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DISSERTATION ABSTRACT 

 

Heather M. Archer 

 

Doctor of Philosophy 

 

Department of Biology 

 

June 2019 

 

Title: Assessment of Natural Variation in the Response to Adult Starvation in 

Caenorhabditis elegans 

 

 

Caenorhabditis elegans typically feeds on rotting fruit and plant material in a 

fluctuating natural habitat, a boom-and-bust lifestyle. Moreover, stage specific 

developmental responses to low food concentration suggest that starvation-like 

conditions are a regular occurrence. In order to assess variation in the C. elegans 

starvation response under precisely controlled conditions and simultaneously phenotype a 

large number of individuals with high precision, we have developed a microfluidic device 

that, when combined with image scanning technology, allows for high-throughput 

assessment at a temporal resolution not previously feasible and applied this to a large 

mapping panel of fully sequenced intercross lines. Under these conditions worms exhibit 

a markedly reduced adult lifespan with strain-dependent variation in starvation resistance, 

ranging from <24 hours to ~120 hours. Genome-wide mapping of the responses of more 

than 7,855 individuals suggests four loci of large effects. Three of these loci are 

associated with single genes (ash-2, exc-6, and dpy-28) and the fourth is a ~26 KB region 

on Chromosome V encompassing several genes. Backcross with selection confirmed the 

effect of the Chromosome V locus. Overall, there is a clear genetic basis for natural 

variation in the response to food availability within this species. 
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CHAPTER I 

INTRODUCTION 

 

 Adaptation by natural selection hinges entirely on variation in fitness among 

individuals. Traits that have a clear and direct bearing on fitness are termed ‘life history 

traits’ and since life history traits determine an individual’s survival and reproduction 

they are the major components of fitness (Houle, 2001; Brommer, 2007; Nussey, Wilson, 

& Brommer, 2007; Braendle, Heyland, & Flatt, 2011). Therefore, the study of life history 

evolution is about understanding adaptation, seeking to explain how evolutionary forces 

such as natural selection shape organisms to optimize reproduction and survival when 

faced with ecological challenges from the surrounding environment.  

 Life history theory historically views evolution as a problem of optimization 

(Parker & Maynard Smith, 1990; Houle, 2001; Braendle, Heyland, & Flatt, 2011). The 

idea being that given a set of ecological factors (such as availability of food or presence 

of predators) that impact an organism’s ability to survive and reproduce, and given that 

there are constraints and trade-offs intrinsic to the individual, evolution will drive that 

population toward a combination of life history traits that maximizes reproductive 

success (Bennett & Lenski, 2007; Braendle, Heyland, & Flatt, 2011; Guillaume & Otto, 

2012). To find a solution for this problem it is then necessary to define: 1) what the 

extrinsic, environmental factors are and how they affect survival and reproduction; and 2) 

how intrinsic trade-offs and other constraints limit the ways in which the traits 

themselves can evolve. Moreover, there must be genetic variation underlying the affected 

traits because natural selection can only increase or decrease the frequency of alleles. If 
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there is no genetic variation, there is nothing for selection to act upon. This can be a bit 

tricky, however. A common assumption is that phenotypic variation in a trait is directly 

dependent on underlying genetic variation and that population-level changes in 

phenotypes over time arise via natural selection acting on ancestral genotypes (Stearns, 

2000; Sane, Miranda, & Agashe, 2018). This is a very logical assumption and there are 

clear examples of phenotypes for which this is the case. For example, multiple alleles 

affecting the persistence of lactase in humans have been identified. Each is associated 

with a distinct geographic region and period of time suggesting that there have been 

repeated independent origins of lactase persistence driven by natural selection during the 

onset of dairy farming in these regions (Itan, Jones, Ingram, Swallow, & Thomas, 2010). 

Therefore, the variation in phenotype of lactose tolerance/intolerance is directly tied to 

the genotype associated with lactase persistence.  

However, such a direct relationship is not always the case. For example, one of 

the most commonly studied traits is height. It is easily measured and because it has a 

normal distribution within populations statistical analysis is relatively straightforward. A 

2015 study showed that any influence of natural selection acting on height was minimal, 

if it exists at all, suggesting there is no significant force to push the trait in any particular 

direction (Stulp, Barrett, Tropf, & Mills). The genetic basis for height as evidenced by 

twin studies consistently has a heritability of 80-90% suggesting a strong genetic basis 

for heritability in this trait (Silventoinen, et al., 2003; Jelenkovic, et al., 2016). 

Conversely, when variation in height is examined through genome-wide mapping 

approaches (looking across individuals rather than within families), a large number of 

associated genes are identified but they collectively account for a relatively low 
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proportion of the variation in height (~45%) (Wood, et al, 2014; Shi, et al., 2016). So 

how can it be that the genetic basis of heritability for height could be so strong while the 

genetic basis for variation is relatively small?  

One possibility is that common single nucleotide polymorphisms (SNPs) with 

effect sizes so small they are far below statistical significance are so numerous that they 

account for much of the missing variation in complex traits (Anderson, et al., 2014; Shi et 

al., 2016; Boyle, et al., 2017). Several studies looking for the ‘missing heritability’ in 

human complex trait studies have supported this (Yang, et al., 2010; Shi, Kichaev, & 

Pasaniuc, 2016). For example, Shi et. al. (2016) found low-effect common variants to 

account for 21% of the heritability in forearm bone mineral density and 94% of the 

heritability in levels of high-density lipoprotein. 

Another likely contributing factor is plasticity – the ability of a single genotype to 

produce different phenotypes across different environments. Several studies conducted in 

Arabidopsis thaliana and maize examining the genetic basis for plasticity in traits such as 

flowering time point to the conclusion that plasticity itself is largely governed by myriad 

small-effect loci, suggesting that the phenotypic effect of the small-effect loci which 

appear to underlie the ‘missing heritability’ are, at least in part, the genetic element 

responsible for the phenotypic manifestation of plasticity (Buckler, et al., 2009; Fournier-

Level, et. al., 2011; Li, Cheng, Spokas, Palmer, & Borevitz, 2013; Sasaki, Zhang, Atwell, 

Meng, & Nordborg, 2015; Gage et al., 2017). Because plasticity is a modulation of the 

phenotypic expression of a genotype, it can be acted upon by natural selection and affect 

the genetic response across environments. Moreover, if there is adaptive variation in 

plasticity itself (different genotypes have different levels of plasticity), then selection can 
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be expected to move toward an optimal reaction norm which maximizes fitness across 

multiple environments (Stearns, 2000; Anderson, Wagner, Rushworth, Prasad, & 

Mitchell-Olds, 2013). This also suggests that plasticity in a trait can act as a buffer 

against environmentally induced changes in other traits in order to achieve or maintain 

optimality of fitness (Gage et al., 2017). All of these effects can act singly or combined to 

create a scenario where there is more phenotypic variation than can be accounted for by a 

straightforward relationship with genotypic variation. However, the phenotypic effect of 

plasticity is a response to variation in the extrinsic variable of the environment, so studies 

which hold the environment rigorously constant should be able to minimize the variation 

due to plasticity allowing the intrinsic genetic basis to be more clearly examined and thus 

contribute to a better understanding of the actual components on which natural selection 

acts.  

Another factor influencing the evolution of life history traits in addition to 

optimization via plasticity, is the constraint of fitness trade-offs (Stearns, 1989; Zera & 

Harshman, 2001; Morales-Ramos, Kelstrup, Rojas, & Emery, 2019). If there were no 

constraints, then fitness, i.e. survival and reproduction, would evolve to be maximal at all 

life stages. Logically, this would lead to “Darwinian demons” (Law, 1979), organisms 

that begin to reproduce as soon as they are born, produce infinite offspring, and 

essentially live forever. However, these organisms do not exist. Extrinsic resources are 

finite and intrinsic life history traits are subject to trade-offs, so natural selection is 

constrained to maximize fitness within the limits of extrinsic and intrinsic boundaries. 

Typically, trade-offs are described by negative phenotypic or genetic correlations 

between components of fitness within an individual such that an increase in fitness in one 
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trait results in a decrease in fitness via another. At the genetic level, this can be the result 

of a single gene that affects multiple traits (pleiotropy) or be due to selection acting on an 

allele that is in some way coupled to another so that they are frequently passed on 

together (linkage disequilibrium). This could possibly be a result of physical proximity, 

genes are so close to each other that recombination has not separated alleles, or there 

could be some functional constraint where certain combinations of alleles have been 

optimized such that they segregate together.  

An example of antagonistic pleiotropy is the age-1 gene in the nematode 

Caenorhabditis elegans. Hypermorphic alleles at this locus can extend adult lifespan up 

to 80% longer than the wild-type allele but at the expense of reduced starvation resistance 

such that when food is intermittent they are rapidly outcompeted by wild-type individuals 

(Walker, McColl, Jenkins, Harris, & Lithgow, 2000; Jenkins, McColl, & Lithgow, 2004). 

Linkage disequilibrium can be illustrated by a connection between alleles of the human 

leukocyte antigen (HLA) locus and the HFE hemochromatosis gene, mutations in which 

can lead to the excessive retention of iron in the body. Individuals with an H63D 

mutation at this locus, which has the potential to cause hemochromatosis, have an 

unusually high frequency of also carrying the HLA-A29 allele despite the fact that they 

are separated by ~4 MB (Cardoso et al., 2002; Pacho et al., 2004; Yassin et al., 2014; 

Rodriguez et al., 2015). However, individuals with this allelic combination, while having 

a predisposition toward development of hemochromatosis, have also been demonstrated 

to have a higher than average level of CD8+ T lymphocytes, which play a critical role in 

the speed at which the immune system recognizes and responds to pathogenic antigens 

(Cardoso et al., 2002). This suggests this may be a trade-off between a selective 
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advantage for linking this combination of alleles despite the disadvantage of the tendency 

toward hemochromatosis (Cardoso et al., 2002). 

