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THESIS ABSTRACT 
 
Madeline A. Chase 
 
Master of Science 
 
Department of Biology 
 
March 2018 
 
Title: Phylogenetics and the Genomic Consequences of Divergence in a Radiation of 

Monkeyflowers 
 
 

Understanding the forces that drive divergence, and the genomic consequences of 

this process, is a central goal in evolutionary biology. Evolutionary radiations provide 

excellent opportunities to study speciation, as taxa span a continuum of divergence. 

However, inherent features of radiations resulting from rapid diversification create 

challenges for inferring evolutionary history. In this thesis, I address outstanding 

questions relating to the process of divergence in a diverse radiation of monkeyflower, 

the Mimulus aurantiacus species complex. I first use reduced representation sequencing 

to infer evolutionary relationships, examine patterns of phenotypic evolution among taxa, 

and assess previous taxonomic treatments. I then employ whole genome sequencing of 

samples from across the radiation to examine phylogenetic discordance and to understand 

what forces shape patterns of genome-wide variation among taxa. This work furthers our 

understanding of factors that drive diversification and the genomic consequences of 

divergence.  

This thesis includes previously published and unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION 

Understanding how organisms diverge and diversify during the speciation process 

is a central goal in evolutionary biology. The remarkable power of speciation is apparent 

when we consider evolutionary radiations – groups of taxa that display rapid bursts of 

diversification from a single common ancestor and that are accompanied by extensive 

phenotypic or ecological divergence (Schluter 2000). Because taxa in radiations span a 

continuum of divergence, they offer excellent opportunities to dissect the evolutionary 

processes driving diversification and the genomic consequences of lineage splitting.  

Radiations can provide amazing insights into the power of natural selection and 

adaptation, however, inferring the evolutionary history of divergence remains a 

considerable challenge. For example, incomplete lineage sorting and ongoing gene flow 

across porous species boundaries (i.e., introgression) complicate the reconstruction of 

evolutionary relationships but are natural outcomes associated with the rapid timing 

between speciation events that defines radiations (Heliconius Genome Consortium 2012; 

Lamichhaney et al. 2015; Mallet et al. 2016; Pease et al. 2016; Wallbank et al. 2016). As 

a consequence, relatedness among taxa varies across the genome, which leads to genomic 

regions with diverse histories that do not match the species branching order (Fontaine et 

al. 2012; Gante et al. 2016; Richards and Martin 2017). The complex evolutionary 

history, combined with the common features of phenotypic convergence and divergence 

(Schluter 2000; Berner and Salzburger 2015), means that phylogenetic relatedness may 

be of little predictive power for determining patterns of phenotypic evolution. Thus, 

taxonomic treatments of radiations may be incomplete if they rely solely on phenotypic 

information to assign classifications, and efforts to understand the history of phenotypic 

evolution may be misled if interpreted only in the light of a species tree (Hahn and 

Nakhleh 2016). Therefore, genome-wide analyses are necessary to infer evolutionary 

relationships when these conflicts are common.  

Until recently, DNA sequences from only a handful of genes were available to 

infer relationships among taxa. However, advances in sequencing technology over the 

past decade now provide access to data from across entire genomes, even for non-model 

organisms. This increase in data availability has allowed for unprecedented resolution of 
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evolutionary relationships across many radiations (Emerson et al. 2010; Heliconius 

Genome Consortium 2012; Wagner et al. 2013; Eaton and Ree 2013; McCluskey and 

Postlethwait 2015; Pease et al. 2016; Wessinger et al. 2016). In addition, whole genome 

sequence data now allow us to address many outstanding questions related to the process 

of divergence, including: how does lineage sorting vary across the genome? What 

processes are responsible for shaping patterns of genetic variation across lineages? And, 

how do levels of differentiation across the genome evolve?  

One of the major open areas in the field of evolutionary genomics is to explain the 

processes that are responsible for generating patterns of genome-wide differentiation 

between taxa. A frequent observation is that genetic differentiation does not evolve in a 

uniform fashion across the genome (Turner et al. 2005; Hohenlohe et al. 2010; Ellegren 

et al. 2012; Martin et al. 2013; Soria-Carrasco 2014; Poelstra et a. 2014; Renaut et al. 

2013; Lamichhaney et al. 2015; Malinsky et al. 2015; Vijay et al. 2016). Instead, a 

heterogeneous pattern of peaks and valleys is almost always observed between taxa. 

Peaks of elevated differentiation were originally referred to as “islands of speciation,” as 

it was assumed that they harbored loci directly involved in reproductive isolation, while 

the rest of the genome was homogenized through gene flow (Wu et al. 2001; Turner et al. 

2005). The simplicity of this interpretation, the ease of testing it with genome scans, and 

the fact that islands are almost always found, have resulted in numerous conclusions that 

speciation occurred in the face of gene flow (Turner et al. 2005; Nosil 2008; Ellegren et 

al. 2012; Nadeau et al. 2012; Poelstra et al. 2014).  

However, despite the excitement that it might be possible to identify the genomic 

regions controlling reproductive isolation, recent work has demonstrated that 

heterogeneity in measures of differentiation and divergence had little or nothing to do 

with the process of speciation per se. Rather, they noted that peaks of differentiation were 

the inevitable outcome of variation in intrinsic features of the genome that shaped 

patterns of nucleotide diversity across the genome (Cruickshank and Hahn 2014; Burri et 

al. 2015; Van Doren et al. 2017; Vijay et al. 2017). Support for this interpretation comes 

from the observation that genome-wide patterns of differentiation, divergence, and 

diversity (hereafter referred to as genomic landscapes) were strongly correlated among 

different taxonomic comparisons. As these species tend to live in different habitats and/or 
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have been diverged for long periods of time (millions of years in some cases), correlated 

peaks across multiple comparisons are unlikely to have evolved via repeated instances of 

divergent selection. Thus, other explanations for these correlations have been proposed, 

including the long-term action of purifying selection against deleterious mutations that 

removed linked neutral variation (i.e. linked background selection). This model has been 

supported further by the fact that levels of differentiation, divergence, and diversity were 

correlated not only with each other, but also with variation in intrinsic features of the 

genome that impact the extent of background selection, such as gene density and 

recombination rate. Although background selection has been shown to shape patterns of 

diversity and differentiation in many taxa, the available data are taxonomically limited, 

making it unclear whether this phenomenon is common across diverse forms of life.  

In this thesis, I examine the evolutionary genomic processes that have contributed 

to divergence within a recent radiation in a group of wildflowers commonly known as the 

bush monkeyflowers (Mimulus aurantiacus species complex). The radiation lies within 

the genus Mimulus, which itself represents a radiation across western North America, 

with around 100 species that vary in life history strategies, mating systems, and habitat 

types (Wu et al. 2008; Twyford et al. 2015). Specifically, the section Diplacus that 

contains the bush monkeyflowers is a group of phenotypically diverse perennial shrubs 

distributed across semi-arid chaparral habitats, deserts, higher elevations, and islands in 

California. Due to extensive hybridization in regions where taxonomic boundaries 

overlap, there has been considerable controversy among taxonomists on how to delineate 

this diversity, with some treatments describing as many as thirteen species but others that 

recognized only two species. The radiation spans a broad range of divergence times and 

thus provides an excellent opportunity to study the impact of varying evolutionary forces 

at different stages of speciation.  

In Chapter 2, I use reduced representation sequencing approaches to determine 

evolutionary relationships among taxa, examine patterns of phenotypic evolution, and 

discuss issues surrounding the group’s taxonomy. The work in this chapter has been 

previously published with the co-authors Sean Stankowski and Matthew Streisfeld. In 

Chapter 3, I then employ whole genome sequencing from samples across the radiation to 

investigate the factors that shape patterns of genetic variation and the evolution of 
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genomic landscapes of differentiation. This chapter includes unpublished work with the 

co-authors Sean Stankowski, Allison Fuiten, and Matthew Streisfeld. Ultimately, this 

work furthers our understanding of the evolutionary processes that are responsible for 

driving divergence in a diverse radiation, and reveals the evolution of the genomic 

landscape primarily occurs due to factors unrelated to the processes of adaptation and 

speciation. 

 

CHAPTER II 

GENOMEWIDE VARIATION PROVIDES INSIGHT INTO EVOLUTIONARY 

RELATIONSHIPS IN A MONKEYFLOWER SPECIES COMPLEX (MIMULUS SECT. 

DIPLACUS) 

From  Chase, M.A., Stankowski, S. and Streisfeld, M.A., 2017. Genomewide variation 
provides insight into evolutionary relationships in a monkeyflower species complex 
(Mimulus sect. Diplacus). American Journal of Botany, 104(10), pp.1510-1521. 

 

INTRODUCTION 

Evolutionary radiations provide excellent opportunities to study the processes that drive 

phenotypic divergence and speciation. However, because rapid divergence is a hallmark 

of radiations, past efforts to infer evolutionary relationships among their taxa often have 

been unsuccessful due to the low levels of sequence variation contained in one or a few 

genes (Qiu et al. 1999; Wolfe et al. 2006; Jarvis et al. 2014). Advances in sequencing 

technology have overcome this limitation by greatly expanding the amount of the genome 

that can be queried. For example, reduced representation techniques, like restriction site 

associated DNA sequencing (RADseq), can be used to obtain data from thousands of 

genomic regions that can be combined in a single analysis (Miller et al. 2007; Baird et al. 

2008). This approach has allowed relationships to be resolved in some radiations for the 

first time (Emerson et al. 2010; Heliconius Genome Consortium 2012; Wagner et al. 

2013; Eaton & Ree 2013; McCluskey and Postlethwait 2015; Wessinger et al. 2016; 

Pease et al. 2016). 

 Although genome-wide phylogenies provide an excellent framework for 

understanding the history of radiations, a single bifurcating topology also may obscure 

important details about the divergence process (Hahn & Nakhleh 2015, Mallet et al. 
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2016). This is because the genomes of recently-radiated taxa often are complex 

genealogical mosaics that have been shaped by a range of processes, including 

incomplete lineage sorting and introgressive hybridization (Mallet et al. 2016; Pease et al. 

2016). Although these processes were once considered to generate noise that prevented 

the resolution of taxon-level relationships, recent studies have shown that they often are 

important sources of adaptive alleles that can drive speciation (Heliconius Genome 

Consortium 2012; Lamichhaney et al. 2015; Pease et al. 2016; Wallbank et al. 2016). 

Thus, a holistic understanding of relationships within radiations requires integrated 

approaches using both tree based and non-tree based analyses that can reveal both 

patterns of divergence and sources of shared variation among taxa. 

These new insights from genomic data also have sparked discussion about the 

nature of species, which has important implications for how we choose to delineate them. 

Although reproductive isolation always has been the cornerstone of the biological species 

concept (BSC) (Mayr 1995), we now know that speciation is a continuous process, and 

radiations will contain taxa at different stages of divergence. During this process, 

reproductive barriers can remain highly porous for long periods of time (Rieseberg et al. 

1999; Turner et al. 2005; Harrison and Larson 2014). Indeed, the genic view of speciation 

suggests that divergence occurs heterogeneously across the genome (Wu 2001), such that 

the loci that underlie isolating traits become differentiated before the rest of the genome 

(Turner et al. 2005; Ellegren et al. 2012; Malinsky et al. 2015; Vijay et al. 2016). 

Therefore, even taxa at intermediate levels of divergence typically continue to share 

alleles, leading to a "gray zone" where species concepts fail to reflect the realities of 

biological diversity (Mallet et al. 2016; Roux et al. 2016). These issues are paramount to 

the way that we consider patterns of taxonomic diversity in radiations, and they indicate 

the need for a more fluid, modern view of speciation that takes into account the 

continuous and multifaceted nature of the process.	

 In this study, we combine genomic and morphological data to shed light on 

evolutionary relationships within a recent radiation of monkeyflowers. Mimulus section 

Diplacus (Phrymaceae) is a monophyletic group of perennial shrubs distributed mainly in 

California (Beardsley et al. 2004). The phenotypically and ecologically diverse group 

(Fig 2.1A) consists of at most thirteen previously described taxa that are interfertile and 
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continue to hybridize in narrow areas where their geographic ranges overlap. Although 

evolutionary studies have focused primarily on divergence between two parapatrically 

distributed taxa in San Diego county (Streisfeld and Kohn 2005; Streisfeld and Kohn 

2007; Sobel and Streisfeld 2015; Stankowski et al. 2015; Stankowski et al. 2017), little is 

known about the evolutionary history of divergence across the rest of the radiation. One 

reason for this is that the relationships among taxa remain unclear, as phylogenetic 

analyses have been limited to a handful of genes and included only some of the taxa 

(Beardsley et al. 2004; Stankowski and Streisfeld 2015).  

