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DISSERTATION ABSTRACT 

 

Nicholas Kamps-Hughes 

Doctor of Philosophy 

Department of Biology 

June 2015 

Title: Massively Parallel Sequencing-Based Analyses of Genome and Protein Function 

 

The advent of high-throughput DNA and RNA sequencing has made possible the 

assay of millions of nucleic acid molecules in parallel.  This allows functional genomic 

elements to be identified from background in single-tube experiments.  This dissertation 

discusses the development of two such functional screens as well as work implementing a 

third that was previously developed in my thesis laboratory.  

  Restriction-Associated DNA sequencing (RAD-Seq) is a complexity reduction 

sequencing method that allows the same subset of genomic sequence to be read across 

multiple samples.  Differences in sample collection and data analysis allow manifold 

applications of RAD-Seq.  Here we use RAD-Seq to identify mutant genes responsible 

for altered phenotypes in Caenorhabditis elegans and to identify hyper-invasive alleles in 

trout population admixtures.  

  Apart from acquiring genomic sequence data, massively-parallel sequencing can 

be used for counting applications that quantify activity across a large number of test 

molecules.  This dissertation describes the development of a technique for simultaneously 

quantifying the activity of a restriction enzyme across all possible DNA substrates by 
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linking digest of a sequenced genome to Illumina-sequencing in an unbiased fashion.  

Finally, a powerful approach to analyze transcriptional activation is described.  This 

method quantifies output from millions of potential DNA transcriptional enhancers via 

RNA amplicon sequencing of covalently-linked randomer tags and is used in conjunction 

with RNA-Seq to provide a mechanistic view of hypoxic gene regulation in Drosophila.  

This dissertation includes previously published, co-authored material.
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CHAPTER I 

INTRODUCTION 

 

High-throughput sequencing and the genomics era 

The advance of the genomics discipline and the advent of high-throughput nucleic 

acid assays are intertwined in a feedback loop between theory and methodology.  

Beginning with microarray technology in the 1990s1, genome-wide methods vastly 

increased the scope of biological experimentation.  Microarrays provided quantitative 

transcriptome-wide information which allowed the de novo identification of differentially 

expressed genes2,3 and helped to elucidate regulatory networks4,5.  Researchers were able 

to adapt the power of microarrays toward other goals as well.  In the case of RAD6, 

microarrays were used to quickly identify DNA markers between populations.   

High-throughput sequencing took these analyses to new heights of power and 

inference.  By definition, microarrays can only bind and report on nucleic acid probes 

that were expressly printed upon them.  Library preparations for sequencing instruments 

such as Illumina involve unbiased adapter ligations allowing all molecules present in the 

reaction to ultimately be sequenced.  Indeed these instruments were first used for the 

acquisition of new genomic sequence7,8,9 and were paramount to the assembly of 

numerous genomes10,11,12.  While this remains a principle application of massively 

parallel sequencing platforms, they have been adapted for a range of analyses.  One such 

application is RAD-Seq, created here at University of Oregon13.  This technique entails 

the sequencing of DNA adjacent to restriction sites allowing the same widely-distributed 

genomic locations to be probed across samples.  Differences in these sequences can then 
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be used to compare individuals and populations.  It can be used to generate markers and 

map mutations in recombinant animals as described in Chapter II.  This work in C. 

elegans was completed in collaboration with O’Rourke SM, Yochem J, Connolly AA, 

Price MH, Carter L, Lowry JB, Turnbull DW, Stiffler N, Miller MR, Johnson EA, and 

Bowerman B.  The polymorphic tags generated can also be used to study the movement 

of genes across natural populations.  Work in Chapter III uses RAD-Seq to assess 

admixture between wild westslope cutthroat trout and introduced rainbows.  This work 

was completed in collaboration with Hohenlohe PA, Day MD, Amish SJ, Miller MR, 

Boyer MC, Muhlfeld CC, Allendorf FW, Johnson EA and Luikart G. Work done for this 

dissertation also presents an adaptation of RAD-Seq to study restriction enzymes 

themselves. Chapter IV details the use of sequenced genomes to quantify restriction site 

preferences over complex substrates.  This work was performed in collaboration with 

Quimby A, Zhu Z, and Johnson EA.   

High-throughput sequencing experiments have been instrumental in a new era of 

gene expression studies14,15.  RNA-Seq, the common term for inferring relative transcript 

abundance based on sequence counts, has become a common tool for probing 

transcriptomes in many systems16,17.  In addition to providing a platform for quantifying 

expression across the transcriptome, RNA-Seq has revealed an exciting level of 

complexity by identifying novel gene isoforms18,19.  The ability to use sequencing to 

identify exon junctions has uncovered that the very product expressed from a gene locus 

may be fundamentally different across cell states.  Deep views of the RNA landscape 

have also identified transcript classes outside the central dogma.  These non-coding 
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RNAs have a diverse set of functions and geneses20,21,22 and reflect pervasive genomic 

transcription.   

In addition to RNA-Seq, a series of other gene-expression methods have been 

developed for use on massively parallel sequencing machines.  These techniques exploit 

the counting power of sequencers by linking biological events to sequencing events. 

ChIP-Seq involves the enrichment and sequencing of DNA bound to transcription factors 

in order to infer their binding sites15 and FAIRE-Seq23 is used to quantify chromatin 

accessibility.  More recently, massively parallel reporter assays (MPRAs) have emerged 

which directly measure DNA regulatory activity24,25.  These assays involve libraries of 

potential DNA transcriptional enhancers engineered such that their activity may be 

quantified in parallel by deep sequencing of the RNAs they produce.  Combined with 

computational and statistical methods for analyzing the multidimensional data generated 

by these experiments, massively parallel sequencing experiments have brought 

unprecedented depth and discovery to gene regulation studies.  We use new variations on 

these techniques to explore hypoxic gene regulation in chapter V.  This work was done in 

collaboration with Preston JL, Randel MA, and Johnson EA.
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CHAPTER II 

RAPID MAPPING OF MUTATIONS IN C. ELEGANS BY RAD-SEQ 

This work was published in Volume 189 of the journal of Genetics in 2011 in 

collaboration with O’Rourke SM, Yochem J, Connolly AA, Price MH, Carter L, Lowry 

JB, Turnbull DW, Stiffler N, Miller MR, Johnson EA, and Bowerman B.  I contributed 

the molecular work and computational analysis pertaining to RAD-Seq and associated 

writing.   

 

INTRODUCTION 

Determining mutant gene identity is a key step for understanding gene function in 

forward genetic screens following mutagenesis and phenotype-based mutant isolation. In 

some organisms such as fungi and bacteria, a recessive mutant allele can be 

complemented with a plasmid-borne wild-type gene to establish gene identification. In 

organisms that lack robust DNA transformation methods, mapping with visible or 

selected single nucleotide polymorphism (SNP) markers to progressively finer genomic 

intervals is the traditional route to ascertain identity of the mutant gene. Now whole 

genome sequencing (WGS) methods can significantly reduce the time required to identify 

the causal mutation. For example, WGS can simply be used to determine all of the 

sequence alterations present in a mutant strain1-5. However, some mapping data are still 

required to differentiate the background mutational load from the causal mutation. More 

recently, WGS has been performed on outcrossed mutant progeny to combine mapping 

and sequencing for pinpointing the position of the causal mutation6,7. 	
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While resequencing a genome to identify mutant alleles is being used more 

frequently, in some cases it is more efficient to sequence only a portion of a genome. For 

example, sequencing of a single chromosome, a defined genomic interval, exonic 

sequences, or a single locus can be more cost effective when there is evidence that a 

mutation resides within a specific genome feature. There have been several throughput-

enhancing advances in capturing targeted regions of a genome using DNA annealing 

since the first reported use of this methodology whereby individual microarray spots were 

physically scraped from the substrate8-10. For example, genomic DNA can be annealed to 

microarrays printed with oligonucleotides covering the region to be targeted, washed, and 

then eluted for sequencing11-13. Alternatively, oligonucleotides can be used to capture 

homologous genomic DNA in solution14. While these approaches are extremely high 

throughput, they also can be prohibitively expensive.	
  

