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THESIS ABSTRACT 

 

Sonja M. Ljungdahl 

 

Master of Science 

 

Department of Biology 

 

September 2019 

 

Title: Investigating Light-Induced psbA Translation in Chloroplasts 

 

 

 

Light, while necessary for plants, can cause photo-oxidative damage. Adaptations 

to fluctuating light conditions optimize photosynthetic yield and minimize light-induced 

damage.  Light-regulated synthesis of the chloroplast gene psbA and its protein product 

D1 is at the core of these responses.  Shifting light intensity regulates D1 synthesis at the 

level of translation.  This thesis investigates specific proteins we hypothesized mediate 

the effects of light on D1 synthesis.  Our experiments on TPJ1, a maize mutant lacking 

one of these proteins, showed that TPJ1 does not influence psbA translation.  Instead, our 

results show it is required for the translation of the chloroplast psbJ mRNA.  In addition, 

I elucidated the biochemical interactions between two known psbA translational 

activators, OHP2 and HCF244, by identifying a short segment of OHP2 that is sufficient 

for its interaction with HCF244.  This thesis includes published, co-authored material.  
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CHAPTER I 

INTRODUCTION 

 The chloroplast is the photosynthetic organelle present in plants and algae.  It is 

believed to be the product of an endosymbiotic event, occurring over a billion years ago, 

in which a cyanobacterium was integrated into a single-celled eukaryotic host.  Over 

time, and through the process of co-evolution, genes originally in the endosymbiont 

relocated into the nuclear genome, so that today’s chloroplast consists of both nuclear and 

chloroplast-encoded proteins. The majority of a chloroplast’s approximately 3,000 

proteins are encoded in the nucleus and synthesized in the cytosol before they are shuttled 

into the chloroplast.  Only ~100 chloroplast proteins are encoded by the chloroplast’s 

genome; these proteins contribute to the chloroplast’s photosynthetic apparatus and gene 

expression machinery and were likely present in the original cyanobacterium.  Each 

major photosynthetic enzyme complex (Photosystem II, Cytochrome b6f, Photosystem I, 

ATP synthase, and rubisco) consists of both chloroplast and nuclear gene products (Sun 

and Zerges, 2015; Zoschke and Bock, 2018).   

 While chloroplast genetic systems have similar features to those in bacteria, e.g., 

circular DNA, polycistronic transcription, and a population of ribosomes and 

ribonucleases similar to their bacterial ancestors, they also possess many derived traits.  

For example, chloroplast gene expression is predominantly orchestrated at the post-

transcriptional level, distinct from the transcriptional controls observed in bacteria 

(Rochaix, 2006).  Chloroplast translation is carried out by ribosomes and general 

translation factors derived from those in bacteria, but is regulated by nucleus-encoded 
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proteins that evolved post-endosymbiosis. Many of these belong to the pentatricopeptide 

repeat (PPR) family, a group that is theorized to have emerged during the coevolution of 

the ancient endosymbiont and its host (Barkan, 2011).   PPR proteins are composed of 

tandem alpha-helical repeats that act as sequence-specific binding sites for particular 

chloroplast RNAs.  There are approximately 400 PPR proteins in terrestrial plants today 

and they have been shown to be involved in every aspect of chloroplast gene expression: 

transcription, RNA stabilization and cleavage, splicing and editing of RNAs, and 

mediating translation (Barkan and Small, 2014).  PPRs have been suggested to activate 

translation by binding to areas on mRNA which inhibit ribosome binding by folding into 

a hairpin.  When the PPR is bound to the mRNA it is unable to conform to the hairpin 

shape, which makes the ribosome binding site accessible to the ribosome.  This large 

protein family, while absent in the chloroplasts’ cyanobacterial ancestors, is now integral 

to its function (Barkan and Small, 2014). 

 Photosynthesis harvests light energy from the sun through a series of enzyme-

mediated reactions that take place in the thylakoid membrane and the stroma of the 

chloroplast.  The presence of light not only drives photosynthesis, it also causes damage 

to the photosynthetic machinery.  As environmental light conditions are fluctuating, 

plants must simultaneously minimize damage while optimizing the production of 

photosynthetic products.  Plants must be able to respond rapidly to these fluctuations; 

therefore, many of these responses occur through the regulation of both nuclear and 

chloroplast genes (Rochaix, 2013).   

 Little is known about how light affects chloroplast translation; classical 

translational analysis techniques are limited in their ability to elucidate the translation 
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rates of proteins with low expression levels, or those with high turnover rates (Zoschke 

and Bock, 2018).  In addition, many early experiments on chloroplast translation were 

performed on plants that had been de-etiolated, or used chloroplasts that had been 

isolated; these techniques obfuscate analysis of data by introducing secondary effects 

(Chotewutmontri and Barkan, 2018).   

 More recent data, using ribosome profiling techniques (Ingolia et al., 2009), has 

provided a genome-wide view of chloroplast translation (Chotewutmontri and Barkan 

2016; Chotewutmontri and Barkan, 2018).  Ribosome profiling reveals in vivo ribosome 

occupancy on mRNA transcripts at the time the organism is flash-frozen.  Recent 

ribosome profiling experiments in Zea mays and Arabidopsis show that the ribosome 

occupancy on most chloroplast RNAs does not change significantly after shifting plants 

from light to dark or dark to light.  However, there was one major exception: the psbA 

mRNA rapidly gains ribosomes after shifting plants to the light and loses them again after 

shifting to the dark (Chotewutmontri and Barkan, 2018, Figure 1.1).     

 

Figure 1.1   Dynamic changes in psbA ribosome occupancy following midday shifts from light-to-dark 

and vice versa.  RPKM is the normalized abundance of ribosome footprints on the indicated gene. Only a 

subset of chloroplast genes is shown; ribosome occupancy on those not shown did not change 

substantively.  
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     The psbA gene encodes the D1 protein, a reaction center subunit of Photosystem II 

(PSII).  Photosystem II is a multi-subunit enzyme complex that is embedded in the 

thylakoid membrane and is responsible for harvesting energy from photons of light.  

Molecular processes at PSII result in the extraction of electrons from water molecules 

(releasing molecular oxygen) and transfer of those electrons down an electron transport 

chain, which produce a proton gradient that drives ATP synthesis and reduced NADPH 

that provides reducing power for carbon fixation.  The D1 protein, a chlorophyll binding 

protein in the reaction center of the complex, suffers damage as a consequence of 

proximity to highly oxidizing species during these events.  When D1 is damaged, 

photosynthesis is halted, thus this protein needs to be continuously replaced when 

illuminated (Sun and Zerges, 2015).  This need for constant replacement during 

photosynthesis is concurrent with the increased translation of psbA RNA in the light, 

(Chotewutmontri and Barkan, 2018).  The specific molecular actions that occur to drive 

D1’s replacement are largely unrevealed.  Zerges (2015) writes: 

“Nothing is known about how the psbA mRNA is specifically selected for 

translation to repair photodamaged PSII complexes, despite its importance to 

chloroplast biology and the productivity of agricultural plants.” 

  

 This thesis makes progress towards elucidating the molecular mechanisms that 

underpin the rapid gain of ribosomes on psbA mRNA in response to light.  Two central 

problems that this research addresses are: determining the proximal translational 

regulators of at the psbA RNA and understanding how those specific regulators are 

interacting with each other.  
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 In Chapter 2, in an effort to further elucidate translational regulation of psbA RNA 

we performed ribosome profiling experiments on a maize mutant lacking the PPR protein 

LPE1, which had previously been conjectured to activate the translation of psbA RNA in 

Arabidopsis.  The work in this chapter has been previously published with the co-authors 

Rosalind Williams-Carrier, Carolyn Brewster, Susan E. Belcher, Margarita Rojas, 

Prakitchai Chotewutmontri, and Alice Barkan.   

 Chapter 3 investigates the relationships between proteins required for the 

recruitment of ribosomes to psbA RNA at the thylakoid membrane.  I use a yeast two-

hybrid system to elucidate interactions among several proteins that form a complex 

required for PSII repair (HCF 244, OHP1, OHP2, HCF173, D1 stromal loop), several of 

which are required for psbA translation (HCF244, OHP1, OHP2, HCF173).  These 

experiments were performed to help test a model in which the presence of D1 in this 

complex inhibits the activators, and that D1 degradation relieves this inhibition.  
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BRIDGE I 

 

To elucidate mechanisms that mediate the effects of light on D1 synthesis, we examined 

the role of nucleus-encoded proteins that we hypothesized participated in this process. 

LPE1 came to our attention as a possible regulator of D1 translation based on the fact that 

it is known to localize to chloroplasts, it is a PPR protein and so was expected to bind 

RNA, and it exhibits an expression pattern that matches the expectation for genes 

involved in regulating D1 synthesis (Li et al. 2010; Majeran et al., 2010).  In addition, the 

publication by Jin et al. (2018) concluded that LPE1 activates the translation of psbA 

RNA in Arabidopsis.  In Chapter II we performed ribosome profiling experiments on 

mutants lacking LPE1, which revealed LPE1s role as a translational activator of two short 

chloroplast ORFs (psbJ and psbN).  Our findings warrant revision of LPE1’s proposed 

function in psbA translation. 
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CHAPTER II 

 

TITLE: THE ARABIDOPSIS PENTATRICOPEPTIDE REPEAT PROTEIN LPE1 AND 

ITS MAIZE ORTHOLOG ARE REQUIRED FOR TRANSLATION OF THE 

CHLOROPLAST PSBJ RNA 

From Williams-Carrier, R., Brewster, C., Belcher, S. E., Rojas, M., Chotewutmontri, P., 

Ljungdahl, S., & Barkan, A. (2019) The Arabidopsis pentatricopeptide repeat protein 

LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA. 

