing and 3 dA-

overhang addition was carried out as described. PE-P2 ligations were carried out with 0.5 

μl PE-P2 Adapter. Samples were purified, eluted in 50 μl and quantified. 20 ng of 

template was used in a 100 μl, 14-cycle Phusion PCR amplification with 25 μl Master 

Mix and 2.0 μl amplification primer mix. Libraries were cleaned and gel purified, 

excising DNA ~250-850 bp (250-1250 bp for the E. coli samples) in a triangle shape as 

above, diluted to 10 nM, and sequenced on the Paired-end module of the Genome 

Analyzer II following Illumina protocols for 40x80 bp reads. 

 

 

Discussion 

 

RAD tags are typically used to sample a portion of the genome, allowing high 

coverage at a desired number of loci. However, we modified the protocol to produce 

RAD-PE contigs that overlap over a genome using partial-digests with a frequent cutter. 

The advantage of this approach is that the short read sequences are first assembled into 

contigs, which can then be ordered into a genome-wide assembly. Whereas whole 

genome shotgun assemblies require specialized and expensive computational resources, 

RAD-PE contigs can be assembled on any computer.  
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The many challenges of whole genome assembly are mitigated by local assembly. 

Short read sequences have a high error rate, so for a whole genome assembly every 

sequence must be searched against all others using relaxed alignment parameters. But 

then related regions of the genome and repeats become indistinguishable. Also, 

sequences must have a long region of overlap to be pieced together in whole genome 

assemblies, as shorter words are found throughout the genome. When RAD-PE contigs 

are assembled, the small region size allows for easy alignment of even high-error 

sequences, and short regions of overlap are sufficient to piece sequences together. 

Genome assembly programs like Velvet require the user to choose parameters 

such as word length and expected coverage. Even the best whole genome shotgun 

methods create peaks and valleys of coverage across a genome and the genome itself has 

regions of low and high complexity. Despite this variation, during assembly a median 

value for each parameter is chosen and the assembler therefore is less optimal in those 

regions that differ from that median. Our scripts collect the reads from a particular region 

and attempt to optimize the assembly for that single region by removing excessive reads 

and adjusting the indexing word length in response to the predicted coverage, with low 

coverage assemblies using a short word length, allowing sparse reads to join together and 

high coverage assemblies using a longer word length to bridge non-unique short 

sequences in the region. We also routinely tried a fixed low, fixed high and this predicted 

optimal word length for each region and evaluated the results to choose the best assembly 

for further use. Velvet can be recompiled to use longer word lengths than the default 

maximum of 31, but this greatly increases the memory requirements for an assembly. 

While this is a problem for whole genome shotgun assemblies that already require 
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hundreds of gigabytes of memory, we took this step for our assembly of the long-insert 

RAD-PE contigs without difficulty due to the low memory requirements of local 

assembly. 

We showed the utility of using RAD-PE contigs for de novo assembly of large 

genomic regions by performing a partial-digest RAD-PE contig approach on a fosmid 

from stickleback using two different high-frequency cutters. 

RAD paired-end contigs provide a low-cost method for SNP discovery in a format 

suitable for high-throughput genotyping platforms that require flanking sequence for 

primer design. It is possible to use platforms such as Roche 454 to achieve similar read 

lengths; however, accurate SNP discovery requires low error rates and sufficient depth of 

coverage to sample both chromosomes and determine heterozygosity. Although pricing 

of sequencing platforms rapidly change, a similar SNP discovery project using the 454 

platform would currently cost more than ten times as much as RAD-PE contig 

sequencing. The 8 million reads used to create greater than 50,000 contigs and find more 

than 40,000 SNPs between the two stickleback samples are, at this time, just one quarter 

of a single Illumina GAIIx lane (1/28th of a run), whereas similar coverage would require 

at least one half of a full 454 run.  

A related strategy to RAD paired-end contigs, termed subassembly, was recently 

described [3]. The complexity reduction step in subassembly is achieved randomly by 

dilution and amplification rather than restriction digestion, and subassemblies use the end 

sequence of the amplified fragments as an index rather than a restriction cut site 

sequence. As a result, subassembly does not create contigs at the same loci between 
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samples, making the several hundred nucleotide contigs it produces useful for de novo 

assembly rather than SNP discovery.   

There is justified excitement over the next generation of sequencing platforms, 

which promise longer read lengths and simpler informatics. The longer assembly lengths 

created by long-insert RAD-PE contigs match the several kilobase output projected for 

the next generation of high-throughput sequencers, and the local assembly step also 

simplifies the computational needs of a de novo assembly project. While the next 

generation of sequencers currently suffer from a high error rate, RAD-PE contigs have a 

low error rate due to high coverage of any particular nucleotide. Therefore, users of high 

count, short read length sequencers can enjoy many of the benefits of long read lengths 

without the considerable expense of purchasing new systems and trouble of substantially 

altering their workflows.  

Besides the short read lengths of current NGS sequencing platforms, the other 

major shortcoming of current DNA sequencing technology is the relatively high error rate 

of the DNA sequences generated with standard methods. This error rate is highly 

problematic when attempting to sequence genetically heterogeneous populations such as 

tumors or microbiomes to detect mutations present at below 1% of the population. To 

overcome these challenges, the PELE-Seq method was developed, which is described in 

Chapter III. 
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CHAPTER III 

IDENTIFYING AND FILTERING NEXT-GEN SEQUENCING ERRORS 

 

This work has been submitted to BMC Genomics as Preston JL, Royall A, Randel 

MA, Sikkink KL, Phillips PC, and Johnson EA, 2015 “High-Specificity Next-Generation 

Sequencing of Minor Alleles with Paired-End Low Error Sequencing (PELE-Seq).” The 

sequencing procedure and data analysis pipeline described in this chapter was developed 

by a number of lab members, including myself, Eric Johnson, and Ariel Royall. Paul 

Etter contributed substantially to this work by participating in the development of the 

method. I was the primary contributor to the optimization of the method and generated all 

the data. I developed the data analysis procedure and did all of the writing. 

 

Introduction 

 

Populations with high levels of genetic heterogeneity are able to evolve rapidly 

through natural selection, for example providing the basis for drug resistance in 

populations of microbes, viruses, and tumor cells [1, 2, 3]. In order to understand how 

these heterogeneous populations evolve in response to selection, it is important to be able 

to characterize the full catalog of genetic variation present in the population, including de 

novo mutations and minor alleles. The reduced cost of DNA sequencing has powered the 

wide-scale discovery of functional and disease-causing single nucleotide polymorphisms 

(SNPs) and genomic regions under selection [4]. However, the current high error rate 

(~1%) leads to the generation of millions of sequencing errors in a single experiment. 
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Thus, when attempting to sequence de novo mutations or genetically heterogeneous 

populations, it is challenging to distinguish between sequencing errors and true rare 

genetic variants [5,6,7,8].  

Sequencing error reduction through the use of overlapping read pairs (ORPs) has 

been described previously by Chen-Harris et al., who showed that the use of overlapping 

paired-end reads dramatically reduces the occurrence of sequencing errors [9]. PELE-Seq 

improves on the ORP method by incorporating dual-barcoding to filter out many types of 

PCR errors and library preparation artifacts, as well as a data analysis strategy that 

increases the specificity of SNP detection without a loss in sensitivity. The PELE-Seq 

method is simple to use, compatible with most sequencing libraries, and doesn’t require 

the use of special reagents. The PELE-Seq error-reduction method is based on two 

principles. First, sequencing errors can be removed by sequencing each DNA molecule 

twice with overlapping reads and merging the reads into overlapping read pairs (ORPs). 

