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DISSERTATION ABSTRACT 

Jarrett Farnell Lebov 

Doctor of Philosophy 

Department of Biology 

June 2019 

Title: Experimental Adaptation of a Free-Living Bacterium to the Zebrafish Digestive 
Tract 

 

Animals have coexisted with an omnipresent and diverse array of bacteria for the 

entirety of their evolutionary history. As a result, symbioses between animals and 

bacteria are ubiquitous and can range from mutualism to parasitism. In particular, 

countless studies have demonstrated the pivotal role that bacteria residing in animal 

digestive tracts can play in determining animal health and well-being. However, it is still 

unknown how bacteria evolve the ability colonize animals. Due to the dramatic impacts 

that animals and bacteria can have on one another’s fitness, it is imperative to understand 

how symbioses between bacteria and their animal hosts originate. Therefore, to elucidate 

how bacteria evolve novel associations with vertebrate hosts, I serially passaged six 

replicate populations of a bacterial species with no prior known host associations 

(Shewanella oneidensis) through the digestive tracts of a model vertebrate, zebrafish 

(Danio rerio). After 20 passages through the digestive tracts of groups of larval zebrafish 

that were derived bacteria free (amounting to approximately 200 bacterial generations), I 

observed that all six replicate populations evolved to outcompete their unpassaged 

ancestor in terms of their ability to colonize larval guts. I subsequently sequenced the 

genomes of four evolved S. oneidensis isolates from each replicate population and found 
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that their competitive advantage stemmed from two distinct classes of mutations that 

occurred in a mannose sensitive hemagglutinin pilus operon as well as in genes with 

putative diguanylate cyclase and phosphodiesterase domains. Both types of mutations 

enhanced bacterial motility, which was associated with increased representation in the 

aqueous portion of my experimental system and more efficient per capita immigration 

into zebrafish guts relative to the ancestral S. oneidensis reference strain. These increases 

in motility, were consistent with the behavior of a closely-related Shewanella species 

(Shewanella sp. ZOR0012) that has recently been isolated from the zebrafish digestive 

tract implying that my evolved isolates may be pursuing a similar adaptive trajectory to 

the one taken by this host-associated species. My results suggest that a non-host-

associated microorganism can rapidly improve its ability to colonize hosts, and this study 

is the first to capture the early adaptive steps necessary to facilitate this transition. 
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CHAPTER I: 

INTRODUCTION 

 
On Earth, because bacteria are ubiquitous and vastly outnumber their potential 

animal hosts, animals live under constant exposure to bacterial life. Consequently, 

animals have established persistent symbiotic relationships with an array of bacterial 

species, and these encounters can have dramatic impacts on the reproductive success, or 

fitness, of both animals and the bacteria they encounter. For example, some bacteria can 

behave as pathogens that make animals ill, however because the entirety of animal 

evolution has taken place in the presence of bacteria (Hug et al., 2016), exposure to 

bacteria is also critical to proper animal health and development (Dominguez-Bello et al., 

2019; Luczynski et al., 2016; Bordenstein & Theis, 2015; Sommer and Bäckhed 2013; 

Flint et al., 2012). Similarly, although animals provide bacteria with a consistent source 

of nutrients, as many bacterial species aid in animal digestion (Flint et al., 2012), animal 

hosts also present bacteria with a plethora of selective forces that can eradicate them or 

prevent their colonization in the first place (Bakke et al., 2015; Ley et al., 2008; 

Donaldson et al., 2016; Sass et al., 2010; McLoughlin et al., 2016; Quinn et al., 2018; 

Friedman et al., 2018; Ottman et al., 2017; Segal, 2005, Weiss & Schaible, 2015; Islam et 

al., 2011).  As a result, host-associated communities of microorganisms do not appear to 

be composed of a random sample of the bacteria a host encounters, but instead hosts tend 

to assemble communities that are distinct from those found in their surrounding 

environment (Bakke et al., 2015; Ley et al., 2008). To date, work on host-microbe 

interactions has been performed across a set of distantly-related host systems, each 

harboring their own unique community of microorganisms (Mazel et al., 2018; Sachs et 
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al., 2011, Rawls et al., 2006). This suggests that free-living bacteria, or those species that 

are not routinely found in close physical associations with hosts, have repeatedly evolved 

novel symbioses with animals throughout evolutionary history. Further, this body of 

work focuses almost exclusively on bacterial species that have pre-established 

relationships with animal hosts, and it is not currently known how free-living bacteria 

evolve host-associations de novo.  Given the impacts that bacteria can have on animal 

health, it is imperative to understand how they transition from a free-living state to a host-

associated one.  

Host-associated bacteria, which are those species that are commonly isolated from 

animal hosts, rely on a myriad of traits to colonize animals (Sarkar et al., 2018; Hsiao et 

al.,2006; Raina et al., 2019; Ribet & Cossart, 2015; Lee et al., 2013), and an abundance 

of research has established the gut as a primary site of symbiotic interaction. In particular, 

studies have observed dramatic differences in composition of the gut microbiota of 

healthy and unhealthy individuals (Hsiao et al., 2013; Morgan et al., 2012; Ley et al., 

2005). Additionally, the gut microbiota has been shown to alter gene expression in the 

gut (Fukushima et al., 2003, Larsson et al., 2011; Cash et al., 2006) and effect tissue 

maturation in host digestive tracts, as well as elsewhere in the body (Bouskra et al., 2008; 

Bates et al., 2006; Broderick et al. 2014; Heijtz et al., 2011; Rawls et al., 2004). Even 

more convincingly, fecal microbiota transplants, in which gut microbial communities are 

transferred from one host to another, have suggested a causative role of the microbiota in 

reducing the incidence and severity of disease (Jacob et al., 2006; Van Nood et al., 2013), 

modulating behavior (De Palma et al., 2017; Bercik et al., 2011), and in altering host 

metabolic function (Turnbaugh et al., 2006). In some cases, even administering cultured 
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isolates of single bacterial species can mimic some of these same effects (Hsaio et al., 

2013; Buffie et al., 2015). Collectively, this research underscores the outsized influence 

that members of the gut microbiota can have on host fitness. 

Given the central role the gut plays as a site of host-microbe interaction, it is 

important to consider how bacteria might evolve to gain access specifically to the gut. 

Because animals live in a world teeming with bacteria, animal hosts can acquire new 

microbes from a range of sources. One of the most high-fidelity modes of microbial 

acquisition is known as vertical transmission, where microbes transmit 

transgenerationally from parent to offspring (Dominguez-Bello et al., 2010). This mode 

of transmission virtually ensures that offspring will be exposed to a microbial symbiont, 

thus maximizing the symbiont’s potential to re-establish itself as part of the new 

generation’s microbiota. However, human studies have suggested that only a small 

fraction of the 100’s of species found in the gut are heritable (Goodrich et al., 2016; 

Rothschild et al., 2018), and vertical transmission requires that an inherited microbe 

already has an association with the parent. Therefore, studying this mode of transmission 

to understand how bacteria initiate symbiotic relationships with hosts may miss important 

strategies employed by hosts and microbes which make symbioses more likely. A more 

fruitful mode of transmission to study to understand the origin of host-microbe 

associations, would be horizontal transmission, whereby a host’s microbiota is acquired 

from exposure to different components of the environment as they develop, rather than 

from physical contact with a parent as a result of an organism’s normal life cycle (Bright 

& Bulgheresi, 2010).  
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From a bacterial perspective, horizontal transmission requires that a bacterial 

lineage must be able to survive outside a host long enough to encounter, and then 

colonize a host. Merely encountering a host however, provides no guarantee of 

reproductive success for bacteria. While hosts can serve as a potential buffer from 

dramatic temperature swings, and provide shelter from harmful solar radiation, as well as 

a steady flow of nutrients in the form of partially digested food, detritus, or secretions, 

they can also serve as an adversary to potential colonists. Host immune systems can 

target and eliminate unrecognized microbial invaders (McGuinness et al., 2016; Parsons 

et al., 2019). Additionally, many host digestive tracts contain acidic conditions and bile 

that can make it difficult for bacteria to survive (Wu et al., 2014; Duncan et al., 2009; 

Islam et al., 2011; Jones et al., 2008). Finally, some forms of potential nutrients, such as 

host-secreted glycans, may favor the growth of well-adapted microbial species at the 

expense of others (Schluter et al., 2012; Koropatkin et al., 2012), which could result in 

the redeposition of a maladapted lineage back to the external environment. The more time 

an organism spends in the external environment, the more selective pressures associated 

with a free-living lifestyle will shape a lineage’s evolutionary trajectory. Because of these 

dynamics, it is unsurprising that bacterial communities found in association with 

vertebrate hosts are compositionally distinct from those sampled from non-vertebrate host 

environmental sources (Bakke et al., 2015; Ley et al., 2008).  

Still, encounters between vertebrates and bacteria happen on a constant basis. 

While some of these encounters may result in eventual bacterial death due to a fitness 

cost imparted by the host, others may result in the continued propagation of a bacterial 

species. Even if these host-microbe interactions are transient in nature, surviving lineages 
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will have undergone a period of selection, however brief, that may better prepare them 

for subsequent encounters with a similar host. As these lineages continue to evolve, 

genotypes could arise that encode traits which may either prolong a given cell line’s 

interaction with a future host or may increase the frequency with which that cell line has 

future encounters with a host. Each encounter with a subsequent host would again serve 

as a selective filter that enriches for genotypes capable of survival in a host. Over time if 

host-surviving lineages were not outcompeted while in non-host environments, and this 

cycle continued with great enough frequency, a bacterial species could improve its 

association with a host as evolution eventually produced evermore host-adapted 

genotypes. In this way, repeated host exposure could select host-associated lineages over 

evolutionary time.  

This conceptual framework, while consistent with current evolutionary theory, 

obviously relies heavily on a multitude of chance events, each of which could result in a 

multitude of diverse outcomes. Many of these outcomes may lead to bacteria that are 

better-suited for a free-living existence than a host-associated one. Of the minority of 

outcomes that result in host-association, many questions remain. Namely, which traits 

improve host colonization? At what level (gene sequence, gene product, physiology, 

behavior, or population) do these traits operate? How does the architecture of a genome 

— a genome’s sequence and physical structure — bias evolutionary events that might 

lead to host-association? How reproducible are the evolutionary events that lead to host-

association, both in terms of the actual events that occur, and the order in which those 

events happen? Which aspect of the host environment imparts the strongest selection 

pressures? For a given bacterial lineage, it is crucial to address these questions if we are 
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to understand both the likelihood that a bacterium could become host-associated, and the 

process such a bacterium might follow to become host-associated.  

To confront these unknowns, I have sought to understand how a bacterium might 

evolve a novel host-microbe symbiosis by serially passaging a bacterial species, with no 

documented history of an association with metazoan hosts (Shewanella oneidensis), 

through the digestive tract of a model vertebrate, zebrafish (Danio rerio). The zebrafish 

system is an ideal system in which to address these questions. The zebrafish gut, like 

other vertebrates, is composed of a diverse set of selective pressures including various 

mucosal surfaces (Taormina et al., 2017), the presence of both innate and adaptive 

immune systems (Rolig et al., 2015; Stagaman et al., 2017), multiple potential nutrient 

sources (Semova et al., 2012; Wong et al., 2015; Schluter & Foster, 2012), strong 

chemical gradients (Flores et al., 2010), and frequent physical disturbances (Burns & 

Guillemin, 2017; Wiles et al., 2016). Additionally, zebrafish contain complex gut 

microbial communities whose constituents show niche preferences within the digestive 

tract (Schlomann et al., 2018; Wiles et al., 2016), and the zebrafish gut microbiota shows 

the ability to influence host health and development in ways that are common among 

vertebrates (Burns & Guillemin, 2017, Rawls et al., 2004). Further, much is known about 

zebrafish life-history, including the developmental stage when larvae are susceptible to 

bacterial colonization, and there are established protocols for the dissection of larval 

digestive tracts so that I can specifically study gut-associated bacteria (Burns and 

Guillemin, 2017). Zebrafish are also highly fecund and easy to cohouse (Burns & 

Guillemin, 2017), which makes it easy to investigate how bacteria adapt to groups of 

social hosts rather than an individual host (Suriyampola et al., 2016). Lastly, the process 
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of colonization can be studied simply by inoculating the aqueous environment that 

zebrafish inhabit with potential bacterial colonists (Robinson et al., 2018). Together, 

these unique features facilitate the examination of a large fraction of the parameters that 

might support novel host adaptation.  

Given the enormous diversity of bacteria on Earth however, I also needed to 

carefully consider which bacterial species might maximize my ability to understand how 

bacteria initiate host-microbe symbioses. S. oneidensis (MR-1; manganese reducer 1, so 

named after the observation S. oneidensis could reduce manganese; Meyers & Nealson, 

1988; Venkateswaran et al., 1999) poses several advantages that make it an excellent 

candidate in which to study the evolution of de novo host adaptation. Its gene functions 

are well-annotated (Deutschbauer et al., 2011; Rodrigues et al., 2011; Ong et al., 2014; 

Heidelberg et al., 2002), it is amenable to genetic manipulation (Saville et al., 2010; 

Thormann et al., 2006), and much is known about its physiology, metabolism, and how it 

responds to various types of stress (Li et al., 2010; Liu et al., 2005; Saville et al., 2010; 

Bouhenni et al., 2010; Chao et al., 2013; Jiang et al., 2014; Gao et al., 2004; McLean et 

al., 2008). Additionally, the Shewanella genus is commonly observed in the digestive 

tracts of larval zebrafish (Stephens et al., 2016), although importantly, MR-1 in particular 

has never been isolated from a eukaryotic host. Despite this, MR-1 can colonize the guts 

of bacteria-free (BF) larval zebrafish (Figure 3A), in the absence of competitors, when it 

is added to their aqueous environment, which allows for the interrogation of the factors 

that support this process. Finally, compared to another Shewanella species isolated from 

the larval zebrafish digestive tract with which MR-1 shares a recent common ancestry 

(Figure 2, A and B), MR-1 neither achieves the same abundances in the zebrafish 
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digestive tract as this zebrafish-associated species (Figure 3A), nor is it able to compete 

effectively with this species to colonize the digestive tract (Figure 3B). Together these 

features imply that MR-1 has ample room to improve its symbiotic affinity with this 

novel host. 

The goal of the research described herein is to determine how non-host-

associated, or free-living, bacteria evolve to initiate transitions towards host-association. 

In Chapter II, I will outline a selection regime capable of increasing the ability of a free-

living bacterial species, MR-1, to colonize the digestive tracts of BF larval zebrafish. 

Further, Chapter II will show evidence that establishes the genetic basis undergirding the 

ability of host-adapted MR-1 strains to outcompete their free-living ancestor and identify 

the physiological effects of adaptive mutations in an evolved MR-1 isolate. I will then 

dissect out which components of the experimental environment provided niche space into 

which evolved MR-1 lineages could expand. Finally, I will conclude this chapter by 

identifying behaviors which could plausibly explain the expansion of evolved lineages 

into new niches and facilitate host colonization by a formerly naive bacterial species. 

Chapter III will describe the consistency of selection imparted by the serial passage 

scheme outlined in Chapter II. In doing so, it will compare the fitness and phenotypes of 

two evolved bacterial isolates with distinct sets of adaptive mutations that result in 

improved colonization of the zebrafish gut. Additionally, this chapter will consider 

whether evolved MR-1 strains are following a convergent adaptive trajectory with respect 

to a closely-related Shewanella species that has been isolated from the zebrafish gut. 

Ultimately, I will conclude in Chapter IV with a synthesis of my findings and a 

discussion of how they fit within the broader context of host-microbe research.  
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CHAPTER II: 

LOSS OF FUNCTION MUTATIONS IN AN MSH PILUS OPERON INCREASE THE 
ABILITY OF A FREE-LIVING BACTERIUM TO COLONIZE A PISCINE 

VERTEBRATE HOST 

Introduction: 

Given the outsized role that gut bacteria can play in influencing the health of their 

animal hosts, many studies have focused on trying to understand which traits maintain 

existing host-microbe symbioses. To accomplish this, researchers often analyze the 

genomic content (Licandro-Seraut et al., 2014) and expression patterns (List et al., 2018; 

Rey et al., 2010; Xu et al., 2003; Fabich et al., 2011) of bacterial taxa that are commonly 

found in host guts. In these studies, variability in genomic content can be vital to helping 

researchers identify which genomic features govern host-microbe interactions. This 

variability can be generated de novo using various mutagenesis schemes (Goodman et al., 

2009; Lee et al., 2013; Stephens et al., 2015), or it can be culled from a large set of 

isolates from unique sources (Lee et al., 2017; Yahara et al., 2017; Arredondo-Alonso et 

al., 2019, Frese et al., 2011). In either case, comparative genomics approaches, in which 

sets of genomes are aligned and then examined for differences, can be implemented to 

identify candidate loci that are important for host-association. Such analyses can then be 

followed up with genetic manipulations to determine whether candidate loci indeed 

contribute to host-microbe interactions (Lee et al., 2013; Mazmanian et al., 2005, 

Leatham et al., 2005; Hsiao et al., 2006). While tremendously informative to our 

understanding of the host-microbe conversation, lists of adaptive candidates can be too 

long to interrogate individually, many bacteria are not amenable to genetic manipulation, 

and gene annotations are limited in their ability to explain how candidate genes might 
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function under the diverse sets of conditions that are found within hosts. Further, these 

approaches rely on mere snapshots of preexisting biological relationships that have 

already evolved, and they are not capable of identifying the full range of adaptations 

which engender and maintain host-microbe symbioses.  

A more comprehensive understanding of the breadth of traits that facilitate host 

associations can be obtained by analyzing how bacteria evolve and respond to their hosts 

over time. To see why this is, it is important to consider some of the processes that 

govern bacterial evolution. Because bacteria predominantly reproduce asexually, 

bacterial populations commonly undergo clonal interference, whereby genotypes within a 

population compete for representation (Barrick & Lennski, 2013; Fogle et al., 2008, de 

Visser & Rozen, 2006; Wilke, 2004, Gerrish & Lenski, 1998). The effect of this 

phenomenon is that bacteria whose genomes house the most beneficial mutations tend to 

increase their frequency within a population at the expense of other competitors. In some 

cases, this means that even lineages with beneficial alleles can go extinct if they are 

competing against other lineages with alleles of higher adaptive value (Fogle et al., 2008; 

Rozen et al. 2002, Wilke, 2004; Barroso-Batista et al., 2014). In these cases, extinct 

lineages would leave no trace of the beneficial traits they might have had, limiting our 

understanding of the full breadth of traits that are important for survival within a given 

environment.  

Additionally, in many cases the advantage imparted by adaptive alleles can be 

highly dependent on genomic context and epistatic interactions with other loci (Blount et 

al., 2008, Khan et al., 2011; Chiotti et al., 2014). During evolution, genomic content and 

architecture can be altered (genes can be inserted, deleted, or their relative position in the 
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genome can be rearranged). Because some information may be lost as organisms evolve, 

this makes it difficult to interpret how genes depend on each other to encode specific 

functions by only considering the genomic content of extant species. For example, 

changes in genomic content could potentiate the evolution of a new trait. This trait, once 

evolved, could then develop new dependencies on other genes which could make the 

trait’s old dependencies obsolete. The alleles responsible for the initiation of this new 

trait could then be recombined out of the genome over time, or they could revert to their 

original state (Bull et al., 1997), leaving no trace that they had the potential to modulate 

this derived trait in the organism being examined, or in other organisms with similar gene 

networks. By observing how an organism’s genome changes over time as it adapts to a 

new environment, it is possible to gain a more complete understanding of all the genes 

involved in a given function, and how changes in gene networks might alter that function 

to impart adaptation.  

