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THESIS ABSTRACT 
 

Laura L McCullough 

Master of Science 

Department of Biology 

September 2019 

Title: Examining Anaerobic Oxidation of Methane in a Northern Peat Bog 
 
 

Globally, about one-third of annual methane (CH4) emissions from natural 

sources come from freshwater wetlands. Scientists need a strong understanding of CH4 

cycling to predict how climatic shifts will affect future CH4 emissions. Anaerobic 

oxidation of CH4 (AOM) is an important factor in CH4 cycle models in marine systems, 

but it has so far been excluded from freshwater CH4 cycle models which balance 

production and aerobic consumption. However, evidence for AOM as an influential part 

of CH4 cycling in freshwater ecosystems is mounting, revealing that traditional methods 

for measuring CH4 production and modeling CH4 cycling may need updating. Here, we 

present a new method for measuring AOM and gross CH4 production simultaneously 

during incubation using a 13CH4 tracer. This study supports existing evidence that AOM 

is an influential part of CH4 cycling in peatlands and presents evidence that the process 

can occur to a depth of at least 2 meters. 

This thesis includes unpublished co-authored material. 
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I. INTRODUCTION 

 
I wrote the introduction chapter with editing provided by Scott Bridgham. 

 
Anaerobic Carbon and Methane Cycling 

In ecosystems of every kind, scientists are pushing to better understand how 

environmental processes will be affected by future environmental change. Projecting 

shifts in greenhouse gas production in carbon-rich ecosystems is of particular interest 

because of its potential to create feedback loops with climate change (Dean et al., 2018). 

Methane (CH4) is a potent greenhouse gas that is a product of anaerobic 

decomposition, with a global warming potential that is about 30 times greater, and a 

sustained-flux global warming potential that is about 45 times greater, over a 100-year 

period than carbon dioxide (CO2; Neubauer & Megonigal, 2015, Armstrong et al., 2015, 

Myhre et al., 2013). Future climate is likely to be greatly impacted by slight changes in 

atmospheric CH4 concentrations because of the high global warming potential. 
Total annual CH4 emissions were about 548 Tg CH4 yr-1 between 1980 and 2010 

(Kirschke et al., 2013). Wetlands were the largest natural source of CH4, contributing 

about one third of the total global emissions (Bridgham et al., 2013, Saunois et al., 2016, 

Kirschke et al., 2013). Bottom-up models use mechanistic modules of varying 

sophistication for CH4 production, transport to the atmosphere, and consumption to 

estimate global CH4 emissions (Saunois et al., 2016). This technique yields estimated 

emissions of 185 (153-227) Tg CH4 yr-1 from natural wetlands (Saunois et al., 2016, 

Dean et al., 2018). Top-down models, on the other hand, take measured gradients of 

atmospheric CH4 and sometimes its isotopic δ13C signature to estimate what portion of 

emissions are coming from different sources across the Earth, like natural wetlands, 

wildfires, or agriculture (Saunois et al., 2016). These models estimate slightly lower 

emissions of 167 (127-202) Tg CH4 yr-1 (Saunois et al., 2016, Dean et al., 2018). 
Unfortunately, uncertainty around global wetland CH4 emissions is around 50%, 

highlighting the need for a better understanding of CH4 cycling in these ecosystems 

(Saunois et al., 2016). 

In wetlands, CH4 production has a positive relationship with both temperature and 

water-table level (Walter & Heimann, 2000, Dean et al., 2018). The bulk of wetland CH4 
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is emitted from tropical wetlands (Dean et al., 2018). However, northern peatlands are 

very carbon-dense and emit substantial amounts of CH4 despite having much lower 

temperatures (Loisel et al., 2014). Wetlands may increase CH4 production under a 

warmer climate, creating a positive feedback loop between CH4 production and 

temperature increase due to the greenhouse effect (van Winden et al., 2012, Dean et al., 

2018). However, net CH4 emissions depend on both CH4 production and CH4 oxidation, 

and there are both aerobic and anaerobic pathways of CH4 oxidation (Whalen & 

Reeburgh, 2000, Zhuang et al., 2004, Segarra et al., 2015). 

Importance of Northern Peatlands 

Peatlands are wetlands that are formed due to low hydraulic conductivity of the 

thick peat layer that leads to waterlogged conditions, further promoting the accumulation 

of partially decomposed organic matter, which has a high water-holding capacity (Clymo, 

1984, Foster et al., 1988). Cool temperatures in northern latitudes further slow the 

turnover of soil organic carbon (Yu, 2012). Northern peatlands cover about 3% of global 

terrestrial area, or about 4x106 km2, and hold about one third of the global soil C (about 

500 Gt), a disproportionately high stock of C per unit area (Yu, 2012, Loisel et al., 2014). 

Peatlands emit globally significant amounts of CH4 because of their very high 

organic content and anaerobic conditions (Frolking et al., 2006, Mikaloff Fletcher et al., 

2004). Because of the short atmospheric life time of CH4 versus CO2 (Joos et al., 2013, 

Myhre et al., 2013), when the greenhouse gas balance is examined over a long time scale 

(500 + years), the cooling effect of carbon sequestration is dominant over CH4 emissions 

(Whiting & Chanton, 2001, Frolking et al., 2006, Loisel et al., 2014). Northern peatlands 

are estimated to sequester between 15-46 g C m-2 yr-1 by Turunen et al. (2002) and to 

hold about 1,497 Mg C ha-1 (Bridgham, 2014). Loisel et al. (2014) created a database of 

268 bogs, fens, and permafrost peatlands in North America and Eurasia and presented 

peat properties and C and nitrogen (N) accumulation rates during the Holocene. The 

average estimated C sequestration rates across northern peatlands was 22.9 ± 2 g C m-2 

yr-1 (Loisel et al., 2014). 

It is likely that CH4 production will increase with warmer temperatures, unless 

significant water table draw-down occurs, which would increase decomposition of soil 
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organic carbon (SOC) to CO2 (Ise & Moorecroft, 2006, Clark et al., 2009, van Winden et 

al., 2012). Because of the role that northern peatlands play in the global CH4 emissions, it 

is important to have a strong understanding of the mechanisms behind their CH4 cycling 

to model how their emissions will be affected by environmental change. Models for CH4 

cycling in wetlands balance produced CH4 with aerobically consumed CH4 to estimate 

net emissions (Cao et al., 1996, Arah & Stephen, 1998, Matthews, et al., 2000, Walter & 

Heimann, 2000). These models may be oversimplified, though, because it assumes that 

anaerobic oxidation of CH4, a globally significant factor in marine CH4 cycling, is not 

occurring in these freshwater systems. 

Anaerobic Oxidation of Methane (AOM) 

Anaerobic Oxidation of CH4 (AOM) was first observed in the 1970’s (Barnes & 

Goldberg, 1976, Martens & Berner, 1974) in marine systems, where methanotrophs have 

since been found to consume about 90% of CH4 that is produced (Hinrichs & Boetius, 

2002, Reeburgh, 2007). Studies have linked AOM in marine systems to archaebacteria in 

groups ANME-1 to -3 that exist in association with sulfate-reducing bacteria (Hinrichs et 

al., 1999, Michaelis et al., 2002, Nauhaus et al., 2005, Treude et al., 2007, Bhattarai et al., 

2017, Yanagawa et al., 2018) and a fourth group of archaea that couple AOM with 

denitrification (Raghoebarsing et al., 2006). 