Any bases that are mismatched in the two sequences are excluded from the final SNP 

calling analysis. Second, PCR errors and library preparation artifacts are reduced through 

the use of a dual-barcoding system, which can be used to generate information about the 

number of independent occurrences of a genetic variant in a DNA sequencing library. 

The PELE-Seq variant calling analysis pipeline incorporates information from the 

barcoding data as well as the overlapping read pair data, and is optimized to allow for the 

highly sensitive detection of rare polymorphisms compared to standard methods of DNA 

sequencing.   

We applied the PELE-Seq method to sequence rare alleles in a wild population of 

Caenorhabditis remanei nematode worms. C. remanei are highly heterogeneous, non-
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hermaphroditic nematode worms that are amenable to studies investigating the genetic 

basis of the response to natural selection [10]. In this study, we sampled the genome of an 

ancestral population originating from 26 wild mating pairs from Toronto, Ontario that 

were lab-propagated for a total of 34 generations. We show that PELE-Seq can detect 

changes in the rare allele frequencies between the genomes of the wild and lab-adapted 

populations, and that PELE-Seq can detect low-frequency alleles that appear only in the 

laboratory adapted population. 

 

PELE-Seq Library Preparation and Data Analysis 

 

PELE-Seq improves the specificity of standard SNP calling methods by reducing 

the occurrence of false-positive sequencing errors in the data. An overview of the PELE-

Seq method is illustrated in Figure 3.1. PELE-Seq library preparation and analysis 

involves two separate error filtering steps which are combined during analysis: 

 

1. Illumina 100 bp paired-end sequencing of short 100 bp DNA inserts is used to generate 

two completely overlapping paired-end reads from each DNA molecule. The overlapping 

paired-end reads are then merged into one high-quality consensus sequence. After 

trimming off the overhanging bases and filtering for high quality scores, the resulting 

consensus sequence has a much lower incidence of false positive SNPs compared to the 

non-overlapped reads.  
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2. PCR errors and library preparation artifacts are reduced through the use of a dual-

barcoding system, which requires the presence of two independent occurrences of a 

variant. During library preparation, two independent barcodes are ligated to the DNA 

molecules to be sequenced. Then, during data analysis, SNPs that are present with only a 

single barcode are excluded from the analysis, as they are potential PCR errors or library 

preparation artifacts. 

 

PELE-Seq data analysis uses a multi-step variant calling approach to incorporate 

information from both the barcoding and the overlapping steps, without a large drop in 

sensitivity. Rare alleles are evaluated with the program LoFreq, which calls somatic 

variants using a Bonferroni-corrected P-value threshold of 0.05 [11]. Rare nucleotides are 

included in the final variant calling only if they pass two separate quality control steps: 1. 

The nucleotide is present in both overlapping sequence reads from a single DNA 

molecule and is called as a SNP when variants are called from the merged reads. 2. The 

nucleotide is called as a SNP in two separate instances of high-sensitivity variant calling, 

once for each barcode file. The final outcome of the PELE-Seq analysis is a set of very 

high quality SNPs that have passed numerous quality control tests and filters.  

Rare alleles are evaluated with LoFreq, which calls somatic variants using a 

Bonferroni-corrected P-value threshold of 0.05 [11]. Rare nucleotides are included in the 

final variant calling only if they pass two separate quality control steps: 1. The nucleotide 

is present in both overlapping sequence reads from a single DNA molecule and is called 

as a SNP when variants are called from the merged reads. 2. The nucleotide is called as a 

SNP twice in two separate instances of high-sensitivity variant calling, once for each 
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barcode file. The final outcome of the PELE-Seq analysis is very high quality SNPs that 

have passed numerous quality control tests and filters.  

 

 

Figure 3.1. Overview of Paired-End Low Error Sequencing (PELE-Seq) library 

generation. DNA libraries with a 100bp insert size are paired-end sequenced using 100bp 

reads, generating an overlap region of approximately 100bp. The overlapping reads are 

merged into a consensus sequence and mismatching bases are discarded. A mixture of 

two separate barcodes is ligated to each sample. In order to pass PELE-Seq quality 

filtering, SNPs must be present in both paired-end reads and with both barcodes.  

 

 

PELE-Seq Accuracy and Sensitivity 

 

We first sought to empirically determine the specificity and sensitivity of the 

PELE-Seq variant calling method. We sequenced control E. coli DNA mixtures 
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containing 64 known SNPs present at defined frequencies ranging from 0.1%-0.3%. The 

E. coli control DNA mixtures were generated using DNA from E. coli K12 substrain 

W3110 titrated into a much larger amount of DNA from E. coli B substrain Rel606. The 

K12 W3110 substrain of E. coli contains a SNP every ~117 bp compared to E. coli B 

substrain Rel606 [12,13]. The genome space sequenced was reduced to 14 kilobases by 

using Restriction-site Associated DNA Sequencing (RAD-Seq) to sequence only the 200 

nucleotides flanking an SbfI restriction enzyme cut site, [14]. SbfI cuts the sequence 

CCTGCAGG, which occurs ~70 times in the E. coli genome.  We identified the control 

SNPs by sequencing the pure E. coli K12 substrain W3110 and comparing it to pure E. 

coli B substrain Rel606. 

The identity and allele frequency of the E. coli SNPs in the control libraries was 

verified by sequencing to 25,000X average read depth (Table 3.1).  The total read depth 

listed is that of the processed bam file used for SNP calling; for PELE-Seq data the 

number of raw reads used to generate the final bam file is roughly 2.3 times this amount 

because of the overlapping stage of analysis. The rare alleles detected in the control 

libraries had allele frequencies ranging from 0.141-0.464% (1/200-1/710).  

We found that PELE-Seq had high sensitivity with no false positive SNP calls 

when detecting rare SNPs above 0.2% allele frequency and with read depths below 

30,000X (Figures 3.2, 3.3). When detecting rare alleles known to be present at 0.3% 

frequency, PELE-Seq was able to correctly identify 22 out of the 64 total SNPs present 

with no false positives, while standard DNA-Seq methods with high base-quality (>Q30) 

identified 17 true SNPs, and had a false positive rate of 30%.  
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 We compared the specificity of the PELE-Seq method to that of the previously 

developed “Overlapping Read Pair (ORP)” method of rare SNP detection in order to 

determine the benefit of using multiple barcodes and a custom analysis pipeline. When 

just overlapping read error correction was used, false positive SNP calls were made 

compared to the no false positives seen with PELE-Seq (Table 3.2). 

 

 

 

Table 3.1. Allele frequencies for known rare SNPs in control E. coli DNA mixtures 

labelled 1-4, sequenced to an average read depth of 25,000X. The rare alleles detected in 

the control libraries had average allele frequencies ranging from 0.21-0.30% or 1/330-

1/470 of total reads. 

