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ABSTRACT OF THESIS 
 
 
 
 

DRUG RELEASE AND PHARMACOKINETIC PROPERTIES  

OF LIPOSOMAL DB-67  

 

 
Sterically stabilized liposomes with saturated lipid as the major lipid component (DSPC:m-PEG-
DSPE 95:5 mole%) were applied in DB-67 delivery.  The drug retention in vitro and pharmaco-
kinetic properties in vivo were investigated. Liposomal DB-67 was cleared faster from the circu-
lation in the larger liposomes (~180 nm) than in the smaller ones (~120 nm), even though DB-67 
was retained longer in smaller size liposomes in vitro. Liposomal DB-67 clearance was increased 
when cholesterol was present in the liposomal composition (40 mole %). It can be attributable to 
the faster drug release from cholesterol containing liposomes as compared to liposomes without 
cholesterol. Cholesterol free liposomes with smaller particle size (~120 nm) were chosen as the 
optimal formulation. In addition, high lipid doses led to the lower clearance of liposomal DB-67 
because the liposomal carriers were retained in the circulation longer. Liposomes of larger par-
ticle size were taken up by the liver and spleen to a greater extent than the smaller ones. But cho-
lesterol content and lipid dose did not alter the tissue uptake of liposomes. The area under the 
DB-67 plasma concentration-time curve (AUC) for liposomal DB-67 was 40-fold higher that for 
non-liposomal DB-67. 
 

KEYWORDS: Liposomes; DB-67; Pharmacokinetics; Cholesterol; Biodistribution 
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Chapter One    Statement of Aims 

The objective of this thesis is to characterize the drug release and the pharmacokinetic properties 

of a liposomal formulation of the camptothecin analogue  DB-67.  It has been shown that DB-67 

has potent anti-tumor activity in vitro and in vivo [Bence et al. 2004; Bom et al. 2000; Bom et al. 

2001; Burke and Bom 2000; Lopez-Barcons et al. 2004; Pollack et al. 1999]. It is superior to oth-

er camptothecins in that it demonstrates relatively higher lactone stability than other analogues in 

plasma due to the decreased association of carboxylate with human serum albumin (HSA) and the 

increased lipid membrane partitioning. However, because of the rapid elimination of DB-67 (eli-

mination half-life 1.4 hr for human)[Arnold et al. 2010], it requires frequent administration to 

maintain efficacious drug concentrations within the plasma. In vitro studies have demonstrated 

that liposomal formulations have the advantage of extending the elimination half-life of the active 

agent, minimizing the toxicities and enhancing efficacy. For example, liposomal formulations of 

doxorubicin and daunorubicin have prolonged plasma half-lives and improved tumor site specific 

accumulation as compared to non-liposomal formulations [Boiardi et al. 1999; Forssen et al. 

1996; Hussein 2003; Muggia 1997; Vorobiof et al. 2003; Ying et al. 2009]. Unfortunately, pre-

vious attempts to develop liposomal formulations of DB-67 were not successful because they did 

not demonstrate improved pharmacokinetics [Zamboni et al. 2008].  The goal of this thesis is to 

characterize the drug release and pharmacokinetics of a sterically stabilized liposomal formula-

tion of DB-67 and to investigate the factors influencing the drug release and pharmacokinetics. 

The following specific aims were explored as part of this work.  

a) Characterize cholesterol content, particle size, and drug-to-lipid ratio effects on DB-67 

release rate from liposomes in vitro with a dynamic dialysis model. 

b) Determine cholesterol content and particle size effects on the pharmacokinetics of lipo-

somal DB-67 in vivo. 

c) Investigate the lipid dose effect on the pharmacokinetics of liposomal DB-67 and deter-

mine the proper lipid dose to be used in the future development.   

d) Evaluate the effects of cholesterol content, particle size and lipid dose on the reticuloen-

dothelium system (RES) uptake of DB-67 loaded liposomes in vivo.  
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Chapter Two    Introduction 

I. Liposomes as Drug Delivery Systems  

Liposomes are one of the most tested and versatile systems among all the lipid-based nanotech-

nologies for drug delivery. They are composed of lipid bilayers enclosing an aqueous core in the 

center (see Figure 2.1). Drugs can be either loaded into the aqueous core or bound to the lipids 

within the membrane. In either case, the lipid bilayer serves as a barrier preventing drugs from 

being released. The sizes of liposomes range from 1 µm for multilamellar vesicles (MLV) to 4-8 

nm for very small particles[Mayer et al. 1989]. Since the liposomes in clinical use have an aver-

age size of 50 to 200 nm, liposomes are commonly referred to as nanoparticles.   

 

Based on their composition, liposomes are generally classified as either conventional or sterically 

stabilized liposomes, also known as “stealth” liposomes (See Figure 2.1). Conventional liposomes 

are composed of simple lipid bilayers typically possessing high phosphatidylcholine (PC) and 

cholesterol (Chol) content. Sterically stabilized liposomes or “stealth” liposomes are lipid bilayers 

coated with either a ganglioside GM1 or synthetic neutral polymer polyethylene glycol (PEG) 

[Allen et al. 2006; Allen and Chonn 1987]. This coating stabilizes the liposomes by reducing the 

binding of serum opsonins, as well as by minimizing their interaction with the reticuloendothe-

lium system (RES) [Allen and Hansen 1991; Huang et al. 1992; Lasic et al. 1991]. Therefore, the 

“stealth” liposomes stay in the circulation for an extended period of time.  

 

Liposomes have been successfully used in the delivery of anti-cancer agents, and liposomal for-

mulations of doxorubicin (Myocet, Doxil) and daunorubicin (DaunoXome) have been approved 

by the Food and Drug Administration (FDA) for clinical use. Developing liposomal formulations 

for anti-cancer agents holds great interest in research because they have certain advantages. 

Firstly, liposomes may serve as a sustained drug release system [Drummond et al. 2008], which 

results in prolonged elimination half-life of the active agent. Anti-tumor drugs are cell-cycle de-

pendent and they require continuous administration to exert the maximum anti-tumor effect [Bur-

ris et al. 1992; Georgiadis et al. 1997; Gomi et al. 1992; Johnston et al. 2006]. The extended eli-

mination half-life provided by liposomal formulation may lead to a decrease in the frequency and 

length of drug administration [Kim et al. 2001; Kirpotin et al. 2006]. Secondly, liposomes in-

crease site-specific accumulation of anti-cancer agents at tumor tissues [Drummond et al. 2008].  

Most normal tissues have fenestrated vasculature [Lum and Malik 1994], but the accumulation of 

drug loaded liposomes in these tissues is minimal because the pore size is smaller than most lipo-

somes. In contrast, the fast growing nature of tumors results in disorganized vascular endothelium 
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with larger fenestrations, which leads to the increased extravasation of liposomes at the tumor 

sites. This effect is often referred to as the enhanced permeability and retention (EPR) effect 

[Matsumura and Maeda 1986].  Usually, significantly reduced volume of distribution and im-

proved therapeutic index are achieved in liposomal delivery systems [Messerer et al. 2004; Wa-

terhouse et al. 2001]. All the above advantages rely on the extended elimination half-life of the 

liposomal drug. To obtain it, we need to understand the elimination process of the liposomal drug, 

which not only depends on the drug itself, but also depends on the clearance of the liposomal car-

rier from the circulation, and the release rate of the entrapped drug from the liposomal carrier 

[Drummond et al. 2008]. In the development of a new liposomal formulation, the last two 

processes have to be taken into account in order to achieve the maximum benefit. The following 

sections will discuss the factors that influence these two rates. 

 

II. Factors Influencing Liposomal Pharmacokinetics  

The physicochemical properties of the liposomal carrier, lipid dose, dosing schedule, route of 

administration, and the drug that is encapsulated affect the pharmacokinetics of the liposomal 

carrier [Drummond et al. 1999]. In the context of this work, we focus on cholesterol content, par-

ticle size, and lipid dose given that they can influence loading and release of the lipophilic DB-67 

from liposomes.  

 

Inclusion of cholesterol in the liposomal composition leads to a decrease in liposomal clearance 

and an increase in liposomal elimination half-life. An inverse relationship was observed between 

the percentage of incorporated cholesterol and the liposome plasma clearance [Semple et al. 

1996]. In most cases, over 33% (molar ratio) of cholesterol is used to maintain sufficiently long 

half-lives of liposomes in the blood.  

 

Increasing of liposomal particle size results in an increase of liposomal clearance from the circu-

lation [Klibanov et al. 1991; Litzinger et al. 1994]. When the diameter of the liposomal particle is 

larger than 200 nm, the blood clearance is dramatically increased and about 81% of injected lipid 

dose is taken up into the RES at 5 hr after intravenous injection [Klibanov et al. 1991]. It is wide-

ly accepted that liposomes with the diameter of 100 to 200 nm have the greatest level of tumor 

accumulation [Charrois and Allen 2003; Ishida et al. 1999; Mayer et al. 1989; Nagayasu et al. 

1999].  
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The effect of lipid dose on the pharmacokinetics of liposomes is dependent on lipid composition 

in that conventional liposomes typically display saturable nonlinear pharmacokinetics, whereas 

sterically stabilized liposomes demonstrate linear pharmacokinetics over a wide range of doses 

[Allen et al. 2006; Allen and Hansen 1991]. For instance, in liposomes composed of egg phospha-

tidylcholine and cholesterol (PC:Chol 2:1), the lipid elimination half-life increased from 6.9 to 

13.0 hr as the lipid dose was increased from 2.0 to 10.0 µmol/mouse [Allen and Hansen 1991]. It 

is worth noting that all the above observations are from blank liposomes. The pharmacokinetics 

of liposomes may be altered when the active drug is encapsulated. For a specific liposome sys-

tem, one has to examine the effect of each factor on the pharmacokinetics of drug associated lipo-

somes to optimize it for clinical development. 
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Figure 2. 1 Structure of conventional and sterically-stabilized liposome [Drummond et al. 1999]. 
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III. Factors Influencing Drug Release Rate from Liposomes 

The most important factors influencing drug release rate from liposomes are the drug loading me-

thod, as well as the physicochemical properties of the lipid membrane and the entrapped thera-

peutic agent. In the scope of this thesis we are interested in cholesterol content and drug-to-lipid 

ratio. 

 

The effect of cholesterol content on drug release from liposomes demonstrates a drug-dependent 

manner.  Cholesterol incorporation led to an increases of the retention of ara-C [Mayhew et al. 

1979] and doxorubicin [Mayer et al. 1985]. However, in a study by Dos Santos et al., inclusion of 

cholesterol (45 mole %) dramatically increased the release of idarubicin from liposomes, as dem-

onstrated by a 15-fold higher idarubicin concentration remained in the plasma at 2 hr post dosing 

when cholesterol free liposomes were administered as compared to cholesterol containing lipo-

somes [Dos Santos et al. 2002].  

 

Interestingly, the effect of drug-to-lipid ratio on drug release is also dependent on the specific 

drug entrapped. In the case of doxorubicin, higher drug-to-lipid ratio resulted in decreased drug 

retention half-life [Mayer et al. 1990]. In contrast, vincristine and irinotecan were retained longer 

in liposomes with higher drug-to-lipid ratio [Johnston et al. 2006], corresponding to increases in 

release half-life of more than 10-fold as drug-to-lipid ratio was increased from 0.05 to 0.6 (w:w). 

The complexities of these effects further emphasize the necessity of using drug loaded liposomes, 

not only the blank ones, to investigate the effects of factors influencing pharmacokinetics of the 

formulation.  

 

IV. Camptothecin and its Application in Chemotherapy 

Camptothecin was first isolated from the bark of the Chinese tree, Camptotheca acuminate 

[Pommier 2006]. Despite potent anti-tumor efficacy in vitro, the clinical development of campto-

thecin was halted due to toxicities including diarrhea, neutropenia, thrombocytopenia, hemorr-

hagic cystitis and leukopenia [Muggia and Burris 1994].  Biochemical studies demonstrated that 

camptothecin exerts its pharmacological effect via interaction with the nuclear enzyme, Topoiso-

merase I (Topo I) [Eng et al. 1988; Hsiang et al. 1985]. During cell replication and transcription, 

Topo I relaxes supercoiled DNA. In this process, Topo I binds to double stranded supercoiled 

DNA, nicking one of the strands, which enables the rotation of the intact DNA strand around the 

break and facilitates DNA relaxation [Eng et al. 1988]. Subsequently, Topo I religates the nicked 

DNA and moves to the next coiled DNA segment. Thus, under normal conditions, the single 
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strand DNA break is transient. However, when camptothecin or its analogues are present, the 

drug interacts with the Topo I/DNA complex and inhibits the religation step. Ultimately, some 

single stand DNA breaks are converted to double strand breaks when additional enzymes and pro-

teins, comprising the replication machinery, collide with the Topo I/DNA/camptothecin complex. 