Associations between methanotrophs and sulfate-reducing bacteria are common in 

marine environments where both substrates exist, and sulfate has been identified as the 

main terminal electron acceptor (TEA) driving AOM in these environments (Barnes & 

Goldberg, 1976, Treude et al., 2005). More recently, manganese, and iron have also been 

identified as TEAs associated with marine AOM and it is suggested that manganese and 

iron-dependent AOM are also an important part of the marine CH4 cycle despite having 

slower rates than sulfate-dependent AOM ( Beal et al., 2009, Ettwig et al., 2016, 

Valenzuela et al., 2019). Availability of sulfate and CH4 have been seen to limit AOM in 

marine systems, but otherwise there is little understanding of environmental controls 

(Nauhaus et al., 2005). 

Until recently, AOM was assumed to be an unimportant part of the CH4 cycle in 

freshwater systems. Much of the skepticism surrounding AOM in freshwater ecosystems 

has been based on the limited availability of sulfate and other suitable TEAs. 
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Additionally, AOM is difficult to detect when using incubation experiments because of 

the overwhelming signal of CH4 production (Smemo & Yavitt, 2011). A study done in 

1980 by Zehnder and Brock presented evidence of AOM occurring simultaneously to 

CH4 in freshwater lake sediment and digested sewage sludge production. Another study 

(Smith et al., 1991) examined CH4 oxidation in a sand and gravel aquifer and observed 

both aerobic and anaerobic CH4 oxidation in the freshwater system. Since then, AOM has 

been observed in several other types of freshwater ecosystems, including arctic and sub- 

arctic lakes, boreal peatlands, and tropical wetlands (Smemo & Yavitt, 2007, Blazewicz 

et al., 2012, Gupta et al., 2013, Nordi et al., 2013, Martinez-Cruz et al., 2017 Valenzuela 

et al., 2017). The research on AOM in freshwater systems is only beginning to identify 

the importance of this factor in wetland CH4 cycling, and a much larger body of evidence 

is needed to understand the role that AOM plays and what controls it. 

Scientists are particularly interested in the occurrence of AOM in peatlands 

because of the significant role they play in the global CH4 cycle. A study done by Smemo 

and Yavitt (2007) provided evidence that AOM is an important factor in CH4 cycling in 

northern peatlands, consuming a significant amount of the CH4 produced, and nearly as 

much CH4 as was oxidized aerobically. The study reported an average AOM rate of 1.47 

± 0.22 µmol g dry peat-1 day-1, or 47.1% of produced CH4, and suggested that AOM is 

limited by CH4 porewater concentrations (Smemo & Yavitt, 2007). In contrast, 

Blazewicz et al. (2012) observed an AOM rate in Alaskan peat of only 0.021 ± 0.002 

µmol g dry peat-1 day-1. A study of AOM across 15 peatlands in North America that span 

a 1500 km latitudinal gradient and vary in hydrology, vegetation, and soil chemistry was 

done by Gupta et al. (2013). AOM was observed in all peatlands included in the study, 

with minerotrophic fens having higher rates than ombrotrophic bogs, on average (Gupta 

et al. 2013). Rates of AOM were reported at a minimum of 0.017 µmol g dry peat-1 day-1 

in a permafrost bog and a maximum of 0.511 µmol g dry peat-1 day-1 in a minerotrophic 

fen, with an overall average rate of 0.251 µmol g dry peat-1 day-1 for the 15 study sites 

(Gupta et al., 2013). 

Studies have now identified TEAs being used in AOM in multiple freshwater 

ecosystems. A coupling between denitrification and AOM was identified in agricultural 
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runoff by Raghoebarsing et al. (2006). Iron-dependent AOM was demonstrated in Danish 

freshwater lake sediment (Nordi et al., 2103). Other studies have since added 

observations of AOM coupled to Fe reduction in freshwater systems, including peatlands 

(Ettwig et al., 2016, Miller et al., 2019). One study has even presented evidence 

suggesting that AOM could be occurring with the humic-fraction of organic matter acting 

directly as a TEA in a tropical, coastal, organic wetland (Valenzuela et al., 2017). Despite 

the building evidence for TEAs used in different ecosystems, the TEA at play in nutrient- 

poor peatlands remains elusive (Gupta et al., 2013). 

Many of the studies on AOM in freshwater environments are not conducted in a 

manner to infer ‘in situ’, and especially ecosystem or global scale, rates. One reason 

scaling up may not be appropriate is because there has been some evidence that AOM 

may be limited by CH4 availability (Smemo & Yavitt, 2007), but most incubation 

experiments have not attempted to achieve ‘in situ’ porewater CH4 concentrations 

(Blazewicz et al., 2012, Gupta et al., 2013, Miller et al., 2019). It can also be a problem to 

scale up if only shallow depths are studied (Smemo & Yavitt, 2007, Blazewicz et al., 

2012, Gupta et al., 2013, Segarra et al., 2015, Miller et al., 2019), or if only a small range 

of environmental conditions are captured, for example if measurements are only made in 

the summer (Blazewicz et al., 2012, Miller et al., 2019). Most AOM studies use long- 

term incubations and measure CO2 as the product of AOM using a tracer (Blazewicz et 

al., 2012, Gupta et al., 2013, Miller et al., 2019). It is important to consider incubation 

length in these studies because they are long enough to be concerned with the tracer 

getting assimilated into biomass and being respired again as CO2 (Gupta et al., 2013). 
Based upon two seasonal AOM measurements in each of three wetlands along the 

East Coast of the USA, Segarra et al. (2015) scaled up to estimate that globally AOM in 

freshwater wetlands consumes about 200 Tg CH4/year, reducing their possible CH4 

emissions by about 50% (Segarra et al., 2015). This estimate for AOM accounted for a 

soil depth of 40 cm (Segarra et al., 2015). Some freshwater systems have much deeper 

soil profiles, like northern peatlands which average depths of 1.3-2.3 m and have 

maximum depths of 15-20 m (Clymo et al., 1998, Turunen et al., 2002). If this greater 

depth were accounted for, the global estimate for AOM in freshwater wetlands could be 

much higher. Additionally, for the AOM incubation, samples headspaces were purged 
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with pure CH4, to achieve high porewater concentrations (Segarra et al., 2013). This 

method probably gets close to ‘in situ’ concentrations for some freshwater wetlands but is 

probably much too high for many of them. This study also only examined three sites, and 

scaling up makes a bold assumption that all freshwater wetlands will have similar rates to 

these three wetlands. 