At a more physiological level, trade-offs can be caused by antagonism in the 

allocation of limited resources within an individual. For example, when faced with a 

shortage of food, processes typically increasing growth and reproduction may generally 

be slowed in favor of investing energy in processes important for tissue maintenance, 

stress resistance, and extended survival (Templeman & Murphy, 2017). However, this 

type of trade-off may have a genetic basis and different genotypes may differ in how 

resources are allocated. Therefore, variation in trade-off strategies can drive 

genotypically grouped subsets of individuals in a population to optimize fitness in a 

differential manner and examination of this variation can be informative of how natural 

selection is acting on a population. 

Historically it has been difficult to examine questions of how natural selection 

acts on the genetic basis of life history traits. Given the problem of missing heritability 

and the influence of plasticity, it has been difficult to robustly define what the genetic 

basis is when traits are complex. Moreover, the ubiquitous nature of small effect loci 

combined with observations that the en masse effect can be of phenotypic importance in 

heterogenous environments suggests that pleiotropy is pervasive as the effects of these 

loci are not unique to any one specific trait (Walsh & Blows, 2009; Boyle, Li, & 

Pritchard, 2017). But, this also supports a genetic basis for trade-offs to constrain 

optimization in response to natural selection. Examining the genetic basis of complex life 

history traits can give direct insights into the structure of pleiotropy and provides a 

foundation for functional analysis. Given knowledge of how extrinsic environmental 
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factors and intrinsic organismal factors affect survival and reproduction, an optimality 

framework can be used to examine adaptation by natural selection. In summary, 

examining variation in life history traits contributes to understanding how natural 

selection drives populations to optimize reproductive success and shapes the evolution of 

phenotypes in the process. 

 

Dissertation Outline 

 The research described in this dissertation was done using the nematode 

Caenorhbditis elegans as a model system. As a model organism Caenorhabditis elegans 

is ideal for the study of the evolution of life history traits. C. elegans typically reproduces 

via hermaphrodite self-fertilization but males do occur, usually at a low frequency, and 

hermaphrodites are capable of outcrossing (Barriére & Félix, 2005). Because of this 

reproductive system, inbreeding is the norm and nearly clonal populations can exist 

without detrimental effects but it is also possible to use outbreeding to manipulate the 

levels of genetic variation in a controlled fashion. C. elegans also has a fully sequenced 

and well-characterized genome which enables the identification and characterization of 

genetic information (The C. elegans Sequencing Consortium, 1998). The time required 

for C. elegans to produce a new generation is 3-4 days and large populations can readily 

be maintained in a small amount of space making it feasible to maintain and study 

multiple cohorts simultaneously with large enough population sizes to facilitate the 

statistical power needed for GWA mapping. 

 The project described in Chapter II of this dissertation investigates the genetic 

basis of starvation response, a life history trait in C. elegans, and discusses the evolution 
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of two diverging strategies for optimizing reproduction during periods of starvation. 

There is ample evidence that starvation is a regular occurrence in wild populations of C. 

elegans and the resulting lack of nutrition has a direct impact on both reproduction and 

survival making the study of starvation response both ecologically and evolutionarily 

relevant as a life history trait (Barrière & Félix, 2014; Frézal & Félix, 2015). Previous 

work has shown that C. elegans has two very different strategies for reproducing when 

starved, one in which adult hermaphrodites sacrifice themselves to matriphagy and one 

where they effectively put reproductive maturation on hold (Angelo & Van Gilst, 2009; 

Seidel & Kimble, 2011; Burnaevskiy et al., 2018). However, studying starvation response 

in C. elegans has historically been complicated for two main reasons: 1) individuals try to 

flee in search of food and end up dying from causes other than starvation so assays have 

been limited to relatively small sample sizes and 2) because C. elegans are bacteriovores 

it is very difficult to maintain a starvation environment free of potentially edible 

contaminants without introducing complicating effects of handling and intervention 

during the course of the experiment. To address these issues, I created a novel 

microfluidic approach which has several advantages over traditional starvation assays. 

First, I created a microfluidic device which houses fifty worms per device in a contained 

space such that they are individually separated from each other and cannot flee. This 

device has constant perfusion of a sterile solution so any potential environmental 

contaminants are immediately removed without any handling or intervention and it is 

physically structured so that worms move in the same sigmoidal pattern as they would in 

their natural environment, i.e. even though this is a liquid based environment, worms are 

crawling rather than swimming. Second, one entire device is ~20 mm x 70 mm so fifty 
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individual worms are housed in an area of 1400 mm2. Traditionally, the equivalent 

experimental setup would require fifty petri plates with a 35 mm diameter. When laid out 

side-by-side this amounts to ~61,250 mm2, a ~44-fold difference in the amount of space 

required. Third, previous assays required manual observation of worm lifespans resulting 

in limitations on the temporal resolution of the data. I coupled the microfluidic device 

with an automated imaging system. In this system, the microfluidic devices are placed on 

flatbed computer scanners (Epson V700, model B11B178011) allowing simultaneous 

imaging of 600 individuals per scanner (12 microfluidic devices per scanner). The main 

limitation in this system is the time required for the scanner to complete a scan at the 

chosen resolution, and in this experiment that time limit was 4 minutes per microfluidic 

device. This results in a temporal resolution of 50 individuals being assayed every 48 

minutes, a much finer scale than previously possible with manual assays. Moreover, this 

resolution scales with the number of scanners. Using two scanners at a time, 7,855 

individuals were assayed for this study. 

 The C. elegans lines used in this project represent a unique genetic resource that 

allowed genome-wide mapping of the genetic basis of starvation response to be done 

with a degree of precision not available otherwise. The Caenorhabditis elegans 

Multiparental Experimental Evolution (CeMEE) mapping panel was derived in such a 

way that linkage disequilibrium is greatly reduced (Noble et al., 2017). This allows for 

the phenotypic effects of individual loci to manifest without confounding effects from 

linked loci. In addition, because C. elegans primarily reproduces through self-

fertilization, each individual line in the CeMEE panel is essentially a population of 

homozygous clones. Therefore, genetic variation is spread between lines and not within 
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lines. When assayed at the scale previously mentioned, this allows for a much clearer 

picture of the relationship between a given genotype and the starvation response 

phenotype. 

 Lastly, I used a novel alternative mapping approach to verify the results of the 

GWA mapping. Backcrossing with selection is a method to isolate genes with large 

effects, originally proposed by Sewall Wright in 1952 and traditionally used for 

‘improvement’ in breeding programs or to examine the additive effects of a quantitative 

trait locus (Wright, 1952; Hill, 1998; Luo, WU, & Kearsey, 2002; Hospital, 2005). The 

idea is to introgress a characteristic from a donor parent into the genetic background of a 

recurrent parent thereby isolating loci of relatively large effect (Wright, 1952; Hospital, 

2001; Luo, WU, & Kearsey, 2002). As generations progress, offspring are selected for 

the characteristic of interest and backcrossed to the recurrent parent. When selection is 

applied, the proportion of the donor genome reduces by half at each generation except on 

the chromosome with the locus of interest where the rate of decrease is slower (Hill, 

1997; Hospital, 2001; Luo, WU, & Kearsey, 2002; Hospital, 2005). Typically, this results 

in a signature of linkage drag where the loci of interest are selected for but so is the 

linked surrounding region, therefore using this scheme to precisely identify the genetic 

basis of a quantitative trait is not feasible. However, in this study, backcross with 

selection is not being used to identify loci of interest, rather it is applied as a technique to 

verify loci previously identified through GWA mapping. In addition, as previously 

discussed, the CeMEE panel lines used in this study have markedly reduced linkage 

disequilibrium so the effect of linkage drag should be correspondingly reduced. To our 
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knowledge this is the first instance of this technique being applied to C. elegans and thus 

represents a novel use of backcross with selection. 

 In Chapter III, I summarize the work from Chapter II and discuss how natural 

selection is likely acting on genetic variation for starvation response in C. elegans to 

produce two diverging life history traits.  
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CHAPTER II 

HIGH THROUGHPUT ASSESSMENT OF NATURAL VARIATION IN THE 

RESISTANCE TO STARVATION STRESS IN C. ELEGANS USING 

MICROFLUIDICS 

 

Introduction 

 In a natural ecological setting organismal behavior is governed by their energetic 

state, which in turn directly impacts how that organism invests its energy when the 

availability of resources in the environment is uncertain. These behaviors typically 

manifest as trade-offs between investing energy in somatic maintenance or allocating 

resources toward reproduction, which may lead to delays or shifts in reproduction over 

the course of an individual’s life under conditions of reduced resource availability. For 

example, multiple bird species change how they invest in broods when resources are 

scarce, partitioning resources toward somatic development and delaying or foregoing 

reproduction for the season (Covas, Doutrelant, & du Plessis, 2004; Shaw & Levin, 2012; 

Mourocq et al., 2016). Similarly, some arachnid species address the challenge of limited 

resources in a manner completely counter to this via increased investment in reproduction 

to the point of facultative matriphagy (Stearns, 1989; Evans, Wallis, & Elgar, 1995; Kim, 

Roland, & Horel, 2000; Tizo-Pedroso & Del-Claro, 2005; Salomon, Aflalo, Coll, & 

Lubin, 2015). Other species have evolved to physically and temporally separate somatic 

growth and maintenance from reproduction, particularly in migratory birds and fish that 

leave their natal homes for more resource-rich environments before returning back to 

their breeding grounds and investing the acquired energy resources directly into 
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reproduction (Stabell, 1984; Weber, Ens, & Houston, 1998; Bradbury et al., 2014; Moore 

et al., 2014). In its most extreme form, for instance in salmonids, the transition from 

somatic energy acquisition to reproductive investment is total, resulting in one-time, 

semelparous reproduction and death (Briggs, 1953; Kindsvater, Braun, Otto, & Reynolds, 

2016). 

Physiological effects of resource limitation can also more directly and 

immediately affect how individuals partition energy toward reproduction when nutrition 

is limited. For example, many mammalian species can delay implantation of fertilized 

eggs such that fetal development is postponed until nutrition is adequate, or for other 

species menstrual cycles become irregular and spontaneous abortion rates increase, and 

for unicellular organisms, nutritional state controls whether an individual develops to a 

reproductive state at all (Sandell, 1990; Bulik, et al., 1999; Trites & Donnelly, 2003; 

Kempes, Dutkiewicz, & Follows, 2011). The fact that such a broad diversity of species 

have evolved many independent mechanisms to partition resources in the face of nutrient 

limitation suggests that the trade-off between somatic and reproductive investment is 

common to most organisms. What is missing is a thorough understanding of the genetic 

and functional basis of the underlying systems that are involved in structuring that 

tradeoff. 