These double strand breaks can lead the cell into apoptosis and cell death [Eng et al. 1988]. This 

mode of action indicates that camptothecins are primarily S-phase specific drugs and that their 

cytotoxic effect depends on active DNA replication or transcription. Generally, tumor tissues 

have more cells undergoing replication, so they are more susceptible to camptothecin than most 

normal tissues.  

 

Camptothecin undergoes a reversible hydrolysis of the α-hydroxy-δ-lactone ring to form campto-

thecin carboxylate and the process is pH-dependant (Figure2.2 A). Early in vitro studies demon-

strated that the pharmacologic activity of camptothecin was greater when the drug was in the lac-

tone form. In vivo, the stability of lactone was further compromised by the affinity of the carbox-

ylate moiety for plasma albumin. In contrast to this, the toxicity experienced by patients receiving 

the sodium carboxylate demonstrated that the in vivo activity may be due to the conversion of the 

carboxylate back to the lactone form, which is likely a tissue dependent dynamic process. Thus, 

the unpredictable stability of camptothecin molecule, coupled with the prevalent toxicities led 

researchers to develop analogues with greater lactone stability and potentially more predictable 

efficacy and toxicities.  

Currently only two camptothecin derivatives, topotecan (Hycamtin®) and irinotecan (also known 

as CPT-11, Camptosar®), have been approved by the FDA for clinical use (Figure 2.2 B). Topo-

tecan was approved first to treat ovarian cancer in 1996, then later for treatment of cervical cancer 

and small cell lung cancer. It has significantly higher solubility in the lactone form than campto-

thecin because of the ethyldimethylamino substitution on the B-ring [Dancey and Eisenhauer 

1996; Pommier 2006]. In addition, structural studies investigating the interaction of topotecan 

with Topo I have demonstrated that its carboxylate form is also present in the Topo 

I/DNA/topotecan complex suggesting that the inactivity of camptothecin carboxylate shown in 

biochemical studies may not necessarily apply to its analogues. In 1996, irinotecan was approved 

to treat metastasized colorectal cancer or recurring colorectal cancer [Pommier et al. 1998]. It is a 

prodrug and is activated by carboxylesterases to SN-38 in plasma and tissues. This active metabo-

lite is 1000-fold more potent than the parent compound, irinotecan [Garcia-Carbonero and Supko 

2002].  

http://en.wikipedia.org/wiki/Ovarian_cancer�
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46283&version=Patient&language=English�
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=444983&version=Patient&language=English�
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45862&version=Patient&language=English�
http://en.wikipedia.org/wiki/SN-38�
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Burke and Bom synthesized a dual 7, 10 – modified camptothecin, 7-t-butyldimethylsilyl-10-

hydroxy camptothecin (DB-67), which showed increased human blood stability and potent anti-

tumor activity (Figure 2.2 C) [Bom et al. 1999; Bom et al. 2000; Bom et al. 2001]. In vitro studies 

investigating the hydrolysis of DB-67 in plasma showed that over 30% of lactone form remains at 

equilibrium. This is significantly higher than topotecan (~12%) and irinotecan (~21%) [Bom et al. 

2001] and has been attributed to the 7 position alkylsilyl group substitution. This structural mod-

ification renders DB-67 25- to 50-fold more lipophilic than camptothecin, 100 times more lipo-

philic than topotecan and about 15 times more lipophilic than SN-38 [Bom et al. 2001]. The high 

lipophilicity facilitates lactone partitioning into red blood cells, which also prevents hydrolysis. In 

addition, the 7 and 10 position dual-substitution reduces the binding of DB-67 carboxylate to 

HSA, so that more lactone is retained in the plasma [Burke and Bom 2000]. 

In vitro cytotoxicity assays, using cell lines from eight distinct tumor types, showed that DB-67 

had comparable potency as irinotecan and topotecan [Bom et al. 2001]. Preclinical studies in mice 

demonstrated that DB-67 was very potent in tumor inhibition [Burke and Bom 2000; Lopez-

Barcons et al. 2004; Pollack et al. 1999]. When DB-67 was administrated as lactone or carbox-

ylate form, approximately 80% or 50% of the drug was in the lactone form at 1 hr post injection, 

respectively [Adane et al. 2010]. When mouse subcutaneous xenograft models (U87 malignant 

glioma cell line) were treated with 3 or 10 mg/kg/day DB-67 subcutaneously for 5 consecutive 

days in a 21-day cycle, the treatment groups had a significant delay in tumor growth as compared 

to control group at 28 days after implantation [Pollack et al. 1999]. Collectively the in vivo sta-

bility and efficacy studies demonstrated that this agent warranted clinical testing.   

 

Currently, DB-67 is undergoing Phase I and II clinical trials for the treatment of refractory or me-

tastatic solid malignancies and myelodysplastic syndrome. The first in human phase I study of 

DB-67 showed that this agent was well tolerated and patients receiving a daily intravenous dose 

for five consecutive days experienced dose dependent hematologic toxicities that were typically 

resolved within a 21-day dosing cycle. Interestingly, these patients did not experience diarrhea, 

which is typical with other camptothecin analogues [Arnold et al. 2010]. Although the current 

intravenous formulation of DB-67 allows its further clinical development, the need to administer 

camptothecins in a protracted dosing schedule points to the need for an alternative formulation 

that may augment efficacy by increasing drug localization in the tumor while minimizing system-

ic toxicities. 
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Figure 2. 2 The chemical structures of camptothecin and its derivatives.  
(A) Chemical structures of camptothecin lactone and carboxylate. The two forms interconvert in a 
pH-dependent manner [Pommier 2006]. (B) The two FDA approved camptothecin derivatives, 
topotecan and irinotecan. Irinotecan has to be hydrolyzed to yield its active metabolite SN-38 
[Pommier 2006]. (C) Chemical structures of DB-67 lactone and carboxylate. The two forms in-
terconvert in a pH-dependent manner [Adane et al. 2010]. 
  

A 

B 

C 
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V. Development of  Liposomal DB-67 Formulation 

We proposed to apply liposomal formulation for DB-67 delivery because:  1) liposomal formula-

tion prolongs the circulation lifetime of the active drug [Allen et al. 1995] thus decreasing the 

required frequency or length of drug administration, 2) liposomal formulation acts as a sustained 

release system, which mimics the protracted dosing regimen for cancer treatment and leads to the 

enhanced anti-tumor efficacy [Drummond et al. 2008]. An in vivo efficacy study demonstrated 

that the protracted dosing of DB-67 yielded significantly improved survival fraction in a mouse 

subcutaneous xenograft model using H460 non-small cell lung cancer cell line (Adane and Leg-

gas, unpublished data). Tumor bearing mice were treated with the DB-67 maximum tolerance 

dose (MTD, 7.5 mg/kg daily intravenous dose for five consecutive days in a twenty-one day 

cycle) or protracted dose (either 3.75 mg/kg daily intravenous dose for ten consecutive days or 

2.5 mg/kg daily intravenous dose for fifteen consecutive days in a 21-day cycle). After one cycle 

of treatment, two out of ten mice survived in MTD group in comparison with six or eight out of 

ten mice survived in the protracted dosing groups. However, the administration of multiple doses 

to cancer patients is not ideal as the disease compromises their overall health. Therefore, the ulti-

mate goal of this work is to utilize liposomes in the DB-67 delivery to render the potent anti-

cancer agent more efficacious in the tumor sites and less toxic in the normal tissues.  

So far, liposome formulations for DB-67 delivery have been investigated in conventional lipo-

somes and sterically stabilized liposomes, however, neither one of them achieved extended elimi-

nation half-life of DB-67 [Lopez-Barcons et al. 2004; Zamboni et al. 2008]. 1,2-dimyristoyl-sn-

glycerol-3-phosoho-sn-1-glyercol (DMPC) and 1,2-dimyristoyl-sn-glycerol-3-phospho-sn-1-

glyercol (DMPG) (DMPC:DMPG 7:3, mol/mol) were applied as the major components of these 

liposomes. Upon its injection into mice, DB-67 was immediately released from the liposomes and 

the liposomes only acted as an intravenous vehicle, instead of a drug carrier [Lopez-Barcons et al. 

2004; Zamboni et al. 2008]. Joguparthi and Anderson proposed to use “stealth” liposomes (stabi-

lized with PEG) with highly saturated lipid (1, 2-distearoyl-sn-glycero-3-phosphatidylcholine, 

DSPC) as the major component (DSPC:m-PEG-DSPE 95:5 mole %) to develop liposomal formu-

lation of DB-67 [Joguparthi and Anderson 2008]. In the study, DB-67 was loaded into liposomes 

as carboxylate (pH 9.5) and the formulation showed a prolonged drug retention half-life of 

13.5±2.7 hr in plasma [Joguparthi and Anderson 2008]. Despite the promising retention half-life 

in vitro, pharmacokinetic studies with this formulation showed that the clearance of the vesicles 

was rapid and the release of DB-67 from the liposomes was estimated to be more rapid [Jogupar-

thi et al. 2008a]. The purpose of this thesis is to investigate the factors influencing drug release 
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and pharmacokinetics of the sterically stabilized liposomal formulation of DB-67. Ultimately, 

improved anti-cancer efficacy and minimized toxicities are anticipated by controlling the factors 

appropriately. 

In the following studies, we first explored the effect of cholesterol content, particle size and drug-

to-lipid ratio on DB-67 release in vitro. Subsequently, by using a 2 × 2 factorial experimental de-

sign, we determined the effect of cholesterol content (40 vs. 0 mole %) and particle size (~180 vs. 

~120 nm) on the pharmacokinetics of liposomal DB-67 in vivo. Then, we investigated the effect 

of lipid dose on the pharmacokinetics of liposomal DB-67. Finally, the RES uptake of DB-67 

loaded liposomes was determined and the mechanisms driving the effect of each factor were also 

discussed.  
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Chapter Three   Materials and Methods 

I. Materials  

DB-67 was provided by Novartis Pharmaceuticals Corporation (East Hanover, NJ). Dialysis tubes 

(Float-A-Lyzer, MWCO:100KD) were obtained from Spectrum Laboratories (Rancho Domin-

guez, CA). Phospholipids 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC, >99% purity) 

and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-polyethylene glycol 2000] 

(m-PEG DSPE, MW = 2806, >99% purity) were purchased from Avanti Polar Lipids (Alabaster, 

AL). Polycarbonate membranes (pore size of 0.1 µm or 0.2 µm, thickness of 25 mm) were pur-

chased from GE water & Process Technologies (Trevose, PA).  Heparin (heparin sodium 1000 

IU) was obtained from Baxter (Deer Field, IL). Cholesteryl hexadecyl ether ([Cholesteryl-1,2-
3H(N)]-, >97%, 250 µCi (9.25 MBq), [3H]-CHE) was purchased from PerkinElmer (Waltham, 

MA). AquaSilTM siliconizing reagent was obtained from Pierce (Rockford, IL). TS-2 TM tissue 

solubilizer was obtained from Research Products International Corp. (Mount Prospect, IL). All 

the other reagents were purchased from Fisher Scientific (Fair Lawn, NJ).  