 

 

 

PELE-Seq was 100% accurate at detecting rare alleles present at 0.3% with 

30,000X read depth, compared to a 74% average accuracy level for standard Non-PELE 

Q30+ data. However, sequencing with ultra-high read depths (above 30,000X) resulted in 

the occurrence of false positive mutations in the PELE-Seq data, resulting in a 90% 

accuracy level, compared to 70% for standard DNA-Seq Q30+ data. The accuracy of 

standard DNA-Seq Q30+ data remained constant around 70%, regardless of the read 

depth used.  
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Figure 3.2. Detecting SNPs present at 0.3% frequency in E. coli control libraries with 

PELE-Seq and standard DNA-Seq methods at 20,000X average read depth. The read 

depths of the individual barcode files are plotted in blue, and the total read depth is 

plotted in green. The SNPs detected with PELE-Seq are plotted in the inner circle, and 

the Non-PELE SNPs are plotted in the next outer circle. False positive mutations are 

designated with a red “X”. Of the 64 known SNPs present in the genome, PELE-Seq 

detected 22 mutations with 100% accuracy, compared to 17 mutations and 70% accuracy 

achieved with non-PELE methods. 
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Figure 3.3. Sequencing a control E. coli DNA library containing 64 rare SNPs present at 

0.3% allele frequency with PELE-Seq at 20,0000X read depth produces 100% accurate 

data, compared to 71% accuracy achieved with traditional sequencing methods. 

Traditional Non-PELE sequecning of the control libraries resulted in 7 false positive 

mutations, compared to zero with the PELE-Seq method. 

 

 

Detection of Rare and Putative De Novo Mutations in Wild and Lab-adapted C. remanei 

 

We applied PELE-Seq to track changes in the rare allele frequencies of a wild 

population of C. remanei nematode worms that was subjected to laboratory-adaptation. 

The ancestral (wild) C. remanei population originated from 26 mating pairs of nematodes 

that were expanded to a population of 1000+ individuals and then frozen within three 

generations [10]. A branch of this ancestral population was grown in the lab for 34 

generations, during which time it was culled randomly to a population of 1000 

individuals for each generation. The lab-adapted population was also subjected to 

2 freezes and 9 bleach treatments (hatchoffs) during this time. The numerous selection 

events endured by the lab-reared nematodes are expected to   lower genetic diversity of 
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the population via drift and bottlenecking. Rare advantageous SNPs may also be selected 

for during the process of lab-adaptation.  

 

 

 

 

 

 

Table 3.2. Total SNP calls of 0.3% rare allele spike in libraries with PELE-Seq, DNA-

Seq, and the ORP method. PELE-Seq data produces 100% accurate SNP calls, while 

standard DNA-Seq and the ORP method have accuracy rates of 71% and 82%, 

respectively. 
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To assess the changes in genetic diversity of the nematode population before and 

after lab-adaptation, DNA from the wild and laboratory-adapted populations of C. 

remanei worms was PELE-sequenced using PacI RAD-Seq. The PacI restriction enzyme 

cuts the sequence AATTAATT, which occurs 2044 times in the C. remanei caeRem3 

genome. In order to further decrease the complexity of the genome, we performed an 

additional restriction enzyme digestion with NlaIII to destroy a portion of the RAD tags 

in the library. NlaIII cuts the sequence CATG, which is present on approximately 30% of 

the PacI RAD tags. The resulting genome space covered was approximately 300 kb, 

which was sequenced to an average of 2000X read depth. 

We identified several differences between the SNPs present in the wild nematodes 

compared to those found in the lab-adapted population (Figure 3.4). We found SNPs 

present below 1% frequency that were unique to the wild or lab-adapted C. remanei 

populations, and the frequencies of some of these rare alleles changed dramatically 

during lab-adaptation. By plotting the allele frequencies of each SNP before and after lab 

adaptation, it is possible to visualize the changes in the allele frequencies of minor alleles 

in a population undergoing a response to selection. The most dramatic changes in SNP 

allele frequencies were observed in the rare SNPs (Figure 3.5). We identified 4658 

PELE-quality SNPs present below 1% frequency in the ancestral C. remanei population, 

and 2541 PELE-quality SNPs present below 1% frequency in the lab-adapted population. 

Of the 4658 SNPs that were present below 1% the ancestral C. remanei population, 958 

SNPs were still detected in the lab-adapted population, including 534 SNPs below 1% in 

the lab-adapted population. There were 14 SNPs that were found to increase in frequency 
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at least tenfold in the lab-adapted population compared to the ancestral population (Table 

3.3).   

  

 

 

Table 3.3. Fourteen SNPs present below 1% frequency in the wild C. remanei population 

increased in frequency at least 10x in the lab-adapted population. 

 

A SNP was detected at position 127,723,967 of the caeRem3 (WUSTL) genome 

that had increased in frequency by 43X in the lab-adapted population. The number of 

reads containing this G>C transversion jumped from 31/13000 (0.2%) in the wild 

population to 750/7000 (10.5%). This SNP is located upstream of the promoter region of 

a gene predicted by the UCSC Genome Browser to be homologous to the C. elegans gene 

ugt-5, a UDP- Glucuronosyltransferase (Figure 3.6). The reads mapping to this SNP in 

the Integrative Genome Browser (IGV) are shown in Figure 3.7. 

The lab-adapted worms also contained rare SNPs that were not detected in the 

wild population, including putative de novo mutations. We identified 287 rare variants 

that were present only in the lab-adapted C. remanei population. These rare alleles were 
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called with extremely high stringency by removing any SNPs that were called with either 

barcode file in the wild population from the analysis. The rare alleles appearing only in 

the lab-adapted population are all present below 0.8% allele frequency and are distributed 

throughout the genome (Figure 3.8). 

 

Methods 

 

Wild isolates of C. remanei from Koffler Scientific Reserve at Jokers Hill, King 

City, Toronto, Ontario were graciously provided by Asher Cutter’s lab (University of 

Toronto). “Isofemale strains” originating from 26 wild mating pairs were expanded to a 

population size of 2000 following the initial mating. All worms collected, and those in 

the experiment described below, were grown on nematode growth media (NGM) seeded 

with E. coli strain OP50. All collected strains were frozen within three generations of 

collection to minimize lab adaptation. To create a cohort representative of naturally 

segregating variation for experimental evolution, we thawed samples from each of the 26 

isofemale strains and crossed them in a controlled fashion to promote equal contributions 

from all strains, including from mitochondrial genomes and Y chromosomes. The 

resulting genetically heterogeneous population was frozen after creation and was the 

ancestral population used for the experiment. 

A lab-adaptation strain consisting of 1000-2000 mating individuals was 

propagated. The control populations were randomly culled to 1000 L1 larvae during each 

selective generation, for 23 generations. Each population was frozen (N≥100,000 

individuals) periodically to retain a record of evolutionary change in the populations and 
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to ensure that worms did not lose the ability to survive freeze and thaw. Approximately 

5000 individuals from the frozen populations were thawed to continue the evolution 

experiment, while the remaining 95,000 worms remained frozen for future phenotyping 

and genetic and genomic analyses. Populations were thawed for selection after a 

minimum of 24hrs at -80°C. Freezing occurred a total of 2 times during lab-adaptation 

selection. The lab-adapted population was also subjected to 11 rounds of bleaching/age-

synchronization. 

C. remanei genomic DNA was isolated using the DNeasy Tissue Kit (Qiagen). E. 

coli genomic DNA was acquired from REL606 strain (provided by the Bohannan lab, 

UO) and from W3110 strain (Life Technologies). 

Restriction-Site Associated DNA (RAD) Sequencing was used to reduce the 

complexity of the C. remanei genome. For this application we used the restriction 

enzyme PacI, which has an AT-rich cut site. The complexity of the PacI RAD library was 

further reduced by digestion with NlaIII, which destroyed ~30% of the total RAD tags. 

The resulting PELE-PacI-RAD-Seq library was sequenced at 2000X coverage. RAD tags 

were present at approximately every 10kb throughout the genome. 