 As a model organism Caenorhabditis elegans has been widely used in laboratory 

settings for nearly 50 years (Brenner, 1974). In the past approximately 15 years, the 

natural ecology of C. elegans has begun to be investigated (Félix & Braendle, 2010; 

Frézal & Félix, 2015). Breeding populations are typically found in decomposing 

vegetation in a continuum of settings ranging from human-affiliated (orchard and urban 
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garden) to wild (forest and riverbank) (Félix and Braendle, 2010; Barriére and Félix, 

2014). Data collected from the same site over several periods suggests a boom-and-bust 

lifestyle. Genotypes have been observed to expand then shrink then expand, or go extinct 

followed by repopulation then disappear again (Félix and Braendle, 2010; Richaud, 

Zhang, Lee, Lee, & Félix, 2018). Given that C. elegans feeds on the bacteria associated 

with rotting plant material, which is subject to seasonal cycles in natural settings, it is 

likely that starvation conditions are a regular occurrence. Developmentally, C. elegans 

has unique stage specific responses to low food concentration which suggests that 

starvation-like conditions are naturally a regular occurrence in its environment and 

starvation a historically selective evolutionary pressure. If no food is present upon 

hatching, individuals arrest in the first larval stage (L1) only exiting that stage when 

sufficient food can be found (Johnson, Mitchell, Kline, Kemal, & Foy, 1984; Baugh, 

2013; Roux, Langhans, Huynh, & Kenyon, 2016). If food is lacking early in the third 

(L3) or early in the fourth (L4) larval stage, development will halt in the respective stage 

(Schindler, Baugh, & Sherwood, 2014). If food runs low between the first and second 

larval stage (L2), C. elegans develops through the alternative dauer morph (Klass & 

Hirsh, 1976; Fielenbach & Antebi, 2008; Zhou, Pincus, & Slack, 2011; Roux, Langhans, 

Huynh, & Kenyon, 2016).  

In addition to starvation induced larval arrest and induction of the dauer morph, a 

developmental response to starvation occurs in some individuals at the transition from the 

last larval stage (L4) to reproductive adult, termed adult reproductive diapause (ARD) 

(Angelo & Van Gilst, 2009; Seidel & Kimble, 2011; Burnaevskiy et al., 2018). If 

starvation occurs during this time, most individuals will continue to develop into 
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reproductive adults and die via facultative matricide (aka “bagging”) because egg-laying 

is inhibited by starvation (Seidel & Kimble, 2011). However, in those worms that do not 

bag, the intestine and somatic gonad atrophy, dead embryos appear in the uterus, and the 

germline becomes reduced while other tissues continue to show signs of aging (Angelo 

and Van Gilst, 2009; Seidel and Kimble, 2011; Burnaevskiy et al., 2018). When food is 

reintroduced, these individuals exit ARD, growth resumes, germline stem cells 

repopulate, atrophy of the intestine and somatic gonad reverse, and animals become again 

capable of producing progeny, living a normal adult lifespan.  

There is extensive knowledge regarding C. elegans molecular and cellular biology 

along with its development and behavior. But, nearly all this information has come from 

a single, lab-domesticated genotype, largely ignoring the genetic diversity and natural 

variation present within the species and the related variety in phenotypes (Sterken, Snoek, 

Kammenga, & Andersen, 2015). Because the primary mode of reproduction is self-

fertilization and the rate of outcrossing extremely low, populations sampled on the scale 

of <10 m often contain mostly individuals with identical or nearly identical genotypes 

(Barriére & Félix, 2005; Félix & Braendle, 2010). Even in samples taken from actively 

reproducing populations where mixed genotypes were found, very few are heterozygous 

and when examined repeatedly over a few years no lasting recombination was observed 

(Barriére & Félix, 2007; Rockman & Kruglyak, 2009; Andersen et al., 2012; Richaud, 

Zhang, Lee, Lee, & Félix, 2018). Recent simulations suggest these small-scale population 

dynamics are the result of demes founded by 3-10 individuals, suggesting the population 

structure is more appropriately depicted as ‘coexisting and competing homozygous 

clones’ (Richaud, Zhang, Lee, Lee, & Félix, 2018). Further, low levels of outcrossing 
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lead to coadaptation of genomic loci. This results in selection acting against 

heterozygotes and/or recombinant genotypes and in fact outbreeding depression is 

frequent in C. elegans (Barriére & Félix, 2007; Dolgin, Charlesworth, Baird, & Cutter, 

2007). So, while the use of a single genotype has facilitated many discoveries, the genetic 

diversity of C. elegans represents an interesting and largely untapped resource. Moreover, 

this natural population structure suggests that life history traits have the potential to be 

adapting via natural selection in parallel, sharing the same set of extrinsic factors while 

evolving under diverging internal constraints. Given the known differences in adult C. 

elegans responses to food availability, this is very likely the case in the context of 

starvation response. 

Since the primary behavior of C. elegans when food becomes scarce is to leave 

the area, this typically results in individuals in a plate-based environment climbing up the 

walls of the plate where they desiccate and die, complicating phenotypic analysis of 

starvation response in these environments. Liquid-based assays can accommodate larger 

numbers without the loss to ‘walling’, but this leads to changes in behavior and 

physiology within the worms (Pierce-Shimomura et al., 2008). Moreover, both 

approaches are subject to the buildup of metabolic byproducts, which lead to the 

progressive alteration of the environment over time (Kaplan et al., 2011). This can be 

minimized by transferring individuals to fresh plates and/or conditions, but the physical 

handling and manipulation required introduces the possibility of stress and injury. The 

amount of labor required by these assays also limits the throughput and temporal 

resolution, such that most assays performed with larger samples are conducted with 

population cohorts and lack individual longitudinal information. Here, we develop a 
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microfluidics approach that allows individual responses to be assayed at high temporal 

resolution using an automated scanner-based image acquisition system (based on Banse, 

Blue, Robinson, Jarrett, & Phillips, 2019). We are able to standardize the environment by 

using constant perfusion to flush metabolic byproducts and use an artificial dirt (pillared) 

structure (Lockery et al., 2008) so as to allow worms to display plate-like behavior and 

physiology. 

We coupled the scale, resolution, and throughput of microfluidics with whole-

genome data for association mapping of adult starvation response in C. elegans using 72 

recombinant inbred lines (RILs) from the C. elegans multiparental experimental 

evolution (CeMEE) panel (Noble et al., 2017). These lines were created by hybridization 

of 16 wild isolates, followed by 140 generations of mixed selfing and outcrossing then a 

further 50 generations selfing, all under standard laboratory conditions (Figure 1). The 

CeMEE panel captures 22% of the known polymorphisms segregating in wild 

populations and greater than 95% of the genome harbors nucleotide diversity. Moreover, 

intrachromosomal linkage decays to near background levels by 0.5 cM on average and 

interchromosomal disequilibrium is weak across chromosomes (Noble et al., 2017). In 

contrast, as mentioned above, natural populations have high linkage disequilibrium and 

the average SNP diversity is ~0.3% (though in hypervariable regions it can reach >16%) 

(Cutter, 2006; Thompson et al., 2015). The low diversity and high linkage of natural 

populations can complicate standard GWAS approaches because correlated SNPs 

covering long genomic regions make it difficult to pinpoint loci relevant to the trait being 

studied and multiple correction testing becomes overly conservative (Graustein, Gaspar, 

Walters, & Palopoli, 2002; Rockman, Skrovanek, & Kruglyak, 2010; Andersen et al., 



18 

2012). Using the CeMEE panel lines, coupled with verification via a backcross with 

selection approach, we are able to examine the individual effects of natural genetic 

variants on adult starvation resistance at a finer resolution than possible in the presence of 

high linkage disequilibrium. We find that the genetic basis of adult lifespan under 

microfluidic starvation conditions is polygenic with additive contributions from at least 

four loci, one which appears to be also pleiotropic for the ability to produce offspring 

after extended starvation. 

 

A. 

B. 

Figure 1: Derivation scheme for the C. elegans Multiparental Experimental 

Evolution (CeMEE) panel. The CeMEE panel captures 22% of the known 

polymorphisms segregating in wild populations and greater than 95% of the genome 

harbors nucleotide diversity. Intrachromosomal linkage decays to near background levels 

by 0.5 cM on average and interchromosomal disequilibrium is weak (r2 0.99, 0.95 

quantiles = 0.538, 0.051 within chromosomes vs. 0.037, and 0.022) across chromosomes. 

Adapted from Noble et al., 2017. 
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Materials And Methods 

Mapping Lines 

All C. elegans strains were maintained with standard culturing conditions on 

NGM lite agar with E. coli OP50 as a food source and maintained at 20°C (Brenner, 

1964). The strains used for genetic mapping are recombinant inbred lines (RILs) from the 

C. elegans Multiparental Experimental Evolution (CeMEE) panel (Noble et al., 2017). 

The strains used here are listed in Supplemental Table I. 

