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DISSERTATION ABSTRACT 

 

Alexander I. Feoktistov 

 

Doctor of Philosophy  

 

Department of Biology 

 

March 2016 

 

Title: Setting the Limit on Axon Growth: Multiple Overlapping Mechanisms Repress the 

MAP3K Wnd/DLK So That Growth Cones Can Remodel into Stationary Synaptic 

Boutons 

 

The development of a stereotyped pattern of neural connectivity depends upon the 

behavior of growth cones, motile structures at the tips of axons that propel axon growth 

and steer the axon to its targets. When growth cones reach their appropriate target cells, 

they halt and ultimately remodel into stationary presynaptic boutons. The influence of 

extracellular cues in directing growth cones to their targets is well studied, but cell-

intrinsic factors are also increasingly appreciated for their role in driving much of growth 

cone behavior.  

Dual leucine zipper kinases (DLKs) promote growth cone motility and must be 

kept in check to ensure normal development. PHR (Pam/Highwire/RPM-1) ubiquitin 

ligases therefore target DLK for proteosomal degradation unless axon injury occurs. 

Overall DLK levels decrease during development, but how DLK levels are regulated 

within a developing growth cone has not been examined. We analyzed the expression of 

the fly DLK Wallenda (Wnd) in R7 photoreceptor growth cones as they halt at their 

targets and as they remodel into presynaptic boutons. We found that Wnd protein levels 

are repressed by the PHR protein Highwire (Hiw) during R7 growth cone halting, as has 

been observed in other systems. However, during remodeling, Wnd levels are further 

repressed by a temporally-expressed transcription factor, Tramtrack69 (Ttk69). 

Previously unobserved negative feedback from JNK also contributes to Wnd repression. 

We conclude that maturing neurons progressively deploy additional mechanisms to keep 

DLK off and thereby protect their connectivity. We use live imaging to directly probe the 
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effects of Wnd and Ttk69 on remodeling R7 growth cones and conclude that Ttk69 

coordinates multiple regulators of this process. 

Preliminary results indicate that excess Wnd signaling requires the transcription 

factor Fos to disrupt growth cone remodeling in R7s. This opens up new strategies to 

identify how Wnd exerts its motility-promoting effects on growth cone cytoskeletons. 

Additional findings point to a later requirement for Wnd in normal R7 synapse 

development, suggesting that Wnd expression is not fully silenced in R7s. Further 

investigation into these findings would greatly advance our understanding of how the 

neuronal cytoskeleton is regulated as neurons undergo profound morphological and 

functional changes while developing.  

This dissertation includes both unpublished and published co-authored material. 

This dissertation also includes supplemental movie files, which can be found online and 

are described in Appendix B.  
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CHAPTER I 

 

INTRODUCTION TO THE ROLE OF GROWTH CONE MOTILITY 

IN THE ESTABLISHMENT OF NEURONAL CIRCUITRY 

  

Preface 

The human brain is by far the most complex and poorly understood organ. 

Neurons are the basic informational unit of the brain, and these cells detect, transmit, and 

encode stimuli from the world around us. They form networks that endow us with the 

cognitive abilities that allow us to do everything from learning to avoid noxious stimuli to 

forming social bonds that sustain civilization. Information in the brain is encoded through 

electrical impulses propagated by the opening of ion channels, and transmitted from 

neuron to neuron by specialized connections called synapses. Most synapses are chemical 

synapses; an electrical stimulus from the presynaptic cell is translated into a chemical 

message by voltage-mediated exocytosis of neurotransmitter-containing vesicles at the 

presynaptic site. Binding of neurotransmitter to specific receptors on the postsynaptic site 

relays the message to the postsynaptic cell. Some neurotransmitter receptors are ion 

channels which open upon ligand binding causing a change in membrane potential in 

postsynaptic cells, thus propagating the electrical message. Other neurotransmitter 

receptors trigger a signal transduction cascade which often leads to changes in 

excitability of the postsynaptic site. Human brains contain billions of neurons and 

trillions of synapses arranged in a complex, but stereotyped circuitry. How is this 

complexity assembled and organized? 

  

Overview of how neural circuits develop 

Much of our understanding of how this stereotyped circuitry is built comes from 

studying the genes required for forming this circuitry. The cells that will give rise to the 

nervous system are specified by exposure to specific morphogens during gastrulation. 

Neuronal stem cells within this population undergo self-renewing asymmetric divisions, 

and after amplifying divisions by progenitor cells, neurons differentiate and undergo 

profound morphological changes. They become polarized and specialized processes 
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called neurites extend from the cell body. One neurite differentiates into the axon, and 

typically contains most of the presynaptic sites. Other neurites will differentiate into 

dendrite and will typically contain most of the postsynaptic sites.  

Shortly after neurites differentiate, microtubules in the axon shaft become 

polarized, with their plus ends oriented away from the cell body (Stiess and Bradke, 

2011). At the tip of the axon is a specialized subcellular structure called the growth cone. 

The growth cone propels the growing axon and steers it to its proper targets –a necessary 

function for assembling the correct circuitry (Lowery and Van Vactor, 2009). As growth 

cones navigate their way to their targets, they exhibit a dynamic range of morphologies 

that are strongly correlated with their behavior; growth cones are often streamlined when 

advancing, paused growth cones are expanded, retracting growth cones appear collapsed, 

and turning growth cones engorge in new directions (Godemont et al., 1994). These 

behaviors are driven by the dynamic rearrangement of the growth cone cytoskeleton. 

Actin filaments project from the growth cone in fine processes called filopodia which 

probe the extracellular space. In between the filopodia is a mesh-like network of 

branched actin that forms the lamellipodium-like veil. At the central core of the growth 

cone is a bundle of microtubules, most of which are constrained by an actin-myosin ring, 

though some microtubules escape this contractile ring and extend into filopodia; these are 

called pioneer microtubules (Lowery and Van Vactor 2009; Vitriol and Zheng, 2012). 

The ability of microtubules to explore the growth cone is what drives the rapid growth of 

axons when compared to dendrites, and the orientation of pioneer microtubules is 

strongly associated with the direction of axon extension (Stiess and Bradke, 2011; Bearce 

et al., 2015). 

 Extracellular molecules act as guidance cues by binding to specialized receptors 

triggering polymerization of the growth cone cytoskeleton in response to attractive cues 

or instead depolymerization in the case of repulsive cues (Lowery and Van Vactor, 209; 

Vitriol and Zhang, 2012). These guidance molecules can be diffusible molecules secreted 

from neuronal targets, transmembrane proteins expressed by "guidepost" cells, or 

secreted molecules imbedded in the extracellular matrix along which the neuron migrates. 

This is how the growth cone steers the extending axon. Active propulsion is achieved by 

a three step process: 1) polymerizing actin propels the leading edge of the growth cone 
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forward. 2) The microtubule core of the axon shaft engorges into the extended leading 

edge, which is caused by a breakdown of the actin-myosin contractile ring. 3) Growth is 

consolidated by the reformation of the actin-myosin ring, which re-establishes the central 

bundle of microtubules that makes up the axon shaft. This cycle repeats to drive 

persistent growth. 

 

How is growth cone motility reduced so that neurons can establish initial 

connectivity? 

When axons arrive at their terminal targets, growth cones collapse, lose motility, 

and remodel into ellipsoid synaptic boutons that lack filopodia and other features 

characteristic of growth cones. Failure to properly limit growth cone motility leads to 

excessive axon extension that disrupts the normal circuitry. Though the mechanisms that 

guide growth cones to their targets are well studied, how growth cones transition from a 

motile state into stable synaptic boutons is unclear. Trans-synaptic signaling is known to 

promote assembly of synaptic components, but some neurons form synapses en passant 

suggesting that separate mechanisms must exist to signal a decrease in growth cone 

motility during a particular developmental window. A potential mechanism for how 

neurons might achieve this is by a temporal decrease in the abundance or activity of cell-

intrinsic factors promoting growth cone motility. Alternatively temporal activation of 

cell-intrinsic factors that restrict growth cone motility would achieve the same result. 

Insight into this problem comes from recent studies of axon regeneration, as the ability of 

neurons to regenerate depends on their ability to reform motile growth cones. It has long 

been thought that expression of inhibitory extracellular molecules within the central 

nervous system (CNS), but not the peripheral nervous system (PNS) prevents CNS axons 

from regenerating yet PNS axons are capable of doing so (Case and Tessier-Levine, 

2005). However, it is now known that differences in expression of cell-intrinsic factors 

can account for different abilities to regenerate (Goldberg, 2004; Moore et al., 2011; Mar 

et al., 2014; Steketee et al., 2014). For example, neurons within the dorsal root ganglion 

(DRG) extend two branches: one branch that extends to the periphery and is part of the 

PNS and another that extends through the spinal cord and is part of the CNS. Studies 

show that a conditioning lesion on the PNS axon branch triggers changes in cell-intrinsic 
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gene expression that allows the CNS branch to regenerate a motile growth cone, an 

ability these axons lack in the absence of a conditioning lesion (Hoffman, 2009). 

Furthermore, it is known that neurons lose the ability to regenerate motile growth cones 

as they age, in particular after the end of embryonic development (Goldberg et al., 2004; 

Byrne et al., 2014). Cell-intrinsic changes in gene expression in aging neurons can 

account for some of this decline (Byrne et al., 2014).  

However it is not clear whether cell-intrinsic changes in gene expression occur 

when the neuronal circuitry is first being established or after initial connectivity is 

already assembled. I asked whether there might be a factor that promotes growth cone 

motility whose expression is specifically limited when growth cones decrease motility 

and transition to ellipsoid synaptic boutons. An appealing candidate was the Dual 

Leucine-zipper Kinase (DLK) for its known role in promoting growth cone motility in 

developing neurons and its necessity and sufficiency for regenerating motile growth 

cones (Nakata et al., 2005; Collins et al 2006; Hirai et al., 2006; Lewcock et al., 2007; 

Eto et al., 2010; Xiong et al., 2010; Nix et al., 2011; Wang and Jin; 2011; Klinedinst et 

al., 2013). In the next chapter, I describe my co-authored study, which was provisionally 

accepted to the journal Development, asking whether DLK is limited to promote a 

decrease in growth cone motility of neurons in the process of establishing their 

connectivity and if so, by what mechanism. In subsequent chapters, I describe 

unpublished co-authored work asking how Wnd and Ttk69 exert their effects on the 

growth cone cytoskeleton. 
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CHAPTER II 

 

WALLENDA/DLK PROTEIN LEVELS ARE TEMPORALLY 

REGULATED BY TRAMTRACK69 TO ALLOW REMODELING OF 

R7 GROWTH CONES INTO BOUTONS 

 

The work described in this chapter was provisionally accepted for publication in the 

journal Development in February, 2016. Alexander I. Feoktistov and Tory G. Herman 

designed and interpreted the experiments, designed the figures and wrote the manuscript. 

Alexander I. Feoktistov performed all of the experiments.  