In addition to an incomplete understanding of evolutionary relationships, 

taxonomists have struggled to describe the extensive phenotypic diversity within 

Diplacus. As a consequence, there have been 12 different taxonomic revisions over the 

past century (Fig 2.1B; Grant 1924; Munz 1935, 1959, 1973; McMinn 1951; Pennell 

1951; Beeks 1962; Thompson 1993, 2005, 2012; Tulig 2000; Tulig and Nesom 2012). As 

few as two and as many as thirteen species have been described, and many of the 

treatments also recognize additional subspecies or varieties. For example, the two most 

recent taxonomies were both published in 2012, but they differ dramatically in how they 

delimit the taxa. Thompson (2012) recognized two species, one of which included six 

varieties. By contrast, Tulig and Nesom (2012) split this same variation into thirteen 

species, three of which were reported to be of hybrid origin. While much of the 

disagreement about the number and status of species results from the absence of intrinsic 

barriers to gene flow and the natural hybridization that occurs across their ranges 

(McMinn 1951; Beeks 1962; Streisfeld and Kohn 2005), these taxonomic conclusions 

were based entirely on phenotypic data. Therefore, integrating genomic data with this 

phenotypic information will allow for an explicit evaluation of these taxonomic 

hypotheses. 
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Figure 2.1. Morphological diversity and taxonomic history within Mimulus sect. 

Diplacus. (A) Representative photos in front and side view of some of the floral diversity 
present in Mimulus sect. Diplacus. Taxa included here are (a) M. australis, (b) M. 
puniceus, (c) M. longiflorus, (d) M. rutilus, (e) M. calycinus, (f) M. aurantiacus, (g) M. 

aridus, (h) M. parviflorus, (i) M. grandiflorus, and (j) M. clevelandii. (B) A summary of 
the 12 taxonomic revisions that have been published over the past century, beginning 
with Grant (1924). Across the different treatments, species status is represented by 
colored rectangles, and subspecies or variety status is represented by smaller rectangles 
with black outlines that occur within the colored rectangle for a species. The color of the 
box is associated with the name given by Tulig and Nesom (2012), presented to the right 
of the figure. Other names previously used to define taxa are included in parentheses. The 
location of the taxon names lines up with their treatment in each taxonomy. Hatched 
boxes indicate that a taxon is described as a hybrid species, with the color of the two lines 
representing the proposed progenitor species. 
 

In this study, we use a combination of phylogenetic and population genomic 

approaches to elucidate the evolutionary history and patterns of shared variation among 

taxa in section Diplacus. In addition, we combine phylogenomic and morphological data 

from a nearly complete sampling of taxa to explore patterns of phenotypic evolution 

across the group. In doing so, we provide a critical assessment of previously published 
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taxonomic hypotheses in the light of new genomic analyses. This work will inform 

conservation and management practices, and it provides a framework for future 

taxonomic treatments of this group. Finally, this work creates new opportunities for 

comparative evolutionary, ecological, and genomic studies of the history of divergence in 

this species complex. 

  

METHODS 

Study system 

Members of Mimulus section Diplacus are perennial shrubs that vary most notably in 

floral characteristics (Fig. 2.1A). They occur throughout semi-arid regions of California, 

including most coastal sage scrub and inland chaparral communities, as well as some 

mountain peaks and deserts (Beeks 1962). Hummingbirds and insects are their primary 

pollinators (Grant 1994), and their preferences have been suggested to play an important 

role in the divergence of some taxa (Grant 1993; Streisfeld and Kohn 2007). Intrinsic 

crossing barriers appear to be absent among all taxa, with the exception that crosses 

involving M. clevelandii Brandegee frequently were unsuccessful (McMinn 1951). This 

suggests that significant reproductive isolation exists between M. clevelandii and other 

members of the group. Consistent with this observation, all previous taxonomies 

recognize M. clevelandii as a separate species.  

 By contrast, there has been little consensus about the ranks of other taxa (Fig 

2.1B). With the exception of Thompson (1993; 2005; 2012), who treated most taxa as 

varieties of the species M. aurantiacus Curtis, all other treatments consistently 

recognized six species (M. aridus Abrams, M. parviflorus Greene, M. puniceus Nutt., M. 

longiflorus Nutt., M. grandiflorus Groenland, and M. aurantiacus; Fig 2.1B). Although 

M. stellatus Kellogg is also treated consistently as a species, it has not been collected 

since 1940 (McMinn 1951), and most taxonomists make no mention of it other than 

noting it was recognized as a species by Grant (1924). As a consequence, we do not 

consider M. stellatus further in this study. The remaining taxa have been more 

controversial. For example, M. calycinus Eastw. and M. rutilus A.L. Grant have been 

described either as separate species (McMinn 1951; Beeks 1962; Tulig 2000; Tulig and 

Nesom 2012) or as subspecies of M. longiflorus (Grant 1924; Munz 1935; Pennell 1951; 
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Munz 1959; Munz 1973). In addition, M. linearis Benth. has been described as a distinct 

species (Pennell 1951; McMinn 1951; Tulig 2000), a subspecies of M. longiflorus (Grant 

1924; Munz 1935), a subspecies of M. grandiflorus (Munz 1959; Munz 1973), and as a 

species of hybrid origin between M. aurantiacus and M. calycinus (Tulig and Nesom 

2012). Different treatments also have recognized M. lompocensis McMinn as both a 

subspecies of M. aurantiacus (Munz 1959; Munz 1973) and as a species of hybrid origin 

between M. aurantiacus and M. longiflorus (McMinn 1951; Tulig 2000; Tulig and 

Nesom 2012). Finally, M. australis McMinn ex Munz has been described as its own 

species (McMinn 1951), a subspecies of M. aurantiacus (Munz 1959; Munz 1973), and 

most recently, being of hybrid origin between M. puniceus and M. longiflorus (Tulig 

2000; Tulig and Nesom 2012). Each of these taxa has also at some point been considered 

a synonym of another, less controversial taxon (Fig 2.1B). Due to this extreme confusion 

over naming conventions, we choose to be as inclusive as possible with the taxonomy by 

addressing every previously described taxon without regard to species concepts. 

Therefore, unless otherwise noted, we refer to each taxon using its specific binomial 

epithet, according to Tulig and Nesom's (2012) treatment. 

 

Taxonomic and population sampling 

A recently published analysis of phylogenetic relationships included the eight 

most widely distributed taxa but avoided some of the more controversial groups (i.e., M. 

lompocensis, M. linearis, M. rutilus) (Stankowski and Streisfeld 2015). Additionally, 

some taxa were sampled across a limited portion of their geographic range (i.e. M. 

puniceus and M. australis). We include samples of these taxa here to provide a more 

complete examination of the group. Thus, our analyses included individuals from 12 taxa 

from section Diplacus and one outgroup species (M. kelloggii Curran, which is sister to 

Diplacus in section Oenoe; Beardsley et al. 2004).  

Leaf tissue was collected either from the field or from field-collected seeds grown 

in the University of Oregon greenhouses. For ingroup taxa, samples included between 

one and fourteen individuals across the taxon’s geographic range, totaling 73 individuals 

(Fig 2.2; Appendix A). One individual from the outgroup species M. kelloggii also was 

included. Samples were identified according to Tulig and Nesom (2012). Sixty-one of the 
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seventy-three ingroup individuals were sequenced previously (Stankowski and Streisfeld 

2015); the new individuals included here are two M. lompocensis, four M. rutilus, one M. 

parviflorus, one M. aridus, and two additional M. puniceus and M. australis from the 

northern portion of their range.  

 

 

Figure 2.2. Geographic range and distribution of sampled individuals.  Red dots 
represent the sampling locations used in this study. Population codes that begin with the 
letter "T" followed by a number indicate populations that were sampled previously for 
floral trait data by Tulig (2000). The region depicted by the inset in southern California is 
shown by the dashed line.  
 

Forty-five of our samples come from locations that were previously visited by 

Tulig (2000) in a study of floral trait variation. Therefore, morphological data are 

available for these populations (described below). Although hybridization is known to 

occur between some taxa, we avoided sampling from zones of contact, because we did 

not want our analysis of broadly distributed taxa to be impacted by dynamics in narrow 

hybrid zones (except in the case of M. rutilus, which only occurs within populations 

described as M. longiflorus).  
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Analyses of evolutionary relationships  

To generate genome-wide data to infer the evolutionary history of section 

Diplacus, we used Illumina sequencing of restriction site associated DNA tags 

(RADtags). DNA was isolated using a modified CTAB extraction described by Sobel and 

Streisfeld (2015), or ZYMO Plant/Seed DNA miniprep kits. RAD libraries were then 

prepared using the PstI restriction enzyme, followed by single-end 100-bp Illumina Hiseq 

2000 sequencing, according to methods described previously (Etter et al. 2011; Sobel and 

Streisfeld 2015). We used the process_radtags module of the Stacks v. 1.35 package 

(Catchen et al. 2013) to remove reads with low quality or uncalled bases. Errors in the 

barcode and restriction site sequences were corrected prior to downstream analysis. 

Reads were aligned to an initial draft reference assembly from M. puniceus (described in 

Stankowski et al. 2017) using the very-sensitive settings of bowtie2 (Langmead and 

Salzberg 2012). Loci were constructed with the ref_map.pl script in Stacks v. 1.35 

(Catchen et al. 2011; Catchen et. al. 2013). Single nucleotide polymorphisms (SNPs) 

were identified for our phylogenetic analysis using the populations module in Stacks v. 

1.35, requiring that SNPs were present in at least 90% of the individuals and had a 

minimum minor allele frequency of 0.02 to exclude any SNPs found in a single 

heterozygote. 

To infer relationships among samples, we used a maximum-likelihood method, 

implemented in RAxML v. 8.2.3 (Stamatakis 2014). For each sample, we generated an 

alignment of all 24,699 polymorphic 95-bp RAD-tags, which included invariant sites 

(specified using the --phylip_var_all flag in populations). Methods of phylogenetic 

reconstruction were developed for the use of sequence data that include invariant sites; 

therefore, using whole RAD-tags is more appropriate than including only polymorphic 

sites (Stamatakis 2014). RAxML was run using the GTR+GAMMA model of nucleotide 

substitution. Support for each node was obtained by running 100 bootstrap replicates. 

Previous analyses using Bayesian, distance, and coalescent-based approaches yielded 

qualitatively similar results (Stankowski and Streisfeld 2015). 

Closely related populations often share high levels of sequence variation as a 

result of both incomplete lineage sorting (ILS) and ongoing hybridization (Lamichhaney 

et al. 2015; Mallet et al. 2016; Hahn and Nakhleh 2016; Pease et al. 2016). Therefore, 
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forcing individuals to conform to a bifurcating tree may obscure the complex 

evolutionary history of a group (Huson and Bryant 2006). We therefore also constructed 

a split network using the program SplitsTree v4 (Huson and Bryant 2006). This method 

allows us to visualize more complex signals in the data by adding splits that are not 

permitted in a bifurcating tree. 

We then used the Bayesian clustering algorithm implemented in Structure 2.3.4 

(Pritchard et al. 2000) as an alternative method for inferring patterns of ancestry within 

Diplacus. Unlike phylogenetic methods, Structure analysis reveals shared variation 

among inferred genetic groups, which could result from admixture or ancestral 

polymorphism. Because the phylogenetic analysis revealed four major clades, we 

conducted six replicate runs at K = 4, assuming the admixture model, correlated allele 

frequencies, 50,000 iterations of burn-in and 200,000 iterations of sampling. Additional 

runs were added with subsets of the individuals to address hypotheses that emerged from 

the phylogenetic analysis (see below). M. clevelandii and M. kelloggii were not included 

in these analyses. Due to computational limitations, we used a reduced dataset of 6095 

SNPs, generated by including one SNP per RAD-tag and a minimum minor allele 

frequency of 0.15. Results from each run were evaluated using Structure Harvester (Earl 

2012), and multiple runs were summarized in CLUMPP (Jakobssen and Rosenberg 

2007).   

 

Tests for introgressive hybridization 

Of the four primary clades identified in the phylogenetic analysis, one clade 

(Clade D) was especially diverse and contained up to six described taxa from southern 

California. Although three sub-clades are evident in the phylogenetic analysis, Structure 

revealed substantial levels of shared variation among the sub-clades. To investigate 

whether this shared variation reflects ancestral polymorphism or recent gene flow, we 

calculated Patterson’s D statistic (Green et al. 2010). Patterson’s D is calculated using 

four taxa with the relationship (((P1, P2), P3), O) and provides a test for introgression 

between the donor population, P3, and either of the two ingroup taxa, P1 and P2 (Green et 

al. 2010). The statistic is calculated as the ratio of SNPs that fits an ABBA pattern to the 

number of SNPs that fits a BABA pattern across the four taxa, where A is the ancestral 
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allele and B is the derived allele. Under random sorting of ancestral variation, the number 

of SNPs fitting both patterns is expected to be equal; however, an excess of either pattern 

indicates introgression has occurred between the donor taxon and one of the ingroup taxa 

(Green et al. 2010). The taxa used in this dataset include M. longiflorus (P1), M. 

calycinus (P2), M. australis and M. puniceus (P3), and M. grandiflorus (O). M. australis 

and M. puniceus were combined to form P3, because the two formed a single 

phylogenetic group (see results). Two M. calycinus individuals that grouped in Clade C 

and showed high levels of admixture (see results) were not included in this analysis. 