Phenotyping of starvation response using microfluidics 

The Starvation Arena (Figure 2) was designed with Vectorworks Fundamentals 

(Vectorworks, Inc.). Using standard soft lithography methods (Whitesides, Ostuni, 

Takayama, Jiang, & Ingber, 2001), single layer devices were fabricated with 

polydimethylsiloxane (PDMS) and bonded to a glass microscopy slide by air plasma 

exposure (see Banse, Blue, Robinson, Jarrett, & Phillips, 2019). A biopsy punch was 

used to open inlet and outlet channels. Embryos were harvested via bleaching and 

immediately placed onto OP50 seeded plates at a density of ~5000 individuals/100 mm 

petrie plate. When populations reached the L3 larval stage, additional OP50 was added in 

excess so individuals could feed ad libitum. Populations were monitored until ~3 early 

adults were visible. At this time the majority of individuals in the population were in 

either very late L4 larval stage or extremely early adulthood. Hermaphrodites were 

immediately picked into a prepared microfluidic chip (see section below) at a density of 1 

individual per arena (50 arenas per chip), and image acquisition initiated. All starvation 

experiments were performed in S Basal lacking cholesterol (5.85g NaCl, 1g K2HPO4, 6g 

KH2PO4, H2O to 1 liter) sterilized by autoclaving. 
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Experimental Protocol (Microfluidic Device Setup) 

Four hours before use, microfluidic starvation arenas (aka chips) were first filled 

with an 1% w/v solution of Pluronic F-127 dissolved in S-basal made w/o cholesterol 

then allowed to sit for ~40 minutes. This procedure lowers adhesion to the PDMS surface 

(Wu, 2009). Care was taken to ensure that no air was allowed into the chips from this 

point forward. The chips were then flushed with S-basal lacking cholesterol and 50 

worms picked into the inlet port of each device. Tubing was connected to the chips and 

additional S-basal flushed through under manually controlled pressure until all worms 

were aligned properly in the array formation at the constriction point (Figure 2). Then, 

Figure 2: Microfluidic chip design. A) The device is designed to have a single array of 

50 pillared arenas. Flow through the device enters at the inlet hole, perfuses through the 

device, and exits at the outlet hole. B) Movement of worms into the arenas is facilitated 

by a 0.52 mm upstream holding channel (1 per arena) with a 0.015 mm constriction 

point. This enables pre-loading of 50 animals followed by a brief increase in pressure 

sufficient to move the animals into the arenas. C) Each arena has a bifurcated section 

preceding the pillared portion to keep animals in the arenas. D) The arena is ~1.2 mm x 

~0.9 mm with twelve 0.2 mm diameter pillars spaced 0.1 mm apart. E) An individual 

arena housing an adult C. elegans hermaphrodite. 
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pressure was manually increased to a level sufficient to cause the expansion of the 

constriction point such that worms pass through and into the pillared portion of the arena. 

Lifespan assays of C. elegans using the same constriction point in a similar device but 

done in the presence of food result in a normal lifespan suggesting the passage of worms 

through the constriction point in this manner does not result in injury (P.C. Phillips, 

personal communication). 

Once worms had moved into the arenas, chips were placed on flatbed document 

scanners (Epson V700, model B11B178011) and connected to a mechanically 

pressurized fluid system with inflow air pressure set at 3 psi (Figure 3). To ensure that 

pressure stayed consistent throughout the course of a given experiment, an intermediate 

air tank was used as a buffer. In this system the pressure source coming in to the 

intermediate tank was ~80 psi and subject to potential transient increases or decreases as 

the initiating compressor turned on and off. In order to buffer against these potential 

fluctuations and reduce the pressure to an appropriate level, a regulator was placed on the 

outflow side of the intermediate air tank such that the flow of fluid into the chips was ~ 3 

psi (Figure 3). 

The air-line exiting the buffer tank was bifurcated into 4 tubing lines, each 

pressurizing a sealed 1 L bottle of S-basal made without cholesterol as previously 

described. The bottle caps had been modified with 4 ports: 1 terminal inlet port for air 

tubing and 3 exit ports for liquid supply lines. Each liquid supply line extended from the 

basal surface of the 1 L bottle to an inlet port of a microfluidic chip placed on a scanner 

(Figure 3). Once all chips were connected and fluid flow visually verified by monitoring 
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the outflow through the arena device exit ports, image acquisition was initiated. Fluid 

flow was continuous throughout the course of any given experiment. 

Image Analysis and Survival Estimation 

Scans of an individual microfluidic chip were initiated every 4 minutes in a 

sequential manner resulting in a rate of 1 image every 48 minutes for each of 12 chips per 

scanner. Images were collected for a period of 5 days using C. elegans Lifespan 

Machinery software (Stroustrup, et al. 2013; for additional technical details see Banse, 

Blue, Robinson, Jarrett, & Phillips, 2019). Image processing was performed using ImageJ 

1.50i (Schneider, Rasband, & Eliceiri, 2012). TIFF images were downloaded as a stack 

(one stack per chip) with brightness and contrast adjusted as necessary. Image stacks 

were manually scanned and worms examined individually. An individual was determined 

dead when movement was no longer visible for a minimum period of 4 frames (3 hours 

and 12 minutes). Individuals still alive at the conclusion of the experiment were censored 

and included in this manner. Analysis of Kaplan-Meier survivorship curves with log rank 

test for statistical differences was performed using JMP Statistical Software (SAS 

Institute Inc., JMP Pro 13, 2017). Possible differences in the shape of survivorship curves 

were assessed using the fit to a Gompertz mortality model using the R package flexsurv 

(Jackson, 2016).  
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Genome Wide Association Test 

The CeMEE strains used here contained 352,665 SNPs spread across 72 

recombinant inbred lines (Noble et al., 2017, Supplemental Table 1). Using Plink v.1.9, 

SNPs with more than 10% missing calls across the lines were filtered from the analysis 

(www.cog-genomics.org/plink/1.9/; Chang et al., 2015). Further, individual lines were 

required to have genotypes at ≥ 95% of sites to be retained. GWAS analysis of survival 

Figure 3: Pressure regulation and image capture schematic. A) Pressurized air was 

split through a manifold into a 1-gallon cushion tank. Air exiting the cushion tank was 

regulated with a microregulator set to 3-4 psi. This air was then passed through bifurcated 

tubing (Rain Bird ¼” blank tubing and ¼” barbed couplers) and into four 1-liter bottles. 

Each bottle lid had four 1.5 mm OD stainless steel stems passing through. One stem 

connected the pressurized air and the other three were connected internally to ~50 mm of 

tubing extending to the bottom of the bottle, and externally to 1.5 mm ID tubing 

extending to the inlet ports of the microfluidic chips. B) Microfluidic chips bonded to 50 

mm x 75 mm glass slides were arranged on scanner with 3 slides per side (2 chips per 

slide), ~15 mm from the scanner edge. C) Image capture was done at timed intervals 

using a Linux version of the C. elegans Lifespan Machine software (Stroustrup et al., 

2013) with images stored on a local network storage device. Image processing was 

performed using ImageJ 1.50i (Schneider, Rasband, & Eliceiri, 2012). Adapted from 

Banse, Blue, Robinson, Jarrett, & Phillips, 2019. 
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time in the absence of food was conducted on the trimmed data using an additive linear 

regression in Plink v.1.9, using the following options: --assoc qt-means --adjust gc. Plink 

binary files were converted to the rrBLUP format. GWA mapping was performed in 

rrBLUP using the above genotype data and the quantitative trait of time-until-death for 

each individual in the microfluidic starvation environment (Endelman, 2011). A kinship 

matrix was calculated with the default A.mat function from within the GWAS function. 

Finally, SNPs with a minor allele frequency of less than 5% were excluded. After 

applying these filters, a total of 248,374 SNPs and 7,855 individuals remained. 

Backcross with Selection 

In order to independently test the mapping of potential QTL influencing 

starvation response, a backcross with selection approach was implemented using two 

lines CeMEE lines that were found to display highly divergent starvation response 

phenotypes: A6140L110 as the ‘short-lived’ parent and GA450L40 as the ‘long-lived’ 

parent. Since males arise from non-disjunction of the X chromosome in meiosis and 

occur at a very low frequency in C. elegans, male-enriched lines were created by 

passaging an equal number of males to hermaphrodites (~20 each) every generation until 

a sufficient number of males was consistently present (~5 generations and ~20% male 

frequency). After this, 25 day 1 adult hermaphrodites were selected from each parent line 

(n = 50), picked to an isolated plate (1 line per plate), and allowed to self-fertilize for 24 

hours in order to deplete self-sperm. Once this period had passed, hermaphrodites were 

transferred to a new plate and an equal number of males from the opposing parent line 

were added. After ~48 hours, eggs (F1 offspring) were harvested through treatment with 

sodium-hypochlorite (Stiernagle, 2006) and immediately placed on OP50 seeded plates. 
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To allow for the segregation of any potential recessive alleles, all odd-numbered 

generations were allowed to develop without interference and self-fertilize, with eggs 

harvested as previously described.  

Even-numbered generations, assumed to be ¼ homozygous for loci of interest, 

were allowed to develop to late L4/early adulthood and picked into microfluidic chips in 

the same manner as previously described under the Phenotyping of Starvation Response 

Using Microfluidics section but with one critical difference: pressure was not increased to 

a level sufficient to open the constriction point and move individuals into the arenas. 

Worms were kept upstream of the constriction point so surviving individuals could be 

recovered as follows: 1) chips were placed on scanners with image acquisition initiated as 

previously described, 2) images were monitored such that chips could be removed from 

scanners when approximately 20% of individuals remained alive or 24 hours had passed, 

whichever came first, 3) after removal, tubing was connected in reverse so the direction 

of fluid flow was reversed and the remaining individuals could be manually flushed out 

through the inlet ports and picked onto OP50 seeded plates. 

Survivors were allowed to recover/self-fertilize on OP50 seeded plates for a 

period of 24 hours. After this, they were picked to new plates and males from the ‘short-

lived’ parent line were added in a 1:1 ratio. Eggs were harvested via bleaching after ~48 

hours and the resulting odd-numbered generation was handled as previously described. 

This cycle was repeated up to and through the F11 generation. 

Following thirteen generations of the above procedure (five generations of actual 

backcrossing), hermaphrodites were subjected to selection one final time and twenty 

survivors picked to individual plates as founders for near-isogenic lines (NILs, n = 20). 
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Each of these lines was maintained in isolation and self-fertilized for 10 generations 

before being phenotyped again. 

Genomic Sequencing of NILs 

Nematodes were maintained under standard lab conditions as described (Brenner, 

1974). For preparation of genomic DNA, ~10 - 20,000 synchronized L1 staged worms in 

M9 media were processed with the Zymo genomic DNA Kit following Proteinase K 

digestion for 3-4 hours at 55° C. Genomic DNA concentration was quantified with a 

Qubit fluorimetric reader using the HS kit. Genomic DNA was processed for Illumina 

sequencing with the Nextera DNA Library kit per manufactures instructions. Individual 

samples were multiplexed, combined in equal molar ratios and sequenced on a Hi-Seq 

4000 with 100bp of Paired end reads. (University of Oregon Sequencing Facility, 

Eugene, OR).   