Many researchers have attempted to circumvent these limitations by utilizing an 

approach known as experimental evolution in which an organism is passaged through an 

environment to study how it adapts to that environment. When combined with the 

periodic genomic sequencing of evolving lineages, this strategy allows for the 

observation of evolutionary events right after they happen. Phenotypic and fitness assays 

can then be performed, and this information can be synthesized to understand how 

evolved mutations improve fitness. In this way, snapshots from multiple time points can 

be integrated to paint a detailed picture of the full set of traits that are important to host-

association, how those traits depend on each other, and in what order those traits are 

likely to evolve (Barroso-Batista et al., 2014; Khan et al., 2011, Long et al., 2015, Mani 
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& Clarke, 1990). Given their propensity for short generation times, many researchers 

have relied on experimental evolution to uncover how various bacterial species adapt to a 

range of in vitro environments (Rainey & Travisano, 1998; Wiser et al., 2013; Traverse et 

al., 2013). Recently, the field of experimental evolution has expanded to include some 

host environments. These studies mostly rely on the adaptation of bacterial species to 

single hosts which are housed separately (Giraud et al., 2001; Giraud et al., 2008; 

Barroso-Batista et al., 2014, Leatham et al., 2005), and the methods used in some studies 

often artificially bypasses some host filters (intraperitoneal injection, gavage, etc.; 

Barroso-Batista et al., 2014, Nilsson et al., 2004). In nature however, hosts interact with 

their environment as well as with each other. Therefore, these studies do not address how 

host adaptation might be affected by ecological considerations such as host-environment 

or host-host interactions. Further, as these studies show, previous attempts at exploring 

experimental evolution in hosts have utilized bacterial symbionts that have been isolated 

from hosts, and it is not known how these relationships originated.  

In recognition of the fact that animals are in regular contact with an array of free-

living bacteria, and that bacteria can have large impacts on animal fitness, I sought to 

understand how a free-living bacteria might improve its ability to colonize an animal host 

by tracking the evolution of a bacterium with no prior known host-associations 

(Shewanella oneidensis), as it initiates an association with cohorts of a model vertebrate, 

zebrafish (Danio rerio). To accomplish this, I serially passaged six replicate MR-1 

populations through the digestive tracts of groups of BF larval zebrafish. Each passage 

involved the inoculation of flasks containing 10-15 BF larval zebrafish at four days post 

fertilization (dpf) with MR-1 populations at ~103 CFU/mL. MR-1 populations were then 
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incubated with larvae for 72 hours during which time the bacterial populations grew to 

~106 CFU/mL and colonized the larval guts.  I then dissected and homogenized 10 larval 

digestive tracts and used the homogenate to inoculate a subsequent batch of BF larvae 

(Figure 1). After each bout of dissections, a sample of the homogenized guts was 

archived in a freezer stock that was stored at -80 °C. I repeated this cycle for 20 passages, 

at which point I assessed the competitive fitness of isolates from each replicate 

population relative to their unpassaged ancestor. I found that evolved MR-1 isolates were 

selected to outcompete their ancestor in the larvae-conditioned aqueous environment 

outside the larvae, as well as translocate into larvae more efficiently, with no apparent 

increase in components of fitness related to growth inside larvae. Further, I found strong 

evidence for selection on a pilus operon which may underlie these enhanced attributes. In 

this way, formerly free-living MR-1 populations maximized their association with a host 

digestive tract indirectly by adapting to external aspects of the host environment, and 

potentially altering their physiology to more efficiently bypass host filters. 
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Methods: 

Zebrafish husbandry: 

To ensure animal specimens were treated ethically in all experiments involving zebrafish, 

I adhered to the standard protocols and procedures approved by the University of Oregon 

Institutional Animal Care and Use Committee (IACUC protocol: 15-98). BF derivations 

were carried out as described in Melancon et al., 2017. Details about larval gut 

dissections can be found the Serial passage section.  

 

Figure 1: Serial passage scheme. Serial passage was started with a tagged ancestral 
culture of MR-1 which was used to inoculate a group of 4 days post fertilization (dpf) 
bacteria free (BF) larvae. BF larvae were incubated with MR-1 populations for 72 
hours, at which point 10 larval guts were dissected and homogenized. A sample of the 
homogenate was then used to create a freezer stock held at -80 °C, and the rest of the 
homogenized guts were used to inoculate a subsequent set of 4 dpf BF larvae. This 
cycle was repeated for 20 passages. 
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Bacterial strains: 

My ancestral reference S. oneidensis (MR-1) and Shew-Z12 strains were obtained from 

Karen Guillemin’s laboratory at the University of Oregon. All modifications to MR-1, 

including Tn7-mediated gfp and dTomato insertions as well as allelic exchange 

applications, were carried out as described in Wiles et al., 2018. Whole gene deletion 

allelic constructs were created via a splice by overlap extension protocol (Wiles et al., 

2018), whereas evolved mutation allelic constructs were created via amplification of 

mutated segments of evolved genomes. All S. oneidensis strains were cultured in TSB at 

30 °C under shaking conditions unless otherwise specified.  

 

Serial passage: 

My experimental evolution serial passage scheme was similar to the one outlined by 

Robinson et al. 2018. 5 mL overnight tryptic soy broth (TSB) cultures of MR-1 isolates 

tagged with either green fluorescent protein (MR-1gfp) or dTomato fluorescent protein 

(MR-1dT) were diluted 1:100 in TSB and allowed to grow out to late log phase (4-5 

hours). Six replicate ancestral populations were then generated by combining subcultures 

of MR-1gfp and MR-1dT at a 1:1 ratio. These mixtures allowed us to infer the occurrence 

adaptive events based on fluorescent tag frequency changes observed throughout the 

experiment. Beneficial mutations occurring in a tagged genomic background should 

cause the frequency of that tag to increase over time. Next, 10 μL of each of these 

replicate ancestral populations were used to inoculate larval flasks containing ~15 mL of 

EM and ~15 BF larval zebrafish at 4 days post fertilization (dpf) (inoculating MR-1 

densities were ~106 CFU/mL). Larvae were then incubated with MR-1 populations at 28 
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˚C for 72 hours. At 7 dpf, 10 larvae were euthanized with tricane, mounted on a glass 

slide, and their digestive tracts were dissected out. Glass slides were coated with 3 % 

methylcellulose to help immobilize larvae during dissections. Following dissections, all 

10 digestive tracts culled from each flask were placed in a single 1.7 mL tube containing 

500 μL EM and ~100 μL 0.5 mm zirconium oxide beads (Next Advance, Averill Park, 

NY, US). The contents the larval guts in each these tubes were then immediately 

homogenized using a bullet blender tissue homogenizer (Next Advance, Averill Park, 

NY, US) for 60 seconds at power 4. To preserve my ability to revive replicate 

populations after each passage, I created freezer stocks by using a pipette to mix 200 μL 

from each homogenized tube with 200 μL of 50 % glycerol (25 % glycerol final 

concentration). These freezer stocks were stored at -80 °C. The remaining contents of 

each homogenized tube was then stored at 4 ˚C for 0-14 days, at which point ~250 μL 

were sampled to inoculate a subsequent set of BF larval flasks (~15 larvae in ~15 mL 

EM). Upon inoculation, 100 μL of each larval flask was dilution-plated in triplicate to 

quantify the inoculating population densities (typically around 103 CFU/mL) and 

determine tag frequencies. This cycle was repeated for 20 passages. All six replicate 

evolving populations were maintained separately throughout my experiment.  

 

Comparative genomics: 

I submitted my MR-1 and Shew-Z12 strains to the Washington State University 

Molecular Biology and Genomics Core (WSUGC) for long read sequencing. Genome 

assembly for MR-1 was conducted by WSUGC, whereas genome assembly for Shew-

Z12 was conducted in house with Canu v. 1.7.1 (Koren et al., 2017). To generate 
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annotation files for these genomes, I relied on Prokka v1.12 (Seemann, 2014), and RAST 

v. 2.0 (Aziz et al., 2008).  

Phylogenetics: 

Using Integrated Microbial Genomes and Microbiomes (IMG/M, 

https://img.jgi.doe.gov/; Chen et al., 2018), I collated a set of 16S ribosomal RNA genes 

from 28 Shewanella species, 2 Vibrio species, and 1 Aeromonas species (See Appendix 

Table 2 for metadata). These 16S rRNA genes were entered into Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) to generate a multiple sequence alignment 

file and a subsequent Newick-formatted phylogenetic tree file. This file was then 

visualized with FigTree v1.4.4 (Rambaut & Drummond, 2012). 

Genome comparisons between S. oneidensis and non-S. oneidensis species: 

Average sequence identity (ANI) was calculated using the EZBioCloud online ANI 

calculator (Yoon et al., 2015) to quantify the ANI between S. oneidensis and Shew-Z12. 

Whole genome amino acid sequence alignment visualizations were conducted using the 

Seed Viewer v. 2.0 sequence comparison tool (Overbeek et al. 2013).  

Specific gene and operon comparisons between S. oneidensis and Shew-Z12: 

ANI was calculated using the same tool described in my whole genome comparisons 

above. For mshOP comparisons, I separately concatenated the amino acid sequences of 

each gene in the mshOP of S. oneidensis and Shew-Z12 in series by relying on my 

RAST-annotated files. I then generated multiple sequence alignment (msa) files using 

Clustal Omega web tool (Sievers et al., 2011) that compared these mshOP sequences and 

used them to depict sites of divergence along the mshOP (Figure 5). Visualizations of 

single gene or multi-gene comparisons between S. oneidensis and Shew-Z12 were created 

https://img.jgi.doe.gov/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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using Clustal Omega-based msa files that were imported into Jalview2 (Waterhouse et 

al., 2009). To highlight regions of divergence within genes I color-coded my comparisons 

using the color by annotation feature of Jalview2 (Figure 5; Figure 17). This feature 

color-codes amino acid comparisons per site based on biochemical conservation.  

Evolved mutation calling: 

I obtained 4 isolates per evolved replicate population (24 isolates total) by using an 

inoculation loop to dilution streak a sample from each population’s freezer stock on TSA 

plates (one plate per evolved population, totaling 6 plates) and incubating plates at 30 °C 

for 24 hours.  For each population, I overnight cultured four colonies that resulted after 

24 hours of growth, and then created freezer stocks (stored at -80 °C) that consisted of a 

1:1 mixture of each cultured isolate and an equal volume of 50 % glycerol (final 

concentration: 25 % glycerol). To create genomic libraries for each evolved isolate, I 

used an inoculation loop to generate overnight cultures from each isolate’s corresponding 

freezer stock, and then extracted genomic DNA from each culture using the Promega 

Wizard® Genomic DNA Purification Kit (Catalog #: A1120). Single-end 150 bp libraries 

were generated from these genomic DNA extractions according to the Nextera XT DNA 

Library Prep Kit Reference Guide (Document #: 15031942 v02), and these libraries were 

sequenced on the Illumina HiSeq 4000. Following this same protocol, I also sequenced 

the genomes of my ancestral MR-1gfp and MR-1dT strains on the Illumina HiSeq 4000. 

To identify candidate adaptive mutations, I relied on breseq 0.31.0 (in consensus mode) 

to compare each Illumina sequenced isolate to the annotated ancestral reference 

separately, and then looked for single nucleotide polymorphisms (SNPs) and indels that 

were present in each evolved isolate, but absent in MR-1gfp and MR-1dT isolates. With 
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the exception of mshOP genes, the gene annotations for the mutations listed in Table 1 

were determined by Prokka v1.12 (Seeman, 2014). The mshOP gene annotations were 

determined by RAST v 2.0. 

 

Whole experimental system competitions: 

5 mL overnight TSB cultures of competing strains were diluted 1:100 in TSB and 

allowed to grow out to late log stage (4-5 hours). 500 μL of each competitor was then 

mixed in a single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. 

Competition mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL sterile 

EM. Resuspended competition mixtures were diluted 1:100, and 7.5 μL of these dilutions 

were used to inoculate BF larval flasks containing ~15 mL of EM and ~15 larvae at 4 

dpf. Immediately following inoculation, triplicate 100 μL samples from each competition 

flask were dilution plated to establish the inoculation ratio of competitor1:competitor2 

(CFU/mL). After inoculation, I incubated larval flasks at 28 ˚C for 72 hours. At 7 dpf, 

multiple larvae per flask were euthanized with tricane, and their guts were dissected and 

individually placed in 1.7 mL tubes containing 500 μL of sterile EM and ~100 μL 0.5 

mm zirconium oxide beads (Next Advance, Averill Park, NY, US). The contents the 

larval guts in each these tubes were then immediately homogenized using a bullet blender 

tissue homogenizer (Next Advance, Averill Park, NY, US) for 60 seconds at power 4. 

Homogenized tubes were then dilution plated to determine the CFU/gut for each 

competitor. A competitive index (CI) was calculated for each dissected gut by dividing 

the ratio of competitor1:competitor2 found in each gut by the mean inoculation ratio 
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determined from the triplicate measurements for each corresponding flask, CI = ( 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑔𝑢𝑡𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚).  

 

Rich media competitions:  

Overnight TSB cultures of competing strains were diluted 1:100 in TSB and allowed to 

grow out to late log stage (4-5 hours). 500 μL of each competitor was then mixed in a 

single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. Competition 

mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL TSB. Resuspended 

competition mixtures were diluted 1:100, and 5 μL of these dilutions were added to 10 

mL TSB in a 20 mL test tube. Immediately following inoculation, triplicate 100 μL 

samples from each competition culture tube were dilution plated to establish the 

inoculation ratio of competitor1:competitor2 (CFU/mL).  I incubated each competition at 

30 ˚C for 24 hours with agitation (angled back and forth rocker, 60 rpm), at which point I 

again took triplicate 100 μL samples from each competition tube and dilution plated them 

to quantify the CFU/mL for each competitor. Competitive indices were calculated by 

dividing the final CFU ratio of competitor1:competitor2 by the inoculation ratio, CI = ( 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑓𝑖𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚). 

 

Transmission electron microscopy (TEM): 

Samples were prepped for TEM imaging as described in Jones et al. 2015. Briefly, 

freezer stocks of my ancestral reference S. oneidensis strain were revived in a 5 mL TSB 

overnight culture with shaking at 30 °C. The next day, the culture was diluted 1:100 in 
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TSB and gown under the same conditions until an optical density (OD) of 0.3-0.5 was 

reached (2-3 hours). Subcultures were diluted to an OD of 0.1-0.2, and then 2 μL were 

loaded onto a 300-mesh carbon-coated Formvar grid (Ted Pella product #: 01820). After 

a 5-minute drying period, the gridded sample was washed twice with deionized water. 

Water washes were accomplished by transferring the loaded grid to successive 5 μL 

beads of water on parafilm for 30 seconds at a time. Following the water washes, I 

stained my sample with a 2 % (w/v) solution of uranyl acetate for 90 seconds and then 

placed the stained grid on a 5 μL bead of water on parafilm for 30 seconds. Imaging was 

conducted with a FEI Tecnai G2 Spirit TEM STEM. 

 

Biofilm assay: 

Triplicate biological replicate overnight TSB cultures of strains of interest were diluted 

1:100 in TSB and allowed to grow out to mid-late log stage (3-4 hours). Optical densities 

were measured at 600 nm for each overnight culture. 1 mL of subcultured strains were 

pelleted (7000 rcf for 5 min), and the pellets were resuspended with a volume of sterile 

EM that would correspond with a TSB optical density of 1.0 if read at 600 nm. 150 μL of 

each resuspension were added to four wells of a round-bottom 96 well polystyrene plate 

(Greiner Bio-One, catalogue #: 650185) per biological replicate. The plate was incubated 

at 30 ˚C for 24 hours, and the volume of each well was removed with a multichannel 

pipette. The wells were rinsed twice with 200 μL of sterile EM, and each well was 

stained with 180 μL 0.1 % crystal violet (CV). The plate was incubated at room 

temperature for 10 min, at which point the crystal violet was removed with a 

multichannel pipette, and the wells were again rinsed twice with 200 μL of sterile EM. 
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The CV was solubilized with 100 % dimethyl sulfoxide (DMSO) for 15 min with 

agitation (~180 rpm on a rotating minishaker), and 100 μL of the solubilized CV was 

added to 100 μL of 100 % DMSO in a flat-bottom 96 well polystyrene plate (Corning 

Incorporated, reference #: 3595). Optical densities were then measured for each well at 

570 nm.  

 

Colonization level assessments: 

5 mL overnight TSB cultures of strains of interest were diluted 1:100 in TSB and allowed 

to grow out to late log stage (4-5 hours). 1 mL of subcultured strains were then pelleted 

(7000 rcf for 5 min), and the pellets were resuspended in 1 mL sterile EM. This 

resuspension was then diluted 1:100, and 7.5 μL of this dilution was used to inoculate BF 

larval flasks containing ~15 mL of EM and ~15 larvae at 4 dpf. After inoculation, I 

incubated larval flasks at 28 ˚C for 72 hours. At 7 dpf, multiple larvae per flask were 

euthanized with tricane, and their guts were dissected and individually placed in 1.7 mL 

tubes containing 500 μL of sterile EM and ~100 μL 0.5 mm zirconium oxide beads (Next 

Advance, Averill Park, NY, US). The contents the larval guts in each these tubes were 

then immediately homogenized using a bullet blender tissue homogenizer (Next 

Advance, Averill Park, NY, US) for 60 seconds at power 4. Homogenized tubes were 

dilution plated to determine the CFU/gut.  

 

Colonization level over time: 

Overnight TSB cultures of competing strains were diluted 1:100 in TSB and allowed to 

grow out to late log stage (4-5 hours). 500 μL of each competitor was then mixed in a 
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single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. Competition 

mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL sterile EM. 

Resuspended competition mixtures were diluted 1:100, and 7.5 μL of these dilutions were 

used to inoculate BF larval flasks containing ~30 mL of EM and ~30-35 larvae at 4 dpf. 

At 0, 2, 4, and 8 hours post inoculation, 100 μL of the EM containing the larvae was 

sampled and dilution plated to determine the CFU/mL for each competing strain, and 

then five larval guts were immediately dissected, and their contents dilution plated 

(described in Whole experimental system competitions above), to determine the CFU/gut 

of each competing strain.  

 

Larvae-conditioned media (LCM) competitions:  

Overnight TSB cultures of competing strains were diluted 1:100 in TSB and allowed to 

grow out to late log stage (4-5 hours). 500 μL of each competitor was then mixed in a 

single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. Competition 

mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL sterile EM. 

Resuspended competition mixtures were diluted 1:100, and 7.5 μL of these dilutions were 

used to inoculate BF larval flasks where larvae had been removed at 4 dpf. Each of these 

BF larval flasks had contained ~15 mL of EM and ~15 larvae that had been conditioning 

their EM over the course of four days. Multiple BF larval flasks had been combined into 

a single sterile vessel, and the larvae were removed using a 1.5 mL bulb pipette, leaving 

behind only the LCM. ~15 mL of LCM was then aliquoted into fresh sterile polystyrene 

culture flasks. These flasks were inoculated as stated above and triplicate 100 μL LCM 

samples were taken per competition flask and dilution plated on TSA to establish an 
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initial competition ratio (competitor1: competitor2). Each competition flask was 

incubated at 28 ˚C for three days (to mimic a single passage during my serial passage 

procedure) at which point 100 μL samples were again taken in triplicate and dilution 

plated to establish a final competition ratio (competitor1:competitor2). Competitive 

indices were calculated by dividing the final CFU ratio of competitor1:competitor2 by the 

inoculation ratio, CI = ( 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑔𝑢𝑡𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚).  