Altogether, evidence suggests that AOM is an important factor in CH4 cycling 

across many freshwater ecosystems, including northern peatlands. This means that 

conventional methods of measuring CH4 production may be underestimating gross CH4 

production if they assume no oxidation is occurring due to anaerobic conditions. It also 

suggests that measured fluxes and models based on the simplified CH4 cycle are 

attributing all CH4 consumption to aerobic oxidation, while anaerobic oxidation may be 

just as important. A much better understanding of AOM and the environmental factors 

that control its rates is needed to estimate global rates more accurately and to project how 

they might shift in relationship to CH4 production with environmental change. The 

mounting evidence for AOM in freshwater systems also suggests the need for an updated 

model of CH4 cycling in freshwater wetlands that incorporates AOM. 
As part of a long-term, ecosystem scale, climate manipulation experiment, this 

study focused on CH4 cycling, and specifically AOM, in a northern ombrotrophic bog 

(S1) undergoing a long-term whole-ecosystem manipulation of temperature and elevated 

atmospheric CO2. We also incubated peat from depths down to 2 m, allowing us to study 

whether these processes are depth dependent. The main objectives of this study were to 

develop a method to simultaneously measure AOM and gross CH4 production using a 
13CH4 tracer, measure AOM and gross CH4 production to a depth of 2 m in a Minnesota 

bog, determine the relative importance of AOM within the site’s CH4 cycle, and identify 

whether depth, and temperature have a strong influence on AOM at S1 bog. All three 

chapters of this thesis were made possible with the contributions of co-author Scott 

Bridgham, and we plan on publishing chapter II along with co-authors Cory LeeWays, 

Anya Hopple, Jason Keller, and Paul Hanson. 
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II. DATA 

 
The method for measuring AOM and gross CH4 production described in this 

chapter was primarily developed by myself and Scott Bridgham. Additional help in the 

lab and in the field was provided by Cory LeeWays and Anya Hopple. Jason Keller and 

Paul Hanson also helped with field work. This work was made possible by funding 

attained by Scott Bridgham and Jason Keller. Besides being the primary contributor to 

developing the method, I did all the calculations, analyzed and visualized the data, wrote 

the data chapter with editing from Scott Bridgham, and either conducted lab work myself 

or lead others in conducting lab work. 

Introduction 
 

Understanding global carbon (C) cycling in natural ecosystems has become 

increasingly important in the light of a changing climate. The methane (CH4) cycle is a 

particularly influential part of the C cycle due to its potency as a greenhouse gas and, 

therefore, its ability to cause a positive feedback loop with climate (Dean et al., 2018). 

Wetlands are responsible for the largest portion of natural CH4 emissions, contributing 

about a third of the total (Bridgham et al., 2013, Kirschke et al., 2013, Saunois et al., 

2016). Northern peatlands are a globally significant source of CH4 and store a 

disproportionately high amount of organic C for their areal extent making them of 

exceptional interest in terms of wetland C cycling (Frolking et al., 2006, Yu et al., 2012, 

Loisel et al., 2014). 

Models of CH4 cycling wetlands, and specifically peatlands, are important for 

predicting how CH4 emissions could shift in the future (Cao et al., 1996, Arah & Stephen, 

1998, Walter & Heimann, 2000, Zhuang et al., 2004). The major processes involved in 

these models are CH4 production and aerobic consumption, which should equal net 

emissions to the atmosphere but do not always match up well with measured emissions 

(Potter, 1997, Arah & Stephen, 1998, Smemo & Yavitt, 2006). One of the possible 

reasons for this discrepancy is that these models assume that CH4 consumption is not 

occurring in the anaerobic zone even though anaerobic CH4 consumption has been shown 
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to occur in many marine systems (Hoehler et al., 1994, Michaelis et al., 2002, Treude et 

al., 2005, Moran et al., 2008, Knab et al., 2009, Beal et al., 2009). 

Studies have been reporting observations of anaerobic oxidation of CH4 (AOM) 

in marine systems since the 1970s and it has been identified as a key process in marine 

CH4 cycling (Martens & Berner, 1974, Barnes & Goldberg, 1976). As much as 90% of 

the CH4 produced in marine systems has been shown to be consumed through AOM, 

primarily using sulfate as a terminal electron acceptor (TEA; Barnes & Goldberg, 1976, 

Hinrichs & Boetius, 2002, Nauhaus et al., 2005, Beal et al., 2009). More recently studies 

have started to report evidence of AOM in freshwater systems like peatlands and lakes 

(Smith et al., 1991, Smemo & Yavitt, 2007, Nordi et al., 2013, Gupta et al., 2013, 

Martinez-Cruz et al., 2017). Specifically, evidence is building that AOM may act as an 

important constraint on CH4 emissions in peatlands (Smemo & Yavitt, 2007, Blazewicz 

et al., 2012, Gupta et al., 2013, Segarra et al., 2015, Miller et al., 2019). 

Many studies of AOM in freshwater systems implicitly underestimate AOM rates 

by conducting experiments at low CH4 concentrations, not representative of in situ 

conditions, despite evidence that AOM is dependent on substrate availability (Smemo & 

Yavitt, 2007). Although some studies consider that AOM might be CH4 limited, they do 

not aim for in situ concentrations during incubations and instead add enough CH4 so the 

process should not be limited by its availability (Blazewicz et al., 2012). Additionally, 

these studies often have incubation periods that are lengthy enough to cause concern 

about microbial assimilation of the tracer into biomass later getting respired as CO2 

(Blazewicz et al., 2012, Gupta et al., 2013, Miller et al., 2019). It is also common for 

AOM to only be measured within the surface peat profile while peat deposits are often 

several meters deep (Turunen et al., 2002, Blazewicz et al., 2012, Segarra et al., 2015, 

Miller et al., 2019). Some of the studies that have examined AOM in northern peatlands 

take rates that were measured during incubation experiments and scale up to estimate for 

all northern peatland area (Gupta et al., 2013, Segarra et al., 2015). With the limitations 

of AOM incubation experiments mentioned above, the appropriateness of scaling up 

these incubation rates is questionable. 
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Accurate models of global CH4 cycling are imperative for scientists to predict 

how climate change will alter CH4 emissions. Because it is such a potent greenhouse gas, 

small shifts in atmospheric CH4 concentrations could impact global climate and 

potentially create a positive feedback loop (Dean et al., 2018). It is becoming clear 

through mounting evidence that AOM is a key factor in CH4 cycling and that it needs to 

be integrated into models to fully understand how it constrains CH4 emissions (Knittel & 

Boetius, 2009, Smemo & Yavitt, 2011, Segarra et al., 2015). To do this, however, 

scientists need to gain a much stronger understanding of the environmental controls 

behind AOM and how rates will be impacted by climate change. 

As part of a novel ecosystem-scale climate manipulation experiment in a northern 

ombrotrophic bog, we examined CH4 cycling, and specifically AOM and gross CH4 

production, in the context of climate change using 13C-tracer techniques. Our major 

objectives were to: (1) to develop a novel method to simultaneously measure AOM and 

gross CH4 production under as in situ conditions as possible with a 13CH4 tracer, (2) 

measure net and gross CH4 production and AOM at depths down to 2 m in the peat 

profile across a wide range of in situ temperatures in a northern peatland, and (3) identify 

whether temperature or depth influenced rates of AOM. 

Methods 

Site Description 

The Spruce and Peatland Response Under Changing Environments (SPRUCE) 

project is a novel ecosystem-scale climate manipulation experiment located in the USDA 

Forest Service Marcell Experimental Forest in S1 bog (8.1 ha) in north-central Minnesota 

(47°30.476’ N, 93°27.162’ W). S1 Bog is an ombrotrophic black spruce - Sphagnum bog 

with on average 2-3 m deep peat (Parsekian et al., 2012). The site was strip cut in 1969 

and 1974, and the SPRUCE experimental chambers are in these strips with their smaller- 

statured and lower density trees. 