Plant Journal, 99, 56–66. https://doi.org/10.1111/tpj.14308 

 

The experimental work in this chapter was performed either by me or by R. Williams-

Carrier, C. Brewster, S.E. Belcher, M. Rojas, P.Chotewutmontri.  Specifically, I 

contributed to the identification of maize mutants lacking tpj1 (an orthologue to lpe1) and 

to the analysis of their mutant phenotypes.  I used PCR techniques to identify mutant 

plants lacking tpj1.  I performed initial TPJ1 immunoblot assays on mutant tissue to 

uncover deficiencies in the photosynthetic subunits suggesting its function in PSII 

biogenesis.  I contributed to the ribo-seq analysis of maize tpj1 mutants by tending and 

harvesting the plants, pooling the tissue, and participating in the ribosome profiling 

assays.  Ribosome profiling experiments were performed under the tutelage of Roz 

Carrier.  Carolyn Brewster performed Northern Blot assays, aided in ribo-seq analysis, 

tended plants, and performed final immunoblot assays.   

AUTHORS: 

Sonja M. Ljungdahl, R. Williams-Carrier, C. Brewster, S.E. Belcher, M. Rojas, P. 

Chotewutmontri, Alice Barkan. 
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INTRODUCTION 

 Expression of the chloroplast genome requires hundreds of nucleus-encoded 

proteins, the majority of which act at the post-transcriptional level to promote the 

processing, stability, or translation of specific RNAs (Barkan 2011). Most of these belong 

to protein families whose members function exclusively (or nearly so) in the expression 

of organellar genes. The pentatricopeptide repeat (PPR) protein family is a prominent 

example of this phenomenon (Barkan and Small 2014). PPR proteins are defined by 

degenerate tandem repeats of approximately 35 amino acids that adopt a helix-turn-helix 

fold (Small and Peeters 2000). Consecutive repeats stack to form an elongated superhelix 

whose surface binds single-stranded RNA (Yin et al. 2013). PPR proteins are found in all 

eukaryotes but the size of the PPR family is highly variable among species. They 

comprise one of the largest protein families in plants, where they have diversified into 

several subfamilies (Cheng et al. 2016). Proteins that consist primarily of canonical PPR 

motifs, referred to as P-type proteins, generally promote the splicing, translation or 

stability of specific organellar RNAs, whereas proteins with variant repeat tracts denoted 

PLS generally specify sites of organellar RNA editing. In either case, RNA recognition 

by PPR tracts involves modular 1-repeat, 1-nucleotide interactions whose specificity is 

influenced by the identities of amino acids at several positions in each repeat (Barkan et 

al. 2012; Takenaka et al. 2013; Yagi et al. 2013).  

We have been analyzing PPR proteins that localize to chloroplasts in order to 

elucidate the basis for the sequence-selectivity of PPR tracts and the functional 

consequences of PPR-RNA partnerships. Our attention was drawn to the P-type PPR 

protein encoded by maize gene GRMZM2G056116 due to its unusual expression pattern: 
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whereas mRNA levels for the majority of chloroplast PPR proteins peak in a “chloroplast 

biogenesis” zone toward the base of the seedling leaf blade, mRNA from this gene peaks 

at the leaf tip - the site of mature chloroplasts (see http://bar.utoronto.ca/efp_maize/cgi-

bin/efpWeb.cgi) (Li et al. 2010; Majeran et al. 2010).  This expression pattern suggested 

a role in maintaining expression of one or more of the handful of chloroplast genes whose 

expression peaks at the leaf tip, most of which encode subunits of Photosystem II (PSII) 

(Chotewutmontri and Barkan 2016). In accord with this prediction, the Arabidopsis 

ortholog (AT3G46610), denoted LPE1, was recently reported to be necessary for PSII 

accumulation (Jin et al. 2018).  

The PSII deficiency in lpe1 mutants was attributed to a defect in translation of the 

chloroplast psbA mRNA (Jin et al. 2018). This conclusion was based on results from 

polysome and pulse-labeling assays. However, polysome assays have limitations when 

assessing translation of short open reading frames (ORFs) on polycistronic RNAs, and 

pulse-labeling assays have limitations when assessing synthesis of small proteins 

(including several PSII subunits) and proteins that are rapidly degraded when their 

assembly is disrupted (such as the psbA gene product). A more recently developed 

method called ribosome profiling provides a genome-wide, high-resolution, and 

quantitative snapshot of ribosome positions on mRNA, and can detect gene expression 

defects that are missed by polysome and pulse-labeling assays (Rojas et al. 2018; 

Zoschke et al. 2013). Ribosome profiling uses deep-sequencing or high-resolution 

microarrays to quantitatively map ribosome footprints: short mRNA segments that are 

protected by ribosomes from ribonucleases. We revisited the function of LPE1 by using 

ribosome profiling-by-sequencing (Ribo-seq) to analyze chloroplast gene expression in 
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lpe1 mutants in maize and Arabidopsis. Our results show that the maize LPE1 ortholog 

strongly stimulates translation of the chloroplast psbJ ORF, and that this is the sole basis 

for the PSII defect in the maize mutant. Because the abbreviation LPE1 is already in use 

for a different gene in maize, we named the maize ortholog Translation of psbJ 1 (TPJ1) 

to reflect this function.  In addition, our data reveal previously undetected roles for 

Arabidopsis LPE1 in translation of the chloroplast psbJ and psbN ORFs, and provide 

evidence that the modest decrease in ribosome occupancy on the psbA mRNA in lpe1 

mutants is a secondary effect of their PSII deficiency. Taken together with in vitro RNA 

binding data, these results provide strong evidence that the loss of PSII in Arabidopsis 

lpe1 mutants results from defects in the expression of psbJ and psbN. 

 

RESULTS 

Maize TPJ1 functions in PSII biogenesis  

LPE1 (AT3G46610) and TPJ1 (GRMZM2G056116) consist of 14 PPR motifs preceded 

by a predicted chloroplast transit peptide (Appendix A). LPE1 has been shown to localize 

to chloroplasts (Jin et al. 2018) and TPJ1 was detected in the chloroplast nucleoid 

proteome (Majeran et al. 2012). To analyze TPJ1 function in maize, we analyzed the 

phenotypes of two Mu transposon insertion alleles. The tpj1-1 insertion maps to the 5’-

untranslated region (UTR) and is expected to be a hypomorphic allele, whereas the 

insertion in tpj1-2 interrupts the protein coding region (Fig. 2.1a). Plants that are 

homozygous for tpj1-2 exhibit a mild elevation in chlorophyll fluorescence (Fig. 2.1b), 

suggesting a photosynthetic defect. The mutants survive past the seedling stage when 

grown in soil, albeit with reduced vigor (Fig. 2.1b right). Arabidopsis lpe1 null mutants 
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likewise survive past the seedling stage in soil (Jin et al. 2018). Therefore, TPJ1 and 

LPE1 are not essential for photosynthesis. 

 

 

 

Figure 2.1. Overview of maize tpj1 mutant alleles. 

(a) Insertion sites. TPJ1 is encoded by maize locus GRMZM2G056116 (B73 RefGen_v3) or 

Zm00001d036489 (B73 RefGen_v4). The gene contains one intron (thin line). The distance in nucleotides 

of each Mu insertion from the start codon is indicated. The sequences of the insertion sites are shown 

below, with the 9-bp target site duplication underlined.  

(b) Mutant phenotypes. The seedlings to the left were grown for 10 days in soil. The same seedlings were 

illuminated either with white light (top) or UV light (bottom). The phenotype of mature plants (roughly 8 

weeks old) is shown to the right.  

 

 
 

 

Immunoblot analysis showed that tpj1-2 mutants have reduced levels of core PSII 

subunits (Fig. 2.2). The magnitude of this deficiency differed among subunits: PsbC was 

strongly reduced (~10% of wild-type levels) whereas PsbA, PsbB, and PsbD were 
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reduced roughly 4-fold. Subunits of the ATP synthase (AtpA), Photosystem I (PsaD), and 

the cytochrome b6f complex (PetD) accumulated to approximately 50% of normal levels 

whereas the large subunit of Rubisco (RbcL) was unaffected. Heteroallelic progeny of a 

complementation test cross (tpj1-1/tpj1-2) showed a weaker phenotype, as expected due 

to the fact that the tpj1-1 insertion maps a considerable distance upstream from the start 

codon (Fig. 2.1a). Nonetheless, the PsbC and PsbD subunits of PSII were clearly reduced. 

The results for tpj1-2 are similar to those reported for Arabidopsis lpe1 except that PsbA 

was more strongly reduced than PsbC in lpe1 mutants (Jin et al. 2018).  