SNPs included in this dataset were required to be present in 90% of the individuals 

included, and to have a minimum minor allele frequency of 0.02. To reduce the effects of 

linkage, we included only a single SNP per RADtag. We did not require SNPs to be fixed 

within a taxon, and 16,920 polymorphic sites were included in the analysis. To assess if 

D was significantly different from 0, we followed the approach of Eaton and Ree (2013) 

to calculate a p-value from the Z-score obtained from 1000 bootstrap replicates of the test 

statistic.  

In addition to exploring the origins of shared variation revealed by our analyses, 

we tested Tulig’s (2000) hypothesis that M. australis is of hybrid origin between M. 

puniceus and M. longiflorus. Tulig (2000) used multivariate analysis of floral traits (see 

below) to identify two groups that differed in flower size. The small-flowered group 

included M. puniceus, M. aurantiacus, and M. parviflorus, while the large-flowered 

group included M. grandiflorus, M. longiflorus, and M. calycinus. Populations of M. 

australis were intermediate in size and overlapped with populations of M. lompocensis, 

which McMinn (1951) previously suggested was of hybrid origin. Tulig (2000) took 

these patterns to be evidence that M. australis also is of hybrid origin. Tulig and Nesom 

(2012) further speculated that, based on their geographic range and phenotypic similarity, 

M. longiflorus and M. puniceus were likely to be the progenitors of modern day M. 

australis.  

We used the F3 test (Reich et al. 2009) to ask whether there was genomic 

evidence that M. australis arose through hybridization between M. longiflorus and M. 

puniceus. The F3 test compares three populations, X, Y, and W, and evaluates whether Y 

is of mixed ancestry between X and W. The test is calculated by measuring the allele 
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frequency difference between Y and either X or W, and taking the product of the two 

values. In this case, we combined all M. australis individuals as population Y, and M. 

puniceus and M. longiflorus were populations X and W, respectively. A negative value 

would support the hybrid origin of M. australis and a non-negative value would refute it. 

The F3 statistic was calculated from the dataset used to calculate Patterson’s D, with 

3204 sites polymorphic among these three taxa. We applied the same bootstrap approach 

as described above to determine the significance of the observed F3 statistic. The F3 and 

Patterson’s D statistics were calculated using ADMIXTOOLS (Patterson et al. 2012).  

 

Analyses of floral trait data 

Previous studies used morphological characteristics — mainly floral traits — to 

delimit taxa in Diplacus (Pennell 1951; McMinn 1951; Beeks 1962; Munz 1973; Tulig 

and Nesom 2012; Thompson 2012). However, given that 12 revisions have been 

published over the past century, a critical assessment of the taxonomic utility of floral 

traits is warranted. Indeed, the two most recent treatments differ considerably in how taxa 

are delimited (Thompson 2012; Tulig and Nesom 2012; Fig. 2.1B). Therefore, we used 

an existing morphometric dataset that consisted of 18 floral traits that were measured on 

1-30 plants from 45 of our collection sites (mean = 6 plants per site; SD = 4.17; Tulig 

2000; trait descriptions provided in Appendix B) to ask how well each of these treatments 

performed at delineating taxa. We performed separate discriminant function analyses 

(DFA) with either Tulig and Nesom’s (2012) taxonomy or Thompson’s (2012) taxonomy 

as the grouping variable. If morphological characteristics alone can be used to delineate 

taxa, we would expect that one of the treatments would assign individuals to taxa more 

reliably than the other. 

 In addition, by combining floral trait data with phylogenetic and population 

genomic analysis, we now have the capacity to test whether trait variation can be used to 

reconstruct an accurate picture of evolutionary relationships. Specifically, if traits have 

strong phylogenetic signal, individuals within the same clade should be more 

phenotypically similar than individuals in different clades. However, this relationship 

may be obscured by the effects of convergent and divergent phenotypic evolution, which 

are common during radiations (Berner and Salzburger 2015).  For example, we would 
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expect convergent evolution to result in phenotypic overlap among taxa from different 

clades, while divergence would cause pronounced phenotypic differences among taxa 

within clades. Therefore, to examine how trait variation is partitioned within and among 

clades, we summarized the multivariate trait data using a principal components analysis 

(PCA) and mapped the four phylogenetic clades in the bivariate space of the first two 

principal components. This approach separates samples based on the two largest sources 

of phenotypic variation across the entire dataset. Therefore, if these trait data reflect the 

evolutionary history of divergence, the first two principal components should correspond 

to the deepest evolutionary divisions in the group. However, convergent and divergent 

phenotypic evolution would prevent the accurate reconstruction of evolutionary history 

from these traits.  

 Finally, although it may be possible that the primary sources of floral trait 

variation fail to reflect the history of this group, there may be more subtle trait variation 

that does carry a phylogenetic signal. To test for such traits, we used DFA with 

phylogenetic clade as the grouping variable to examine how often individuals were 

assigned to clade using the 18 floral traits. If this analysis reliably assigns individuals to 

clade, then we can identify the traits that vary in accordance with the main evolutionary 

history of the group. All analyses of floral trait data were performed in R (R Core Team 

2015). 

 

RESULTS 

Evolutionary relationships within section Diplacus 

After quality filtering and aligning raw reads to the M. puniceus reference 

genome, an average of 69.8% of reads mapped uniquely when excluding M. kelloggii. 

The high percentage of reads aligning across taxa reflects the recent history of the group. 

In contrast, only 37.61% of the M. kelloggii reads aligned uniquely, as it is more distantly 

related to M. puniceus. The final dataset for phylogenetic analysis included 24,699 loci 

(RAD-tags), totaling 2,346,405 bp, with 68,889 variable sites. Of these loci, 38.3% were 

missing from M. kelloggii. After further filtering for Structure analyses, we retained 

6,095 of the most informative SNPs. 
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Phylogenetic analysis revealed four highly supported (100% bootstrap support) 

clades (A-D; Fig. 2.3A), consistent with those previously identified in Stankowski and 

Streisfeld (2015). Clade A consists of all samples of M. grandiflorus and M. linearis, 

which are reciprocally monophyletic. Clade B includes all samples of M. aridus and M. 

parviflorus, which are reciprocally monophyletic. Clade C contains M. aurantiacus as a 

monophyletic group, but also includes one M. lompocensis individual and two individuals 

that phenotypically resemble M. calycinus. Clade D contains the highest number of 

described taxa, including M. australis, M. puniceus, M. rutilus, M. longiflorus, the 

remaining M. calycinus samples, and one M. lompocensis individual. 

 

Figure 2.3. Evolutionary relationships within Mimulus sect. Diplacus. (A) Maximum-
likelihood tree illustrating the relationships among samples. Nodes with 100% bootstrap 
support are represented with two stars, and nodes with >90% bootstrap support are 
represented with one star. We identified four highly supported clades (A-D), which are 
labeled on the tree, with branches colored according to clade. (B) Taxonomic identity of 
samples that is based on the two most recent taxonomies. Colors in the rectangles 
correspond with Figure 1. Taxon names colored in red represent populations that contain 
red-flowered individuals. (C) Structure analyses that show ancestry scores (Q) for all 
samples at K = 4 (left), and only for Clade D at K = 3 (right). Individuals line up with tips 
of the phylogeny. Dashed lines separate the four clades.  
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By including M. kelloggii as an outgroup, we were able to test the phylogenetic 

position of M. clevelandii. Although M. clevelandii frequently has been described as a 

separate species (Fig. 2.1B), and was used as the outgroup in a past analysis (Stankowski 

and Streisfeld 2015), the only previous molecular phylogenetic analysis revealed that M. 

clevelandii grouped within the rest of the taxa (Beardsley et al. 2004). However, by 

rooting with M. kelloggii, we confirm that M. clevelandii indeed is sister to the remaining 

taxa. In addition to the phylogenetic tree, we illustrated relationships through a split 

network (Appendix C). This analysis highlights the deep division that separates Clades A 

and B from Clades C and D, and it reveals the complex nature of the relationships among 

taxa, especially within the rapidly radiating Clades C and D.  

 

Prevalence of shared variation between and within clades 

As an alternative to phylogenetic analysis, we used Structure to infer patterns of 

admixture among the individuals.  The analysis at K = 4 revealed clusters of individuals 

that largely agreed with the clades recovered in the phylogenetic analysis. However, it 

also revealed shared variation among Clades B, C, and D that was not apparent from the 

bifurcating tree (Fig. 2.3C). For example, we detected extensive admixture in the two M. 

lompocensis individuals and the two M. calycinus individuals that group within Clade C. 

The intermediate Structure scores of these M. calycinus individuals suggest that they are 

hybrids, so they were excluded from other analyses. In addition, consistent with previous 

evidence of introgressive hybridization (Stankowski and Streisfeld 2015), M. puniceus 

and M. australis from Clade D show some mixed ancestry with individuals in Clade B.  

 We performed an additional Structure analysis to test for divergence and 

admixture in Clade D. The Structure analysis at K = 3 recapitulated the three highly 

supported sub-clades from the phylogeny (one that includes both M. puniceus and M. 

australis, one that only includes M. calycinus, and one that includes M. longiflorus and 

M. rutilus). However, it also revealed extensive shared variation across all of Clade D 

(Fig. 2.3C). For example, southern populations of M. calycinus share some ancestry with 

individuals of M. longiflorus, and the four southern populations of M. longiflorus and M. 

rutilus share variation with individuals of M. puniceus and M. australis. 
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This shared variation may be due to retained ancestral polymorphisms or recent 

gene flow. In order to determine whether gene flow can explain some amount of shared 

variation among taxa, we performed an ABBA-BABA test within clade D. Because M. 

puniceus and M. australis are indistinguishable based on Structure analyses, we treated 

them as one taxon for this test. Moreover, since this test requires sister ingroup taxa, we 

used M. calycinus and M. longiflorus as the ingroups. Patterson’s D for the test was 

0.1672 (Table 2.1), which reflects a 16% excess of BABA sites over ABBA sites and 

suggests likely introgression between the M. australis and M. puniceus lineage and the M. 

longiflorus lineage. Bootstrap analysis revealed that the value of Patterson’s D was 

highly significant (Table 1, p < 0.00001). 

 

Table 2.1: Results from Patterson’s D and F3 tests.  

 

To address Tulig and Nesom's (2012) claim that M. australis is a hybrid species, 

we also tested whether M. australis individuals are significantly admixed between M. 

puniceus and M. longiflorus. The result from the F3 test, designed to measure whether 

population Y is admixed between populations X and W, was 0.024408, which is a 

significantly positive value (Table 2.1, p < 0.00001). This result suggests that M. 

australis is not the product of hybridization between M. puniceus and M. longiflorus, as 

proposed by Tulig and Nesom (2012). Although it is possible that M. australis arose due 

to hybridization between other taxa, neither the split network nor the Structure analysis 

provides substantial evidence for admixture that would support this conclusion. 

 

 

Test Comparison Test 

Statistic 

Z-score P- 

value 

BABA 

Sites 

ABBA 

Sites 

Total 

Sites 

D P1: M. longiflorus 

P2: M. calycinus  
P3: M. aus/pun  
O: M. grandiflorus  

0.1672 7.578 < 0.00001 196 140 16920 

F3 X: M. puniceus  

Y: M. australis 

W: M. longiflorus 

0.0244 6.135 < 0.00001 N/A N/A 3204 
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Patterns of phenotypic variation 

Both discriminant function analyses reliably assigned individuals to the set of taxa 

described by each taxonomic treatment. Tulig and Nesom’s (2012) treatment and 

Thompson’s (2012) treatment each correctly assigned 97.06% of the individuals into taxa 

(Fig 2.4A-B). Based on Tulig and Nesom’s (2012) treatment, the traits that loaded most 

highly on discriminant function 1 (DF1) were pedicel width (PDWD), corolla height 

(CRHT), and the length of the short filament (FSLN; Table 2.2). By contrast, width of the 

throat opening (THRO), calyx height (CAHT), and length of the lower central petal lobe 

(LLCL) loaded most strongly on discriminant function 2 (DF2). Based on Thompson’s 

(2012) treatment, the traits that explained most of the variation on both DF1 and DF2 

were pedicel width (PDWD), width of the throat opening (THRO), and length of the 

lower central petal lobe (LLCL). Thus, these traits appear to be most important in 

separating taxa. Notably, both taxonomies performed equally well at separating taxa 

based on this floral trait variation. Consequently, given the substantial differences 

between the taxonomic treatments, this analysis provides little guidance as to which 

taxonomy more accurately describes the diversity. 

Table 2.2: Loadings for the first two discriminant function axes using the taxonomy of 
Tulig and Nesom (2012) or Thompson (2012) as the grouping variable. Descriptions of 
trait name abbreviations can be found in Appendix B. 
 