Genomic DNA (2.0 μg) from each population was digested for 60 minutes at 37C 

in a 50 μL reaction volume containing 5.0 μL Buffer 1, 10 units (U) PacI (New England 

Biolabs [NEB]), and 0.5 μl 100X BSA (NEB). Samples were heat-inactivated for 20 min 

at 65 C. 1.0 μL of barcoded PacI-P1 adapter mixture (100 nM), a modified Illumina© 

adapter (2006 Illumina, Inc., all rights reserved; top oligo: 5’- 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxxx(xx)A*T -3’[xxxxx(xx) = 

barcode (TACGT, AGATCGA - ancestor; CTGCAA, GCTAGTC –evolved control), * = 
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phosphoro-thioate bond]; bottom oligo: 5’-Phos-

xxxxx(xx)AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTG*T-3’), was added to 

each sample along with 0.6 ml rATP (100 mM, Promega), 1.0 μl 10X NEB Buffer 4, 0.5 

μl (1000 U) T4 DNA Ligase (high concentration, NEB), 3.9 μl H2O and incubated at 

room temperature (RT) for 30 min. 

 

        
Figure 3.4. Total SNPs present in the wild and lab-adapted C. remanei populations. The 

inner yellow circle lists SNPs present in the lab-adapted population; the wild SNPs are 

listed in the blue circle. SNPs present in both the wild and lab-adapted populations are 

written with black letters. SNPs appearing in only the wild or lab-adapted populations are 

written with red letters. 
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Figure 3.5. The allele frequencies of SNPs in the ancestral and lab-adapted populations 

of C. remanei worms. Each point represents a SNP in the genome. Top) Allele 

frequencies before and after lab-adaptation for all SNPs detected that are present in both 

populations. SNPs in the top left corner are less frequent in the lab-adapted worms; SNPs 

in the bottom right corner are more frequent in the lab-adapted worms. The estimated 

0.25 and 0.75 quantiles of the square root of variance are shown for with the dashed red 

lines. Bottom) A zoom-in of allele frequencies for SNPs present below 1% in the wild C. 

remanei population, before and after lab-adaptation. Fourteen minor alleles present below 

1% in the wild population increased in frequency at least tenfold after lab adaptation. 

Only SNPs present in both populations are plotted. 
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Figure 3.6. A RAD tag sequenced with PELE-Seq contains a SNP at position 

127,723,967 of the caeRem3 (WUSTL) genome that maps to the predicted C. elegans 

gene ugt-5 that was increased in frequency by 44X after 34 generations of lab-adaptation. 

The UGT pathway is a major pathway responsible for the removal of drugs, toxins, and 

foreign substances. http://genome.ucsc.edu.  

 

 

 

 

Figure 3.7. A SNP near the promoter region of ugt-5 increases in frequency 43X after lab 

adaptation. A G>C transversion found at below 1% frequency in the ancestral C. remanei 

population has a 43X increase in frequency after 34 generations of laboratory adaptation. 

This SNP maps to the promoter region of predicted C. elegans gene ugt-5, which is an 

enzyme responsible for the removal of drugs, toxins, and foreign substances. The top 

panel shows the reads from the ancestral (wild) population mapping to the caerem3 

genome; the bottom panel shows the reads from the lab-adapted population. The non-

reference SNP at position 127,723,967 is visible in orange. 
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Figure 3.8. Allele frequencies and position of rare alleles detected only in the lab-

adapted C. remanei population with PELE-Seq. Each vertical line represents a single 

SNP; the height of the line is proportional to the allele frequency. The detected SNPs had 

allele frequencies ranging from 0.0021 to 0.0075. The UCSC caeRem3 genome from 

WUSTL is composed of a single artificial chromosome named chrUn that is 146 

megabases (Mb) long. 

 

Samples were again heat-inactivated for 20 min at 65C, combined, and randomly 

sheared (Bioruptor) to an average size of 140 bp. The sheared sample was purified using 

a QIAquick Spin column (Qiagen) and run out on a 1.25% agarose (Sigma), 0.5X TBE 

gel. A tight band of DNA from 130-150 bp was isolated with a clean razor blade and 

purified using the MinElute Gel Extraction Kit (Qiagen). The Quick Blunting Kit (NEB) 

was used to blunt the ends of the DNA in a 25 μl reaction volume containing 2.5 μl 10X 

Blunting Buffer, 2.5 μl dNTP Mix and 1.0 μl Blunt Enzyme Mix. The sample was 

purified and incubated at 37C for 30 min with 10 U Klenow Fragment (3’-5’ exo-, NEB) 

in a 50 μl reaction volume with 5.0 μl NEB Buffer 2 and 1.0 μl dATP (10 mM, 

Fermentas), to add 3’ adenine overhangs to the DNA. After another purification, 1.0 ml 

of Paired-End-P2 Adapter (PE-P2; 10 mM), a divergent modified Illumina© adapter 

(2006 Illumina, Inc., all rights reserved; top oligo: 5’-Phos-
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GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACAA-3’, 

bottom oligo: 5’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATC*T-3’), was ligated to the DNA fragments at RT. The sample was purified 

and eluted in 50 μl. The eluate was digested again with NlaIII to reduce library 

complexity. The sample was column purified and eluted in 10 μl. Two separate PCR 

amplifications were performed with each sample, each using 5μl of eluate as template, in 

a 50 μl volume with 25 μl Phusion Master Mix (NEB) and 1.0 μl modified Illumina© 

amplification primer mix (10 mM, 2006 Illumina, Inc., all rights reserved; P1-forward 

primer: 5’ 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATC*T 3’, P2-reverse primer: 5’ CAAGCAGAAGACGGCATACG*A 3’). Phusion 

PCR settings followed product guidelines (NEB) for a total of 17 cycles with an 

annealing temperature of 65C. The libraries were pooled and cleaned through a column 

and gel purified, excising a tight band of DNA of 240 bp size. The sample was diluted to 

1 nM and sequenced on the Paired-end module of the Genome Analyzer II following 

Illumina protocols for 100 bp reads. 

Serial dilution of E. coli W3110 DNA with E. coli Rel606 DNA was performed to 

generate spike-in libraries with dilution levels ranging from 1:100 to 1:5000, at a 

concentration of 0.8 ng/μl. All dilutions were concentrated with a SpeedVac to 40 μl. 300 

ng of genomic DNA from each dilution was digested for 60 minutes at 37C in a 50 μL 

reaction volume containing 5.0 μL Buffer 4, 10 units (U) SbfI-HF (New England Biolabs 

[NEB]). Samples were heat-inactivated for 20 min at 65 C. 2.0 μL of barcoded SbfI-P1 
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adapter mixture (100 nM), a modified Illumina© adapter (2006 Illumina, Inc., all rights 

reserved; top oligo: 5’-Phos-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCTxxxxxxTGC*A 3’[xxxxxx = barcode (mixture of two barcodes per sample), * = 

phosphoro-thioate bond]; bottom oligo: 5’-Phos-

xxxxxxAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTC

GCCGTATCAT*T-3’), was added to each sample along with 0.6 ml rATP (100 mM, 

Promega), 1.0 μl 10X NEB Buffer 4, 0.5 μl (1000 U) T4 DNA Ligase (high 

concentration, NEB), 3.9 μl H2O and incubated at room temperature (RT) for 30 min. 