 

Introduction 

The pattern of connectivity among neurons depends upon the behavior of growth 

cones, motile structures at the tips of axons. Growth cones extend, turn, pause, and retract 

as they navigate specific pathways, halt upon contacting the appropriate target cells, and 

ultimately remodel into stationary presynaptic boutons. While much of this behavior is 

regulated by extrinsic cues (Lowery and Van Vactor, 2009; Vitriol and Zheng, 2012), 

cell-intrinsic factors also play a critical role in regulating the dynamic rearrangement of 

the growth cone cytoskeleton (Goldberg, 2004; Moore et al., 2011; Mar et al., 2014; 

Steketee et al., 2014). In particular, the conserved mitogen-activated protein kinase 

kinase kinase (MAP3K) DLK is a potent cell-intrinsic regulator of microtubule dynamics. 

DLK levels increase in response to axon injury and promote growth cone assembly and 

extension by activating the MAPKs JNK and p38 (Nakata et al., 2005; Collins et al 2006; 

Hirai et al., 2006; Lewcock et al., 2007; Eto et al., 2010; Xiong et al., 2010; Nix et al., 

2011; Klinedinst et al., 2013). While loss of dlk has only subtle effects on normal 

development (Collins et al., 2006; Fernandes et al., 2011; Shin and DiAntonio, 2011; 

Wang et al., 2013), DLK overexpression cell-autonomously disrupts axon connectivity 

by causing growth cones to extend beyond their targets (Lewcock, et al., 2007; Wang et 

al., 2013; Baker et al., 2014; Opperman and Grill, 2014). DLK activity is therefore 
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normally limited by PHR family E3 ubiquitin ligases, which target DLK for proteosomal 

degradation in the absence of injury (Liao et al., 2004; Nakata et al., 2005; Collins et al., 

2006; Wu et al., 2007; Brace et al., 2014). DLK levels have been reported to decrease 

during development (Collins et al., 2006; Eto et al., 2010), suggesting that PHR or other 

mechanisms progressively downregulate DLK as neurons form stable connections. 

However, how DLK levels are regulated during the course of an individual growth cone's 

development has not been examined in detail. 

 

To test whether DLK is differentially regulated over the course of normal growth 

cone development, we used the R7 photoreceptor neurons in the Drosophila eye. R7 

growth cone motility decreases in two main phases (Ting et al., 2005; Kniss et al., 2013; 

Chen et al., 2014; Özel et al., 2015): (1) after arriving in the optic lobe, R7 growth cones 

halt within a specific target layer; they no longer actively move forward but do remain 

expanded and continue to extend and retract multiple small processes; (2) as the R7 axons 

continue to lengthen by passive stretch growth, the R7 growth cones gradually decrease 

in volume, their processes decrease in number and motility, and they ultimately become 

smooth boutons that lack processes. We set out to determine how DLK/Wnd levels are 

regulated during R7 growth cone development. We expected that Wnd would be 

repressed by PHR/Hiw during phase (1) halting, as has been observed in other systems. 

And we hypothesized that Wnd might then be further downregulated to allow phase (2) 

remodeling to occur. 

Here we show that Wnd levels in R7 growth cones are downregulated by a novel, 

Hiw-independent mechanism during phase (2) remodeling. As in other systems, R7 

growth cones do require Hiw during phase (1) to repress and thereby prevent Wnd from 

disrupting R7 growth cone halting. However, loss of hiw alone has no effect on phase (2) 

remodeling. Instead, Wnd levels are additionally repressed by Ttk69, a transcriptional 

repressor that we previously showed is specifically expressed and required in R7s during 

growth cone remodeling (Kniss et al., 2013). In contrast to the JNK-dependent positive 

feedback that has been observed during axon injury in mammalian cell culture 

(Huntwork-Rodrigues et al., 2013), we found that during both phases of R7 development, 

Wnd protein levels are additionally repressed by JNK-dependent negative feedback. We 
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use live imaging to show that Wnd overexpression and Ttk69 loss have overlapping but 

distinct effects on R7 growth cone remodeling. We conclude that neurons may use 

temporal factors to progressively limit DLK expression as their connections become 

more stable. And we conclude that in R7s the temporal factor Ttk69 promotes growth 

cone remodeling by repressing multiple cell-intrinsic regulators of growth cone 

dynamics.  

 

Results 

 

Wnd protein is downregulated independently of Hiw in R7 growth cones that are 

remodeling into presynaptic boutons 

Previous work has shown that average levels of DLK decrease during 

development. One possibility is that individual neurons progressively downregulate DLK 

as their growth cones lose motility. To test this, we examined the levels of DLK/Wnd 

protein in R7 growth cones. We anticipated that, as in other systems, R7 growth cones 

would use Hiw to repress Wnd as they halt at their target layer (24 h APF). However, we 

wanted to know whether Wnd is repressed further in R7 growth cones as they remodel 

into stationary boutons (60 h APF). We therefore used anti-Wnd antibodies to quantify 

Wnd protein levels in R7 growth cones at these two timepoints; we were unable to 

quantify anti-Wnd staining in actively extending R7 growth cones because of their 

location and orientation. At 24 h APF, we found that anti-Wnd staining in R7 growth 

cones is indistinguishable from that in wnd deletion mutants (Fig. 1A,A',E) but that loss 

of hiw increases Wnd levels significantly (Fig. 1B,B',E). We conclude that, as expected, 

Hiw is required to repress Wnd during R7 growth cone halting. We note that loss of hiw 

also increases anti-Wnd staining in R8 growth cones at this time (Fig. 1A-B', data not 

shown). 

We next examined R7 growth cones at the 60 h APF timepoint. Again, anti-Wnd 

staining in wild type is low and indistinguishable from that in wnd deletion mutants (Fig. 

1C,C',E), indicating that any decrease in Wnd in wild-type R7 growth cones is below our 

level of detection with these antibodies. However, we found that loss of hiw causes a 

much smaller increase in Wnd levels at 60 h APF (Fig. 1D,D'.E) and that Wnd levels 
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therefore decrease significantly in hiw mutant R7 growth cones between 24 and 60 h 

APF. We conclude that Wnd is downregulated by a Hiw-independent mechanism as R7 

growth cones remodel into stationary boutons. 

 

During R7 growth cone halting, Wnd must be repressed by Hiw to prevent 

extension beyond the correct target layer 

Having found that R7 growth cones use an additional mechanism to repress Wnd 

during R7 growth cone remodeling, we wanted to compare the effects of increased Wnd 

on remodeling and halting. We first examined R7 growth cone halting (24 h APF). We 

anticipated that, as in other systems, an increase in Wnd might cause R7 growth cones to 

project beyond their normal target layer (Schaefer et al., 2000; Lewcock et al., 2007; Yan 

et  al., 2009; Wang et al., 2013; Baker et al., 2014; Opperman and Grill, 2014). We used 

either the photoreceptor-specific chaoptin-Gal4 (chp-Gal4) driving UAS-mCD8-GFP to 

label R7 and R8 axons (Fig. 2A-D') or the R7-specific PM181-Gal4 driving UAS-mCD8-

GFP to label R7 axons only (Fig. S2A-B'; see Appendix A for all Supplementary Figures 

and Legends). We found using either marker that R7 growth cones in hiw mutants do halt 

at the correct target layer but are elongated [a hallmark of forward-moving growth cones 

(Godemont, 1994)] and frequently extend long, thin processes beyond their targets (Fig.  

Figure 1 (next page). Wnd protein is downregulated independently of Hiw in R7 

growth cones as they remodel into presynaptic boutons. 

Pupal medullas (29°C) in which R7 and R8 axons are labeled with anti-Chp (A-D) and 
anti-Wnd (A'-D'). 
Scale bars are 5 µm. (E) Quantification of anti-Wnd levels in R7 growth cones. 
n=brains, error bars represent SEM, and **p<0.001, ***p<0.0001 based on two-tailed t-
tests. n.d.= no data. n=14, 16, 5, 6, 10, 17, and 8, respectively. At 24 h APF (A,A'), 
wild-type R7 growth cones have halted at their medullar target layer but remain 
expanded. (B,B') hiw mutant R7 growth cones contain significantly more anti-Wnd 
staining (E) and extend processes beyond their target layer (arrow heads). However, by 
60 h APF, hiw mutant R7 growth cones are indistinguishable from wild type and contain 
significantly less anti-Wnd staining than at 24 h APF (C-E). The level of anti-Wnd 
staining in wild-type R7 growth cones is indistinguishable from that in wnd deletion 
mutants at each timepoint, indicating that R7 growth cones normally express little or no 
Wnd protein during both halting and remodeling. Using chp-Gal4 to drive expression of 
dominant-negative JNK (JNKDN) in R7s also significantly increases anti-Wnd staining 
in their growth cones at 24 h APF, indicating that JNK provides negative feedback to 
Wnd (see Fig. 2). 
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Figure 2 (next page). R7 growth cones require Hiw to repress Wnd as they halt 

at their target layer. 

(A-D') 24 h APF pupal medullas (25°C) in which R7 and R8 axons are labeled with 
chp-Gal4, UAS-mCD8-GFP (green) and anti-Chp (red). Scale bars are 5 µm. A'-D' 
are enlargements of the boxed regions in (A-D) with enhanced brightness. Arrows 
indicate the R7 and R8 target layers. (E-G) Quantifications of R7 growth cone 
phenotypes. n=brains, error bars represent SEM. (E,F) n=9, 8, 11, and 11, 
respectively. (G) n=7, 8, 7, and 12, respectively. hiw mutant R7 growth cones are 
elongated (B,B',E; two-tailed t-test) and extend processes beyond their target layer 
(arrowheads; processes of at least 3 µm are quantified in F; two-tailed t-test). R8 
growth cones occasionally terminate between the R8 and R7 target layers (arrow; 
1.7±0.6% versus <0.08% in wild type; See Fig. S1B,B'). Loss of wnd has no effect 
on wild-type R7 growth cones (C,C',E,F) but restores the morphology of hiw mutant 
R7 growth cones to that of wild type (D-F; one-tailed but restores the morphology of 
hiw mutant R7 growth cones to that of wild type (D-F; one-tailed t-tests, *p<0.01). 
R8 growth cones occasionally extend beyond their target layer in both wnd (data not 
shown) and hiw; wnd mutants (arrow). (G) Using chp-Gal4 to drive co-expression 
of Wnd (wnd

OE) and RFP (as a control for UAS copy number) is sufficient to disrupt 
R7 growth cone halting. Co-expressing Wnd with JNKDN ameliorates this defect (G, 
***p<0.0001, Fig. S2). (H) Model summarizing the roles of Hiw, Wnd, and JNK as 
R7 growth cones halt at their target layer. 
 
 

2B,B',E,F). Because PHR proteins can have DLK-independent effects (Burgess et al., 

2004; D’Souza et al., 2004; McCabe et al., 2004; Collins et al., 2006; Bloom et al., 2007; 

Grill et al., 2007; Li et al., 2008; Brace et al., 2014), we verified that the upregulation of 

Wnd in hiw mutants is responsible for disrupting R7 growth cone halting: loss of wnd 

from hiw mutants fully rescues the overextensions (Fig. 2C-F), and driving increased 

expression of Wnd in wild-type R7s is sufficient to cause them (Fig. 2G, Fig. S2E,E'). 

We conclude that Hiw is required to repress Wnd in R7 growth cones to promote normal 

halting. As in other systems (Collins et al., 2006; Fernandes et al., 2011; Shin and 

DiAntonio, 2011; Wang et al., 2013), loss of wnd does not disrupt R7 growth cone 

morphology or connectivity (Fig. 2C,C',E,F; data not shown).  