The SPRUCE project was designed to be a long-term experiment that will 

continue for a decade. It was set up in a regression-based design with the aim of 

understanding how the bog will respond to different levels of warming and elevated CO2. 

There are five warming treatments (0, 2.25, 4.5, 6.75, 9° C above to ambient) each with 
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two open-top enclosures, and one of these enclosures is treated with elevated CO2 levels 

(+500 ppm). Deep peat heating was implemented in June 2014, heating the peat profile 

down to 3 m (Krassovski et al., 2015, Hanson et al., 2017). Whole ecosystem warming 

started in 2015 with warming of the air, and elevated CO2 was initiated in 2016 (Hanson 

et al., 2017). Enclosures are 12 m diameter by 8 m tall and contain natural bog 

vegetation, including trees. Sub-surface corrals installed to the mineral soil 

hydrologically isolate each plot to allow for experimental feedbacks on the water-table 

level. The SPRUCE experimental protocol is discussed in-depth in Hanson et al. (2017) 

and the belowground geochemistry at S1 Bog is discussed in Tfaily et al. (2014). 

Sample Collection 

Peat and porewater samples were collected from S1 bog in August and October of 

2018 at 5 depth increments (20-30, 40-50, 50-75, 100-125, and 175-200 cm) throughout 

the peat profile. Peat cores were collected using a 5 cm diameter peat auger. Three 25 mL 

glass serum vials were filled with about 7 g peat from each depth. Samples were then 

capped with thick blue butyl septa and aluminum crimp tops, flushed with N2 for 10 

minutes in the field, and then placed on ice. 

Porewater was collected from 1.25 cm diameter PVC piezometers from depths 

corresponding to peat samples (30, 50, 75, 100, and 200 cm) in each plot (Wilson et al., 

2016). Samples were collected using a peristaltic pump without exposure to the 

atmosphere during collection. Porewater was injected into N2-flushed glass serum that 

were sealed with septa and crimp tops, and stored on ice. 

Incubations 

Samples were shipped overnight to the University of Oregon, where they were put 

into dark incubators set within 1° C of their in situ soil temperature from the previous 

week at S1 bog. Samples were randomly divided into two batches that were processed 

one day apart within 3 days of collection. 

Samples were brought into an anaerobic glovebox with an atmosphere of N2/H2 

(98%/2%), and porewater was added to corresponding peat until there was a headspace of 

about 5.5 cm3. Before sealing the vials, we carefully stirred the slurry to make sure there 

were no bubbles in the peat. Three replicate samples were prepared for each depth in each 

plot. After the samples were taken out of the glovebox, they were bubbled with ultra-high 
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purity (UHP) N2 for 10 minutes to ensure there was no remaining CH4, and only a 

minimal amount of CO2 left in the form of dissolved inorganic carbon. Samples were 

then placed back in their respective incubators. Killed controls were prepared by 

autoclaving about 7 g peat in serum vials and deionized water. These controls were 

treated exactly like live 75 cm samples throughout the incubation (see below). 

After 48 hours of incubation (i.e., T1), we sampled the headspaces of one set of 

replicates for CH4 and CO2 concentrations using an SRI 8610c gas chromatograph with a 

flame ionization detector and a methanizer. These concentrations were used to calculate 

rates of net CH4 and CO2 production at in situ temperatures at low CH4 concentrations. 
After samples were analyzed at T1, gas production, CH4 was added at high 

concentrations that reflect in situ porewater concentrations (Zalman et al., 2018, Table 1) 

using the ideal gas law and Henry’s law calculations. 13C-labeled CH4 (99% 13C; Sigma- 

Aldrich) was added as a stable isotope tracer at a ratio of 1:2 13:12CH4. Two of the three 

replicates for each sample were injected with this isotopic ratio, while the third replicate 

was injected with the same volume of only 12CH4 as a live control. 
 
 

Depth (cm) CH4 

Concentration 

(mM) 

30 0.25 

40 0.35 

75 0.45 

125 & 200 0.70 

Table 1. Typical S1 bog 
porewater CH4 concentrations 
at the depths sampled for the 
AOM incubation (Zalman et al., 
2018). 

To confirm the initial concentration of CH4 in the samples for the AOM 

incubation, we sampled headspaces of the vials again on the gas chromatograph 30 

minutes to an hour after CH4 addition (i.e., T2). At this stage we also took 20 random 

headspace samples to measure the initial isotopic signature of headspace CH4. Using a 
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N2-flushed syringe with a stopcock, we removed 0.3 cm3 from headspaces and injected 

them into UHP N2-flushed, 120 mL glass serum vials sealed with blue butyl rubber septa 

for storage and appropriate dilution for analysis (see below). Then, samples were placed 

back into incubators for another 48 hours for the AOM incubation. 

At the end of this incubation period, the headspaces of all vials were sampled 

again for CH4 and CO2 concentrations (i.e., T3). We also took a sample from each 

headspace and injected them into UHP N2-flushed vials to measure final 13CH4 isotopic 

signature. All isotopic gas samples were analyzed using a Picarro Small Sample Isotope 

Module II (SSIM II), employing injection through a syringe. The analytical error of this 

injection method was tested with four groups of five replicate samples, each group with a 

different atom percent, and we found the instrument be accurate within an average of 

0.024 ± 0.0044 atom percent for the range measured in our experiment. Lastly, we 

measured pH of the samples. 

Calculations 

Total concentrations of CH4 and CO2 in the samples were calculated using 

Henry’s Law and pH. Before measuring CH4 and CO2 on the gas chromatograph, we 

measured the pressure inside each vial to correct for the volume of headspace lost inside 

the pressure gauge, we took a set of 5 vials, added 1cm3 gas to the headspace and 

calculated what the pressure should be. We repeated this adding 2, 3, 4 and 5 cm3 gas to 

the headspace, and plotted the results to form a standard curve with measured pressure 

versus percent of total gas in headspace lost. Using this equation, we were able to use the 

pressure that we measured before measuring gas concentration, and back-calculate what 

the total concentration was before the pressure was taken. 

AOM consumes 12CH4 and 13CH4 in proportion to their availability except for a 

small discrimination factor (1.012‰, Martens et al., 1999). Consequently, we calculated 

the AOM rate based on the disappearance of 13CH4 using equation 1 for all live samples 

(i.e., labeled and unlabeled) and the labeled dead controls (Fig. 1). The production of 
13CH4 in the live controls was very small relative to change in 13CH4 in the labeled 

samples, so this correction made little difference in the final rates. In contrast to AOM, 

methanogenesis primarily produces 12CH4, again except for a small discrimination factor 

(-60‰ or 1.05 atom %, Quay et al., 1988, Whiticar, 1993). Consequently, gross CH4 
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production was also calculated for all samples and controls using equation 2 based upon 

the dilution of the 13CH4 by the predominant production of 12CH4 during the incubation 

(Fig. 1). Preliminary calculations with “dummy data” with widely varying initial CH4 

concentrations and rates of both methanogenesis and AOM showed that using the final 

CH4 concentration for the gross CH4 calculation provided rates within a few percent of 

the actual rate in all scenarios. This approach has the advantage that gross CH4 

calculations were not dependent on small changes in net CH4 concentrations at the very 

high CH4 concentrations that we used, and we observed larger changes in atom percent. 