 

Figure 2.2 Immunoblot analysis of components of the photosynthetic apparatus in maize tpj1 

mutants. Seedling leaf extracts (5 µg protein or the indicated dilutions) from plants of the indicated 

genotype were fractionated by SDS-PAGE and analyzed by immunoblotting. Replicate blots were probed 

with antibodies specific for the indicated proteins. An excerpt of one of the replicate blots stained with 
Ponceau S (bottom) shows the abundance of the large subunit of Rubisco (RbcL). AtpA is a subunit of the 

thylakoid ATP synthase, PetD is a subunit of the cytochrome b6f complex, PsaD is a subunit of PSI, Lhcb2 

is a subunit of the peripheral light harvesting complex of PSII, and Rps12 is found in the chloroplast 30S 

ribosomal subunit. 
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TPJ1 is required for psbJ translation 
 

Given that PPR proteins generally function in organellar gene expression, it 

seemed likely that TPJ1 promotes PSII accumulation by stimulating expression of one or 

more chloroplast gene encoding a PSII subunit. To detect chloroplast genes whose 

expression relies on TPJ1, we analyzed tpj1-2 mutant seedlings by ribosome profiling. 

The absence of ribosome footprints from the tpj1 gene in the tpj1-2 mutant confirmed 

that tpj1-2 is a null allele Appendix B). In three replicate experiments, we observed a 

dramatic loss of psbJ ribosome footprints in the tpj1-2 mutant (Fig. 2.3a, Appendix C, 

Appendix F). The psbJ gene resides in the psbE-psbF-psbL-psbJ transcription unit. A 

sequence coverage plot (Fig. 2.3b) shows that ribosome density along the psbJ ORF is 

drastically reduced in the tpj1 mutant, in comparison with the three ORFs upstream. Data 

from one replicate suggested a defect in translating the third exon of rps12 (Appendix C), 

but this was not reproducible. This spurious result was likely due to sampling error, as 

this exon encodes only nine amino acids and is represented by a small number of Ribo-

seq reads. The abundance of ribosome footprints mapping to all other chloroplast genes 

was similar between the tpj1-2 and wild-type samples.  

 To determine whether the loss of ribosome footprints from psbJ results from an 

mRNA defect, we analyzed psbJ transcripts by RNA gel blot hybridization (Fig. 2.3c). A 

psbJ-specific probe detected only the tetracistronic psbE-psbF-psbL-psbJ transcript, and 

this RNA was found at normal levels in the tpj1-2 mutant. Therefore, the loss of 

ribosome footprints from psbJ results from a defect in psbJ translation. Motivated by the 

spurious rps12 result in the Ribo-seq data (see above), we probed a replicate blot to 

detect the second and third exons of rps12 mRNA (Fig. 2.3c). The results show that a 

major transcript at approximately 1200 nucleotides is reduced in the mutant whereas two 
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smaller transcripts (~1000 and 450 nucleotides) were detected only in the mutant. The 

nature of the RNA defect is unclear, although the transcript pattern is inconsistent with a 

splicing defect. In any case, RPS12 protein accumulates normally in tpj1-2 mutants (Fig. 

2.2).  As the effects of TPJ1 on rps12 mRNA have no apparent impact on Rps12 

abundance or function, we did not investigate this further.  

 

 

Figure 2.3. Ribo-seq analysis of chloroplast gene expression in maize tpj1-2 mutants. 

(a) Ratio of normalized ribosome footprint abundance in the wild-type relative to the tpj1-2 mutant for each 

chloroplast gene. Values were normalized to the number of reads mapping to chloroplast ORFs. Two 

replicate experiments are shown in Figure S3. The read count and RPKM values for all chloroplast genes 

are shown in Table S2. 

(b) Screen capture from the Integrated Genome Viewer (IGV) showing the absence of ribosome footprints 

on the psbJ ORF in the tpj1-2 mutant. The psbE– psbF–psbL–psbJ transcription unit is shown. 

(c) RNA gel blot hybridization analysis of psbJ and rps12 transcripts in tpj1-2 mutants. Replicate panels 

from the same gel were hybridized with probes specific for psbJ or exons 2 and 3 of rps12. One blot was 

stained with methylene blue to illustrate the abundance of rRNAs as a loading control. The bands marked 

28S and 18S are cytosolic rRNAs, and the bands marked 16S and 23S* are chloroplast rRNAs.  
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Ribo-seq analysis of Arabidopsis lpe1 mutants revealed defects in psbJ and psbN 

expression. 

The report that the TPJ1 ortholog in Arabidopsis (LPE1) is required specifically 

for psbA translation (Jin et al. 2018) contrasts with our findings for TPJ1, indicating 

either that the function is not conserved or that the defect in psbJ translation was missed 

in the Arabidopsis study. To resolve this issue, we used Ribo-seq to assay chloroplast 

gene expression in two lpe1 exon insertion alleles: the lpe1-3 allele described previously 

(Jin et al. 2018) and a new allele, lpe1-4 (Appendix D). Both alleles condition a severe 

loss of the D1 and D2 reaction center subunits of PSII (Appendix D), consistent with the 

prior  

report. In addition, we observed a several-fold decrease in the abundance of the PsaD 

subunit of photosystem I (PSI). An effect on PSI was not detected previously (Jin et al. 

2018). The basis for this difference is unclear but may result from differences in growth 

conditions or developmental stage. 

In an initial Ribo-seq experiment, we compared lpe1-4 mutants to siblings of 

normal phenotype (Fig. 2.4); the mutant and normal plants were the same age but the 

mutant plants were less developed due to their photosynthetic defect (Appendix D).  The 

ratio of normalized ribosome footprint abundance for each chloroplast gene in the wild-

type relative to the mutant revealed psbJ as having the largest expression defect (Fig. 

2.4a); the 10-fold difference between the wild-type and mutant is similar to what we 

observed for psbJ in the maize tpj1 mutant. The data show, in addition, a moderate 

reduction in ribosome footprints from the psbA and psbN ORFs in the lpe1-4 mutant.  
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We then used Ribo-seq to analyze chloroplast gene expression in the lpe1-3 allele 

described previously (Jin et al. 2018). Because the lpe1-3 plants varied in size, we were 

able to select mutant and Col-0 plants at a similar developmental stage (Appendix D). 

The results showed an approximately 12-fold loss of ribosome footprints from psbJ (Fig. 

2.4b), validating the importance of LPE1 for psbJ expression. Interestingly, the loss of 

ribosome footprints from psbN was much more severe in the lpe1-3 experiment than in 

the lpe1-4 analysis, whereas the psbA defect was milder. Sequence coverage plots show a 

strong decrease in ribosome footprints along the entire psbJ and psbN ORFs in lpe1-3 

mutants (Fig. 2.4c). RNA gel blot hybridizations showed that the psbJ, psbN, and psbA 

mRNAs were found at near normal levels in lpe1 mutants (Fig. 2.4d). Taken together, 

these results show that LPE1, like its maize ortholog, strongly stimulates translation of 

psbJ. In addition, the results suggest that LPE1 activates psbN translation. However, the 

large difference in the magnitude of the psbN defect in lpe1-3 and lpe1-4 alleles is 

puzzling. It may be that the lpe1-4 allele is hypomorphic, as its insertion maps near the 

3’-end of the LPE1 gene within sequences encoding the final PPR motif (Appendix A). 

 

Ribo-seq analysis of hcf107 mutants suggests that the modest decrease in psbA 

ribosome occupancy in lpe1 mutants is a secondary effect of their PSII deficiency. 

In past work, we observed a small decrease in psbA ribosome occupancy in ribosome 

profiling analyses of various non-photosynthetic mutants (e.g. Shen et al. 2017; Zoschke 

et al. 2013; Zoschke et al. 2016). Therefore, we considered the possibility that the small 

reduction in psbA translation in lpe1 mutants is a secondary effect of their PSII defect. To 

address this possibility, we used Ribo-seq to analyze Arabidopsis hcf107 mutants, which 
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lack PSII due to defects in the expression of the chloroplast psbH and psbB genes (Felder 

et al. 2001). We used an hcf107 insertion mutant (see Appendix D), and grew them in 

parallel with the lpe1-3 plants to which they were compared. 

 

 

Figure 2.4. Ribo-seq analysis of chloroplast gene expression in Arabidopsis lpe1 mutants. The read 

count and RPKM values for all chloroplast genes in these experiments are shown in Table S2. 

(a) Ratio of normalized ribosome footprint abundance in the wild-type relative to the lpe1-4 mutant 

for each chloroplast gene. Values were normalized to the number of reads mapping to chloroplast ORFs. 

Mutants were compared with siblings of normal phenotype. Tissue was harvested 18 days post-

vernalization; mutant seedlings were at an earlier developmen- tal stage due to their photosynthetic defect 

(see Figure S4a). 

(b) Ratio of normalized ribosome footprint abundance in the wild-type relative to the lpe1-3 mutant 

for each chloroplast gene. Mutants were compared to Col-0 grown in parallel and harvested 20 days post-

vernalization. Mutant and Col-0 plants selected for this analysis were at a similar developmental stage (see 

Figure S4a).                                                                                                                                                     

(c) Screen captures from the Integrated Genome Viewer (IGV) showing the loss of ribosome 

footprints from the psbJ and psbN ORFs in the lpe1-3 mutant. 

(d) RNA gel blot hybridization analysis of psbJ, psbA, and psbN RNA in lpe1 mutants. The psbJ and 

psbN data come from consecutive probings of the same blot; each probe detects just the one transcript that 

is marked. Blots were stained with methylene blue to illustrate the abundance of rRNAs as a loading 



 

 18 

control (bottom). The bands marked 28S and 18S are cytosolic rRNAs, and the bands marked 16S and 

23S* are chloroplast rRNAs.  