II. Preparation of Liposomes 

Two types of lipid composition were used in the present study, cholesterol free (DSPC:m-PEG 

DSPE 95:5 mole %) and cholesterol containing (DSPC:m-PEG DSPE:cholesterol 55:5:40 mole 

%). Certain amount of the lipids, DSPC, m-PEG DSPE, and cholesterol were weighed and dis-

solved in chloroform, and then distributed in test tubes. The stock total lipid concentration was 60 

mg/ml for the in vitro experiments, 20 mg/ml or 60 mg/kg for the in vivo studies depending on 

the lipid doses used (60 mg/kg for lipid dose of 704 mg/kg, and 20 mg/kg for the lipid doses of 64 

mg/kg or ~250 mg/kg). To determine the lipid concentration, trace amount of [3H]-CHE was add-

ed to the lipid solution (20 µl of [3H]-CHE (20 µCi) was added to 6 ml of the lipid chloroform 

solution). The organic solvent was evaporated under a stream of nitrogen and a thin film of lipid 

was formed inside of the test tubes. The tubes were vacuum-dried overnight at 40°C to remove 

any residual organic solvent.  The dried lipid film was hydrated with DB-67 solution (pH 9.5, 298 

mOsm) at 60°C in a water bath with vigorous shaking to obtain a lipid suspension. The DB-67 

solution was prepared by dissolving DB-67 powder in 85 mM sodium carbonate buffer (pH 11) 

followed by stirring for 2 to 3 hr until a clear solution was obtained. The pH of the solution was 

adjusted to 9.5 with hydrochloric acid (HCl, 1M). DB-67 concentration of the solution was 2 mM 

and 20 mM for the drug-to-lipid ratios of 0.03 and 0.3 (w:w), respectively, in the in vitro experi-

ments. DB-67 concentration was 0.67 mM and 2 mM for the lipid concentration of 20 and 60 

mg/ml, respectively, to keep the drug-to-lipid ratio constant (0.03 w:w) in the in vivo studies. The 

lipid suspension was extruded through two stacked polycarbonate membranes (pore size of 100 
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nm or 200 nm) ten times with an extrusion device (Liposofast®, Avestin, Ontario, Canada) at 

60°C. Following preparation, liposomes were cooled to room temperature for 3 hr. Then they 

were stored at 4°C until the experiments were conducted. Formulations used for pharmacokinetic 

studies were prepared the day before the experiment and dialyzed against 2 L of 85 mM sodium 

carbonate buffer at 37°C (pH 9.5, 298 mOsm) for 12 hr to remove free DB-67. Dialyzed lipo-

somes were used within 24 -28 hr.  

III. Characterization of Liposomes 

Liposomal particle size was determined by dynamic light scattering (DSL, Delsa TM Nano C Par-

ticle Analyzer, Beckman Coulter, Center Valley, PA). Liposomes prepared from polycarbonate 

membrane with pore size of 100 nm ranged from 103 to 121 nm and liposomes prepared from 

200 nm polycarbonate membrane ranged from 167 to 187 nm in diameter. Osmolality was deter-

mined by the freezing point detection using a Fiske One-Ten Osmometer (Fiske Associates, Nor-

wood, MA). 

IV. In vitro Drug Release Experiment 

Drug release rates from liposomes were determined through a dynamic dialysis procedure de-

scribed previously [Joguparthi et al. 2008b]. Briefly, after liposomes were prepared by the hydra-

tion-extrusion method described above, DB-67 loaded liposome suspension was transferred into a 

dialysis tube. The dialysis tube (Float-A-Lyzer, MWCO:100KD, 5 ml, Spectrum Laboratories, 

Rancho Dominguez, CA) was preconditioned in deionized water for 15 min and then in dialysis 

buffer (described below) for 30 min. Subsequently, the liposomes containing dialysis tube was 

dialyzed against 2 L of 85 mM sodium carbonate buffer at 37°C (pH 9.5, 298 mOsm) for 12 hr to 

remove free DB-67. Following dialysis, the liposome suspension was transferred to another pre-

conditioned dialysis tube and dialyzed against 2 L of carbonated phosphate buffered saline (C-

PBS, pH 7.4, 298 mOsm) at 37°C for 24 hr. C-PBS buffer was prepared by adding 24 mM so-

dium carbonate buffer to phosphate buffered saline (PBS). At 1, 2, 3, 5, 9, 13 and 24 hr, 20 µl of 

sample was taken from inside of the dialysis tube and diluted into 980 µl cold (-20°C) metha-

nol:acetonitrile (2:1, v/v) and stored at -20°C until HPLC analysis. 

V. Pharmacokinetic Experiments 

Cholesterol free and cholesterol containing formulations of liposomal DB-67 were prepared and 

dialyzed with the method described above. Non-liposomal DB-67 formulation was DB-67 lactone 

with β-cyclodextrin sulfobutyl ether (SBE-CD, Captisol®) as excipient. All animal experiments 

were approved by the University of Kentucky Institutional Animal Care and Use Committee. Fe-

male C57/BL6 mice weighing from 23-31 g (Harlan, Indianapolis, IN) were used in the in vivo 

experiments. All mice were obtained at least 2 weeks prior to use and maintained within a con-
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trolled temperature (22±1°C) and humidity (60±10%) environment. We used sparse sampling in 

the pharmacokinetic experiment. A total of 9 mice were used in each experiment, and they were 

randomly selected into 3 small groups with 3 mice within each group. Liposomal DB-67 was ad-

ministered intravenously in the lateral tail vain and blood (90 µl) was collected through the sa-

phenous vein in a hematocrit capillary tube (Fisher Scientific, Fair Lawn, NJ) at 0.087, 0.5, 1, 1.5, 

3, 6, 12, 24 and 36 hr (the detailed dosing and sampling time information is shown below in Ta-

ble 3.1. The targeted lipid dose in the factorial experiment (investigating the cholesterol and par-

ticle size effects on lipid clearance) was 250 mg/kg, and the targeted low and high lipid doses in 

the dose escalation study were 60 and 700 mg/kg, respectively (see Table 4.5 for the specific dos-

es used in each experiment). The injection volume was proportional with body weight (grams of 

body weight ×10 µl per mouse). After collection, the blood was explelled into a pre-heparinized 

and siliconized 1.5-ml micro-centrifuge tube, then kept on ice. The whole blood was centrifuged 

at 8,500 g for 3 min to separate the plasma. An aliquot of the plasma (20 μl) was transferred into 

a scintillation vial for counting in order to determine the lipid content. Another aliquot of plasma 

(30 μl) was transferred to a 1.5 ml amber siliconized micro-centrifuge tube (Crystalgen Inc., 

Plainview, NY) which contained 120 µl of cold methanol (-80°C). After shaking vigorously for 

10 sec, it was again centrifuged at 8,500 g for 3 min. The supernatant was transferred into another 

1.5 ml amber siliconized micro-centrifuge tube to be stored at -80°C until HPLC analysis. At 12, 

24, and 36 hr after the injection of liposomal DB-67, the mice were anesthetized and then bled by 

cardiac puncture. Livers and spleens were collected, blot dried, weighed, and wrapped in alumi-

num foil prior to being snap frozen in liquid nitrogen. The tissues were stored in -20°C until scin-

tillation counting to determine the lipid content. Non-liposomal DB-67 (1.0 mg/kg) was adminis-

tered to a group of mice intravenously. Blood (50 µl) was collected and processed as indicated 

above at 0.087, 0.5, 0.75, 1.5, 3 and 6 hr post injection.  
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Table 3. 1 The dosing and sampling time of mice in pharmacokinetic experiment*.  

Group # Sampling Time Injection Day 

Group 1 1 h 3 h 36 h Day 1 

Group 2 30 min 6 h 24 h Day 1 

Group 3 5 mim 1.5 h 12 h Day 2 
*Sparse sampling was used in the pharmacokinetic experiment. A total of 9 mice were randomly 
selected into 3 small groups with 3 mice within each group. Liposomal DB-67 was administered 
intravenously in the lateral tail vain and blood was collected through the saphenous vein at 0.087, 
0.5, 1, 1.5, 3, 6, 12, 24 and 36 hr post injection. The experiment was completed in two consecu-
tive days with group 1 and 2 injected on Day 1 and group 3 injected on Day 2. 
 
  



16 

 

VI. HPLC Analysis 

DB-67 lactone and carboxylate plasma concentrations were quantified by an HPLC method as 

described previously [Horn et al. 2006]. A Shimadzu HPLC system (Shimadzu Inc., Atlanta, GA) 

controlled by Class-VP integrating software (Version 7.4) was used for the analysis. The system 

consisted of an in-line degasser (DGU-14A), a LC-10AD VP pump, a  refrigerated autoinjector 

(Shimadzu SIL-10AD VP) with rack temperature at 4°C, and a fluorescence detector (RF-10XL) 

set at 380 nm (excitation wavelength) and 560 nm (emission wavelength). A reversed-phase C18 

analytical column (Waters Nova-Pak C18 4μm; 3.9 x 150 mm) fitted with a guard column (Wa-

ters Nova-Pak C18 4μm; 3.9 x 20 mm) was used to separate analytes. The retention time was 3.2 

min for DB-67 carboxylate and 9.8 min for lactone. The mobile phase consisted of 0.15 M am-

monium acetate (NH4OAc) containing 10 mM tetrabutylammonium dihydrogenphosphate 

(TBAP, pH 6.5) and acetonitrile (65:35, v/v). The flow rate was 1 ml/min and the total run time 

was 12 min. The extracted plasma samples were diluted with an equivalent volume (40 µl) of 

mobile phase buffer prior to injection and samples were injected within 6 hr of preparation to 

prevent the inter-conversion between lactone and carboxylate. Calibration curves were linear in 

the range of 2.5-100 ng/ml for carboxylate and 5-300 ng/ml for lactone.  

 

Samples from in vitro drug release experiments were analyzed with the same HPLC system. DB-

67 carboxylate and lactone standards were prepared in an ice cold mixture of organic solvent 

(methanol:acetonitrile 2:1; v/v) with the lipid (DSPC) concentration of 60 µg/ml. Linear calibra-

tion curves ranged 10 – 5000 ng/ml for both carboxylate and lactone (with the detector at low 

sensitivity setting). In all cases, the samples were diluted with an equivalent volume (40 µl) of 

mobile phase buffer prior to a 50 μl injection. Injections were within 6 hr of preparation. 

 

VII. Lipid Content Analysis in Plasma and Tissues 

a. Sample preparation  

To analyze the lipid concentration in plasma, 20 µl of plasma was transferred into a scintillation 

vial, and subsequently acidified with 40 µl of glacial acetic acid (Fisher Scientific, Pittsburgh, 

PA). Ten ml of Bio-Safe II™ scintillation cocktail (Research Products International Corp., Mount 

Prospect, IL) was added to each sample and kept in dark at room temperature for 15 min before 

scintillation counting. To analyze the lipid amount in tissues, about 100 mg of liver or the whole 

spleen were weighed and placed into a 25 ml scintillation vial. Tissues were solubilized with 1 ml 

of TS-2 TM tissue solubilizer (Research Products International Corp., Mount Prospect, IL) and di-

gested at 50°C until the tissues were completely dissolved. Then, the tissue samples were decolo-
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rized with 200 µl of 30% H2O2 (Fisher Scientific, Fair Lawn, NJ), and 40 µl of glacial acetic acid 

were added to eliminate chemiluminescence. Ten ml of Bio-Safe II™ scintillation cocktail was 

added to each sample and kept in dark at room temperature for 15 min before scintillation count-

ing. 

b. Scintillation counting 

Radioactivity of each sample was measured with a scintillation counter (CARB® 2200CA, Pack-

ard Instrument Co., Downer Grove, IL). The lipid concentrations in plasma and tissues were cal-

culated based on the radioactivity as described below.  

c. Methods for estimating lipid concentration 

The radioactivity measured by scintillation counting was given in DPM, and the lipid concentra-
tion and the percentage of injected lipid dose was calculated based on equations shown below. 

1. Radioactivity in the plasma or tissues was converted from DPM to µCi based on Equa-
tion 1. 

1µCi = 2.22×106 DPM   (Eq.1)   

2. Lipid concentration in the plasma was calculated based on Equation 2.  

1000
20

6)/( ×
×

=
RmlmgLipidConc  (Eq.2)    

Where, LipidConc represents the lipid concentration in plasma as mg/ml. R represents the 
measured radioactivity of plasma sample in µCi, and 20 is the volume (µl) of plasma 
used for scintillation counting. The lipid (mg) to radioactivity (µCi) ratio is 6. For the ex-
periments of high lipid dose (704 mg/kg), the ratio is 18.  

 
3. Lipid amount in the tissues was calculated based on Equation 3. 

1
26)(

W
WRmgtLipidAmoun ××

=   (Eq.3)     
 

LipidAmount is the lipid amount in the whole tissue (liver or spleen) in mg. R represents 
the measured radioactivity of tissues as µCi and the lipid (mg) to radioactivity (µCi) ratio 
is 6. For the experiments of high lipid dose (704 mg/kg), the ratio is 18. W1 represents 
the weight of the tissue used for scintillation counting in grams, and W2 is the weight of 
the whole tissue in grams.  
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4. Percentage of injected lipid dose remained in the blood was determined based on Equa-
tion 4.  

1001000/..
06.1/%6..% ××

××= WBlipidDose
WBLipidConcseinjectedDo blood  (Eq.4)   

%injectedDose represents the percentage of injected lipid dose remaining in the blood. 
LipidConcblood is the lipid concentration in the whole blood in mg/ml, which is derived 
from lipid concentration in the plasma assuming the hematocrit is 45% [Drummond et al. 
2009]. B.W. is the body weight of the mouse in grams. Blood weight is assumed to be 
6% of the body weight [Drummond et al. 2009] and the blood density is 1.06 g/ml [Cut-
nell and Johnson 1998]. LipidDose represents the lipid dose for I.V. injection in mg/kg.  