 Tulig and Nesom (2012) Thompson (2012) 

  DF1 DF2 DF1 DF2 
CRLN -0.05332177 0.05981519 -0.098544301 0.049198411 
CULN 0.11349505 -0.027188252 -0.064752232 -0.178416174 
CLLN -0.11456936 -0.16278508 0.012548931 -0.061930311 
BLLN -0.09347819 0.196527236 -0.042122811 0.017305656 
UCOS 0.08753006 -0.074278674 -0.107440042 -0.083783893 
INFL -0.07794273 -0.104483587 -0.133694509 -0.01175704 
UCIS -0.0581908 -0.067652583 -0.036843668 0.004904862 
WLCL -0.08329381 -0.044438801 0.000161317 -0.026132869 
LLCL 0.09515379 0.383080129 0.461992819 0.447229467 
THRO -0.26309451 0.646242479 -0.384743181 0.683290511 
CRHT -0.56351185 0.213665212 0.145023746 -0.096769739 
CAHT 0.09380583 -0.598988778 -0.229591581 -0.239920631 
PDLN 0.07142001 0.040301165 0.100065766 0.149577015 
PDWD -1.461039 0.01673164 -0.44245656 -2.063862501 
CTLN -0.27308312 -0.329314029 -0.209082137 -0.092024316 
FLLN 0.3154864 -0.000242331 0.333242237 -0.148756483 
FSLN 0.35834455 0.092175164 0.131968689 0.153662132 
STLN -0.02811806 -0.00905903 0.080392938 0.116118715 
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To test whether floral trait variation can reconstruct evolutionary history, we 

performed a PCA with individuals colored by phylogenetic clade and performed a DFA 

with phylogenetic clade as the grouping variable. The first two principal components 

explained 84.9% of the variation among the 18 floral traits (PC1: 60.4%; PC2: 15.4%). 

However, rather than revealing a series of discrete groups, the samples were distributed 

along a continuum of phenotypic variation. In addition, there was almost no discrete 

clustering of samples from the same clade in PC space. Rather, individuals from different 

clades broadly overlapped one another.  The only exception was Clade B, which was 

distinct from the other three clades and formed two clusters corresponding to M. 

parviflorus and M. aridus. This analysis indicates that the largest sources of phenotypic 

variation present in the dataset do not separate the samples into distinct groups that 

correspond to the deep evolutionary divisions revealed by the phylogenetic and 

population genomic analyses. Alternatively, substantial phenotypic overlap exists among 

the individuals from Clades A and D, and among individuals from Clades C and D, 

indicating convergence on similar phenotypes across clades. Moreover, the distinctness 

of the two taxa in Clade B, and the well-studied differences in floral traits between the 

closely related M. puniceus and M. australis (Streisfeld and Kohn 2005; Stankowski et al. 

2015), reveal a complex history of phenotypic evolution in this group that involves both 

convergent evolution between clades and divergent evolution within clades. 

Although the most conspicuous traits do not carry a phylogenetic signal, more 

subtle characters might distinguish the major clades from one another. To test for such 

traits, we conducted a discriminant function analysis using phylogenetic clade as the 

grouping variable. In contrast to the PCA, the individuals within each clade were largely 

separated from each other across discriminant space and were correctly assigned to clade 

94.12% of the time (Fig 2.4D). Clade B is once again distinct from all other groups, but it 

no longer forms two separate clusters. Clades A and D are differentiated more clearly in 

discriminant space than in PC space, with only minor overlap between them. The greatest 

overlap occurred between Clades C and D, but there was less overlap evident than in the 

PCA. Pedicel width (PDWD) and the width of the throat opening (THRO) loaded most 
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heavily on these canonical axes (Table 2.3), suggesting that these traits carried the 

strongest phylogenetic signal based on the clustering of clades.  

 
Figure 2.4. Phenotypic variation within section Diplacus. (A-B) Discriminant function 
analyses on 18 floral traits, based on individuals from the 45 populations that were 
previously phenotyped by Tulig (2000). Individuals within each plot are grouped 
according to the taxonomy of (A) Tulig and Nesom (2012) or (B) Thompson (2012). (C) 
Principal component analysis on floral traits, with individuals colored according to 
phylogenetic clade, as identified in Figure 3. (D) Discriminant function analysis on floral 
traits using phylogenetic clade as the grouping variable. Individuals are colored by clade. 
Based on these 18 traits, individuals were correctly assigned to Clade A 94% of the time, 
Clade B 100% of the time, Clade C 93.3% of the time, and Clade D 90.8% of the time. 
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Table 2.3: Loadings for the first two principal components and first two discriminant 
functions using phylogenetic clade as the grouping variable. Descriptions of trait name 
abbreviations can be found in Appendix B. 
 

 

DISCUSSION 

 Evolutionary relationships in radiations can be complex, and their resolution often 

requires detailed sampling and integrated analyses. By combining phylogenetic, 

population genomic, and phenotypic analysis, we show that these monkeyflowers exhibit 

the hallmarks of a rapid radiation, including a range of diverse taxa at different stages of 

divergence, extensive shared variation across the group, and evidence for divergent and 

convergent phenotypic evolution. Our results also have taxonomic implications, and we 

discuss how they might inform a future revision. 

 

Patterns of divergence and shared variation across the radiation 

Our analysis of genomic data provides some of the first insight into the 

evolutionary history of this diverse group of monkeyflowers. Specifically, we show that 

the taxa are closely related but are at different stages of divergence, which creates 

exciting opportunities for comparative studies across the speciation continuum. For 

example, in the early stages of speciation, the genomes of taxa are thought to be largely 

Trait PC1 PC2 Clade DF1 Clade DF2 

CRLN 0.87484 0.38394 -0.007534267 -0.23149174 
CULN 0.64359 0.63356 0.133768577 0.03993585 
CLLN 0.67048 0.68768 0.082474462 -0.03988584 
BLLN 0.91132 -0.32478 -0.049643515 -0.0069482 
UCOS 0.90306 -0.31785 0.112837875 -0.21298351 
INFL 0.87773 -0.36545 0.065978965 -0.42316548 
UCIS 0.83717 -0.42061 -0.129622483 0.32149581 
WLCL 0.75442 -0.09692 0.050158241 -0.07255096 
LLCL 0.85984 -0.38537 -0.412127261 0.40931716 
THRO 0.87132 -0.34805 -0.791635928 0.09593173 
CRHT 0.83665 -0.22986 0.026632214 -0.18093956 
CAHT 0.71113 0.39742 0.203823105 -0.16578586 
PDLN -0.48729 -0.07971 -0.082918263 -0.07242255 
PDWD 0.84532 0.0959 1.750621312 1.4659284 
CTN 0.77697 0.53037 -0.019122676 0.20307343 
FLLN -0.67735 0.16934 0.121460739 0.44573151 
FSLN -0.74221 0.11235 0.083141571 -0.39595641 
STLN 0.52842 0.6334 -0.132464288 0.16109519 
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undifferentiated as a result of their very recent history (Rundle and Nosil 2005; Nosil 

2012). This is the case between M. puniceus and M. australis from clade D, which have 

divergent floral phenotypes as a consequence of pollinator-mediated selection (Streisfeld 

and Kohn 2007; Handlemann and Kohn 2014; Sobel and Streisfeld 2015), but do not 

form separate monophyletic groups in our phylogenetic analysis. In contrast, another pair 

of ecologically divergent taxa from Clade D, M. calycinus and M. longiflorus, form 

shallow monophyletic sister clades, suggesting they are at an intermediate stage of 

speciation (Beeks 1962; Grant 1993). A much more distantly related pair of taxa, M. 

parviflorus from Clade B and M. longiflorus from Clade D, are able to co-occur in 

sympatry on Santa Cruz Island off the coast of California despite hybridization between 

them (Wells 1980; M. Chase, personal observation). Future comparative, ecological, and 

genomic studies in these and other taxa will examine how the factors that generate and 

maintain diversity change with progress toward speciation.  

 While our phylogenetic analysis provides insight into the patterns of divergence 

between taxa, our population genomic analyses reveal a complex pattern of shared 

variation among taxa. Although incomplete lineage sorting probably accounts for most of 

the shared variation within and between clades, our analyses indicate that some is due to 

introgressive hybridization. Hybridization is a relatively common phenomenon in 

radiations, and in some cases, can be so extensive that relationships cannot be illustrated 

accurately with a tree (Malinsky et al. 2017). In Mimulus section Diplacus, many studies 

have noted hybridization between taxa in areas where their ranges overlap. Although this 

mixing has been a major cause of taxonomic conflict in this group (McMinn 1951; Beeks 

1962; Thompson 1993, 2005, 2012; Tulig 2000), our data indicate that hybridization does 

not have a major effect on the core structure of clades and taxa. Rather, hybridization 

probably occurs in areas that coincide with transitions between different environments. 

This is consistent with the observation that floral trait differences between the taxa are 

stable over large geographic areas, and that hybrid zones are narrow in comparison.    

 

Evidence for divergent and convergent phenotypic evolution 

By examining floral trait variation in combination with phylogenetic analyses, we 

show striking phenotypic similarity between comparatively distantly related taxa, and 
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remarkable dissimilarity between very closely related taxa. This pattern of convergent 

and divergent evolution has been observed in many rapidly diverging groups (Muschick 

et al. 2012; Heliconius Genome Consortium 2012; Mahler et al. 2013) and is common in 

adaptive radiations (Schluter 2000; Berner and Salzburger 2015).  

Multiple processes can cause the patterns of phenotypic evolution we observe. 

Divergent phenotypic evolution is thought to occur most commonly when populations 

adapt to contrasting environments, which can cause ecological isolating barriers to evolve 

(Rundle and Nosil 2005; Nosil 2012). Previous work indicates that this is the case 

between M. puniceus and M. australis, which show low levels of genomic differentiation 

despite selection on flower color and other floral traits (Streisfeld and Kohn 2005; 

Handelman and Kohn 2014; Stankowski et al. 2015).  However, in other cases, sister taxa 

are geographically isolated from each other. Thus, phenotypic divergence may be the 

result of neutral processes rather than adaptation (Schluter 2009). For instance, M. aridus 

and M. parviflorus have entirely distinct ranges, but they differ in flower color (Fig. 1) 

and are completely separated from each other in the DFA of floral traits (Fig. 2.4). Given 

their allopatric distributions, drift or selection may have played a role in their phenotypic 

divergence. Thus, further study is required to determine the evolutionary forces 

responsible for phenotypic divergence across different taxa.  

 Convergent phenotypic evolution also may arise through various processes. 

Shared features among clades could result from independent origins of a trait through 

new mutations, the sharing of ancestral polymorphisms, or through introgressive 

hybridization. The latter two possibilities may be especially common in systems marked 

by rapid diversification (Hahn and Nahkleh 2016), and they signal the need for caution 

when interpreting phenotypic evolution in the context of a phylogeny. Although our 

phylogeny reflects the demographic history of divergence, there are likely regions of the 

genome with discordant evolutionary histories, some of which may underlie adaptive 

traits. Indeed, previous work in this system has provided evidence that a mutation causing 

red flowers was shared between Clade B and M. puniceus through historical introgression 

(Stankowski and Streisfeld 2015). Future analyses, aided by an improved, chromosome-

level genome assembly, will allow us to reveal the underlying genomic features 

responsible for the patterns of divergent and convergent phenotypic evolution we 
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observe. In addition, these data will provide new opportunities to document the 

evolutionary history of ecologically important phenotypic transitions associated with 

adaptive divergence in a recent radiation. 

 

Taxonomic implications and recommendations for formal revision 

 Although our primary focus was to infer the evolutionary relationships in this 

group, this work has important taxonomic implications and highlights the need for a new 

revision of section Diplacus. Over the last century, all 12 of the published treatments 

disagree to some extent on the appropriate number and rank of the taxa described. This is 

most apparent in the two most recent treatments that were published in 2012 (Tulig and 

Nesom 2012; Thompson 2012), as our results indicate that neither one is better at 

describing the floral trait variation analyzed here. This uncertainty is especially 

problematic for managers and conservationists, as well as for evolutionary biologists, 

who are left without a clear conceptual framework for how to appropriately refer to the 

diversity in the group. While we do not provide a formal revision here, we present 

recommendations for future changes that are based on the integration of genomic and 

phenotypic analyses that emerge from this study.  

Five of the taxa that we examined have faced frequent revision, including M. 

calycinus, M. rutilus, M. linearis, M. lompocensis, and M. australis. Both M. calycinus 

and M. rutilus have been described previously as subspecies of M. longiflorus, and M. 

calycinus recently has been grouped together with M. longiflorus to form M. aurantiacus 

var. pubescens (Thompson 2005, 2012). Although the genomic and phenotypic data 

clearly separate M. calycinus from M. longiflorus, M. rutilus is not genetically distinct 

from M. longiflorus, even though they differ considerably in flower color (Fig. 2.1). 

Thus, based on these results, we would recommend that M. calycinus be treated as a 

distinct entity. However, given that red-flowered M. rutilus is found growing only within 

otherwise yellow-flowered populations of M. longiflorus, the genomic data suggest that 

M. rutilus should be recognized more appropriately as a simple flower color 

polymorphism that is restricted to a few geographic areas.  