 A scatter plot of RPKM values for all chloroplast genes in hcf107 mutants relative 

to their normal siblings (Fig. 2.5a) revealed strongly reduced expression of psbH and a 

moderate reduction in psbB expression, validating prior conclusions about HCF107 

(Felder et al. 2001). In addition, values for psbA were slightly lower in hcf107 mutants 

than in the wild-type. An analogous display of the lpe1-3 data shows a similar effect on 

psbA (Fig. 2.5b). When the hcf107 and lpe1-3 data are compared directly (Fig. 2.5c), the 

loss of psbN and psbJ expression in lpe1-3, and the loss of psbB and psbH expression in 

hcf107 are unambiguous, but the difference at psbA is negligible. Furthermore, the 

distribution of Ribo-seq reads along the psbA ORF in hcf107 and lpe1-3 mutants is very 

similar (Fig. 2.5d). These results strongly suggest that the small reduction in ribosomes 

on psbA mRNA in lpe1 mutants is a secondary effect of their PSII deficiency.  

 

Ribo-seq analysis shows that HCF173 is required specifically to recruit ribosomes to 

psbA mRNA. 

LPE1 was proposed to activate psbA translation by recruiting HCF173 to psbA mRNA 

(Jin et al. 2018). HCF173 has been shown to activate psbA translation (Schult et al. 

2007), but the assays that demonstrated the psbA translation defect in hcf173 mutants left 

unclear the magnitude of the defect or whether expression of other PSII subunits was also 

compromised. To further evaluate the proposed collaboration between LPE1 and 

HCF173, we used Ribo-seq to analyze chloroplast translation in an Arabidopsis hcf173 

mutant (Fig. 2.6). The results demonstrated a severe loss of ribosomes from psbA mRNA  
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Figure 2.5. Comparison of Ribo-seq data for hcf107 and lpe1-3 mutants. The read count and RPKM 
values for all chloroplast genes are shown in Table S2.  

(a) Scatter plot showing the normalized abundance of ribosome footprints mapping to each 

chloroplast gene in the hcf107 mutant in comparison to normal siblings. The results validate the 

previous conclusion that HCF107 is required for psbH expression and stimulates psbB expression (Felder et 

al. 2001). 

(b) Scatter blot of the normalized abundance of ribosome footprints mapping to each chloroplast 

gene in the lpe1-3 mutant in comparison to Col-0 plants grown in parallel. The underlying data are the 

same as those shown in Fig. 2.4b.  

(c) Scatter plot comparison of chloroplast Ribo-seq data for hcf107 and lpe1-3 mutants that had been 

grown and analyzed in parallel. 

(d) Screen capture comparing Ribo-seq read coverage at psbA and nearby genes in lpe1-3 and hcf107 

mutants.  

 

 

in hcf173 mutants (~17-fold), whereas the expression of all other chloroplast genes was 

unaffected. RNA gel blot hybridizations show that the loss of psbA ribosome footprints in 

hcf173 mutants is due, in part to decreased psbA mRNA levels, as reported previously 

(Schult et al. 2007), but psbA mRNA remains plentiful in the mutant (Fig. 2.6 inset). 

These results confirm that HCF173 is essential for psbA translation and show, in addition, 

that it has no substantive effect on the expression of other chloroplast genes.  
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Figure 2.6. Ribo-seq analysis of chloroplast gene expression in Arabidopsis hcf173 mutants.  

Ratio of normalized ribosome footprint abundance in the wild-type relative to the hcf173 mutant for each 

chloroplast gene. Values were normalized to the number of reads mapping to chloroplast ORFs. The read 

count and RPKM values for all chloroplast genes are shown in Table S2. The inset shows RNA gel blot 

hybridizations of RNA from the same homogenates used for ribosome profiling. The blot was hybridized 

sequentially with probes specific for psbA and rbcL. The methylene blue-stained blot is shown below.  

 

 

Recombinant LPE1 binds with higher affinity to the psbJ 5’ UTR than to the psbA 

5’ UTR.  

It was reported that recombinant LPE1 binds the psbA 5’UTR in vitro (Jin et al. 2018). 

However, the significance of that interaction is called into question by the results above 

suggesting that LPE1 has no direct impact on psbA expression. In fact, no evidence had 

been presented that LPE1’s interaction with the psbA 5’ UTR was sequence-specific. We 

revisited this issue by comparing binding of recombinant LPE1 to sequences in the psbJ 

and psbA 5’ UTRs (Fig. 2.7). We tested binding to a 38-nucleotide RNA sequence 

mapping between 20 and 58 nucleotides upstream of the psbJ start codon; this region 

seemed a good candidate for harboring an LPE1 binding site because it includes a highly 

conserved block (Fig. 2.7) and its position with respect to the start codon is similar to that 

of the few well-defined binding sites for chloroplast translational activators (Fujii et al. 

2013; Hammani et al. 2012; Prikryl et al. 2011). Furthermore, binding nearer than this to 
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the start codon would encroach on the footprint of the initiating ribosome 

(Chotewutmontri and Barkan 2016), and would likely inhibit rather than activate 

translation. For psbA, we tested binding to the complete 5’ UTR, but divided it into three 

overlapping segments (Fig. 2.7, bottom). The results show that LPE1 binds with much 

higher affinity to the psbJ sequence than to the psbA sequences. The very weak binding 

to psbA RNAs appears to be non-specific, as it is at the level that is often observed for 

promiscuous RNA-binding by PPR proteins in vitro (e.g. Hammani et al. 2012; Sun et al. 

2013; Williams-Carrier et al. 2008). Taken together with the Ribo-seq data above, these 

results strongly suggest that LPE1 directly activates psbJ translation by binding the psbJ 

5’ UTR and that it does not directly activate psbA translation. 

 

 

 

Figure 2.7. Gel mobility shift assay demonstrating relative affinities of recombinant LPE1 for 

sequences in the psbJ and psbA 5’ UTR.  

The RNA sequences used for binding assays are marked on the alignments below. Binding reactions 

included RNA at 15 pM and recombinant LPE1 at 0, nM, 125 nM, 250 nM, or 500 nM. The experiment 

was performed five times using heparin concentrations ranging from 0-50 µg/ml, with similar results. 
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DISCUSSION 

Our results show that the orthologous proteins TPJ1 and LPE1 in maize and Arabidopsis, 

respectively, share a conserved function as translational activators of the chloroplast psbJ 

ORF. Our data show that psbN translation is also compromised in lpe1 mutants. Given 

that PsbN is an assembly factor for PSII (Torabi et al. 2014), the psbN expression defect 

likely contributes to their loss of PSII.  Although psbA ribosome occupancy was reduced 

slightly in lpe1 mutants, hcf107 mutants have a similar reduction; this suggests that the 

small decrease in psbA translation in lpe1 mutants is a secondary effect of their PSII 

defect. By contrast, the psbJ and psbN expression defects in lpe1 mutants cannot be 

explained in this way because hcf173 and hcf107 mutants express psbJ and psbN 

normally.  

These findings show that the loss of PsbJ is the sole cause of the PSII deficiency 

in maize tpj1 mutants and strongly suggest that it is a major contributor in Arabidopsis 

lpe1 mutants. Analysis of psbJ knockout mutants in tobacco showed that PsbJ is 

important for the accumulation of the PsbP subunit of the oxygen enhancing complex and 

for the association of LHCII with the PSII core (Suorsa et al. 2004). Tobacco psbJ 

mutants have a light-sensitive phenotype that is more severe in mature than in young 

leaves (Hager et al. 2002; Suorsa et al. 2004; Swiatek et al. 2003). These mutants also 

exhibit a decrease in PSI under some conditions (Hager et al. 2002; Swiatek et al. 2003). 

We observed a decrease of PSI in lpe1 mutants (Appendix D) whereas the prior study did 

not (Jin et al. 2018), suggesting that PsbJ in Arabidopsis likewise impacts PSI stability 

under specific conditions. The maize tpj1 mutant now provides an opportunity to 

investigate PsbJ function in the context of a C4 monocot. 
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It seems likely that TPJ1 and LPE1 exert their effect on psbJ translation by 

binding its 5’-UTR. Although an association between LPE1 and the psbJ RNA was not 

detected by RNA coimmunoprecipitation (Jin et al. 2018), false-negatives are common in 

experiments of that type. Furthermore, the tagged LPE1 used for that experiment was not 

shown to be functional. It is not possible to use the “PPR code” to infer the sequence 

specificities of LPE1 and TPJ1 because their PPR motifs are irregular. That said, we 

showed that LPE1 binds selectively to a conserved region of the psbJ 5’-UTR in vitro 

(Fig. w.7).  This region is predicted in both maize and Arabidopsis to contribute to stable 

RNA conformations that would occlude the psbJ translation initiation region (Appendix 

E). We hypothesize that TPJ1 and LPE1 binding prevents the formation of these 

inhibitory RNA structures, analogous to the mechanism suggested for various other 

chloroplast translational activators (reviewed in Zoschke and Bock 2018).   

Our data call into question the functions proposed previously for LPE1 (Jin et al. 

2018). The PSII deficiency in the lpe1-3 mutant had been attributed to a defect in psbA 

translation, but the much stronger reduction in psbJ and psbN expression shown here 

accounts for their PSII deficiency. Furthermore, it was observed previously that a D1 

degradation product is found at elevated levels in lpe1-3 mutants [see Fig. S10 in (Jin et 

al. 2018)]; this seems inconsistent with the view that D1 is synthesized at reduced rates 

and suggests instead that the loss of D1 is due to accelerated degradation. It was also 

proposed that LPE1 activates psbA translation by binding directly to psbA RNA and 

recruiting HCF173 (Jin et al. 2018). A key piece of evidence for this model was the 

binding of LPE1 to the psbA 5’UTR in vitro (Jin et al. 2018). We show here, however, 

that recombinant LPE1 binds with much higher affinity to the psbJ 5’UTR; the very weak 
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binding to psbA sequences is at a similar level to the non-specific interactions that are 

often observed with PPR proteins.   