 

During R7 growth cone halting, Wnd is also repressed by negative feedback from 

JNK 

While examining the role of increased Wnd levels in R7 growth cone halting, we 

identified a second, unexpected mechanism by which Wnd is repressed at this timepoint. 

To test whether Wnd disrupts R7 halting by acting upstream of JNK (Hirai et al., 2002; 
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Collins et al., 2006; Eto et al., 2010; Yan and Jin, 2012), we co-expressed Wnd with a 

dominant-negative version of JNK (JNKDN; Weber et al., 2000). We found, indeed, that 

JNKDN almost completely eliminates the processes that Wnd-overexpressing R7 growth 

cones extend beyond their target layer (Fig. 2G, Fig. S2F,F'), indicating that Wnd acts 

upstream of JNK in this process. To our surprise, we noticed that expressing JNKDN in 

R7s also significantly increases Wnd levels in R7 growth cones, although to a lesser 

extent than loss of hiw (Fig. 1E). Consistent with our finding that Wnd  

requires JNK to disrupt R7 growth cone halting, JNKDN does not disrupt R7 growth cone 

halting, despite the increase in Wnd (Fig. S2D,D'). We conclude that during R7 growth 

cone halting, JNK acts in a negative feedback loop that contributes to restricting Wnd 

levels (Fig. 2H). Mammalian JNK has recently been shown to act in a positive feedback 

loop to increase DLK levels during axon regeneration (Huntwork-Rodriguez et al., 2013). 

However, JNK-mediated negative feedback has not previously been reported.  

 

As R7 growth cones remodel into boutons, Wnd must be repressed to prevent a 

different defect: extension within the correct target layer 

We next wanted to determine the effects of increased Wnd on R7 growth cones 

that are remodeling into boutons. We again used the chp promoter driving GFP 

expression to label R7 and R8 axons but examined two later timepoints that span the 

remodeling process: (1) 40 h APF, when wild-type R7 axon terminals first start 

assembling active zones but are still expanded and extend multiple thin processes; and (2) 

60 h APF, by which time R7 terminals have many active zones, are condensed, and 

extend fewer processes (Ting et al., 2005; Chen et al., 2014; Özel et al., 2015; see below). 

We first examined hiw mutants, since we found that Hiw loss modestly increases Wnd 

levels at 60 h APF (Fig. 1). We hypothesized that the defect in R7 growth cone halting in 

hiw mutants might worsen over time. However, we found instead that R7 axon terminals 

in hiw mutants are indistinguishable from wild-type at both 40 and 60 h APF (Fig. 

3A,B,D,E,G,H). In particular, they no longer extend processes beyond their target layer 

(Fig. 3G). We conclude that, despite the increased Wnd levels that are still present in hiw 

mutant R7 growth cones, the earlier effects on R7 growth cone morphology are somehow 

later corrected and remodeling proceeds normally. One possiblity is that older R7 growth 
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cones simply become insensitive to increased Wnd levels. Alternatively, perhaps the 

Hiw-independent decrease in Wnd levels that we observed between halting (24 h APF) 

and remodeling (60 h APF) provides protection to remodeling R7 growth cones.  

To distinguish between these possibilities, we again used chp-Gal4 to drive 

increased expression of Wnd in wild-type R7 neurons - the same manipulation that 

disrupts R7 growth cone halting at 24 h APF (Fig. 2G, Fig. S2E,E'). We found that 

Figure 3. R7 growth cones do not require Hiw as they remodel into presynaptic 

boutons, yet Wnd overexpression disrupts this process. 

(A-F) Pupal medullas (25°) in which R7 and R8 axons are labeled with chp-Gal4, UAS-

EB1-GFP (white). Scale bars are 5 µm. Arrows indicate the R7 and R8 target layers. (G,H) 
Quantification of R7 growth cone phenotypes at 48 h APF (29°C). n=brains, error bars 
represent SEM. n=8, 7, 11, 7, and 10, respectively. By 40 h APF (A,B), wild-type and hiw 
mutant R7 axon terminals are indistinguishable. The same is true at 60 h APF (D,E). By 
contrast, using chp-Gal4 to drive co-expression of Wnd and control RFP causes R7 axon 
terminals to contact adjacent R7 terminals (chevrons; H) and, occasionally, extend 
processes beyond their target layer (G). These defects are eliminated by co-expressing Wnd 
with JNKDN (G,H; ***p<0.0001). (I) Model summarizing the roles of Hiw, Wnd, and JNK 
as R7 growth cones remodel into boutons. 
 



14 
 

despite the prolonged high Wnd levels, the R7 growth cone halting defect is substantially 

corrected by 48 h APF: significantly (p<0.001) fewer R7 axon terminals extend processes 

beyond their target layer at the later timepoint (Fig. 3C,G). However, a significant 

number of R7 axon terminals instead extend laterally and contact adjacent neighbors 

(Fig. 3C,H). Co-expressing JNKDN together with Wnd completely ameliorates both 

defects (Fig. 3G,H). We conclude that older R7s are sensitive to increased Wnd, 

suggesting that the Hiw-independent mechanism that contributes to repressing Wnd 

during remodeling serves a protective purpose (Fig. 3I). While the remodeling defect 

caused by increased Wnd is different from the earlier halting defect, Wnd acts through 

JNK in each case.  

 

Wnd overexpression and Ttk69 loss cause similar defects in R7 growth cone 

remodeling  

We previously found that a transcriptional repressor, Ttk69, is specifically 

expressed and required in remodeling R7 growth cones to prevent a remodeling defect 

similar to that caused by Wnd overexpression (Kniss et al., 2013). To directly compare 

the effects of Wnd and Ttk69 on individual R7 growth cones, we used the GMR-

FLP/MARCM technique to generate GFP-labeled wild-type R7s (Fig. 4A,E,H), GFP-

labeled wild-type R7s that overexpress Wnd (Fig. 4B,C,F,I), and GFP-labeled ttk69 

mutant R7s (Fig. 4D,G,J). Consistent with our previous results, we found that at 24 h 

APF, R7s overexpressing Wnd have elongated growth cones that extend processes 

beyond their target layer (Fig. 4B); however, some are instead expanded laterally (Fig. 

4C), a defect that was obscured when all R7 growth cones were labeled. At this early 

timepoint, Ttk69 is not yet expressed in R7s and ttk69 mutant R7 growth cones are 

normal (Kniss et al., 2013; Fig. 4D). By 48 and 60 h APF, R7s overexpressing Wnd 

frequently extend some distance laterally, causing overlap with multiple neighboring 

wild-type R7 terminals (Fig. 4F,I); some also extend branches within the M1 layer (data 

not shown). These defects resemble those caused by Ttk69 loss (Fig. 4G,J), although 

Ttk69 loss additionally causes some branching in the M3 layer (Fig. 4J). We conclude 

that Wnd acts cell-autonomously to disrupt R7 growth cone morphology during both 

halting and remodeling and that Wnd gain and Ttk69 loss cause similar remodeling 
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defects. We therefore speculated that Ttk69 might be responsible for the Hiw-

independent repression of Wnd during this process.  

 

 

  

 

Figure 4. Wnd overexpression and Ttk69 loss cause similar defects in R7 

growth cone remodeling. 

 (A-I) Pupal medullas (25°C) in which homozygous R7 clones generated by GMR-

FLP/MARCM express mCD8-GFP (green). All R7 and R8 axons are labeled with 
anti-Chp (red). Scale bars are 5 µm. (A,E,H) Wild-type (homozygous FRT82) R7 
axon terminals are roughly spherical at all time points and, by 60 h APF, rarely 
contact their neighbors (0.4±0.25%; n=11 brains). By contrast, at 24 h APF (B), R7s 
overexpressing Wnd have oblong axon terminals that partly extend beyond the R7 
target layer (arrowhead), although some expand into neighboring terminals (C; 
chevron). During growth cone remodeling (F,I), R7s overexpressing Wnd have axon 
terminals that extend laterally and overlap with their wild-type neighbors (chevrons; 
11.3±0.97% at 60 h APF; n=14). While ttk69 mutant R7 growth cones are 
indistinguishable from wild type at 24 h APF (D), they also extend laterally and 
overlap with their wild-type neighbors in both the M6 (chevrons) and M3 (arrow) 
layers when they should instead be remodeling (G, J;  23.8±1.9% at 60 h APF; n=7). 
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Ttk69 acts in parallel with Hiw and JNK to decrease Wnd protein levels in R7 axon 

terminals during remodeling 

To test whether Ttk69 might be responsible for the Hiw-independent repression of 

Wnd during growth cone remodeling, we measured anti-Wnd staining in wild-type and 

ttkRNAi-expressing R7 axon terminals at 48 and 60 h APF (Fig. 5A). We found that 

disrupting Ttk69 alone does not significantly increase Wnd expression at either timepoint 

(Fig. 5A). However, simultaneous loss of hiw and ttk69 in R7s causes a striking increase 

in Wnd, well beyond the sum of that caused by loss of either alone (Fig. 5A), indicating 

that Hiw and Ttk69 act in parallel to repress Wnd. We conclude that Hiw and Ttk69 act 

redundantly in R7s to keep Wnd repressed during remodeling (Fig. 5C).  

We next wondered whether JNK might also participate in repressing Wnd during 

remodeling, as it does during halting. We found that disrupting JNK in R7s does not 

measurably increase Wnd levels at 48 h APF (Fig. 5A). However, simultaneous 

disruption of JNK and Ttk69, like simultaneous disruption of Hiw and Ttk69, causes a 

synergistic increase in Wnd levels (Fig. 5A). We conclude that JNK continues to act in a 

negative feedback loop to restrict Wnd levels in R7 axon terminals during remodeling 

but, like Hiw, is redundant with Ttk69 during this process (Fig. 5C). 

Finally, we wanted to test whether Ttk69, a transcriptional repressor, might 

directly regulate wnd transcription. To do so, we quantified and compared the levels of 

wnd mRNA in wild-type retinas and in retinas in which chp-Gal4 drove expression of 

UAS-ttkRNAi in R neurons. We found no difference, despite being able to detect a 

significant difference between wild-type retinas and retinas in which chp-Gal4 drove 

UAS-wnd (Fig. 5B). We conclude that Ttk69 is unlikely to repress Wnd directly, although 

it remains possible that there is a difference in wnd mRNA levels specifically in R7 

neurons that we were unable to detect. We note that wnd mRNA levels do not detectably 

decrease in wild-type retinas during R7 remodeling (Fig. S3A in the Appendix), 

consistent with Ttk69 regulating Wnd only indirectly. We examined whether Ttk69 might 

regulate levels of fat facets mRNA, which encodes a deubiquitinase that acts in parallel 

with Hiw to regulate Wnd protein levels, but again we found no difference (Fig. S3B). 

We conclude that Ttk69 acts in parallel with Hiw but upstream of an unknown factor to 

repress Wnd in remodeling R7 growth cones (Fig. 5C). 



17 
 

 
 

  

Figure 5. Specifically during R7 

growth cone remodeling, Ttk69 acts in 

parallel with Hiw and JNK-dependent 

negative feedback to repress Wnd. 