Samples were again heat-inactivated for 20 min at 65C, combined, and randomly sheared 

(Bioruptor) to an average size of 140 bp. The sheared sample was purified using 

Agencourt AMPure XP beads at a 1X volume. The Quick Blunting Kit (NEB) was used 

to blunt the ends of the DNA in a 50 μl reaction volume, and the sample was purified 

using Agencourt AMPure XP beads at a 1X volume. The sample was incubated at 37C 

for 30 min with 10 U Klenow Fragment (3’-5’ exo-, NEB) in a 50 μl reaction volume 

with 5.0 μl NEB Buffer 2 and 1.0 μl dATP (10 mM, Fermentas), to add 3’ adenine 

overhangs to the DNA. After another 1X bead purification, 1.0 ml of Paired-End-P2 

Adapter (PE-P2; 10 mM), a divergent modified Illumina© adapter (2006 Illumina, Inc., 

all rights reserved; top oligo: 5’-Phos-

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACAA-3’, 

bottom oligo: 5’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATC*T-3’), was ligated to the DNA fragments at RT. The sample was purified 
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and eluted in 40 μl. Ten separate PCR amplifications were performed with the sample, 

each using 4μl of eluate as template, in a 50 μl volume with 25 μl Phusion Master Mix 

(NEB) and 1.0 μl modified Illumina© amplification primer mix (10 mM, 2006 Illumina, 

Inc., all rights reserved; P1-forward primer: 5’ 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATC*T 3’, P2-reverse primer: 5’ CAAGCAGAAGACGGCATACG*A 3’). Phusion 

PCR settings followed product guidelines (NEB) for a total of 18 cycles with an 

annealing temperature of 65C. The libraries were pooled, cleaned through a QIAquick 

Spin column (Qiagen), and size selected with a Pippin Prep (Sage), collecting a tight 

band of DNA of 240 bp size. The sample was diluted to 1 nM and sequenced on the 

Paired-end module of an Illumina HiSeq 2500 following Illumina protocols for 100 bp 

reads.  

 

Discussion 

 

Current genomic studies of genetically heterogeneous samples, such as growing 

tumors acquiring de novo mutations, or natural populations that are difficult to sequence 

as individuals, are hampered by the difficulty in distinguishing alleles at low frequency 

from the background of sequencing and PCR errors. We have developed a method of rare 

allele detection that mitigates both sequence and PCR errors called PELE-Seq. PELE-Seq 

was evaluated using synthetic E. coli populations and used to compare a wild C. remanei 

population to a lab-adapted population. Our results demonstrate the utility of the method 

and provide guidelines for optimal specificity and sensitivity when using PELE-Seq. 
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By using PELE-Seq, we increased the number of independent validations of a rare 

SNP by sequencing each molecule twice with overlapping paired-end reads and by 

calling each SNP twice through the use of multiple barcodes. The multiple PELE-Seq 

quality control steps result in genotype calls of low-frequency alleles with a false positive 

rate of zero, allowing for the specific detection of rare alleles in genetically 

heterogeneous populations. 

We found that there is a window of sequencing depth that is ideal for detecting 

rare alleles when using PELE-Seq, and sequencing beyond this level will increase the 

probability of introducing false positive mutations due to PCR error. The ideal amount of 

coverage for a given library would depend on the specific PCR error rate of the method 

used to make the library. For our libraries, with an estimated PCR error rate of 0.05%, we 

found that the optimal level of read depth was around 25,000X coverage. Sequencing 

below this level reduced the sensitivity of the method, while sequencing above this level 

lead to the appearance of PCR errors in the data that were present in both barcoded 

libraries. 

Sequencing error reduction through the use of overlapping read pairs (ORPs) has 

been described previously by Chen-Harris et al., who show that the use of overlapping 

paired-end data dramatically reduces the occurrence of sequencing errors in NGS data 

[9]. Their group concluded that PCR error is the dominant source of error for sequencing 

data with an Illumina quality score above Q30, which they estimate to be around 0.05%. 

PELE-Seq adds to the overlapping read pair method by incorporating dual barcodes to 

filter out the PCR errors. We have shown that the PELE-Seq method has fewer false 

positives than sequencing data generated with the ORP method alone in our libraries.   
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We have used PELE-Seq to identify rare alleles in a wild C. remanei population 

whose frequencies have increased dramatically as result of laboratory cultivation, and we 

identify ultra-rare alleles that are only detectable after laboratory adaptation of a wild 

nematode worm population.  We identified a rare G > C transversion upstream of the 

promoter of ugt-5 that was increased in frequency 43X in the lab-adapted strain 

compared to the wild strain. UGT enzymes catalyze the addition of a glucuronic acid 

moiety onto xenobiotics and drugs to enhance their elimination. The UGT pathway is a 

major pathway responsible for the removal of most drugs, toxins, and foreign substances 

[15]. The striking increase in the frequency of this rare mutation after lab adaptation 

suggests that the surrounding genomic region is under positive selection. One possibility 

is that a change in ugt-5 expression may confer a growth advantage on the laboratory-

grown nematodes by increasing their ability to process and eliminate the bleach ingested 

during the hatchoff procedures. With PELE-Seq, it is possible to know that the ugt-5 SNP 

was present at a very low frequency in the wild population, and is not a de novo mutation. 

The SNPs detected only in the lab-adapted population were present at low frequencies, 

suggesting that pre-existing low-frequency minor alleles are the most useful source of 

genetic material available for C. remanei to respond to changes in the environment, as 

these alleles are readily available and don’t need to be spontaneously generated. In 

general, this approach should be useful for detecting changes in rare allelic variants in so-

called “evolve and reseq” experiments [16]. In this study, we sampled only a very small 

fraction (~1/500) of the C. remanei genome with RAD-Seq, and discovered multiple 

instances of apparent selection taking place.  
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We have demonstrated that the PELE-Seq method of variant calling is highly 

specific at detecting rare SNPs found at below 1% of a population. There were zero 

instances of false positive SNPs called from control sequenced E. coli library containing 

known rare alleles present at known frequencies. Previously, the high error rate of NGS 

resulted in thousands of false-positive SNPs that were indistinguishable from true minor 

alleles. The PELE-Seq method makes it possible to know with certainty the identity of 

rare alleles in a genetically heterogeneous population, and to detect ultra-rare and 

putative de novo mutations that aren’t present in an ancestral population. As a proof of 

principle, we have used PELE-Seq to identify rare mutations found in lab-adapted strains 

of C. remanei nematode worms. We identified a SNP in the lab-adapted worms that was 

increased in frequency 43X after 23 generations in the lab. This research demonstrates 

that model organisms grown in a laboratory can become genetically distinct from wild 

populations in a short period of time, and care must be taken when generalizing from 

conclusions drawn from research involving lab-reared organisms. 

In addition to sequencing rare alleles in a mixed population of individual 

organisms such as nematodes, PELE-Seq is useful for detecting de novo mutations in 

genetically heterogeneous environments such as tumors. The detection of rare mutations 

in a tumor is critical for an understanding of early tumorigenesis and tumor evolution.  