Equation 1: 
 

AOM = 
 

𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2 
 

 

 
 
𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇3 

 
   (( 100 ∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2)−( 100 ∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇3))−   

∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2 

   
(( 

(( 

𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐶𝐶,𝑇𝑇2 

100 ∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐶𝐶,𝑇𝑇2)−( 
𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐶𝐶,𝑇𝑇3     

100 ∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐶𝐶,𝑇𝑇3)) 
) ) 

(µ𝑚𝑚𝑚𝑚𝑚𝑚 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 13𝐶𝐶𝐶𝐶4,𝐶𝐶,𝑇𝑇2)∗𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑑𝑑𝑑𝑑𝑑𝑑 
 

Where: A% = atom %, L = 13C labeled samples, C = control 12C samples, T2 = initial AOM time 

point, T3 = final AOM time point. 

 
 

Equation 2: 
 

𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2 𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇3 (( 

Gross CH4 Production = 
100 − 100 )∗µ𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇3) 

𝐴𝐴% 13𝐶𝐶𝐶𝐶4,𝐿𝐿,𝑇𝑇2 
100 

 
 
 

Dead controls had rates of AOM and gross CH4 production that fell within the 

range of the live samples within the batch they were run with. We examined the 

equations extensively and checked our assumptions experimentally in the lab by 

quantifying recovery of 13CH4 and 12CH4 in autoclaved deionized water samples run the 
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same way as the live samples (see next section). Total CH4 concentration in dead controls 

changed by an average of 3.4 and 10.8% in August and October, respectively, between 

initial and final measurements. Unfortunately, we were not able to explain what caused 

these rates in dead controls. Consequently, we subtracted the average rate of dead 

controls from the batch of vials they were run with for both rates. 
 
 
 

 

Figure 1. Graphic of AOM and gross CH4 production illustrating 
how atom% in samples is altered by each of these processes. 
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Determining Limit of Detection 
 

Because the net change in CH4 concentration is a parameter in the AOM 

calculation and uncertainty about our ability to detect small changes in CH4 at very high 

concentrations, we quantified our analytical sensitivity to measure net changes in CH4. 

Using the same size vial and headspace as the AOM experiments but filled with only 

deionized water, vials were injected with one of four concentrations of CH4 spanning the 

range used in our experiments. Headspace CH4 concentrations were measured on the gas 

chromatograph after sitting for 24 hours at room temperature. We compared the 

measured CH4 concentrations with the amount of CH4 that we added to the vial and used 

the difference to calculate standard deviation (5.15%) for recovery of CH4. Then, we 

performed a 1-tailed t-test for 80, 90, and 95% confidence intervals which were used to 

determine our limit of detection (LOD) for changes in CH4 concentration in the 

incubations. The final LOD was a change of 8.9%, 6.8%, and 4.4% in total CH4 

concentration for 95%, 90% and 80% confidence that a real change in concentration 

occurred. 

Data analysis 

Data for net CH4 and CO2 production, and gross CH4 production were log- 

transformed to improve their distribution. Rates of AOM and net change in CH4 at in situ 

concentrations were already normally distributed. All rates were analyzed using mixed 

effects linear models in R (package nlme, version 3.4.1). Models were run for net CH4 

and CO2 production, AOM rates (for 95, 90, and 80% confidence intervals), net change in 

CH4 at high concentrations, and gross CH4 production using temperature as a continuous 

variable, depth as a categorical variable, and plot as a random variable. Tukey’s tests 

were used to examine significant differences (p < 0.05) between depths when appropriate. 

Results 

CH4 & CO2 production at low concentrations 

Net production of CH4 at low CH4 concentrations (i.e., T1) decreased with depth 

(Fig. 2, p < 0.0001) with or without a 30 cm outlier (value 2.85 µmol g dry peat-1 day-1), 

and increased with temperature (p < 0.0001), but the temperature effect depended upon 

depth (p = 0.021). Methane production was greatest in the 30 cm depth (p < 0.001) but 
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did not differ among the other depths. Methane production increased with temperature in 

both surface and deep samples (Fig. 3, p = 0.029 and Fig. 4, p = 0.0001), but with a 

steeper slope in the surface peat. In contrast, neither depth (Fig. 5, p = 0.500) nor 

temperature (p = 0.113) affected the production of CO2. 

 
 

 

Figure 2. Net CH4 production by depth at 
low initial CH4 concentrations (excluding 
one outlier from the 30 cm depth). 

Figure 3. Net CH4 production relative to 
temperature for the 30 cm samples at 
low initial CH4 concentrations. 

 
 
 

 
 

Figure 4. Net CH4 production relative to 
temperature for samples from 50, 75, 
125, and 200 cm at low initial CH4 

concentrations. 

Figure 5. CO2 production plotted by 
depth for all samples at low initial CH4 

concentrations. 

 

Net change in CH4 at high concentrations 

The net change in CH4 at high CH4 concentrations (i.e., T3) generally decreased 

with depth (Fig. 6, p = 0.005) but was not affected by temperature (p = 0.63). Rates from 
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the top 75 cm of the profile were higher than those from 125 cm (p = 0.015, 0.03, 0.02) 

and samples from 200 cm were not different from any other depth (Fig. 6). Generally, 

CH4 concentrations increased over the incubation (62.5% positive), but 37.5% of the 

rates had decreasing CH4 concentrations, generally because of the subtraction of the high 

rates in the dead controls. Rates of net change in CH4 at high concentrations had no 

notable relationship with CH4 production rates at low CH4 concentrations. 

The net change in CH4 was qualitatively similar when a conservative 95 % 

analytical confidence interval was applied to the data. The net change in CH4 decreased 

with depth (Fig. 7, p = 0.012) but was not influenced by temperature (p = 0.220). Rates of 

net change in CH4 at 125 cm were lower than those at 50 and 75 cm (p = 0.05, 0.02) and 

neither 30 nor 200 cm were different from other depths (Fig. 7). For rates of net change 

in CH4, 60.4% were positive, 33.3% were negative, and six (6.3%) had no net change in 

CH4. Generally similar results were obtained using 90% and 80% analytical confidences 

(Fig. S1 and S2). 
 
 

 

Figure 6. Net change in CH4 

concentration (no confidence interval 
applied) by depth. 

Figure 7. Net change in CH4 

concentration with 95% analytical 
confidence interval by depth. 

 
 

Change in Atom % 

The greatest decrease in atom percent 13CH4 occurred in the surface 30 cm 

increment (Fig. 8, p < 0.0001), whereas there was no difference among the other depths 

with or without one outlier. Methane production should decrease the atom percent 

because primarily because about 99.95% of what is produced is 12CH4, but there was only 
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a decrease in the 30 cm depth (p =0.005), no significant change at the 50 cm depth (p = 

0.35), and an increase at 75, 125, and 200 cm depth (p = 0.086, 0.001, 0.0005). 

Temperature did not influence change in atom percent (p = 0.34). 
 
 

Figure 8. Net change in atom % by depth, 
excluding one outlier (value = -16.9%). 