(A) Quantification of anti-Wnd levels in 
R7 axon terminals at 48 and 60 h APF 
(29°C). n=brains, error bars represent 
SEM. n=19, 11, 12, 19, 15, 11, 16, 17, 8, 
and 11, respectively. Loss of hiw alone 
moderately increases Wnd levels in R7 
axon terminals at both timepoints (note: 
values for wild type and hiw mutant at 60 
h APF are reproduced from Fig. 1). Loss 
of ttk69 alone (caused by ttkRNAi) has no 
significant effect on Wnd levels. 
However, loss of both hiw and ttk69 
causes a striking, significantly greater-
than-additive increase in Wnd levels in 
R7 axon terminals at both timepoints. 
Similarly, loss of JNK alone (caused by 
JNK

DN) has no significant effect on Wnd 
levels, but loss of both JNK and ttk69 
causes a significantly greater-than-
additive increase in Wnd levels in R7 
axon terminals. *p<0.01, **p<0.001, and 
***p<0.0001 based either on two-tailed t-
tests for pairwise comparisons or a two-
way ANOVA to test for greater than 
additive effects of disrupting two genes 
(Slinker, 1998). (B) Quantification of 
retinal wnd transcript levels measured by 
qRT-PCR. n=biological replicates, error 
bars represent SEM. Retinas in which all 
R neurons express ttkRNAi under the 
control of chp-Gal4 have wnd transcript 
levels that are not significantly different 
from those in wild type; retinas in which 
R neurons express wnd under the control 
of chp-Gal4 do have significantly 
increased wnd transcript levels. (C) 
Model summarizing the roles of Hiw, 
Wnd, JNK and Ttk69 in R7s as their 
growth cones remodel into presynaptic 
boutons. 
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During R7 growth cone remodeling, Wnd overexpression disrupts the reorientation 

of microtubule-containing processes and the downregulation of their extension and 

retraction rates 

The DLK/JNK pathway is known to regulate microtubule organization and 

stability (Hirai et al., 2002; Hirai et al., 2006; Lewcock et al., 2007; Eto et al., 2010; 

Hendricks and Jesuthasan 2009; Hirai et al., 2011; Feltrin et al., 2012; Ghosh-Roy et al., 

2012), but its specific effect on the transition from motile growth cone to stable 

presynaptic boutons has not been examined. Having established that increased Wnd 

disrupts this transition, we wanted to determine the mechanism in more detail. To do so, 

we caused R7s to express GFP-tagged EB1, which binds microtubule plus-ends (Rolls et 

al., 2007), and we imaged their axon terminals in live, ex vivo brains. We found that even 

in static images these live preparations allowed us to detect more details of R7 axon 

terminal morphology than are visible in fixed samples. We focused on two timepoints 

during the remodeling process. At 40 h APF, wild-type R7 axon terminals are still 

expanded (Fig. 6A,G), most have two or more EB1-GFP-containing processes of at least 

0.5 µm extended at any given time (Fig. 6H), and these processes are primarily oriented 

at 180° relative to the axon shaft (Fig. 6I). By 48 h APF, wild-type R7 axon terminals 

have begun the remodeling process: they have condensed significantly (Fig. 6D,G), most 

have only one EB1-containing process (Fig. 6H), and that process is even more likely to 

extend directly forward (Fig. 6I). In addition, both the average extension and retraction 

rates of the EB1-containing processes decrease significantly between these two 

timepoints (Fig. 7A,B,G,H; Movies 1 and 2; all six movies can be found in a 

supplementary file as a companion to this dissertation). 

We next quantified the behavior of R7s that overexpress Wnd. At 40 h APF their 

axon terminals are of normal size (Fig. 6B,G), and their EB1-containing processes have 

normal average extension and retraction rates (Fig. 7C,G,H, Movie 3). However, each 

terminal extends significantly more processes (Fig. 6H), and these processes are less apt 

to be oriented at 180° (Fig. 6I). By 48 h APF, Wnd-overexpressing R7 axon terminals 

have successfully condensed (Fig. 6E,G) and reduced their number of processes (Fig. 

6H), similar to wild type. However, these processes remain less forward-oriented than in 

wild type (Fig. 6I) and fail to reduce their extension and retraction rates (Fig. 7D,G,H, 
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Movie 4). These results support a model in which Wnd does not specifically promote 

either microtubule assembly or disassembly in remodeling R7s but instead increases 

overall microtubule dynamism and disrupts microtubule orientation (Fig. 8). 

 

Wnd overexpression and Ttk69 loss have overlapping but distinct effects on R7 

growth cone remodeling 

The R7 remodeling defects caused by Ttk69 loss are grossly similar to those 

caused by Wnd gain but are more frequent and more severe (Kniss et al., 2013). We 

wanted to distinguish whether this is because Ttk69 loss causes similar but more frequent 

and severe defects in microtubule dynamics or whether Ttk69 loss instead has distinct 

effects on microtubules. We found the latter to be true. Like Wnd overexpression, Ttk69 

loss disrupts the forward reorientation of EB1-GFP-containing processes as R7 growth  

Figure 6 (next page). Wnd overexpression and Ttk69 loss have overlapping but 

distinct effects on the morphology of remodeling R7 growth cones. 

 (A-F) Live R7 axon terminals labeled with chp-Gal4, UAS-EB1-GFP at 40 and 48 h APF 
(29°C) extend thin, EB1-GFP-positive processes (arrowheads). Driving wnd or ttkRNAi 
expression in R7s causes these processes to contact neighboring terminals (chevrons). 
Scale bars are 3 µm. (G-H) Quantifications of EB1-GFP-positive processes. n=terminals, 
error bars represent SEM. n= 20, 27, 30, 23, 22, 16, and 18, respectively. The areas of 
both wild-type (A,D) and wnd-overexpressing R7 axon terminals (B.E) decreases 
significantly during remodeling (compare 40 and 48 h APF; G). By contrast, loss of ttk69 
causes R7 axon terminals to increase in area (C,F,G). baboRNAi-expressing R7 axon 
terminals are abnormally large at 48 h APF but not as large as those expressing ttkRNAi 
(G). *p<0.01, **p<0.001, and ***p<0.0001 based on two-tailed t-tests. (H) wnd 
overexpression increases the number of EB1-GFP-positive R7 processes present at 40 h 
APF (p<0.0001 based on Fisher’s Exact Test), but the number of these processes 
decreases to wild-type levels by 48 h APF. By contrast, ttk69RNAi causes an increase in 
process number that increases further by 48 h APF (p<0.0001 compared to wild type, 
Fishers Exact Test). R7s expressing baboRNAi have a wild-type number of processes at 
48 h APF. Only processes ≥0.5 µm in length were counted. (I) Histogram plots of R7 
process angles relative to the axon shaft. n=processes. Most wild-type EB1-GFP-positive 
processes point "forward" (at angles between 150° and 180°) even at 40 h APF (n=30), 
and the proportion that do so increases by 48 h APF (n=36). By contrast, R7s 
overexpressing wnd have a broader distribution of process angles at both timepoints, and 
the proportion that point forward does not increase between 40 (n=60) and 48 h APF 
(n=33). ttk69RNAi does not disrupt the primarily forward orientation of R7 processes at 40 
h APF (n=45), but does so by 48 h APF (n=42). Finally, baboRNAi does not disrupt R7 
process orientation even at 48 h APF (n=22). p values are based on Kolmogorov-Smirnov 
tests. 
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cones remodel (Fig. 6I) and prevents the normal reduction of process extension rate (Fig. 

7F,G, Movie 5). However, unlike Wnd overexpression, Ttk69 loss also prevents R7 axon 

terminals from condensing (Fig. 6F,G), decreasing their number of EB1 processes (Fig. 

6H), and does not prevent them from reducing their process retraction rate (Fig. 7F,H, 

Movie 6). Perhaps as a consequence, the length of EB1-containing processes increases 

significantly when Ttk69 is disrupted (Fig. 7I). We conclude that both Wnd 

overexpression and Ttk69 loss disrupt microtubule orientation and prevent the normal 

decrease in process extension, but that Ttk69 loss also promotes the continued formation 

and/or stabilization of microtubule-containing processes. We previously found that Ttk69 

promotes R7 remodeling, in part, by promoting Activin/Baboon (Babo) signaling (Kniss 

et al., 2013). We therefore also examined the degree to which Babo loss resembled Ttk69 

loss. We found that, like R7s expressing ttkRNAi, R7s expressing baboRNAi have an 

average extension rate that is significantly greater than wild type but an average process 

retraction rate that is indistinguishable from wild type (Fig. 7G,H). Ttk69's effect on 

Activin/Babo signaling may therefore account, in part, for its effect on R7 growth cone 

dynamics. However, we also found that Babo loss, unlike Ttk69 loss, does not increase 

average R7 process length (Fig. 7I) or number (Fig. 6H), confirming that Ttk69 does not 

act exclusively through this pathway. We conclude that Ttk69 is likely to coordinate the 

regulation of multiple factors that influence microtubule structure and dynamics during 

growth cone remodeling.  

 

Figure 7 (next page). Wnd overexpression and Ttk69 loss have overlapping but 

distinct effects on the dynamics of remodeling R7 growth cones. (A-F) Images of 
live R7 axon terminals labeled with chp-Gal4, UAS-EB1-GFP at 40 and 48 h APF 
(29°C) at one minute intervals. Scale bars are 3 µm, arrowheads mark onsets of 
extensions, arrows mark onsets of retractions. In all genotypes, some processes remain 
stationary (asterisks). Processes that contact neighboring terminals (chevrons) were 
excluded from our analysis. (G-I) Quantifications of EB1-GFP-positive processes. 
n=processes, error bars represent SEM. *p<0.01, **p<0.001, ***p<0.0001 based on 
pairwise two-tailed t-tests. (G) n=37, 35, 26, 27, 44, 20, and 23, respectively. (H) 
n=34, 29, 24, 29, 42, 16, and 25, respectively. (I) n= 30, 36, 60, 33, 45, 42, and 22, 
respectively. The rates at which wild-type EB1-GFP-containing processes extend and 
retract decrease significantly during remodeling (compare 40 and 48 h APF; 
A,B,G,H). Wnd overexpression (C,D) prevents these decreases (G,H). Ttk69 loss 
(E,F) and Babo loss only prevent the decrease in extension rate (G,H). Ttk69 loss 
increases average process length (I). 
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Discussion 

 

Wnd levels in developing R7s are temporally regulated by the transcription factor 

Ttk69  

Elevated DLK protein levels enhance a neuron's ability to repair axon damage but 

impair its ability to form appropriate connections during development. DLK levels must 

therefore be carefully regulated. Here we show that, as has previously been observed in 

many systems, R7 neurons use a PHR protein, Hiw, to keep Wnd/DLK levels low enough 

for their growth cones to halt properly at their targets. However, we find that R7s later 

deploy a transcription factor, Ttk69, in parallel with Hiw to repress Wnd as their growth 

cones remodel into boutons. This progressive repression of DLK has not previously been 

reported but would make sense if growth cones become less tolerant of stochastic 

fluctuations in DLK as they become less motile. However, by adding PHR-independent 

mechanisms of DLK repression, maturing neurons would be predicted to express lower 

levels of DLK upon injury: in R7s, for example, Ttk69 would presumably continue to 

repress Wnd even if injury released Wnd from Hiw-mediated inhibition. In worm, the 

diminished capacity of older adults to recover from axon injury is caused by such a 

mechanism: as adult worms age, insulin/IGF-1 signaling represses DLK transcription, 

thereby limiting the increase in DLK after injury (Byrne et al., 2014). Our findings 

suggest that temporal control of DLK levels protects normal development even as it may 

limit regenerative capacity. 