Our experiments identify two plausible explanations for the apparent reduction in 

psbA translation reported previously for lpe1 mutants: (i) the absence of PSII causes 

secondary effects on psbA translation (as demonstrated by our hcf107 data); (ii) the 

comparison of stunted mutant plants to wild-type plants at a more advanced 

developmental stage may have contributed to the apparent psbA translation deficit due to 

the unique developmental dynamics of psbA translation. The psbA gene is one of a 

handful of chloroplast genes whose translational efficiency increases through leaf 

development in maize, and it stands out as the gene for which this increase is greatest 

(Chotewutmontri and Barkan 2016). It seems likely that an analogous scenario holds true 

in Arabidopsis. Because non-photosynthetic Arabidopsis mutants grow more slowly than 

the wild-type, it is common to compare mutant plants to normal seedlings of the same age 

but at a more advanced developmental stage. Indeed, the prior report on LPE1 (Jin et al. 

2018) and our initial Ribo-seq analysis of lpe1-4 mutants (Fig. 2.4a) took this approach. 

However, when we selected mutant and normal plants at a similar developmental stage, 

their difference in psbA ribosome occupancy was minor (compare Fig. 2.4a to Fig. 2.4b) 

and this residual effect can be accounted for by the PSII defect in lpe1 mutants.  

Defects in PsbJ and PsbN synthesis would be very difficult to detect with pulse-

labeling assays due to their short length and their lack of sulfur-containing amino acids. 

Furthermore, polysome assays are problematic for psbJ due to the fact that the psbJ ORF 

constitutes only a small fraction of the polycistronic RNA on which it resides. In fact, 

these methods are poorly suited for assessing translation rates of the majority of 
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chloroplast ORFs. Therefore, incorporation of ribosome profiling into the standard toolkit 

for the analysis of mutants with impaired photosynthesis can be expected to reveal 

numerous additional nucleus-encoded proteins that activate the translation of specific 

chloroplast ORFs.  

 

EXPERIMENTAL PROCEDURES 

Plant material  

Maize TPJ1 is encoded by GRMZM2G056116 (B73 RefGen_v3) or Zm00001d036489 

(B73 RefGen_v4). Evidence for its orthology with Arabidopsis LPE1 (AT3G46610) can 

be found at http://cas-pogs.uoregon.edu/#/pog/12707. The tpj1 insertion lines were 

generated by the UniformMu project (McCarty et al. 2013) and provided by the Maize 

Genetics Cooperative. The tpj1-1 allele is cluster mu1039450 and seed stock UFMU-

03095. The tpj1-2 allele is cluster mu1042597 and seed stock UFMu-05008.  Ribo-seq 

data for the tpj1 gene showed a virtual absence of expression tpj1 expression in tpj1-2 

mutants, indicating that tpj1-2 is a null allele (Appendix B). Seed for Arabidopsis 

mutants was obtained from the Salk collection (Alonso et al. 2003). All T-DNA insertion 

sites were confirmed by DNA sequencing.  lpe1-4 is SALK_064817 and has an insertion 

1798 nucleotides downstream of the start codon. Seed for lpe1-3 was generously 

provided by Hongbin Wang (Sun Yat Sen University). The hcf107 allele used for Ribo-

seq is SALK-079285C and has a T-DNA insertion ~20 bp upstream of the start codon. 

The hcf173 allele used for Ribo-seq is SALK_035984, and has a T-DNA insertion in the 

first exon, 65 nucleotides downstream from the start codon. 
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Maize was sown in soil and grown in diurnal cycles (16 h light, 8 h dark) at 28˚C 

and 26°C for the light and dark periods, respectively. Plants were illuminated using a 

light intensity of approximately 300 µmol m-2 s-1. The second and third leaves to emerge 

were harvested 9 or 10 days after planting and flash frozen in liquid nitrogen prior to 

processing for Ribo-seq or RNA extraction.  Arabidopsis seeds were sterilized by 

incubating the seeds in a 1% bleach and 0.1% SDS solution for 10 minutes followed by a 

70% ethanol wash, and three washes with sterile water. Seeds were sown on sterile MS 

medium [4.33 g/L Murashige and Skoog Basal Medium (Sigma), 2% sucrose, 0.3% 

Phytagel (Sigma), pH 5.7]. After vernalization, plants were grown in a growth chamber at 

22ºC in diurnal cycles (10 h light, 14 h dark) at a light intensity of 100 µmol m-2 s-1 (lpe1-

4 experiment) or 75 µmol m-2 s-1 (hcf107 and lpe1-3 experiments), and harvested at 

midday on the day indicated in the legends showing each experiment. Plants (aerial 

portion only) were flash frozen in liquid nitrogen and stored at -80 ˚C until use.  

 

RNA gel blot and immunoblot analysis  

Immunoblots and RNA gel blots were performed as described previously (Barkan 1998). 

Proteins for immunoblots in maize were extracted from the apical 2-cm of the second leaf 

of 10-day seedlings. RNA gel blot hybridizations for maize used RNA extracted from the 

same homogenate used for Ribo-seq analysis. RNA gel blot hybridizations for 

Arabidopsis used RNA extracted from separate aliquots of the flash-frozen leaf tissue 

used for Ribo-seq analysis. The hybridization probes are described in Table S1 

(Appendix F). Antibodies to PsbB, PsbC, PsbD, PsaA, Lhcb2, and Rps12 were purchased 
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from Agrisera.  Antibodies to PsbA, PetD, PsaD, AtpB were generated by our group and 

were described previously (Pfalz et al. 2009).  

 

Ribosome profiling 

Ribosome footprint preparation, library construction, and data analyses were performed 

as described previously (Chotewutmontri and Barkan 2018). Ribo-seq analysis of maize 

tpj1 mutants used the apical half of the second leaf to emerge in 9-day old plants, pooling 

tissue from two mutant seedlings and two phenotypically-normal siblings. Three 

biological replicates were performed for tpj1 mutants. Ribosome profiling of Arabidopsis 

mutants used the aerial portion of plants harvested 16 days (hcf173), 18 days (lpe1-4), or 

20 days (hcf107 and lpe1-3) after vernalization, pooling between two and four seedlings 

for each sample. Phenotypically normal siblings served as the wild-type controls for 

hcf173, hcf107, and lpe1-4.  Col-0 was used as the wild-type control for lpe1-3 because 

the mutant line was homozygous. 

 

Gel mobility shift assays 

Recombinant LPE1 was expressed as a fusion to thioredoxin and 6xhistidine tag from a 

pET-32a vector in E. coli strain CD41 (Lucigen), using the same expression construct 

used in the original report on LPE1 (Jin et al. 2018). The plasmid and expression protocol 

were generously provided by Hongbin Wang (Sun Yat-sen University). The protein was 

enriched by nickel affinity chromatography in a buffer containing 20mM sodium 

phosphate (pH 7.5), 500 mM NaCl, 20 mM imidazol, and 5 mM β-mercaptoethanol. The 

column was washed with the same buffer supplemented with 200 mM imidazole and the 
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protein was eluted with 800 mM imidazole. The recovered protein was further purified by 

gel filtration chromatography on a Superdex 200 column as described previously (Barkan 

et al. 2012), dialyzed into 30 mM Tris–HCl pH 8.0, 400 mM NaCl, 50% glycerol, 10 mM 

β-mercaptoethanol and stored at −20°C. Gel mobility shift assays were performed as 

previously described (Barkan et al. 2012) using radiolabeled synthetic RNA 

oligonucleotides (IDT). Binding reactions contained 15 pM RNA, 45 mM Tris–HCl (pH 

8.0), 180 mM NaCl, 10% glycerol, 4 mM DTT, 10 U RNasin, 0.1 mg/mL BSA, 25 

µg/mL heparin and protein at 500 nM, 250 nM, or 125 nM. Binding reactions were 

incubated for 45 min at 25°C and resolved on a non-denaturing 5% polyacrylamide gel at 

4°C. The data were visualized with a phosphorimager. The experiment was performed 

five times using heparin concentrations ranging from 0-50 µg/ml, with similar results. 

 

Accession numbers 

tpj1 - GRMZM2G056116 (B73 RefGen_v3) or Zm00001d036489 (B73 RefGen_v4) 

LPE1- AT3G46610 

HCF107- AT3G17040 

HCF173- AT1G16720 
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BRIDGE II 

While we showed in Chapter II that LPE1 does not function in psbA translation, I 

continue to focus on regulators of psbA translation in Chapter III.  There I describe a 

series of Yeast-two hybrid experiments which probe interactions among proteins 

hypothesized to be proximal translational regulators of psbA RNA.   
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CHAPTER III 

TITLE: INTERACTIONS AMONG PROTEINS REQUIRED FOR THE SYNTHESIS 

OF D1.   