 

LCM growth dynamics: 

Overnight TSB cultures of strains of interest were diluted 1:100 in TSB and allowed to 

grow out to late log stage (4-5 hours). 1 mL of subcultured strains were then pelleted 

(7000 rcf for 5 min), and the pellets were resuspended in 1 mL sterile EM. Resuspensions 

for each strain were then diluted 1:100, and 7.5 μL of each dilution was used to inoculate 

separate ~15 mL LCM flasks (created as described in LCM competitions assays above). 

100 μL samples from LCM flasks were then dilution plated on TSA every few hours to 

assess population dynamics over time by quantifying the CFU/mL at each time point.   

 

Immigration and in vivo growth assays:  

Separate 5 mL overnight TSB cultures of competitor strains of interest were diluted 1:100 

in TSB and allowed to grow out to late log stage (4-5 hours). 1 mL of subcultured strains 

were then pelleted (7000 rcf for 5 min), and the pellets were resuspended in 1 mL sterile 

EM. Resuspensions for each competitor were then diluted 1:100, and 7.5 μL of each 

dilution was used to inoculate separate ~15 mL LCM flasks (created as described in LCM 
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competitions assays above). Each competitor was incubated in its own LCM flask at 28 

˚C for 12-15 hours at which point two flasks (one containing each competitor) were 

combined into a single polystyrene petri dish such that the petri dish contained a ~30 mL 

competition mixture. 30-35 4 dpf larvae were then added to each competition mixture 

dish, and 100 μL samples were immediately taken in triplicate from each dish. These 

samples were dilution plated to establish an inoculating competition mixture 

(competitor1:competitor2). After a 40-60 min incubation period at 28 ˚C, the LCM was 

removed and replaced with 100 mL sterile EM for a total of three rinses. These media 

exchanges were conducted to reduce the density of each S. oneidensis competitor in the 

EM so that both populations were below a threshold where colonization would readily 

occur (colonization threshold > 104 CFU/mL; Figure 8A & 8B). 10 larval guts were then 

dissected as described above in my whole experimental system competitions. By dilution 

plating the contents of each dissected gut, I established a competition ratio for each gut 

and determined a mean competition ratio for a typical larval gut 

(competitor1:competitor2). Following gut dissections, EM exchanges were repeated 

every two hours to ensure that bacterial loads in the EM remained below 103 CFU/mL 

(monitored by plating a single 100 μL sample just prior to the beginning of each set of 

EM exchanges). The larvae that remained in the competition petri dishes after the first set 

gut dissections were completed, were incubated at 28 ˚C between sterile EM exchanges. 

8.5-10.5 hours after initial gut dissections took place, 10 additional larval guts were 

dissected, and their contents dilution plated to establish a final mean competition ratio for 

a typical larval gut (competitor1:competitor2). Since the CFU/mL in the EM was 

maintained at a low level between bouts of dissection, any increase in the mean CFU/gut 
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I observed between dissection bouts should have been affected primarily by the growth of 

S. oneidensis populations in vivo. Using the initial mean CFU/gut and the final mean 

CFU/gut that I observed for each competing strain, I then calculated a per capita growth 

rate for each strain per competition (𝑟 = ln ( 𝐶𝐹𝑈/𝑔𝑢𝑡𝑓𝑖𝑛𝑎𝑙𝐶𝐹𝑈/𝑔𝑢𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙)). I then used my per capita 

growth rate to calculate an immigration index and relative in vivo fitness metric: 

(immigration index: 
𝑔𝑢𝑡 𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2 ∗ 𝑒(𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2 − 𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1)∗𝑡; 

relative in vivo fitness: 
𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2). In this way, my in vivo relative fitness compares the 

relative per capita growth rates I observed in vivo for each competitor, and I was able to 

use these per capita growth rates to control for any growth that may have occurred in vivo 

during my immigration assay.  

 

Motility assays: 

5 mL overnight TSB cultures of strains of interest were diluted 1:100 in TSB and allowed 

to grow out to late log stage (4-5 hours). Strains were then prepped for inoculation as 

described in my whole experimental system competitions above (combine differentially 

fluorescently-tagged competitors from subcultures, pellet, resuspend in sterile EM, and 

dilute). 7.5 μL of each prepared competition mixture were then used to inoculate BF 

larval flasks containing ~15 mL of EM and ~15 larvae at 4 dpf. Inoculated larval flasks 

were incubated at 28 ˚C for 13-17 hours, at which point bacteria in each flask were 

imaged on an inverted microscope (Nikon Eclipse Ti-e) by focusing on the bottom 

interior surface of the flask. Ten, 30 second movies were then captured separately for 

each tagged population in a competition flask at a rate of > 15 frames per second. To 
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calculate motility characteristics such as the speed of motile cells and the proportion of a 

population that was motile, I relied on a particle tracking algorithm (Parthasarathy, 2012; 

source code: http://pages.uoregon.edu/raghu/particle_tracking.html). Only cells deemed 

to be moving faster than 2 um/second were considered motile.  

 

Results: 

Shewanella oneidensis is not host associated: 

Gut-associated bacteria are routinely isolated from the guts of their animal hosts. 

Although MR-1 has never been observed within a host gut, the Shewanella genus has 

been commonly found in larval zebrafish gut (Stephens et al., 2016). Indeed MR-1 shares 

a recent common ancestry with a Shewanella species that has recently been isolated from 

the gut (Figure 2, A & B; Shewanella ZOR0012, Shew-Z12 from this point forth). 

Interestingly, a whole genome comparison between MR-1 and Shew-Z12 reveals that 

these two genomes share an average nucleotide identity (ANI) of approximately 89% (see 

methods; Yoon et al., 2015). The high degree of overlap between these two species was 

further reflected when I compared the protein sequence alignments of Shew-Z12 or the 

more distantly related Shewanella woodyi against my MR-1 reference genome (Figure 

2B). All three of these species are classified within the same genus, yet relative to S. 

woodyi, MR-1 appears to display much higher levels of amino acid sequence identity 

with Shew-Z12 on a per gene basis, implying greater amounts of functional conservation 

between MR-1 and Shew-Z12.  

Given the close relation between MR-1 and Shew-Z12, I thought it prudent to 

ensure that MR-1 would not behave like a host-associated bacterium. Thus, I compared 

http://pages.uoregon.edu/raghu/particle_tracking.html
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its fitness within the zebrafish gut to that of Shew-Z12 via two separate metrics: 1) 

colonization density in the gut after 72 hours exposure and 2) competitive ability to 

colonize the gut. Despite being able to colonize BF larvae under monoassociation 

conditions, MR-1 did so at a lower level than Shew-Z12 under these same conditions 

(Figure 3A). Additionally, compared to how well an MR-1 strain with a neutral 

fluorescent tag (MR-1tag) competed against a wild type (wt) MR-1 strain (MR-1wt), 

which resulted in a tie, the MR-1tag strain was severely outcompeted by the Shew-Z12 

strain in its ability to colonize the BF larval guts (Figure 3B, see methods for a 

description of how these competitions were conducted). Together, these lines of evidence 

suggest that MR-1 is not well-adapted for life in association with the larval zebrafish gut. 

Thus, I speculated that, depending on how much these two organisms have diverged from 

their shared common ancestor, adapting MR-1 to the host environment from which 

Shew-Z12 was isolated might elucidate the adaptive steps Shew-Z12 took to become host 

associated.  
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Figure 2: Relatedness of MR-1 to other Shewanella species. A) A phylogenetic tree 
showing the relationship between a number of different Shewanella species. The tree 
was compiled using the 16S gene of each species represented. B) Whole genome 
alignment of Shew-Z12 (outer ring) or Shewanella woodyi (inner ring) amino acid 
sequences against the MR-1 reference genome. Color shading around each ring 
indicates sequence identity (key at the top of the figure). Alignments were conducted 
using the sequenced-based comparison tool of The SEED Viewer v. 2.0 (Overbeek et 
al. 2013). 
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Serial passage should uncover how MR-1 adapts to the gut: 

To understand how Shewanella oneidensis would adapt to a vertebrate host gut I 

serially passaged six replicate populations through the digestive tracts of GF larval 

zebrafish (Figure 1A). At the start of the experiment, each population was composed of 

two isogenic fluorescently-tagged MR-1 isolates (dTomato, MR-1dT; gfp, MR-1gfp) so 

that passaged populations could be distinguished from the unpassaged ancestor by their 

colony color on TSA agar plates, and adaptive events could be inferred from changes in 

each tag’s frequency within an evolving population. After 20 passages I tested the fitness 

of at least one isolate per evolved population by competing each isolate against their 

unpassaged ancestor. Each competition involved inoculating larval flasks containing 10-

15 larvae with competition mixtures composed of roughly equal proportions of MR-1wt 

and each evolved isolate at a density of ~103 CFU/mL. Evolved:ancestor inoculation 

Figure 3: Fitness comparison between MR-1 and Shew-Z12. A) Colonization 
density achieved in larval guts after 72 hours of colonization under monoassociation 
conditions for indicated strains. Dissected guts were plated on TSA and colony-
forming units (CFUs) were counted. Each point represents a single dissected gut. B) 
Competitive ability of unpassaged fluorescently-tagged MR-1 strain competing against 
an untagged version of itself (MR-1wt), or an untagged Shew-Z12. Each point 
represents the competitive index (CI) measured for a single larval gut (see Methods 
for details on how Cis were calculated).  
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ratios were determined by plating triplicate samples of the embryonic medium (EM) from 

each competition flask and quantifying the number of fluorescently tagged (evolved) and 

untagged (ancestor) CFUs. To mimic a standard passage from my serial passage protocol, 

I then incubated larvae with competition mixtures for 72 hours at which point I dissected 

and plated 10 larval guts. Finally, I calculated competitive indices (CIs) by dividing the 

evolved:ancestor CFU ratio of each plated gut sample by the mean inoculation ratio from 

my triplicate inoculation assessment. Five of the six isolates tested showed significant 

improvements in their ability to outcompete the ancestral strain (Figure 4A), and these 

improvements were not based on adaptation to the general lab environment as 

competitions between whole replicate evolved populations and MR-1wt in rich media 

produced CIs around zero after log transformation (Figure 4B). 
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Several adaptive candidate mutations were found using comparative genomics: 

Next, to determine the genetic underpinnings that might explain the adaptive 

advantages of each evolved isolate tested, I sequenced the genomes of four isolates per 

evolved population (24 isolates total). The reads of each sequenced isolate were then 

aligned against an ancestral reference sequence to identify regions of the evolved 

genomes that had accumulated mutations. I relied on breseq 0.31.0 in consensus mode to 

conduct these comparisons. The resulting list featured a large number of potential 

adaptive candidate loci that had undergone selection (Table 1) which made it difficult to 

distinguish adaptive mutations from non-adaptive mutations that co-occurred in in the 

Figure 4: Competitive fitness of evolved S. oneidensis isolates. A) Competitive 
ability of MR-1 isolates from each replicate evolved population against the ancestral 
MR-1 reference strain. Each point represents the CI measured for a single larval gut. 
An ancestral competition against itself (left-most box) is shown as a control to 
represent the absence of a competitive advantage. Statistical groupings are indicated 
by letters above each box for a significance threshold of p<0.05. Letters in common 
between groups indicate the absence of a significant difference in each group’s mean. 
B) Competitive ability of each replicate evolved MR-1 population competing against 
the ancestral MR-1 reference strain in tryptic soy broth (TSB). Each point represents 
the CI measured for a single biological replicate (see Methods for details on how CIs 
were calculated). Each TSB competition was performed in 10 mL TSB in a 20 mL 
glass test tube.  
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same genome. For example, mutations with neutral or even slightly deleterious impacts 

on fitness could have been selected to increase in frequency simply through their linkage 

with another, more beneficial mutation. Since it would be unlikely for mutations to 

accumulate in similar genomic regions across separate evolved isolates solely due to 

chance events and drift, I hypothesized that genomic regions that contained high densities 

of mutations had likely been selected to increase in frequency due to their elevated 

adaptive value. Thus, I narrowed my scope of adaptive candidates by looking for similar 

types of mutations across all sequenced isolates. In 20 out of 24 isolates sequenced, I 

observed mutations in a mannose sensitive hemagglutinin (msh) pilus operon (mshOP; 

Table 1, yellow shaded).  
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A B C D A B C D A B C D A B C D A B C D A B C D Gene Mutation Description Annotation

X X mshL  ← C→A E75*

MSHA biogenesis protein 

MshL

X X X X X X X X mshL  ← T→G T300P 

MSHA biogenesis protein 

MshL

X X X X mshG  ← G→T A289E

MSHA biogenesis protein 

MshG

X X X X mshE  ← G→A Q196*

MSHA biogenesis protein 

MshE

X mshE  ← C→A E83*

MSHA biogenesis protein 

MshE

X mshO  ← Δ1 bp 541/849 nt

MSHA biogenesis protein 

MshO

X 00112  → G→A E27K hypothetical protein

X 00235  ← G→T G137G  Sulfite exporter TauE/SafE

X X 00301  → A→G K37R  hypothetical protein

X X 00301  → G→T T41T  hypothetical protein

X X 00301  → G→A E50E  hypothetical protein

X X 00301  → T→G L52L hypothetical protein

X X 00301  → G→A E65E  hypothetical protein

X X 00301  → / ← 00302 T→A intergenic (+5/+81)

hypothetical 

protein/Suppressor of fused 

protein (SUFU)

X X X rcsC_1  → G→A A304T 

Sensor histidine kinase 

RcsC

X X X X X X 00448  → C→A Q182K 

Transposase DDE domain 

protein

X X X X X X 00448  → C→T I215I 

Transposase DDE domain 

protein

X X X X X X 00448  → T→C T285T 

Transposase DDE domain 

protein

X X X X X X 00448  → C→T N293N 

Transposase DDE domain 

protein

X X X X X 00448  → A→C V154V 

Transposase DDE domain 

protein

X X X X X 00448  → C→A V171V 

Transposase DDE domain 

protein

X 00582  ← / ← proS C→A intergenic (‑167/+109)

Patatin‑like 

phospholipase/Proline‑‑tRNA 

ligase

X 00712  ← T→C N23D  hypothetical protein

X X X 00712  ← 2 bp→TT 85‑86/228 nt hypothetical protein

X X X 00712  ← T→C N23D  hypothetical protein

X X X 00712  ← C→T L20L  hypothetical protein

X X X 00712  ← A→G G18G  hypothetical protein

X dsbA_2  → / → 00890 G→A intergenic (+778/‑142)

Thiol:disulfide interchange 

protein DsbA 

precursor/hypothetical protein

X X X X X X X 00937  ← 2 bp→GC 59‑60/333 nt hypothetical protein

X X X X X X X X 00937  ← A→T V13E hypothetical protein

X X X X X X X X 00937  ← A→G I9I hypothetical protein

X X X X X X X X 00937  ← C→T R7H  hypothetical protein

X X X X X X X X 00937  ← C→T M6I hypothetical protein

X X X X X X X 00937  ← / ← 00938 C→T intergenic (‑11/+137)

hypothetical protein/plasmid 

segregation centromere-

binding protein ParG

 ← / ←  2 bp→TG ‑
hypothetical protein/plasmid 

 → T→G
, 

 → T→G
 ← A→G

 → / ←  14→13 ‑‑
 → 6→5

 → G→A
‑

 ← A→G
in 

 → 8→7

 ← G→C
 

 ← 2 bp→GG ‑
 ← A→G
 ← C→T
 ← T→G
 ← A→G
 ← G→A
 ← G→A
 ← T→A
 ← A→C
 ← G→A
 ← A→T

→ 2 bp→TT ‑
→ C→A

→ T→C

→ A→C

→ T→A

Line 6Line 1 Line 2 Line 3 Line 4 Line 5

Table 1: Candidate adaptive mutations. Mutations are listed for four isolates per 
evolved population. Each isolate is color-coded by the fluorescent tag it contained (red 
= dTomato, green = gfp). Except for mshOP annotations (annotated with RAST v. 
2.0), gene annotations are based on Prokka v1.12 annotations. Color-coding for gene 
descriptions is as follows: green: synonymous mutation, blue: missense mutation, red: 
nonsense mutation, black: all other mutations. Yellow-shaded cells indicate mshOP 
mutations.  
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Table 1 continued 

 

 
 
 
 

While there were multiple types of mutations that were found in separate evolved 

populations, no other class of mutation was as widespread as those found in the mshOP 

(all six replicate populations featured isolates with mshOP mutations). Therefore, to 

assess whether these mutations provided evidence that MR-1 was perusing a similar 

adaptive trajectory to one potentially taken by Shew-Z12, I compared the mshOP of my 

reference MR-1 strain to that of Shew-Z12, to look for any indication that MR-1 might be 

experiencing genetic convergence toward Shew-Z12. Despite high levels of sequence 

similarity overall (ANI: 91.64%), an alignment of the Shew-Z12 mshOP against that of 

MR-1 revealed several regions with elevated patterns of divergence (Figure 5). In 

 ← C→A

 ← T→G

 ← G→T

 ← G→A

 ← C→A

 ← Δ1 bp
 → G→A
 ← G→T
 → A→G
 → G→T
 → G→A
 → T→G
 → G→A

 → / ←  T→A

 → G→A

 → C→A

 → C→T

 → T→C

 → C→T

 → A→C

 → C→A

 ← / ←  C→A ‑
‑ ‑‑

 ← T→C
 ← 2 bp→TT ‑
 ← T→C
 ← C→T
 ← A→G

 → / →  G→A ‑
 ← 2 bp→GC ‑
 ← A→T
 ← A→G
 ← C→T
 ← C→T

X X X X X X X 00937  ← / ← 00938 C→T intergenic (‑11/+137) binding protein ParG

X X X X X X 00937  ← / ← 00939 2 bp→TG intergenic (‑38/+109)

hypothetical protein/plasmid 

segregation centromere-

binding protein ParG

X X X X glpC  → T→G F257C

oxidoreductase, FAD-binding, 

putative

X 01176  → T→G W460G  lipoprotein, putative

X 01736  ← A→G F149S  Zinc carboxypeptidase

X folD  → / ← cysS (TAGGTTC)14→13 intergenic (+89/+81)

Bifunctional protein FolD 

protein/Cysteine‑‑tRNA ligase

X X X dosC  → (A)6→5 375/1557 nt Diguanylate cyclase DosC

X X gmr_6  → G→A A174T 

Cyclic di‑GMP 

phosphodiesterase Gmr

X X smc_2  ← A→G M446T 

Chromosome partition protein 

Smc

X X X 02921  → (A)8→7 1418/2091 nt hypothetical protein

X secY  ← G→C P355A 

protein translocase subunit 

secY/sec61 alpha

X X X X X X 03772  ← 2 bp→GG 372‑373/444 nt hypothetical protein

X X X X X X 03772  ← A→G D123D  hypothetical protein

X X X X X X 03772  ← C→T S122N  hypothetical protein

X X X X X X 03772  ← T→G M121L  hypothetical protein

X X X X X X 03772  ← A→G S117P  hypothetical protein

X X X X X X 03772  ← G→A L115L  hypothetical protein

X X X X X X 03772  ← G→A S112S  hypothetical protein

X X X X X X 03772  ← T→A L110L  hypothetical protein

X X X X X X 03772  ← A→C T109T  hypothetical protein

X X X X X X 03772  ← G→A V106V  hypothetical protein

X X X X X X 03772  ← A→T G99G  hypothetical protein

X 04242 → 2 bp→TT 50‑51/576 nt Integrase core domain protein

X 04242 → C→A P25T  Integrase core domain protein

X 04242 → T→C P25P Integrase core domain protein

X 04242 → A→C A27A  Integrase core domain protein

X 04242 → T→A F36I  Integrase core domain protein
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particular, Shew-Z12’s mshQ gene appeared to be noticeably larger than MR-1’s mshQ 

gene. Additionally, there also appeared to be a region of high divergence toward the N-

terminus of the MshA protein between these two species, and MshA is the protein that 

forms the major pilin subunit of the msh pilus (Jones et al., 2015). However, I did not 

find mutations in the MR-1 mshA gene in any of my evolved isolates. Nonetheless, the 

fact that there were substantial regions of divergence between the mshOP amino acid 

sequences of MR-1 and Shew-Z12 left open the possibility that the adaptive changes I 

observed might amount to evolutionary convergence at the functional level.  