 

Wnd levels in R7s are repressed by JNK-mediated negative feedback 

Like most signal transduction cascades, MAPK pathways can contain negative or 

positive feedback (Brummer et al., 2003; Fritsche-Guenther et al., 2011). In mouse 

neurons undergoing injury, JNK provides positive feedback within the DLK pathway by 

directly phosphorylating and thereby stabilizing DLK (Huntwork-Rodriguez et al., 2013). 

By contrast, here we show that in R7s JNK provides negative feedback within the DLK 

pathway by decreasing DLK protein levels. One possibility is that both positive and 

negative feedback co-exist in the DLK pathway in both mouse and fly. Negative 

feedback occurs during development, when the pathway must be restrained, whereas 
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positive feedback takes over upon injury, when there is a need to swiftly mount a 

sustained DLK response. Alternatively, our result may reflect a cell- or species-specific 

mechanism. In support of the latter possibility, the sites within mouse DLK that are 

phosphorylated by JNK are not conserved in fly Wnd (Huntwork-Rodrigues et al., 2013). 

However, we note that there is one conserved MAPK consensus phosphoryation site, 

S643 in mouse and S715 in fly, which remains a candidate for phosphorylation and 

consequent regulation by JNK in both species. 

 

Figure 8. Model of how Wnd and Ttk69 affect the remodeling of R7 growth 

cones into presynaptic boutons. 

(A) Table summarizing results from Fig. 6 and 7. In wild type, all properties 
listed decrease (black arrows). Wnd overexpression or Ttk69 loss causes some 
properties to increase (red arrows) or remain unchanged ("no change"). 
(B) Model consistent with the pathway relationships summarized in Fig. 5C and 
the phenotypes summarized in Fig. 8A, as well as with previous data on the 
pathway relationship between Ttk69 and Babo (Kniss et al., 2013) and the new 
data on Babo loss from Fig. 6 and 7. 
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The R7 growth cone defect caused by Wnd overexpression changes over time 

Wnd overexpression in R7s causes two distinct defects: their growth cones 

initially extend thin processes beyond their targets but later correct these and instead 

extend laterally. Each defect is similar to one observed in other systems [for example, 

Lewcock et al.,(2007) and Wang, et al., (2013), respectively]. However, why the defect 

changes over time is unclear. At each timepoint, the R7 growth cones maintain contact 

with their targets, consistent with previous work showing that DLK overexpression does 

not prevent growth cones from responding to extrinsic cues (Lewcock et al., 2007; Shin 

and DiAntonio, 2011). One possibility is that the extrinsic medullar environment initially 

allows Wnd-overexpressing R7 growth cones to send out forward-oriented processes but 

later constrains them, causing them to "burst out" laterally. Alternatively, the intrinsic R7 

developmental program might be responsible - perhaps increased Wnd propels R7 axon 

shafts forward when R7 growth cones are already moving forward but has a different 

effect as the R7 terminals are attempting to remodel. This second possibility is consistent 

with evidence that the DLK can promote microtubule stability as well as instability and 

can switch from one to the other at different stages of a neuron's development (Hirai et 

al., 2011).  

To examine this in more detail, we used live imaging of EB1-GFP to follow 

Wnd's effects on R7 microtubules. The high levels of EB1-GFP required to visualize R7s 

prevented us from observing "comets" (Morrison et al., 2002), but a comparison of our 

observations with a recent R7 study using a membrane-bound GFP (Özel et al., 2015) 

suggests that even overexpressed EB1-GFP remains associated with microtubules: we 

counted far fewer GFP-positive processes than were observed with the membrane-bound 

GFP, and our processes extended and retracted at lower rates. We therefore believe our 

analysis reflects the behavior of pioneer microtubules, which escape the growth cone's 

central domain and explore a subset of growth cone filopodia (Lowery and Van Vactor, 

2009; Bearce et al., 2015). We found that Wnd overexpression increases the number of 

EB1 processes in younger R7s (40 h APF), suggesting that Wnd initially promotes 

microtubule stability. However, Wnd does not prevent older R7 growth cones from 

condensing or decreasing their number of EB1 processes, suggesting that Wnd no longer 

promotes microtubule stability during remodeling. Indeed, Wnd appears to increase 
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overall microtubule dynamism at this later stage. Wnd's additional disruption of 

microtubule orientation could account for the lateral extensions, since the orientation of 

pioneer microtubules is strongly associated with the direction of growth cone 

consolidation (Bearce et al., 2015).  

 

Ttk69 likely coordinates multiple pathways that regulate growth cone behavior 

We performed several experiments to test the functional significance of the 

increased Wnd expression in R7s when both Hiw and Ttk69 are disrupted. We found that 

loss of hiw did not enhance the R7 defect caused by Ttk69 loss (Fig. S3C-I). Nor did 

disrupting Wnd or JNK ameliorate the R7 defect caused by Ttk69 loss (Fig. S3C-I). We 

also found that loss of ttk69 and overexpression of Wnd have overlapping but distinct 

effects on the morphology and behavior of R7 growth cones. Together, these results are 

consistent with Ttk69 acting upstream of one or more additional regulators of growth 

cone dynamics that act in parallel with the Wnd/JNK pathway: in the absence of Ttk69, 

these other regulators severely disrupt R7 growth cone behavior whether or not Wnd is 

further increased or decreased (Fig. 8B). 
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CHAPTER III 

 

WND LIKELY ACTIVATES CHANGES IN GENE EXPRESSION BY 

FOS AND IS REQUIRED FOR NORMAL SYNAPTIC BOUTON 

MORPHOLOGY 

 

The work described in this chapter contains unpublished co-authored results. Alexander I. 

Feoktistov and Tory G. Herman designed and interpreted the experiments, while Kevin 

Kroeger and Alexander I. Feoktistov performed the experiments. Alexander I. Feoktistov 

wrote up the results. 

 

Introduction 

 

My work in Chapter II supports a model in which changes in neuronal expression 

of cell-intrinsic factors when neurons are establishing initial connectivity drive the 

transition from a motile growth cone to a stationary synaptic bouton. How might these 

factors accomplish this? Growth cone behavior is driven by rearrangements of the 

cytoskeleton, and there is evidence that both Ttk69 and DLK regulate signaling pathways 

that directly affect the actin and microtubule cytoskeletons, respectively. In this chapter I 

describe this evidence and present preliminary results from and future strategies for 

experiments attempting to identify the mechanisms by which expression of Wnd alters 

the organization or behavior of microtubules. I also discuss preliminary results that 

suggest that Wnd is not completely eliminated in wild type growth cones and plays a role 

in synapse assembly by the end of growth cone remodeling.  

 

Does Wnd signaling cause biochemical changes in targets localized to the growth 

cone or are changes in gene expression required? 

 

Like in other neurons studied (Hirai et al., 2002), Wnd is localized to the growth 

cone in R7s (See Figure 1 in Chapter II). DLK levels are also known to rise at the site of 
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injury after axotomy (Xiong et al., 2010); both results suggest that DLK acts locally 

within the growth cone. Supporting this, my work and past studies show that increased 

Wnd/DLK signaling causes dynamic changes in the behavior of the growth cone 

cytoskeleton, with my work showing that Wnd/DLK signaling promotes overall 

dynamism of microtubule-containing processes. Past work investigating the effect of 

excess DLK on microtubule behavior have shown sometimes conflicting results for the 

role of DLK in promoting microtubule stability but also instability. Evidence for DLK 

promoting microtubule stability comes from studies in regenerating worm neurons where 

excess DLK increases the frequency and duration of microtubule growth (Ghosh-Roy et 

al., 2012) and cultured zebrafish neurons with excessive DLK have increases microtubule 

velocities (Hendricks and Jesuthasan, 2009). Additionally defects in neurons crossing the 

midline in the zebrafish CNS expressing excessive DLK can be rescued by promoting 

microtubule catastrophe using the drug nocadozole (Hendricks and Jesuthasan, 2009). 

These results suggest that DLK promotes microtubule stability. Contradicting a simplistic 

model in which DLK simply promotes microtubule stability, work from mouse shows 

that inhibiting microutuble catastrophe with the drug taxol can rescue excessive DLK 

(Lewcock et al., 2007), consistent with DLK promoting microtubule instability. Further 

complicating this is work showing a context-dependent role for DLK in stabilizing 

microtubules during neurite formation, followed by axon extension (Hirai et al., 2011). 

Though my results do not fully resolve this controversy, it is clear that DLK signaling 

robustly affects the behavior of the growth cone cytoskeleton.  

Local Wnd/DLK signaling can control microtubules through JNK-mediated 

phosphorylation of several microtubule regulators including microtubule associated 

proteins (MAPS) (Hirai et al., 2006; Eto et al., 2010; Feltrin et al.,, 2012; Coffey et al., 

2014). This increases association of MAPs with microtubules (Hirai et al., 2006; Eto et 

al., 2010), promotes microtubule bundling (Feltrin et al., 2012, Klinedinst et al., 2013), 

and protects them from being severed. Kevin Kroger, a summer undergraduate student 

working with me in the Herman Lab, tested whether Wnd overexpression increased the 

abundance or disrupted the organization of the fly MAP1b Futsch, but he was unable to 

detect any difference between and MARCM-generated wild type and Wnd-

overexpressing clones when staining for Futsch (data not shown). I also tested whether 
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DLK overexpression caused changes in immunostaining for acetylated microtubules, a 

marker of microtubule stability (Fukushima et al., 2009); however I saw no difference in 

abundance of this marker between MARCM-generated clones overexpressing Wnd (data 

not shown) and their wild type neighbors. In both of these cases, staining was widely 

distributed in the optic lobe, so it is possible that further optimization of the staining for 

ubiquitously expressed microtubules and associated proteins could detect subtle 

differences of these markers. Recent work in worm suggests that the microtubule 

severing protein Spastin acts downstream of DLK to generate dynamic microtubules 

during synapse remodeling (Kurup et al., 2015). I expressed RNAi against a fly 

microtubule severing protein called Spastin in R7s using chp-Gal4, but did not find any 

defects in R7 growth cone remodeling or axon morphology (data not shown). Additional 

genetic experiments manipulating expression of other candidate genes like a related 

microtubule severing protein katanin or cytoplasmic linker proteins (CLIPS) might reveal 

potential targets of Wnd signaling acting locally within growth cones (Dent et al., 2011).  