5. Percentage of injected lipid dose taken up into the tissues was determined based on Equa-
tion 5.  

1001000/..% ××= WBlipidDose
tLipidAmounseinjectedDo  (Eq.5)   

%injectedDose represents the percentage of injected lipid dose taken up into the tissues. 
LipidAmount is the lipid amount taken up into the whole tissue (liver or spleen) in mg, 
and B.W. is the body weight of mouse in grams. LipidDose represents the lipid dose for 
I.V. injection in mg/kg.  

VIII. Data Analysis 

The drug release half-lives from liposomes in vitro were estimated by fitting the data with an ex-

ponential decay model. Pharmacokinetic parameters of the total DB-67 (lactone and carboxylate) 

plasma concentrations and lipid plasma concentration were estimated using a non-compartmental 

approach (WinNonlin v.5.2). For the estimation of the total AUCs and the errors of plasma sam-

ples obtained destructively, Bailer’s method [Bailer 1988] was used as described below for a 

number of discrete samples ranging from i =1 (for the sample collected at the first time point) to 

i=m (for the sample collected at the last time point). 

∑
=

=
m

i
ii

t CwAUC
1

0 , 

Where w is a weighting factor calculated as follows: 
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 iC  is the mean of concentration values at the ith sampling time. Concentrations below the 
limit of quantification were zeroed. The variance of the AUC estimate is calculated as fol-
lows: 

    
∑
=

=
m

i i

ii

n
swAUCVar

1

22

][  

 
 Where ni=number of animals euthanized at the ith sampling time and si

2 is the variance of 
plasma or tissue concentration at the ith sampling time.  Confidence intervals for AUCs were 
calculated as follows:  
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 The degree of freedom (df) for the t-distribution was calculated by Bailer-Satterthwaite’s 
approximation [Nedelman et al. 1995]. 
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For the estimation of the errors on clearance, Delta’s method [Agresti 1990] was used as de-

scribed below.  

Suppose Y is a random variable and we know the variance of Y, denoted as Var(Y). We have a 

function of Y, denoted as f(Y). Then, the variance of function Y, denoted as Var[f(Y)], can be 

calculated by the following equation: 

Var[ f(Y)] = [f ’ (Y)]2* Var(Y) 

Where f ’ (Y) is the derivative of function Y, f(Y).  

Statistical tests were performed by GraphPad Prism v5.0 (GraphPad Software, La Jolla, CA). All 

the plots were made with GraphPad Prism v5.0. 
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Chapter Four   Results 

I. Cholesterol, Drug-to-lipid Ratio and Particle Size Effects on DB-67 Release in Vitro 

The first set of experiments were aimed at characterizing the influence of cholesterol content, 

drug-to-lipid (D/L) ratio and particle size on DB-67 release rate from liposomes. Cholesterol free 

liposomes (DSPC:m-PEG-DSPE 95:5 mole %) and cholesterol containing liposomes 

(DSPC:Chol:m-PEG-DSPE 55:40:5 mole %) were made via an extrusion method as indicated 

under Methods. DB-67 was loaded into liposomes at the drug-to-lipid ratio of 0.03 or 0.3 (w:w).  

In order to determine the drug release kinetics in the conditions similar to that in vivo, the DB-67 

entrapped liposomes were dialyzed against a simulated buffer (C-PBS, pH 7.4, 298 mOsm) at 

37°C. As shown in Figure 4.1, liposomes without cholesterol retained the drug longer as com-

pared to cholesterol containing liposomes (p=0.001, Two-way ANOVA), and DB-67 was re-

tained in the liposomes for a longer period of time at the lower level of drug-to-lipid ratio (0.03, 

w:w) than that at the higher level (0.3, w:w) regardless of lipid composition (p<0.0001, Two-way 

ANOVA). The drug release half-lives and the release rate constants are shown in Table 4.1 and 

the detailed statistical analysis results are shown in Appendix  I.   

The effect of particle size on DB-67 release was investigated with a similar in vitro dialysis assay, 

using cholesterol free liposomes loaded at a drug-to-lipid ratio of 0.3 (w:w). Liposomes were 

made with particle size of 103±15 nm and dialyzed against C-PBS (pH 7.4, 298 mOsm) at 37oC 

for 24 hr. The release half-life of DB-67 from liposomes with particle size of 146±40 nm was 

determined by Joguparthi [Joguparthi 2007]. The release rate constant for 146 nm liposomes was 

0.06±0.004 as compared to 0.104±0.007 1/hr for 103 nm liposomes, so DB-67 was retained long-

er in larger liposomes (p=0.0005, t test). The release half-lives are shown in Figure 4.2.  

The proceeding results indicated that the effect of cholesterol incorporation (40 mole %) was to 

increase DB-67 release rate about 2 times at the drug-to-lipid ratio of 0.03 (w:w) and that DB-67 

was retained 1.7-fold longer in 146 nm liposomes than 103 nm liposomes. But the pharmacoki-

netic properties of these formulations need to be further evaluated in vivo because: 1) the same 

effects of cholesterol and particle size are not necessarily held when the drug gets into the body; 

and 2) the pharmacokinetics of liposome associated drug not only depends on the drug release 

rates from the liposomes, but also relies on the pharmacokinetics of the liposomal carrier itself 

[Drummond et al. 2008]. The following studies were aimed at determining the effects of choles-

terol and particle size on pharmacokinetics of liposomal DB-67. A 2×2 factorial experiment was 

designed with cholesterol content (40 vs. 0 mole %) and particle size (~180 vs. ~120 nm) being 

the two factors. 
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Figure 4. 1 The effects of drug-to-lipid (D/L) ratio and cholesterol content on the retention of 
DB-67 in liposomes in vitro.   
DB-67 loaded liposomes were dialyzed against C-PBS (pH 7.4, 298 mOsm) at 37°C for 24 hr. 
Symbols represent observed data and the lines represent the fitting of the data with an exponential 
decay model. The particle size of liposomes ranged from 103 to 121 nm.  
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Table 4. 1 DB-67 release half-lives and the release rate constants from various liposomes. 
DB-67 loaded liposomes were dialyzed against C-PBS (pH 7.4, 298 mOsm) at 37°C for 24 hr. 
The drug release half-lives and the release rate contents were determined by fitting the data with 
an exponential decay model.  
 

Chol level  
(mole %) D/L ratio* Release rate constant  

(1/hr) 
Half-life  

(hr) 

0 0.03 0.043 (0.032 -0.054) 16.22 (12.85 - 21.99) 

0 0.3 0.104 (0.089 - 0.119) 6.64 (5.81 - 7.76) 

40 0.03 0.087 (0.078 - 0.096) 7.95 (7.19 - 8.90) 

40 0.3 0.119 (0.114 - 0.125) 5.81 (5.56 - 6.08) 

*D/L ratio: drug-to-lipid ratio  
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Figure 4. 2 The effect of particle size on the in vitro release half-life of DB-67.  
DB-67 loaded liposomes were dialyzed against C-PBS (pH 7.4, 298 mOsm) at 37°C for 24 hr and 
the drug release half-lives were calculated by fitting the data with an exponential decay model. 
The liposomes used in this experiment were cholesterol free (DSPC:m-PEG-DSPE 95:5 mole %) 
and the drug-to-lipid ratio was 0.3 (w:w). The data from 146 nm particle size liposomes were 
adopted from Joguparthi’s thesis (Chapter eight, Table 8.3) [Joguparthi 2007].  
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II. Particle Size and Cholesterol Effects on Lipid Clearance in Vivo 

The liposomes were injected intravenously into mice at a dose of ~250 mg/kg lipid. The DB-67 

dosage in these experiments ranged from 0.3 - 1.3 mg/kg. A mild interaction was observed be-

tween particle size and cholesterol content effects on the lipid clearance (p=0.049, Two-way 

ANOVA), and the detailed statistical analysis is shown in Appendix I.  The liposomal pharmaco-

kinetics in blood (Figure 4.3) showed that smaller particles persisted in the circulation longer than 

larger particles (p=0.0002, Two-way ANOVA). The lipid clearance of ~180 nm liposomes was 

1.8-fold higher than that of ~120 nm liposomes. The effect of cholesterol content on lipid clear-

ance was minimal (p=0.268, Two-way ANOVA). Pharmacokinetic parameter estimates for the 

data shown in Figure 4.3 are presented in Table 4.2. 

III. Particle Size and Cholesterol Effects on DB-67 Clearance in Vivo 

In the same experiments, as depicted in Figure 4.3, DB-67 concentration was assayed by a vali-

dated fluorescence HPLC assay. These measurements represented the liposomal and free drug 

concentrations for both lactone and carboxylate in the plasma. Dose normalized plasma DB-67 

concentration versus time profiles are shown in Figure 4.4. Overall, DB-67 was cleared faster 

from the circulation in larger particles than the smaller ones (p<0.0001, Two-way ANOVA). 

Specifically, DB-67 clearance was about 2-fold higher in ~180 nm liposomes than that in ~120 

nm liposomes when cholesterol was present (Figure 4.4 B).   

Incorporation of cholesterol (40 mole %) in the liposomes led to an increase of DB-67 clearance 

of 1.5-fold and 2.9-fold in ~120 nm and ~180 nm particle size of liposomes, respectively 

(p<0.0001, Two-way ANOVA). The increased DB-67 clearance caused by cholesterol incorpora-

tion can be partially due to the elevated DB-67 release rate from cholesterol containing lipo-

somes, as compared to that from cholesterol free liposomes (Figure 4.1). Once DB-67 was re-

leased from liposomes, it was cleared faster than the liposome associated DB-67 [Joguparthi and 

Anderson 2008], so the elevated drug release rate directly led to increased clearance of DB-67. 

Pharmacokinetic parameter estimates for the data shown in Figure 4.4 are presented in Table 4.3. 

  

 



25 

 

0 10 20 30 40
1

10

100

121 nm, DSPC:DSPE 95:5
179 nm, DSPC:DSPE 95:5

Time (hr)

%
 In

je
ct

ed
 L

ip
id

 D
os

e 
(%

)

 

0 10 20 30 40
1

10

100

121 nm, DSPC:DSPE:Chol 55:5:40
187 nm, DSPC:DSPE:Chol 55:5:40

Time (hr)

%
 In

je
ct

ed
 L

ip
id

 D
os

e 
(%

)

 
 
Figure 4. 3 Pharmacokinetics of liposomes in the blood.   
Liposomes radiolabeled with [3H]-CHE were administered intravenously in the lateral tail vein to 
female C57/BL6 mice.  Particle size effects on lipid elimination were shown in cholesterol free 
(A) and cholesterol containing liposomes (B). Data were the average percentage of injected lipid 
dose remaining in the circulation ±S.D. for three mice at each time point.  
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Table 4. 2 Pharmacokinetic parameter estimations of lipid in mice after intravenous injection of various liposomal formulations.  
Liposomes were prepared with 40% (molar ratio) or without cholesterol in two different sizes (~120 nm and ~180 nm). Data are shown as 
mean ± S.E. 
 

Cholesterol  
Content 
(mole %) 

Particle Size 
(nm) 

Lipid Dose 
(mg/kg) 

Vb 
(ml/kg) 

AUCa  
(hr*mg/ml) 

CLa  
(ml/hr/kg) 

T 1/2
b 

(hr) 

0 121±18 234.5 40.15 105.34±5.87 2.23±0.12 15.19 

0 179±21 255.9 56.60 64.08±3.87 3.99±0.24 10.76 

40 121±17 235.8 45.71 76.54±4.09 3.08±0.16 11.63 

40 187±23 240.1 71.81 64.16±5.92 3.74±0.35 16.41 

 
V: Apparent volume of distribution 
AUC: Area under the plasma concentration-time curve from time zero to 36 hr 
CL: Apparent clearance 
T 1/2: elimination half-life 
a Pharmacokinetic parameters were estimated by Bailer Method (see details in Method section) 
b Pharmacokinetic parameters were estimated by non-compartmental analysis  
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Figure 4. 4  Pharmacokinetics of liposomal DB-67 in the blood.  
Liposomes radiolabeled with [3H]-CHE and loaded with DB-67 were administered intravenously 
in the lateral tail vein to female C57/BL6 mice. Dose normalized total DB-67 (both lactone and 
carboxylate of encapsulated and fee drug) plasma concentrations were shown in cholesterol free 
liposomes (A) and cholesterol containing liposomes (B). Data were the average plasma DB-67 
concentration normalized by DB-67 dose in the circulation ±S.D. for three mice at each time 
point.     
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Table 4. 3  Pharmacokinetic parameter estimates of liposomal DB-67 in mice after intravenous injection of various liposomal formula-
tions.  
Liposomal DB-67 was prepared with 40% (molar ratio) or without cholesterol in two different particle sizes (~120 nm and ~180 nm). Data 
are shown as mean ± S.E. 
 