We have developed two Illumina-based sequencing methods in Caenorhabditis 

elegans that offer an alternative pipeline for mutation detection. First, we have performed 

restriction site associated DNA (RAD) polymorphism mapping to position the causal 

mutation to a relatively small region of the genome. Second, we have used genome 

interval pull-down sequencing (GIPS) to sequence a defined genomic interval. Genome 

intervals are captured by annealing sheared genomic DNA to sheared fosmids containing 

wild-type C. elegans DNA, eliminating the need for customized microarray or 

oligonucleotide production. Because multiple RAD mapping and genome interval 

sequencing samples can be combined in a single Illumina lane, it is possible to 

positionally clone and identify the mutant loci rapidly and cost effectively without 

performing WGS.  
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MATERIALS AND METHODS 

C. elegans strains and culture 

Strains were grown under standard laboratory conditions15. The temperature-

sensitive (ts) mutants were maintained in a 15 °C incubator and shifted to a 26 °C 

incubator to perform temperature upshifts for determining embryonic lethality.  

Genetic crosses for RAD mapping 

To map or1167ts, we crossed the polymorphic C. elegans strain CB4856 into the 

original mutagenized background [or1167ts/or1167ts; lin-2(e1309)/lin-2(e1309)]. After 

self-fertilization of the heterozygous F1 outcross, we pooled 200 of the 1/16 of the F2 

progeny that were again or1167ts/ or1167ts; lin-2(e1309)/lin-2(e1309), taking advantage 

of the lin-2 egg-laying defect to identify with a stereomicroscope within F1 self-progeny 

or1167ts/or1167ts; lin-2 (e1309)/lin-2(e1309) F2’s filling up with dead embryos 

[avoiding laboriously singling out hundreds of F2’s to look for production of dead 

embryos by egg-laying lin-2(+/+ or +/e1309) F2 progeny]. Similarly, for mapping unc-

13, we also performed a cross to CB4856 but selected 200 Unc F2 progeny for the 

genomic DNA preparations. For mapping or1089ts, we crossed the original mutant to 

CB4856 males and isolated 800 F2 hermaphrodites that were tested for embryonic 

lethality. Approximately 200 homozygous or1089ts animals were recovered and used for 

the RAD mapping procedure. 	
  

Illumina sequencing for RAD mapping	
  

Genomic DNA was isolated from pools of 200 homozygous unc-13 F2’s, and 200 

or1054ts; lin-2(e1309) F2’s as well as the N2 and CB4856 parental strains using the 
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Qiagen DNeasy kit. A total of 150 ng of each sample was digested with EcoRI and 

processed into barcoded RAD libraries as previously described17 with the minor 

modification of using the paired end P2 adapter18. Briefly, each sample was individually 

digested with EcoRI, and a P1 adapter (with a 4-bp barcode; see below) was ligated to the 

overhangs. After this step multiple samples were multiplexed. Next, the DNA was 

sheared and gel extracted to obtain 400-bp fragments and the Illumina P2 adapter was 

ligated. Samples were then run on the Illumina flow cell. The RAD library from the 

mutant pool was sequenced at 30X coverage in an Illumina Genome Analyzer IIx 

machine. With SNPs present at about every 1000 bp in the polymorphic CB4856 strain, 

and sequencing reads of 75 bp from each EcoRI site, we anticipated detecting a SNP near 

1 in 10 EcoRI sites, or about one every 50,000 bp, which was close to the observed value 

of one SNP in 64,000 bp achieved, on average. The RAD sequences were aligned to the 

reference Bristol N2 genome using the Bowtie software package19. The Bowtie output 

was then exported to SAMtools20 and converted into BAM format. We then produced a 

pileup file, to which we applied the samtools.pl script “varFilter” command (using 

default options) to identify SNPs. The varFilter results were then saved as a tab delimited 

file for use with graphing software (Microsoft Excel and Adobe Illustrator). As an 

alternative method for identifying N2/CB4856 SNPs, one could use the MAQGene 

program21, which may be more accessible to non-bioinformaticians6.  

Illumina sequencing of genomic intervals 

To pull down intervals of genomic DNA to which or195ts, semidominant 

or600(sd),ts, and or683ts were mapped, we used magnetic bead pull-downs. A total of 5 

ug of genomic DNA was purified from each mutant strain using a DNeasy Blood and 
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Tissue kit (Qiagen) and sheared to an average size of 500 bp by sonication in a Bioruptor 

(Diagenode). The ends of the sheared DNA fragments were blunted using a QuickBlunt 

kit (New England Biolabs) and the fragments purified with a PCR purification kit 

(Qiagen). A-overhangs were added to the genomic fragments by incubation of the 

purified, blunted DNA with 150 units of Klenow DNA polymerase exo- (New England 

Biolabs) and dATP at 37 °C for 30 min. The modified fragments were purified with a 

mini-elute PCR purification kit (Qiagen). A total of 7 ul of 1 uM modified Illumina 

sequencing adapters were ligated to the sheared genomic fragments at 16 °C for 2 hr 

using 2000 units of T4 DNA ligase (New England Biolabs). [Top strand: 59 

ACACTCTTTCCCTACACGACGCTCTTCCGATCxxxx*T 39; bottom strand: 59 

phosphate xxxxGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 39 (where x 

indicates the barcode bases and *, phosphorotioate bond.) The ligation reaction was size 

separated by agarose gel electrophoresis, and fragments between 150 and 500 bp in size 

were purified from the gel using a Gel Extraction kit (Qiagen). The purified ligation 

products were PCR amplified using Phusion high fidelity DNA polymerase (New 

England Biolabs) and the Illumina amplification primers 5’ 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCT 3’ and 5’ CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCT 

GCTGAACCGCTCTTCCGATCT 3’. The following cycling conditions were used for 

PCR: 98 °C for 2 min, 15 cycles of 98 °C for 10 sec, 65 °C for 30 sec, and 72 °C for 15 

sec. Following amplification, samples were size separated by agarose gel electrophoresis, 

and fragments between 150 and 500 bp were purified with a Gel Extraction kit (Qiagen).  
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Biotinylated probe preparation  

DNA preps homologous to the targeted genomic interval were prepared from 

genomic fosmids, using a nearly genome-wide fosmid library for C. elegans that was 

developed by the Genome Sciences Centre in Vancouver, BC, Canada. A total of 100 ng 

of the fosmid DNA mixtures were combined with 20 ul of 2.5 uM random octamer 

solution (Life Technologies) and heated to 100 °C for 5 min. The mixture was rapidly 

cooled in an ice/water bath, following which 5 ul of biotin dNTP mixture [1 mM biotin-

14- dCTP, 1 mM dCTP, 2 mM dATP, 2 mM dGTP, and 2 mM dGTP, in 10 mM Tris-

HCl (pH 7.5), 1 mM Na2 EDTA] (Life Technologies) was added, along with 1 ul of 

Klenow fragment DNA polymerase (Life Technologies) and ultrapure water to bring the 

reaction volume to 50 ul. The reaction was then incubated at 37 °C for 1 hr, following 

which, the products were size separated on an agarose gel and the predominant 100-bp 

product was purified with a Gel Extraction kit (Qiagen). 	
  

Streptavidin bead preparation  

A total of 50 ul of M270 streptavidin Dynabeads (Life Technologies) were 

washed three times with 100 ml of 6x SSC and resuspended in 100 ul of bead block 

buffer [2% I-Block (Tropix), 0.5% SDS, 1X PBS]. Beads were incubated at room 

temperature for 30 min with occasional mixing and were then magnetically captured and 

washed three times with 6x SSC. 