 

AUTHORS: 

Sonja M. Ljungdahl  

 

 

INTRODUCTION 

 

Previous research supports the hypothesis that the plant proteins HCF244 and 

HCF173 are required for initiation of psbA translation (Link et al., 2012).   Studies in the 

cyanobacterium Synechocystsis revealed the presence of a protein-pigment complex 

consisting of Ycf39 (the ortholog of HCF244), an assembly factor called Ycf48, two 

high-light inducible proteins (Hlips), HliC and HliD, as well as three core subunits of 

PSII: D1, D2, and cytochrome b559.  This complex is hypothesized to represent a very 

early stage of PSII assembly, and to insert chlorophyll recycled from degraded D1 into 

the nascent D1 during PSII repair (Knoppova et al., 2014).  Ycf39 knock-out experiments 

revealed that the D1 DE loop, extending out into the stroma between the 4th and 5th 

transmembrane segments, is required for the recruitment of Ycf39 to the Ycf39-Hlip 

complex.  This suggests that Ycf39 may bind to a site on the D1 DE loop.  Taken 

together, the data from cyanobacteria suggest that Yc39 plays a role in D1 assembly 

during PSII repair at the thylakoid membrane’s cytoplasmic surface (Knoppova et al., 

2014).    
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Myouga et al. (2018) found a related complex in thylakoid membranes of the 

flowering plant Arabidopsis (Arabidopsis thaliana) that includes HCF244 (the ortholog 

of Ycf39), HCF136 (ortholog of Ycf48), and OHP1 and OHP2 (orthologs of Hlips) 

(Myouga et al., 2018).  OHP1 is required for PSII accumulation (Myouga et al., 2018), 

and the loss of OHP2 results in the total reduction of both HCF244 and OHP1 (Hey and 

Grimm, 2018). These results suggest that this PSII assembly/repair complex has been 

conserved between cyanobacteria and chloroplasts. Furthermore, unpublished work from 

the Barkan lab showed that OHP1 and OHP2 are required for the recruitment of 

ribosomes to psbA mRNA, as had been shown previously for HCF173 and HCF244.  

These findings and unpublished experiments from the Barkan lab suggest a 

conserved protein complex that couples D1 synthesis to PSII repair at the thylakoid 

membrane (Figure 3.1).  To discover how the proteins in this complex regulate ribosome 

recruitment to the psbA mRNA, i.e., which proteins are directly interacting with each 

other, I performed a series of Yeast 2 hybrid experiments.  Contemporaneously, a paper 

by Hey and Grimm was published (2018), which confirmed an interaction between 

HCF244 and OHP2.  Their research includes a series of BiFC or Bimolecular Florescence 

complementation experiments, showing that a region of the OHP2 protein (the middle 

region) is necessary for the interaction of OHP2 and HC244.  In the present study, I 

demonstrate that the OHP2 middle region is sufficient for an interaction with HCF244.   
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Figure 3.1   Working model that connects light-induced D1 degradation to the activation of psbA- 

ribosome recruitment in the context of a PSII assembly/repair complex.   

 

 

MATERIALS AND METHODS 

 

Plasmid Construction 

Yeast-two hybrid assays were performed using pBD-GAL4 Cam as bait and 

pAD-GAL4-2.1 as the prey vector from the HybriZAP-2.1 Two-Hybrid system kit 

(Agilent technologies).  I linearized the vectors using New England Biolab’s (NEBs) 10x 

high fidelity (HF) restriction enzymes and set up a 40 microliter reaction: 4 µL of 10x 

NEB Cut Smart Buffer, 4 µL of plasmid (4 µg), 0.5 µL (10 units) of Sal1 restriction 

enzyme, 0.5 µL (5 units) of EcoR1 restriction enzyme, and 30 µL of sterile water.  The 

solutions were incubated at 37 °C for one hour and then run out on a 1% agarose gel in 

1XTAE Buffer.  Plasmids were gel purified using Thermo Fisher Scientific’s GeneJET 

Gel Extraction Kit according to the manufacturer’s instructions. 

Gene blocks for all sequences of interest in this investigation were synthesized by 

Integrated DNA technologies; sequences are provided in Appendix G.  Plasmid vectors 

were assembled by Gibson Assembly (New England Biolabs) on all constructs and 
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cloned in frame between the EcoR1 and Sal1 sites of pBD-GAL4 Cam and pAD-GAL4-

2.1 vectors (Figure 3.2).  For the construction of pADHCF244, gene block At-HCF244 

pAD gene block n-term (496 bp) and At-HCF244 pAD/pBD gene block c-term (567 bp) 

were cloned into pAD-GAL4-2.1.  For the construction of pADOHP2_middle, gene 

block, pAD_At-OHP2_Basic Gene Block (200bp) was cloned into pAD-GAL4-2.1.  For 

the construction of pADOHP2_pro_middle, gene block, pAD_At-OHP2_ProRS_Basic 

Gene Block (329 bp) was cloned into pAD-GAL4-2.1. For the construction of 

pBDHCF173 gene block, At-HCF173 pBD gene block n-term  (664 bp) and At-HCF173 

pAD/pBD gene block c-term (913 bp) were cloned into pBD-GAL4 Cam.  For the 

construction of pBDHCF244 gene block, At-HCF244 pBD gene block n-term (495 bp) 

and At-HCF244 pAD/pBD gene block c-term (567 bp) were cloned into pBD-GAL4 

Cam. All plasmid inserts were sequenced at (Sequetech) and examined for accurate 

insertion alignment and nucleotide sequence (See Appendix G for nucleotide sequences 

of cDNA fragments). 

Yeast two-hybrid assay 

Plasmid constructs were transformed into E. coli strain XL1 Blue cells (Agilent 

technologies) and grown at 37°C on LB carbenicillin (50 µg/ml final concentration) 

plates.  Competent yeast S. cerevisiae YRG-2 strain (Agilent technologies) were 

transformed with the two hybrid plasmid constructs, pBD-GAL4 Cam (DNA binding 

domain) and pAD-GAL4-2.1 (DNA activation domain), according to the manufacturer’s 

instructions.  They were plated on selection plates lacking leucine and histidine (pAD-

GAL4-2.1) or plates lacking tryptophan and histidine (pBD-GAL4 Cam) and incubated in 

30°C room for 2-4 days.  Each experiment was performed four times.  I used the control 
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plasmids provided in the HybriZAP kit pBD-WT and pAD-WT as the strong interaction 

controls, pBD-MUT and pAD-MUT as the weak interaction controls, and pLamin C and 

pAD-MUT as the negative interaction controls.  Screening for HIS3 reporter gene 

expression was performed by growing constructs overnight in liquid drop out media 

without leucine, tryptophan or both.  I pelleted and resuspended all cultures to give an 

OD800 of 0.5.  A 10 µL volume of the suspensions as well as 10x, 100x, and 1000x 

dilutions were dropped on plates containing solid SD media lacking either leucine and 

tryptophan (growth control), or leucine, tryptophan, and histidine (reporter gene assay).  

These plates were grown at 30°C for 2-4 days.  Filter lift assays were performed on plates 

according to HybriZAP-2.1 Manual (see section on Screening-Filter Lift Assay) to screen 

for the expression of lacZ reporter gene.  As per the recommendation of professor Diane 

Hawley, I used Schleicher and Schuell No. 589 Blue Ribbon Filter paper.  In addition, I 

diverged from Agilent technology’s protocol by holding the filter paper in liquid nitrogen 

for thirty seconds one time instead of three times for 10 seconds.   

 
 

 

Figure 3.2. Gene constructs used in Y2H experiments. PCR products of gene block fragments were 

cloned into yeast-two hybrid vectors pAD-GAL4-2.1 or pBD-GAL4 Cam. 
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RESULTS 

Detection of the interaction between OHP2 and HCF244  
 

I performed a series of Yeast Two-Hybrid experiments to identify interactions 

among Arabidopsis thaliana proteins required for ribosome recruitment to psbA RNA 

and thus, D1 synthesis (Link et al., 2012, Knoppova et al., 2014, Myouga et al., 2018, 

Hey and Grimm, 2018).  I screened for interactions between HCF244, HCF173 and two 

segments of OHP2 (Figure 3.2): OHP2-pro-middle represents the entire region that 

extends out of the membrane into the stroma whereas OHP2_middle lacks a proline-rich 

region that is at the N-terminus of the “stromal tail”.   In addition, I tested individual 

transformants to confirm there was no autoactivation from any single construct (Figure 

3.3).   

The screen yielded one interacting pair, OHP2 and HCF244; both the shorter 

(OHP2_middle) and longer (OHP2 pro_middle) OHP2 constructs showed a positive 

interaction with HCF244.  The strength of the interaction between OHP2 and HCF244 

was comparable with strong interaction controls pADWT + pBD WT for positive 

histidine expression (Figure 3.4). 

This result shows that the OHP2 middle region alone is sufficient for an interaction with 

HCF244.  No interaction was detected between pADHCF244+pBDHCF173, pADOHP2 

pro_middle + pBDHCF173, pADOHP2_middle + pBDHCF173, or in the negative 

control reaction (pLaminC + pADmut) (Figure 3.4).   

To validate the interaction between OHP2 and HCF244, I performed a filter lift 

assay to detect the expression of the second reporter gene, lacZ, on colonies that showed 

positive histidine expression.  The result confirmed the interaction between 

pADOHP2_middle and pBDHCF244, but the colonies that included the longer 
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pADOHP2 pro_middle did not show expression of lacZ (Figure 3.5).  It is likely that the 

interaction between HCF 244 and the longer protein segment is weaker than the 

interaction between HCF 244 and the middle region alone.   

 

 

Figure 3.3: Constructs do not activate HIS3 reporter gene on their own.   These plates show growth on 

media lacking tryptophan and histidine (left) or lacking leucine and histidine (right).  Lack of growth 

confirms there is no autoactivation from individual constructs.   