 
 

AOM 

Rates of AOM did not vary by depth (Fig. 9, p = 0.138) or temperature (p = 

0.143) when no analytical confidence interval for the net change in CH4 concentration 

was applied. When a 95% confidence interval was used, depth (Fig. 10, p = 0.011) but 

not temperature (p = 0.902 affected AOM rates. However, only depths of 50 and 125 cm 

were different from each other (p = 0.105). Rates were positive at 30 cm using no 

analytical confidence interval (p = 0.05), negative at 50 cm depth using a 95% confidence 

interval (p = 0.039), and positive at 125 cm under no analytical confidence interval or a 

95% confidence interval (p = 0.08, 0.06), while rates at 75 and 200 cm were never 

different from zero (p = 0.36, 0.47). Using either no analytical confidence interval for net 

change in CH4 or a 95 % confidence interval, 60.4% of the rates were negative. Using 

80% and 90% confidence intervals gave similar results (Fig. S2). Generally, as net 

change in CH4 increased AOM decreased (Figs. 11,12). 
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Figure 9. AOM rates (no analytical 
confidence interval applied) by depth. 

Figure 10. AOM rates using 95% 
analytical confidence interval by depth. 

 
 
 

 
 

Figure 11. AOM rates relative to net 
change in CH4 (no analytical confidence 
interval applied) by depth. 

Figure 12. AOM rates relative net 
change in CH4 (95% analytical 
confidence interval applied) by depth. 

 
 

Gross CH4 Production 

Gross CH4 production decreased with depth (Fig. 13, p < 0.0001) and increased 

with temperature (p < 0.0001) but the temperature effect was depth-dependent (p < 

0.0001). Surface (30 cm) samples had higher rates of gross CH4 production than all other 

depths (p < 0.01) and depths below the surface did not differ from each other. Depths of 

30 and 50 cm had positive rates of gross CH4 production (p = 0.0005, 0.053) while rates 

for depths of 75, 125, and 200 cm were not different from zero (p = 0.14, 0.48, 0.24). 

Mean and median gross CH4 production at the surface (2.641 and 1.025 µmol g dry peat-1 
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day-1) were about 77 and 8 times as great as those in deep (50, 75, 125, 200) samples, 

respectively (0.034 and 0.132 µmol g dry peat-1 day-1). Gross production of CH4 

increased with temperature for both surface samples (Fig. 14, p < 0.0001) and deep 

samples (Fig. 15, p = 0.035). Rates of AOM had a positive relationship with gross CH4 

production (Figs. 16, 17), but there was an odd dispersion of outliers in the middle of 

these regressions that were identified as samples from one of the August batches. There 

was no notable relationship between gross CH4 production and net change in CH4 at high 

concentrations. Methane production under low concentrations, however, had a positive 

relationship with gross CH4 production at high CH4 concentrations (Fig. 18). 
 
 
 

 

Figure 13. Gross CH4 production by depth. Figure 14. Gross CH4 production 
relative to temperature for samples 
from 30 cm. 
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Figure 15. Gross CH4 production 
relative to temperature for samples 
from 50, 75, 125, and 200 cm. 

Figure 16. Gross CH4 production relative 
to AOM (no analytical confidence 
interval applied) for all depths. 

 
 
 
 
 
 
 

 
 

Figure 17. Gross CH4 production 
relative to AOM (for 95% analytical 
confidence interval) for all depths. 

Figure 18. Gross CH4 production at high 
CH4 concentrations relative to CH4 

production under low concentration for 
all depths. 
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Discussion 

Comparison of AOM methods 

The traditional method for measuring CH4 production starting with a N2-flushed 

headspace is often considered a gross rate, although some AOM could potentially be 

occurring (Smemo & Yavitt, 2006, van Winden et al., 2012). If AOM is dependent on 

CH4 availability like some studies suggest, it is probably very limited during incubations 

that start with a N2 headspace meaning it likely is close to a gross process (Smith et al., 

1991, Smemo & Yavitt, 2007, van Winden et al., 2012). However, some studies have 

noticed that potential CH4 production and aerobic consumption do not match well with 

measured emissions, and AOM could be one explanation for this (Smemo & Yavitt, 

2006). Negative net CH4 production has also occasionally been observed in incubations 

of peat from S1 bog when starting with a N2-flushed headspace (Hopple, 2018). 

Most studies that examine AOM in freshwater systems spike samples with 13CH4 

and measure the increase of 13CO2 as the product of AOM over time (Blazewicz et al., 

2012, Gupta et al., 2013, Miller et al., 2019). Although using the increase of 13CO2 may 
be a more straightforward way of measuring AOM than measuring the disappearance of 
13CH4, this method is not without limitations. Longer-term incubations are used to 

measure the production of 13CO2 over time amidst the much higher 12CO2 production that 

is happening in the background (Table 2; Blazewicz et al., 2012, Gupta et al., 2013). 

These long-term incubations are valuable, but also introduce the noise of potential 

recycling of 13C that may have accumulated as microbial biomass. However, one study 

observed no 13C enrichment of peat due to microbial assimilation after 3 days of 

incubation, suggesting that our samples should have had no 13CH4 produced due to 

turnover of biomass during the 48-hour incubation period (Gupta et al., 2013). 



23  

Study Length of 
Incubation 

CH4 in Porewater 
(mM) 

AOM Rate 
(µmol g dry peat-1 

day-1) 

% of Gross CH4 

Production 
Consumed by 

AOM 
Gupta et 
al. 2013 

40 days 0.039 Mean (overall): 0.13 
Mean (fens): 0.17 
Range (fens): 0.10 – 
0.41 
Mean (bogs): 0.067 
Range (bogs): 0.022 – 
0.099 

Mean (overall): 
37.5 
Mean (fens): 28.4 
Range (fens): 3 – 
115.7 
Mean (bogs): 47.1 
Range (bogs): -2 – 
284 

Blazewicz 
et al. 2012 

~ 80 days (Alaska): 0.047 
(Puerto Rico): 
0.11 

Mean (overall): 0.012 
Mean (Alaska): 0.021 
Mean (Puerto Rico): 
0.0029 

Mean: 0.5 
Range: 0.3 – 0.8 

Miller et 
al. 2019 

40 days 0.10 Mean: 2.32 Mean: 29.5 
Range: 25 - 34 

Martinez- 
Cruz et al. 
2017 

204 days 0.10 Mean: 0.11 Mean: 32 

Segarra et 
al. 2015 

1 day NA Mean (overall): 0.13 
Range: 0.10 – 1.71 

Mean: 91.3 
Range: 78.1 – 98.9 

Smemo & 
Yavitt 
2007 

15 days Varying 
concentrations; 
NA 

Mean: 1.47 
Range: 0.086 - 15.2 

Mean: 41.7 
Range: 17.4 – 63.5 

Table 2. Compares different studies in freshwater systems of AOM and their methods, 
including incubation length, porewater CH4 concentration (when enough information was 
available to calculate; NA if not available). We used the average bulk density from S1 top 
0.5 m (0.155 g cm-3) to convert rates expressed in cm3 to g. 