Hybridization, immobilization, elution, and sequencing 

A total of 5 mg of adapted, purified genomic DNA was combined with 150 ng of 

purified biotinylated probe in 300 ul of hybridization buffer [54% formamide, 1· SSC, 

1% SDS, 5.4X Denhardt’s solution (Sigma), 1 mg/ml Salmon sperm DNA (Life 
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Technologies)]. The mixture was heated to 100 °C for 2 min and then transferred to a 42 

°C incubator, where it was incubated with mixing overnight. Following overnight 

incubation, biotinylated probe/genomic DNA fragment hybrids were immobilized by 

binding to prepared blocked and washed streptavidin beads by combining the 

hybridization mixture (300 ul) with the bead/SSC mixture (100 ul), and incubating at 

room temperature for 15 min with occasional mixing. Beads were then magnetically 

captured, and washed three times with wash solution 1 (1X SSC, 0.15% SDS), three 

times with wash solution 2 (0.2X SSC), and three times with wash solution 3 (0.05X 

SSC). After the final wash step, the beads were resuspended in 200 ml of ultrapure water, 

heated to 100 °C for 2 min, and quickly magnetically captured. The supernatant was 

carefully collected and concentrated to a volume of 20 ul in a Speedvac concentrator 

(Savant). A total of 10 ul of the concentrated supernatant was then used as template for a 

PCR reaction utilizing Illumina amplification primers and Phusion high fidelity DNA 

polymerase (New England Biolabs) (2 min 98 °C 24 cycles of 98 °C for 10 sec, 65 °C for 

30 sec, and 72 °C for 15 sec). The PCR products were purified with a PCR cleanup kit 

(Qiagen), quantified, and submitted for Illumina sequencing on an Illumina Genome 

Analyzer II. 

 

RESULTS 

RAD mapping of C. elegans mutations 

To rapidly map C. elegans mutations, we have used an Illumina  sequencing-

based genome-wide single nucleotide  polymorphism mapping procedure called RAD 

polymorphism  mapping17,22,23. RAD markers are SNPs adjacent to restriction  enzyme 



 

11 

 

recognition sequences in the genomes of divergent  strains. In our case, we used the N2 

background (isolated in  Bristol, UK) to isolate mutants and subsequently crossed  them 

to the polymorphic Hawaiian CB4856 strain for mapping.  The N2 and CB4856 genome 

sequences have diverged  substantially but their hybrid progeny are fertile. On average,  

there is a SNP approximately every 1 kb, allowing physical  mapping using a large 

number of markers. 

To experimentally identify RAD tags, we crossed wild-type N2 hermaphrodites to 

CB4856 males. F1 hybrid progeny were isolated and genomic DNA was digested with 

EcoRI. After adapter ligation and selective amplification of the RAD tags (Figure 1), 

Illumina sequencing was performed with an Illumina Genome Analyzer IIx system. 

 

Figure 1. Restriction site-associated DNA (RAD) mapping schematic. Genomic DNA 
was isolated from 200 pooled F2 progeny in crosses between the N2 mutants and the 
polymorphic CB4856 (Hawaiian) strain. Genomic DNA was digested with EcoRI and P1 
Illumina adapters were ligated to the fragments. This DNA was mechanically sheared and 
Illumina P2 adapters were ligated to the fragment ends. Next, RAD tags were selectively 
amplified and sequenced from the Illumina sequencing primer site encoded on the P2 
adapter on an Illumina Genome Analyzer IIx machine.    
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Selective amplification was carried out by using a ‘‘Y’’ adapter for the P2 adapter, which 

prevents fragments that lack a P1 adapter from being amplified after first round synthesis 

initiated from the P1 site 17,24. We detected 3,462 SNPs with an average distance between 

them being 29 kb. Most SNPs (95%) were separated from an adjacent SNP by 100 kb 

(Figure 2). The largest distance separating adjacent SNPs occurred near the center of 

chromosome V (515 kb). Most of the SNPs we identified could be predicted in silico 

from the sequence of the CB4856 strain (data not shown). Because the sequencing is  

 

 

Figure 2. EcoRI-associated RAD tag locations. (A) RAD mapping results from an 
N2/CB4856 cross. Vertical lines represent EcoRI-associated RAD markers on each of the 
C. elegans chromosomes. The total chromosome sizes are listed on the right. For a list of 
the RAD markers, sequences, and positions, see File S1. (B) Distance between adjacent 
RAD markers. The plot represents the number of RAD marker pairs at the indicated 
distances, in kilobase pairs.     
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done with purified RAD tags instead of total genomic DNA, multiple samples can be 

multiplexed on a single lane in an Illumina sequencer, with each sample containing 

unique barcodes or subsequent sequence data deconvolution. The barcodes used for RAD 

mapping are 6-bp sequences added to the P1 adapter primer. In one test, we used one 

Illumina Genome Analyzer IIx lane to process 13 RAD mapping crosses. We used single-

end sequencing with 80-bp reads, to achieve 50 million reads yielding 40· coverage. We 

tested the applicability of RAD mapping coupled with Illumina sequencing using three 

different approaches.   

First, we mapped a known mutant, unc-13(e450). We crossed the unc-13 mutant 

to the polymorphic C. elegans strain CB4856 and pooled 200 F2 progeny that were 

homozygous for the unc-13 mutation. We chose 200 recombinants as a goal because it 

afforded a relatively large number of independent recombination events, although it is 

possible that using fewer recombinant F2’s would also yield sufficient resolution. After 

producing a RAD library from the F2 genomic DNA sample, we performed sequencing 

on the Illumina machine to detect SNPs across the genome (see Materials and Methods). 

We used graphing software (Microsoft Excel and Adobe Illustrator) to plot the ratio of 

CB4856/Bristol SNPs across the C. elegans genomic sequence, indicating the fraction of 

samples for any one SNP that correspond to the polymorphic CB4856 sequence (Figure 

3A). In this test, we identified 683 RAD tags throughout the genome. The ratio of 

CB4856 to N2 SNPs was 0.5 across the genome, except for chromosome I, where a large 

trough was present. The center of the trough on chromosome I is within 800 kb of the 

known location of unc-13 (Figure 3B). We conclude that Illumina-based RAD mapping 

can quickly provide the approximate physical position of mutant loci. 
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We similarly applied RAD mapping to or1089ts, a mutant of unknown molecular 

identity with severe defects in mitotic spindle assembly in one-cell–stage embryos 

(Figure 4A). In this case, we identified 3134 RAD markers in the F2 RAD library. 

Chromosome I was highly enriched for N2 DNA (Figure 4B), with the trough of N2 

DNA centered at 9.25 Mb on chromosome I (Figure 4C), positioning the or1089ts 

mutation near the center of chromosome I. In a 1-Mb region centered on the trough, we 

 

 

Figure 3. RAD mapping results for unc-13. (A) Genome-wide RAD mapping results for 
unc-13 after crossing it to CB4856. A total of 683 SNPs across the genome in F2 progeny 
were detected and the ratio of the CB4856 SNPs plotted along the chromosomes. The 
vertical axis represents the percentage of CB4856 SNPs in the F2 population. (B) 
Magnification of chromosome I. The trough on chromosome I correlates with the known 
location of unc-13.    
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found one candidate gene in online databases, spd-2, that when reduced in function using 

RNAi, results in defects that closely resemble the or1089ts mutant phenotype25,26. The 

center of the reduced CB4856 ratio is 276 kb to the left of the known location of spd-2 

(Figure 4C). We Sanger sequenced the spd-2 gene in genomic DNA from or1129ts 

mutants after amplifying the locus using genespecific primers. We found a single  

 
 

Figure 4. Phenotype and RAD mapping of spd-2(or1089ts). (A) Defective mitotic 
spindle formation and cytokinesis failure in an early or1089ts embryo produced from a 
worm shifted to 26_ for 6 hr (lower) compared to a wild-type embryo (upper). (B) 
Genome-wide RAD mapping of or1089ts. A reduction of CB4856 DNA on chromosome 
I results from the selection of the mutant homozygotes. (C) The center of the trough is 
near 9 Mb and is positioned near the causal mutation (see text). (D) DNA sequence 
analysis of or1089ts identifies amutation in spd-2 open reading frame (GenBank: 
AY340594.1). The mutation, causing a phenylalanine-to-isoleucine change in codon 544, 
is shown relative to the changes of or183 and or188, two known temperature-sensitive 
alleles of spd-2 
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nucleotide mutation that changes a phenylalanine codon to an isoleucine codon at amino 

acid 544 (Figure 4D). We also found that or1089ts failed to complement spd-2(or293ts) 

(data not shown). We conclude that or1089ts is a new spd-2 allele. 