DLK signaling activates MAPKs that can phosphorylate target proteins in the 

axon, but MAPKs also phosphoactivate transcription factors triggering changes in gene 

expression. DLK signaling in developing or regenerating neurons activates the 

transcription factors Fos and/or CEBP downstream of JNK and/or p38, respectively 

(Lindwall et al, 2004; Yan et al., 2009, Itoh et al., 2009; Shin et al., 2012; Hirai et al., 

2011). Indeed, Fos is required for DLK signaling to exert its effects in both developing 

and regenerating neurons (Collins et al., 2006; Xiong et al., 2010; Watkins et al., 2013, 

Wang et al., 2013). To test whether Fos is required for defects in growth cone remodeling 

caused by excessive DLK, I expressed a dominant negative version of Fos (fos
DN) in R7s 

also overexpressing Wnd using chp-Gal4. This largely rescued the excessive axon 

overextension caused by Wnd overexpression with only occasional R7s extending axons 

into neighboring terminals (chevron in Fig. 9C), showing that Wnd requires functional 

Fos and thus likely exerts much of its effects by causing changes in gene expression. 

Curiously, there was also an enhancement of a phenotype I had only occasionally 

observed in R7s overexpressing Wnd or lacking Hiw. R7s that are both overexpressing 

Wnd and express fos
DN

  often retract from their appropriate target layer (arrow in Fig. 

9C). R7s expressing fos
DN (Fig. 9A) do not appear to have this confounding phenotype. I 
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had sometimes observed R7s retracted from their target layer in R7s with excess Wnd in 

60 h APF pupae and adults, but I had also occasionaly scored wild type R7s as having 

this phenotype in my genotype-blind quantification. The small differences were not 

significant (data not shown), thus I was unable to clearly identify a cause for this rare 

phenotype.  

One clue suggesting why R7s lacking Hiw or overexpressing Wnd retract from 

their target layers is that this phenotype occurs more often in more mature R7s. Perhaps 

the inability of R7s overexpressing Wnd to remodel into synaptic boutons as described in 

Chapter II means they progressively lose attachment with their target layer. This could be 

supported in part by another apparent difference in phenotypes of younger R7s described 

in my study above and the older ones described in this chapter –R7s overexpressing Wnd 

in adult animals frequently extend processes and branches within and through proximal 

target layers (double arrowheads in Fig. 9B), which were not seen in younger R7s. 

However this does not explain why loss of fos would enhance this particular defect. 

Perhaps any potential effect of Wnd overexpression on contact with the target layer is due 

to local effects at the growth cone or axon terminal, and subsequent gene expression by 

Fos triggers a feedback mechanism that normally maintains attachment to the target 

Figure 9. Wnd overexpression requires the transcription factor Fos. 

(A-C) Young adult medullas (29°C) in which R7 and R8 axons are labeled with chp-

Gal4 expressing UAS-eb1-GFP (green), and anti-Chp (red). scale bar= 5 µm. Fos
DN

 

expressing R7s (A) largely resemble wild type (not shown). R7s overexpressing wnd 
in adult medullas (B) by contrast frequently extend into neighboring terminals within 
their target layers (chevrons). Unlike younger R7s expressing wnd (see Chapter II), 
R7s overexpressing wnd in adults frequently extend axons in layers other than the R7 
target layer (double arrowheads in B). These R7s also extend long projections beyond 
their target layer (arrowheads). R7s expressing both fos

DN
 and overexpressing wnd (C) 

only occasionally extend into neighboring terminals (chevron), but expressing both 
transgenes causes frequent retraction of R7s from their target layer (arrows in C). 
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layer. However, there is little evidence directly supporting such speculation without a 

clear idea about what changes in gene expression are driven by Fos.  

To determine what genes are activated by Fos downstream of Wnd, relative 

transcript abundance of candidate genes involved in signaling pathways that act on the 

cytoskeleton can be tested by performing qRT-PCR on transcripts from retinas where Fos 

is either inactivated by expression of a dominant negative or activated by expression of 

Wnd using chp-gal4 and comparing these genetic manipulations to wild type and to each 

other. Though there is lingering concern about the sensitivity of this technique in 

detecting minor changes in transcript abundance due to the fact that only a subset of the 

many cells in the retina are being genetically manipulated by chp-Gal4, in the course of 

my study described in Chapter II, I was able to detect a significant increase Wnd 

transcripts in retinas expressing Wnd driven by chp-Gal4. Because Fos does seem to be 

required for the effect of excess Wnd on growth cone remodeling, it is likely that Wnd 

overexpression would cause similarly significant changes in gene expression that could 

be detected. A role for Fos can be established by comparing transcripts of retinas 

overexpressing Wnd alone to retinas overexpressing Wnd and expressing fos
DN. Thus 

concerns about transcripts from non-genetically manipulated support cells of the retina 

diluting potential differences between transcripts from genetically manipulated 

photoreceptors should not discourage pursuing this strategy. Cost is another issue, so 

more efficient methods like RNAseq may be better suited to finding any overlooked 

genes that are strongly regulated by Fos downstream of Wnd. Further studies on Wnd-

Fos target genes identified using this strategy could be used to confirm or reject a 

causative role in the phenotypes seen in R7s overexpressing Wnd. 

 

Wnd is required by the end of growth cone remodeling for normal synaptic bouton 

morphology 

 

Thus far, my work shows that Hiw and a JNK-mediated negative feedback set 

limits on Wnd expression levels during R7 growth cone halting and that expression of 

Ttk69 at the time R7s begin remodeling their growth cones into synaptic boutons sets an 

additional limit on Wnd during this subsequent developmental time window. However, a 
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requirement for Wnd in R7 development was not apparent in my study described in 

Chapter II, consistent with other studies showing only subtle defects, if any, in neurons 

lacking DLK (Collins et al., 2006; Fernandes et al., 2011; Shin and DiAntonio, 2011; 

Wang et al., 2013.) For example, only upon subsequent re-analysis of bouton morphology 

and staining for specific markers was the requirement of Wnd in fly NMJs identified 

(Collins et al., 2006; Klinedinst et al., 2013). Thus I was intrigued when acquiring images 

of wnd null brains at 60 h APF for normalization of anti-Wnd staining intensity, and I 

noticed that R7s in these brains frequently extended thin processes of uniform width 

(arrowheads Fig. 10B) that resemble phenotypes the Herman lab and others, have 

detected in R7s lacking genes known to promote assembly of the site of synaptic vesicle 

release in presynaptic cells (Astigarraga et al., 2010; Holbrook et al., 2012), which is 

called the active zone (AZ). Because the entire brain lacked wnd it is possible that this 

defect is non cell-autonomous.  

An interpretation for why R7s with defects in AZ assembly extend ectopic 

processes is that a lack of functional signaling at the presynapse causes R7s to create 

ectopic sprouts and perhaps contacts with improper targets. It is possible that any number 

of defects in development of synaptic targets of R7s in the optic lobe could cause R7s to 

exhibit this phenotype. Thus, to determine cell-autonomy, it is necessary to generate 

MARCM clones of R7s lacking wnd. These tools are readily available, and experiments 

Figure 10. Wnd is required by the end of growth cone remodeling for normal 

synaptic bouton morphology.  
(A,B) 60 h APF pupal medullas (29°C) in which R7s and R8s are labeled by 
expressing chp-Gal4, UAS-mCD8-GFP (green) and anti-Chp (red). scale bar= 5 µm. 
Wild type R7s (A) have ellipsoid boutons that do not extend beyond their target layers. 
R7s in wnd null brains often extend thin, uniformly wide ectopic sprouts beyond their 
target layer (arrowheads in B).  
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to clarify this question are ongoing at the time of this writing. Thus it seems likely that 

Wnd is required for development of neurons in the developing pupal brain, much like at 

the fly NMJs. If Wnd is found to be required cell-autonomously in R7s, further work 

would be required to determine if Wnd acts through JNK-Fos or, if like at the fly NMJ, 

Wnd acts through p38 to disrupt Futsch organization (Klinedinst et al., 2013). This could 

be tested by genetic experiments to test whether animals missing one copy of wnd and 

one copy of p38, JNK, or fos produce ectopic sprouts more frequently than heterozygous 

mutant animals alone. Pursuing such a study would provide greater insight into changing 

regulation and function of the neuronal cytoskeleton of the neuronal cytoskeleton during 

development. 
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CHAPTER IV 

 

HOW DOES TEMPORAL EXPRESSION OF TTK69 PROMOTE 

GROWTH CONE REMODELING? 

 

The work described in this chapter contains unpublished co-authored results. Alexander I. 

Feoktistov and Tory G. Herman designed and interpreted the experiments, while Alex 

Whitebirch and Alexander I. Feoktistov performed the experiments. Alexander I. 

Feoktistov wrote up the results. 

 

Is there a functional consequence to an absence of repression of Wnd by both Ttk69 

and Hiw? 

 

My study described in Chapter II shows that Ttk69 cooperates with Hiw to 

repress Wnd protein levels, however, the functional consequence of this regulation is not 

clear from the above study. While I was able to detect an increase in Wnd protein levels 

in the absence of both Ttk69 and repression by Hiw or JNK-mediated negative feedback, 

I was unable to detect an effect of increasing or decreasing Wnd signaling on the 

frequency with which R7s extend into neighboring columns. The latter is readily 

explained by the fact that Ttk69 is known to regulate additional pathways that contribute 

to this phenotype (see below). However, I was surprised that the increase in Wnd levels 

caused by loss of both hiw and ttk69 did not further increase the frequency of R7s 

extending into neighboring columns, particularly since overexpressing Wnd is sufficient 

to cause this. One possibility is that my ability to detect an increase in this phenotype is 

confounded by the method. Expressing ttkRNAi in all R7s obscures the source of an 

extending axon, thus when multiple laterally-extending axons overlap, they are 

undercounted. Compared to my quantification of MARCM-generated clones lacking 

Ttk69, I repeatedly counted half as many R7s extending into neighboring columns that 

were all expressing ttkRNAi..  
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Another possibility is that the frequency with which R7s lacking Ttk69 extend 

into neighboring terminals reaches a maximum. Ttk69 is first detected in photoreceptor 

cell bodies at 30 h APF, and by 36h APF, R7s lacking Ttk69 first begin extending into 

neighboring columns. By 48 h APF the frequency of R7s lacking Ttk69 extending axons 

into neighbors doubles and plateaus (Kniss et al., 2013). I asked whether there might be a 

genetic interaction between Ttk69 and Hiw at 36 h APF, when the phenotype was not yet 

maximal. R7 growth cones in hiw null brains mostly resemble wild type growth cones 

which are ellipsoid and have mostly separated into discrete, non-overlapping columns. 

However, some R7s in hiw null brains extend processes beyond their target layer (Fig. 

11A) and a handful are elongated (Fig. 11B), much like the phenotype seen at 24 h APF, 

but these defects are not significantly more frequent in hiw null brains than wild type. 

Additionally I was able to detect some R7s in hiw mutant brains extending into 

neighboring columns (Fig 11A), though again, this was not significantly more frequent 

than in wild type. Expressing ttkRNAi using chp-Gal4 also caused R7s to exhibit all three 

of these phenotypes, though again the frequency was not significantly greater than in wild 

type (Fig 11A-C.). However, R7s expressing ttkRNAi in hiw null brains causes a 

significant increase of all three of the above phenotypes when compared to wild type. 

Additionally, R7s expressing ttkRNAi in hiw null brains extend processes beyond their 

target layer more frequently and are less circular than R7s in hiw null brains or those 

expressing ttkRNA alone. Though R7s expressing ttkRNAi in hiw null brains are 

significantly more likely to extend into neighboring columns than R7s expressing 

ttkRNAi alone, they are not more likely to do so than R7s in hiw null brains (Fig. 11A-C). 