 

Results 

Variation in Adult Lifespan of CeMEE Panel Lines under Microfluidic Starvation 

Conditions 

We assayed 72 CeMEE panel lines for starvation response using our novel 

microfluidic approach (Figure 4). Each CeMEE line represents a unique combination of 

the genetic variants segregating within the derived ancestral population (Figure 1). 

Median survival times vary by up to six-fold (range from 14.1 hours to 86.5 hours, 

Supplemental Table I). Partitioning variation within and between lines using analysis of 

variation of the survival time of each of the 7855 individuals in the experiment reveals 

that genotype accounts for 37% of the total variation observed in the experiment 
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(Restricted Maximum Likelihood, upper 95% CI = 276.98, lower 95% CI = 127.68, SE = 

38.09, p < 0.0001, JMP Pro13, 2017). Overall, there appears to be substantial variation in 

both median survival time and in the shape of the mortality trajectories of each line. 

In this system, late L4/very early adults are removed from a plate-based 

environment with abundant food and placed directly into a microfluidic environment in 

the absence of food. The typical response of C. elegans individuals when food becomes 

scarce is to seek out a new location where food is present (Shtonda & Avery, 2006; Kang 

& Avery, 2009). In this experimental setup individuals can attempt to flee as normal but 

ultimately are retained within the pillared arena until death. The measurements presented 

here capture the variety of starvation responses in our CeMEE panel lines. The 

survivorship curves presented in Figure 4 appear to be dividable into two categories 
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Figure 4: CeMEE panel adult starvation survival curves. Survival curves of 72 

CeMEE panel lines. Each curve represents one CeMEE line with technical replicates ≥ 2; 

replicate assays initiated on different days. At time 0, animals are early adults and within 

1 hour of placement into the microfluidic starvation environment. Analysis of Kaplan-

Meier lifespan curves with log rank test for statistical differences was performed using 

JMP Statistical Software (SAS Institute Inc., JMP Pro 13, 2017) 
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based on the curve shapes. The first are curves with a sigmoidal shape. In this group, 

individuals tend to die off quite rapidly and these comprise lines with lower mean and 

median survival lengths (Supplemental Table 1). The second group are curves that have a 

more consistently gradual decrease in shape. The individuals in this group die off slowly 

and make up the lines with higher mean and median survival times. This is suggestive of 

two different sources of mortality in response to starvation and is consistent with 

previous observations of adult C. elegans where, when confronted with a loss of food, 

some hermaphrodites respond by sacrificing themselves to matriphagy and others enter a 

state of reproductive diapause (Angelo & Van Gilst, 2009; Seidel & Kimble, 2011; 

Burnaevskiy et al., 2018).  

 

Genetic Variation and Median Survival 

To identify genetic variation contributing to differences in the time-until-death 

phenotype under microfluidic starvation conditions, we used a GWA mapping approach. 

For this approach we treated the time to death of each individual as a quantitative trait (n 

= 7855). Plink and rrBLUP identified a similar set of SNPs as significant contributors to 
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Figure 5: Genome-Wide Association Manhattan plot (rrBLUP). Distribution of 

variants identified through genome-wide mapping with rrBLUP. 
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this phenotype but with variance in the absolute levels of significance across the genome 

(Supplemental Figure 1, Supplemental Table 2). Because of the similarity, only the 

rrBLUP results will be presented here (Figure 5, Table 1). 

Potential causative genetic variation underlying each QTL was identified by first 

extracting all SNPs from each dataset where ˗log10(p) ≥ 3.50, sufficient to select the 

majority of SNPs with R2 > 0.10 (SNPs below this value do not show a clear direction of 

influence on median survival time, see Supplemental Figure 2). This resulted in a total of 

40 focal SNPs, however several of these were adjacent and redundant so this number was 

further collapsed as described in Table 1 down to a total of 15 loci. We then searched for 

genes within appropriate regions on either side of each SNP (see Table 1 for description 

of search regions). Next, we plotted median survival times against genotype to examine 

directionality of influence (Figure 6). Eight SNPs identified in our GWA mapping were 

either heavily influenced by a single outlier or the genotype/phenotype correlation did not 

have a clearly identifiable direction and so were not given any further consideration 

(Supplemental Figure 2). Four of the SNPs on chromosome V are in close proximity and 

largely redundant (n = 57, 55, 56, and 54), discussed in further detail below.  

The most suggestive locus is on the left arm of chromosome III (BP 1,107,965). 

The alternate genotype is present in 46 of the CeMEE lines and represents an average 

drop in median survival time of ~11.5 hours. This locus accounts for 18.1% of the 

variation between lines. As the genotype file used for this analysis was aligned under an 

earlier version of the reference genome (WS245), verification of the genotypes was done 

in order to provide the most up-to-date position information. In this case, verification of 

the genotype shows a matching T → A substitution reported in the current version of the 
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C. elegans reference genome (WS269) at position 1,107,975, within an intron of the gene 

exc-6 (www.wormbase.org). 

On the right arm of chromosome III is the next locus, at position 10,768,218. This locus 

accounts for 17.8% of variation and reflects an average decrease in median survival time 

of ~11.1 hours. Thirty of the CeMEE lines have the alternate genotype. However, 

verification of the genotype showed the nearest matching site is a T → C substitution at 

base 10,768,084 in an intron of the gene dpy-28. This substitution partitions appropriately 

with the lines but in the opposite direction than expected, i.e. lines that were initially 

identified as having the alternate genotype match the reference at this locus and vice 

versa. In our dataset this locus partitioned equally with a SNP at III: 10,770,501 so these 

loci are more likely to be representative of an effect coming from the ~2 KB region 

spanning from one SNP to the other rather than either individual variant, thus making the 

above discrepancy not surprising (Table 1). 

A third locus of interest is on the right arm of chromosome II (BP 11,986,204). 

This locus represents a ~10.7 hour decrease in median survival time. Twenty-five of our 

tested lines have the alternate genotype and verification matches a G → A substitution in 

an intron of the gene ash-2 at position 11,986,223. This locus accounts for 15.6% of the 

variation in median survival time between lines. 

A region on the right arm of chromosome V (BP 18,271,385) is the last locus of interest. 

It accounts for 11% of variation and reflects an average decrease in median survival of 

~10 hours. Fifty-five of our tested lines have the alternate genotype, a known missense 

mutation in the gene Y37H2C.4 located at position 18,271,413 in the most current version 

of the C. elegans reference genome (WS269). However, this locus represents the focal 



31 

point of a ~26 KB region where multiple genetic variants are acting together to affect 

median survival across the CeMEE lines. Three other loci identified as significant in the 

GWA mapping surround this SNP and have only slightly different membership across the 

CeMEE panel lines (n = 57 and n = 56 and 54, respectively; Table 1, Supplemental Table 

3). Due to the difference in membership they have somewhat lower p-values and were 

initially examined as separate contributory sources. However, on closer examination it 

became apparent that the only time a significant increase in median survival was seen 

was when the first three variants match the reference genotype (Figure 7). The fourth 

variant, V:18,293,029, does not appear to contribute any additional effect (see 

Supplemental Figure 3 for side-by-side comparison of 3- and 4-locus combinatorial 

genotype effect sizes) and so it is not included in further analysis. Of our 72 lines, 53 

have the alternate (-) genotype at all three loci and 5 have an intermediate combination 

(+/- combinations). There does not appear to be any significant difference between these 

lines. However, the remaining 14 lines have the reference genotype (+) at all 3 loci and 

this group displays the ~10 hour increase in median survival time. This is not to say that 

any individual SNP exerts a greater influence or that a specific combination is necessarily 

meaningful, more intermediate data points are needed, this is only to suggest that it is 

variation in this region as a whole influencing the survival phenotype. 
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Chromosome SNP log10(p) # of lines R2 Genes Region 

I 14359698 4.23 8 0.11 Y105E8A.3 Single 

II 3704344 3.66 6 0.05 srx-107 Single 

II 11986204 3.60 25 0.16 ash-2 Single 

III 922537 3.90 60 0.12 pef-1 Single 

III 924366 3.88 61 0.11 pef-1 Single 

III 974499 3.60 62 0.10 R06B10.2 108 BP 

III 998200 3.71 63 0.11 trp-2, R06B10.7 8.2 KB 

III 1010961 3.68 62 0.09 Y34F4.2, Y3F4.6 ←1.5 KB 

III 1107965 3.85 46 0.18 exc-6 Single 

III 10768218 3.78 30 0.18 dpy-28 2 KB→ 

V 18266401 3.67 57 0.11 R10E8.6, fbxa-213 4 KB/26 KB 

V 18271385 3.94 55 0.11 Y37H2C.4 Single/26 KB 

V 18277648 3.75 56 0.12 Y37H2C.1, Y37H2C.5 2.7 KB/26 KB 

V 18293029 3.54 54 0.12 Y51A2A.12 Single/26 KB 

V 18312716 3.75 24 0.06 fbxa-117 Single 

Table 1: SNPs identified through GWA mapping as significant contributors to 

median survival length in the microfluidic starvation environment. SNPs with -

log10(p) above 3.5 were selected. The cutoff of 3.5 was chosen because it was sufficient 

to capture the majority of significant SNPs with R2 values above 0.10. In a few instances 

there were multiple adjacent SNPs of equal significance, in these cases the SNP located 

in the middle was chosen as a representative SNP and the size of the associated region is 

listed in the Region column. See results section for detailed information on the 

Chromsome V region. In two instances there were two adjacent SNPs with equal 

significance values, for these there is an arrow indicating the direction of the region 

associated with the representative SNP. Associated genes were identified by searching 

within the specified region or within 1 KB on either side for single SNPs. After 

examination of the per line median survival times plotted by genotype (Figure 6), the four 

SNPs in bold have clear directionality and were considered the loci of most significance 

(also see Supplemental Figure 2).  
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Because linkage in our tested lines is low, the genetic components underlying the 

variation seen here are likely to be influencing the trait in a mostly additive fashion. If 

this is true, then the expectation is that for any line with a genotype containing a 

combination of two or more advantageous alleles, the increase in lifespan over those 

without the alleles should equal the sum of the increase for those with the respective 

single allele:   

𝐴1𝐵1 … 𝑋1 = (𝐴1 − 𝐴0) + (𝐵1 −  𝐵0) + ⋯ + (𝑋1 −  𝑋0) 

 

This appears to be the case. Figure 6 shows the best fit line and the median survival time 

values for all genotype combinations in this dataset. While the overall increase predicted 

by the best fit line is approximately 30 hours, the observed increase across the mean 

Figure 6: Effect sizes of SNPs contributing to differences in median lifespan under 

microfluidic starvation conditions. Genotypes denoted as ‘+’ are the N2 reference 

allele. All alleles are biallelic.  
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values for the two extremes is 42.3 hours which nearly matches the strictly additive 

model prediction (10.7 + 11.5 + 11.1 + 10 = 43.3). However, more data points for the 

double and triple genotype combinations are needed to confirm this with certainty. 