Cholesterol 
Content 
(mole%) 

Particle Size 

(nm) 

Lipid Dose 

(mg/kg) 

DB-67 Dose 

(mg/kg) 

Vb 

(ml/kg) 

AUCa 

(hr*µg/ml) 

CLa 

(ml/hr/kg) 

T 1/2
b 

(hr) 

0 121±18 234.5 1.34 180.84 19.29±0.19 69.46±4.27 1.84 

0 179±21 255.9 1.36 166.87 17.97±0.94 75.70±3.97 1.57 

40 121±17 235.8 0.24 279.01 2.33±0.05 103.10±2.37 1.91 

40 187±23 240.1 1.07 472.26 4.93±0.24 216.87±10.53 1.55 

 
V: Apparent volume of distribution 
AUC: Area under the plasma concentration-time curve from time zero to 36 hr 
CL: Apparent clearance 
T 1/2: elimination half-life 
a Pharmacokinetic parameters were estimated by Bailer Method (see details in Method section) 
b Pharmacokinetic parameters were estimated by non-compartmental analysis  
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IV. Particle Size and Cholesterol Effects on Tissue Uptake of Liposomes  

The effect of cholesterol and particle size on the liver and spleen uptake, which represent the ma-

jor liposome clearance pathways, were also determined in vivo.  Mice were injected with lipo-

somes as described in the Methods section. The liver and spleen were collected and [3H]-CHE 

was measured via a scintillation counting method.  Liposomes with smaller particle size (~120 

nm) were taken up to a lesser extent by the liver and spleen than the larger liposomes (~180 nm) 

(Figure 4.5). At 24 hr post injection, about 45.1±3 % and 30.3±4 % of injected lipid dose was 

present in the liver for ~180 nm and ~120 nm particle size liposomes, respectively (p=0.006, t 

test).  In the spleen, 13.2±3 % of injected lipid dose was accumulated for ~180 nm particle size 

liposomes as compared to 6.2±1 % for ~120 nm liposomes at 24 hr after injection (p=0.011, t 

test). The decreased tissue uptake of smaller liposomes correlates with the longer circulation of 

these liposomes in blood (see Figure 4.3).  

Cholesterol, on the other hand, did not affect the tissue uptake of liposomes (Figure 4.5). On av-

erage, about 36.8 – 49.3 % of injected lipid dose was accumulated in the liver for cholesterol free 

liposomes as compared to 36.3 – 39.2 % for cholesterol containing liposomes and the difference 

is not significant at the time points observed (p=0.945 at 12h post-dose, p=0.052 at 24h post-dose, 

p=0.062 at 36h post-dose, t test). In the spleen, averagely, about 13.3 – 14.7 % and 11.7 – 15.2 % 

of injected liposomal dose was present for cholesterol free liposome and cholesterol containing 

liposome, respectively and the effect is not significant either (p=0.550 at 12h post-dose, p=0.504 

at 24h post-dose, p=0.909 at 36h post-dose, t test). These biodistribution data were consistent 

with the liposomal pharmacokinetics in the blood, which demonstrated that cholesterol had mi-

nimal effect on liposomal clearance.  
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Figure 4. 5 Liposomal biodistribution of various liposomal formulations.  
Liposomes radiolabeled with [3H]-CHE were administered intravenously in the lateral tail vein to 
female C57/BL6 mice.  The liver and spleen tissues were collected and the radioactivity was 
measured. The effects of particle size and cholesterol on tissue uptake of liposomes were shown 
in liver (A) and spleen (B). Data were the average percentage of injected lipid dose accumulated 
in the tissue ±S.D. for three mice at each time point. 
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V. Liposomal Dose Effect on Lipid Clearance, DB-67 Clearance and Tissue Uptake 

The studies described thus far demonstrated that cholesterol free liposomes with particle size of 

~120 nm had the extended circulation half-life and the minimum DB-67 clearance. Therefore, we 

used this particular formulation to examine the effect of lipid dose on the clearance of lipid and 

DB-67. Liposomal DB-67 was injected into mice with lipid doses of 63.6, 234.5, and 703.9 

mg/kg and DB-67 doses of 0.30, 1.34, and 3.35 mg/kg, correspondingly. The percentage of in-

jected lipid dose versus time and the dose normalized plasma DB-67 concentration versus time 

profiles are shown in Figure 4.6 A and Figure 4.6 B, respectively. When the lipid dose was in-

creased from 64 to 704 mg/kg, a reduction of lipid clearance from 2.4±0.2 to 1.6±0.03 ml/h/kg 

(1.5-fold decrease, p=0.0012, ANOVA) was observed. Accordingly, a drop of DB-67 clearance 

from 96.4±7.8 to 28.2±1.6 ml/h/kg (p<0.0001, ANOVA), and an increase in DB-67 elimination 

half-life from 1.8 to 2.5 hr were obtained.  The reduced DB-67 clearance associated with higher 

liposomal doses can be partially explained by the decreased clearance of liposomal carriers from 

the blood.  

The elimination profile of non-liposomal DB-67 was compared with those from liposomal DB-67 

in Figure 4.6 B. Mice receiving the lowest lipid dose (64 mg/kg) were exposed to a 40-fold higher 

DB-67 AUC (dose normalized), and had a 2.8-fold increase of elimination half-life as compared 

to those received non-liposomal DB-67.  The DB-67 clearance was 3323.4±424.1 ml/hr/kg when 

administered in non-liposomal formulation as compared to 96.4±7.8 ml/hr/kg in liposomal formu-

lation (at the lipid dose of 64 mg/kg). The terminal elimination half-life was prolonged from 

0.62±0.11 hr for free DB-67 to 1.8 hr for liposomal DB-67. Pharmacokinetic parameter estimates 

for the data shown in Figure 4.6 A and Figure 4.6 B are presented in Table 4.4 and 4.5, respec-

tively.  

In the same experiments the liver and spleen tissues were collected at 12, 24 and 36 hr and [3H]-

CHE in the tissues was measured via scintillation counting. The percentages of injected lipid dose 

accumulated in the tissues are shown in Figure 4.7 A (liver) and Figure 4.7 B (spleen). The accu-

mulation of liposomes was higher at the two larger levels of lipid doses but the effect was not 

statistically significant (p=0.16 in the liver, p=0.08 in the spleen, ANOVA). The slightly higher 

levels in tissues of mice administered the 234.5mg/kg lipid dose suggest that this dose may be 

close to saturating the RES.
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Figure 4. 6 The effect of lipid dose on the pharmacokinetics of liposomes and liposomal DB-67. 
Liposomal DB-67 radiolabeled with [3H]-CHE or non-liposomal DB-67 was administered intra-
venously in the lateral tail vein of female C57/BL6 mice. Data were the percentage of injected 
lipid dose remained in the blood (A, lines represent the fit of the data with a one compartment 
exponential decay model) and the dose normalized total DB-67 (both lactone and carboxylate of 
encapsulated and fee drug) concentration in the plasma (B). Each data point represented the aver-
age value ±S.D. for three mice at each time point.  
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Table 4. 4  Pharmacokinetic parameter estimations of lipid in mice after intravenous injection of 
liposomal DB-67 at various lipid doses.   
Cholesterol free liposomes radiolabeled with [3H]-CHE were prepared and injected at lipid doses 
of 64 to 704 mg/kg. Data are shown as mean ± S.E. 
 

Lipid Dose 

(mg/kg) 

Particle Size 

(nm) 

Vb 

(ml/kg) 

AUCa 

(hr*mg/ml) 

CLa 

(ml/hr/kg) 

T 1/2
b 

(hr) 

63.6 103±11 45.05 26.41±2.12 2.41±0.19 16.31 

234.5 121±18 40.15 105.34±5.87 2.23±0.12 15.19 

703.9 115±16 31.44 437.54±8.42 1.61±0.03 18.36 

 
V: Apparent volume of distribution 
AUC: Area under the plasma concentration-time curve from time zero to 36 hr 
CL: Apparent clearance 
T 1/2: elimination half-life 
a Pharmacokinetic parameters were estimated by Bailer Method (see details in Method section) 
b Pharmacokinetic parameters were estimated by non-compartmental analysis  
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Table 4. 5  Pharmacokinetic parameter estimations of DB-67 in mice after intravenous injection 
of liposomal DB-67 at various lipid and DB-67 doses.  DB-67 was loaded to cholesterol free lipo-
somes radiolabeled with [3H]-CHE. Liposomal DB-67 was injected at the lipid doses of 64 to 704 
mg/kg and DB-67 doses of 0.3 to 3.35 mg/kg. Data are shown as mean ± S.E. 

 

Lipid 

Dose 

(mg/kg) 

DB-67 

Dose 

(mg/kg) 

Particle 

Size  

(nm) 

Vb 

(ml/kg) 

AUCa 

(hr*µg/ml) 

CLa 

(ml/hr/kg) 

T 1/2
b 

(hr) 

63.6 0.30 103±11 246.79 3.11±0.25 96.39±7.83 1.80 

234.5 1.34 121±18 180.84 19.29±1.19 69.46±4.27 1.84 

703.9 3.35 115±16 97.94 118.79±6.57 28.2±1.56 2.49 

 
V: Apparent volume of distribution 
AUC: Area under the plasma concentration-time curve from time zero to 36 hr 
CL: Apparent clearance 
T 1/2: elimination half-life 
a Pharmacokinetic parameters were estimated by Bailer Method (see details in Method section) 
b Pharmacokinetic parameters were estimated by non-compartmental analysis  
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Figure 4. 7 The effect of lipid dose on the biodistribution of DB-67 loaded liposomes.  
DB-67 loaded liposomes radiolabeled with [3H]-CHE were administered intravenously in the lat-
eral tail vein of female C57/BL6 mice. The liver and spleen tissues were collected and the ra-
dioactivity was measured by scintillation counting. Data were the percentage of injected lipid 
dose accumulated in the liver (A) and spleen (B).  Each data point represented the average value 
±S.D. for three mice at each time point. 
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Chapter Five    Discussion  

The ultimate goal of developing a liposomal formulation for a given anti-cancer agents is to en-

hance its anti-tumor efficacy and to minimize its toxicity. This requires the development of for-

mulations that have appreciable amounts of liposomes circulating in plasma for at least 24 hours. 

Implicitly this also requires that the release rate of drug from liposomes is no lower than the rates 

that define liposome clearance from the systemic circulation [Drummond et al. 2008]. The lipo-

somal formulation can be optimized by controlling the factors influencing these two processes. 

Cholesterol, particle size and lipid dose are the three critical factors evaluated in the development 

of liposomal DB-67 in our study. The present experiments demonstrate that liposomes with par-

ticle size of ~120 nm provide longer DB-67 elimination half-life. Furthermore, cholesterol free 

liposomes of such particle size exhibit the slowest DB-67 release rate and have the lowest DB-67 

clearance. Therefore, we chose the particle size of ~120 nm and cholesterol free liposomes as the 

formulation of liposomal DB-67 for further development. In addition, the higher lipid dose fur-

ther decreases liposomal clearance. However, while the higher lipid dosages can impair RES me-

diated liposomal clearance, toxicities associated with high lipid doses, such as hepatomegaly and 

granulomas [Allen et al. 1984], will have to also be considered.  The effects of the formulation 

factors on the pharmacokinetics of liposomes and liposomal DB-67 are discussed further below.  

I. Factors that Influence Pharmacokinetics of Liposomes 

Our studies have shown that the larger particle size leads to shorter elimination half-life of lipo-

somes. This result is consistent with the findings of previous studies. Woodle et al. reported that 

the blood levels of lipid at 24 hr showed a decrease from more than 20% to about 10% of the in-

jected dose when the mean particle diameter was increased from 100 to 200 nm [Woodle et al. 