We have screened for temperature-sensitive, embryonic lethal C. elegans mutants 

using an egg laying-defective (Egl) lin-2(e1309) mutant background that enables one to 

screen mutagenized populations for animals that produce inviable embryos without 

singling out individual worms16,26,27,29. To take further advantage of this Egl background 

for RAD mapping, we crossed or1167ts; lin-2(e1309) hermaphrodites to CB4856 males 

and obtained F2 animals that were mutant for both lin-2(e1309) and or1167ts. Instead of 

testing embryonic lethality of 800 F2 animals individually on plates, as was done for spd-

2(or1089ts), we were able to isolate 200 or1167ts; lin-2(e1309) animals that accumulated 

mostly dead embryos from a mixed F2 population after shifting them to the restrictive 

temperature as L4 larvae. After preparing and sequencing the RAD library, we identified 

3400 RAD tags. The ratios of CB4856 to N2 DNA were plotted and we found two 

troughs that correspond to an enrichment of N2 DNA (Figure 5). The trough on the X 

chromosome is 550 kb from the known location of lin-2, while the trough on the right 

arm of chromosome IV presumably correlates with the location of or1167ts. The fact that 

the lin-2 trough does not reach zero likely relates to inadvertently picking some worms 

that were in fact not lin-2, as even wild-type worms sometimes hold their embryos and 

can appear Egl. We found one candidate gene, sas-6, positioned 250 kb left of the center 

of the chromosome IV trough. Like animals depleted for sas-6, or1167ts animals shifted 

to the restrictive temperature as L4 larvae produce embryos that appear to assemble 

monopolar mitotic spindles in early embryonic cells (not shown). We sequenced the sas-6 
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locus with the Sanger method after amplification of the region by PCR. We found a 

single missense mutation that changes an aspartic acid to a valine in the ninth amino acid 

of SAS-6 (Figure 5D). As or1167ts also failed to complement a known sas-6 mutant (not 

shown), we conclude that or1167ts is a sas-6 allele. This example demonstrates that RAD 

mapping can be easily applied in the context of the lin-2(e1309) marker to minimize the 

effort required to isolate F2 animals that are homozygous for embryonic lethal mutations. 

We continue to explore the use of RAD methodologies to rapidly map temperature- 

 

Figure 5. RAD mapping results for a sas-6(or1167ts); lin-2 double mutant. or1167ts; lin-
2 mutants were crossed to CB4856 males and F2 progeny, homozygous for both the 
or1167ts embryonic lethal mutation and the lin-2 mutation, were isolated. (A) 
Genomewide RAD mapping results show enrichment for N2 DNA on chromosomes IV 
and X. (B) The sas-6 gene is located near the chromosome IV trough. (C) The trough on 
the X chromosome lies near the known position of the lin-2 locus. (D) The sas-6 locus 
contains a missense mutation that changes an aspartic acid codon to a valine (NCBI: 
NP_502660.1). An alignment was performed with the C. elegans (Cel) wild-type SAS-6, 
C. elegans SAS-6(or1167ts), C. remanei (Cre) SAS-6, and C. briggsae (Cbr) SAS-6. 
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sensitive embryonic lethal C. elegans mutants and note that this approach can be used to 

map virtually any locus that can be assayed in N2/CB4856 F2 animals. 

Illumina-based GIPS 

To quickly and more cost-effectively identify causal mutations in mutant strains, 

we have also applied Illumina DNA sequencing to defined genomic intervals, rather than 

sequencing entire mutant genomes (as has been done to identify some mutant loci in C. 

elegans
1,7).  Sequencing an entire genome involves more cost than our procedure because 

we multiplexed multiple barcoded sequencing experiments on a single Illumina Genome 

Analyzer IIx flow cell. Briefly, we used wild-type genomic DNA from defined genomic 

intervals, linked to magnetic beads, to partially purify regions of mutant genomic DNA 

(see Figure 6A and Materials and Methods). We first tested the feasibility of using 

interval pull-downs and Illumina sequencing by resequencing a previously identified 

mutation present in the dhc-1 locus of dhc-1(or195ts) mutants worms30. We then 

identified the mutations responsible for conditional lethality in two previously reported 

mutants [tbb-2(or600sd,ts) and plk-1 (or683ts)29], after sequencing genomic intervals of 

1.8 and 1.3 Mb, respectively (Figure 7). 

To test this methodology, we first selected a fosmid that includes the entire dhc-1 

locus, available from Source Bio- Science (http://lifesciences.sourcebioscience.com). We 

purified the fosmid, sheared it, and linked the fragments to biotinylated beads as 

described in Materials and Methods. After using these beads to isolate sheared dhc-

1(or195ts) genomic DNA, the mutant genomic DNA was eluted and prepared for 

Illumina sequencing (see Materials and Methods). We aligned 66,853 30-base reads to 

the 30.1 kb dhc-1– containing fosmid on chromosome I and the average coverage for 
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each position in the fosmid was 66·. For comparison, we also identified 570,311 reads 

that could be aligned to the rest of the genome, yielding an average read coverage of 

0.17· for each nucleotide position. Therefore, we achieved a 388-fold enrichment for 

reads in the targeted region using our interval pull-down sequencing method. We 

identified the previously sequenced C-to-T dhc-1(or195ts) mutation in a total of 66 reads, 

and no other mutations were detected in the dhc-1 locus (Figure 7A). We conclude that 

GIPS can readily identify the mutations present in relatively large regions of the genome. 

 

Figure 6. Genome interval pull-down sequencing (GIPS) using the Illumina platform. 
(A) Schematic overview of the interval pull-down sequencing method. First, fosmids of 
wild-type DNA covering a region of the genome are purified, sheared, and ligated to 
biotinylated adapters. Next, mutant genomic DNA is sheared and annealed to the 
biotinylated fosmids. After purification and release of the mutant DNA using magnetic 
beads, the fragments are subjected to sequencing on an Illumina machine. Finally, the 
reads are assembled onto the genome scaffold and polymorphisms are identified. (B) 
Example output of mutant genome assembly. Shown is a small region of the tbb-2 locus 
with portions of reads aligned beneath the reference sequence. In this case, each read 
shows that a cytosine in wild type has been changed to a thymidine in tbb-2(or600sd,ts). 
Also shown is one apparent sequencing error where an A . G change was called in one of 
the reads. Nucleotides are color coded, uppercase letters, and periods in the sequence 
reads represent identity with the reference sequence, while reads containing lowercase 
letters and commas represent sequence data obtained from the reverse complement 
strand.    
 

Next, we used GIPS to identify the mutation responsible for the early embryonic 

cell division defects caused by the semidominant, temperature-sensitive mutation 
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or600sd,ts. We defined the or600sd,ts interval using standard mapping crosses with 

visible morphological and behavioral markers. We localized the mutation to chromosome 

III between positions 3,618,381 and 5,447,436. We used the WormBase genome browser 

to identify a minimal tiling path using genomic DNA from fosmid clones available from 

Source BioScience (http://lifesciences.sourcebioscience.com). We identified 65 fosmids 

that spanned the region with 7 gaps that totaled ,45 kb (2.5% of the region). We purified, 

sheared, and linked the fosmid fragments to biotinylated beads. After using these beads to 

isolate sheared or600sd,ts genomic DNA, the mutant genomic DNA was eluted and 

prepared for Illumina sequencing (see Materials and Methods). We found 1,596,403 48-

base reads that could be aligned to the region, giving an average coverage for each 

nucleotide in the interval of 42·. The total number of reads corresponding to the C. 

elegans genome was 6,034,221. 