M. linearis has had many proposed evolutionary histories, including being a 

subspecies of either M. longiflorus or M. grandiflorus, as well as being a species of 
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hybrid origin between M. aurantiacus and M. calycinus. Our data reveal that even though 

M. linearis and M. grandiflorus are geographically distinct from each other, they emerge 

as sister taxa in the phylogeny and the split network, and there is little shared variation 

between M. linearis and taxa from other clades. Therefore, it remains unclear whether a 

future taxonomic revision should consider M. linearis to be its own entity or a form of M. 

grandiflorus, as proposed previously (Munz 1959; Munz 1973; Thompson 2005; 

Thompson 2012).  

M. lompocensis has been described as a hybrid species between M. aurantiacus 

and M. longiflorus by several authors (McMinn 1959; Tulig 2000; Tulig and Nesom 

2012). The two individuals included in this study grouped in different clades in the tree 

and split network (Clades C and D), and they showed high levels of admixture in the 

Structure analysis. While these results are consistent with a history of hybridization, it 

will be necessary to determine if M. lompocensis is ecologically distinct from its 

presumed progenitors (Gross and Rieseberg 2004) prior to concluding that this admixture 

reflects a stable taxon of hybrid origin (as in Tulig and Nesom 2012) rather than a 

product of recent natural hybridization. 

Finally, M. australis has been described as a subspecies of M. aurantiacus, its 

own species, a species of hybrid origin, or in some treatments, M. australis has not been 

described at all (Grant 1924; Munz 1935; Pennell 1951; Beeks 1962; Thompson 1993; 

Thompson 2005; Thompson 2012). Based on the genomic data analyzed in the current 

study, M. australis is not distinguishable from M. puniceus, and the two are interdigitated 

in the phylogeny. In addition, populations described as M. australis show no evidence of 

being hybrids between M. puniceus and M. longiflorus (Table 2.1), as proposed 

previously by Tulig and Nesom (2012). Nevertheless, partial reproductive isolation has 

evolved between western red-flowered populations and eastern yellow-flowered 

populations (Sobel and Streisfeld 2015). Moreover, multiple floral and vegetative traits 

are differentiated along this same geographical transition (Stankowski et al. 2015; Sobel 

et al. in revision), indicating an early stage of ecological divergence between the taxa. 

Therefore, based on these data, we would not recommend that M. puniceus and M. 

australis be defined as distinct entities. However, even though no previous description of 

the red-flowered M. puniceus exists that also would include the yellow-flowered M. 
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australis, we suggest that future revisions incorporate these genomic and ecological 

patterns into a description that recognizes this divergence in the form of 'ecotypes' of the 

consistently recognized M. puniceus.  

In addition to delimiting taxa, a new treatment also must consider the appropriate 

taxonomic rank for each entity. The difficulty of assigning ranks at or below the species 

level for this group has been recognized for a long time, as demonstrated by McMinn 

(1951) who wrote: 

“. . . since complete agreement has not been reached by botanists as to the 
status of species, subspecies, and varieties, I have chosen to treat all these 
field entities (taxa) simply as binomials. Inasmuch as binomials to most 
botanists indicate species, I have endeavored not to use the word species 
when writing of these various entities. I must point out, however, that if 
sterility and geographical distribution tests were the main criteria applied    
in delimiting species and subspecies, then the field entities . . . probably 
would be classified as two taxonomic species, eleven subspecies, and 
numerous hybrids.” 
 

Although McMinn (1951) ends by considering the BSC as one way to delimit taxa, this 

statement foreshadowed the need for integrative taxonomic approaches that recognize the 

different stages of divergence present among taxa in radiations. In most of the previous 

treatments of this group, the rank employed appears arbitrary and often was not justified 

by the authors. However, given the interfertility, natural hybridization, and shared 

genomic variation present among taxa, we support the view by McMinn (1951), and 

more recently by Thompson (2012), who treated the taxa (with the exception of M. 

clevelandii) as intraspecific subspecies or varieties of M. aurantiacus. This view, which 

acknowledges the reproductive continuity and close relationships among these taxa, 

emphasizes our need to understand how and why so much diversity arose and has been 

maintained within this group.  

 With a thorough understanding of the evolutionary relationships among taxa in 

this radiation, we are able to examine the genomic consequences of divergence. In the 

following chapter, I apply the framework that is developed here to understand the process 

of lineage formation in this group in greater detail and to explore how variation is 

partitioned across the genome.  
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CHAPTER III 

MONKEYFLOWER GENOMES REVEAL THE TEMPORAL DYNAMICS OF 

LINKED BACKGROUND SELECTION ON PATTERNS OF  

GENETIC VARIATION 

This chapter includes unpublished work with other co-authors. The genome assembly and 

genetic map were performed by Matthew Streisfeld and Sean Stankowski. The genome 

annotation was performed by Allison Fuiten. I performed all other analyses. 

 

INTRODUCTION 

Understanding the processes that partition genetic variation among populations, 

lineages, and species is essential for understanding the origins of biodiversity (Lewontin 

1974; Seehausen et al. 2014; Wolf and Ellegren 2017). Until recently, efforts to study the 

evolutionary processes that have shaped patterns of diversity have been hampered by our 

inability to detect and adequately measure genetic variation (Lewontin 1974). Next-

generation sequencing has provided novel opportunities to characterize patterns of 

genetic variation across the genomes of many non-model organisms. However, 

interpreting patterns of genome-wide variation remains a formidable challenge, because 

many evolutionary processes can leave similar genetic signatures (Wolf and Ellegren 

2017; Ravinet et al. 2017). 

The challenge of inferring process from pattern is illustrated by recent efforts to 

interpret patterns of genome-wide differentiation in light of the speciation process. For 

example, many studies have revealed a heterogeneous pattern of genome-wide 

differentiation between taxa (Turner et al. 2005; Hohenlohe et al. 2010; Ellegren et al. 

2012; Martin et al. 2013; Renaut et al. 2013; Soria-Carrasco 2014; Poelstra et a. 2014; 

Lamichhaney et al. 2015; Malinsky et al. 2015; Vijay et al. 2015) A pattern of peaks and 

valleys of differentiation (FST), commonly referred to as the ‘genomic landscape,’ was 

originally interpreted as the consequence of local adaptation, with peaks of differentiation 

harboring loci that have become differentiated by selection in the face of gene flow (Wu 

2001). However, in contrast to this view, recent studies have shown that heterogeneous 

genomic landscapes can arise due to unrelated processes (Cruickshank and Hahn 2014; 
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Burri et al. 2015; Burri. 2017a; Ellegren and Wolf 2017; Ravinet et al. 2017; Vijay et al. 

2017; Wolf and Ellegren 2017).  

Long-term linked selection can have a profound impact on patterns of genome-

wide variation (Hahn 2008; Burri 2017a; Ellegren and Wolf 2017; Ravinet et al. 2017). 

Linked selection describes the combined effects of purifying selection against deleterious 

mutations and positive selection on globally beneficial alleles, which causes reductions in 

diversity (π) and effective population size (Ne) and leads to increased genetic 

differentiation (FST) and faster rates of lineage sorting (Charlesworth et al. 1993; Cutter 

and Payseur 2013). Several recent studies, primarily based on different bird genomes, 

have found empirical support for linked selection as a primary driver of genomic 

landscapes of genetic differentiation, indicating that it can be a major force shaping 

patterns of genome-wide variation (Poelstra et al. 2014; Burri et al. 2015; Burri 2017a; 

Burri 2017b; Ellegren and Wolf 2017; Van Doren et al. 2017; Vijay et al. 2017). 

However, empirical studies in other taxonomic groups are needed to refine our 

understanding of the process and to determine its general importance (Ellegren and Wolf 

2017).  

In this study, we sequenced the genomes of multiple taxa across a recent and 

rapid radiation to examine how genomic variation has been shaped and structured 

through time. The bush monkeyflower radiation consists of perennial shrubs from seven 

subspecies (one with two ecotypes) of Mimulus aurantiacus that are distributed primarily 

in California (Chase et al. 2017). Together with their sister species M. clevelandii, 

multiple pairs of taxa exist at different stages of divergence, ranging from locally adapted 

ecotypes to partially isolated subspecies (McMinn 1951; Sobel and Streisfeld 2015). The 

plants inhabit a range of environments, including temperate coastal regions, mountain 

ranges, semi-arid habitats, and offshore islands (Thompson 2012). Most of the taxa are 

geographically isolated from one another, though some have parapatric distributions and 

hybridize in narrow regions where their distributions overlap (Streisfeld and Kohn 2005; 

Streisfeld and Kohn 2007; Thompson 2012; Streisfeld et al. 2013; Sobel and Streisfeld 

2015; Stankowski et al. 2015; Stankowski and Streisfeld 2015; Stankowski et al. 2017). 

However, recent studies have confirmed the monophyly of the radiation and established 

the basic relationships among its taxa (Stankowski and Streisfeld 2015; Chase et al. 
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2017). The presence of many closely related taxa at varying stages of differentiation 

make this a powerful system for studying how genome-wide variation has evolved over 

the course of divergence.  

Aided by the first chromosome-level genome assembly for M. aurantiacus, we 

used whole-genome sequencing to study the evolutionary processes that have shaped 

variation across this recent and rapid radiation. After inferring relationships among the 

taxa, we reveal heterogeneous patterns of lineage sorting, diversity, and differentiation 

that have been shaped by linked background selection (BGS). The pattern of linked BGS 

is conserved across the radiation and is determined by the genomic distribution of 

functional elements and the local recombination rate. By examining taxa along a 

continuum of divergence, we show that lineage-specific BGS has been able to maintain 

an ancestral diversity landscape, which has resulted in the buildup of a heterogeneous 

differentiation landscape over time. 

 

RESULTS AND DISCUSSION 

A chromosome-level genome assembly, map and annotation for the bush 

monkeyflower 

To facilitate genomic analyses in this group, we constructed the first 

chromosome-level reference genome for the bush monkeyflower using a combination of 

long-read Single Molecular Real Time (SMRT) sequencing (PacBio), overlapping and 

mate-pair short-reads (Illumina), and a high-density genetic map (7,589 segregating 

markers across 10 linkage groups). Contig building and multiple rounds of scaffolding 

yielded 1,547 scaffolds with an N50 size of 1,578 kb and a total length of 207 Mbp. The 

high-density map allowed us to anchor and orient 94% of the assembled genome onto the 

10 linkage groups, which is the number of chromosomes inferred from karyotypic 

analyses in all subspecies of M. aurantiacus and M. clevelandii (Vickery 1995). Analysis 

of assembly completeness based on conserved gene space revealed that 95% of 956 

universal single copy orthologous genes were completely (931) or partially (891) 

assembled (Simão et al. 2015). Subsequent annotation yielded 23,018 predicted genes. 

Comparison of the synonymous substitution rate (Ks) with the only other available 
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monkeyflower genome (M. guttatus) revealed an average divergence time between 

species of 20.5 million years (SD 8.4 million years). 

 

Variation in the extent of lineage sorting across the genome 

As a first step toward understanding the processes driving divergence and lineage 

formation across this radiation, we inferred evolutionary relationships among the nine 

bush monkeyflower taxa. Rapid diversification is a hallmark of evolutionary radiations 

and can result in complex patterns of phylogenetic discordance among genomic regions 

due primarily to incomplete lineage sorting (ILS) (Jarvis et al. 2014; Pease et al. 2016). 

To infer relationships and quantify discordance, we sequenced 37 whole genomes from 

the seven subspecies and two ecotypes of Mimulus aurantiacus (n = 4-5 taxon) and the 

sister species M. clevelandii (n = 3) (average sequencing depth of 21x). Close sequence 

similarity allowed us to align reads from all samples to the reference assembly with high 

confidence (average 91.7% reads aligned; Appendix D). After mapping and variant 

calling, we identified 13.2 million SNPs that we use in subsequent analyses. 

We inferred evolutionary relationships among these nine taxa using maximum-

likelihood (ML) phylogenetic analysis (implemented in RAxML; Stamatakis 2014) and 

two different datasets: whole-genome concatenation and 500 kb non-overlapping 

windows. The resulting tree topologies from the whole-genome dataset (Fig. 3.1) 

confirmed the same relationships among taxa as previous analyses based on reduced 

representation sequencing and five different methods of phylogenetic reconstruction 

(Stankowski and Streisfeld 2015; Chase et al. 2017). Specifically, all seven of the 

subspecies formed monophyletic groups with 100% bootstrap support. However, within 

subspecies puniceus, relationships are more complex, as the red ecotype formed a 

monophyletic sub-clade within the paraphyletic yellow ecotype, a result that reflects the 

recent origin of red flowers from a yellow-flowered ancestor (Stankowski and Streisfeld 

2015).  

 Although the whole genome phylogeny provides a well-supported summary of the 

evolutionary relationships among the taxa, our window-based analysis revealed extensive 

phylogenetic discordance across local genomic regions (Fig 3.1). Even at the relatively 

large scale of 500 kb regions, only 22 (6%) of the 387 window-based trees showed the 
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same taxon branching order as the whole-genome tree. Nevertheless, four of the 

subspecies formed separate monophyletic groups across nearly all windows (grandiflorus 

99.7%, aridus 99.7%, parviflorus 94.1%, and aurantiacus 88.1%). Subspecies puniceus 

also was monophyletic in the majority of trees (72.6%), but individuals from the red and 

yellow ecotypes only formed monophyletic groups in 27% and 9% of the trees, 

respectively. Similarly, the closely related subspecies longiflorus (45.7%) and calycinus 

(24.1%) were monophyletic in fewer trees than the other subspecies.   