1992]. The size dependence of liposomal pharmacokinetics is even more striking when the lipo-

some is not sterically stabilized [Drummond et al. 1999]. DSPC:Chol (3:2 molar ratio) liposomes 

with size of 400 nm are cleared 7.5 time as fast as liposomes of 200 nm, which are cleared 5-time 

faster than smaller liposomes [Senior et al. 1985]. However, liposomes that are smaller than 100 

nm are cleared faster than those that are between 100 - 200 nm. Thus, it appears that the smaller 

physical size is required to evade the RES but smaller paticles have a greater surface area for the 

same lipid dose, resulting in more plasma protein binding per liposome. Since plasma protein 

binding facilities liposomal clearance, higher protein binding (opsonization) leads to faster clear-

ance of these smaller size liposomes.  It is also worth noting that we loaded active drug (DB-67) 

into the liposome, whereas Woodle et al. applied blank liposome without any drug [Woodle et al. 

1992]. The similarity of the half-lives in both studies indicates that DB-67 does not alter the 
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pharmacokinetic properties of the liposomal carriers dramatically. However, this is not always the 

case. As shown by Li et al., encapsulated vincristine significantly affected the pharmacokinetics 

of liposomes in mice [Li et al. 1998]. This suggests that one has to examine the in vivo pharma-

cokinetics of liposomes containing entrapped drug of interest to optimize the formulation, and it 

is unlikely to have a generic liposomal formulation that suits all the anti-tumor agents.  

The impact of cholesterol on liposomal clearance is assessed in the present study and it is shown 

that cholesterol containing liposomes exhibit circulation lifetime comparable to those of choles-

terol free liposomes. Dos Santos et al. demonstrated similar results. Namely, about 29% of the 

injected dose was present in the circulation after 24 hr for both cholesterol free and cholesterol 

containing liposomes [Dos Santos et al. 2002]. Woodle et al. also reported that PEG-PE:PC:Chol 

(1:10:5 molar ratio, PC refers to PHEPC IV 40 partially hydrogenated egg phosphatidylcholine 

with iodine values from 1 to 40 and PEG-PE to 1900PEG-DSPE) and PEG-PE:PC (0.15:1.85 molar 

ratio) liposomes showed similar elimination half-lives of 15.8 and 14.7 hr, respectively [Woodle 

et al. 1992]. Nevertheless, others concluded that cholesterol was required to maintain the stability 

of liposomes in the plasma [Damen et al. 1981; Kirby et al. 1980]. For instance, Semple and 

Chonn demonstrated that the elimination half-life was 5 hr for liposomes containing 30 mole % 

cholesterol as compared to seconds for liposomes without cholesterol and that this was mainly 

due to reduced protein binding to the cholesterol containing liposomes [Semple et al. 1996]. The 

divergence we see here is attributed to the surface stabilizing compounds, PEG, which we and 

Woodle et al. applied. It is believed that PEG minimizes liposome-liposome aggregation by pro-

viding a strong steric barrier even with as little as 0.72 mole % in the liposome composition [Kli-

banov et al. 1991]. Additionally, it may also inhibit protein binding by shielding defects on the 

surface of liposomes [Dos Santos et al. 2002], thereby preventing them from recognition by op-

sonizing plasma proteins.  

Liposomal dose influences liposome elimination in the blood and an inverse relationship between 

the liposome dose and the lipid clearance is observed for conventional liposomes [Allen and Han-

sen 1991; Oja et al. 1996].  Oja et al. reported that when the liposome dose was increased from 50 

to 500 mg/kg, the percentage of injected lipid dose remained in the circulation at 12 hr post injec-

tion was dramatically enhanced from 4 to 58 %. It is proposed that there is a limited pool of blood 

proteins that is able to bind to liposomes. When greater amount of liposomes is administered 

(high liposomal doses), the blood protein which can bind to the liposomes is diluted over a larger 

surface area. Therefore, the amount of blood protein bound per liposome is reduced as compared 

to low liposomal doses, in turn, resulting longer circulation lifetime of these liposomes [Oja et al. 
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1996]. Another explanation for the dose effect on liposome clearance is binding site saturation in 

the RES at higher liposome doses [Allen and Hansen 1991]. Liposomes are thought to be taken 

up by macrophages of the RES, the saturation of the macrophages leads to decreased liposomal 

clearance rates at higher liposomal doses. In the present study, we also observe the same trend, 

but it is not as dramatic as the previous studies. With about 10-fold increase of liposome dose (64 

to 704 mg/kg), the percentage of injected lipid dose remained in the circulation at 24 hr is in-

creased from 15±3 % to 40±3 %. The circulation lifetime enhancement associated with the higher 

liposome doses is diminished in our study because we use “sterically stabilized” liposomes in-

stead of the conventional liposomes (DSPC:Chol 55:45 mole %) used elsewhere [Allen and Han-

sen 1991; Oja et al. 1996]. For this particular liposomal DB-67 formulation, liposomal clearance 

is less dependent on the lipid dose, which simplifies the pharmacokinetics and provides further 

advantages for the clinical development of this formulation.  

II. Factors that Influence Pharmacokinetics of Liposomal DB-67 

The increase of particle size leads to an increase of liposomal DB-67 clearance. In our study, li-

posomal carriers are eliminated more quickly from the blood in larger particles than in the smaller 

ones. However, the in vitro DB-67 release rate from the liposomes is higher in smaller particle 

size liposomes (see Figure 4.2).  These two effects oppose to each other, but the combined effect 

in vivo is reflected as the pharmacokinetics of liposome-associated DB-67. With the increase of 

particle size, the clearance of liposomal DB-67 is increased (see Figure 4.4). It reveals that the 

clearance of liposomal carriers is a dominant process here. Therefore, we choose smaller particle 

size liposomes (~120) in the development of the formulation.  

Cholesterol incorporation (40 mole %) results in an increase of liposomal DB-67 clearance which 

can be attributable to the increased DB-67 release from cholesterol containing liposomes as com-

pared to that from cholesterol free ones. At 37°C, liposomes composed of DSPC: m-PEG DSPE 

(95:5 mole %) are in solid gel phase. However, when 40 mole % of cholesterol is incorporated, 

liposomal membrane is in the transition state from solid gel to liquid crystalline phase, which is 

more permeable [Xiang and Anderson 1997]. So, DB-67 is released 2 times faster from choles-

terol containing liposomes than from liposomes without cholesterol (Figure 4.1), and it leads to 

the higher clearance of liposomal DB-67 from the circulation. Overall, the effect of cholesterol on 

the clearance of liposomal drug is complicated because it depends on both the specific drug ap-

plied and the lipid membrane composition. In the early studies, liposomes composed of high cho-

lesterol content (>33 mole%) were used in the liposomal drug delivery since they demonstrated 

the longest drug retention in vivo  [Ogihara-Umeda and Kojima 1989]. Then in 2002, Dos Santos 
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et al. showed that the maximum retention of idarubicin was achieved using cholesterol free lipo-

somes. The AUC 0-24h from idarubicin encapsulated in the liposomes was 45-fold higher than that 

from the free drug [Dos Santos et al. 2002]. It was postulated that the greater drug retention asso-

ciated with cholesterol free liposomes was attributed to the enhanced interaction of lipid mem-

brane to idarubicin [Dos Santos et al. 2002]. More interestingly, in a study by Tardi et al., an op-

posite effect of cholesterol on drug retention was observed in the two drugs simultaneously en-

trapped into the liposomes - floxuridine was retained dramatically longer in cholesterol free 

(DSPC : distearoylphosphatidylglycerol (DSPG) 8:2, mol/mol) liposomes (16 hr vs. 1 hr) whe-

reas, irinotecan was released 5-fold faster in cholesterol free liposomes (10 mole %) [Tardi et al. 

2007]. In the present study, we choose cholesterol free liposomes as the optimal lipid composition 

because it has the lowest DB-67 clearance from the blood.  

III. Factors that Influence Tissue Uptake of Liposomes 

This study shows that liposomes with the particle size of 180 nm are taken up more extensively 

by the liver and spleen than the 120 nm liposomes. This is in agreement with a study by Woodle 

et al., wherein about 25% of injected liposome dose was accumulated in the liver and spleen for 

150 nm liposomes as compared to only 7% for 100 nm liposomes (in rats) [Woodle et al. 1992]. It 

is widely believed that the tissue uptake of liposomes depends on the particle size. Large particle 

size liposomes (d>200 nm) are quickly filtered from the circulation by the spleen [Ishida et al. 

1999; Litzinger et al. 1994].  On the other hand, very small liposomes (d<70 nm) are accumulated 

most in liver and are localized in Kupffer cells [Litzinger et al. 1994]. Our study compared the 

size-dependence of tissue uptake of liposomes within a narrower range (100 to 200 nm). The ex-

act mechanism driving the greater accumulation of ~180 nm liposomes in the RES than ~120 nm 

liposomes needs to be further investigated.  

In our study, cholesterol does not have significant effect on the tissue uptake of liposomes, even 

though it was reported by Ogihara-Umeda and Kojima that a large amount of cholesterol (>33 

mole %) leads to a decrease in the uptake of liposomes by the liver and spleen [Ogihara-Umeda 

and Kojima 1989]. It is noteworthy that, firstly, they used conventional liposomes, and we used 

sterically stabilized liposomes; secondly, the less tissue uptake of cholesterol containing lipo-

somes was only observed at 1 hr after the injection in their study. At 24 hr, the liposome tissue 

uptake was very similar regardless of the cholesterol content, with 21.0 % of injected lipid dose 

accumulated in the liver and spleen for cholesterol free liposomes as compared to 22.0 % for cho-

lesterol containing liposomes. 
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The present study shows that the RES uptake of liposomes is comparable in the lipid dose range 

of 64 to 704 mg/kg and about 31±11 %, 36±4%, and 32±5 % of the injected lipid dose is taken up 

by the RES at 24 hr post injection for the low, middle and high lipid doses, respectively. Howev-

er, it was demonstrated in other liposomal systems that with the increase of lipid dose, the RES 

uptake of liposomes decreases, as reflected by the reduction of the percentage of injected lipid 

dose accumulated in those tissues [Allen and Hansen 1991; Oja et al. 1996]. For example, 61% of 

the injected lipid dose was recovered in the RES at the high lipid dose (10.0 µmol phospholi-

pid/mouse) at 48 hr post injection as compared to 80% for the low lipid dose (0.1 µmol/mouse, 

lipid composition PC:Chol 2:1 molar ratio) [Allen and Hansen 1991]. Nevertheless, the observa-

tions in sterically stabilized liposomes are distinctly different. In the same study, it was shown 

that the RES tissue uptake of “stealth” liposomes averaged 27% at 24 hr post injection for the 

lipid dose ranged from 0.1 to 10 µmol/mouse [Allen and Hansen 1991]. Overall, the RES uptake 

of liposomes is dramatically reduced in “stealth” liposomes than that in conventional liposomes. 

It is because that the steric barrier formed by GM1 or PEG significantly reduces the protein bind-

ing to the liposomes, which subsequently decreases the RES uptake. The barrier also diminishes 

the dose-dependence of the liposomal tissue uptake.  Furthermore, the less extent of RES uptake 

of the “stealth” liposomes decreases the toxicities of the liposomes arising from the RES impair-

ment. 
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Chapter Six  Conclusions  

The work presented in this thesis is designed to characterize the drug release and pharmacokinet-

ics of liposomal DB-67. The sterically stabilized liposomes, with saturated lipid as the major 

component (DSPC:mPEG-DSPE 95:5 mole%), is applied. Factors influencing DB-67 release and 

pharmacokinetics are thoroughly investigated.  

In summary, in vitro dialysis experiments show that cholesterol incorporation and smaller particle 

size lead to increased DB-67 release from liposomes and higher drug-to-lipid ratio results in fast-

er DB-67 release. In vivo, however, the cholesterol free liposomes with relatively smaller particle 

size (~120 nm) demonstrate the longer liposomal elimination half-life and the least DB-67 clear-

ance from the circulation.  The higher lipid dose prolongs the liposomal elimination half-life and 

reduces DB-67 clearance further, but considering the RES impairment toxicities related to the 

high lipid dose, 60 to 100 mg/kg lipid doses may be used in the future development. At this dose 

range, a 40-fold increase of DB-67 AUC (dose normalized) in the plasma is achieved by using 

liposomal formulation as compared to the non-liposomal DB-67. Additionally, the larger particle 

size liposomes (~180 nm) are taken up to the liver and spleen in a greater extent than the smaller 

liposomes (~120 nm). However, neither the cholesterol content nor the lipid dose alters the tissue 

uptake of liposomes. Therefore, this liposomal formulation demonstrates the great potential to be 

applied in DB-67 delivery. 