We used software (SAMtools) to output a text file that lists the mutations 

identified in the interval. One can also view the sequence reads aligned to the reference 

wild-type genome sequence with SAMtools (Figure 6B). There were 45 mutations in the 

1.8-Mb or600sd,ts interval (Figure 7B). We found 14 extragenic changes, 23 intronic 

changes, one mutation in a pseudogene, two mutations that cause the transcript to go out 

of frame, three potential annotation errors, and two missense mutations.  As 90% of our 

identified temperature-sensitive mutations are caused by missense mutations29 (the 

remaining are due to premature stop codons, small deletions, and mutations in splice-site 

boundaries), we narrowed our analysis of mutations in exon and intron splice sites. Three 

mutations that appeared to cause exonic changes are likely not the causal mutation 

because they were present in wildtype DNA; expressed sequence tags show the same 
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mutations, perhaps indicating errors in the reference sequence. None of the intronic  

 

Figure 7. Analysis of the genome interval pull-down sequencing. The protocol shown 
was applied to three mutants. The positions of nucleotide alterations vs. the reference 
sequence is shown in graphical form. Each line represents a single change, diagonal lines 
attached to the top of the vertical lines represent multiple changes located very close 
together. Lines are color coded to show various types of mutations. The ^ in the black 
bars point to the causative mutations. (A) Sequencing results for the 15 kb dhc-1(or195ts) 
locus purified using a single genomic fosmid clone. The previously identified missense 
mutation was found. (B) Sequencing results for a 1.82-Mb region on chromosome III in 
the or600sd,ts genome. We identified 45 total mutations in the region including the 
missense mutation in tbb-2. (C) Sequencing results for a 1.3-Mb region on chromosome 
III in the or683ts genome. We identified 29 total mutations in the region including the 
missense mutation in plk-1. 
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changes occurred at intron boundaries and thus are unlikely to interfere with RNA 

splicing. The four remaining exonic mutations occur in the tbb-2, ras-2, his-70, and clec-

154 genes. Single nucleotide deletion and insertion mutations in the his-70 and clec-

154loci, respectively, encode proteins with altered C termini, while the ras- 2 and tbb-2 

mutations are missense. Of these four genes, only RNAi that targets the tbb-2 locus 

phenocopies the or600sd,ts early embryonic phenotype [note that tbb-2(RNAi) also 

depletes the paralogous redundant tbb-1 gene product]. Depletion of the other three genes 

by RNAi does not result in any lethal phenotypes (WormBase). On the basis of sequence 

data, the embryonic phenotype and genetic interactions with a previously isolated tbb-2 

allele, or362sd,ts29, we conclude that or600sd,ts is a tbb-2 allele. 

 

DISCUSSION 

The utility of C. elegans as an animal model, in which one can readily isolate 

temperature-sensitive mutations in essential genes, and the power of next generation 

DNA sequencing for greatly reducing the time required to positionally clone mutant loci, 

now make it possible to much more rapidly isolate experimentally useful conditional 

mutations in essential genes. Our two new Illumina-based sequencing methods should 

allow for increased throughput when analyzing large numbers of mutants. 

RAD polymorphism mapping has been used successfully to map genes in 

Drosophila
23, threespine stickleback fish23, Neurospora22, diamondback moths31, barley32 

and now C. elegans. So long as a hybrid strain is available to generate F2 progeny, the 

methodology should be feasible in any organism. RAD mapping makes it possible to 

simultaneously and rapidly determine the approximate location of large numbers of 
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mutations isolated after mutagenesis. We have used EcoRI to cut the genomic DNA 

because it provides relatively good resolution between RAD markers (Figure 1). 

However, any other restriction enzyme could also be used, or multiple enzymes could be 

used to gain increased mapping resolution. RAD mapping provides an ideal procedure to 

identify mutant loci when the number of gene candidates is limited. 

We explored the use of RAD mapping in three different contexts. First we have 

performed a proof-of-principle experiment where we mapped the position of unc-13, a 

known mutant (Figure 3). While the numbers of RAD markers obtained was relatively 

low in this example (683, presumably because we experienced some sample loss), the 

center of the trough on chromosome I is still within 800 kb of the known position of unc-

13. In the second approach, we used RAD mapping to clone the or1089ts mutant. After 

picking 800 F2 animals from an or1089ts/CB4856 cross, we identified those that were 

homozygous for the or1089ts mutation. We found a substantial enrichment of the N2 

DNA on the center of chromosome I that was positioned within 276 kb from the known 

position of the spd-2 locus. We performed Sanger DNA sequencing on PCR products 

derived from the spd-2 locus and identified one sequence alteration that causes a 

missense mutation (Figure 4D). Thus, RAD mapping can rapidly identify candidate genes 

that can be further investigated by sequencing candidate genes, GIPS, or 

complementation tests with existing mutants. We also tested the feasibility of performing 

RAD mapping on F2 animals that were doubly mutant for an embryonic lethal mutation 

and an egg-laying defective mutant, lin-2 (present in the original mutagenized strain). 

Since homozygous lin-2 animals hold their embryos, it was possible to more easily and 

rapidly select F2 progeny homozygous for the mutation being mapped from an or1167ts; 
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lin-2 and CB4856 cross (Figure 5). As expected, we found two regions of the genome 

that were enriched for N2 DNA: one corresponds to the lin-2 locus, while the second 

corresponds to the or1167ts mutation in the sas-6 locus. Finally, we are currently 

exploring the use of RAD mapping by crossing temperature- sensitive mutants to 

CB4856 males and allowing the progeny to reproduce at the nonpermissive temperature 

for many generations. This method may significantly reduce the labor in isolating the 

homozygosed F2 progeny and would show an exclusion of N2 DNA corresponding to the 

lethal locus. 

In a second use of Illumina sequence technology, we have developed a genome 

interval pull-down method to sequence defined portions of the genome. By sequencing 

only intervals that contain the causal mutation, one can reduce the expenses associated 

with whole genome sequencing. We have successfully applied this technology to 

positionally clone two new mutants so far (Figure 7), as well as the control dhc-

1(or195ts) mutant. We identified 45 sequence alterations in the 1.83 Mb or600sd,ts 

interval and 29 mutations in the 1.3 Mb or683ts interval vs. the WormBase reference 

sequence. Thus, if we had sequenced the entire genome of these mutants, we would have 

found many mutations. Therefore, it is clearly important to have some mapping data to 

narrow the search for the causal mutation, and RAD mapping fills this role well. As costs 

continue to come down, whole genome sequencing using either recombinant F2 animals6 

or backcrossed mutants7, two techniques that simultaneously map and sequence 

mutations, may become more cost effective than the relatively more labor-intensive 

GIPS. Nevertheless, RAD mapping may continue to prove useful for analyzing large 

numbers of mutants, as many mutants can be identified by sequencing only candidate 
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genes in the vicinity or by complementation tests with previously identified alleles in the 

region. In fact, a large number of nonconditional mutants exist that can be used for 

performing complementation tests33-36. GIPS should also remain useful for sequencing 

candidate genes that are too large to easily amplify with PCR for Sanger sequencing. 

As of August 2011, the cost to sequence the entire C. elegans genome at 30X 

coverage was about U.S.$600 on the HiSeq2000 platform. With this many reads, one 

could perform 50 RAD mapping experiments (at 30X coverage) or 50 GIPS procedures 

using 2-Mb pull-down regions. Both of these sequencing techniques can also be run on 

Illumina runs with other samples (with the use of barcoded adapters). Depending on the 

type of mutant being sequenced, using WGS strategies will be more straightforward.  For 

example, if the mutant locus is resistant to RNAi, or if large-scale RNAi screens have not 

assayed the phenotype represented by the mutant, then WGS is likely the best approach. 

However, if the mutant phenotype is likely to be recapitulated by RNAi, such as early 

embryonic lethality (as we are studying), then RAD mapping will reveal a limited 

number of candidate genes. Sanger sequencing, complementation tests with existing 

mutants, or GIPS could then identify the causal mutation, although the time required to 

perform this two-step approach is longer than using a mapping/WGS approach. Thus, 

RAD mapping may be a viable alternative to WGS when large numbers of mutants are 

being investigated. Similarly, GIPS can be useful for sequencing loci that are known to 

be defective in many different mutants. For example, suppressor screens often identify 

many intragenic suppressor alleles37 which, depending on size, can be very time 

consuming to Sanger sequence; yet performing WGS may be too expensive with many 

alleles to sequence. GIPS fills this gap and allows the simultaneous sequencing of many 
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different mutant loci on the same Illumina lane with the use of barcoded samples. In 

conclusion, we offer two new strategies for mutant identification in C. elegans that can 

fill roles not currently provided by WGS for certain applications. 

 

BRIDGE TO CHAPTER III 

Having discussed the use of RAD-Seq generated markers to identify mutant loci 

in recombinant lab animals, we turn towards the application of RAD-Seq in natural 

populations.  The complexity reduction provided by only analyzing the consistent subset 

of genomic regions adjacent to restriction sites allows for many individuals to be assayed 

in a cost-effective manner.  It also is a next-generation method applicable to non-model 

organisms providing resolution and throughout far beyond sanger-based molecular 

population genomics studies.  In analyses such as that presented in chapter III, 

polymorphic loci can simultaneously be identified and used to infer population structure.  