While some of the phylogenetic discordance that we observed could be generated 

by gene flow after divergence (e.g., Lamichhaney et al. 2015; Stankowski and Streisfeld 

2015; Pease et al. 2016; Richards and Martin 2017), our data indicate that the majority of 

the discordance is due to incomplete lineage sorting (ILS). Specifically, the level of 

discordance at nodes that define taxa and clades is strongly predicted by internode length 

(r = 0.76; Appendix E). Thus, the strongest signal of discordance occurs in areas of the 

tree where multiple divergence events have occurred within a short period of time. Thus, 

as predicted by theory (Maddison 1997) and as shown in other diverse radiations (Suh et 

al. 2015; Pease et al. 2016), we conclude that ILS is the major source of phylogenetic 

conflict across the bush monkeyflower radiation.  

 To assess the genomic distribution of tree discordance, we estimated the 

correlation (Pearson’s r) between the distance matrix for each window-based tree and the 

genome-wide tree. Plotting this tree concordance score across the 10 linkage groups 

revealed a striking pattern of lineage sorting across the genome (Figure 3.2a). Rather than 

being randomly distributed, trees with similar concordance scores tend to cluster 

together, spanning large sections of all ten chromosomes. This pattern indicates that local 

rates of lineage sorting are determined by differences in the nature and or strength of the 

evolutionary processes that shape genetic variation across the genome.  
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Figure 3.1. Evolutionary relationships among subspecies and ecotypes of the bush 

monkeyflower. The black topology is the ML tree constructed from a concatenated 
alignment across the whole genome and is rooted using M. clevelandii. The 387 gray 
trees show the ML topologies for 500 kb genomic windows. The first number along each 
node indicates the percent bootstrap support of that node in the whole genome tree, and 
the second number describes the percent of the window-based trees that match that node 
in the whole genome tree. The first number below each taxon name reflects the bootstrap 
support from the whole genome tree of the node that defines the multiple samples from 
that taxon as a monophyletic group. The second number describes the percent of window-
based trees that demonstrate the taxon as a monophyletic group. b) Levels of genomic 
differentiation (FST), divergence (dxy), and levels of diversity (π) within and among bush 
monkeyflower taxa based on the same 500 kb windows. For simplicity, FST and dxy data 
are shown only for comparisons between the red ecotype of subspecies puniceus and all 
other taxa, while π is calculated for all nine taxa. 
 

Figure 3.2. (Next page) Common differentiation and diversity landscapes mirror 

variation in the local properties of the genome. a) Tree concordance in 500kb genomic 
windows across the 10 bush monkeyflower chromosomes. b – d) z-transformed FST, dxy, 
and π in overlapping 500 kb windows (step size = 50 kb). The alternating gray and black 
lines are the z-transformed scores for each of the 36 pairwise comparisons (b,c) or nine 
taxa (d), and the blue line is the z-transformed score of the first principal component 
(PC1), which explains 66%, 70%, and 85% of the variation within and among taxa in, 
FST, dxy and π, respectively. e and f) Gene count and recombination rate (cM/Mb) in 500 
kb overlapping genomic windows.  
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A common pattern of linked background selection shapes genome-wide variation 

and drives lineage sorting 

To gain insight into the evolutionary processes that have shaped patterns of 

genome-wide variation, we used summary statistics in the same 500 kb windows to 

quantify patterns of differentiation (FST), divergence (dxy), and diversity (π) among and 

within these taxa (Fig. 3.1). The range of mean estimates of FST across all 36 pairwise 

comparisons among the nine taxa highlights the continuous nature of divergence across 

the group (Fig. 3.1b; Appendix F), with estimates spanning from 0.06 (red vs. yellow 

ecotypes of puniceus) to more than 0.70 for comparisons with the sister species M. 

clevelandii. More striking, the broad distributions of the window-based estimates reveal 

extreme heterogeneity in the levels of all three statistics among genomic regions. For FST, 

the average range of window-based estimates within the 36 pairwise comparisons (0.46) 

is roughly equal to the mean difference in FST between taxon pairs (0.47). Distributions of 

absolute divergence (dxy) show a similar pattern, with mean values ranging from 0.54% 

(red vs. yellow ecotypes) to 1.6% (yellow ecotype vs. M. clevelandii), and the average 

range of window based estimates (1.30%) exceeding the average difference among taxa 

(1.14%). Remarkable variation in π was also observed among windows, ranging from 

0.09% to 1.26%, even though mean estimates were very similar among the ingroup taxa 

(0.37% to 0.53%).  

As with tree concordance, variation in these summary statistics was non-randomly 

distributed across the genome, as genome scans revealed rugged differentiation (FST), 

divergence (dxy), and diversity (π) landscapes (Fig. 3.2b-d). Strikingly, the shapes of these 

landscapes were highly correlated among all comparisons. The first axis of a principal 

components analysis (PC1) across all 36 taxonomic comparisons explained a remarkable 

65.9% of the variation in FST, with loadings ranging from 0.37 to 0.92 (Fig. 3.2b). 

Patterns of divergence (dxy) and diversity (π) were also highly correlated among 

comparisons, with PC1 explaining 69.5% and 84.7% of the variation among window-

based estimates, respectively (Fig 3.2c-d).  

The presence of a correlated genomic landscape is remarkable and is unlikely to 

reflect evolutionary processes that are unique to each taxon (Burri 2017a; Burri 2017b; 

Ellegren and Wolf 2017). Rather, it suggests that a common mechanism is responsible for   
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shaping patterns of variation. Recent studies have observed correlated genomic 

landscapes among related taxa, concluding that they were generated by a common pattern 

of linked background selection (BGS) across the genome (Poelstra et al. 2014; Burri et al. 

2015; Van Dorren et al. 2017; Vijay et al. 2017). Under this model, regions of the 

genome with higher BGS are predicted to show reduced diversity, because purifying 

selection removes variation at linked neutral sites (Charlesworth et al. 1993; 

Charlesworth 2012). When the pattern of genome-wide BGS is shared across the 

genomes of taxa, a common genomic landscape is predicted to evolve (Burri 2017a; Burri 

2017b). In agreement with this prediction, we observe a strong negative correlation 

between PC1 FST and PC1 π (r = -0.84), indicating that differentiated regions tend to 

show lower diversity. These same regions of low diversity also tend to show lower 

divergence (r = 0.84) and higher levels of lineage sorting (r = -0.69), both of which are 

predicted under BGS because recurrent bouts of selection cause long-term reductions in 

Ne (Cruikshank and Hahn 2014).  

Another possible selective explanation for these correlated landscapes is recurrent 

positive selection within the same genomic regions in all nine taxa (Smith and Haigh 

1974). Although positive selection may play some role in shaping differentiation 

landscapes, BGS is expected to have a greater impact on differentiation and diversity, as 

most new mutations are more likely to be deleterious than beneficial (Eyre-Walker and 

Keightley 2007). In addition to being more frequent, the targets for deleterious mutations 

are widespread across the genome, whereas not all functional elements are necessarily 

expected to be targets of positive selection. Consistent with a widespread role of BGS in 

our system, the majority of genomic regions show high levels of differentiation, while 

regions of exceptional differentiation appear as troughs of low FST (Fig 3.2a). This 

indicates that some regions of the genome experience less BGS than the average level. 

 

Heterogeneous BGS is determined by the distribution of conserved genomic features 

Given the evidence for a prominent role of BGS in shaping patterns of 

differentiation and lineage sorting in this system, we next identified factors that affect 

variation in its intensity. In models of BGS, the frequency of purifying selection is 

predicted to be higher in regions of the genome that are enriched for functional elements, 
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as they provide rich targets for deleterious mutations (Charlesworth et al. 1993; 

Charlesworth 2012). Recombination rate variation is also expected to modify the local 

impact of purifying selection. In regions of high recombination, linked neutral variants 

are more likely to escape their association with deleterious mutations, so they are less 

likely to experience reductions in diversity (Charlesworth et al. 1993; Charlesworth 

2012). Conversely, the physical impact of BGS is magnified where the local 

recombination rate is low due to tighter linkage among sites. While gene density and 

recombination rate may act independently to shape patterns of diversity, these genomic 

properties are expected to interact, further increasing the impact of BGS (Charlesworth et 

al. 1993; Charlesworth 2012; Burri 2017a; Burri 2017b). 

To test for an association between nucleotide diversity and these intrinsic 

genomic features, we used our annotated genome and genetic map to estimate the number 

of protein coding genes and the recombination rate (cM/Mb) in each non-overlapping 500 

kb window across the genome (Fig. 3.2e-f). We then estimated the correlation between 

these variables and the corresponding estimates of diversity in each window. The results 

support the prediction that gene rich regions experience a higher rate of background 

selection, as we observed a strong negative correlation between gene count and PC1 π (r 

= -0.84; Fig. 3.3). Similarly, we observed a strong, positive correlation between PC1 π 

and recombination rate, which is consistent with its role in moderating the impact of 

linked selection (r = 0.44; Fig. 3.3). However, we did not observe a significant interactive 

effect of gene count and recombination rate on levels of nucleotide diversity (p = 0.057). 

This may be because genomic features are also correlated (r = -0.40; Fig. 3.3), making it 

difficult to tease apart their relative impacts. 

 Despite only having a direct estimate of gene density and recombination rate 

variation from one subspecies (puniceus), a common diversity landscape implies that the 

genomic distribution of these features is conserved across the radiation. This is not 

surprising given the recent shared history of the group, and the fact that all subspecies of 

M. aurantiacus and the outgroup, M. clevelandii, have the same number of chromosomes 

(n = 10). Further, the inclusion of the outgroup reveals that all taxa inherited a similar 

diversity landscape that was pre-shaped by historical BGS. However, the maintenance of 
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this landscape by lineage specific BGS has resulted in the build-up of a heterogeneous 

differentiation landscape over time. 

 

Figure 3.3. Correlations reveal heterogeneity in linked selection across the genome. 

A matrix of pairwise correlation coefficients is shown that relates the first principal 
component (PC1) of FST, dxy, and π to tree concordance, gene density, and recombination 
rate. The heat map indicates the strength of the correlation and its sign, while the ellipse 
represents 95% of the bivariate normal density in the data. All correlations are 
statistically significant at p < 0.001. The strength and direction of all of the correlations 
support a model of heterogeneous linked selection across the genomes of the taxa in the 
bush monkeyflower radiation.  
 

The dynamic build-up of the differentiation landscape by BGS 

The temporal buildup of differentiation by linked BGS begins when a population 

first splits (assuming a simple model of allopatric divergence). At this moment, estimates 

of diversity (π) and divergence (dxy) should be equal, so there should be no heterogeneous 

pattern of genome-wide differentiation (FST) and no relationship between π and FST. As 

time progresses and new mutations accumulate within each subpopulation, dxy becomes 

greater than π. New mutations with deleterious effects will be purged from the population 

along with linked neutral variants, thus maintaining the shape of the diversity landscape 
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over time. Soon after the split, when mutational input is low, elevated differentiation 

should only partially coincide with genomic regions that have experienced a high rate of 

historical BGS. This is because ancestral variation is shared between taxa in areas of the 

genome that have not yet experienced lineage specific BGS. However, as more 

deleterious mutations arise, the negative relationship between diversity and 

differentiation should become stronger until they mirror one another. Similarly, the 

replacement of ancestral variants by BGS should gradually increase the extent of lineage 

sorting in these same regions.  

 Given that the different pairs of monkeyflower taxa all shared a common ancestor 

at different points in the past, we were able to examine temporal changes in the strengths 

of the various relationships, as predicted by the BGS model. As expected for pairs of taxa 

at the earliest stages of divergence, the relationship between π and dxy is almost perfect (r 

~ 1), but the correlation decays to 0 as lineage-specific mutations accumulate over time 

(Fig. 3.4). Consistent with maintenance of the diversity landscape by BGS in the face of 

new mutations, the correlations between π and gene density and recombination rate 

remain constant as the divergence time between taxon pairs increases (Fig. 3.4). 

However, the dynamic buildup of heterogeneous differentiation can be observed as the 

relationships between FST and levels of diversity, gene count, and recombination rate all 

become stronger with greater divergence between taxa (Fig. 3.4). 

 

CONCLUSIONS 

 We have demonstrated that a shared diversity landscape across all taxa leads to 

the rapid evolution of a common, heterogeneous genome-wide pattern of differentiation. 