Sequencing tumors with standard NGS methods produces data containing an 

overwhelming number of false positive mutations, which cannot be distinguished from 

true mutations. PELE-Seq can filter out the false positive mutations in tumor sequencing 

data, and accurately identifying rare mutations. In Chapter IV, PELE-Seq is applied to 

detect rare mutations in the blood DNA of a human with disseminated osteosarcoma.  
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CHAPTER IV 

HIGH-SPECIFICITY TUMOR SEQUENCING 

 

Tumors are highly heterogeneous communities of cells that evolve through the 

accumulation of rare de novo mutations. Recently it has been shown that advanced 

tumors can actually contain several different types of genetically distinct cancer cells, 

each with a different prognosis and metastatic potential [1,2,3,4,5]. Tumor heterogeneity 

allows for tumor plasticity, and is a huge barrier preventing personalized cancer 

medicine. Because of tumor heterogeneity, a single biopsy often gives inaccurate and 

incomplete information regarding the genetic potential of a tumor. Often, the most 

aggressive cells in a tumor may represent only a fraction of the solid tumor and may not 

be detected in a standard single biopsy [6,7]. In addition, small and early tumors are 

difficult to extract and purify from nontumor cells, making their DNA challenging to 

detect. Because standard NGS methods cannot accurately detect rare mutations, we lack a 

clear understanding of the early tumor cascade of mutations that would represent the 

most attractive drug targets. A high-resolution systems-level understanding of the 

mutations involved in cancer progression is required. The PELE-Seq method was 

developed to improve the accuracy of rare mutation detection, and is described in Chapter 

III. As described below in Chapter IV, PELE-Seq was applied to sequence the blood 

DNA of an anonymous patient with disseminated metastases, and to identify the 

clinically-relevant mutations in the genome. Cancer patients often contain circulating 

tumor cells and cell-free DNA in their blood [8,9,10], and PELE-Seq can be used to 

accurately detect rare genetic variants found in the blood of a cancer patient.  
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PELE-Sequencing of a Human Osteosarcoma Blood Biopsy 

 

Under many circumstances, biopsies cannot be done due to the location and 

nature of a tumor. Additionally, biopsies give incomplete information when a tumor 

is large and heterogeneous, and the driver cells of the tumor or metastases are rare 

compared to the overall tumor. Cancer DNA from disseminated metastases can exist 

in the blood, lymph, or cerebrospinal fluid at low frequencies, and can be detected with a 

liquid biopsy. However, the rare mutations are often challenging to detect due to the high 

error rate of standard NGS techniques, as described in Chapter III. 

We applied PELE-Seq to sequence a whole-exome capture of blood DNA from an 

anonymous human patient with disseminated metastatic sarcoma, in collaboration with 

the Spellman lab at OHSU. We performed a PELE Sequencing and analysis, similar to 

that described in Chapter III, but without barcode information. The blood tumor DNA 

was sequenced to an average depth of coverage of 1000X, and screened for relevant 

mutations that are previously known to impact protein function in known cancer genes, 

based on evolutionary conservation of the affected amino acid in protein homologs 

[11,12].  

We identified ~5000 rare mutations passing quality filters that were present in 

disseminated osteosarcoma blood DNA. Of the mutations passing quality filters, 36 were 

functionally relevant mutations in known cancer genes (Table 4.1), including a mutation 

in PIK3CA present at 1.2%. Several other interesting mutations were also present in the 

blood DNA, including mutations in Atrx and Lrp1, which were present at around 0.1%.  
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Discussion 

 

Several of the mutations identified in the tumor blood sequencing are present in 

genes known to be involved in cancer initiation and progression. For example, Atrx is a 

known tumor suppressor [13], and Lrp1 is a known oncogene [14]. Unfortunately, none 

of the mutations discovered in the blood DNA of the anonymous osteosarcoma patient 

are currently targetable with cancer therapy drugs. Much work remains to determine the 

functional significance of the mutations discovered during this and other tumor 

sequencing projects. Cancer biologists have barely begun to understand the functional 

significance of the genetic variation of tumors, especially with regard to noncoding 

variants, including enhancer elements and noncoding RNAs [15,16]. The PELE-Seq 

method is a very useful and necessary first step in assessing and tracking the mutational 

landscape of the tumor environment. With PELE-Seq it is now possible to track the 

accumulation of mutations in a tumor, starting from early tumorigenesis, in order to 

identify the “driver mutations” responsible for tumor growth. The driver mutations of a 

tumor are very attractive drug targets because they are acquired early in tumor 

development and are probably necessary for the survival of the entire tumor [17]. Once 

we have a better understanding of the identity of all possible driver mutations for a tumor, 

one possible strategy involves treating a driver mutation before it is even detected in a 

tumor, which is the so-called “never mutation” approach [18]. Additionally, so-called 

“passenger mutations,” which are random de novo mutations that have accumulated over 

time due to the high mutation rate of tumors, also play a role in modifying tumor 
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progression and are important to track and understand as well [19]. PELE-Seq can be 

applied to understand the entire spectrum of mutations found in a tumor over time.  

PELE-Sequencing of blood biopsies and cell-free tumor DNA sequencing 

methods hold promise for future research for a basic understanding of tumor biology, as 

well as for clinical applications such as early detection and screening for relapse of 

recurrent metastases. Because the blood of a cancer patient with disseminated metastases 

contains a collection of DNA from various metastatic sites, sequencing the blood DNA 

would be very useful for detecting rare cancer mutations involved in tumor progression. 

PELE-Seq could also be very useful to predict the outcome of a drug therapy and to 

gauge the potential of tumor drug resistance, because it allows researchers to accurately 

assess the genetic potential of a tumor. In summary, PELE-Seq is an extremely useful 

method to understand tumor progression and metastases, and has many important 

applications in basic and clinical research. 

In addition to small de novo mutations, tumors often contain several types of 

genomic alterations, including large-scale amplifications, deletions, and rearrangements. 

Chapter V describes work done to identify large-scale rearrangements in the genome of 

advanced mouse glioblastoma tumors. 
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Table 4.1. Clinically relevant mutations detected in the blood DNA of an anonymous 

human patient with disseminated osteosarcoma, in collaboration with the Spellman lab at 

OHSU. Of the 5000+ rare variants identified in the blood DNA, 36 were predicted to be 

functionally relevant mutations affecting protein function in known cancer genes. The 

mutations detected are very rare compared to the majority of the blood DNA, with allele 

frequencies ranging from 0.1%-1%.  
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CHAPTER V 

MOUSE GLIOBLASTOMA GENOME SEQUENCING 

 

Cells must accumulate many mutations in order to acquire the hallmarks of 

cancer. In order to understand the evolutionary process of genome adaptation that these 

tumors undergo during malignant transformation, we must know which genes are 

mutated or altered during transformation. It is possible that there is a predictable 

sequence events leading to malignant transformation, and that certain early mutations are 

required for tumorigenesis. These early mutations, referred to as “driver mutations,” are 

very promising drug targets, as described in Chapter IV. Once identified, driver 

mutations can be screened for and treated in a rational manner, through the development 

of targeted drug therapies. Besides point mutations, tumors often contain many types of 

genetic alterations including small insertions and deletions, and large-scale alterations 

and rearrangements. Large scale rearrangements are difficult to detect with Next-

Generation Sequencing techniques, due to the short reads produced by the sequencers, the 

high error rate of the nucleotide sequence, and the high depth of coverage necessary to 

obtain the statistical power necessary to call a rearrangement [1,2]. 

The Mosaic Analysis with Double Markers (MADM) system in mice is a very 

useful tool for investigating early tumorigenesis and holds promise for the discovery of 

driver mutations [3]. MADM mice are engineered to lack tumor suppressor genes in a 

mosaic manner that resembles a natural loss-of-heterozygosity event in a human tumor. 