Allelic differences between populations can be used to create phylogenies as well as 

witness evolutionary events.  In the following chapter the level of admixture between 

wild westslope cutthroat trout and introduced rainbow trout is traced using RAD-Seq.  

Similar to the C. elegans study described in chapter II, abnormalities in the distribution of 

polymorphic RAD sequences are used to infer biological activity. In this case they are not 

indicative of lab-produced mutations, but of introgressing alleles conferring fitness 

advantages in natural populations.   
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CHAPTER III 

GENOMIC PATTERNS OF INTROGRESSION IN CUTTHROAT 

TROUT 

This work was published in volume 22 of the journal Molecular Ecology in 2013 

in collaboration with Hohenlohe PA, Day MD, Amish SJ, Miller MR, Boyer MC, 

Muhlfeld CC, Allendorf FW, Johnson EA and Luikart G.  I contributed the molecular 

work pertaining to RAD-Seq and associated writing.   

 

INTRODUCTION 

Hybridization between native and introduced taxa is an increasing concern for 

conservation and legal assessments of threatened species1. Hybridization can reduce 

fitness through outbreeding depression2, cause genomic extinction1 and destroy important 

genetic and ecological adaptations3,4. The loci most responsible for the genetic effects of 

hybridization may be outliers in their degree of introgression because of natural selection 

in admixed populations5-8 (‘super invasive alleles’). As a result, estimates of admixture 

averaged across loci at the individual or population level may miss important genetic 

factors in conservation and management of native taxa. Current high-throughput 

sequencing techniques now allow genome scans for invasive alleles in natural 

populations of nonmodel species. 

Anthropogenic hybridization is especially widespread in freshwater fishes due to 

decades of fish translocations and hatchery supplementation of wild populations. 

Rainbow trout (RBT, Onchorhynchus mykiss) is the most widely translocated and 

problematic invasive fish worldwide9. RBT hybridize with cutthroat trout (O. clarkii), 
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including the subspecies westslope cutthroat trout (WCT, O. c. lewisi). WCT is the most 

widely distributed of 12 extant cutthroat subspecies, and hybridization is the leading 

threat to persistence of genetically pure WCT populations10. 

Management of WCT populations would benefit from detection of hybridization 

and introgression at low levels and from the ability to precisely estimate individual-level 

admixture proportion. Previous work has used micro satellites and other loci to assess 

levels of admixture from RBT into native WCT populations2,11,12,13. Muhlfeld et al.13 

found that levels of RBT admixture were negatively related to distance from the source of 

RBT hybridization (Abbot Creek; see Figure 1) and positively related to mean summer 

water temperature, suggesting potential for the existence of RBT alleles that are adaptive 

to warm water temperatures14,15. However, the low number of diagnostic markers 

available with microsatellites typically allows precise admixture estimates only at the 

population level, not at the individual or genome-scan level. 

Single nucleotide polymorphisms (SNPs) are ideal markers for hybridization 

assessment and monitoring because hundreds of SNPs can be rapidly, reliably and 

cheaply genotyped using new genotyping platforms16-19. Much recent effort has been 

committed to assembling a set of diagnostic SNP loci for RBT and WCT20-25. 

A high density of markers across the genome promises individual-level estimates 

of admixture proportion, as well as detection of super invasive alleles. However, SNP 

discovery in salmonid fish is especially challenging due to a recent genome duplication 

event, making it difficult to distinguish true SNPs from fixed sequence differences 

between homeologous duplicate chromosomal regions26-28 as well as more typical 

tandem-duplicated paralogous regions. One way to filter out both paralogs and homologs  
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is to gather more sequence data around candidate SNP markers to resolve between next-

generation sequence reads that come from one locus vs. two different loci.  

 

 

Figure 1. Map of the North Fork Flathead River study area, showing the five admixed 
westslope cutthroat trout populations examined here plus the initial source of introduced 
rainbow trout individuals (Abbot Creek; see Boyer et al. 2008; and Muhlfeld et al. 2009c 
for more information on these populations) 
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We previously used restriction-site-associated DNA (RAD) sequencing29 to 

identify several thousand WCT diagnostic SNPs30. Those candidate diagnostic markers 

have shown a high rate of subsequent validation in microfluidic PCR-based genotyping 

assays23. However, primer design for those genotyping assays required >50 bp of 

flanking sequence on each side of each SNP, which we obtained from previously 

published sequence data, reducing the number of candidate markers for which assays 

could be designed23. In addition, our ability to distinguish duplicate sequence based on 

the flanking sequence was limited to the 54 bp single-end Illumina read length in that 

study. The approach we present here can be used to simultaneously identify and genotype 

SNP markers, as well as gather substantial flanking sequence, in a single RAD 

sequencing experiment. The amount of flanking sequence is more than sufficient for 

primer design and also allows better discrimination of paralogous loci. 

 Restriction-site-associated DNA sequencing is one of a family of genomic 

approaches that provide sequence data adjacent to restriction enzyme recognition sites31. 

The primary difference between RAD and related techniques is that RAD incorporates a 

random shearing step in library preparation. As a result, while the forward reads are 

anchored at the restriction site, the reverse reads produced by paired-end Illumina 

sequencing of RAD libraries are staggered over a local genomic region (of several 

hundred base pairs). These staggered paired-end reads can be assembled into a ‘mini-

contig’, a continuous stretch of genomic sequence that is longer than each individual read 

and potentially up to 1 kb32, 33, 34, 35. Here, we designed our RAD libraries so that a 

substantial fraction of DNA fragments would produce overlapping paired-end reads, 

allowing assembly of contigs containing both the forward and reverse reads of each pair. 
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These ‘RAD contigs’ are anchored at one end by the restriction enzyme recognition site 

and contain several hundred base pairs of continuous genomic sequence data across 

dozens of individuals.  

 The goals of this study were to: (i) assemble a large set of RAD contigs from a 

sample of low-admixture WCT populations; (ii) provide flanking sequence for finer 

filtering of candidate diagnostic SNP markers between RBT and WCT; (iii) genotype 

filtered diagnostic SNPs across five WCT populations to assess the ability of RAD 

sequencing compared with microsatellites to provide precise individual-level estimates of 

admixture; and (iv) identify outlier loci exhibiting the signature of super invasive alleles.  

 

MATERIALS AND METHODS 

Study system 

 We focus on WCT populations in tributaries to the North Fork of the Flathead 

River in northwestern Montana.  The North Fork Flathead River originates in Canada and 

forms the western border of Glacier National Park before joining the main-stem Flathead 

River, which flows into Flathead Lake. The presence of hybridization and RBT 

admixture was previously estimated in several populations using seven diagnostic 

microsatellite loci12,13. Here, we use five of these populations (Meadow, Nicola, Dutch, 

Lower Hay and Tepee) for which estimates of the mean population-level admixture based 

on microsatellite loci ranged from 1.3% to 13.0%. We chose populations without F1 

hybrids as identified in previous studies with the goal of using later-generation admixed 

populations to detect specific loci with elevated levels of introgression. We used 

preserved DNA samples, collected from 18 to 22 individuals in each population during 
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2003 to 2004 for the study by Boyer et al.12 to allow individual-level comparisons 

between SNP-based and microsatellite-based admixture estimates. We selected 

individuals across the range of admixture proportions previously estimated within each 

population.  

RAD sequencing 

 We prepared RAD sequencing libraries for 97 samples from the five WCT 

populations described previously, following the previously published protocol.36 The 

RAD protocol produces libraries of genomic fragments bounded on one end by a 

restriction enzyme cut site (therefore common across individuals), with the other end 

randomly sheared. Typically, fragments in RAD libraries are size selected simply to 

optimize the efficiency of the Illumina sequencing process. Here, we used the restriction 

enzyme SbfI and 6-nucleotide barcoded adaptors differing from each other by at least 

three nucleotides to identify individuals. We modified the standard protocol to target 

DNA fragments of 330– 400 bp during gel size selection, so that the size of genomic 

DNA inserts targeted the range 200–270 bp, to produce overlapping paired-end reads for 

a large proportion of sequenced fragments (Figure 2). We sequenced the RAD libraries in 

portions of two lanes (grouped with other RAD sequencing experiments) on an Illumina 

HiSeq sequencer at the University of Oregon, producing 153-bp paired-end reads.  