Although adaptive evolution is considered a hallmark of radiations and is almost certainly 

responsible for the remarkable phenotypic diversity in this group (Streisfeld and Kohn 

2005; Stankowski et al. 2015; Stankowski et al. 2017), we show that broad scale patterns 

of genome-wide variation are driven primarily by non-adaptive processes. Specifically, 

background selection against deleterious alleles has had a major impact on patterns of 

genomic variation and had led to variation in rates of lineage sorting. Even after lineages 

diverge, the pattern of background selection across the genome is maintained in all taxa, 

resulting in correlated patterns of differentiation across taxon pairs.  
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An important implication of this work is that patterns of genetic diversity are 

shaped largely by variation in natural selection across the genome rather than neutral 

processes. This finding adds to the growing body of work that reveals the widespread role 

that selection plays in molding genetic variation in nature (Begun et al. 2007; Hahn 2008) 

and provides insight into the temporal dynamics driving the buildup of differentiation due 

to BGS. Thus, as more genomes become available for more distantly related Mimulus 

species, it will be interesting to determine whether these processes have been operating to 

shape genomic variation at even deeper timescales.  

 

 

Figure 3.4. The dynamic build-up of linked selection through time across the 

radiation. The correlation coefficients across genomic windows for each of the 36 
pairwise taxonomic comparisons are plotted against levels of sequence divergence 
between taxa (average dxy among windows). Sequence divergence is used here as a 
proxy for divergence time. The top row shows the dynamic relationship between FST and 
gene count, recombination rate, and π, while the bottom row examines how correlations 
between π and gene count, recombination rate, and dxy change with divergence time. The 
heat map describes the strength of the correlation, and the dotted line is positioned at 
zero, indicating no relationship between the variables.    
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MATERIALS AND METHODS 

Genome assembly 

We used a combination of short-read Illumina and long-read Single Molecule, Real Time 

(SMRT) sequencing to assemble the genome of a single individual from the red ecotype 

of M. aurantiacus subspecies puniceus (population UCSD). Genomic DNA was isolated 

from leaf tissue using either ZR plant/seed DNA miniprep kits (Zymo Research) or 

GeneJet Plant Genomic DNA purification kits (Thermo Fisher). Illumina libraries were 

generated following the Allpaths-LG assembly pipeline (Gnerre et al. 2011), which 

included a single fragment library with average 180 bp insert size and three mate pair 

libraries (average insert sizes: 3.5-5 kb, 5-7 kb, and 7-13 kb). Libraries were sequenced 

on the Illumina HiSeq 2500 using paired-end 100 bp reads. An initial scaffold-level 

assembly was performed with Allpaths-LG using default parameters and the haploidify 

function enabled. This assembly yielded 11,123 contigs (N50 = 40.5 kb) and 2,299 

scaffolds (N50 = 1,310 kb), for a total assembly size of 193.3 Mbp. Long-read 

sequencing was performed from the same individual using 12 SMRT cells sequenced on 

the Pacific Biosystems RS II machine at Duke University. We obtained a total of 6.4 Gbp 

of sequence, which corresponds to ~21 × coverage of the genome. The PacBio reads were 

used to re-scaffold the Allpaths-LG scaffolds using Opera-LG (Gao et al. 2016). This 

reduced the number of scaffolds to 1,547 (N50 = 1,578 kb).  

 Finally, we gap filled the assembly using the PacBio data and the program 

PBJelly (English et al. 2012). Resulting scaffolds were assembled into pseudomolecules 

using Chromonomer (Amores et al. 2014), according to the online manual. This software 

anchored and oriented scaffolds based on the order of markers in a high-density linkage 

map (see below) and made corrections to scaffolds when differences occurred between 

the genetic and physical positions of markers in the map. A final round of gap filling with 

PBJelly was performed to fill any gaps that were created by broken scaffolds in 

Chromonomer. To assess the completeness of the gene space in the assembly, we used 

both the BUSCO and CEGMA pipelines to estimate the proportion of 956 single copy 

plant genes (BUSCO) or 248 core eukaryotic genes (CEGMA) that were completely or 

partially assembled (Parra et al. 2007; Simao et al. 2015). The proportion of these genes 
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present in an assembly has been shown to be correlated with the total proportion of 

assembled gene space, and thus serves as a good predictor of assembly completeness. 

 

Construction of high-density linkage map 

We generated an outbred F2 mapping population by crossing two F1 individuals, each the 

product of crosses between different greenhouse-raised plants collected from one red 

ecotype and one yellow ecotype population (populations UCSD and LO, respectively; 

Table S1). We then used restriction-site associated DNA sequencing (RADseq) to 

genotype F1 and F2 individuals. DNA was extracted from leaf material using Zymo ZR 

plant/seed DNA miniprep kits, and RAD library preparation followed the protocol 

outlined in Sobel and Streisfeld (2015). Libraries were sequenced on the Illumina HiSeq 

2000 platform using single-end 100 bp reads at the Genomics Core Facility, University of 

Oregon.  

 Reads were filtered based on quality, and errors in the barcode sequence or RAD 

site were corrected using the process_radtags script in Stacks v. 1.35 (Catchen et al. 

2013). Loci were created using the denovo_map.pl function of Stacks, with three identical 

raw reads required to create a stack, two mismatches allowed between loci for an 

individual, and two mismatches allowed when processing the catalog. Single nucleotide 

polymorphisms (SNPs) were determined and genotypes called using a maximum-

likelihood (ML) statistical model implemented in Stacks and a stringent χ2 significance 

level of 0.01 to distinguish between heterozygotes and homozygotes (Hohenlohe et al. 

2010, 2012; Catchen et al. 2011). We then used the genotypes program implemented in 

Stacks to identify a set of 9,029 mappable markers. We specified a ‘CP’ cross design (F1 

individuals coded as the parents), requiring that a marker was present in at least 85% of 

progeny at a minimum depth of 12 reads per individual, and we allowed automated 

corrections to be made to the data.  

Linkage map construction was performed using Lep-MAP2 (Rastas et al. 2015). 

The data were filtered using the Filtering module to include only individuals with less 

than 15% missing data and excluded markers that showed evidence for extreme 

segregation distortion (χ2 test,  P < 0.01). To assign markers to linkage groups, we used 

the SeparateChromosomes module with a logarithm of odds score limit of 20 and no 
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minimum size for linkage groups (LG). This assigned 7,217 markers to 10 linkage 

groups, which matches the number of chromosomes in M. aurantiacus. The JoinSingles 

module was executed again with a LOD limit of 10 to join an additional 877 ungrouped 

markers to the 10 previously formed LGs. Fifty-seven singles that were not joined at this 

stage were discarded from the dataset. Initial marker orders were determined using sex-

averaged and sex-specific recombination rates using the OrderMarkers module. For each 

LG, we conducted 10 independent runs using the Kosambi mapping function 

(useKosambi=1), with the dataset split into seven pseudofamilies to take advantage of 

parallel processing. When multiple markers had identical genotypes, only the duplicate 

marker with the least missing data was used in marker ordering. We retained the marker 

order from the run with the best likelihood. After removing markers with an error rate > 

0.05, the ML order was re-evaluated using the evaluateOrder flag. The map contained 

8,094 informative loci from 269 F2 individuals, with an average of 3.5% ± SD 3.86 

missing data per individual.  

After the integration of our assembly and genetic map using the Chromonomer 

software (Amores et al. 2014), we made corrections to our map order based on the 

physical position of markers within assembled scaffolds. Using the output of 

Chromonomer, we identified markers that were out of order in the map compared to their 

local assembly order and aligned these markers to the assembly from Chromonomer 

using Bowtie2 v. 2.2.5 (Langmead and Salzberg 2012) with the very_sensitive settings to 

obtain their physical order. We then re-estimated the map using the evaluateOrder flag in 

Lep-MAP2 as described above, but with the marker order constrained to the physical 

order (improveOrder=0) and with all duplicate markers included in the analysis 

(removeDuplicates=0). After initial map construction, we removed 17 markers with an 

estimated error rate greater than 5% and estimated the map using the same settings. The 

final map contained 7,589 markers across the 10 linkage groups.  

 

Genome annotation 

Prior to genome annotation, the assembly was soft-masked for repetitive elements and 

areas of low complexity with RepeatMasker (RepeatMasker Open-4.0) using a custom 

Mimulus aurantiacus library created by RepeatModeler (RepeatModeler Open-1.0), 
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Repbase repeat libraries (Jurka et al. 2005), and a list of known transposable elements 

provided by MAKER (Holt and Yandall 2011). In total, 30.99% of the genome assembly 

was masked by RepeatMasker. Repetitive elements were annotated with RepeatModeler. 

Hidden Markov Models for gene prediction were generated by SNAP (Korf 2004) and 

Augustus (Stanke and Waack 2003) and were trained iteratively to the assembly using 

MAKER, as described by Cantarel et al. (2008). Training was performed on the 14.5 Mbp 

sequence from LG9. Evidence used by MAKER for annotation included protein 

sequences from Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Solanum 

tuberosum, Daucus carota, Vitis viniferab (all downloaded from EnsemblPlants on 9 

August 2016), Salvia miltiorrhiza (downloaded from Herbal Medicine Omics Database 

on 9 August 2016), Mimulus guttatus v. 2 (downloaded from JGI Genome Portal on 9 

August 2016), and all Uniprot/swissprot proteins (downloaded on 18 August 2016) 

(Kersey et al. 2015; Goodstein et al. 2011; Nordberg et al. 2014; Herbal Medicine Omics 

Database; Uniprot). We filtered the annotations with MAKER to include: 1) only 

evidence-based information that also contained assembled protein support, and 2) those 

ab initio gene predictions that did not overlap with the evidence-based annotations and 

that contained protein family domains, as detected with InterProScan (Quevillon et al 

2005).  

 

Estimation of divergence time with Mimulus guttatus 

To estimate divergence times between M. aurantiacus and the congeric M. guttatus, we 

compiled the distribution of synonymous substitution rates (Ks) from orthologous gene 

pairs between the species. We used the program Inparanoid v. 4.1 (O’Brien et al. 2005) 

to identify orthologous gene pairs from the proteomes of each species. Ortholog pairs 

were filtered initially to include only those genes that mapped simultaneously to one of 

the 10 M. aurantiacus and one of the 14 M. guttatus linkage groups, which generated 

8,580 orthologous gene pairs. Protein sequences then were aligned using Clustal W, and 

only those sequences containing predicted start and stop codons and with alignment 

scores > 30 were included in the final dataset, resulting in 4,449 orthologus gene pairs. 

Protein sequences were back translated using the coding sequences associated with each 

protein and the reverse.align function in the R package seqinr, and Ks values were 
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calculated for each gene alignment using the kaks function (Charif and Lobry 2007). 

Divergence time (T) for each gene was estimated according to the equation: T = Ks/2µ, 

where µ is the per site mutation rate per generation (Kimura 1980). We used a mutation 

rate of 1.5 x 10-8, as has been used previously for other Mimulus species (Brandvain et al. 

2014).  

 

Genome re-sequencing and variant calling 

We collected leaf tissue from from four to five individuals from the eight taxa within the 

Mimulus aurantiacus species complex. In addition, we collected leaf tissue from three 

individuals of M. clevelandii, which is sister to M. aurantiacus (Appendix D). We 

extracted DNA from dried tissue using the Zymo Plant/Seed MiniPrep DNA kit 

following the manufacturer’s instructions. We prepared sequencing libraries using the 

Kapa Biosystems HyperPrep kit, and libraries with an insert size between 400-600 bp 

were sequenced on the Illumina HiSeq 4000 using paired-end 150 bp reads at the 

Genomics Core Facility, University of Oregon. 

 We filtered raw reads using the process_shortreads script in Stacks v1.46 to 

remove reads with uncalled bases or poor quality scores. We then aligned the retained 

reads to the reference assembly using the BWA-MEM algorithm in BWA v0.7.15 (Li and 

Durbin 2009). An average of 91.7% of reads aligned (range: 82.6-96.0%), and the 

average sequencing depth was 21x (range: 15.16x – 30.86x). We then marked PCR 

duplicates using Picard. We performed an initial run of variant calling using the 

UnifiedGenotyper tool in GATK v3.8 (McKenna et al. 2010) and filtered the data to 

remove variants with a mapping quality < 50, a quality depth < 4 and a Fisher Strand 

score > 50. We then used these variants to perform base quality score recalibration for 

each individual, before performing another run of the UnifiedGenotyper to call final 

variants. After the second run of variant calling, we removed variants with a mapping 

quality < 40, a quality depth < 2, and a Fisher Strand score > 60. The final VCF file 

contained 13,233,829 SNPs across the nine taxa. Finally, we ran UnifiedGenotyper with 

the EMIT_ALL_SITES option to output all variant and invariant genotyped sites. 
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Phylogenetic analyses 

We reconstructed the evolutionary relationships among the nine taxa using RAxML v8 

(Stamatakis 2014) by concatenating variant sites across the genome to obtain the 

topology for the whole genome tree. To investigate patterns of phylogenetic discordance 

across the genome, we also built trees from windows across the genome. We first phased 

SNPs using BEAGLE v4.1 (Browning and Browning 2007), using a window size of 

100,000 bp and an overlap of 10,000 bp. We incorporated information on recombination 

rate from the genetic map and did not impute missing genotypes. After phasing, we used 

MVFtools (Pease and Rosenzweig 2016; [https://www.github.com/jbpease/mvftools]) to 

run RAxML from 500 kb non-overlapping windows, with the M. clevelandii populations 

set as the outgroups. We then visualized the window trees in DensiTree v2.2.5 

(Bouckaert 2010). 