The apparent genetic interaction between Ttk69 and Hiw is consistent with my model 

presented in Chapter II in which repression of Wnd by both Hiw and Ttk69 helps reduce 

growth cone motility during remodeling. Thus, I would expect that a synergistic increase 

of Wnd protein levels in the absence of repression by both Hiw and Ttk69 would explain 

the genetic interaction between these two genes. However, when I measured anti-Wnd 

intensity in these growth cones, I saw no difference in levels of Wnd in R7s expressing 

ttkRNAi in hiw null brains compared to R7s in hiw null brains (Fig 11D). Thus the genetic 

interaction between Hiw and Ttk69 in terms of R7 growth cone behavior cannot be 

explained by a synergistic increase in Wnd protein levels. These findings are based on an 
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initial round of dissections which yielded a small sample of hiw null brains, thus it is 

possible that I lack the power to detect changes in Wnd protein levels until this 

experiment can be repeated.  

  

Figure 11. Loss of both hiw and ttk69 enhances loss of function phenotypes 

caused by loss of either alone without a synergistic effect on Wnd protein levels. 

(A-D) Quantification of  the frequency of wild type,R7s extending processes beyond 
their target layer (A), average growth cone circularity (B), the frequency of R7s that 
contact neighbors (C) and  anti-Wnd intensity of wild type, hiw null, ttkRNAi-
expressing, and both hiw null and ttkRNAi-expressing R7s in 36 h APF pupal 
medullas (29°C). n=brains, error bars represent SEM n=9, 4, 9, and 8, respectively. 
R7s that lack either hiw or ttk69 alone are not more significantly likely to extend 
processes beyond their target layer (A), have non-circular growth cone morphology 
(B) or extend processes into neighboring terminals than wild type(C). By contrast, 
R7s that lack both ttk69 and hiw are more likely to extend processes beyond their 
target layer (A), are less circular (B) and more frequently contact neighbors than wild 
type R7s. Despite this, there is not a significant increase in anti-Wnd levels in R7 
terminals of R7s lacking both ttk69 and hiw than R7s lacking hiw alone. *p<0.01, 
**p<0.001, ***p<0.0001 based on Sidak’s multiple comparison test 
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A persistent concern about our ability to reproducibly measure anti-Wnd protein 

intensity is being able to detect changes in Wnd protein levels in hiw null brains 

compared to other genotypes. While most of our other manipulations using chp-Gal4 

affect R7 terminals without affecting the adjacent neuropil, hiw null brains have 

increased Wnd everywhere, including the adjacent neuropil. Because this adjacent 

neuropil was used as way to normalize for variability in staining, this distorts my 

measurements of Wnd protein intensity in hiw null brains. Though it is unlikely that this 

would severely disrupt our interpretations in Chapter II (for explanation, see Figure S1 

legend in the Appendix), it is possible that this would obscure subtle differences in Wnd 

protein levels. One way to simultaneously address this concern and likely undercounting 

of R7s contacting neighbors when all R7s lack Ttk69 is to generate R7 clones using 

MARCM that are both hiw null and expressing ttkRNAi. This experiment is technically 

difficult because of the need to combine multiple transgenes in one animal, but the 

individual tools required to accomplish this task are presently available. By comparing 

R7 clones lacking hiw, expressing ttkRNAi, or both to their wild type neighbors, a reliable 

internal control can be used to detect more subtle difference in Wnd protein levels 

between these genotypes and thus establish a causative relationship between phenotype 

and Wnd protein levels. Furthermore, the use of clones would allow more reliable 

quantification of the frequency of R7s extending laterally, as well as other aspects of the 

phenotype caused by loss of ttk69, specifically the length of axons that extend laterally 

within the R7 target layer. In R7s lacking Ttk69, this latter phenotype does not plateau, 

but continues to increase while R7s are normally remodeling into stable synaptic boutons. 

These experiments could reveal the functional consequence of a lack of repression of 

Wnd by both Ttk69 and Hiw during growth remodeling.  

 

How does Ttk69 regulate the behavior of the growth cone cytoskeleton? 

 

It is known that Ttk69 promotes signaling downstream of the fly Type I TGF-β 

receptor Baboon (Babo), and is required for entry of phosphorylated Smad into the 

nucleus of R7s (Kniss et al., 2013). Babo signaling is required to prevent R7s from 

extending into neighboring terminals (Ting et al., 2007), though it is known that Ttk69 
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also promotes growth cone remodeling through effects on other pathways. I found that 

expressing baboRNAi in using chp-Gal4 increases the rate of extension of microtubule-

containing processes in R7 growth cones compared to wild type. Expressing ttkRNAi in 

R7s also causes increased rates of extension of microtubule-containng processes 

compared to wild type, suggesting that Ttk69 restricts process extension during growth 

cone remodeling by promoting Babo signaling. 

How might Babo signaling then affect the growth cone cytoskeleton? Work on fly 

mushroom body neurons suggests that Babo has Smad-independent roles in preventing 

axon overextension. Instead Babo requires RhoGTPase signaling to LIMK to do so (Ng, 

2008). LIMK phosphorylates and inactivates the actin-severing molecule cofilin. Cofilin 

is thought to promote axon growth by promoting actin tread milling; linking actin 

filaments to the membrane by integrin and associated scaffolds and signaling proteins 

provides the propulsive force for the growth cone (Lowery and Van Vactor, 2009). In an 

attempt to test specific effects of expressing ttkRNAi or baboRNAi on the dynamic 

behavior of the actin cytoskeleton, I expressed the actin-binding protein moesin tagged 

with GFP in living R7s. While axons were visible, overall intensity of GFP expression 

appeared reduced and it was difficult to detect discrete filopodia at R7 terminals (data not 

shown). Thus direct visualization of dynamic behavior of actin-based structure was not 

possible. Because of the considerable cross-talk between the actin and microtubule 

cytoskeleton, however, it is likely that decreasing actin tread milling could create space 

for unhindered entry of microtubules into the growth cone filopodia (Stiess and Bradke, 

2011) and promoting axon extension (Stiess and Bradke, 2011; Bearce et al., 2015).  

How then does Ttk69 promote Babo signaling? Studies attempting to answer this 

question were carried out by Alex Whitebirch under my supervision. Due to the Smad-

independent role of Babo in preventing axon overextension in fly mushroom bodies, we 

looked at candidate genes which could affect Babo signaling. Follistatin is a conserved 

molecule that blocks the ability of Babo to bind its ligand Activin. Alex expressed RNAi 

against Follistatin in R7 clones lacking Ttk69 generated by MARCM, but was unable to 

detect a decrease in the frequency of R7s extending into neighboring columns as would 

be expected were Ttk69 normally required to repress Follistatin. It is possible that varied 

genetic interaction experiments with R7s lacking Ttk69 are repeatedly fruitless due to the 
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strong effect Ttk69 clearly has on growth cone development. Thus it seems like a strategy 

focusing on changes in gene expression caused by loss of ttk69 would be a more 

productive.  

Now that I have verified that qRT-PCR can detect large changes in gene 

expression driven by chp-Gal4 in photoreceptor neurons despite the diluting effect of 

transcripts from retinal cells other than photoreceptor, a possible strategy would be to 

detect changes in candidate gene transcript abundance between wild type retinas and 

retinas expressing ttkRNAi using chp-Gal4. Validating the likely utility of this technique, 

I have generated preliminary evidence suggesting that Ttk69 might repress transcription 

of the repulsive netrin receptor unc-5, which we are investigating as the cause for the 

related R8 photoreceptors failing to extend to their final targets when expressing ttkRNAi 

using chp-Gal4 (data not shown). Thus I was able to detect changes in gene expression of 

a single cell type among the eight photoreceptor types despite dilution by both their and 

other retinal cells’ transcript pools. Applying qRT-PCR or more cost efficient transcript 

profiling techniques to identify Ttk69 targets could reveal other conserved signaling 

pathways and proteins like TGF-β or DLK that cell-intrinsically regulate the dynamic 

rearrangements of growth cones.
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CHAPTER V 

 

CONCLUSIONS 

 

Altogether my work builds support for a model in which a decrease in growth 

cone motility when neurons establish connectivity is driven by changes in expression of 

cell-intrinsic factors. I showed that protein levels of the conserved MAP3K Wnd/DLK 

are limited first by Hiw/PHR and a JNK-mediated feedback loop during growth cone 

halting, followed by additional repression of Wnd by Ttk69 after its expression is 

activated. There have been some reports of a decrease in DLK expression in neurons 

progressing through development (Eto et al., 2010), with some effects attributed to a 

temporal role of Hiw during growth cone halting (Collins et al., 2006). It is intriguing to 

speculate whether other neurons use additional mechanisms to set limits on the amount of 

DLK that is expressed or active when it is released from inhibition by PHR, which is 

what happens upon axon severing (Hammarlund et al., 2009; Xiong et al., 2010). It is 

known that a decrease in DLK transcription due to inhibition of FOXO by insulin reduces 

the regenerative capacity of aging worm neurons (Byrne et al., 2014). Of clinical 

relevance is the question of whether cell-intrinsic differences in the amount of DLK that 

is expressed in the absence of inhibition by Hiw can account for cell-intrinsic differences 

in the ability of neurons to regenerate. An affirmative answer to this question could 

provide targets for therapies, as DLK is both necessary and sufficient for regeneration in 

multiple model systems.  

While Ttk69 is not a conserved protein, the effect of transcription factors in 

regulating the ability to regenerate a motile growth cones in mammalian nervous systems 

is established (Moore and Goldberg, 2011). Might Ttk69 share common targets with 

vertebrate transcription factors? Being able to trigger changes in expression of multiple 

genes simultaneously, transcription factors are potentially powerful drivers of 

coordinated remodeling to the machinery that characterizes motile growth cones. 

Understanding how the profound changes in a neuron’s morphology over its development 

are coordinated so that a stereotyped circuitry is assembled will allow us to re-activate 

this program to promote therapies design to repair circuits damaged by injury or disease. 
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CHAPTER VI 

 

MATERIALS AND METHODS 

 

Fly husbandry. Drosophila melanogaster were raised at either 25°C (Fig. 2 A-F, Fig. 3A-

F', and Fig. 4) or 29°C (Fig.1, Fig. 2G, Fig 3G, H and Figs. 5-7). We used both sexes and 

observed no difference The following strains were used in this study: "wild type" were 

Oregon R, yw, or w; "hiw mutant" were hiw
ΔN or hiw

ΔC hemizygous males, or hiw
ΔN

/
 

hiw
ΔC or hiw

ΔN
/hiw

ND8 transheterozygous females (Wu et al., 2005); "wnd mutant" were 

wnd
1/wnd

3 transheterozyogous animals (Collins et al., 2006). Flies expressing the 

following transgenes were also used: chaoptin (chp)-Gal4 (a generous gift from S. L. 