 

 

Figure 3.4. OHP2 middle region is sufficient for an interaction with HCF244 in yeast. This plate 

shows growth on media lacking leucine, tryptophan and histidine.  Growth without histidine indicates an 

interaction between proteins.  An interaction is evident in both strong and weak positive controls as well as 

with HCF244 and both versions of OHP2 proteins: the middle plus proline-rich region and the middle 

region alone.   
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Figure 3.5. OHP2 middle region + HCF244 activate the β-galactosidase reporter.  Transcription of 

lacZ reporter gene (β-galactosidase activity) was assayed for each co-transformant.  In all assays, pADWT 

+ pBD WT was used as strong positive control, pBD-MUT and pAD-MUT as the weak interaction 

controls, and pLamin C and pAD-MUT as the negative interaction controls.  An interaction is evident in 

both strong and weak positive controls as well as with OHP2 middle region and HCF244.   

 

 

 

Comparison of OHP2 middle interaction region with orthologs in other species 

reveals conserved amino acid sequence.   

 

The OHP2 middle interaction region is the C-terminal portion of the protein that 

extends out into the stroma.  Multiple sequence alignment in this region between 

Arabidopsis and Maize, Poplar, and rice reveals a highly conserved region at the 

interaction site (Figure 3.6).   
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Figure 3.6: Sequence alignment of OHP2 in rice Oryza sativa (1), Maize Zea mays (2, 3), Arabidopsis 

thaliana (4), Aspen Populus tremula (5,6).  Approximate region  (Amino acids 81-130 (Arabidopsis) 

sufficient for interaction with HCF244 underlined in red.   

 

Helical Wheel Projection in the middle region of the OHP2 stromal tail Shows Basic, 

Acidic and Polar Clustered Regions 

We used I-TASSER to predict the structure of the middle region of OHP2.  The 

structure shows an alpha helix followed by 11 unstructured residues.  A helical wheel 

projection shows clustering of acidic residues in two regions, basic residues in two 

regions, and polar residues in two regions.  In addition, the software predicts that the 

helix binds a peptide, or possibly Calcium (Figure 3.7). 
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Figure 3.7: Helical Wheel Projection in the middle region of the OHP2 stromal tail Shows Basic, 

Acidic and Polar Clustered Regions 

 

 

DISCUSSION 

In this study I confirmed an interaction between OHP2 and HCF244, specifically 

that the interaction domain is in the section of OHP2 that projects out into the stroma 

between amino acids 82-129.  This result shows that the OHP2 middle region alone is 

sufficient for an interaction with HCF244.  This complements the conclusion reached by 

Grimm and Hey (2018), who showed through BiFC-bimolecular florescence 

complementation experiments that the OHP2 middle region is required for an interaction 

with HCF244.  By nature of BiFC experiments, Grimm and Hey showed an interaction 

between the two proteins, while my Y2H reveals this interaction is direct and not 

mediated by other proteins present in chloroplasts.    

 This study supports the conjecture that a conserved thylakoid membrane complex 

regulates translation of psbA RNA.  This complex includes HCF244 and HCF173, which 

have been previously shown to be required for psbA ribosome association (Link et al., 

2012; Schult et al., 2007), and additionally have no impact on the translation of other 
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mRNAs (Williams-Carrier et al., 2019, and unpublished results from the Barkan lab). The 

complex also includes OHP1 and OHP2, which are also required for psbA translation 

(unpublished results from the Barkan lab).  Fractionation data from Link et al. (2012) 

show that HCF244 is tightly associated with the stromal face of the thylakoid membrane, 

and is remarkably resistant to proteases.  We conjecture that HCF244 is tethered to the 

membrane and protected from proteases by its tight interaction with OHP2. It is possible 

that these proximal regulators function in the activation and/or repression of psbA 

translation by modulating the accessibility of ribosomes to psbA’s ribosome binding site.  

Future experiments should be aimed at exploring this hypothesis.  In addition, more work 

is required to understand how the light-induced signal triggers these changes in proximal 

regulator activity.  For example, predictions with I-TASSER (Figure 3.7) predicted that 

OHP2’s helical projection in the stroma binds calcium, which is known to fluctuate in 

response to changing light conditions (Hochmal et al., 2015; Vainonen et al., 2008). 

These results suggest that calcium may be involved in the signal transduction pathway 

that triggers the recruitment of ribosomes to psbA mRNA in response to light. 
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CHAPTER IV 

CONCLUSION 

 

In this study we investigated the role of proteins hypothesized to mediate the 

effects of light on psbA translation, and consequently D1 synthesis.  We demonstrated 

that the maize protein TPJ1 does not influence psbA translation.  Instead, our results show 

it is required for the translation of the chloroplast psbJ mRNA, which encodes a different 

subunit of PSII.   Additionally, I performed Yeast two-hybrid assays to illuminate 

protein-protein interactions, which we hypothesized are involved in the synthesis of D1.  

My research shows a specific amino acid sequence on the OHP2 protein is sufficient for 

interaction with the protein HCF 244.  It is intriguing that this region of OHP2 is 

predicted to bind Ca++ by the I-TASSER protein structure prediction algorithm. Future 

experiments can address whether Ca++ in fact binds OHP2, and whether this influences 

its interactions with HCF244 and ability to activate psbA translation. This work 

contributes to the literature specifying the molecular actions driving D1 replacement.    
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APPENDIX A 

SUPPLEMENTAL FIGURE 1 

 

 

Figure S1. Multiple sequence alignment of LPE1 orthologs in Arabidopsis thaliana (At), Zea mays 

(Zm), Oryza sativa (Os), and Populus trichocarpa (Pt).  These correspond to AT3G46610, 

GRMZM2G056116, Os12g18640, and POPTR_0017s10700, respectively. PPR motifs are marked above 

with arrows. The first motif is highly degenerate and is marked with a dashed line. The asterisks mark the 

amino acid in each repeat that discriminates pyrimidines from purines according to the PPR code (Barkan 

et al. 2012). The Predotar (Small et al. 2004) and Target P (Emanuelsson and Heijne 2001) algorithms 

predict that the rice and maize orthologs have chloroplast transit peptides (see http://cas-
pogs.uoregon.edu/#/pog/12707). The positions of the T-DNA insertions in the Arabidopsis lpe1 alleles used 

here are marked. 
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APPENDIX B 

SUPPLEMENTAL FIGURE 2 

 

 
 
 

 

Figure S2. Screen captures of Ribo-seq data from the Integrated Genome Viewer (IGV) showing 

absence of tpj1 expression from the tpj1-2 allele. The ubiquitin 2 gene is displayed to provide an internal 

standard. The number of read counts for each gene is indicated in parentheses. 
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APPENDIX C 

SUPPLEMENTAL FIGURE 3 

 

 

 

 

Figure S3. Replicate Ribo-seq assays of maize tpj1-2 mutants. These experiments came from separate 

plantings, and used plants harvested at midday (top) or plants that were exposed to one hour dark and then 

reilluminated for 15 minutes (bottom). Graphs show the ratio of normalized reads mapping to each 

chloroplast gene in the wild-type siblings relative to the mutants. The apparent defect in ribosome coverage 
on exon 3 of rps12 in the first replicate (panel a) is likely a result of sampling error due to the small number 

of reads. 
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APPENDIX D 

SUPPLEMENTAL FIGURE 4 

 

 

 

Figure S4. Arabidopsis lpe1 and hcf107 alleles used in this study. 

(a) The insertion sites and phenotypes of plants used for Ribo-seq. The plants were grown for 18 

days (lpe1-4) or 20 days (lpe1-3 and hcf107) on MS medium in diurnal cycles as described in 

Methods. The lpe1-3 line was homozygous for the insertion, so Col-0 was used as the control. 
(b) Seedling leaf extracts from plants harvested 18 days after transfer to growth conditions were 

fractionated by SDS-PAGE and analyzed by immunoblotting. Plants were grown under different 

light intensities (75 or 35 µE as indicated). Each blot was probed consecutively with antibodies 
specific for the indicated proteins. An image of each Ponceau S-stained blot is included to 

illustrate sample loading and the abundance of the large subunit of Rubisco (RbcL). The lpe1-3 

mutants grown at 75 µE were used for ribosome profiling.  
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APPENDIX E 

SUPPLEMENTAL FIGURE 5 
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APPENDIX F 

SUPPLEMENTAL TABLE 1 

 

 

 

Table S1. Primers and probes used in this study.  