 
 

Another possible limitation of many AOM studies in peatlands is that only surface 

peat is examined (Smemo & Yavitt, 2007, Blazewicz et al., 2012, Gupta et al., 2013, 

Segarra et al., 2015, Miller et al., 2019). Peatlands are known to have depths much deeper 

than the 0.5 m that most studies look at, with average depths of 1.3 – 2.3 m (Turunen et 

al., 2002). Both CH4 production and pooling of CH4 are known to occur in some 

peatlands to at least a depth of 2 m (Smemo & Yavitt, 2006, Clymo & Bryant, 2008, 

Zalman et al., 2018), so it is possible that AOM plays an important role in CH4 cycling at 

depths beyond the surface 0.5 m. 
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One limitation of our study was the use of analytical confidence intervals for 

detecting changes in CH4 concentrations as a conservative measure for AOM rates 

because of the reduced ability to measure small changes in CH4 at very high 

concentrations. We also had to subtract the AOM rates of dead controls from live 

samples which may have reduced the accuracy of calculated rates. However, even after 

applying the most conservative confidence interval (95%) and subtracting rates from 

dead controls, the average rates we calculated exceed many of the rates that have been 

measured in other studies (Table 2). 

In future experiments we would measure both consumption of 13CH4 and the 

production of 13CO2, as the latter may prove to be the more sensitive method for 

measuring AOM. We also realized that although AOM may be limited by the availability 

of CH4, the method for measuring AOM may also be limited by too high of CH4 

concentrations which can lead to reduced sensitivity in detecting changes in CH4 

concentrations. We are also interested in looking more closely into whether AOM is 

concentration dependent in future experiments. 

CH4 production and AOM rates 

Most studies that look at AOM and gross CH4 production calculate gross 

production rates by adding AOM rates to measured net CH4 production values (Gupta et 

al., 2013, Miller et al., 2019). Our method for measuring gross production using the 

dilution of 13CH4 was more direct, and we were interested in comparing the net rates of 

change in CH4 that we measured at in situ concentrations to a net rate calculated as the 

difference between AOM and gross CH4 production. Rates calculated by difference and 

those that were measured were closely related, especially when a 95% analytical 

confidence interval for change in CH4 concentration was applied, and the slope was 

reasonably close to 1 (Figs. 19, 20). Like measured rates of net change in CH4, rates 

calculated by difference showed no relationship to CH4 production rates that were 

measured starting with a N2 headspace. 
Gross CH4 production under in situ concentrations was reasonably well correlated 

with net CH4 production starting with a headspace of N2 (r2 = 0.47, Fig. 18), which 

provides some level of confidence in the gross CH4 production technique. However, 

gross CH4 production was 5.4 times higher at the surface and 5.2 times higher accounting 
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for the whole 2 m peat profile than CH4 production starting with a headspace of N2. Thus, 

it is possible that relatively high rates of AOM occurred even in incubations starting with 

a N2-flushed headspace. Giving further credence to this supposition, we have previously 

observed occasional net consumption of CH4 in S1 Bog when starting incubation with a 

N2 headspace (Hopple, 2018). 
 
 

 

Figure 19. Measured net change in 
CH4 plotted against net change in CH4 

calculated by the difference between 
AOM and gross CH4 production. 

Figure 20. Measured net change in CH4 

(for 95% analytical confidence interval) 
plotted against net change in CH4 

calculated by the difference between 
AOM and gross CH4 production. 

 
 
 

In 2013 another study observed AOM in S1 bog in peat samples down to 45 cm, 

estimating a rate between 0.056 ± 0.003 and 0.092 ± 0.007 µmol g dry peat-1 day-1 (Table 

2; Gupta et al., 2013). In comparison, our study estimates a higher average rate of 4.76 ± 

2.21 (using no analytical confidence interval) and 1.701 ± 1.223 µmol g dry peat-1 day-1 

(using the analytical 95% confidence interval) when accounting for samples to a depth of 

30 cm, and between 2.18 ± 1.65 (using no confidence interval) and 0.24 ± 0.69 µmol g 

dry peat-1 day-1 (using the 95% confidence interval) when accounting for a depth of 50 

cm. Average surface AOM rates in our study span a range that includes the average AOM 

rate measured by Smemo and Yavitt (2007) in a variety of northern peatlands (Table 2). 

One possibility for why some of our average rates are higher than those measured by 
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Gupta et al (2013) could be because our study had higher concentration of CH4 during 

incubation (Table 2); the incubation was also substantially shorter (2 vs. 40 days) in our 

attempt to more closely approximate in situ rates. With some studies indicating the AOM 

is limited by the availability of CH4 (Smith et al., 1999, Smemo & Yavitt, 2007), lower 

CH4 porewater concentrations could lead to lower rates of AOM. 
This same study calculated an average gross CH4 production rate of 0.158 ± 0.32 

µmol g-1 d-1 during the first twenty days of their incubation (Gupta et al., 2013). In 

comparison, our study measured a much higher average gross production rate of 2.641 ± 

0.611 µmol g-1 d-1 for peat when accounting for the top 30 cm and 1.50 ± 0.36 µmol g-1 d- 

1 from the top 0.5 m of the peat profile in S1 bog. Gross production of CH4 was also 

measured in an Alaskan peatland and an average rate of 0.144 µmol cm3 d-1 was 

estimated, which is also comparatively low to our study (Miller et al., 2019). Gross CH4 

production rates in both the aforementioned studies are closer to our studies average net 

CH4 production rates of 0.494 ± 0.035 and 0.288 ± 0.085 µmol g-1 d-1 that were measured 

starting with a N2 headspace for the surface 30 cm and 50 cm, respectively. 
Methane production was highest at the surface for net CH4 production starting 

with a N2 headspace and for gross CH4 production. Two previous studies at S1 Bog show 

higher CH4 production rates at the surface at low concentrations, supporting our results 

(Wilson et al., 2016, Hopple et al., in prep). We also found that CH4 production became 

negative in deep peat when porewater CH4 was increased from very low to in situ 

concentrations. The only way for gross CH4 production to be negative is for the atom 

percent of 13CH4 to increase over the incubation, which we saw at 125 and 200 cm 

(Equation 2, Fig. 8, p < 0.0001). Other than measurement error, if CH4 production and 

AOM are the only processes affecting the isotopic composition of CH4, the only way for 

this to occur is for rates of AOM to be much larger than CH4 production given that about 

99.95% of CH4 production is as 12CH4 and the small isotopic discrimination of AOM 

against 13CH4 (1.012‰, Martens et al., 1999). In support of this idea, the net change in 

CH4 at higher CH4 concentrations were negative and in directional agreement with gross 

CH4 production below 1 m depth. In contrast, rates of CH4 production under low CH4 

concentrations were positive but very small below 50 cm depth. Other studies have 
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observed similarly low rates of CH4 production in the deep peat of northern peatlands, 

including S1 bog (Putkinen et al., 2009, Tfaily et al., 2014, Wilson et al., 2016, Hopple et 

al., in prep). High CH4 concentrations at depth under in situ conditions may well enhance 

AOM and inhibit methanogenesis. 

Rates of gross CH4 production that exceed AOM rates are how pools of CH4 form 

within the peat profile. At S1 bog, porewater CH4 concentrations are highest at 125 and 

200 cm (Table 1), but in our study both gross and rates of net change in CH4 agree that 

more CH4 is being consumed than produced at these depths. Studies have found modern 

dissolved organic carbon in deep peat and have attributed this to downward advection 

(Corbett et al., 2013). Similarly, vertical diffusion could be occurring with CH4 

throughout the peat profile and could explain how CH4 pools as deep as 2 m even when 

net consumption is occurring (Clymo & Bryant, 2008). 