 We processed the sequence data and grouped the read pairs from all individuals 

into RAD loci using several modules from the STACKS software package, version 

0.99837. First, using the STACKS program process_radtags.pl, we sorted read pairs by 

barcode, filtered for read quality and removed any pairs in which the forward read did not  
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Figure 2. Schematic diagram of overlapping paired-end restriction site-associated DNA 
(RAD) sequencing. (a) RAD libraries are prepared according to Etter et al. (2011a,b), 
with the exception that a smaller size range of fragments are selected to obtain 
overlapping reads. The green triangle indicates the restriction enzyme cut site, and 
fragments from only one side of the cut site are shown for three individuals (represented 
by different colours). (b) Libraries are sequenced by Illumina with paired-end reads. Loci 
are identified with STACKS software, using only the forward reads (solid lines) to cluster 
reads by locus. (c) Both the forward and reverse reads from each locus are pooled across 
a set of individuals and assembled into a RAD contig. The depth of sequencing coverage 
across overlapping paired-end RAD contigs has a unique signature. (d) Reads from each 
individual are separately aligned against the reference contig set and diploid single 
nucleotide polymorphism genotypes are called statistically. The length of genotyped 
sequence data may vary across individuals, and in some cases genotype data may have a 
gap where paired ends did not overlap. 
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contain both a correct barcode and the remaining six bases of the SbfI recognition 

sequence. We then removed read pairs that represented PCR duplicates using the 

STACKS program clone_filter. The random shearing step in RAD sequencing produces 

staggered paired-end reads as described previously, so that any set of read pairs that are 

identical across both the forward and reverse reads are probably PCR duplicates of a 

single original genomic DNA fragment31. Because genotyping depends on using read 

counts of alternative alleles in a statistical sampling model, PCR duplicates can be 

misleading because they do not represent independent samples from the genomic pool of 

DNA. 

 We identified RAD loci by applying ustacks to the forward reads across all 

individuals. We enabled the Deleveraging and Removal algorithms to filter out highly 

repetitive, likely paralogous loci, and we used a maximum nucleotide distance between 

stacks of 4 to achieve a balance between filtering paralogs and maintaining true alleles at 

a single locus approximately consistent with the expected number of RAD loci 30,38. We 

created a catalog of RAD tag loci using cstacks and matched individuals against the 

catalog using sstacks. We populated and indexed a MYSQL database of loci using load_ 

radtags.pl and index_radtags.pl and then exported the data using export_sql.pl. Finally, 

we grouped the forward and reverse reads from each individual corresponding to each 

RAD locus using sort_read_pairs.pl.  

Contig assembly 

We pooled many individuals for contig assembly to increase sequence coverage 

of read pairs at each RAD locus (Figure 2B). However, we also wanted to limit levels of 

polymorphism that could complicate assembly. Therefore, we pooled data from 60 
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individuals from the three populations with the lowest level of admixture as estimated 

from previous microsatellite data12: Lower Hay, Nicola and Tepee. We grouped the 

forward and reverse reads from all individuals in these populations into a separate file for 

each RAD locus, using the STACKS program sort_read_pairs.pl. We assembled the reads 

in each file separately to produce a set of RAD contigs (Figure 2B), using both 

VELVET39 and CAP340 assembly software. Because CAP3 performed better (see 

Results), all further analyses mentioned below used the CAP3 assemblies. Because of our 

pooling strategy, the consensus sequences in this reference set of RAD contigs represent 

primarily WCT with minimal RBT admixture.  

Genotyping and admixture estimates  

We aligned the filtered read pairs for each individual from all five populations 

against the reference set of RAD contigs (Figure 2C). (Three individuals with very low 

coverage were dropped: one each from Meadow, Nicola and Tepee, leaving a total 

sample size of 94 individuals.) We used the alignment software BOWTIE41, allowing up 

to three nucleotide mismatches in the first 30 bp of each read and up to 15 mismatches 

over the total read. These parameters represent a compromise aimed at producing valid 

alignments to the reference, while minimizing bias against divergent RBT haplotypes. 

We chose them after aligning and genotyping a subset of the data across a wide range of 

parameter values, but we found that alignment parameters created only marginal 

differences in overall genotype calls (not shown). We retained only those read pairs that 

aligned uniquely to the reference contig set and that aligned in the expected orientation 

(i.e. the forward read aligns at position 0 of the contig, matching the position of the 
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restriction enzyme cut site and the reverse read aligns in the opposite direction along the 

same contig within a distance up to 750 bp).   

We assigned diploid genotypes to each nucleotide position for each individual 

using a maximum-likelihood method42, modified by bounds on the per-nucleotide 

sequencing error rate of 0.0001 < e < 0.0025 and a significance level of a = 0.05 (custom 

software available at http://webpages.uidaho. edu/hohenlohe/software.html). These limits 

have the effect of being more likely to call a heterozygous genotype. While in de novo 

genotyping, these bounds would increase the frequency of false alleles; here, we are 

genotyping against previously identified WCT and RBT alleles. This strategy and the 

relatively high significance threshold are also justified because of the quality filtering and 

removal of PCR duplicates described previously, which increases confidence that each 

read represents a true independent sample of genomic sequence.   

We used previously identified species-diagnostic SNP loci to assess introgression 

from RBT into these WCT populations. From the RAD sequencing data in WCT and 

RBT published by Hohenlohe et al.30, we extracted all RAD loci in which there was 

either one SNP fixed between species and no other polymorphism in the 54-bp sequence 

(2923 loci), two fixed SNPs and no other polymorphism (643 loci), or one fixed SNP and 

one additional SNP polymorphic within either species (1348 loci), for a total of 4914 

diagnostic SNPs. We aligned both the WCT and RBT alleles of these 54-bp sequences 

against the new reference set of RAD contigs, using BOWTIE41 and allowing up to two 

nucleotide mismatches. We retained only those diagnostic loci that aligned uniquely with 

up to two mismatches (for both the RBT and WCT alleles) to the reference contig set.  
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We then genotyped all individuals from the five admixed WCT populations in the 

current study as WCT, RBT or heterozygous at each of these loci for which genotype 

calls were made previously (any genotype calls that did not match previously identified 

alleles at these SNPs were treated as missing data). As a final filtering step for paralogous 

loci, we removed loci for which these genotypes exhibited observed heterozygosity >0.5 

and FIS < 0.5. Using all such diagnostic SNPs for which at least half of the individuals 

(47 or more) were genotyped, we estimated proportion of admixture at the locus, 

individual and population levels as the frequency of RBT alleles across diagnostic loci.  

We applied the heterogeneity test of Long43 to test for super invasive alleles. This 

analysis tests whether the variance in admixture across loci exceeds that expected from 

random sampling as well as genetic drift across loci (other tests for admixture outliers do 

not account for drift and may suffer from a high false positive rate, so our approach is a 

conservative test44). Because this method cannot handle allele frequencies of 0.0, we used 

Bayesian estimates of allele frequencies with an uninformative prior44. We adjusted for 

differences in sample size of genotypes across loci, which affect the expected variance in 

allele frequency estimates, in equation 6 of Long43. For each locus in each population, we 

calculated a P-value for the deviation from expected admixture and adjusted for false 

discovery rate at a level of a = 0.05 within each population45. We identified candidate 

super invasive alleles as those with significantly elevated admixture proportions in two or 

more populations.  
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RESULTS 

RAD sequencing and contig assembly 

After filtering for read quality and presence of a correct barcode and SbfI 

recognition site, we generated 63,061 577 RAD sequence read pairs across 94 individuals 

in five admixed WCT populations. Of these, 22% represented PCR duplicates and were 

removed, leaving 49,248,922 unique read pairs. We identified a total of 222,830 putative 

RAD loci in STACKS using the forward reads of each pair across all individuals. Only 

82,721 of these loci represented eight or more read pairs across all individuals.  