 

 

 

 

 

 

 

 

 

 

 



 

 48 

APPENDIX G 

SUPPLEMENTAL TABLE 2 

At-HCF244 pBD gene block n-term 

CAAAGACAGTTGACTGTATCGCCGGCGGTGAACTTGGCGCCAGGGACACCGGTGAGACCCACGAGCATTCTGGTAGTAGGAGCAACAGG

AACTCTTGGAAGGCAGATAGTACGTAGGGCTTTAGATGAGGGATATGATGTACGTTGTCTGGTCCGTCCGAGACCGGCTCCCGCAGATTT

TTTGAGGGACTGGGGGGCGACCGTCGTCAATGCGGATTTAAGCAAACCTGAAACGATACCCGCTACCCTAGTCGGGATTCACACAGTAAT

AGACTGTGCCACCGGTCGTCCCGAAGAGCCTATAAAAACAGTAGACTGGGAAGGGAAGGTAGCGCTTATCCAGTGCGCAAAGGCCATGG

GCATTCAAAAGTATGTCTTCTACAGCATCCATAACTGTGATAAACATCCGGAAGTACCTCTAATGGAAATAAAATACTGTACAGAGAAGT

TCCTGCAAGAATCTGGATTAAACCATATTACAATCAGGCTGTGCGGG 

 

At-HCF244 pAD gene block n-term 

CGAATTAGGATCCTCTGCTAGCAGAGCGGTGAACTTGGCGCCAGGGACACCGGTGAGACCCACGAGCATTCTGGTAGTAGGAGCAACAG

GAACTCTTGGAAGGCAGATAGTACGTAGGGCTTTAGATGAGGGATATGATGTACGTTGTCTGGTCCGTCCGAGACCGGCTCCCGCAGATT

TTTTGAGGGACTGGGGGGCGACCGTCGTCAATGCGGATTTAAGCAAACCTGAAACGATACCCGCTACCCTAGTCGGGATTCACACAGTAA

TAGACTGTGCCACCGGTCGTCCCGAAGAGCCTATAAAAACAGTAGACTGGGAAGGGAAGGTAGCGCTTATCCAGTGCGCAAAGGCCATG

GGCATTCAAAAGTATGTCTTCTACAGCATCCATAACTGTGATAAACATCCGGAAGTACCTCTAATGGAAATAAAATACTGTACAGAGAAG

TTCCTGCAAGAATCTGGATTAAACCATATTACAATCAGGCTGTGCGGG 

 

At-HCF244 pAD/pBD gene block c-term 

ACCATATTACAATCAGGCTGTGCGGGTTTATGCAGGGCTTGATTGGACAATATGCCGTGCCGATACTAGAAGAAAAGTCAGTCTGGGGCA

CTGATGCCCCGACTAGAGTCGCTTACATGGATACGCAAGATATAGCCAGACTAACACTTATCGCGTTAAGGAATGAAAAGATCAACGGT

AAACTATTGACTTTTGCTGGGCCGCGTGCTTGGACGACGCAAGAGGTTATTACCCTTTGCGAGCGTTTGGCCGGGCAAGATGCAAACGTG

ACCACCGTTCCTGTGAGTGTATTACGTGTAACCAGACAGTTAACGAGATTCTTCCAGTGGACGAACGATGTCGCAGACAGACTAGCTTTC

TCTGAGGTCTTGTCCTCAGACACAGTATTCTCAGCGCCGATGACGGAAACTAACAGCCTTCTAGGTGTAGATCAGAAGGATATGGTTACA

CTAGAAAAATACTTACAAGATTACTTCTCCAATATATTAAAGAAGCTGAAAGATCTTAAAGCCCAAAGTAAACAAAGCGACATCTATTTC

TAATCGACTCTAGAGCCCTATAGTGAGT  

 

pAD_OHP2_basic gene block 

CGAATTAGGATCCTCTGCTAGCAGAGCACAAAAGGCTGTGGCTGTCGATGGCAAGTCTGTCACGACCGTAGAATTTCAGAGGCAGAAGG

CAAAGGAATTACAAGAGTACTTCAAACAGAAGAAATTGGAAGCGGCAGGTCAAGGACCGTTCTTCGGGTTCCAGCCAAAAAATTGATCG

ACTCTAGAGCCCTATAGTGAGT  

 

pAD_At-OHP2_ProRS_Basic Gene Block 

CGAATTAGGATCCTCTGCTAGCAGAGTATTTATCATAAGGTGTTCTCAGACGGAAGGCCCTCTTAGGAGGCCCTCAGCACCCCCCACACT

GAGGGAACCTCAAAAACCCGTTCCGCCAAGTCAACCTAGCAGTAGTCCCCCACCGAGTCCGCCCCCACAAAAGGCTGTGGCTGTCGATG

GCAAGTCTGTCACGACCGTAGAATTTCAGAGGCAGAAGGCAAAGGAATTACAAGAGTACTTCAAACAGAAGAAATTGGAAGCGGCAGG

TCAAGGACCGTTCTTCGGGTTCCAGCCAAAAAATTGATCGACTCTAGAGCCCTATAGTGAGT 

 

At-HCF173 pAD/pBD gene block c-term 

GACACTACGGCCAGCAAATACGACGGAGGAATGGATGCAAAGTTCGAATTTACGGAGACCGAGAGAGCGGAGTTCTCAGGCTACGTCTT

CACAAGAGGCGGATATGTAGAACTTAGCAAAAAACTGAGTTTGCCCCTGGGAACGACTCTGGATAGATATGAAGGACTTGTTTTGTCTGT

AGGCGGTAATGGACGTTCCTATGTGGTGATTTTGGAGGCTGGCCCTAGTTCCGACATGAGCCAGAGCAAGCAGTACTTTGCGAGAATTTC

CACCAAAGCCGGTTTCTGTAGGGTCAGAGTTCCTTTCAGCGCGTTCAGGCCAGTAAACCCGGAAGATCCGCCACTTGACCCCTTCCTAGT

GCACACTCTGACAATCAGGTTTGAGCCAAAAAGACAAAGGCCGGTCGATGGGCTTGCCGGAGCGCAACAAGATTTAAGATCCTTTTCCCT

GGTATTCGAGTATATAAAAGCCCTTCCAGCTGGACAAGAGACGGACTTTATTCTGGTGTCATGCACGGGATCTGGGGTCGAGGCCAACAG

GAGAGAGCAAGTCCTAAAGGCAAAGAGAGCTGGCGAAGACTCCTTGCGTCGTTCCGGCTTAGGGTACACCATTATTCGTCCTGGCCCCTT

GAAAGAAGAGCCTGGTGGCCAGAGAGCATTGATCTTTGACCAGGGCAACAGAATCTCTCAAGGGATTAGCTGCGCCGATGTTGCTGATA

TATGTGTAAAAGCTCTTCATGATTCTACAGCAAGAAATAAATCCTTTGACGTTTGCCACGAATACGTAGCCGAGCAAGGAATTGAGCTGT

ACGAACTAGTGGCGCACCTGCCGGATAAAGCTAATAATTATCTTACGCCTGCTCTATCAGTGTTAGAAAAGAACACGTAGTCGACTCTAG

AGCCCTATAGTGAGT  

 

At-HCF173 pBD gene block n-term 

AAAGACAGTTGACTGTATCGCCGGCCAAATTGGATGATGTAAATCCTGTCGGGCTTGGTCGTAGGTCTCGTCAAATTTTCGATGAAGTTT

GGAGAAAATTCTCAGGCTTAGGACAAATGAGTAGGACTACAAGGCCCGACGAGCAAGAAACTTTGGACTCCCTGTTGATCAGAGAGGGA

CCAATGTGTGAATTTGCGGTCCCAGGAGCCCAAAACGTGACAGTATTGGTCGTAGGAGCAACTTCCAGGATTGGTCGTATTGTCGTTAGA

AAGTTAATGCTTAGAGGATACACCGTCAAGGCACTTGTACGTAAACAAGATGAAGAAGTGATGTCTATGTTGCCAAGGAGTGTGGATATT

GTAGTGGGTGATGTGGGGGAACCATCCACTCTAAAGTCAGCCGTTGAAAGCTGCTCTAAGATAATCTATTGTGCCACCGCAAGGTCCACA

ATAACGGCTGATTTGACCCGTGTAGACCATTTAGGTGTTTACAATCTTACCAAAGCTTTCCAGGACTACAACAACCGTTTAGCCCAGTTGA

GAGCAGGCAAATCCAGTAAGTCAAAGCTACTTCTAGCGAAGTTTAAAAGTGCCGAGAGCTTGGATGGATGGGAGATCAGACAAGGAACA

TATTTTCAGGACACTACGGCCAGCAAATACGACGG 

 

At-HCF173 pAD gene block n-term 

CGAATTAGGATCCTCTGCTAGCAGAGCAAAATTGGATGATGTAAATCCTGTCGGGCTTGGTCGTAGGTCTCGTCAAATTTTCGATGAAGT

TTGGAGAAAATTCTCAGGCTTAGGACAAATGAGTAGGACTACAAGGCCCGACGAGCAAGAAACTTTGGACTCCCTGTTGATCAGAGAGG

GACCAATGTGTGAATTTGCGGTCCCAGGAGCCCAAAACGTGACAGTATTGGTCGTAGGAGCAACTTCCAGGATTGGTCGTATTGTCGTTA

GAAAGTTAATGCTTAGAGGATACACCGTCAAGGCACTTGTACGTAAACAAGATGAAGAAGTGATGTCTATGTTGCCAAGGAGTGTGGAT

ATTGTAGTGGGTGATGTGGGGGAACCATCCACTCTAAAGTCAGCCGTTGAAAGCTGCTCTAAGATAATCTATTGTGCCACCGCAAGGTCC

ACAATAACGGCTGATTTGACCCGTGTAGACCATTTAGGTGTTTACAATCTTACCAAAGCTTTCCAGGACTACAACAACCGTTTAGCCCAGT

TGAGAGCAGGCAAATCCAGTAAGTCAAAGCTACTTCTAGCGAAGTTTAAAAGTGCCGAGAGCTTGGATGGATGGGAGATCAGACAAGGA

ACATATTTTCAGGACACTACGGCCAGCAAATACGACGG 

 

Table 1. Nucleotide sequences of cDNA fragments encoding proteins required for D1 synthesis.   
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