Backcross with Selection 

Because of the crossing strategy used to create the CeMEE mapping panel, each 

line represents a mosaic of variants segregating in natural populations. But, due to the 

multiple generations of inbreeding by selfing after the initial crossing, the variants are 

largely fixed within lines, with each line largely representing a static mosaic of fixed 

variants spread throughout the genomes (Figure 1). With this in mind we chose to use a 
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Figure 7: Effect size of combinatorial genotypes at Chromosome V locus. 

Median survival time values plotted against the combinatorial genotypes for the 

significant loci identified through GWA mapping within the ~26 KB region on 

the right arm of Chromosome V. Alleles denoted as ‘+’ match the N2 reference.  
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backcross with selection strategy to isolate the variants contributing to starvation 

response. We chose one line which displayed the slow-dying/long-lived phenotype and 

another which displayed the fast-dying/short-lived phenotype (Figure 4, Supplemental 

Table 1) to be the founding parents then continually selected for the long-lived phenotype 

while repeatedly crossing into the short-lived genome as described in the methods 

section. 

The near-isogenic lines derived from the backcross with selection segregated into 

two phenotypic groups matching the respective parent phenotype in a ratio of 11:6 long 

to short, with an average difference of 10 hours in median lifespan (Figure 8). 

Comparison of the genomic sequences from 8 NILs (4 long-lived and 4 short-lived) plus 

the parent lines shows a region on the right arm of chromosome V, starting around base 

18,200,000 and continuing to the end of the chromosome containing variants common to 

only the long-lived NILs and long-lived parent (Figure 9).  

Within this region there is fine-scale variation where the long-lived NILs possess 

variants matching only the short-lived parent and/or novel mutations in between small 

blocks of the long-lived genotype (Supplemental Figure 4). As such, recombination has 

occurred with retention of the presumably necessary variants from the long-lived parent.  
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Discussion 

Organisms respond in a multitude of ways when faced with resource limitation. It 

has been well-established in C. elegans that dietary restriction and food deprivation can 

significantly extend overall lifespan (see Uno & Nishida, 2016 for a comprehensive 

review). In early larval stages (L3 and prior) individuals can arrest or adopt alternate 

development strategies to cope, allowing them to stay in these states for an extended 

amount of time until food becomes sufficient and development resumes as normal (Klass 

& Hirsh, 1976; Johnson, Mitchell, Kline, Kemal, & Foy, 1984; Fielenbach & Antebi, 

2008; Zhou, Pincus, & Slack, 2011; Baugh, 2013; Schindler, Baugh, & Sherwood, 2014; 

Roux, Langhans, Huynh, & Kenyon, 2016). When food is reduced or lost during later 

days of adulthood (day 2 and after) individuals also typically have an increase in lifespan 

over their well-fed counterparts (Kaberlein et al., 2006). However, the picture is not quite 
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Figure 8: Survival curves of adults from the near-isogenic lines in the microfluidic 

starvation environment.  Adult hermaphrodite survival was measured in the same 

manner as previously described. The near-isogenic lines segregated into a ratio of 11:6 

(long:short) with an average mean difference of ~10 hours. Black lines are near-

isogenic lines, red lines are the CeMEE parental lines (A6140L110 and GA450L40). 
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as clear during the last larval stage (L4) and very early adulthood. This is the time during 

which C. elegans directs much of its energy into reproductive processes under normal 

circumstances and it has been shown that loss of food during this period can lead to very 

different outcomes (Angelo & Van Gilst, 2009; Seidel & Kimble, 2011; Burnaevskiy et 

al., 2018). Based on the expression patterns of genes involved in vulval development, the 

L4 larval stage can be roughly divided into three substages; early (hours 0-4), middle 

(hours 4-8), and late (hours 8-9) (Mok, Sternberg, & Inoue, 2015). While the effect of 

food removal on development through these substages is not entirely clear, it is evident 

that when food is removed during late L4 and/or the transition into adulthood, as was 

done in this study, individuals either undergo facultative vivipary (where eggs are 

fertilized but not laid, thereby hatching within the body of the parent hermaphrodite, also 

referred to as ‘bagging’), or enter a state of adult reproductive diapause (Angelo & Van 

Gilst, 2009; Seidel & Kimble, 2011; Burnaevskiy et al., 2018). The two different shapes 

of curves seen in Figure 4 likely reflect this – the ‘rapid’ death of the sigmoid shape 

reflects lines where the majority of individuals bagged and diapause lines are those with 

the comparatively ‘slow’ deaths of the gradually decreasing slope. Our GWA mapping 

Figure 9: Chromosomal regions from long-lived parent retained by long-lived NILs. 

Dark blue regions represent the portions of each chromosome shared between the long-

lived NILs and the long-lived parent exclusively. The height of the dark blue bar reflects 

the number of long-lived NILs (1-4) matching the parent sequence. The block on 

Chromosome V starts around base 18,200,000 and extends to the end of the chromosome. 
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identified four loci with clearly additive effects underlying the variation in starvation 

response. Two of the loci are individual SNPs within introns of the genes ash-2 and exc-

6, the other two are representative of larger haplotype blocks: 1) a ~2 KB region 

associated with the gene dpy-28 and 2) ~26 KB region encompassing several genes on 

Chromosome V (Table 1). 

Consistent with the lifespan curves, animals recovered from the microfluidic 

devices during the backcross with selection had either bagged or displayed the very poor 

morphological appearance with reduced intestines and somatic gonads, similar to the 

description of animals in adult diapause described in Angelo & Van Gilst (2009), when 

first placed on recovery plates. Moreover, as in the Angelo & Van Gilst (2009) study, this 

poor morphological appearance gave way to a fully rejuvenated appearance by recovery 

day two in the individuals who produced offspring. While this seems to suggest that 

individuals can enter a state of adult reproductive diapause in the microfluidic starvation 

environment there is one striking difference between the individuals in this study and 

other previous studies where individuals have been reported to remain in the diapause 

state for up to at least 3 weeks, i.e. 504 hours (Burnaevskiy, et al., 2018). In the 

microfluidic starvation environment, the maximum lifespan observed was ~140 hours. 

There are several, not mutually exclusive, possibilities for this difference: 1) the previous 

studies were done on unseeded agar plates typically using antibiotics to suppress the 

growth of bacteria whereas our microfluidic setup uses constant perfusion of sterile fluid 

to create an environment devoid of bacteria and other substances and so there may be an 

effect of the plate environment, 2) when on plates, animals are in contact with each other 

and presumably take chemical cues from one another which may influence the diapause 
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state, in our microfluidic chip animals are separated and the constant perfusion means 

that any chemical forms of communication are washed away, 3) data on adult 

reproductive diapause has been collected primarily, if not exclusively, from animals with 

the N2 genetic background in which case adult diapause as reported may be unique to 

that background, and 4) adult reproductive diapause may be a complex trait involving the 

cohesive function of multiple linked loci which have become uncoupled in the CeMEE 

panel (Figure 1).  

While the backcross with selection was intended to be a mapping approach 

parallel to GWA, the selection approach imposes a slightly different phenotypic criterion 

than was measured for GWA. In the GWA approach, adult individuals were placed into 

the starvation environment and monitored without further intervention until all were 

dead. In the backcross with selection, adult individuals were placed into the starvation 

environment and monitored until ~20% of the population remained or 24 hours had 

passed, whichever came first. Surviving individuals were then removed and the fraction 

which produced offspring are the genotypes that progressed to the next backcross. 

Therefore, when survival lengths were measured for the backcross with selection, the 

individuals had been selected to 1) have an increased length of survival and 2) be able to 

Figure 10: GWA mapping peaks from 

Chromosome V match the retained 

region in the long-lived NILs. An overlay 

of the GWA Manhattan plot shows the same 

region of significance as the region retained 

in the NILs. 
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produce offspring when food was reintroduced after ~80% of the population had 

succumbed to starvation. However, an overlay of the region retained in the long-lived 

NILs and the significant chromosome V region from the GWA shows that the regions 

match (Figure 10). It is likely that total length of survival and ability to produce offspring 

post-starvation are related but different traits, therefore it is not necessarily surprising that 

variants from 3 out of the 4 loci significant in the GWA approach were not retained in the 

long-lived genotypes resulting from the backcross with selection. 

The retained region spans ~2.7 MB, beginning around position V:18,200,000 

while the GWA locus has the approximate genomic position of V:18,264,009-

18,293,029, a length of ~26 KB. This is the locus contributing an average 10-hour 

increase in median lifespan among the CeMEE panel lines and the same average 

difference is seen between the short- and long-lived NILs. If linkage and epistatic 

interactions between this locus and other genomic regions are truly diminished (as 

expected for lines from the CeMEE panel), then the phenotype resulting from 

introgression of this locus into a different genetic background would be expected to have 

only the additive effect. Given that the average change in median survival is the same in 

the NIL lines as it is for lines in the CeMEE panel, then this 1) reaffirms the 

reduction/loss of linkage disequilibrium in the CeMEE panel and 2) confirms this effect 

as additive (Wright, 1952; Hill, 1998; Luo, WU, & Kearsey, 2002; Hospital, 2005). 