Gross CH4 production rates were generally higher in our study than AOM rates 

(that used analytical confidence intervals) down to 1 m depth (Fig. S3). Below 1 m depth 

AOM increased and gross production became negative, indicating net consumption of 

CH4. AOM consumed between 39.5 – 64.4% of the gross CH4 production in the top 30 

cm of the peat profile, and between 35.6 - 77.1% of the gross CH4 production down to 2 

m depth (Figs. 21, 22). Another study reported AOM to consume as much as 64% of 

gross CH4 production during incubations with Minnesota peat (Smemo & Yavitt, 2007, 

Table 2). Globally, in freshwater wetlands, it is estimated that AOM could be consuming 

over 50%, or 200 Tg CH4 annually, of the potential annual CH4 emission rate of 127-227 

Tg CH4 estimated from these ecosystems (Segarra et al., 2015, Table 2). Northern 

peatlands alone have been estimated to have annual AOM rates of 1.6-49 Tg CH4 (Gupta 

et al., 2013). These results strongly suggest AOM is an important constraint on global 

CH4 emissions. 
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Figure 21. Boxplots comparing AOM 
rates using no confidence interval to 
rates of gross CH4 production by depth. 

Figure 22. Boxplots comparing AOM 
rates using the 95% confidence interval 
to rates of gross CH4 production by 
depth. 

 
 
 

Temperature effects 

Considering this study was conducted within the context of climate change at the 

SPRUCE project, we were particularly interested in how the processes we measured 

varied over a range of temperatures (4 - 20° C). Rates of CH4 production starting with a 

N2 headspace and gross CH4 production starting with in situ CH4 concentration were both 

positively affected by increased temperature (Figs. 3, 4, 14, 15). This observation is 

upheld by research from many studies that have closely linked temperature to CH4 

production (Dunfield et al., 1993, Walter & Heimann, 2000, Saunois et al., 2016, Wilson 

et al., 2016, Dean et al., 2018, Hopple et al., in prep). However, CO2 production, AOM, 

and net change in CH4 starting with in situ CH4 concentrations did not vary with 

temperature. Another study done at the SPRUCE site in S1 bog found temperature to 

have no effect on CO2 flux or CO2 production rates below 75 cm (Wilson et al., 2016). 
However, this study did see CO2 production rate increase with temperature in the surface 

25 cm (Wilson et al., 2016). Additionally, a more recent study at the SPRUCE site found 

temperature to increase CO2 production in peat below 75 cm (Hopple et al., in prep). The 

effect of temperature on AOM rates may have been offset by the increase in CH4 

concentration with depth. The complicated interplay between AOM and gross CH4 

production described above may also have caused the lack of a temperature response in 
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the net change in CH4 at in situ concentrations. Another potential explanation for why 

AOM and net change in CH4 were not related to temperature could be our use of 

analytical confidence intervals for calculating these two processes. This is because some 

values were identified by confidence intervals as having no net change in CH4 when they 

may have changed but not enough to meet our cut-off criteria. 

Conclusion 

We present novel methods for measuring AOM and gross CH4 production at high 

in situ concentrations of porewater CH4 with a short incubation period. While the high 

concentrations of porewater CH4 presented challenges in determining meaningful net 

changes in CH4 over time, multiple lines of evidence suggest that the methods gave 

meaningful results. While there is no comparable method for directly measuring gross 

CH4 production, it would be useful in the future to compare the consumption of 13CH4 to 

the production of 13CO2 in determining AOM rates at high porewater CH4 concentrations. 

We were perplexed by the high rates of AOM in the dead controls despite multiple 

experiments showing good recovery of added 13CH4 in deionized water. It would also be 

useful to further explore if some abiotic mechanism is consuming 13CH4 in our 

experimental protocol. 

Anaerobic oxidation of CH4 has been shown to be globally important as a part of 

CH4 cycling in freshwater wetlands, even in nutrient-poor systems like northern peat 

bogs where availability of inorganic terminal electron acceptors is scarce (Smemo & 

Yavitt, 2007, Blazewicz et al., 2012, Gupta et al., 2013, Miller et al., 2019). Our study 

lends to the body of evidence that AOM is occurring in northern peat bogs, and that it is 

occurring at significant rates compared to measured gross production. Even as evidence 

of AOM as a global constraint of CH4 emissions mounts, there is a gap in the knowledge 

concerning how AOM will be affected by future climate change. It is likely that CH4 

production will increase in some ecosystems as temperature increases, but it is important 

to understand how AOM will shift to accurately predict future CH4 emissions. 
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III. CONCLUSION 
 

I wrote the conclusion chapter with editing provided by Scott Bridgham. 

The evidence presented in this study supports the idea that AOM is an influential 

part of the CH4 cycle in freshwater wetlands. We presented a new method for measuring 

both AOM and gross CH4 production under more in situ incubation conditions. 

Moreover, gross CH4 production using the new method agreed reasonably well with 

calculated gross production by difference of AOM and net change in CH4, providing 

some confidence in the method. Moreover, gross CH4 production rates were higher at the 

surface and lower at depth (125 & 200 cm) than CH4 production starting with a N2 

headspace, suggesting that traditional CH4 production techniques may be underestimating 

CH4 production at the surface and CH4 consumption in deep peat. 
Models of CH4 cycling in freshwater wetlands would be more accurate if they 

incorporated AOM, considering the evidence that it could be consuming over half of 

potential CH4 production, which is supported by our study (Smemo & Yavitt, 2007, 

Segarra et al., 2015). This would be especially true if improved incubation techniques 

lead to AOM and gross CH4 production rates that are closer to those occurring in situ. 

Considering the potency of CH4, having a strong understanding of how the ecosystems 

that account for the largest portion of natural emissions cycle CH4 is of great importance 

(Bridgham et al., 2013, Kirschke et al., 2013, Saunois et al., 2016). Greater accuracy in 

modeling of CH4 cycling allows scientists to better predict how emissions will shift with 

changing climate and whether they will play into a positive feedback loop with climate 

(Dean et al., 2018). More research needs to be done on AOM in freshwater wetlands, 

especially peatlands, examining environmental controls over the process so it can be 

appropriately included in CH4 models. 
Peatland ecosystems, their CH4 emissions, and their vast stores of old organic 

carbon rely on cold temperatures and waterlogged conditions for stability (Clymo, 1984, 

Clymo et al., 1998, Yu et al., 2012). Changes in climate and the CH4 cycle in peatlands 

could lead to an increase in CH4 emissions (van Winden et al., 2012, Wilson et al., 2016, 

Hopple et al., in prep) with the potential to affect global climate (Dean et al., 2018). 

These facts highlight the need for more accurate models of CH4 cycling in peatlands that 
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include AOM so scientists can better predict how these methanogenic ecosystems will 

respond to future climate change. 
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APPENDIX 

SUPPLEMENTAL FIGURES 

 
 
 
 
 
 

 

Figure S1. Net change in CH4 for a) no analytical confidence interval, b) 95% 
confidence interval, c) 90% confidence interval, and d) 80% confidence 
interval for all depths. Capital letters indicate significant differences between 
depths. 
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Figure S2. AOM for a) no analytical confidence interval, b) 95% confidence 
interval, c) 90% confidence interval, and d) 80% confidence interval for all 
depths. 
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Figure S3. Rates of AOM for a) no confidence interval, b) 95% confidence interval, 
c) 90% confidence interval, and d) 80% confidence interval plotted with Gross CH4 

production for all depths. 
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