Currently, an active drug loading strategy is undergoing development to improve the encapsula-

tion rate and to further enhance the DB-67 retention in the liposomes. A divalent metal ion may 

be entrapped into liposomes as a complexing agent, so that the mechanism of drug release is al-

tered from a membrane permeation process to an intravesicular dissolution process. In the future, 

the anti-tumor efficacy of the liposomal DB-67 will be evaluated in the mouse tumor xenograft 

models and compared to the non-liposomal formulation. The improved therapeutic index of DB-

67 is anticipated to be achieved via the liposomal formulation.  
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Appendices   

Appendix I: Statistical Analysis Results 

I. Statistical Analysis of DB-67 Release Rate Constants – the Effects of Cholesterol 

Content and Drug-to-Lipid (D/L) Ratio on DB-67 Release Rate in Vitro 

Table 7. 1  ANOVA of drug release rate constants for various formulations of liposomal DB-67 

Source of Variation Degrees of Freedom Sum of Squares Mean square 

Chol content 1.0 0.005883 0.005883 

D/L ratio 1.0 0.01464 0.01464 

Interaction 1.0 0.001442 0.001442 

Residual (error) 32.0 0.01421 0.0004441 

Total 35.0   
         

Does cholesterol content have the same effect at all values of D/L ratio? 

Interaction accounts for approximately 3.99% of the total variance. 

F = 3.25.  DFn=1 DFd=32 

The P value = 0.0810 

If there is no interaction overall, there is a 8.1% chance of randomly observing so much interac-

tion in an experiment of this size.  The interaction is considered not quite significant. 

Does cholesterol content effect the drug release rate constant? 

Cholesterol content accounts for approximately 16.26% of the total variance. 

F = 13.25.  DFn=1 DFd=32 

The P value = 0.0010 

If cholesterol content has no effect overall, there is a 0.095% chance of randomly observing an 

effect of this big (or bigger) in an experiment of this size.  The effect is considered extremely sig-

nificant. 

Does D/L ratio effect the drug release rate constant? 

D/L ratio accounts for approximately 40.46% of the total variance. 

F = 32.96.  DFn=1 DFd=32 

The P value is < 0.0001 

If D/L ratio has no effect overall, there is a less than 0.01% chance of randomly observing an ef-

fect of this big (or bigger) in an experiment of this size. The effect is considered extremely signif-

icant. 
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II. Statistical Analysis of Lipid Clearance– the Effects of Cholesterol Content and Par-

ticle Size on Lipid Clearance in Vivo 

Table 7. 2  ANOVA of lipid clearance for various formulations of liposomal DB-67 

Source of Variation Degrees of Freedom Sum of Squares Mean square 

Cholesterol content 1.0 0.5311 0.5311 

Particle size 1.0 8.641 8.641 

Interaction 1.0 1.785 1.785 

Residual (error) 21.0 8.622 0.4106 

Total 24.0   
 

Does cholesterol content have the same effect at all levels of particle size? 

Interaction accounts for approximately 9.12% of the total variance. 

F = 4.35.  DFn=1 DFd=21 

The P value = 0.0494 

If there is no interaction overall, there is a 4.9% chance of randomly observing so much interac-

tion in an experiment of this size.  The interaction is considered significant. 

Does cholesterol content affect the lipid clearance?  

Cholesterol content accounts for approximately 2.71% of the total variance. 

F = 1.29.  DFn=1 DFd=21 

The P value = 0.2682 

If cholesterol content has no effect overall, there is a 27% chance of randomly observing an effect 

of this big (or bigger) in an experiment of this size.  The effect is considered not significant. 

Does particle size affect the lipid clearance?  

Particle size accounts for approximately 44.13% of the total variance. 

F = 21.04.  DFn=1 DFd=21 

The P value = 0.0002 

If particle size has no effect overall, there is a 0.016% chance of randomly observing an effect of 

this big (or bigger) in an experiment of this size. The effect is considered extremely significant. 
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III. Statistical Analysis of DB-67 Clearance– the Effects of Cholesterol Content and Par-

ticle Size on DB-67 Clearance in Vivo 

Table 7. 3  ANOVA of DB-67 clearance for various formulations of liposomal DB-67 

Source of Variation Degrees of Freedom Sum of Squares Mean square 

Cholesterol content 1.0 65710 65710 

Particle size 1.0 30970 30970 

Interaction 1.0 24860 24860 

Residual (error) 31.0 12660 408.5 

Total 34.0   
 
Does cholesterol content have the same effect at all levels of particle size? 

Interaction accounts for approximately 19.49% of the total variance. 

F = 60.86.  DFn=1 DFd=31 

The P value is < 0.0001 

If there is no interaction overall, there is a less than 0.01% chance of randomly observing so 

much interaction in an experiment of this size.  The interaction is considered extremely signifi-

cant. 

Does cholesterol content affect DB-67 clearance?  

Cholesterol content accounts for approximately 48.96% of the total variance. 

F = 160.86.  DFn=1 DFd=31 

The P value is < 0.0001 

If cholesterol content has no effect overall, there is a less than 0.01% chance of randomly observ-

ing an effect of this big (or bigger) in an experiment of this size.  The effect is considered ex-

tremely significant. 

Does particle size affect DB-67 clearance?  

Particle size accounts for approximately 23.08% of the total variance. 

F = 75.81.  DFn=1 DFd=31 

The P value is < 0.0001 

If particle size has no effect overall, there is a less than 0.01% chance of randomly observing an 

effect of this big (or bigger) in an experiment of this size. The effect is considered extremely sig-

nificant. 
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Appendix II: Pharmacokinetic Model Selection for Plasma Lipid and DB-67 Disposition  

 

One-compartment and two-compartment models were fitted to the plasma lipid concentration and 

DB-67 concentration data, and the predicted curves and the weighted residual plots are shown as 

below for each experiment (Figures 7.1 to 7.6 for plasma lipid disposition and Figures 7.7 to 7.12 

for plasma DB-67 disposition). Model selection was based on visual inspection of model fitting 

and residual plots, and the values of Akaike Information Criterion (AIC), a measure of goodness 

of fit based on maximum likelihood. When comparing several models for a given data set, the 

model associated with the smallest AIC is regarded as giving the best fit. AIC value for each 

model fitting is listed in Table 4. 

 

For liposomes with ~120 nm particle size (regardless of cholesterol content), the lipid disposition 

can be fitted with one-compartment model based on visual inspection of the model fitting and the 

weighted residual plots (Figures 7.1, 7.4, 7.5 and 7.6). The AIC values are smaller with one-

compartment model fitting as compared to two-compartment (Table 7.4) for ~120 nm particles 

except for experiments LP-2 and LP-6. But two-compartment models were chosen for experi-

ments LP-2 and LP-6 as the simple model is preferred given that the fitting and residuals were 

very similar with one or two compartment models, as shown in Figure 7.1 and 7.5.  

 

For liposomes with ~180 nm particle size (regardless of cholesterol content), the lipid disposition 

can be fitted with two-compartment model based on visual inspection of the model fitting and the 

weighted residual plots (Figures 7.2 and 7.3). The AIC values are smaller with two-compartment 

model fitting as compared to one-compartment (Table 7.4).  

 

DB-67 disposition in most of the experiments can be fitted with one-compartment model (except 

for LP-6) based on visual inspection of the model fitting and the weighted residual plots (Figures 

7.7, 7.8, 7.9, 7.10 and 7.12). The AIC values obtained with one-compartment fitting were smaller 

as compared to two-compartment (Table 7.4). DB-67 disposition in LP-6 can be fitted with a two-

compartment model (Figure 7.11).  In this experiment, the highest lipid dose (7.4 mg/kg) and DB-

67 dose (3.35 mg/kg) were used, so DB-67 concentration was above the lower limit of quantifica-

tion (LLOQ) at 24 hr. However, the concentration was below LLOQ at 24 hr for the other expe-

riments with lower lipid and DB-67 doses.   
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Table 7. 4 AIC values for one-compartment and two-compartment fitting of plasma lipid and DB-67 disposition 

Experiment 
# 

Cholesterol 
Content 
(mole%) 

Particle 
Size 
(nm) 

Lipid 
Dose 

(mg/kg) 

DB-67 
Dose 

(mg/kg) 

AIC for Lipid Disposition AIC for DB-67 Disposition 
One-

compartment 
Two-

compartment 
One-

compartment 
Two-

compartment 
LP-5 0 121±18 234.5 1.34 6.25 10.87 6.17 7.56 

LP-3 0 179±21 255.9 1.36 28.96 16.85 9.36 12.43 

LP-2 40 121±17 235.8 0.24 7.76 5.67 18.60 22.10 

LP-4 40 187±23 240.1 1.07 37.42 28.75 13.50 15.07 

LP-7 0 103±11 63.6 0.30 33.07 36.74 21.83 26.39 

LP-6 0 115±16 703.9 3.35 30.70 29.30 39.49 24.60 
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Figure 7. 1  Plasma lipid concentration profiles for cholesterol-containing (40%, molar ratio) li-
posomes with particle size of 121±17 nm (LP-2).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values.   
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Figure 7. 2  Plasma lipid concentration profiles for cholesterol-free liposomes with particle size 
of 179±21 nm (LP-3).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values. 
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Figure 7. 3  Plasma lipid concentration profiles for cholesterol-containing (40%, molar ratio) li-
posomes with particle size of 187±23 nm (LP-4).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values. 
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Figure 7. 4  Plasma lipid concentration profiles for cholesterol-free liposomes with particle size 
of 121±18 nm (LP-5). 
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values. 
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Figure 7. 5  Plasma lipid concentration profiles for cholesterol-free liposomes with particle size 
of 115±16 nm at the lipid dose of 704 mg/kg (LP-6).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. DB-67 doses are shown in 
Table 7.4. Open circles represent observed values and solid lines represent predicted values. 
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Figure 7. 6 Plasma lipid concentration profiles for cholesterol-free liposomes with particle size of 
103±11 nm at the lipid dose of 64 mg/kg (LP-7).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. DB-67 doses are shown in 
Table 7.4. Open circles represent observed values and solid lines represent predicted values. 
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Figure 7. 7  Plasma DB-67 concentration profiles (total of carboxylate and lactone) for cholester-
ol-containing (40%, molar ratio) liposomes with particle size of 121±17 nm (LP-2).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values.    
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Figure 7. 8  Plasma DB-67 concentration (total of carboxylate and lactone) profiles for cholester-
ol-free liposomes with particle size of 179±21 nm (LP-3).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values. 
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Figure 7. 9  Plasma DB-67 concentration profiles (total of carboxylate and lactone) for cholester-
ol-containing (40%, molar ratio) liposomes with particle size of 187±23 nm (LP-4).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values.    
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Figure 7. 10  Plasma DB-67 concentration (total of carboxylate and lactone) profiles for choles-
terol-free liposomes with particle size of 121±18 nm (LP-5).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. The Lipid and DB-67 dos-
es are shown in Table 7.4. Open circles represent observed values and solid lines represent pre-
dicted values. 
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Figure 7. 11  Plasma DB-67 concentration (total of carboxylate and lactone) profiles for choles-
terol-free liposomes with particle size of 115±11 nm at the lipid of 704 mg/kg and DB-67 dose of 
3.35 mg/kg (LP-6).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. Open circles represent ob-
served values and solid lines represent predicted values. 

B 

A 



 

58 

 

0 2 4 6 8 10 12 14
1

10

100

1000

Time (hr)Pl
as

m
a 

D
B

-6
7 

C
on

ce
nt

ra
tio

n 
(n

g/
m

l)
0 5 10 15

-0.8

-0.4

0.0

0.4

0.8

Time (hr)

W
ei

gh
te

d 
R

es
id

ua
l D

B
-6

7 
C

on
c.

 (n
g/

m
l)

 

0 5 10 15
-0.8

-0.4

0.0

0.4

0.8

Time (hr)

W
ei

gh
te

d 
R

es
id

ua
l D

B
-6

7 
C

on
c.