 

 

Figure 5: MshOP amino acid conservation between MR-1 and Shew-Z12. The bar 
at the top shows the mshOP amino acid conservation between MR-1 and Shew-Z12. A 
schematic depicting the organization of the mshOP is shown below. Per site, blue 
indicates the same amino acid is present in both species, while yellow indicates the 
presence of different amino acids. Aligned sequences are shown for genes in which I 
observed mutations in my evolved isolates. In each row of the displayed sequences, 
MR-1 is featured on top and Shew-Z12 is featured on the bottom. MshQ did not 
accumulate mutations in my experiment, but it is shown to illustrate that much of the 
divergence in this protein resulted from a difference in length between MR-1 and 
Shew-Z12. The color coding in each sequence alignment indicates the degree of 
conservation. Amino acids with similar biochemistry are bluer, while those with 
divergent biochemistry are yellower. A scale bar above the figure indicates the length 
of 500 amino acids. 
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Most of the other classes of mutations that were found in multiple evolved 

isolates occurred in genes that were annotated as hypothetical proteins or transposases 

(Table 1). Given these annotations, it was difficult to hypothesize potential mechanisms 

for how alterations in these genes might enhance competitive fitness. For instance, the 

term “hypothetical protein” provides no functional information, and mutations in 

transposases would presumably retarget those transposases to recognize different 

sequences. In turn, these transposases could then modify other genes in the genome, and 

thus their impact on fitness would be indirect. Alternatively, mutating transposases, 

which typically bind DNA, could prevent them from binding their targets, allowing 

access by transcription factors and other DNA binding proteins, that could affect gene 

expression. Either way, while I could not rule out their potential impact on fitness, 

considering mutations in these genes provided no obvious link to fitness, and thus these 

mutations were not examined further. 

Interestingly, the mshOP has been implicated in a number of other host microbe 

systems. Specifically, within the Vibrio genus, msh pili, which are hair-like structures 

that extend from bacterial cell surfaces (Figure 6, A and B), have been suggested to 

modulate various Vibrio species’ ability to colonize and interact with the corporal 

environments of both vertebrate and invertebrate hosts (Hsiao et al., 2006; List et al., 

2018; Ariyakumar & Nishiguchi, 2009; O’Boyle et al., 2013). In an infant mouse model, 

V. cholerae msh pili were implicated in their ability to alter colonization dynamics and 

were suggested to interact with a component of the mouse immune system, IgA (Hsiao et 

al., 2006). Additionally, a Pseudomonas aeruginosa strain that expresses msh pili on its 

surface (PA-MSHA) has also been shown to interact with mammalian immune systems 
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(Hou et al., 2012). Given is body of work, the fact that mshOP mutations commonly 

arose and were maintained in each of my replicate evolved populations, and the fact I 

observed ample amounts of divergence between the mshOPs of MR-1 and Shew-Z12, I 

decided to focus on how the most frequently observed msh operon mutation (a threonine 

to proline missense mutation at amino acid 300/560; MshL-T300P) impacted fitness.  

 

 

MshL-T300P mimics MshL deletion mutant fitness: 

To confirm whether the MshL-T300P mutation could improve fitness, I used 

allelic exchange to recreate this mutation in the ancestral genomic background (method 

described in Wiles et al., 2018). I then assayed the fitness of this mutant using a 

competition assay. The MshL-T300P mutant significantly outcompeted the wt ancestor 

implying that this mutation is responsible for the increased fitness seen in the evolved 

isolates in which it was observed (Figure 7). Given the different character of threonine 

Figure 6: Transmission electron microscopy (TEM) images of msh pili. A) I 
generated a TEM image of a dividing MR-1 cell. The cell on the bottom half of the 
image is expressing an msh pilus. The details regarding how I generated this image 
can be found in the methods section. B) A TEM image of a Vibrio cholerae cell 
expressing msh pili is shown for comparison. This image was adapted from Jones et 
al., 2015.  
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and proline side chains, and how early in the mshL gene this missense mutation occurred, 

I hypothesized that the MshL-T300P mutation was a loss of function mutation. To 

confirm this, I created a mshL whole gene knockout (ΔmshL) and competed it against the 

MR-1 ancestor. The ΔmshL mutant also showed improved fitness that was comparable to 

that of the MshL-T300P mutant, implying that the MshL-T300P mutation was indeed a 

loss of function mutation (Figure 7). Finally, to assess whether the MshL-T300P mutation 

was the primary driver of increased fitness in evolved isolates containing this mutation, I 

competed the L3 isolate against the MshL-T300P mutant. I hypothesized that if the 

MshL-T300P mutant imparted an increase in fitness that was of comparable adaptive 

value to the evolved L3 isolate which contained this mutation, this competition should 

result in a dramatic reduction in L3’s competitive index. This is indeed what I observed 

(Figure 7, rightmost column), and given that the L3 isolate had the highest median fitness 

of all tested isolates containing msh operon mutations, this result implies that the MshL-

T300P mutation imparts a large adaptive effect. 
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Losing mshL functionality reduces biofilm formation on surfaces: 

The msh pilus has been shown to be important for surface attachment and biofilm 

formation in MR-1, V. cholerae, and in Aeromonas hydrophila (Saville et al., 2010; 

Bouhenni et al., 2010; Jones et al., 2015; Qin et al., 2014). To assess whether MshL-

T300P mutants could form normal biofilms, I conducted a static polystyrene plate-based 

biofilm assay in larvae conditioned medium (LCM). This medium is created by allowing 

zebrafish larvae to condition the embryonic medium (EM) used to derive them BF for 96 

hours, and it should provide a similar nutrient profile to that experienced by MR-1 during 

the competitive fitness assays described above. I found that the L3 isolate as well as both 

the MshL-T300P and ΔmshL mutants formed reduced biofilms compared to the ancestral 

Figure 7: The competitive ability of the MshL-T300P mutant, ΔmshL mutant, 
and L3 isolate against MR-1wt. Each point represents the competitive index (CI) 
measured for a single larval gut. Ancestral competition against itself is shown as a 
control to represent the absence of a competitive advantage. Statistical groupings are 
indicated by letters above each box for a significance threshold of p<0.05. Letters in 
common between groups indicate the absence of a significant difference in each 
group’s mean. Statistics for the L3 vs MshL-T300P competition (right-most box) were 
conducted separately since this competition had unique competitors (p<0.001: ***).  
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MR-1 strain (Figure 8). These results imply that the MshL-T300P corrupts the ability to 

properly adhere to surfaces, and they provide further confirmation that MshL-T300P is a 

loss of function mutation. Since previous studies had shown that the expression of msh 

pilus was required for normal biofilm formation, these results are consistent with the 

interpretation that the MshL-T300P mutation reduces the expression of the msh pilus on 

the surface of MR-1 cells. If true, it would be improbable that the putative loss-of-

function MshL-T300P mutation featured in L3 represents an example of functional 

convergence between MR-1 and Shew-Z12, since Shew-Z12 appears to have a fully 

intact mshOP that shares high sequence identity with MR-1. 

 

 

Pili have also been shown to be important for twitching motility whereby bacteria 

extend pili, attach to a surface, and then retract the pili resulting in a slow crawling-type 

of locomotion across a substrate. Based on my biofilm results which suggested that msh-

pilus mediated biofilm formation was hampered in mshL mutants, I hypothesized that 

Figure 8: Crystal violet biofilm assay comparing L3, MshL-T300P, and ΔmshL to 

ancestor. Optical density (570 nm) corresponds to crystal violet intensity. Higher 
optical density readings indicate more robust biofilms. Statistical groupings are 
indicated by letters above each box for a significance threshold of p<0.05. Letters in 
common between groups indicate the absence of a significant difference in each 
group’s mean.  
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MshL-T300P mutants would lack twitching motility. I found no evidence of twitching 

motility in either the wt MR-1 ancestor or the mshOP mutants (data not shown), and this 

is consistent with other studies that have found MR-1 does not twitch (Saville et al., 

2010). 

 

Losing mshL functionality has no effect on carrying capacity in larval guts: 

After gaining some mechanistic insight into how the MshL-T300P mutation 

impacts MR-1 physiology, I sought to understand how this mutation improved fitness. 

Since the Shew-Z12 zebrafish isolate demonstrated the ability to colonize BF larval guts 

at greater densities than MR-1, I examined whether the adaptive MshL-T300P mutation 

could improve the total abundance reached in the gut when the ancestor was competing 

against itself, versus when the ancestor was competing against either the L3 isolate or the 

MshL-T300P mutant. If the MshL-T300P mutation had a discernible impact MR-1’s 

carrying capacity in the gut, I expected to observe greater cell densities in competitions 

where MshL-T300P-containing strains were present. My data show that when the L3 and 

MshL-T300P strains were used as competitors, there was no significant change in 

carrying capacity (Figure 9). This suggests that the evolved L3 isolate’s improved fitness 

was not based on an ability to colonize larval guts at higher abundances. 
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L3 and T300P have similar in vivo growth rates to the ancestor: 

 Given that I did not observe differences in carrying capacity that could explain 

the fitness advantage I observed for the L3 and MshL-T300P strains in my system, I 

hypothesized that the MshL-T300P mutation must impart its advantage through other 

components of fitness. In my experimental system, in order for bacterial cells to be 

propagated from one passage to the next, populations must grow to a density where they 

can readily colonize larvae, bypass host filters to migrate from the aqueous environment 

into the larval digestive tract, grow within the digestive tract, and resist ejection from the 

digestive tract such that they are present in the gut at the time of dissection. Isolates that 

have increased their ability to perform any of these tasks relative to the ancestral strain, 

should register as having increased fitness. Fortunately, part of the power of the zebrafish 

Figure 9: Colonization density achieved in larval guts after 72 hours of 

colonization under competitive conditions for indicated strains. Dissected guts 
were plated on TSA and CFUs were counted. Each point represents a single dissected 
gut. Statistical groupings are indicated by letters above each box for a significance 
threshold of p<0.05. Letters in common between groups indicate the absence of a 
significant difference in each group’s mean. 
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system featured here, is that it allows for the isolation of several of these components of 

fitness, enabling us to assess their individual contribution to the overall fitness I observe. 

In this way, evolution can act as a sensor, elucidating which aspects of the experimental 

environment provide the most fodder for adaptation.  

I first suspected that my evolved populations might have improved in their ability 

to compete against the ancestral MR-1 strain in vivo once they had colonized larval guts. 

To test this hypothesis, I performed an in vivo growth experiment in which I dissected the 

guts of groups of 10 larval zebrafish colonized with competition mixtures of L3 or MshL-

T300P versus the ancestral MR-1 strain at two different time points. 10 larval guts were 

dissected at an initial time point, when populations were approximately two orders of 

magnitude below the carrying capacity of the larval gut, to establish a mean founding 

population size for each competitor in a typical larval gut. 10 additional larval guts were 

then dissected ~10 hours later, after some growth in the gut had taken place, to establish a 

mean final population size per typical gut. While my gut sampling scheme is destructive, 

preventing us from us from calculating growth rates of MR-1 populations within a single 

larval gut, based on the average initial and final populations I observe, I estimate that 

bacterial populations in an average larval gut undergo roughly 3.3 doublings during this 

10-hour window. This provides ample opportunity for competing strains with different 

levels of fitness to differentiate themselves. Additionally, based on previous work 

conducted with other evolved isolates, I determined that larval guts were not colonized at 

cell densities below 104 CFU/mL (Figure 10, A and B). Therefore, I regularly exchanged 

the EM in my in vivo growth experiment to ensure that all cells detected in the gut at the 

end of my experiment were the result of growth alone. At the conclusion of this 
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experiment, I was able to calculate a relative fitness metric based on the per capita growth 

rates of each competitor (𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = ln( 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1𝑓𝑖𝑛𝑎𝑙 𝐶𝐹𝑈/𝑔𝑢𝑡𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝐹𝑈/𝑔𝑢𝑡)
ln( 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑓𝑖𝑛𝑎𝑙 𝐶𝐹𝑈/𝑔𝑢𝑡𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝐹𝑈/𝑔𝑢𝑡) ; Lenski et al., 1991). I 

found that neither the L3 isolate nor the MshL-T300P mutant outcompeted the ancestor 

in vivo, and surprisingly, it appears that the MshL-T300P isolate may even under perform 

the ancestor (Figure 10C).  
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Figure 10: Competitive fitness of L3 and MshL-T300P mutant in vivo. A) 
Colonization density over time. A larval BF larval flask was inoculated with 
competition mixture containing evolved population 2 (blue boxes) and MR-1wt (gray 
boxes). Five larval guts were then dissected and plated at each of the time points 
indicated. CFU/gut was quantified for each strain in each dissected gut, and each point 
shown represents the colonization density of a single gut. The dotted line indicates the 
limit of detection. B) Same experiment as in A) except that cell densities (CFU/mL) 
were measured in the EM outside the larvae over the same period. C) Competitive in 

vivo growth rates were calculated as described in the text and then used to determine a 
relative in vivo fitness metric (𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒). Each point represents the log-transformed 
mean 𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 for a single competition. The log10(𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) for each group of points 
was t-tested against the value zero, my expected value if there were no competitive 
advantage.   
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L3 and T300P outcompete the ancestor in LCM: 

Because my adaptive strains exhibited no ability to outcompete he ancestral MR-1 

strain in vivo, I next sought to interrogate how much of the L3 isolate’s fitness was based 

solely on its adaptation to the external environment (i.e. the medium that has been 

conditioned by larval zebrafish cohorts). Thus, I conducted competition assays in LCM, 

devoid of larval hosts, that was generated as described above in my biofilm assays. In 

these LCM competitions, I established the mutant:ancestor ratio of an inoculating 

competition mixture in triplicate by counting the CFUs from each competing strain on 

agar plates. I then incubated the competition for 72 hours, and again assessed the 

mutant:ancestor ratio by CFUs on plates at the end of the experiment. CIs were calculated 

by dividing the final ratio by the initial ratio as before. In these relatively simple assays, 

acquiring samples necessitates withdrawing fluid from the water column. Thus, the only 

way one strain could outcompete another is by increasing its frequency specifically in the 

planktonic portion of the environment (where the larvae would normally reside), rather 

than near the surface of the flasks in which these competitions are performed. I found that 

both the MshL-T300P mutant and the L3 isolate were able to outcompete the ancestral 

MR-1 strain, implying evolved and mutant these strains had greater representation in the 

water column (Figure 11A).  

I additionally monitored the cell densities over time for LCM competitions 

between the MshL-T300P mutant and the MR-1 ancestor in triplicate and found that both 

cell populations reached their peak densities in the water column at around 17 hours post 

inoculation (MshL-T300P: 2.2e5±5.9e4, MR-1wt: 5.5e4±1.3e3; mean ± SD; Figure 

11B), and that the MshL-T300P:ancestor ratio appeared to reached its highest point 
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around 35 hours post inoculation (log10(MshL-T300P/Ancestor) = 1.14±0.46; mean ± 

SD; Figure 11C). Interestingly, when the ancestral MR-1 strain was cultured in LCM by 

itself, it reached a peak density that was higher than the combined total reached in the 

MshL-T300P versus ancestor experiment, at roughly the same time point (Figure 11D). 

Although these growth curves were measured in triplicate on different days (meaning that 

the nutrient content in these experiments could have been slightly different), this suggests 

that the ancestor can grow at a similar rate to that of the MshL-T300P mutant in the 

absence of this more fit competitor. Because the ancestral population had attenuated 

growth under competitive conditions, together these results are consistent with the 

interpretation that the MshL-T300P mutant is better able to assimilate nutrients within the 

LCM compared to the ancestor under competitive conditions.  
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L3 and mshLT300P increase migration into the gut: 

Although the evolved and mutant strains are likely able to outcompete the 

ancestor based in part on their greater representation in the planktonic phase of my 

experimental setup, I wondered whether these strains could also bypass host filters to 

immigrate into the gut more efficiently on a per capita basis. To assess this, I first 

Figure 11: Competitive fitness of L3 and MshL-T300P mutant in larvae-

conditioned media. A) Competitive ability of L3 isolate and the MshL-T300P mutant 
against MR-1wt in LCM. Each point represents the competitive index (CI) measured 
for a single LCM competition flask. Ancestral competition against itself is shown as a 
control to represent the absence of a competitive advantage. Statistical groupings are 
indicated by letters above each box for a significance threshold of p<0.05. Letters in 
common between groups indicate the absence of a significant difference in each 
group’s mean. B) Population dynamics over time in LCM during a competition 
between MshL-T300P and MR-1wt. C) MshL-T300P:MR-1wt ratio over the course of 
the experiment shown in B). D) Population dynamics over time in LCM for MR-1wt 
growing by itself. For B), C), and D), error bars indicate the standard error of the 
mean for three biological replicates.  
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cultured competitor strains separately in LCM for 12-15 hours, and then created 

competition mixtures by combining the fluid from either the L3 isolate or MshL-T300P 

cultures with the fluid from an ancestral culture. The 12-15-hour culturing period was 

chosen to coincide with MR-1 cell densities that are near their peak abundance (Figure 

11, B and D), at which point MR-1 can readily colonize BF larvae (Figure 10, A and B). I 

then exposed BF larvae to this competition mixture and immediately sampled the media 

to quantify the initial ratio of mutant or evolved cells to ancestral cells. 40-60 minutes 

after larval exposure to MR-1 competition mixtures, 10 larval guts were dissected, 

homogenized, and plated to assess the ratio of evolved or mutant cells to ancestral cells 

that had colonized each gut. I then calculated an immigration index for each larva by 

dividing the colonizing ratio by the initial ratio and accounting for any in vivo growth 

differences between the two competing strains that may have biased my results (see 

methods for details). For both the L3 and MshL-T300P competitions against the ancestor, 

the mutant and evolved strains out competed the ancestor in terms of their per capita 

colonization of the larval gut (Figure 12). This result suggests that the MshL-T300P 

mutation can increase the rate at which MR-1 cells migrate from the aqueous external 

environment into the larval zebrafish gut.  
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L3 and mshLT300P mutant are more motile: 

Motility has been implicated in a number of host-microbe systems as being 

important for the maintenance of host-microbe symbioses (Raina et al., 2019; Stephens et 

al., 2015; Giraud et al., 2008; Van der Marel et al., 2008, Schlomann et al., 2018; 

Robinson et al., 2018), and recently, after employing a similar selection scheme to ours, 

Robinson and colleagues (2018) found that motility increased among evolving replicate 

lineages of a zebrafish-isolated Aeromonas species. In my system, enhanced motility 

could increase the efficacy of chemotaxis toward nearby hosts, thus increasing rate at 

which MR-1 cells encounter larval hosts, or it could aid in bypassing host filters (such as 

tight spaces or mucosal barriers), thereby increasing the rate of successful colonization 

when MR-1 cells come in contact with zebrafish larvae. Both proposed mechanisms 

would be consistent with the increased immigration efficiency I observed in my study. 