The tumors produced with the MADM system are superior to standard tumor suppressor 

knockout mice because the MADM system generates rare clonal tumors whose origins 
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more closely resemble human tumors. In addition, the MADM tumors can be identified 

by GFP expression. The GFP-labeled tumors can be dissected and studied with various 

techniques including DNA-Seq, RNA-Seq, immunohistochemistry, and flow cytometry. 

The work below describes the whole genome sequencing (WGS) of three such tumors 

dissected from mice engineered to lack functional p53 and Nf1genes in a small fraction 

of their neuroblasts, referred to as p53/Nf1 knockout (KO) MADM mice.  

 

 

Mosaic Analysis with Double Markers (MADM) Mouse Model of Glioblastoma 

 

The Mosaic Analysis with Double Markers (MADM) system allows for the 

creation of GFP-labeled mosaic tumors through simultaneous tumor suppressor deletion 

and GFP expression in rare mutant cells, generating realistic tumors that can be easily 

identified and studied. Because individual mutant cells are labeled, the MADM system 

allows for tumors to be analyzed in vivo at single-cell resolution. The mosaic double 

knockout of p53 and Nf1 has previously been shown to be an effective method of 

inducing glioblastomas in mice with high penetrance [3]. The p53/Nf1 KO MADM mice 

are engineered to contain the MADM p53/Nf1 cassette on chromosome 11. Upon 

tamoxifen injection, Cre is expressed in neuroblasts, leading to a small subset of cells 

undergoing sporadic inter-chromosomal mitotic recombination. The genomic 

rearrangement causes loss of heterozygosity (LOH) in the p53 and Nf1 genes, 

simultaneously with labeling of mutant cells, to generate uniquely identifiable 

homozygous mutant cells in a heterozygous background. These mice develop 
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glioblastoma with 100% penetrance and are an ideal mouse model for identifying early 

driver genes of glioblastoma. 

The MADM model has several advantages over traditional cancer models based 

on tumor suppressor deletion, allowing for more precise control of the in vivo tumor 

environment. GFP-labeling of tumor cells allows for cell lineage tracing throughout the 

metastatic process, while RFP-labeling of wild-type cells provides an internal control. 

Because MADM provides single-cell resolution, the initiation of tumorigenesis can be 

directly analyzed, making MADM an ideal system for discovering driver mutations of 

glioblastoma. 

In the p53/Kf1 KO MADM glioma model, p53 and Nf1 knockout alone is 

insufficient to cause malignant transformation. Typically only a small fraction of green 

(GFP-labeled) p53/Nf1 KO cells undergo malignant transformation. This observation 

provides support for the multi-hit hypothesis, which states that a cell must acquire several 

significant mutations for tumorigenesis to occur. Work in the Zong lab has shown that 

p53/Nf1 MADM knockout mouse neuroblasts do not transform into glioma cells until 

after they have become oligodendrocyte precursor cells (OPCs), implying that an 

important developmental step occurs in OPCs leading to glioma progression [4,5]. We 

sought to identify potential driver mutations of glioblastoma by sequencing advanced 

p53/Nf1 KO mouse gliomas and searching for mutations involved in OPC development 

and/or cell cycle regulation.  
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Mouse Glioblastoma DNA Sequencing 

 

The whole genomes of three gliomas from p53/Nf1 knockout MADM mice were 

sequenced at 4-6x average coverage with standard DNA-Seq, and aligned to the mm9 

mouse genome. Two of the tumors had matched nontumor samples that were also 

sequenced at 4-6x coverage (tumors 20641 and 20648). As expected, the tumor samples 

contained very few reads mapping to the deleted regions of the p53 and Nf1 genes. 

Sequencing reads mapping to exons 2-5 of the trp53 gene displayed on the Integrative 

Genomics Viewer (IGV) [6,7] are shown in Figure 5.1. The few wild type reads present 

in the knockout region are most likely due to immune and vessel cells in the tumor. 

Thousands of single nucleotide variants were identified in the tumor samples that 

were less frequent in the matched nontumor samples. The variants were assessed for 

predicted impact on protein function by the program SnpEff [8]. In tumor 20648, 16 

mutations were predicted to have a moderate functional impact in protein (Table 5.1). In 

tumor 20641, 18 mutations were predicted to have a moderate functional impact in 

protein (Table 5.2). However, none of the detected mutations in either tumor were known 

to be involved in OPC development, the cell-cycle, or any other frequently observed 

cancer processes. In addition, because of the low depth of coverage of the sequencing, it 

could not be ruled out that some variants may be strain-specific sequence variants that did 

not appear in the nontumor sequences due to statistical chance. Due to the lack of 

relevant point mutations discovered, the focus was switched to instead investigate large-

scale genome rearrangements. 
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Figure 5.1. Sequencing reads mapping to the p53 knockout regions of the glioblastoma 

MADM cassette on chromosome 11 of mouse genome mm10 for tumors 20641 and 

20648, and matched nontumor samples, using the Integrative Genome Viewer (IGV). The 

genomes of p53/Nf1 knockout MADM mice lack exons 2-4 of the gene Trp53 (p53). 

This is one of two specific regions lost due to homologous recombination of the MADM 

cassette in mouse neuroblasts.  

 

 

By plotting the coverage depth of the tumor genomes as a bigwig file on the 

UCSC genome browser [9,10], and scrolling through the genome in 10 megabase (Mb) 

sections, four large gene amplifications were identified in the three glioblastoma tumors. 

These amplifications were absent in the matched nontumor samples, which had low read 

coverage throughout the genome. Each tumor contained one or two large genome 

amplifications around a well-known cancer gene, as described below. Besides these four  
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Table 5.1. Tumor 20648 Mutations and allele frequencies in the nontumor and tumor 

genomes, aligned to mouse mm10 genome.  

 

 

Table 5.2. Tumor 20641 Mutations and allele frequencies in the nontumor and tumor 

genomes, aligned to mouse mm10 genome.  

 

large amplifications and the expected p53/Nf1 knockout, the tumor genomes were 

completely intact, with smooth and even coverage throughout the genome. Smaller 
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amplifications and deletions were present throughout the tumor genomes, but those were 

present in both the tumor and the matched nontumor samples.   

In tumor 20648, the smaller of the two tumors with matched nontumor tissue, a 

large, 400 kilobase (kb) amplification was discovered around the genes Ephb2 and Ephb8 

on chromosome 4 of the mouse genome, shown in Figure 5.2. Ephrins are a class of 

receptor tyrosine-kinases, cell-surface molecules involved in juxtacrine signaling. Ephb2 

is an ephrin receptor known to regulate glioma cell invasion [11,12]. Ephb2 and Ephb8 

are not normally expressed in OPCs. Aside from the large amplification around Ephb2, 

there are no other large amplifications or deletions in the entire genome. 

In tumor 20641, which was larger than tumor 20648, there were two separate 

large-scale amplifications, shown in Figures 5.3 and 5.4. Around the known glioblastoma 

oncogene MycN on chromosome 12, there was a 1.5 Mb amplification. There was also a 

6 Mb amplification around the gene Sox4 on chromosome 13, which is an important 

developmental gene for OPCs [13,14,15]. As in tumor 20648, aside from the two large 

amplifications, the tumor genomes are very intact and uniform, with even coverage 

throughout the genome.  