Zipursky, University of California, Los Angeles, CA), actin (act)-Gal4 (Bloomington 

Drosophila Stock Center), PM181-Gal4 (Lee et al., 2001), UAS-wnd (wnd
OE; Collins et 

al., 2006), UAS-Bsk
DN

 (JNK
DN; Weber et al., 2000), UAS-mCD8-ChRFP (Bloomington 

Drosophila Stock Center), UAS-Dcr-2 (Dietz et al 2007), UAS-mCD8-GFP (Lee and 

Luo, 1999), and UAS-EB1-GFP (Rolls et al., 2007). UAS-RNAi lines from the Vienna 

Drosophila Resource Center were used to knock down expression of Ttk69 (#101980) 

and Babo (#106092). Homozygous wild type (FRT82), ttk69 mutant (ttk1e11; Xiong and 

Montell, 1993), or UAS-wnd
 overexpressing R7 clones were generated and labeled using 

GMR-FLP and MARCM (mosaic analysis with a repressible cell marker; Lee and Luo, 

1999; Lee et al., 2001). 

 

Fixed images. Brains were dissected, fixed, and stained by standard methods (Miller et 

al., 2008). Staining was done in parallel with controls, and phenotypes were scored blind. 

Images were collected on a Leica SP2 microscope and analyzed using Fiji (http://fiji.sc; 

Schindelin et al., 2012). We used the following antibodies: mouse anti-Chp (24B10; 

1:200) from the Developmental Studies Hybridoma Bank; rabbit anti-Wnd (A3-1,2; 

1:300; Collins et al., 2006), a generous gift from C. Collins; chicken anti-GFP (1:1000) 

from Abcam, rabbit anti-GFP (1:5000) and all secondary antibodies (goat IgG coupled to 

Alexa Fluor 488, Alexa Fluor 555, or AlexFluor 633; 1:250) from Life Technologies.  
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To quantify Wnd protein, we generated regions of interest (ROIs) by tracing ~20 R7 

terminals per optic lobe while blind to the anti-Wnd channel (Fig. S1A-B'). We then 

measured anti-Wnd fluorescence intensities within these ROIs. To control for variability 

in immunostaining, we normalized the average anti-Wnd intensity in R7s of each brain to 

the average anti-Wnd fluorescence intensity of adjacent medulla neuropil (Fig. S1A-C). 

All images, ROIs, and raw data are available upon request. 

 

Live images. We adapted the protocol of Williamson and Hiesinger (2010). Briefly, 

animals were minimally dissected in HL3 (Broadie 2000): each pupa was removed from 

its case and its head isolated with visual system intact. For 40 h APF brains, no further 

dissection was required. For 48 h APF brains, further removal of cuticle from the 

posterior head was often necessary for optical access. The brains were then transferred in 

HL3 along with fat bodies to imaging chambers (Cabernard et al., 2013) and immobilized 

using WormGlu (Glushield) on gas-permeable membranes (YSI). Brains were mounted 

dorsal-side down and images acquired from the ventral, posterior part of the medulla at a 

depth of three or four R7 axon terminals. We used a Leica DMI400B spinning disk 

microscope to image ~3 µm z-stacks (acquired in 0.3 µm z-steps) at 30-second intervals 

during a 30-minute period. Images were processed using Fiji: we generated max 

projections of 7-10 z-steps encompassing the total thickness of an R7 terminal and 

corrected for lateral drift using TurboReg. The length of each process was measured from 

the edge of the pixel-dense growth cone to the tip of each projection. Discrete extension 

and retraction events (defined as a change in length of at least 0.5 µm) were identified 

manually, and the lengths of processes at the beginning and the end of each event 

(defined as a pause or a reversal in direction) were measured to determine average rates 

(calculated by dividing the change in length by the change in time during a given event). 

Instantaneous velocity was not measured. All images and raw data are available upon 

request.  

 

Quantitative RT-PCR. qRT-PCR was performed using KAPA SYBR FAST ABI Prism 

qPCR master mix (Kapa Biosystems) on cDNA synthesized using oligo (dT)18 primer 

and Maxima H-Minus reverse transcriptase (Thermo Scientific). cDNAs were generated 
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from 1 µg of Trizol-isolated RNA from 10-20 pairs of dissected pupal retinas per 

biological replicate. Retinas were dissected on ice, and tissue was flash frozen in Trizol. 

Relative mRNA expression was normalized using a control transcript (Rpl32) to calculate 

ΔCTs (threshold cycles). Expression level comparisons between genetic manipulations or 

developmental timepoints were made using the ΔΔCT method. ΔCT values were used for 

two-tailed t-tests to determine statistical significance. The following primer sequences (5’ 

à 3’) were used for qPCR in this study.  

Rpl32 Forward: CTAAGCTGTCGCACAAATGGC  

Rpl32 Reverse: TTGCGCTTCTTGGAGGAGAC  

Wnd Forward: GGCAGGCTAAAGAACGAGACT  

Wnd Reverse: CCAAGCGGGACGGTAACAT 

Faf Forward: GTGGACAGCACCATCACAATAG 

Faf Reverse: CACAAGGATACAGTGGTGGATGT 
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APPENDIX A 

 

SUPPLEMENTARY FIGURES AND LEGENDS 

 

Figure S1 (next page). Details on how anti-Wnd staining in R7 growth cones 

was quantified. 

(A-B') hiw mutant pupal medullas (25°C) in which R7 and R8 are labeled with 
(A,B) chp-Gal4, UAS-EB1-GFP (green) and anti-Chp (red) and (A',B') anti-Wnd. 
Abnormal R7 processes (arrowheads) are more strongly labeled with anti-Chp than 
by chp-Gal4, UAS-EB1-GFP. At both 24 (A') and 60 h APF (B'), anti-Wnd 
staining was quantified by using anti-Chp alone to trace both R7 growth cones 
(magenta dotted lines in A-B') as well as an adjacent but distinct region of neuropil 
(white dotted lines in A-B'). The level of anti-Wnd staining within each R7 tracing 
was then measured and compared to the average level of anti-Wnd staining within 
the adjacent region. (C) Quantification of average fluorescence intensities within 
the R7-adjacent neuropil (white dotted lines in A-B'). n= brains, error bars 
represent SEM. n= 14, 19, 16, 10, 12, and 17, respectively. There is no significant 
change in anti-Wnd staining in this region in wild type; our use of this region to 
normalize the anti-Wnd staining within R7 growth cones therefore does not confer 
or obscure temporal differences in wild-type R7s. There is a significant decrease in 
anti-Wnd staining in this region in hiw mutant animals between 24 and 60 h APF, 
suggesting that a temporal, Hiw-independent mechanism might also repress Wnd 
in medulla axons. Our use of this region to normalize the anti-Wnd staining within 
hiw mutant R7 growth cones does not invalidate our finding that a Hiw-
independent, Ttk69-dependent mechanism represses Wnd in hiw mutant R7 
growth; however, it may cause an underestimate of the strength of this Hiw-
independent repression. 
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Figure S2. Wnd disrupts layer-specific R7 growth cone halting through JNK.  

(A-B”) 24 h APF pupal medullas (25°C) in which R7 axons are specifically labeled with 
PM181-Gal4, UAS-mCD8-GFP (green), and both R7 and R8 axons are labeled with anti-
Chp (red). A' and B' are enlargements of the boxed regions in A and B with brightness 
enhanced so that thin growth cone processes are visible. The R7-specific labeling 
confirms that it is the R7s in hiw mutants that extend processes beyond their target layer 
(arrowheads) and that it is not R7s that occasionally terminate between the R8 and R7 
target layers (arrow in B and B' pointing to  growth cone between R8 and R7 target layers 
that is stained red but not green). 
(C-F'), 24 h APF pupal medullas (29ºC), in which R7 and R8 axons are labeled with chp-

Gal4, UAS-EB1-GFP (white) . Scale bars are 5 µm. (C'-F') are enlargements of the boxed 
regions in (C-F) with enhanced brightness. R7 growth cones expressing dominant-
negative JNK (JNKDN; D,D') are indistinguishable from wild type (C,C'). R7 growth 
cones expressing wild-type Wnd (WndOE; E,E') extend processes beyond their target 
layer (arrowheads); these processes resemble those in hiw mutants but sometimes extend 
deeper into the optic lobe (arrows). Co-expressing JNKDN with wild-type Wnd almost 
completely ameliorates this defect (F,F', arrowheads indicate some remaining abnormal 
processes). These phenotypes are quantified in Fig. 2G. 
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Figure S3. Ttk69 regulates Wnd 

protein expression indirectly and 

regulates additional pathways to 

promote R7 growth cone remodeling.  

(A,B) Quantifications of transcript 
levels measured by qRT-PCR on RNA 
extracted from dissected retinas. n= 3 
biological replicates, and error bars 
represent SEM. (A) There is no 
detectable change in wnd mRNA levels 
as R7 growth cone remodeling 
progresses. (B) Loss of ttk69 from R 
neurons does not detectably increase fat 

facets (faf) mRNA levels. (C-H) 48 h 
APF pupal medullas (29°C) in which 
R7 and R8 axons are labeled with chp-

Gal4, UAS-EB1-GFP. Scale bars are 5 
µm. (I) Quantification of the frequency 
with which R7 axon terminals contact 
their neighbors. n=brains and error bars 
represent SEM. n.s. not significant 
based on a pairwise two-tailed t-test. 
n=17, 22, 11, 10, 5, and 9, respectively. 
Wild-type (C), JNKDN-expressing (D), 
and hiw mutant R7 axon terminals (E) 
are indistinguishable. The frequency 
with which R7s expressing ttkRNAi 
contact their neighbors (F; chevrons) is 
not increased by additional loss of hiw 
(G,I). And loss of JNK (caused by 
expressing JNK

DN; H) or wnd (I) from 
ttkRNAi-expressing R7s does not 
ameliorate this defect. Similarly, 
disrupting JNK in GMR-FLP-generated 
ttk69 mutant R7s (by causing them to 
express JNK

DN) does not ameliorate 
this defect. Note that contacts between 
individually-labeled GMR-FLP-
generated ttk69 mutant R7 axon 
terminals and their neighbors are easier 
to score than contacts among uniformly 
labeled R7 axon terminals, so the 
frequency of this defect is scored as 
much higher in the former situation. 
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APPENDIX B 
 

MULTIMEDIA LEGENDS 
 

Spinning disk confocal movies, each spanning 30 minutes of real time, sped up 300x (10 
frames were collected every 30 seconds but are here presented at 1 frame/second). See 
Methods for imaging conditions.  
 
Movie 1. Representative wild-type R7 axon terminal at 40 h APF. 
 
Movie 2. Representative wild-type R7 axon terminal at 48 h APF. The average extension 
and retraction velocities of processes are reduced compared to 40 h APF. 
 
Movie 3. Representative wnd

OE R7 axon terminal at 40 h APF. The average extension 
and retraction velocities of processes are indistinguishable from those in wild type at 40 h 
APF. 
 
Movie 4. Representative wnd

OE R7 axon terminal at 48 h APF. The average extension 
and retraction velocities of processes are greater than those in wild type at 48 h APF.  
 
Movie 5. Representative ttkRNAi-expressing R7 axon terminal at 40 h APF. The average 
extension and retraction velocities of processes are indistinguishable from those in wild 
type at 40 h APF. 
 
Movie 6. Representative ttkRNAi-expressing R7 axon terminal at 48 h APF. The average 
retraction velocity of processes is indistinguishable from that in wild type at 48 h APF; 
however, the average extension velocity of processes is greater than that in wild type at 
48 h APF.  
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