Figure 12: Relative per capita immigration of L3 and MshL-T300P mutant 

mutants compared to ancestor. Each box shows the per capita immigration 
efficiency of the indicated strain relative to the ancestor. Each point represents a single 
dissected and plated larval gut. The log10(immigration index) for each group of 
points was t-tested against a mu value of zero, my expected value if there were no 
competitive advantage, and Bonferroni corrected for multiple comparisons.   
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Additionally, despite some ability to engage with surfaces, my biofilm results suggest 

that the L3 isolate and the MshL-T300P mutant are less adherent to physical surfaces and 

that this is likely due to a reduction in msh pili on the surface of MR-1 cells. A classical 

motif in microbiology is the trade-off between adherence and motility (Ferenci, 2016; 

Simm et al. 2004, Van Ditmarsch et al., 2013). Those cells that tend to adhere more also 

tend to swim less and vice versa. Given that my observation that evolved and mutant 

MR-1 cells were less adherent, and that previous research has highlighted motility as an 

important factor in host-microbe symbioses, I hypothesized that the L3 isolate and the 

MshL-T300P mutant would also be more motile. To assess this, I inoculated flasks 

containing GF larvae with a competition mixture of either L3a versus the MR-1 ancestor 

or MshL-T300P versus the MR-1 ancestor. In both cases, each competitor was tagged 

such that they expressed distinguishing fluorescent proteins. I then visualized the 

swimming speeds of each strain, and the proportion of each strain’s population that was 

swimming, by combining an image-based cell tracking algorithm with fluorescence 

microscopy. I found that both the L3 isolate and the MshL-T300P mutant were more 

motile than ancestral strains used in this experiment. The adaptive strains were both faster 

swimmers (Figure 13, A and B), and they had a larger portion of their population that was 

motile (Figure 13C). These results suggest that motility is an important aspect of larval 

zebrafish colonization and highlight the role that the msh pilus plays in motility. 
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Discussion: 

Here, I present the first known evidence describing the evolutionary trajectory of 

a non-host-associated bacterium as it adapts to a novel vertebrate host. I observed that an 

isolate that had been serially exposed to a zebrafish gut evolved to increase its 

representation in the planktonic portion of my experimental system. Additionally, I found 

Figure 13: Motility characteristics of L3 and MshL-T300P mutant compared to 

ancestor. A) Mean swim speed of L3 and MshL-T300P relative to the ancestor. For 
each flask, represented by a point, the mean mutant swim speed was divided by the 
mean ancestral swim speed. B) Histograms of swim speeds for each strain are shown 
based on observations from three flasks for L3 (n = 2,740), four flasks for MshL-
T300P (n = 1,713), and seven flasks for the ancestor (n = 1,104). Mutant strains have 
distributions that skew farther to the right implying faster swimming. C) The fraction 
of L3 and MshL-T300P cells that are motile divided by the fraction of ancestral cells 
that are motile. Each point represents the relative motile fraction for a single flask. 
Each flask contains data for either L3 or MshL-T300P and an ancestral strain. For A) 
and C) groups were t-tested against a mu value of zero (my null expectation) and 
Bonferroni corrected for multiple comparisons (p<0.05: *, p<0.01: **). 
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that adaptive strains had a higher per capita immigration rate than their unpassaged 

ancestor, suggesting an improved ability to bypass host filters to colonize larval guts. 

Both of these traits coincided with a mutation in an msh pilus operon that decreased 

biofilm formation and increased motility. Together this suite of evolved traits allowed an 

evolved MR-1 strain to outcompete its unpassaged ancestor in terms of its ability to 

colonize BF larval zebrafish digestive tracts.  

As noted earlier, a classical paradigm in bacteriology is a trade-off between 

motility and biofilm formation (Ferenci, 2016). In keeping with this paradigm, the serial 

passage protocol employed in my experimental system selected on a mutation in the msh 

operon of MR-1 (MshL-T300P) which both decreased biofilm formation and increased 

motility. My characterizations of the effect of a loss of function mutation in this operon 

on MR-1 physiology and behavior are in line with what others have demonstrated for 

MR-1 (Saville et al., 2010; Bouhenni et al., 2010), and are consistent with Vibrio 

cholerae and Aeromonas hydrophila systems as well (Jones et al., 2015; Qin et al., 2014). 

Interestingly, the msh pilus has been implicated as an important modulator of host 

colonization in other host-microbe systems (List et al., 2018; Ariyakumar & Nishiguchi, 

2009; O’Boyle et al., 2013), and some evidence suggests that this pilus interacts with the 

mammalian immune system (Hsiao et al., 2006; Hou et al., 2012). While the precise 

mechanism by which MshL-T300P increases larval gut colonization in my study remains 

elusive, it is likely that this mutation aides in the ability of the evolved L3 isolate to 

increase its planktonic representation. Unlike msh-pilus-expressing cells, which may 

more readily stick to inanimate surfaces due to their role in biofilm formation, MshL-

T300P mutants form reduced biofilms and had increased motility which could result in 
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their exit back into the water column after an encounter with an inanimate surface. This 

proposed model agrees well with what others have observed in V. cholerae (Jones et al., 

2015). In turn, since larvae are also present in the water column, having a more 

planktonic existence should increase the encounter rate between larval zebrafish and their 

potential MshL-T300P mutant colonists. Such dynamics would be consistent with the CIs 

I observe in my system-level, as well as LCM fitness assessments.  

While outnumbering a potential competitor in the environment surrounding a host 

should provide a colonization advantage, it does not explain why I observed more 

efficient per capita immigration. In my migration experiment, each competitor was 

cultured separately in LCM prior to the start of the experiment. Because competition 

mixtures were then created by combining both cultures into a new container, all cells 

from both competitors should have been planktonic, rather than adherent to the side of 

the competition vessel which would have made them less accessible to larvae. Further, 

given the short timeframe I allowed for colonization in this experiment, it is unlikely the 

ancestor would have had time to settle out of the planktonic phase to any measurable 

degree. Therefore, the most parsimonious explanations for the differences I observed 

between each competing strain in the gut, was that the MshL-T300P-containing strains 

were either more efficient at bypassing host filters to colonize the gut, or they had 

evolved some method of increasing their relative host encounter rate. It is tempting to 

ascribe credit for an increased host encounter rate to the faster swimming speeds I 

observed for MshL-T300P strains, however it is not immediately clear how this would 

work. Anecdotally, when larval zebrafish are left undisturbed, they swim in short bursts, 

but spend a large portion of their time motionless. Specifically, during these times of 
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inactivity, because MR-1 cells are able to chemotax (Li et al., 2010), having a faster 

swimming speed could increase the efficacy of their chemotaxis, thus increasing their 

ability to encounter, and thus colonize, larval hosts (Raina et al., 2019). Alternatively, 

once a MR-1 cell encounters a host, faster swimming speeds could help MshL-T300P 

strains traverse narrow junctions within host tissues to reach the gut more quickly than 

their ancestral competitor (Raina et al., 2019). However, this mode of fitness 

enhancement, as a result of motility, may be less likely based on prior work that that 

showed no fitness advantage for a hypermotile Aeromonas species that was gavaged into 

the oral cavity of larval zebrafish (Robinson et al., 2018). Generating a mechanistic 

understanding of how increased motility might have influenced immigration efficiency in 

my system will require further research.  

Interestingly, from a phenotypic perspective, my findings bear a striking 

resemblance to previous work conducted by Robinson et al. (2018) which employed a 

similar selection scheme. They experimentally evolved a zebrafish commensal species of 

Aeromonas (ZOR0001) in the presence of BF larval zebrafish to explore the ecological 

parameters that are relevant to host colonization and uncover which bacterial traits 

strengthen its pre-established association with this vertebrate host. They too found that 

increased relative fitness was associated with more efficient immigration and augmented 

motility. While my results bolster the generality of their findings, I had several reasons to 

expect different outcomes. In the present study I asked how a free-living species, with no 

record of host association, might evolve a novel host association. Given that Robinson 

and colleagues used a species that had been isolated from larval zebrafish, I speculated 

that this bacterium had evolved traits that were optimized for life among this aquatic host. 
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In keeping with this reasoning, the fact that this host isolate made the largest adaptive 

gains in traits related to the process of colonization, rather than growth inside the gut, 

may reflect the percentage of time this strain had spent evolving inside or outside the gut. 

If most of this host isolate’s evolutionary history had taken place inside the gut, it may be 

well suited for life inside a gut, leaving the greatest room for improvement in traits 

related to the external portion of its host-associated life-cycle. In this way starting with a 

host isolate could have biased which selective pressures exert the strongest effect on 

Aeromonas adaptation.  

Additionally, in other study systems aimed at assessing the role that biofilm 

formation plays in promoting the diversification of evolving lineages, two groups of 

researchers employed identical experimental evolution protocols on separate bacterial 

species. The results from these studies showed stark differences in the patterns of 

diversification each group observed in Burkholderia cenocepacia compared to 

Pseudomonas aeruginosa (Traverse et al., 2013; Flynn et al., 2016). Notably, the 

selection protocol used in these studies shares many similarities with the one featured 

here, and by Robinson and colleagues (2018). To be propagated in their serial passage 

protocol, cultured bacterial populations had to colonize plastic beads and grow in 

biofilms on the surface of those beads. Colonized beads were then transferred to new 

culture tubes containing sterile beads, and propagated strains would have to colonize 

these new beads to make it to the next passage. In our case, rather than beads, we used 

BF larval zebrafish. Given the differences in diversification patterns observed in the 

biofilm studies, and the different evolutionary histories of ZOR0001 and MR-1 used in 

the zebrafish studies featured here and in Robinson et al. 2018, I was surprised at the 
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remarkable levels of phenotypic convergence exhibited by ZOR0001 and MR-1. The 

vertebrate gut presents a diverse set of niches that provide fodder for adaptation 

(Donaldson et al., 2016). Since MR-1 had no known relationship with hosts, but had 

initially been isolated from an aquatic environment (Myers & Nealson, 1988; 

Venkateswaran et al., 1999), I expected that mutations with the largest adaptive value 

would have pertained to traits involved with in vivo fitness. That Robinson et al. (2018) 

and I observed convergent phenotypes in my studies, indicates the importance of 

transmission traits, and motility in particular, in adapting to and maintaining associations 

with a metacommunity of aquatic hosts. These results are consistent with previous work 

that has shown motility to be an important colonization factor of both zebrafish and other 

aquatic hosts (Raina et al., 2019; Stephens et al., 2015; Brennan et al., 2013; Van der 

Marel 2008).  

Thinking beyond aquatic hosts, there are several aspects of my findings that may 

be generalizable. First my msh pilus operon data add to the growing body of evidence 

that implicates this operon in biofilm formation, motility, and indeed host association. 

Second, as indicated by the LCM competition data, I have provided evidence that novel 

host symbionts can use the environment that hosts construct as an adaptive stepping stone 

to become host-associated. Thus, as future researchers examine which bacterial species 

might evolve the potential to impact host health, it will be important for them to consider 

how host habitats select for traits that could encourage host association. Finally, it is clear 

from my work and others’, that evolving traits that increase transmission into and 

between groups hosts is vital to the initiation and maintenance of host-microbe 

symbioses. To disentangle the effect that selection by groups of cohoused hosts has on an 
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evolving bacterial lineage, it would be interesting to compare adaptive strategies pursued 

by lineages adapting to solitary hosts versus those adapting to groups of cohoused hosts. 

Such an experiment might have a higher likelihood of selecting traits that increase in vivo 

fitness.  
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BRIDGE: 

 Many evolutionary biologists have wondered, for any given environment, how 

many adaptive pathways are available to an evolving organism. Researchers have 

attempted to understand this by evolving replicate populations of highly reproductive 

organisms under controlled circumstances, and such approaches have illustrated that even 

when genetic variability is low in a founding population, multiple distinct genotypes can 

give rise to elevated fitness (Kvitek & Sherlock, 2011; Khan et al., 2011).  In some cases, 

these genotypes are associated with convergent phenotypes (Tenaillon et al., 2012; Fong 

et al., 2005), implying the existence of a limited number of adaptive trajectories, while in 

other cases divergent phenotypes have been selected (Rainey & Travisano, 1998). In 

Chapter II I found that in my replicate evolving lines of MR-1, selection commonly 

favored mutations in a msh pilus operon, however these were not the only mutations that 

accumulated during my serial passage experiment. Given the extent of niche space 

available in my experimental system, and in host-based environments in general, I 

hypothesized that there could be multiple adaptive pathways available to bacterial 

lineages once they encounter a host. To address this question, in Chapter III I compare 

the phenotypes of two evolved isolates from different replicate populations that have 

unique sets of mutations. Specifically, I focus on the same isolate I examined in Chapter 

II, and I contrast its behavior and fitness with an evolved isolate from a different 

population containing an adaptive mutation in a gene with potential diguanylate cyclase 

and phosphodiesterase activities.  
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CHAPTER III: 

SELECTION ON TWO SEPARATE GENETIC PATHWAYS INCREASES 
MOTILITY AND GUT COLONIZATION IN LARVAL ZEBRAFISH 

Introduction: 

Given their long history on this planet (Hug et al., 2016), and their propensity for 

rapid adaptation (Van den Bergh, et al., 2018), bacterial lineages have radiated into 

practically every imaginable niche (Alivisatos et al., 2015; Thompson et al., 2017). 

Because animals contain a wide breadth of niche space and represent a significant and 

reliable source of nutrients, bacteria have routinely formed novel symbioses with animal 

hosts (McFall-Ngai et al., 2013). However, in order to avail themselves of host derived 

resources, bacterial lineages must survive a barrage of diverse selective forces (Bakke et 

al., 2015; Ley et al., 2008; Donaldson et al., 2016; Sass et al., 2010; McLoughlin et al., 

2016; Quinn et al., 2018; Friedman et al., 2018; Ottman et al., 2017; Segal, 2005). 

Consequently, due to the enormity of phenotypic variation that exists across all bacteria, 

and the fact that organismal evolution is often highly constrained by trade-offs in 

adaptive strategies, most bacteria are not well suited for life in association with an animal 

host. For the comparatively few species that are capable of colonizing animal hosts, it is 

unknown how bacteria evolve suites of traits that enable this ability, or whether there are 

a limited number of evolutionary trajectories that are likely to result in host association. 

As I discussed in Chapter II, experimental-evolution-based approaches have been 

fruitful in elucidating how bacterial populations evolve and adapt under a number of 

different contexts (Lenski, 2017; Van den Bergh et al., 2018). Because of evolutionary 

dynamics such as clonal interference, individual bacterial lineages within an evolving 

population must rely heavily on the emergence of novel mutations to access new 
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beneficial traits, and then lineages containing such traits compete for resources (Barrick 

& Lenski, 2013). If resource requirements between two evolving lineages overlap, the 

lineage with greater fitness will tend to increase its frequency in the population at the 

expense of the other (Gerrish & Lenski, 1998). This can result in reduced diversity if a 

lineage containing a beneficial trait sweeps to fixation (Cira et al. 2018). Alternatively, if 

an environment contains multiple types of resources, adaptive mutations can allow 

evolving lineages to exploit each resource separately (Barrett & Bell, 2006, Herron & 

Doebeli, 2013). If such mutations impart a similar adaptive value to the lineages 

containing them, or adaptation to one resource precludes the exploitation of the other, 

lineages can coexist (Spencer et al., 2008; Frenkel et al., 2015). Additionally, 

environmental structure can either help to limit competition between evolving lineages by 

restricting physical interaction between lineages, or by partitioning resources such that 

diverging lineages can avoid niche overlap (Rainey & Travisano, 1998; Bailey & Kassen, 

2012). Even in relatively constant environments with reduced niche space, new niches 

can arise through mechanisms such as cross-feeding, whereby one strain gains the ability 

to metabolize the byproducts of another (Turner et al., 1996). 

In a model vertebrate system such as ours, the existence of a diverse set of 

selective pressures would imply a variety of ways to adapt to the vertebrate gut 

environment. Despite this, experimental investigations in other vertebrate systems have 

found high degrees of evolutionary parallelism when examining the evolution of bacteria 

adapted to the vertebrate gut in that, within each study, the same genomic region or 

phenotype was targeted by selection (Barroso-Batista et al., 2014; Giraud et al., 2008; 

Lescat et al., 2017; Robinson et al., 2018; Zhao et al., 2018). However, the bacterial 
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species examined in each of these studies encompass lineages that have pre-established 

evolutionary histories with their respective vertebrate hosts. Thus, the evolutionary 

patterns observed in these studies may be the result of fine-tuning genomes which are 

already optimized for life in a vertebrate gut. Further, many evolutionary events can 

occur as a free-living bacterium transitions to life as a host associate, and during these 

transitions, intermediate forms can be lost, thereby precluding my understanding of how 

the transition occurred.  

I aimed to capture such a transition in its early stages by serially exposing 

replicate populations of a bacterial species that has no prior known history with an animal 

host to the digestive tract of a model vertebrate. On one hand, given the ample breadth of 

niche space available to an evolving population of Shewanella oneidensis (MR-1) cells 

adapting to groups of bacteria free (BF) larval zebrafish, both within the gut and 

externally in the aqueous environment, I hypothesized that naive MR-1 populations 

would pursue divergent adaptive trajectories resulting in unique phenotypes that would 

allow for the exploitation of distinct niches. Alternatively, if the strongest selective 

pressures in my experiment encourage adaptation to a single facet of the whole system, I 

expected that clones which specialize in the exploitation of that single niche would 

exhibit high relative fitness, leading to phenotypic convergence in competing lineages. 

To distinguish between these hypotheses, I examined the phenotypes of two classes of 

adaptive mutations that accumulated during my serial passage scheme. Despite the 

diversity of niches available in my system, I found elevated levels of phenotypic overlap 

between divergent genotypes. Both a mutation in a mannose sensitive hemagglutinin 

(msh) pilus gene and a mutation in a putative diguanylate cyclase (DGC) domain-
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containing gene (locus tag: SO1551) exhibited elevated levels of motility. This 

augmented motility was associated with a more planktonic existence and increased levels 

of immigration into larval guts.   

 

Methods: 

Zebrafish husbandry: 

To ensure animal specimens were treated ethically in all experiments involving zebrafish, 

I adhered to the standard protocols and procedures approved by the University of Oregon 

Institutional Animal Care and Use Committee (IACUC protocol: 15-98). BF derivations 

were carried out as described in Melancon et al., 2017. Details about larval gut 

dissections can be found the Serial passage section.  