In the final tumor analyzed, which was sequenced previously without a matched 

nontumor sample, a 1 Mb amplification was discovered on chromosome 7. This genome 

amplification contained several genes, including Cd22, Nfkbid, and two Cox genes 

(Figure 5.5). 
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Figure 5.2. Sequencing reads that map to a 400kb region in chromosome 4 of mouse 

genome mm10 are ten times more abundant than reads mapping to other regions of the 

genome in tumor 20648. This 400kb region contains at least 5 genes, including Ephb2 

and Ephb8. http://genome.ucsc.edu.  

 

 

 

 

 

Figure 5.3. Sequencing reads that map to a 1.5Mb region in chromosome 12 of mouse 

genome mm10 are four times more abundant than reads mapping to other regions of the 

genome in tumor 20641. This amplified region contains the gene MycN, a known 

glioblastoma oncogene. http://genome.ucsc.edu.  
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Figure 5.4. Sequencing reads that map to a 6Mb region in chromosome 13 of mouse 

genome mm10 are five times more abundant than reads mapping to other regions of the 

genome in tumor 20648. This amplified region contains the gene Sox4, a known 

glioblastoma oncogene. http://genome.ucsc.edu.  

 

 

 

 

Figure 5.5. Sequencing reads that map to a 1Mb region in chromosome 7 of mouse 

genome mm10 are 500X more abundant than reads mapping to other regions of the 

genome. This amplified region contains the genes Cd22, Nfkbid, and many others. 

http://genome.ucsc.edu.  
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Discussion 

 

In the p53/Nf1 MADM glioblastoma mouse model, p53/Nf1 knockout alone is 

insufficient to cause malignant transformation. This suggests that additional mutations 

are required for the mutant cells to progress into a tumor, as predicted by the mulit-hit 

hypothesis [16]. The intertumor heterogeneity found in different brain tumor types may 

be caused by different somatic mutations or developmental origins, or a combination of 

both [17,18]. MADM-induced knockout of p53/Nf1 results in glioma only in OPC cells, 

suggesting that an important factor is expressed by OPCs that is required for malignant 

transformation, or that an important developmental switch exists within OPC cells that 

can lead to glioma when improperly activated. Another possibility is that specific 

mutations are sufficient to cause glioma, but only if they they occur in OPCs.  

Double-stranded DNA breaks and rearrangements are common in tumor genomes. 

Glioblastoma is known to have a higher incidence of chromothripsis, a large catastrophic 

genome rearrangement, compared to other tumor types [19]. However, not much is 

known about the extent of genome rearrangements in glioma tumors, as most studies of 

glioma heterogeneity focus on exome sequences or a few cancer genes [20,21]. The acute 

onset of typical glioma, and the higher incidence of chromothripsis suggest that genomic 

instability may be an important factor in glioma progression. In order to assess the 

genomic stability, whole genome tumor sequencing with matched nontumor samples is 

necessary to identify any large-scale chromosomal rearrangements not present in a wild-

type genome. 
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The three MADM glioblastoma tumors sequenced in this study were each found 

to contain one or two large genomic amplifications around known cancer oncogenes. 

Besides the large amplifications discovered, the tumor genomes were surprisingly intact, 

with smooth and even genome coverage throughout. Each tumor sequenced appears to 

have sustained its own independent genomic lesion near an oncogene, suggesting that 

double-stranded breaks are a common route to tumorigenesis in this type of mouse 

glioblastoma. These results imply that genomic instability leads to malignant 

transformation in glioblastoma, and that there are several possible genetic routes leading 

to tumorigenesis. The lack of genomic lesions around noncancerous genes appears to 

suggest that once an oncogenic amplification is introduced, it is quickly selected for by 

the tumor.  

Because the genome amplifications must have originated from double-stranded 

breaks, it is plausible that an upstream mutation exists which effects genome stability of 

OPCs. If there is indeed a SNP driving the genome amplification, it could be discovered 

by PELE-sequencing smaller tumors to higher depths of coverage, as described in 

Chapter IV. It is important to determine if such an upstream defect exists, as that would 

be a very attractive therapeutic target. However, it is possible that the genomic instability 

is simply due to random chance, in which case, the frequency of genomic amplifications 

in specific genes should be investigated with a larger sample size to uncover patterns of 

amplifications. A true understanding of the developmental and mutations origins of 

gliomagenesis will require a synthesis of the knowledge from developmental biology 

with our understanding of mutations and reorganizations that lead to malignant 

transformation.  
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CHAPTER VI 

CONCLUSION 

 

Next-Generation Sequencing (NGS) is a powerful tool that has revolutionized our 

understanding of genomic structure and variation for a diverse range of organisms. 

Unfortunately, NGS has some serious technical limitations due to the short sequencing 

read length and high nucleotide error rate produced by current NGS sequencing platforms 

such as Illumina. To address these issues, I have co-developed two new NGS techniques 

that improve current NGS genotyping and genome assembly, which are described in 

Chapters II and III. To improve genome assemblies resulting from short sequencing 

reads, local assembly of RAD-PE reads into contiguous sequences is employed to 

produce synthetic long reads for genome assembly, described in Chapter II. In order to 

improve the error rate of current NGS platforms, the Paired-End Low Error (PELE) 

Sequencing method was developed, which is a powerful method of sequencing rare 

genetic variants, described in Chapter III. Combined, these two new methods allow for 

the assessment of the total genetic potential of heterogeneous populations, including 

tumors, viral populations, microbiomes, and mixed pools of individuals, and for the 

understanding of the genomic architecture of various species.  

Tumor DNA sequencing is a technically challenging pursuit due to the highly 

heterogeneous nature of tumors which allows them to produce a wide range of different 

cell types with different genomes and different levels of aggressiveness. Biopsies often 

give an incomplete picture of the genetic capability of a tumor, especially for advanced 

tumors. The driver mutations of a tumor may exist in a rare “tumor stem cell” population 
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that is impossible to detect with standard NGS DNA Sequencing techniques. With PELE-

Seq it is now possible to know with certainty which rare variants are present in a tumor, 

which is crucial for an understanding of tumor initiation and progression. PELE-

Sequencing can also be used to detect tumor DNA in the blood of a cancer patient, as 

described in Chapter IV which described the PELE-Sequencing of the blood from a 

human osteosarcoma patient. With PELE-Seq, rare mutations below 1% were detected in 

the blood DNA that were predicted to impact protein function in known cancer genes. 

The Mosaic Analysis with Double Markers (MADM) mouse model of glioblastoma is an 

extremely useful tool for investigating early tumorigenesis, because it produces 

glioblastoma tumors in a mosaic manner that can be identified by green fluorescent 

protein (GFP) expression. By sequencing the whole genomes of three p53/Nf1 KO mouse 

glioblastomas, two of them with matched nontumorous DNA, each tumor was found to 

contain one or two large genomic amplifications not present in the wildtype mice. This 

work was described in Chapter V. The large genomic amplifications seem to have 

appeared quickly and suggest that double-stranded breaks in DNA are a common route of 

tumor evolution in mouse p53/Nf1 KO glioblastoma. 

Next-generation sequencing has opened the door to a new understanding of the 

variability and structure of living genomes. I have co-developed two new NGS methods 

that overcome the limitations of current NGS techniques: the short read length of the 

sequencing reads, and the high error of the nucleotide sequences generated. These 

techniques allow for much higher resolution when investigating genomic structure and 

variation, especially when sequencing heterogeneous populations of cells, such as 

tumors. It is now possible to know with certainty the number of polymorphisms present 
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in a genome, and to produce more complete genome assemblies using short sequencing 

reads. With these new tools to accurately assess genomes, there is much work to be done 

in order to uncover a functional understanding of living genomes. 
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