Moreover, this chromosome (and more specifically this region) has the only sign of 

linkage drag. None of the other chromosomes have retained significant portions of the 

long-lived parent genome (Figure 9). A comparison across the two groups (short- vs 

long-lived NILs) gives a Cohen’s D of 0.81, suggesting this is a locus of large effect and 
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supporting the identification of this locus as a significant contributor to median survival 

in the GWA mapping approach. Moreover, it is likely that variants within this locus have 

a directed effect on post-starvation reproductive ability. This appears to be an almost 

textbook example of the repeated selection and backcross scheme first proposed by 

Wright in 1952 (and expanded to include inter se mating as was done here by Hill in 

1998) for isolating QTL of large effect. 

The three loci identified in the GWA mapping which are absent from the 

backcross results have interesting physiological potential as candidates for influencing 

overall lifespan through starvation response. The gene ash-2, associated with the locus at 

II:11,986,204, is part of a histone methyltransferase complex known to be involved in 

regulating adult lifespan through its effects on H3K4 methylation in the C. elegans 

germline (Greer et al., 2010; Greer et al., 2011; Zuryn et al., 2014; Robert et al., 2014). 

Given that this locus already has a known role in affecting lifespan through reproduction, 

further investigation of variation in this gene under the context of starvation response is 

warranted. The gene exc-6, associated with the III:1,107,965 locus, is expressed 

throughout the pharynx, rectal gland cells, and the reproductive system in both larval and 

adult individuals and localizes to filamentous actin (Shaye & Greenwald, 2016; Hegsted, 

Wright, Votra, & Pruyne, 2016). However, it does not appear to have any previously 

reported role in affecting lifespan or starvation response, but exc-6 mutants do exhibit 

defects in ovulation, suggesting this locus does have a significant role in reproduction and 

may influence survival in a starvation environment by restricting ovulation (Hegsted, 

Wright, Votra, & Pruyne, 2016). It would be interesting to examine the relationship 
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between variation in exc-6 and the bagging/ARD decision as presumably reduced 

ovulation would push energy investment in the direction of somatic maintenance. 

The third locus, at III:10,768,218, is associated with the gene dpy-28. This gene is 

involved in meiotic sister chromatid segregation, mitotic sister chromatid segregation, 

negative regulation of reciprocal meiotic recombination, and localizes to the intracellular 

organelle (Hernandez, et al., 2018). Interestingly, mutants of dpy-28 have been reported 

to be unable to enter the dauer arrest state via an effect on the transcription factor DAF-

16/FOXO, a widely recognized stress response pathway with dramatic effects on lifespan 

and starvation response in C. elegans (Weinkove, Halstead, Gems, & Divecha, 2006; 

Dumas et al., 2013; Uno & Nishida, 2016). The genetic basis for this role is suggested to 

be mediated by a role of dpy-28 in dosage compensation, such that dpy-28 mutants may 

have elevated expression of X-linked genes that typically promote dauer bypass. This 

raises the possibility that variants at this locus may promote the bagging phenotype by 

making it difficult or preventing individuals from entering into an arrested state in 

response to starvation cues. Of course, any of these putative effects would need to be 

confirmed via genetic transformation, and it is formally possible that some of these SNPs 

could influence the regulation of genes that are not directly adjacent to them (Pastinen, 

2010; 1000 Genomes Project Consortium, 2012). 

Overall, then, we identified four loci with significant effects contributing to 

variation in survival time in a microfluidic starvation environment through a GWA 

mapping approach. One of the four loci, a locus on the right arm of chromosome V, was 

confirmed in a parallel backcross with selection approach. The absence of selection on 

any of the other three loci suggest that they were either lost by chance during the 
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backcross with selection or have different effect sizes under the slightly different criteria 

– the ability to reproduce post-extended starvation (Hill, 1998; Hospital, 2001; Hospital, 

2005). Taken together this suggests that the absolute adult lifespan under starvation 

conditions may be partially independent of the ability to recover and reproduce after 

surviving extended starvation and the locus identified in both approaches may act in a 

pleiotropic fashion to influence both traits. When faced with a loss of food during the 

period of time during which C. elegans hermaphrodites normally balance a physiological 

investment of energy into maturation of the germline with investment into somatic 

maintenance, individuals have to make a choice of where to partition their energetic 

resources. Some individuals are genetically predisposed to sacrifice their soma and 

undergo facultative matricide while others can maintain their soma and effectively put 

germline maturation on pause, suggesting that the natural variation segregating in 

populations of C. elegans may be evolving two different starvation response strategies. 
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CHAPTER III 

CONCLUSION 

 

 The evolution of life history traits within a population reflects the manner in 

which natural selection is acting upon that population. Life history traits themselves are 

adaptive strategies that optimize fitness in their related ecological context. In order to 

understand the relationship between these traits and natural selection it is necessary to 

have information about two things: 1) the extrinsic ecological factors that impact fitness 

and 2) the intrinsic organismal trade-offs that impose constraints.  

In this work I have shown that for the nematode Caenorhabditis elegans, one such 

ecological factor is starvation. Two lines of evidence support this; first is the various 

alternative developmental pathways characteristic of C. elegans that only manifest when 

food is in short supply, and second is repeated sampling data showing boom-and-bust 

type cyclical patterns in the persistence of C. elegans genotypes at the same sites over 

time (Félix & Braendle, 2010; Richaud, Zhang, Lee, Lee, & Félix, 2018). Together these 

strongly suggest that extended periods of starvation are a regular part of C. elegans 

natural environment. 

Intrinsically, the two different starvation response strategies seen in C. elegans 

represent a trade-off. In one scenario, early adult hermaphrodites respond to the loss of 

food by sacrificing their own soma in favor of producing offspring which will hatch 

internally and consume the parent (facultative matricide) resulting in a radically 

shortened lifespan (Angelo & Van Gilst, 2009; Seidel & Kimble, 2011; Burnaevskiy et 

al., 2018). If there is no food available in the external environment this will provide 
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enough of a resource for the offspring to reach one of the early life stages where 

starvation-dependent alternative development pathways manifest and they are better 

equipped to disperse in search of food. While this is one way to maximize fitness in the 

context of starvation by ensuring the production of offspring, it also results in a reduced 

level of total fecundity when compared to a normal environment. In other words, these 

individuals produce offspring but far fewer than they would if food were available. In the 

other scenario, starving early adult hermaphrodites do not develop a mature germline. 

Instead, they go into a state of reproductive diapause (Angelo & Van Gilst, 2009; Seidel 

& Kimble, 2011; Burnaevskiy et al., 2018). This allows the individual hermaphrodite to 

wait out the period of starvation. Once sufficient food is encountered, the hermaphrodite 

recovers and goes on to produce offspring as normal. In this case the number of offspring 

eventually produced is not reduced but there is no guarantee that sufficient food will ever 

be encountered, and the amount of time taken to produce offspring is lengthened (Angelo 

& Van Gilst, 2009; Seidel & Kimble, 2011; Burnaevskiy et al., 2018). 

In this study I have also demonstrated that there is a likely genetic basis to the 

difference in these life history traits. Two different response shapes can be seen in the 

initial analysis of starvation survival among the mapping lines (Figure 4). The first is a 

sigmoidal shape common to all lines on the left-hand side, i.e. common to all lines with 

shorter lifespans under starvation conditions. The second is a more gradual decline 

common to the right-hand side, the lines with longer lifespans. While not tested directly 

here, these observations are consistent with predictions from observations of two 

different starvation response strategies. A genome-wide association (GWA) mapping of 

the variation in median lifespan under starvation conditions identified four loci that act in 
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an additive fashion to contribute to the lifespan of starved adult hermaphrodites and one 

of these loci was retained when a backcross with selection strategy was used to select for 

the ability to produce offspring post-starvation. The selection strategy used inherently 

selected against individuals that would undergo facultative matricide and for those who 

exhibit characteristics consistent with the adult reproductive diapause strategy. This 

suggests that a genetic basis for these life history traits exists and that there is correlated 

genetic variation. 

The work described in this dissertation lays the foundation of a system utilizing C. 

elegans that can be further capitalized on in several ways. First, the genetic loci identified 

could be functionally investigated, e.g. CRISPR could be used to swap alleles singly or in 

combination and the phenotypic effects characterized in a high-throughput manner using 

microfluidics thus providing information about the genetic mechanism underlying the 

trade-off between investing in somatic maintenance versus reproduction. Second, 

experimental evolution could be used to test specific hypotheses regarding the evolution 

of different starvation responses. For example, the potential advantages of the timing in 

the different reproduction strategies could be tested by evolving competing lines under 

different temporally regulated starvation schemes. Third, this system could be used in a 

similar fashion as presented here to investigate the genetic basis of variation in other 

traits. In summary, natural selection is likely acting on variation for starvation response in 

C. elegans to produce two diverging life history traits and the system presented here can 

be further utilized to explore adaptation to starvation in greater detail or be adapted to 

explore other traits. 
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APPENDIX 

SUPPORTING INFORMATION FOR CHAPTER II 

 

 

  

Supplemental Figure 1: Plink vs. rrBLUP Manhattan Plots. The top Manhattan 

plot shows results from GWA mapping of median adult survival time under starvation 

conditions performed in Plink v1.9, the bottom Manhattan plot shows the reported 

results from rrBLUP. Overall, the distribution of significant SNPs within each 

chromosome is the same. 
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Supplemental Figure 2: Effect size plot of loci not considered. Loci identified as 

significant through GWA mapping with rrBLUP but either heavily affected by an outlier 

or direction of influence on trait was unclear. Genotypes denoted as ‘0’ are the N2 

reference allele. 
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Supplemental Figure 3: Combinatorial genotypes at Chromosome V locus. The 

effect of the four-SNP genotype is not significantly different from the three-SNP 

genotype, therefore the SNP at V:18,293,029 was not considered a significant contributor 

to variation in the starvation response phenotype. Alleles denoted as ‘+’ match the N2 

reference.  

Supplemental Figure 4: Fine-scale variation in NIL lines at the Chromosome V 

locus. Detail of the variation present among NIL lines at the Chromosome V locus. Short 

regions matching the long-lived parent are punctuated by recombined regions. There also 

appears to be a few novel SNPs. Red lines represent SNPs deviating from N2 reference 

genome. 