 

Bacterial strains: 

My ancestral reference S. oneidensis (MR-1) and Shew-Z12 strains were obtained from 

Karen Guillemin’s laboratory at the University of Oregon. All modifications to MR-1, 

including Tn7-mediated gfp and dTomato insertions as well as allelic exchange 

applications, were carried out as described in Wiles et al., 2018. Whole gene deletion 

allelic constructs were created via a splice by overlap extension protocol (Wiles et al., 

2018), whereas evolved mutation allelic constructs were created via amplification of 

mutated segments of evolved genomes. All S. oneidensis strains were cultured in TSB at 

30 °C under shaking conditions unless otherwise specified.  

 



65 
 

Serial passage: 

My experimental evolution serial passage scheme was similar to the experimental design 

of Robinson et al. 2018 and was described in detail in my Chapter II methods section. 

Briefly, six replicate ancestral populations were then generated by combining subcultures 

of MR-1gfp (tagged using a Tn7-mediated insertion of a green fluorescent protein) and 

MR-1dT (tagged using a Tn7-mediated insertion of a dTomato fluorescent protein) at a 

1:1 ratio. Each of these replicate ancestral populations were used to inoculate larval flasks 

containing ~15 mL of EM and ~15 BF larval zebrafish at 4 days post fertilization (dpf). 

Larvae were then incubated with MR-1 populations at 28 ˚C for 72 hours. At 7 dpf, 10 

larvae were euthanized with tricane, mounted on a glass, and their digestive tracts were 

dissected out. Following dissections, all 10 digestive tracts culled from each flask were 

immediately homogenized using a bullet blender tissue homogenizer (Next Advance, 

Averill Park, NY, US) for 60 seconds at power 4. To preserve my ability to revive 

replicate populations after each passage, I created freezer stocks (stored at -80) by using a 

pipette to mix 200 μL from each homogenized tube with 200 μL of 50 % glycerol (25 % 

glycerol final concentration). The remaining contents of each homogenized tube was then 

stored at 4 ˚C for 0-14 days, at which point 250 μL were sampled to inoculate a 

subsequent set of BF larval flasks (~15 larvae in ~15 mL EM). This cycle was repeated 

for 20 passages. All six replicate evolving populations were maintained separately 

throughout my experiment.  
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Whole experimental system competitions: 

5 mL overnight TSB cultures of competing strains were diluted 1:100 in TSB and 

allowed to grow out to late log stage (4-5 hours). 500 μL of each competitor was then 

mixed in a single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. 

Competition mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL sterile 

EM. Resuspended competition mixtures were diluted 1:100, and 7.5 μL of these dilutions 

were used to inoculate BF larval flasks containing ~15 mL of EM and ~15 larvae at 4 

dpf. Immediately following inoculation, triplicate 100 μL samples from each competition 

flask were dilution plated to establish the inoculation ratio of competitor1:competitor2 

(CFU/mL). After inoculation, I incubated larval flasks at 28 ˚C for 72 hours. At 7 dpf, 

multiple larvae per flask were euthanized with tricane, and their guts were dissected and 

individually placed in 1.7 mL tubes containing 500 μL of sterile EM and ~100 μL 0.5 

mm zirconium oxide beads (Next Advance, Averill Park, NY, US). The contents the 

larval guts in each these tubes were then immediately homogenized using a bullet blender 

tissue homogenizer (Next Advance, Averill Park, NY, US) for 60 seconds at power 4. 

Homogenized tubes were then dilution plated to determine the CFU/gut for each 

competitor. A competitive index (CI) was calculated for each dissected gut by dividing 

the ratio of competitor1:competitor2 found in each gut by the mean inoculation ratio 

determined from the triplicate measurements for each corresponding flask, CI = ( 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑔𝑢𝑡𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚).  
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Biofilm assay: 

Triplicate biological replicate overnight TSB cultures of strains of interest were diluted 

1:100 in TSB and allowed to grow out to mid-late log stage (3-4 hours). Optical densities 

were measured at 600 nm for each overnight culture. 1 mL of subcultured strains were 

pelleted (7000 rcf for 5 min), and the pellets were resuspended with a volume of sterile 

EM that would correspond with a TSB optical density of 1.0 if read at 600 nm. 150 μL of 

each resuspension were added to four wells of a round-bottom 96 well polystyrene plate 

(Greiner Bio-One, catalogue #: 650185) per biological replicate. The plate was incubated 

at 30 ˚C for 24 hours, and the volume of each well was removed with a multichannel 

pipette. The wells were rinsed twice with 200 μL of sterile EM, and each well was 

stained with 180 μL 0.1 % crystal violet (CV). The plate was incubated at room 

temperature for 10 min, at which point the crystal violet was removed with a 

multichannel pipette, and the wells were again rinsed twice with 200 μL of sterile EM. 

The CV was solubilized with 100 % dimethyl sulfoxide (DMSO) for 15 min with 

agitation (~180 rpm on a rotating minishaker), and 100 μL of the solubilized CV was 

added to 100 μL of 100 % DMSO in a flat-bottom 96 well polystyrene plate (Corning 

Incorporated, reference #: 3595). Optical densities were then measured for each well at 

570 nm.  

 

Motility assays: 

5 mL overnight TSB cultures of strains of interest were diluted 1:100 in TSB and allowed 

to grow out to late log stage (4-5 hours). Strains were then prepped for inoculation as 

described in my whole experimental system competitions or my colonization level 
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assessments above (pellet, resuspend in sterile EM, and dilute) depending on whether I 

was assaying motility under competitive or monoassociation conditions respectively. 7.5 

μL of each strain prepared for inoculation were used to inoculate BF larval flasks 

containing ~15 mL of EM and ~15 larvae at 4 dpf. Inoculated larval flasks were 

incubated at 28 ˚C for 13-17 hours, at which point bacteria in each flask were imaged on 

an inverted microscope (Nikon Eclipse Ti-e) by focusing on the bottom interior surface 

of the flask. Ten, 30 second movies were then captured at a rate of > 15 frames per 

second. When movies were taken of competing populations, each population was 

fluorescently tagged with either gfp or dTomato, and movies were taken separately to 

capture the motility dynamics of each tagged population independently within the same 

flask. When I examined flasks containing only a single population (monoassociation), 

movies were taken in bright field. To calculate motility characteristics such as the speed 

of motile cells and the proportion of a population that was motile, I relied on a particle 

tracking algorithm (Parthasarathy, 2012; source code: 

http://pages.uoregon.edu/raghu/particle_tracking.html). Only cells deemed to be moving 

faster than 2 um/second were considered motile.  

 

Comparative genomics: 

I submitted my MR-1 and Shew-Z12 strains to the Washington State University 

Molecular Biology and Genomics Core (WSUGC) for long read sequencing. Genome 

assembly for MR-1 was conducted by WSUGC, whereas genome assembly for Shew-

Z12 was conducted in house with Canu v. 1.7.1 (Koren et al., 2017). To generate 

http://pages.uoregon.edu/raghu/particle_tracking.html
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annotation files for these genomes, I relied on Prokka v1.12 (Seemann, 2014), and RAST 

v. 2.0 (Aziz et al., 2008).  

Genome comparisons between S. oneidensis and non-S. oneidensis species: 

To assess the diguanylate cyclase and phosphodiesterase content in S. oneidensis and 

Shew-Z12, I searched the publicly available genomes of S. oneidensis and Shew-Z12 

curated by Integrated Microbial Genomes and Microbiomes (IMG/M, 

https://img.jgi.doe.gov/; Chen et al., 2018) for all genes containing protein family (pfam) 

terms that corresponded with GGDEF and EAL domains (pfam00990 and pfam00563 

respectively; See Appendix Table 3 for metadata).  

Specific gene and operon comparisons between S. oneidensis and Shew-Z12: 

Comparisons between MR-1_SO1551 and Shew-Z12_ L976_03566 were visualized by 

creating Clustal Omega-based multiple sequence alignment files that were imported into 

Jalview2 (Waterhouse et al., 2009). To highlight regions of divergence between genes I 

color-coded my comparisons using the color by annotation feature of Jalview2 (Figure 5; 

Figure 17). This feature color-codes amino acid comparisons per site based on 

biochemical conservation.  

Evolved mutation calling: 

I determined evolved mutations as described in the “Evolved mutation calling” portion of 

Chapter II’s “Comparative genomics” methods section. Briefly, I sequenced the genomes 

of 

 4 isolates from evolved replicate populations 2, 3, and 5, and ancestral strains MR-1gfp 

and MR-1dT. I then compared these genomes to my wild type ancestral MR-1 reference 

strain using breseq 0.31.0 in consensus mode, and looked for single nucleotide 

https://img.jgi.doe.gov/
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polymorphisms (SNPs) and indels that were present in each evolved isolate, but absent in 

MR-1gfp and MR-1dT isolates. Gene annotations for the mutations listed in Table 1 were 

determined by Prokka v1.12 (Seeman, 2014). The mshOP gene annotations were 

determined by RAST v 2.0. 

 

Colonization level assessments: 

5 mL overnight TSB cultures of strains of interest were diluted 1:100 in TSB and allowed 

to grow out to late log stage (4-5 hours). 1 mL of subcultured strains were then pelleted 

(7000 rcf for 5 min), and the pellets were resuspended in 1 mL sterile EM. This 

resuspension was then diluted 1:100, and 7.5 μL of this dilution was used to inoculate BF 

larval flasks containing ~15 mL of EM and ~15 larvae at 4 dpf. After inoculation, I 

incubated larval flasks at 28 ˚C for 72 hours. At 7 dpf, multiple larvae per flask were 

euthanized with tricane, and their guts were dissected and individually placed in 1.7 mL 

tubes containing 500 μL of sterile EM and ~100 μL 0.5 mm zirconium oxide beads (Next 

Advance, Averill Park, NY, US). The contents the larval guts in each these tubes were 

then immediately homogenized using a bullet blender tissue homogenizer (Next 

Advance, Averill Park, NY, US) for 60 seconds at power 4. Homogenized tubes were 

dilution plated to determine the CFU/gut.  

 

Immigration and in vivo growth assays:  

Separate 5 mL overnight TSB cultures of competitor strains of interest were diluted 1:100 

in TSB and allowed to grow out to late log stage (4-5 hours). 1 mL of subcultured strains 

were then pelleted (7000 rcf for 5 min), and the pellets were resuspended in 1 mL sterile 
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EM. Resuspensions for each competitor were then diluted 1:100, and 7.5 μL of each 

dilution was used to inoculate separate ~15 mL LCM flasks (created as described in LCM 

competitions assays above). Each competitor was incubated in its own LCM flask at 28 

˚C for 12-15 hours at which point two flasks (one containing each competitor) were 

combined into a single polystyrene petri dish such that the petri dish contained a ~30 mL 

competition mixture. 30-35 4 dpf larvae were then added to each competition mixture 

dish, and 100 μL samples were immediately taken in triplicate from each dish. These 

samples were dilution plated to establish an inoculating competition mixture 

(competitor1:competitor2). After a 40-60 min incubation period at 28 ˚C, the LCM was 

removed and replaced with 100 mL sterile EM for a total of three rinses. These media 

exchanges were conducted to reduce the density of each S. oneidensis competitor in the 

EM so that both populations were below a threshold where colonization would readily 

occur (colonization threshold > 103 CFU/mL; Figure 8A & 8B). 10 larval guts were then 

dissected as described above in my whole experimental system competitions. By dilution 

plating the contents of each dissected gut, I established a competition ratio for each gut 

and determined a mean competition ratio for a typical larval gut 

(competitor1:competitor2). Following gut dissections, EM exchanges were repeated 

every two hours to ensure that bacterial loads in the EM remained below 103 CFU/mL 

(monitored by plating a single 100 μL sample just prior to the beginning of each set of 

EM exchanges). The larvae that remained in the competition petri dishes after the first set 

gut dissections were completed, were incubated at 28 ˚C between sterile EM exchanges. 

8.5-10.5 hours after initial gut dissections took place, 10 additional larval guts were 

dissected, and their contents dilution plated to establish a final mean competition ratio for 
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a typical larval gut (Competitor1:Competitor2). Since the CFU/mL in the EM was 

maintained at a low level between bouts of dissection, any increase in the mean CFU/gut 

I observed between dissection bouts should have been affected primarily by the growth of 

S. oneidensis populations in vivo. Using the initial mean CFU/gut and the final mean 

CFU/gut that I observed for each competing strain, I then calculated a per capita growth 

rate for each strain per competition (𝑟 = ln ( 𝐶𝐹𝑈/𝑔𝑢𝑡𝑓𝑖𝑛𝑎𝑙𝐶𝐹𝑈/𝑔𝑢𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙)). I then used my per capita 

growth rate to calculate an immigration index and relative in vivo fitness metric 

(immigration index: 
𝑔𝑢𝑡 𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2 ∗ 𝑒(𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2 − 𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1)∗𝑡; 

relative in vivo fitness: 
𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1𝑟𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2). In this way, my in vivo relative fitness compares the 

relative per capita growth rates I observed in vivo for each competitor, and I are able to 

use these per capita growth rates to control for any growth that may have occurred in vivo 

during my immigration assay.  

 

Competition model: 

To model two bacterial strains whose populations stochastically collapse while 

competing against each other in a gut, I employed a discrete Lotka-Volterra competition 

model that assumed each species competed for resources equally with each other (i.e. the 

competition coefficients for each species were set to a value of 1). I used my 

experimental data to approximate carrying capacity (~50,000 CFU/gut), growth rates (r1 = 

0.21, r2 = 0.2), and founding populations (~200 CFU/gut per strain). I then initiated a 

stochastic variable that imparted a 10 % chance of population collapse at each time point, 

and population collapse proportions were determined by an additional stochastic variable. 
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Thus, for any given population collapse, the proportion of the population that remained 

would be between 0 % and 100 %, exclusive. I also assumed that when populations 

collapsed, both competitors would lose the same proportions of their populations.  

 

Larvae-conditioned media (LCM) competitions:  

Overnight TSB cultures of competing strains were diluted 1:100 in TSB and allowed to 

grow out to late log stage (4-5 hours). 500 μL of each competitor was then mixed in a 

single 1.7 mL tube so that competitors were at an approximate 1:1 ratio. Competition 

mixtures were pelleted (7000 rcf for 5 min) and resuspended in 1 mL sterile EM. 

Resuspended competition mixtures were diluted 1:100, and 7.5 μL of these dilutions were 

used to inoculate BF larval flasks where larvae had been removed at 4 dpf. Each of these 

BF larval flasks had contained ~15 mL of EM and ~15 larvae that had been conditioning 

their EM over the course of four days. Multiple BF larval flasks had been combined into 

a single sterile vessel, and the larvae were removed using a 1.5 mL bulb pipette, leaving 

behind only the LCM. ~15 mL of LCM was then aliquoted into fresh sterile polystyrene 

culture flasks. These flasks were inoculated as stated above and triplicate 100 μL LCM 

samples were taken per competition flask and dilution plated on TSA to establish an 

initial competition ratio (competitor1: competitor2). Each competition flask was 

incubated at 28 ˚C for three days (to mimic a single passage during my serial passage 

procedure) at which point 100 μL samples were again taken in triplicate and dilution 

plated to establish a final competition ratio (competitor1:competitor2). Competitive 

indices were calculated by dividing the final CFU ratio of competitor1:competitor2 by the 

inoculation ratio, CI = ( 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑓𝑖𝑛𝑎𝑙𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟1:𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟2𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚). 
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Results: 

Several types of evolved mutations improve fitness: 

 In Chapter II, I described how after serially passaging replicate populations of the 

non-host-associated bacterium MR-1 through the digestive tracts of groups of BF larval 

zebrafish, I observed high degrees of evolutionary parallelism associated with selection 

on an msh pilus operon (mshOP). Specifically, by comparing the genome sequences of 

evolved isolates to the sequences of their unpassaged ancestor, I found that 20 out of 24 

sequenced isolates from six replicate evolved populations (four isolates per population) 

contained mutations in the mshOP. However, given that four isolates contained no 

mutations in the mshOP, I wondered whether there were multiple adaptive pathways MR-

1 populations could pursue to achieve higher relative fitness in larval zebrafish guts.  

Three out of four of these isolates stem from evolved line 5 (L5), whereas the 

remaining isolate was found in line 2 (L2; Table 1). Interestingly, both L2 and L5 

contained isolates that had mutations in the mshOP, however only one of four isolates in 

L2 were devoid of mshOP mutations while three of four isolates in L5 were devoid of 

mshOP mutations. Based on clonal interference dynamics, I would expect that the 

adaptive value of a given mutation should be reflected by its representation in an 

evolving population. Thus, my sequencing results imply that the non-mshOP mutations 

found in L2 were of inferior adaptive value to mshOP mutations (due to their lower 

representation), while the non-mshOP mutations found in L5 were of superior adaptive 

value (due to their higher representation). To test this, I compared the performance of 

non-mshOP-mutation-containing isolates from L5 (isolate L5b) and L2 (isolate L2a) to 

that of my best performing mshOP-mutation-containing isolate from line 3 (L3a) in terms 
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of their competitive ability against their unpassaged ancestor (Note: L3a is the same 

isolate I examined in Chapter II). Consistent with my expectations, I found that L5b had 

the highest competitive fitness (Figure 14; see methods for a description of how 

competitive indices were calculated). While L3a did not statistically outperform L2a, this 

comparison yielded a p value of 0.087, and the mean of the log-transformed competitive 

indices for L3a was ~79% higher than that of L2a (l2a = 0.63 ± 0.4, L3a = 1.13 ± 0.5; 

mean(log10(CI) ± SD(log10(CI))), suggesting that L3a may have slightly higher 

competitive fitness than L2a. Given that L2a seemed to have the lowest adaptive value of 

these three isolates, I chose not to examine L2a further, and to continue comparing L3a 

and L5b for subsequent analyses instead.  

 

 

 

Figure 14: Competitive ability of MR-1 isolates from replicate evolved 

populations against MR-1wt. Each point represents the CI measured for a single 
larval gut. Ancestral competition against itself is shown as a control to represent the 
absence of a competitive advantage. Statistical groupings are indicated by letters 
above each box for a significance threshold of p<0.05. Letters in common between 
groups indicate the absence of a significant difference in each group’s mean.  
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L5b’s fitness stems from a mutation in a gene containing diguanylate cyclase and 
phosphodiesterase domains: 

 Given that L5b did not contain any mshOP mutations (Table 1), I wondered 

which genetic changes might be responsible for its increased fitness. Because L5b had no 

mutations in common with isolates from any other evolved population (Table 1), I was 

unable to determine which of the four mutations found in L5b might improve its fitness 

strictly by relying on gene annotations alone. I therefore used allelic exchange to recreate 

each L5b mutation individually in the ancestral genomic background and tested their 

fitness effects via competition against the ancestor. The only mutation that individually 

had any effect on competitive fitness against the ancestor was a mutation that occurred in 

a gene containing putative phosphodiesterase (PDE) and diguanylate cyclase (DGC) 

domains (locus tag: SO1551; Figure 15). This mutation consisted of a single base pair 

deletion about a quarter of the way through SO1551, and thus it is likely a loss of 

function mutation. Although, the SO1551 mutation seemed to improve fitness to a lesser 

degree than that achieved by L5b, competing L5b against the SO1551 mutant 

dramatically reduced L5b’s competitive index (Figure 15, right-most competition). This 

result suggests that the SO1551 mutation is capable of explaining the majority of L5b’s 

improved fitness compared to the ancestor.  