 (n
g/

m
l)

0 2 4 6 8 10 12 14
1

10

100

1000

Time (hr)Pl
as

m
a 

D
B

-6
7 

C
on

ce
nt

ra
tio

n 
(n

g/
m

l)

 

Figure 7. 12  Plasma DB-67 concentration (total of carboxylate and lactone) profiles for choles-
terol-free liposomes with particle size of 103 nm at the lipid dose of 64 mg/kg and DB-67 dose of 
0.3 mg/kg (LP-7).  
One-compartment (A) and two-compartment model (B) were fitted to the data respectively. The 
associated weighted residual plots are shown in the right upper corner. Open circles represent ob-
served values and solid lines represent predicted values. 
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Appendix III: Raw Data of Plasma Lipid Concentration and DB-67 Concentration (Car-

boxylate and Lactone) 

Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 
Lactone 
(ng/ml) 

LP-2 0.0833 16 50054.33 6.77 340.00 510.75 
LP-2 0.0833 17 55579.63 7.52 380.25 609.50 
LP-2 0.0833 18 53756.67 7.27 325.50 538.50 
LP-2 0.5 13 40420.43 5.47 363.00 431.70 
LP-2 0.5 14 39862.3 5.39 309.20 412.00 
LP-2 0.5 15 44532.53 6.02 359.60 489.70 
LP-2 1 10 37300.67 5.04 301.25 407.65 
LP-2 1 11 19043.17 2.57 242.95 368.80 
LP-2 1 12 38101.7 5.15 263.25 395.85 
LP-2 1.5 16 35125.07 4.75 164.44 246.62 
LP-2 1.5 17 42309.7 5.72 104.30 325.84 
LP-2 1.5 18 42043.6 5.68 167.20 270.98 
LP-2 3 10 33004.43 4.46 111.01 165.72 
LP-2 3 11 30312 4.10 97.74 142.85 
LP-2 3 12 28529.7 3.86 96.38 142.13 
LP-2 6 13 18295.63 2.47 27.53 37.74 
LP-2 6 14 29210.97 3.95 37.04 50.78 
LP-2 6 15 21594.03 2.92 37.19 55.93 
LP-2 12 16 17522 2.37 3.43 4.57 
LP-2 12 17 18025.3 2.44 4.06 5.85 
LP-2 12 18 14390.5 1.94 4.51 6.25 
LP-2 24 13 14792.73 2.00 < 2.50 < 5.00 
LP-2 24 14 7895.933 1.07 < 2.50 < 5.00 
LP-2 24 15 10666.23 1.447 < 2.50 < 5.00 
LP-2 36 10 3584.67 0.487 < 2.50 < 5.00 
LP-2 36 11 4340.41 0.59 < 2.50 < 5.00 
LP-2 36 12 2762.615 0.37 < 2.50 < 5.00 

   
Note: The shaded numbers were excluded from the data analysis, because less than 20 µl of 
plasma was collected for scintillation counting.  

  



 

60 

 

Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 
Lactone 
(ng/ml) 

LP-3 0.0833 25 66761.5 9.673651 4592.00 4504.50 
LP-3 0.0833 26 49349.4 7.150661 4197.50 3181.50 
LP-3 0.0833 27 56826.7 8.234112 2907.50 2178.00 
LP-3 0.6833 19 37025.7 5.364974 4475.50 3654.00 
LP-3 0.5 23 44122.3 6.393262 3417.00 2956.00 
LP-3 0.5 24 47202.5 6.839578 3859.00 3280.00 
LP-3 1 22 40269.2 5.834953 3735.50 2891.75 
LP-3 1 20 64331.4 9.321533 3974.00 3199.00 
LP-3 1 21 57744.2 8.367057 2822.00 2574.50 
LP-3 1.5 25 43558.4 6.311553 1503.50 1173.00 
LP-3 1.5 26 35190.9 5.099114 1934.00 1428.50 
LP-3 1.5 27 37821.6 5.480299 2188.00 1666.50 
LP-3 3 19 29230.1 4.235402 880.25 646.00 
LP-3 3 20 42131.3 6.104768 1337.50 1076.25 
LP-3 3 21 44280.6 6.416199 1238.70 992.00 
LP-3 6 22 21711.5 3.145967 205.40 186.10 
LP-3 6 23 14662.4 2.124562 106.70 87.70 
LP-3 6 24 25662.1 3.718404 299.46 255.00 
LP-3 12 25 11004.4 1.594523 17.20 15.95 
LP-3 12 26 13120.6 1.901157 20.98 22.38 
LP-3 12 27 7810.14 1.131679 16.78 15.27 
LP-3 24 22 5369.37 0.778014 < 2.50 < 5.00 
LP-3 24 23 2126.39 0.308111 < 2.50 < 5.00 
LP-3 24 24 5348.33 0.774966 < 2.50 < 5.00 
LP-3 36 19 1956.68 0.28352 < 2.50 < 5.00 
LP-3 36 20 3832.15 0.555273 < 2.50 < 5.00 
LP-3 36 21 3083.29 0.446765 < 2.50 < 5.00 
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Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 
Lactone 
(ng/ml) 

LP-4 0.0833 34 48367.7 6.520925 1669.50 645.25 
LP-4 0.0833 35 65571.1 8.840284 1823.75 701.25 
LP-4 0.0833 36 30227.8 4.075307 1227.50 476.25 
LP-4 0.5 31 52428.8 7.068441 1391.80 654.00 
LP-4 0.5 32 43830.1 5.909166 1652.80 740.00 
LP-4 0.5 33 58957.2 7.948599 1403.00 607.00 
LP-4 1 28 54692.7 7.37366 1512.80 677.30 
LP-4 1 29 48941.9 6.598338 999.80 438.00 
LP-4 1 30 51345.1 6.922337 1091.80 491.40 
LP-4 1.5 34 39856.5 5.373446 595.50 238.05 
LP-4 1.5 35 49924.2 6.730772 715.00 291.95 
LP-4 1.5 36 30019.9 4.047278 454.50 184.30 
LP-4 3 28 44141.3 5.951122 439.50 185.45 
LP-4 3 29 32126.3 4.331262 306.10 124.30 
LP-4 3 30 41302.8 5.568436 405.05 170.90 
LP-4 6 31 19529.9 2.633018 51.81 27.02 
LP-4 6 32 33907.4 4.57139 100.56 50.13 
LP-4 6 33 13024.5 1.755961 67.12 31.33 
LP-4 12 34 10647.9 1.435548 8.11 3.52 
LP-4 12 35 11154.8 1.503888 7.77 4.19 
LP-4 12 36 7448.83 1.00425 4.34 < 5.00 
LP-4 24 31 3594.56 0.484618 < 2.50 < 5.00 
LP-4 24 32 10566.5 1.424574 < 2.50 < 5.00 
LP-4 24 33 2447.22 0.329934 < 2.50 < 5.00 
LP-4 36 28 6851.85 0.923765 < 2.50 < 5.00 
LP-4 36 29 4908.4 0.66175 < 2.50 < 5.00 
LP-4 36 30 5395.16 0.727374 < 2.50 < 5.00 
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Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 Lac-
tone 

(ng/ml) 
LP-5 0.0833 43 46703.45 6.422776 6915.50 2796.50 
LP-5 0.0833 44 39884.35 5.246911 3625.00 1401.00 
LP-5 0.0833 45 44416.1 5.823845 6756.00 2729.50 
LP-5 0.5 40 42480.75 5.865556 3798.25 1566.00 
LP-5 0.5 41 50946.2 6.966093 3213.00 1337.50 
LP-5 0.5 42 60005.65 8.248725 5394.50 3779.50 
LP-5 1 37 46933.05 6.496248 4226.75 1521.50 
LP-5 1 38 45640 6.284752 2139.75 1373.25 
LP-5 1 39 42754.6 5.838697 3243.00 1244.25 
LP-5 1.5 43 29789.25 6.748423 3731.25 1195.00 
LP-5 1.5 44 30597.55 6.681367 1955.50 615.00 
LP-5 1.5 45 38893.05 7.889997 3479.00 1129.00 
LP-5 3 37 40204.2 5.516922 1597.00 462.90 
LP-5 3 38 39968.45 5.511408 1844.00 620.75 
LP-5 3 39 34129.15 4.705072 1411.40 460.50 
LP-5 6 40 33610.6 4.626987 407.10 147.20 
LP-5 6 41 36034.9 4.967052 441.00 163.60 
LP-5 6 42 46088.3 6.327466 551.10 205.20 
LP-5 12 43 21085.35 2.898026 61.95 21.22 
LP-5 12 44 18162.2 2.494727 53.53 16.91 
LP-5 12 45 22486.65 3.09108 57.38 17.60 
LP-5 24 40 30459.25 1.443656 < 2.50 < 5.00 
LP-5 24 41 30478.65 1.738491 < 2.50 < 5.00 
LP-5 24 42 38957 2.790538 2.99 < 5.00 
LP-5 36 37 9898.145 1.370118 < 2.50 < 5.00 
LP-5 36 38 6206 0.863244 < 2.50 < 5.00 
LP-5 36 39 4393.815 0.603769 < 2.50 < 5.00 
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Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 
Lactone 
(ng/ml) 

LP-6 0.0833 52 59487 24.25703 31410.00 13555.00 
LP-6 0.0833 53 56690.4 23.11666 29375.00 14065.00 
LP-6 0.0833 54 51023.1 20.8057 38485.00 17670.00 
LP-6 0.5 49 63818 26.02308 36815.00 12585.00 
LP-6 0.5 50 61045.8 24.89266 14970.00 6335.00 
LP-6 0.5 51 59457.3 24.24492 41255.00 18820.00 
LP-6 1 46 62035.1 25.29607 25510.00 7890.00 
LP-6 1 47 52115.5 21.25115 26770.00 9690.00 
LP-6 1 48 37775 15.40352 25382.50 8327.50 
LP-6 1.5 52 54677.2 22.29574 30260.00 9920.00 
LP-6 1.5 53 51277.4 20.9094 29747.50 10102.50 
LP-6 1.5 54 48961.7 19.96513 26292.50 8807.50 
LP-6 3 46 46475 18.95112 7051.00 1953.00 
LP-6 3 47 41556.2 16.94538 5553.50 1505.50 
LP-6 3 48 29734 12.12464 3150.00 998.00 
LP-6 6 49 50752.7 20.69544 2450.50 826.75 
LP-6 6 50 48918.7 19.94759 2687.00 962.50 
LP-6 6 51 46946.8 19.14351 2125.00 668.50 
LP-6 12 52 33390.5 13.61565 281.94 94.02 
LP-6 12 53 30202.7 12.31576 299.08 114.98 
LP-6 12 54 29822.3 12.16065 189.80 67.70 
LP-6 24 49 21630.3 8.820193 15.52 5.24 
LP-6 24 50 24325.8 9.919338 15.37 6.03 
LP-6 24 51 20517.2 8.366304 14.93 5.28 
LP-6 36 46 16090.8 6.56135 < 2.50 < 5.00 
LP-6 36 47 13228.3 5.394107 < 2.50 < 5.00 
LP-6 36 48 2644.43 1.07832 < 2.50 < 5.00 

   
Note: The shaded numbers were excluded from the data analysis, because less than 20 µl of 
plasma was collected for scintillation counting.  
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Expt # Time (hr) Mouse # Radioactivity
(DPM) 

Lipid 
concentration 

(mg/ml) 

DB-67 Car-
boxylate 
(ng/ml) 

DB-67 Lac-
tone 

(ng/ml) 
LP-7 0.0833 61 21422.3 0.960144 518.75 145.00 
LP-7 0.0833 62 35597.5 1.595474 903.40 288.00 
LP-7 0.0833 63 44847.4 2.010052 790.30 268.40 
LP-7 0.5 58 40381 1.809869 1237.10 402.10 
LP-7 0.5 59 44742.2 2.005337 1040.60 318.40 
LP-7 0.5 60 32206.8 1.443503 596.10 161.50 
LP-7 1 55 57495.7 2.576947 1215.40 220.80 
LP-7 1 56 40493.9 1.814929 791.50 125.50 
LP-7 1 57 41387.9 1.854998 745.70 113.90 
LP-7 1.5 61 19629 0.879768 321.60 30.70 
LP-7 1.5 62 40857.6 1.83123 482.40 67.55 
LP-7 1.5 63 47495.3 2.128731 505.95 67.30 
LP-7 3 55 46615.6 2.089303 497.90 52.15 
LP-7 3 56 34192.1 1.532484 290.60 28.75 
LP-7 3 57 28681.3 1.285491 269.80 27.20 
LP-7 6 58 32427.2 1.453381 80.31 14.20 
LP-7 6 59 16154.7 0.724051 62.34 10.36 
LP-7 6 60 21302.6 0.954779 53.22 8.79 
LP-7 12 61 13228.3 0.59289 5.99 < 5.00 
LP-7 12 62 25845.1 1.158373 11.89 < 5.00 
LP-7 12 63 23313.1 1.044889 12.18 < 5.00 
LP-7 24 58 8093.75 0.36276 < 2.50 < 5.00 
LP-7 24 59 7217.55 0.323489 < 2.50 < 5.00 
LP-7 24 60 5656.85 0.253539 < 2.50 < 5.00 
LP-7 36 55 12833.3 0.575186 < 2.50 < 5.00 
LP-7 36 56 6993.26 0.313437 < 2.50 < 5.00 
LP-7 36 57 3657.24 0.163917 < 2.50 < 5.00 
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