 To assess concordance between the trees from different windows and the species 

tree, we converted trees to distance matrices using the Ape package in R (Paradis et al. 

2004). We then calculated the Pearson’s correlation coefficient between the distance 

matrix from each window and the species tree, with a stronger correlation indicating 

higher concordance with the species tree.  

 

Population genomic analyses 

To examine how genome-wide patterns of diversity, differentiation, and divergence 

varied among taxa, we calculated within-taxon nucleotide diversity (π), between-taxon 

relative differentiation (FST), and between-taxon absolute divergence (dXY) across non-

overlapping 500kb windows using Python scripts downloaded from 

https://github.com/simonhmartin/genomics_general. We calculated measures of 

differentiation and divergence across all 36 pairwise comparisons among the nine taxa, 

and diversity was calculated within each of the nine taxa. We filtered the data separately 

for each comparison so that each site was genotyped in at least three individuals for each 

comparison within the M. aurantiacus complex, or at least two individuals for each 

comparison to M. clevelandii. To incorporate invariant sites into measures of diversity 

and divergence, we divided the number of pairwise differences (within and between taxa, 
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respectively) by the total number of genotyped sites (variant and invariant) within a 

window.  

We summarized the variation in each statistic across comparisons using a 

principal components analysis (PCA), with taxon or taxon pair as the variables. Thus, 

across each window, the first principal components of π, FST, and dXY
 provide 

multivariate measures that explain the greatest covariance in the data. To examine the 

relationships among diversity, differentiation, and divergence, we estimated the pairwise 

correlation in PC1 across genomic windows among all three statistics. Further, we 

estimated correlations among these three statistics and tree concordance, gene density, 

and recombination rate. Recombination rate was estimated by comparing the genetic and 

physical distance (in cM/Mbp) between all pairs of adjacent markers on each LG from 

the genetic linkage map described above. We removed the top 5% of recombination rates, 

as these represented unrealistically high values of recombination. A minimum of three 

estimates were required to obtain an average recombination rate estimate within each 

window. Gene density was estimated as the number of predicted genes in each window, 

as determined from the annotation described above. 

To determine how the correlations among the statistics (diversity, differentiation, 

divergence, recombination rate, gene count, tree concordance) change through time, we 

examined the correlation coefficient among all pairs of statistics individually for each of 

the 36 comparisons. As a measure of overall divergence time between all pairs of taxa, 

we estimated the percent sequence divergence from the average value of dXY among each 

500 kb window. Because diversity is measured within taxa rather than between them, we 

calculated the mean value of π between each pair of taxa.  
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APPENDIX A 

SUPPLEMENTAL TABLE 1 

Supplemental Table 1: GPS coordinates for sampling locations with taxon names 

given according to Tulig and Nesom (2012).  

POP  LAT LONG Taxon Morphological 

data (Y/N) 

ELF 33.08595 -117.1453 M. puniceus N 

ELT 32.89421667 -117.0898167 M. puniceus N 

LH 33.06088333 -117.1187667 M. puniceus N 

T1 33.590639 -117.498333 M. puniceus Y 

T10 33.378139 -117.174333 M. puniceus Y 

T16 33.266861 -117.159389 M. puniceus Y 

UCSD 32.8894 -117.2361833 M. puniceus N 

ISL1 32.87361 -118.42611 M. parviflorus Y 

ISL2 32.87278 -118.41917 M. parviflorus Y 

SC 34.018 -119.673 M. parviflorus N 

M. clevelandii 33.158858 -116.812194 M. clevelandii N 

AGRD6 34.142931 -118.7647917 M. longiflorus N 

T110 33.99175 -117.993139 M. longiflorus Y 

T113 34.057194 -117.835083 M. longiflorus Y 

T24 34.233389 -118.3145 M. longiflorus Y 

T28 34.268083 -118.634667 M. longiflorus Y 

T33 34.34375 -118.509944 M. longiflorus Y 

T8 34.134722 -118.645222 M. longiflorus Y 

243-2 33.721253 -116.720761 M. calycinus N 

KR1 35.467298 -118.754533 M. calycinus N 

T124 35.427583 -120.547194 M. calycinus N 

T125 35.401139 -120.507139 M. calycinus N 

T144 34.192861 -117.278361 M. calycinus Y 

T149 33.901389 -116.862444 M. calycinus Y 

T150 33.856389 -116.848056 M. calycinus Y 

T66 35.707722 -118.775722 M. calycinus Y 

T89 35.649222 -118.458056 M. calycinus Y 

T90 35.591833 -118.505194 M. calycinus Y 

T91 35.317194 -118.587139 M. calycinus Y 

BAHR1 39.295667 -121.098114 M. grandiflorus N 

BCER 39.847733 -121.696267 M. grandiflorus N 

T100 39.379639 -121.146111 M. grandiflorus Y 
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T101 39.553556 -121.430056 M. grandiflorus Y 

T61 39.559 -120.824278 M. grandiflorus Y 

T62 39.511806 -120.977639 M. grandiflorus Y 

T64 39.018194 -120.723889 M. grandiflorus Y 

T96 39.012194 -120.755194 M. grandiflorus Y 

T99 39.437556 -121.059861 M. grandiflorus Y 

LO 32.6767 -116.3312333 M. australis N 

PCT 32.73258333 -116.4698333 M. australis Y 

POTR 32.6038 -116.6339167 M. australis Y 

NVPR1 37.032444 -122.044972 M. aurantiacus N 

T102 39.042389 -122.772722 M. aurantiacus Y 

T103 39.202944 -123.051833 M. aurantiacus Y 

T104 39.204528 -123.764583 M. aurantiacus Y 

T105 39.197306 -123.746194 M. aurantiacus Y 

T106 38.642639 -123.394361 M. aurantiacus Y 

T50 35.986528 -121.492778 M. aurantiacus Y 

T51 36.284778 -121.839694 M. aurantiacus Y 

T56 36.781444 -121.703194 M. aurantiacus Y 

T57 37.032444 -122.044972 M. aurantiacus Y 

T92 37.845889 -120.610972 M. aurantiacus Y 

T93 38.296194 -120.675611 M. aurantiacus Y 

T94 38.302333 -120.692944 M. aurantiacus Y 

T95 38.266556 -120.735306 M. aurantiacus Y 

SD215 32.64056 -116.207712 M. aridus N 

KPP1 32.653778 -116.100556 M. aridus Y 

T84 32.652639 -116.244889 M. aridus Y 

DPR 33.745925 -117.448484 M. rutilus N 

VCR 33.487141 -117.648984 M. australis N 

RPR 33.605751 -117.802002 M. puniceus N 

MTH 33.614124 -117.825181 M. puniceus N 

TOR 33.661005 -117.640131 M. puniceus N 

T107 36.255806 -121.4315 M. linearis Y 

T46 35.65 -120.807444 M. linearis Y 

FLW 33.545745 -117.649203 M. australis N 

LGH 33.555947 -117.75956 M. australis N 

T42 34.73792 -120.4384 M. lompocensis Y 

SS 34.27222 -118.61 M. rutilus N 

LM 34.50498 -119.866 M. lompocensis N 
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POM1 34.06039 -117.8289 M. rutilus N 

POM2 34.06039 -117.8289 M. rutilus N 

PID 33.50474 -117.73 M. australis N 

M. kelloggii            38.7717         -120.4450 M. kelloggii N 
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APPENDIX B 

SUPPLEMENTAL TABLE 2 

Trait abbreviations from Tulig (2000) used in principal components and discriminant 
functions analysis (Fig. 4). 
 

Abbreviation Trait measured 

CRLN Corolla length 

BLLN Length across bottom lobes 

UCIS Apex of upper corolla lobe to inner sinus 

UCOS Apex of upper corolla lobe to outer sinus 

INFL Height of inflection 

WLCL Width of lower center lobe 

LLCL Length of lower center lobe 

THRO Opening of throat 

CRHT Corolla height 

CTLN Corolla tube length 

STLN Style length 

FLLN Length of long filament 

FSLN Length of short filament 

CULN Calyx length to upper lobe 

CLLN Calyx length to lower sinus 

CAHT Calyx height 

PDLN Pedicel length 

PDWD Pedicel width 

 

 

 

 

 

 

 

 



	 52 

APPENDIX C  

SUPPLEMENTAL FIGURE 1 

 

Supplemental figure 1 (Next page). Split network representation of evolutionary 

relationships. A split network was calculated in SplitsTree under default settings, based 
on a dataset of 19, 294 SNPs. We present both (A) the whole network is presented with 
all taxa and (B) a closer view of Clades C and D. Sample names are given at the tips, and 
the color of the sample name corresponds with the color of the taxon name, based on the 
taxonomy of Tulig and Nesom (2012). Shading demonstrates the phylogenetic clade that 
samples belong to.  
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APPENDIX D 

SUPPLEMENTAL TABLE 3 

Supplemental Table 3. Summary of the the 37 whole genome samples, including their 
taxon identity, sampling location, percent read alignment, and total sequencing depth. 
 

 

Sample 

 

Taxon 

 

Latitude 

 

Longitude 

% Reads 

aligned 

Seq. 

Depth 

159_83 ssp. aridus 32.6630 -116.2230 91.7 21.12 

159_84 ssp. aridus 32.6630 -116.2230 89.3 21.98 

195_1 ssp. aridus 32.6300 -116.1429 92.6 20.20 

T84 ssp. aridus 32.6526 -116.2449 87.2 21.75 

T102 ssp. aurantiacus 39.0424 -122.7727 94.9 23.74 

T104 ssp. aurantiacus 39.2045 -123.7646 94.6 25.09 

T50 ssp. aurantiacus 35.9865 -121.4928 88.3 24.36 

T92 ssp. aurantiacus 37.8459 -120.6110 94.0 15.16 

T144 ssp. calycinus 34.1929 -117.2784 93.2 26.00 

T150 ssp. calycinus 33.8564 -116.8481 94.7 24.02 

T90 ssp. calycinus 35.5918 -118.5052 91.3 19.97 

T91 ssp. calycinus 35.3172 -118.5871 95.5 27.91 

T101 ssp. grandiflorus 39.5536 -121.4301 92.0 16.05 

T61 ssp. grandiflorus 39.5590 -120.8243 91.6 17.31 

T96 ssp. grandiflorus 39.0122 -120.7552 92.0 28.21 

T99 ssp. grandiflorus 39.4376 -121.0599 91.4 23.84 

DPR ssp. longiflorus 33.7459 -117.4485 96.0 26.88 

SS ssp. longiflorus 34.2722 -118.6100 94.2 30.86 

T33 ssp. longiflorus 34.3438 -118.5099 94.6 18.87 

T8 ssp. longiflorus 34.1347 -118.6452 82.6 25.11 

KK168 ssp. parviflorus 34.0180 -119.6730 91.8 23.66 

KK161 ssp. parviflorus 34.0180 -119.6730 92.0 19.11 

KK180 ssp. parviflorus 34.0180 -119.6730 92.4 18.18 

KK182 ssp. parviflorus 34.0193 -119.6802 91.3 19.46 

ELF ssp. puniceus, red  33.0860 -117.1453 93.0 18.20 

JMC ssp. puniceus, red  32.7373 -116.9541 93.8 19.06 

LH ssp. puniceus, red  33.0609 -117.1188 87.1 19.77 

MT ssp. puniceus, red  32.8210 -117.0618 93.7 20.85 

UCSD ssp. puniceus, red  32.8894 -117.2362 87.0 18.23 

BCRD ssp. puniceus, yellow  32.9496 -116.6380 94.6 20.85 

INJ ssp. puniceus, yellow  33.0979 -116.6643 93.1 18.83 

LO ssp. puniceus, yellow  32.6767 -116.3312 93.4 18.04 
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PCT ssp. puniceus, yellow  32.7326 -116.4698 92.3 19.68 

POTR ssp. puniceus, yellow  32.6038 -116.6339 90.5 19.27 

CLV_GH M. clevelandii 33.1589 -116.8122 92.3 21.31 

 CLV_11 M. clevelandii 33.3391 -116.9325 84.4 15.52 

CLV_4 M. clevelandii 33.3391 -116.9325 89.3 17.31 
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APPENDIX E 

SUPPLEMENTAL FIGURE 2 

 

Supplemental figure 2: Phylogenetic discordance is primarily the result of ILS. % 
Node concordance is calculated for each node in the whole-genome concatenated tree as 
the percent of 500kb window trees in which that node is present. Internode length is 
calculated from the distance matrix of the whole-genome concatenated tree. 
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APPENDIX F 

SUPPLEMENTAL FIGURE 3 

 

Supplemental figure 3. Box plots for each of the 36 pairwise taxonomic comparisons 
reveal differences in mean FST and dxy, and show extensive variance among genomic 
windows within each comparison. Vertical black lines indicate the median, boxes 
represent the lower and upper quartiles, and whiskers extend to 1.5 times the interquartile 
range.  
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