 

 

 

 



77 
 

 

 

L5b forms normal biofilms: 

Previously, I had determined that the causative mutation underlying L3a’s fitness 

improvement was a loss of function mutation in the mshL gene of the mshOP (MshL-

T300P). After obtaining definitive evidence that L3a and L5b had adapted to groups of 

larval zebrafish via different genetic pathways, I sought to understand whether each 

genetic pathway was associated with unique sets of phenotypes. Numerous studies have 

implicated cyclic dimeric guanosine monophosphate (c-di-GMP) in a multitude of 

Figure 15: Competitive ability of L5b and its associated mutants against the MR-

1 ancestor. Except for SO1551, which putatively contained both PDE and DGC 
domains, Prokka-based annotations were used to distinguish specific mutants along 
the X-axis. Each point represents the competitive index (CI) measured for a single 
larval gut. Ancestral competition against itself is shown as a control to represent the 
absence of a competitive advantage. Statistical groupings are indicated by letters 
above each box for a significance threshold of p<0.05. Letters in common between 
groups indicate the absence of a significant difference in each group’s mean. Statistics 
for the L5b vs SO1551 mutant competition (right-most box) were conducted 
separately since this competition had unique competitors (p<0.001: ***).  
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cellular processes in bacteria, including biofilm formation (Römling et al., 2013; Jenal & 

Malone, 2006; Jones et al., 2015; Chao et al., 2013). This secondary messenger molecule 

is synthesized by DGCs and degraded by phosphodiesterases (PDEs) in a cyclic fashion 

(Simm et al., 2004), and in particular, the over expression of DGCs or reduced expression 

of PDEs has been shown to cause an increase in biofilm formation (Chao et al., 2013; 

Jones et al., 2015; Antoniani et al., 2010; Kirillina et al., 2004; Thormann et al., 2006). 

Interestingly, the one base pair deletion I observed in SO1551, happened downstream of 

an EAL motif, which is normally involved in PDE activity (Schmidt et al., 2005), and 

upstream of a canonical GG(D/E)EF motif (GGEEF in SO1551), which is normally 

involved in DGC activity (Merritt et al., 2010). This suggests that this deletion in SO1551 

could disrupt DGC activity while leaving PDE activity intact. In keeping with the 

literature on DGCs and PDEs, if the mutation I observed in SO1551 was indeed a loss of 

function mutation, it is possible this mutation could cause a reduction in MR-1’ biofilm 

forming capacity.  Further, since my serial passage scheme produced adaptive isolates 

that had mutations in putative PDE/DGC-domain-containing genes (L2a and L5b) as well 

as the mshOP (L3a), and my prior work (Chapter II) documented a loss of function 

mutation in the mshOP as having a negative impact on biofilm formation, I hypothesized 

that the SO1551 mutation would result in L5b forming reduced biofilms compared to the 

ancestral MR-1 strain. I therefore compared L5b’s biofilm phenotype to that of L3a and 

the wild type (WT) ancestor in larvae-conditioned medium (LCM). LCM was created by 

deriving zebrafish embryos BF, allowing them to develop into larvae over 96 hours (the 

typical time frame when I inoculate larvae during competition assays), and then removing 

the larvae from their embryonic medium (EM), leaving behind LCM. I found L5b’s 
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biofilm phenotype was comparable to that of the ancestor (Figure 16). Since msh pilus 

expression has been associated with the formation of biofilms (Saville et al., 2010; Jones 

et al., 2015), these results suggest that the SO1551 may not alter the expression of the 

msh pilus.  

I also included the Shewanella zebrafish isolate (Shew-Z12) in this assay to see if 

either L3a or L5b shared a common phenotype with this closely-related Shewanella 

species. Surprisingly, the Shew-Z12 isolate had a phenotype that was statistically 

indistinguishable from the wt ancestor (Figure 16). Moreover, given that L3a, L5b, and 

Z12 are all capable of outcompeting the ancestor in terms of their ability to colonize BF 

larval zebrafish guts, and yet these strains display a range of biofilm phenotypes under 

the conditions tested, it appears that my biofilm assay is not capable of predicting fitness. 

One reason for this could be, that my biofilm assay involves suspending cell cultures in 

LCM at a density that far exceeds their carrying capacity in this medium. Thus, my 

results may not be representative of how these strains behave during a normal fitness 

competition.  
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L3a and L5b show similar enhancements in motility, consistent with the Behavior of 

Shew-Z12: 

Both DGCs and PDEs have also been shown to modulate bacterial motility (Wei 

et al., 2016; Liu eta l., 2010), and several prior studies have highlighted traits related to 

bacterial transmission and dispersal, including motility, as having a role in maintaining 

host associations (Robinson et al., 2018; Raina et al., 2019; Stephens et al., 2015; Van der 

Marel et al., 2008). Additionally, a commonly observed trade-off in microbiology is that 

it is difficult for bacteria to be simultaneously motile and prone to biofilm formation 

(Simm et al. 2004, Van Ditmarsch et al., 2013). Consistent with these observations, in 

Chapter II I observed that the evolved L3a isolate was more motile than the ancestor, 

under competitive conditions, and less able to form biofilms. Since L5b showed a biofilm 

forming capacity that was equivalent to the WT ancestor, I expected that L5b might have 

Figure 16: Crystal violet biofilm assay comparing L3a, L5b, and Shewanella sp. 

ZOR0012 to ancestor. Optical density (570 nm) corresponds to crystal violet 
intensity. Higher optical density readings indicate more robust biofilms. Statistical 
groupings are indicated by letters above each box for a significance threshold of 
p<0.05. Letters in common between groups indicate the absence of a significant 
difference in each group’s mean. Only L3a (containing MshL-T300P) shows a 
reduction in biofilm formation compared to the wt ancestor.   
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reduced relative motility characteristics compared to L3a. To test this hypothesis, I 

determined the swimming speeds and motile proportion of L5b’s population in a flask 

containing larval zebrafish. These assays were conducted in competition with the 

ancestor so that both L5b and the ancestor could be assessed under identical conditions. 

Each competition flask was placed under an inverted microscope, and I then generated 

movies of MR-1 cells swimming near the bottom of a larval flask. A tracking algorithm 

was used to calculate relevant metrics (Parthasarathy, 2012). Surprisingly, given L5b’s 

biofilm-forming capacity, I observed that both L3a and L5b appeared to have faster swim 

speeds and larger fractions of their populations that were motile compared to the 

ancestral strain (Figure 17, A and B). Further, with respect to their advantage over the 

ancestor, these evolved isolates appeared to perform similarly via the two motility 

metrics I tracked.  

To see if the motility phenotypes I measured for L3a and L5b were in line with 

adaptive trajectory taken by the Z12 zebrafish isolate, I performed additional experiments 

comparing Z12 to the wt MR-1 ancestor. These experiments had to be conducted under 

monoassociation conditions (rather than competitive conditions), as previous attempts to 

fluorescently tag Z12 were unsuccessful, preventing us from distinguishing Z12 from 

MR-1 within the same flask. Across three replicates for each strain, I observed that Z12 

too had augmented swimming speeds and motile fractions compared to the MR-1 

ancestor (Figure 17, C and D). Because all three isolates I characterized were able to 

outcompete the MR-1 ancestor to colonize BF zebrafish larvae, the results from my 

analyses confirm motility as a key component of host association.  
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Figure 17: Motility characteristics of L3a, L5b, and Shewanella sp. ZOR0012 

compared to ancestor. A) Mean swim speed of L3a and L5b relative to the ancestor. 
For each flask, represented by a point, the mean mutant swim speed was divided by 
the mean ancestral swim speed. B) The fraction of L3a and L5b cells that are motile 
divided by the fraction of ancestral cells that are motile. Each point represents the 
relative motile fraction for a single flask. Each flask contains data for either L3a or 
L5b and an ancestral strain. For A) and B) groups were t-tested against a mu value of 
zero (my null expectation) and Bonferroni corrected for multiple comparisons 
(p<0.05: *, p<0.01: **). C) Swimming speeds observed for the MR-1wt and Shew-
Z12. Each point is a single observation. A one-tailed t-test was conducted to determine 
whether Shew-Z12 had a significantly faster mean than MR-1wt (p<0.001: ***). D) 
The fraction of each population that is motile in three biological replicates for MR-1wt 
and Shew-Z12. Each point represents a mean for a single flask.  
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SO1551 is highly conserved in MR-1 and Shew-Z12: 

Because L5b and Shew-Z12 were both able to outcompete my ancestral reference 

MR-1 strain, and L5b and Shew-Z12 performed similarly in my motility and biofilm 

assays, I wondered whether the mutation I observed in SO1551 represented evidence of 

evolutionary convergence between L5b and Shew-Z12. Both MR-1 and Shew-Z12 

contain orthologues of the SO1551 gene (locus tag: L976_03566 in Shew-Z12) which are 

99 % similar at the amino acid level (Figure 18) and have the same number of base pairs. 

Given the presence, high sequence identity, and identical length of these two genes, it is 

probable that both SO1551 and L976_03566 perform similar functions in their respective 

organisms. The fact that the one base pair deletion I observed in L5b’s SO1551 allele 

(L5b-SO1551) happened downstream of a PDE domain (EAL) but produced a premature 

stop codon upstream of a DGC domain (GGEEF), could leave intact L5b-SO1551’s PDE 

activity while negating its DGC activity. This makes it exceedingly unlikely that the 

evolved allele observed in L5b functions similarly to either the ancestral SO1551 allele or 

L976_03566, but it would be consistent with my motility data given what others have 

reported for how PDEs and DGCs affect this phenotype (Wei et al., 2016; Liu eta l., 

2010; Chao et al., 2013; Jones et al., 2015).  
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Additionally, a survey of the amino acid sequences encoded by both MR-1 and 

Shew-Z12 genomes revealed that MR-1 had a slightly higher GGDEF:EAL ratio than 

Shew-Z12 (MR-1 ratio: 1.7 (51:30); Shew-Z12 ratio: 1.64 (54:33); Appendix Table 3). 

L5b’s putative loss of function allele may thus indicate convergence between L5b and 

Shew-Z12 in terms of the way each lineage’s physiological regulatory networks are 

organized. One potential way to address this would be to compare the levels of cellular c-

di-GMP present in L5b and Shew-Z12 to that of MR-1. Lower levels of c-di-GMP in L5b 

relative to my ancestral MR-1 strain would be consistent with losing DGC activity while 

maintaining PDE activity in L5b’s evolved version of SO1551, and I would expect this 

same phenotype to be manifested by Shew-Z12, if having lower levels of c-di-GMP is 

adaptive. 

 

 

 

Figure 18: Amino acid conservation between MR-1 SO1551 (top) and Shew-Z12 

L976_03566 (bottom). Numbers on either side, represent a scale to indicate amino 
acid position. The color coding at each position indicates the degree of conservation. 
Amino acids with similar biochemistry are bluer, while those with divergent 
biochemistry are more yellow.  
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L3a and L5b have not evolved higher colonization densities: 

In my system, there are several potential routes to improved fitness. One obvious 

way to achieve elevated competitive fitness would be to evolve a higher peak abundance 

in the gut. If an evolved strain were capable of colonizing a larval gut with greater cell 

densities than its ancestor, the evolved strain would achieve higher competitive indices. 

Additionally, evolving to have higher growth rates in vivo, upon colonization of the larval 

gut would imply more efficient use of the resources that are available in the gut. There 

are also less intuitive ways to for an evolved strain to increase its competitive fitness, as 

improved host association in my system need not rely solely on in vivo dynamics. Instead 

if one considers the aqueous environment outside the larvae, assuming that competing 

populations have an equal chance of colonizing a larval zebrafish upon encountering this 

host, one competitor could gain an upper hand by increasing the frequency with which it 

encountered a host. Further, given equal chances of encountering a host, a passaged 

lineage might evolve mechanisms that increase the efficiency with which it is able to 

bypass host filters to translocate from the external aqueous environment into the gut.  

With these adaptive strategies in mind, I first sought to understand whether there 

were differences in the densities L3a and L5b could achieve in the gut. To assess this, I 

compared the total colony forming units I observed in competitive assays where the 

ancestor was competed against itself, as well as against L3a and L5b. If L3a or L5b had 

evolved to achieve greater densities in the larval guts, I would expect to count more 

CFUs/gut when either competitor was present compared to the ancestor versus ancestor 

control. I did not observe any increase in carrying capacity when L3a or L5b were present 
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(Figure 19), suggesting that the competitive performance of these isolates must stem from 

other components of fitness.  

 

 

L5b appears to outcompete the ancestor in vivo: 

Despite the fact that neither L3a nor L5b displayed evidence of increased 

colonization density, I wondered whether L3a and L5b might differ in their growth 

dynamics in vivo when in competition with the ancestor. To assess this, I generated three 

flasks containing groups of larval zebrafish that had been colonized at a low level (<500 

colony forming units (CFUs) per gut) with competition mixtures of either L3a versus the 

ancestor, or L5b versus the ancestor. I then dissected out the guts of 10 larval zebrafish 

from three separate flasks per competition and plated the contents of each gut on TSA 

plates to establish an initial mean competition ratio 

(CFU/gut_evolved:CFU/gut_ancestor) across the sampled larvae. Each flask contained 

Figure 19: Colonization density achieved in larval guts after 72 hours of 

colonization under competitive conditions. Dissected guts were dilution plated on 
TSA and CFUs were counted. Each point represents a single dissected gut. Statistical 
groupings are indicated by letters above each box for a significance threshold of 
p<0.05. Letters in common between groups indicate the absence of a significant 
difference in each group’s mean. 
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greater than 20 larvae, so at least 10 additional larvae remained after the first 10 were 

sacrificed. Presumably, these fish would have also started out with similar competition 

ratios to the 10 larvae whose guts I dissected. I then allowed 10 hours to pass (during 

which time I repeatedly exchanged the EM), so that gut populations could grow and 

compete within the remaining 10 larvae in each flask. At the end of this period, I again 

dissected out and plated the guts of 10 additional larvae to quantify a final mean 

competition ratio per flask. Finally, I calculated a relative fitness metric that was based 

the ratio of the per capita growth rates of each competing strain (see methods). When I 

compare the performance of L3a and L5b using this assay, I see that while L3a shows no 

ability to outcompete the ancestor (p = 0.612, Wrelative = 0.014 ± 0.039, 

mean(log10(Wrelative)) ± SD(log10(Wrelative)); Figure 20), L5b shows a modest ability to 

outcompete the ancestor (p = 0.055, Wrelative = 0.022 ± 0.009, mean(log10(Wrelative)) ± 

SD(log10(Wrelative)); Figure 20). In this assay, if two competitors competed equally with 

each other, their log10(Wrelative ) value should be exactly zero. Therefore, to assess 

significance, I t-tested each competition against a 𝜇 value of zero.  
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L5b’s growth in vivo growth advantage cannot fully explain its fitness: 

While my results suggest that L5b might have a slight growth rate advantage over 

the ancestral strain, it did not appear there was enough of an advantage to explain the full 

fitness gain of L5b. To convince myself of this, I generated a discrete Lotka-Volterra 

model of competition that involved stochastic gut population collapses and then plotted 

the competitive indices that would result from 72-hour competitions in the gut (Figure 

21A). Wiles et al. 2016, had previously shown that simplified bacterial communities 

periodically undergo stochastic population collapses induced by larval zebrafish 

peristaltic-like gut motility. Assuming the same dynamics hold true for MR-1 populations 

in the larval gut, population collapses should provide a strain with a growth advantage the 

opportunity to amplify its representation in the gut each time a collapse occurs. A 

representative example of what this might look like can be seen in Figure 21B. This 

Figure 20: Competitive fitness of L3a and L5b in vivo. Competitive in vivo growth 
rates were calculated as described under the in vivo growth assay section in the 
methods (ratio of Malthusian parameters). Each point represents the mean 𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 
for a single competition. The log10(𝑊𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) for each group of points was t-tested 
against a mu value of zero, my expected value if there were no competitive advantage.   
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representation was parameterized assuming that evolved and ancestral strains against 

each other equally, and it relied on carrying capacity data from my whole system 

competitions, as well as growth rates inferred from my L5b versus ancestor in vivo 

competitions. To isolate the effects that competitive dynamics solely in the gut would 

have on L5b’s competitive index, I set founding populations of L5b and the ancestor 

equal to one another, and the founding populations were of a similar magnitude to what I 

observed in my in vivo competition assays (~200 CFU/gut). I simulated the effects of 

1000 iterations of this model on L5b’s competitive index and found that competitive 

dynamics in the gut were unlikely to explain L5b’s full competitive advantage (in vivo 

simulated CI = 1.5 ± 0.1, whole system empirical CI = 161.4 ± 141.9 (Figure 14); mean ± SD). 

 

 

Figure 21: Model of competitive dynamics between L5b and the ancestor in vivo 

over 72 hours. A) Competitive indices resulting from a Lotka-Volterra model of 
competition that included stochastic in vivo population collapses. B) A representative 
iteration of that model showing the population dynamics for two competing strains in 
the gut.  
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L3a and L5b are more represented in the water column, and immigrate more efficiently: 

Since in vivo competition dynamics alone likely could not explain fitness 

differences between L3a and L5b, I next investigated how these strains competed against 

the ancestor outside the larval gut. I accomplished this by competing each evolved isolate 

against the ancestor in LCM. In these experiments, I plated samples of the LCM at the 

time of inoculation and at the end of each experiment to establish evolved strain to 

ancestral strain ratios based on the CFUs for each strain. CIs were then calculated by 

dividing the ending ratio by the starting ratio. Via this assay, I observed that both L3a and 

L5b were able to outcompete the ancestor to a similar degree, implying that both evolved 

strains were able to achieve higher cell densities in the water column (Figure 22A). 

Having elevated cell densities in the planktonic portion of the LCM (as opposed to being 

associated with the flask surface) should increase the relative encounter rate between 

evolved cells and larvae since the larvae are also planktonic.  

While having an increased encounter rate with this larval host provides an 

intuitive path towards improved fitness, the efficiency with which a strain is able to 

colonize the gut after encountering a larval host could also play a role. I assessed this by 

adding BF larvae to flasks that contained LCM-cultured competition mixtures, incubating 

larvae with these competition mixtures for 40-60 minutes so each larva could be 

colonized, and then dissecting out and plating the contents of 10 colonized larval guts. I 

then calculated immigration indices by dividing the plated-gut CFUs for each competitor 

by the competition ratio at the time larvae were added and adjusted for any growth that 

may have occurred, in vivo, during the colonization period. By accounting for the 

competition ratio larvae were first exposed to, this immigration assay demonstrated that 
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L3a and L5b both share the ability to immigrate into the larval gut more efficiently than 

the ancestor on a per capita basis, and that L5b could perform this task significantly better 

than L3a (Figure 22B). Together, the results of my LCM and immigration competition 

assays demonstrate that both L3a and L5b are able to outcompete their unpassaged 

ancestor by increasing their representation in the water column (thereby increasing their 

host encounter rate), and by more efficiently translocating from the aqueous external 

environment into the larval gut.   