R
2
 0.122 R

2
 0.129 

10 

20 

30 

40 

50 

60 

70 

80 

90 
M

ed
ia

n
 S

u
rv

iv
al

 (
H

o
u
rs

) 

18,266,401 – 18,271,385 – 18,277,348 + 18,293,029 

Short Parent 
Long Parent 

NIL 1 
NIL 2 
NIL 3 
NIL 4 

Unique  

18,660 KB 18,662 KB 18,664 KB 18,666 KB 18,668 KB 18,670 KB 18,672 KB 18,674 KB 18,676 KB 

16 KB 



50 

CeMEE 

Line 

Number of 

Individuals 

Number 

Censored 

Mean 

Survival 

(Hours) 

Standard 

Error 

Median 

Survival 

(Hours) 

Lower 

95% 

Upper 

95% 

A6140L10 99 0 37.27 1.93 28.54 27.8 32.02 

A6140L101 105 0 54.46 2.75 41.44 38.27 45.84 

A6140L106 147 1 39.14 1.34 34.195 32.17 36.82 

A6140L107 139 4 48.38 1.72 41.48 40.1 43.88 

A6140L110 143 0 37.59 1.20 33.68 32.07 35.65 

A6140L113 142 5 42.20 1.15 38.67 37.07 40.27 

A6140L120 137 8 44.82 1.63 40.37 38.77 43.18 

A6140L123 142 5 41.31 1.18 38.03 37.75 39.35 

A6140L124 97 1 39.23 1.57 36.3 31.8 39 

A6140L125 154 1 39.02 0.99 37.93 34.78 40.33 

A6140L126 144 6 40.07 1.03 37.85 36.03 39.23 

A6140L133 197 3 37.64 1.18 33.43 32.63 35.73 

A6140L134 140 5 35.36 1.13 32.02 30.9 34.07 

A6140L135 98 0 41.61 1.37 38.23 35.83 40.77 

A6140L137 146 2 31.99 1.07 29.75 28.95 30.55 

A6140L142 85 8 22.18 0.88 22.13 18.98 22.98 

A6140L153 139 7 21.65 0.50 21.725 20.4 22.8 

A6140L155 85 2 23.98 0.70 22.6 21 24.05 

A6140L156 92 0 20.89 0.66 20.18 19.33 21.73 

A6140L157 146 1 14.81 0.42 14.12 13.32 15 

A6140L158 85 13 27.06 0.82 25.93 24.7 28.33 

A6140L168 135 5 19.84 0.63 19.185 18.07 20.9 

A6140L176 89 4 20.36 0.64 19.87 17.78 20.98 

A6140L18 93 0 22.15 0.64 21.37 19.77 22.65 

A6140L181 94 4 21.21 0.49 21.33 20.38 22.78 

A6140L182 79 10 45.24 1.98 40.33 38.05 47.53 

A6140L183 95 7 48.87 2.15 41.285 36.35 48.62 

A6140L184 95 3 47.42 3.03 33.39 30.38 38.38 

A6140L185 91 6 39.64 1.78 33.87 32.27 37.07 

A6140L188 93 5 35.69 1.30 32.02 30.47 34.47 

A6140L19 97 0 15.44 0.42 15.17 14 15.97 

A6140L190 90 7 54.97 2.56 44.9 41.7 55.03 

A6140L200 87 6 52.71 2.58 44.48 40.73 46.88 

A6140L203 89 8 57.53 2.97 47.77 41.77 48.57 

A6140L205 90 7 52.73 3.14 37.52 33.48 45.48 

A6140L211 87 6 42.66 2.05 37.78 36.12 40.18 

A6140L23 100 3 61.37 2.67 51.7 45.84 62.78 

A6140L26 92 5 49.20 2.79 37.05 34.45 39.45 

A6140L28 143 3 44.39 1.45 39.68 37.28 41.5 

A6140L36 193 0 41.81 1.04 38.7 36.15 41.1 
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A6140L38 94 4 59.15 2.62 54.93 48.98 60.98 

A6140L48 138 2 38.91 1.69 32.03 30.42 36.02 

A6140L49 138 5 44.91 2.20 35.63 32.43 38.83 

A6140L50 140 5 42.38 1.54 37.13 35.35 38.73 

A6140L52 88 2 37.27 1.87 32.56 31.17 34.37 

A6140L56 96 0 21.41 0.70 21.1 19.37 22.7 

A6140L60 88 0 19.67 0.63 19.155 17.28 21.03 

A6140L80 103 0 17.31 0.43 16.63 15.83 18.17 

A6140L82 137 9 49.87 2.08 41.2 38.23 46.23 

CA350L13 143 9 71.20 2.19 68.98 62.02 73.72 

GA150L35 195 3 46.65 1.08 43.02 41.55 44.49 

GA150L51 94 0 52.09 1.93 46.085 41.57 48.9 

GA150L52 144 0 34.75 0.80 33.05 32.03 35.05 

GA150L53 102 1 49.66 1.61 45.88 43 51 

GA150L57 98 2 45.75 1.58 41.33 39.73 42.13 

GA150L58 90 8 62.14 2.13 56 52 59.22 

GA150L59 67 32 82.72 3.03 86.53 66.53 101.48 

GA150L60 93 6 49.10 1.98 43.28 41.22 44.88 

GA150L61 95 4 51.19 1.70 48.22 45.02 51.42 

GA250L51 104 2 41.14 1.39 38.75 36.75 40.75 

GA250L52 98 0 27.04 0.71 26.68 25.08 27.48 

GA250L61 93 0 31.30 1.08 28.3 26.7 30.7 

GA450L31 95 0 27.44 0.64 26.88 25.37 27.77 

GA450L36 148 0 39.37 0.84 37.97 36.47 38.7 

GA450L37 200 2 48.19 1.69 40.08 38.28 41.9 

GA450L38 182 9 55.94 1.62 50.1 45.75 53.97 

GA450L39 165 18 72.72 2.36 61.29 53.83 79.35 

GA450L40 135 7 72.17 2.82 72.64 54.55 89.2 

GA450L41 150 0 41.58 1.59 35.3 33.83 37.5 

GT150L23 188 5 54.33 1.81 46.49 39.98 51.98 

GT250L19 151 0 40.10 1.08 37.23 36.5 40.17 

GT250L34 196 0 39.50 0.76 38.3 37.3 40.45 

Combined 8642 296 42.48 0.26 36.33 36.02 36.78 

 

Supplemental Table 1: Summary statistics for CeMEE panel lines. CeMEE lines 

phenotyped in microfluidic starvation environment. 

 

  



52 

Chromosome SNP 

PLINK            

-log10(p) 

rrBLUP       

-log10(p) 

IV 16875066 4.87 0.00 

IV 1489316 4.86 0.00 

IV 2318178 4.26 3.26 

IV 2329101 4.23 3.21 

II 4636338 3.99 3.11 

II 4671053 3.99 3.11 

II 2299897 3.97 3.41 

I 14359698 3.74 4.23 

II 3704344 3.66 3.66 

II 3648925 3.58 0.00 

II 3654708 3.58 0.00 

II 3658943 3.58 0.00 

II 3663176 3.58 0.00 

II 3667170 3.58 0.00 

II 3675301 3.58 0.00 

II 3689965 3.58 0.00 

II 3699906 3.58 0.00 

IV 15185237 3.50 2.94 

 

Supplemental Table 2: PLINK GWA mapping results. List of SNPs with -log10(p) > 

3.50 identified by GWA mapping with PLINK, rrBLUP significance values included for 

comparison. GWAS analysis of survival time in the absence of food was conducted on 

the trimmed data using an additive linear regression in Plink v.1.9, using the following 

options: --assoc qt-means --adjust gc (www.cog-genomics.org/plink/1.9/; Chang et al., 

2015). The genomic inflation lambda value (based on median chisq) was estimated to 

equal 55.3583.  
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 V:18266401 V:18271385 V:18277648 V:18293029 

A6140L10 + + + + 

A6140L101 - - - - 

A6140L106 - - - - 

A6140L107 - - - - 

A6140L110 - - - + 

A6140L113 - - - - 

A6140L120 - - - - 

A6140L123 - - - - 

A6140L124 + + + + 

A6140L125 - - - - 

A6140L126 - - - - 

A6140L133 - - - - 

A6140L134 - - - - 

A6140L135 - + - - 

A6140L137 - - - - 

A6140L142 - - - - 

A6140L153 - - - - 

A6140L155 - - - - 

A6140L156 - - - - 

A6140L157 - - - - 

A6140L158 - - - - 

A6140L168 - - - - 

A6140L176 - - - - 

A6140L18 - - - - 

A6140L181 - - - - 

A6140L182 - - + + 

A6140L183 + + + + 

A6140L184 + + + + 

A6140L185 - - - - 

A6140L188 - - - - 

A6140L19 - - - - 

A6140L190 - - - - 

A6140L200 - - - - 

A6140L203 - + + + 

A6140L205 + + + + 

A6140L211 + + + - 

A6140L23 - - - - 

A6140L26 - - - - 

A6140L28 - - - - 

A6140L36 - - - - 
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A6140L38 + + + + 

A6140L48 + + + + 

A6140L49 - - - - 

A6140L50 - - - - 

A6140L52 - - - - 

A6140L56 - - - - 

A6140L60 - - - - 

A6140L80 - - - - 

A6140L82 + + + + 

CA350L13 - - - - 

GA150L35 - - - - 

GA150L51 + + + + 

GA150L52 - - - - 

GA150L53 - - - - 

GA150L57 - - - - 

GA150L58 - - - - 

GA150L59 + + + + 

GA150L60 + - - - 

GA150L61 - - - - 

GA250L51 - - - - 

GA250L52 - - - - 

GA250L61 - - - - 

GA450L31 + + + + 

GA450L36 - - - - 

GA450L37 - - - - 

GA450L38 - - - - 

GA450L39 + + + + 

GA450L40 + + + + 

GA450L41 - - - - 

GT250L19 - - - + 

GT250L34 - - - - 

GT150L23 - + - + 

Total Alt 57 55 56 54 

 

 

Supplemental Table 3: Genotypes of CeMEE panel lines at Chromosome V loci. N2 

reference allele denoted as ‘+’, alternate alleles denoted as ‘-‘. All alleles are biallelic. 

Total Alt = total number of lines with alternate allele. 
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