 

 

 

  

Figure 22: L3a and L5b competitive fitness in larvae-conditioned media and 

relative per capita immigration compared to ancestor. A) Competitive ability of 
L3a and L5b against the MR-1 ancestral reference strain in LCM. Each point 
represents the CI measured for a single LCM competition flask. An ancestral 
competition against itself is shown as a control to represent the absence of a 
competitive advantage. Statistical groupings are indicated by letters above each box 
for a significance threshold of p<0.05. Letters in common between groups indicate the 
absence of a significant difference in each group’s mean. B) Boxes show the per 
capita immigration efficiency of the indicated strain relative to the ancestor. Each 
point represents a single dissected and plated larval gut. The log10(immigration index) 
for each group of points was t-tested against a mu value of zero, my expected value if 
there were no competitive advantage, and Bonferroni corrected for multiple 
comparisons.   
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Discussion: 

 Experimental evolution is a powerful approach to understand how bacteria evolve 

under a range of different conditions, and most studies that have experimentally evolved 

bacteria have observed parallelism at the level of fitness (Van den Bergh et al., 2018). 

Drilling down into lower levels, studies have also observed phenotypic convergence 

between replicate evolving populations (Chou & Marx, 2012; Tenaillon et al., 2012), and 

in some cases, even genotypic parallelism has been observed (Bull et al., 1997; Wichman 

et al., 1999, Good et al., 2017). Here, I conducted an experimental evolution experiment 

aimed at adapting replicate populations of a free-living bacterial species to a model 

vertebrate host in order to understand how free-living bacteria initiate transitions towards 

host association. In both my prior work and in this study, consistent with expectations 

from past experimental evolution studies (Van den Bergh et al., 2018), I observed that 

separately evolving replicate populations of MR-1 produced adaptive isolates after serial 

passage through larval zebrafish. Despite having previously observed high levels of 

parallel evolution at the level of the mshOP, in this study I aimed to determine whether 

evolved isolates with divergent adaptive genotypes had convergent adaptive phenotypes.  

 To assess this I, examined the phenotypes of an evolved isolate containing a 

mutation in the mshOP of MR-1 (L3a, MshL-T300P) and an evolved isolate that 

contained a mutation in a putative PDE-DGC domain-containing gene (L5b, SO1551). At 

the level of fitness, assessed via competition against the ancestor, I observed that both 

L3a and L5b had improved fitness after serial passage. In considering several 

components of fitness, I observed that L3a and L5b had a large degree of overlap. Both 

isolates were capable of outcompeting the ancestor for representation in the water column 
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where larvae reside, and both isolates had higher per capita immigration rates than the 

ancestor. I did also observe some differences between these two isolates in that L5b may 

have a slight growth rate advantage in vivo compared to the ancestor, where L3a had 

none, and that L5b outperformed L3a in terms of its relative immigration ability. These 

two potential advantages might explain why L5b had higher overall fitness than L3a 

(Figure 14).  

 With respect to two behavioral phenotypes I assessed, it was apparent that L3a 

and L5b are divergent in their biofilm forming capacity under the conditions I tested. 

Here, and in Chapter II, I demonstrated that L3a’s mshOP loss of function mutation is 

associated with a reduced biofilm forming capacity. This comports well with the growing 

body of literature suggesting that in mshOP containing bacteria, msh pilus expression is 

critical to biofilm formation (Saville et al., 2010; Jones et al., 2015; Qin et al., 2014). 

Interestingly, previous work in V. cholerae has shown that an excess of c-di-GMP can 

increase the expression of the msh pilus through an interaction between c-di-GMP and 

MshE (the extension ATPase of the msh pilus; Jones et al., 2015), and in MR-1, 

Thormann and colleagues (2006) demonstrated that reduced activity in a DGC gene 

(causing a reduction of c-di-GMP) can decrease biofilm formation. Because the deletion 

mutation I observed L5b’s putative DGC domain-containing gene (SO1551) is most 

likely a loss of function mutation, and yet I do not see a reduced biofilm phenotype in this 

isolate, I propose SO1551 is not involved in the expression of the msh pilus. However, 

determining this definitively will require further study. 

Puzzlingly, despite the fact that motility often trades off with biofilm formation 

(Simm et al. 2004, Van Ditmarsch et al., 2013), both L3a and L5b showed increased 
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motility compared to the ancestor. It is worth noting however, that because the cell 

densities I employ to foster detectable biofilms are several orders of magnitude higher 

than what would be experienced by MR-1 cells during a competition assay, it is possible 

that the biofilms I observe are not representative of the behavior evolved MR-1 isolates 

manifest when competing to colonize the larval gut. Still, the fact that I see a difference 

in biofilm formation, as a result of two distinct types of mutations, implies that these 

mutations at least have the potential to result in unique adaptive trajectories.  

Conversely, it is compelling that I observed selection for enhanced motility via 

two separate genetic pathways in my system, and that this phenotype is also observed in a 

closely-related Shewanella zebrafish isolate (Shew-Z12). When viewed in conjunction 

with the work others have done (Robinson et al., 2018; Raina et al., 2019; Stephens et al., 

2015; Van der Marel et al., 2008), this further establishes that motility is an important 

factor for host colonization. Although it is not clear exactly how motility improves host 

colonization in my system, one possibility is that enhanced motility might increase the 

pace with which chemotactic MR-1 cells traverse host-produced gradients, thereby 

increasing their encounter rate. Presumably, given that zebrafish larvae are much larger 

and can move much faster than their potential MR-1 colonists, when larvae are actively 

swimming, it would alter flow dynamics in the immediate vicinity of the host in ways 

that would overwhelm the ability of chemotactic responses to influence host encounters 

(Raina et al., 2019). However, anecdotally zebrafish larvae spend a large portion of their 

time motionless when they are cohoused in the culture flasks I use in my experiments. 

During these times of inactivity, chemotactic responses could dramatically increase 

colonization rates of motile MR-1 cells. My results are consistent with the findings 
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elsewhere that have shown motility to be an important factor in maintaining host-microbe 

symbioses (Robinson et al., 2018; Raina et al., 2019; Stephens et al., 2015; Van der 

Marel et al., 2008).  

While I initially speculated that clonal interference might restrict adaptive 

trajectories through strong selection on a single genomic region, the evidence I present 

here suggests that there are multiple ways a free-living bacterium could alter its genome 

to increase its likelihood of becoming host associated. In this study, my experimental 

evolution approach selected two distinct genotypes with high degrees of phenotypic 

convergence in a motility phenotype that was associated with increased fitness. However, 

based on the differences I observed in biofilm formation and some of the components of 

each genotype’s fitness, I suggest that each of the evolved isolates I tested is likely 

achieving their adaptive gains via different physiological mechanisms. Based on my 

findings, I propose that fruitful areas for future research would be to address how the 

mutations I observed impact the expression of cellular components within MR-1 and 

determine how those cellular components impact the ability of MR-1 populations to 

exploit specific external and internal niches presented by my host system. 
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CHAPTER IV: 

CONCLUSION 

 Bacteria were the first known inhabitants of Earth, and since their inception on 

this planet, they have evolved an incredible diversity of traits. Consequently, they have 

had a massive impact on the way nutrients cycle within the Earth’s biosphere, and all life, 

in some way, owes its existence to bacteria and the processes they mediate. However, 

bacteria are not simply bioreactors, reducible solely to their metabolic capacity, they have 

also evolved a plethora of interesting behaviors which allow them to interact with and 

occupy all of Earth’s unique habitats (Ferenci, 2016; Alivisatos et al., 2015; Thompson et 

al., 2017). While animals arose out of a world teeming with bacterial life (McFall-Ngai et 

al., 2013), given how long animals and bacteria have been diverging, for most bacterial 

species, animals now represent novel, nutrient-rich substrates on and within which 

bacteria can propagate their future generations. An excellent example of this stems from 

the ubiquity of animal-bacteria symbioses that I observe around the globe. Exposure to 

bacteria, and the ability cultivate bacterial communities within their midst, are absolutely 

critical to animal fitness (Flint et al., 2012; Sommer & Bäckhed, 2013; Dominguez-Bello 

et al., 2019), yet it is still unknown how microbial communities assemble in animal 

digestive tracts, and what constrains the evolution of traits that enable bacteria to take 

part in that assembly. Are there singular traits, that if evolved, dramatically enhance a 

microbe’s ability to colonize a host? Or, does host colonization depend on many traits 

working in concert? What is the topology of the genetic networks that support these 

traits? And further, what potentiates the organization of these genetic networks? To 

address these questions, I experimentally adapted replicate populations of a non-host-
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associated bacterium to a model vertebrate host. Specifically, my approach involved the 

serial passage of S. oneidensis (MR-1) populations through the digestive tracts of larval 

zebrafish, and I chose this approach to select on genotypes that would improve the ability 

of experimentally evolved populations to colonize larval guts compared to their 

unpassaged ancestor.  

 Experimental evolution has a well-documented history of providing insights into 

the dynamics of evolution under various conditions, and most experimental evolution 

studies produce organisms that have improved fitness in the environment being 

considered (Van den Bergh et al., 2018). With the advent of genome sequencing 

technologies, experimental evolution can be used as a tool to select adaptive genotypes, 

and then genomic sequencing can be used to identify genetic elements that may be 

responsible for increases in fitness (Long et al., 2015). Further work in the laboratory can 

then be conducted to map how specific adaptive genotypes alter behaviors that are 

associated with improved fitness (Plucain et al., 2014). In this way, the results from 

experimental-evolution-based studies can help identify the most potent selective 

pressures imposed by a given environment. In my system I wanted to understand how the 

selective pressures presented by a host system might facilitate a free-living bacterium’s 

transition to a host associated-existence.  

 My experimental system consisted of groups of BF larval zebrafish, cohoused in a 

culture flask at an approximate density of one larva per mL. To construct this 

environment, I derived zebrafish embryos BF, deposited them in to flasks containing 

sterile EM, and then allowed those embryos to develop into larvae over the course of 96 

hours. During this time, embryos would hatch from their chorions, and begin seeding 
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their flasks with nutrients. These host-derived nutrients would then be the only nutrients 

available to sustain MR-1 populations once they were added to these host-containing 

flasks. In thinking about the full breadth of niche space available in this experimental 

system, it initially seemed that there could have been an array of strategies free-living 

bacteria could pursue to improve their ability to colonize larval hosts. For instance, from 

passage to passage, MR-1 populations would need to grow in the aqueous, extra-host 

environment to a density where they would frequently encounter and then colonize 

zebrafish larvae. Once inside larvae, MR-1 cells would need to have traits that enabled 

their viability in the gut long enough to make it to the next passage. In the next passage, 

cells would necessitate traits that facilitated their liberation from dissected gut tissue, so 

they could colonize subsequent hosts. Given that I assessed fitness primarily through 

competition against an unpassaged ancestral reference strain, MR-1 lineages could have 

adapted to my system in a number of ways including faster internal or external growth 

rates, changes in biogeography both inside and outside hosts, altered metabolism, active 

detection of and navigation towards larval hosts, improved interaction with host tissue, or 

some combination thereof. Refinement of traits related to any of these aspects of my 

system could have resulted in the ability to outcompete the ancestor. Thus, it was 

impossible to know a priori which facet of my system would provide the easiest route 

towards increased fitness, or whether there were multiple ways to achieve adaptive gains 

of similar value. Further, given that MR-1 had no history with a vertebrate host, I was 

unsure how its naivety with zebrafish might bias its evolutionary trajectory.  

 I found that replicate passaged MR-1 populations exhibited a striking degree of 

parallelism. At the genomic level, 20 of the 24 isolates I sequenced (four isolates per 
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replicate population) had mutations in a pilus-encoding operon. The remaining four 

isolates had mutations in genes that presumably modulated the levels of ci-di-GMP in 

MR-1 cells. ci-di-GMP is a molecule that many bacteria use to toggle between 

physiological states, resulting in distinct bacterial behaviors (Römling et al., 2013). In 

two of the isolates I characterized in depth, both types of mutations resulted in an ability 

for evolved isolates to outcompete their ancestor in terms of their representation outside 

larval hosts, as well as in the relative efficiency with which they migrated from the 

aqueous portion of the environment into the larval gut. Additionally, both types of 

mutations yielded bacterial strains that were more motile than their ancestor. Although 

none of these attributes seemed to provide an advantage to evolved lineages once they 

colonized zebrafish larvae, together they allowed evolved trains to achieve approximately 

10-100-fold advantages in terms of their representation in a larval gut when competing 

against their ancestor.  

 Despite the parallelism I observed, I did also find subtle phenotypic differences 

between the two types of mutants I characterized. Namely, L5b had higher fitness overall, 

likely stemming from an increased immigration efficiency and potentially higher in vivo 

growth rates, and L3a and L5b had different biofilm phenotypes under the conditions I 

tested. Given these findings, it is interesting to speculate how these differences might 

structure the adaptive trajectories of evolving lineages if I was to continue my serial 

passage protocol. Evolutionary theory suggests that the further an organism is from a 

fitness optimum, the more likely any mutation is to be beneficial (Schoustra et al., 2009; 

Lenski et al., 2015). Consistent with this, in evolving lineages that are pursuing a fitness 

optimum, mutations that impart the largest gains towards such an optimum will have the 
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greatest probability of fixation (Gerrish & Lenski, 1998). In my system, the fact that I 

consistently saw improvements in the same components of fitness, suggests that the traits 

that contributed to these improvements were far from their optimal value. In future 

passages, if the traits that have already improved in my experiment are still far from their 

optimal value, further optimization could take place resulting in greater gains in the 

components of fitness in which I have already observed improvements. However, if my 

selection scheme has resulted in traits that are near their optimal value for certain 

components of fitness, mutations that optimize the value of traits related to other 

components of fitness may start to increase in frequency, altering the behavior of the 

evolving lineage. Additionally, as organisms change, the accessibility of different optima 

can also change, creating new adaptive pathways, or restricting the likelihood of pursuing 

a previously likely adaptive pathway. In considering these evolutionary dynamics, given 

the wide breadth of niche space available in my system, it is possible that additional 

passages could result in phenotypes that are advantageous to life inside the gut, rather 

than traits that augment transmission into hosts. Conversely, if there is still a lot of room 

to improve transmission traits, I might find that motility, immigration, and external 

growth could be further refined. Moreover, it is possible that although the two types of 

mutations I examined in my studies had overlapping phenotypes, they could potentiate 

different adaptive pathways resulting in substantially different phenotypes after continued 

evolution under my selection scheme. Ultimately, where adaptive isolates lie in relation 

to their respective fitness optima, should weigh heavily on their evolutionary fate.   

Given that bacteria have a wide diversity of traits, and that encounters with some 

bacteria can fundamentally alter animal well-being, it is important to understand how 
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bacteria evolve the ability to colonize hosts, thereby providing them with an opportunity 

to impact host fitness. In my work, I demonstrated that free-living bacteria were able to 

improve their association with a model vertebrate primarily by enhancing their fitness in 

the host-constructed external environment. In light of this, I advocate that future 

microbiome studies consider how bacteria can adapt to those aspects of a host’s 

environment with which a host frequently interacts. If my results are generalizable, I 

expect that host-associated bacteria likely use environmental components as adaptive 

bridges which facilitate host colonization, and that bacteria that are well adapted to a 

host’s local environment will evolve novel host symbioses with the greater frequency.   
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APPENDIX 

 

 

 

 

 

IMG Gene ID Locus Tag
Gene 

Symbol

Product 

Name

DNA Seq 

Length
Genome

650804462 B565_r001 16S  ( rRNA ) 1550 Aeromonas veronii B565

2510560287 ACDC_00040000 16S  ( rRNA ) 1427 Shewanella algae ACDC

2587183130 JCM21037DRAFT_05211 16S  ( rRNA ) 1427 Shewanella algae JCM 21037

2518739196 Sama_R0001 16S  ( rRNA ) 1537 Shewanella amazonensis SB2B

648727208 Sbal175DRAFT_R0047 16S  ( rRNA ) 1533 Shewanella baltica BA175

651216762 Sbal117_R0001 16S  ( rRNA ) 1533 Shewanella baltica OS117

640723547 Sbal_R0001 16S  ( rRNA ) 1537 Shewanella baltica OS155

648706592 Sbal183DRAFT_R0088 16S  ( rRNA ) 1533 Shewanella baltica OS183

641286429 Sbal195_R0007 16S  ( rRNA ) 1537 Shewanella baltica OS195

2507441981 Sbal625_0042 16S  ( rRNA ) 1427 Shewanella baltica OS625

2568525539 L876DRAFT_10000 16S  ( rRNA ) 1421 Shewanella colwelliana ATCC 39565

2524203608 Sden_R0001 16S  ( rRNA ) 1535 Shewanella denitrificans OS217

2568525540 L884DRAFT_10000 16S  ( rRNA ) 1421 Shewanella fidelis ATCC BAA-318

641550787 Shal_R0001 16S  ( rRNA ) 1535 Shewanella halifaxensis HAW-EB4

2566291146 JCM14758DRAFT_05478 16S  ( rRNA ) 1427 Shewanella haliotis JCM 14758

2521615716 PV4_R0085 16S  ( rRNA ) 1537 Shewanella loihica PV-4

641234550 Spea_R0001 16S  ( rRNA ) 1535 Shewanella pealeana ANG-SQ1, ATCC 700345

643423502 swp_rRNA11 16S  ( rRNA ) 1529 Shewanella piezotolerans WP3

2510452616 Sput200_R0130 16S  ( rRNA ) 1531 Shewanella putrefaciens 200 (Missing data)

2524134011 Sputcn32_R0001 16S  ( rRNA ) 1535 Shewanella putrefaciens CN-32

2587191865 JCM20190DRAFT_04395 16S  ( rRNA ) 1423 Shewanella putrefaciens JCM 20190

640930869 Ssed_R0001 16S  ( rRNA ) 1535 Shewanella sediminis HAW-EB3

640720070 Shewana3_R0001 16S  ( rRNA ) 1535 Shewanella sp. ANA-3

640717202 Shewmr4_R0001 16S  ( rRNA ) 1535 Shewanella sp. MR-4

640717343 Shewmr7_R0001 16S  ( rRNA ) 1535 Shewanella sp. MR-7

2551868620 SHEWPOL2DRAFT_04550 16S  ( rRNA ) 1425 Shewanella sp. POL2

640721766 Sputw3181_R0001 16S  ( rRNA ) 1535 Shewanella sp. W3-18-1

646719986 SVI_r001 16S  ( rRNA ) 1545 Shewanella violacea DSS12

641631765 Swoo_R0007 16S  ( rRNA ) 1535 Shewanella woodyi MS32, ATCC 51908

642782354 VFMJ11_A1267 16S  ( rRNA ) 1552 Vibrio fischeri MJ11

647180815 VFA_rna081 16S  ( rRNA ) 1546 Vibrio furnissii sv. II CIP 102972

Function Function Name Gene Count Genome Name

pfam00990 GGDEF - Diguanylate cyclase, GGDEF domain 51 Shewanella oneidensis MR-1

pfam00990 GGDEF - Diguanylate cyclase, GGDEF domain 54 Shewanella sp. ZOR0012

pfam00563 EAL - EAL domain 30 Shewanella oneidensis MR-1

pfam00563 EAL - EAL domain 33 Shewanella sp. ZOR0012

Table 2: Metadata for 16S genes used to create the phylogenetic tree featured in 
Figure 2 

Table 3: Metadata for genes containing GGDEF and EAL domains in S. oneidensis 

MR-1 and Shewanella sp. ZOR0012 genomes 
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