We pooled the read pairs corresponding to these 82,721 loci for individuals from 

three populations with the lowest previously estimated admixture proportions (Lower 

Hay, Nicola and Tepee). We conducted separate assemblies at each locus using both 

VELVET39 and CAP340. In VELVET, we used fixed k-mer lengths of 25, 35, 45 and 55 

bp as well as optimizing the k-mer length across these values independently at each 

locus. All of these assemblies failed to connect overlapping paired-end reads at many 

loci, and the maximum contig length per locus was only ~100–300 bp. Thus, in many 

cases, the contigs assembled were smaller than the read length of 147 bp (after trimming 

the barcode) for the forward reads, meaning that sequences were broken into k-mers and 

unable to be reassembled. This difficulty in paired-end assembly of RAD data has been 

observed elsewhere46, although that study had better success than we did in optimizing 

assembly parameters per locus. The general problem may be due to the unique signature 

of sequence coverage expected across contigs for overlapping paired-end RAD data 

(Figure 2C).  
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In contrast, the simpler algorithm of CAP3 performed much better. While more 

computationally intensive, it is still feasible on a desktop computer because the locus 

identification from STACKS significantly reduces the complexity of each individual 

assembly. Of the 82,721 loci, 72,124 (87.2%) assembled into single contigs, all but one 

containing both the overlapping forward and reverse reads. An additional 5,017 loci 

assembled into two or more contigs, of which only the largest contig was anchored at the 

expected restriction enzyme recognition site. Of these, all but 151 contained both the 

forward and reverse reads. We combined these to produce our final reference set of RAD 

contigs, which contained 77,141 contigs from 82,721 loci (93.3%). Fragment size 

selection to produce overlapping paired-end reads was remarkably successful, so that 

over 93% of loci produced contigs spanning the forward and reverse reads. Contig 

lengths ranged from 147 to 519 bp with most between 250 and 450 bp (Figure 3A), 

suggesting that longer fragments were carried through the gel-based size selection step. 

The mean number of read pairs contributing to each contig was 379.3. Contig length was 

positively related to the number of sequence pairs contributing to each assembly (Figure 

3B), so our strategy of pooling individuals to increase coverage at this consensus 

assembly step appears sound.  

Genotyping and admixture 

We aligned 54-bp RAD sequences for 4,914 previously identified SNP loci23,30 

against the reference RAD contig set. Of these, 3,456 (70.4%) aligned uniquely to a 

single contig in the reference set with up to two mismatches for both the  RBT and WCT 

alleles. In addition, 392 (8.0%) aligned to multiple contigs with relatively few 
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mismatches. These multiple contigs appear to represent genomic regions with duplicate 

sequence beyond the 54 bp length of the previously identified RAD sequence.   

 

Figure 3. (a) Frequency histogram of consensus sequence lengths across 77 141 contigs 
assembled by CAP3 from overlapping paired-end restriction-site-associated DNA (RAD) 
sequencing in admixed westslope cutthroat trout populations. (b) Relationship between 
sequencing depth at each locus (number of sequence pairs from 60 pooled individuals) 
and RAD contig length. 
 

We genotyped each individual at all nucleotide positions aligned to the reference 

contig set using the maximum-likelihood statistical approach described previously. Of the 

3456 uniquely aligned diagnostic SNP loci, 3,182 had diploid genotype calls for at least 

half the individuals sampled. Two of these were probably paralogous loci, with elevated 

observed heterozygosity (0.95 and 0.80) and reduced FIS (0.90 and 0.61, respectively), 

and these were removed from further analysis. The remaining 3180 loci had observed 

heterozygosity <0.45 and FIS > 0.23, suggesting a clear break between them and the two 

presumptive paralogous loci. We translated genotypes for the final list of 3,180 loci into 

homozygous WCT, heterozygous or homozygous RBT and assessed proportion of 

admixture as simply the frequency of RBT alleles.  

For all of the individuals genotyped here, we also had individual-level estimates 

of admixture proportion based on seven species-diagnostic microsatellite loci12. Our 

SNP-based estimates were highly correlated with previous microsatellite-based estimates 
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overall and within each population, although they tended to be slightly lower (Figure 

4A).  

We detected evidence of introgression in all 53 individuals for which no RBT 

alleles had been observed at the microsatellite loci. In these individuals, RBT alleles were 

detected at 1–235 loci, leading to individual admixture proportions ranging from 0.0013 

to 0.0439 that were undetected in the microsatellite data. Average population- level 

admixture proportions are also consistent with microsatellite-based estimates (Pearson r = 

0.99; P = 0.0013; Figure 4B), in which Dutch and Meadow exhibited higher levels of 

admixture than the other three populations, although SNP-based estimates were lower 

than microsatellite estimates for four of the five populations.  

 

Figure 4. (a) Individual-level admixture proportions estimated from seven diagnostic 
microsatellite loci (Boyer et al. 2008) vs. current estimates from 3180 single nucleotide 
polymorphism loci across 94 westslope cutthroat trout individuals from five populations. 
Note that many of the points, particularly those with admixture proportions near 0.0, lie 
on top of each other. (b) Population-level admixture proportions estimated from the same 
two data sets, calculated using only the individuals genotyped by both Boyer et al. (2008) 
and the current study. 
 

Comparing admixture proportions across SNP loci reveals a positively skewed 

distribution within each population and overall, with many loci showing little or no 
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admixture and a small set of outlier loci (Figure 5). Of the 3,180 diagnostic SNP loci 

genotyped, 634 showed no RBT alleles in any of the five populations. However, 94 loci 

exhibited admixture levels of 0.1 or greater across all five populations combined, up to a 

maximum of 0.542 (Figure 5F). These are candidate super invasive alleles: RBT alleles 

that may have spread rapidly or have higher probabilities of persistence in WCT 

populations. Within each population, loci exhibited significantly elevated admixture 

proportions using the heterogeneity test of Long42, corrected for false discovery rate 

(Table 1). Three loci were significantly invasive in two or more populations, one of 

which was significant across all five populations (Figure 5). 

 

Figure 5. Frequency histograms of admixture proportion across 3180 diagnostic single 
nucleotide polymorphism loci. (a) Meadow. (b)Nicola. (c) Dutch. (d) Lower Hay. (e) 
Tepee. (f) All five populations combined. Arrows indicate super invasive alleles—loci 
with significantly elevated admixture proportion (a = 0.05, corrected for false discovery 
rate) independently in two or more populations.(i) restriction-site-associated DNA (RAD) 
locus 118904. (ii) RAD locus 117399. (iii) RAD locus 82847. 
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Table 1.  Correlation between previous microsatellite and current single nucleotide  
polymorphism (SNP)-based estimates of individual-level admixture proportions, and 
super invasive alleles exhibiting significantly elevated introgression with a false 
discovery rate corrected P-value. 
 

 

We conducted a translated nucleotide BLAST search using the RAD contig 

sequence for each of these three super invasive alleles. Two of them aligned closely to 

annotated genes whose function is consistent with selection in hybridized WCT 

populations. The locus significantly admixed in all five populations (RAD locus 118,904) 

aligned significantly to the vertebrate gene latent transforming growth factor beta-binding 

protein 2 (LTBP2), with the most significant hit in Bos taurus (E-value = 10 e-7). The 

second locus, significantly admixed in the Nicola and Tepee populations (RAD locus 

117,399), aligned to the vertebrate gene furry homolog-like (FRYL), with the most 

significant hit in zebrafish (Danio rerio, E-value = 10 e-9). It is worth noting that the 

BLAST alignments to these two annotated gene sequences began at nucleotide positions 

191 and 210, respectively, of the RAD contigs so that the identification of these candidate 

genes would not have been possible solely with single-end RAD sequence data. 
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DISCUSSION 

Genomic tools hold remarkable promise for conservation and management of 

many taxa. The ability to rapidly identify and genotype large numbers of genetic markers 

allows improved estimates of demographic parameters (gene flow, effective population 

size, population-level admixture), as well as identification of outlier loci (locally adapted 

genes, invasive alleles). Overlapping paired-end RAD sequencing offers advantages for 

rapid development of large numbers of candidate SNPs that can be used in high-

throughput genotyping assays, particularly in the case of large or repetitive genomes.  

In a specific application of this technique, here we assessed genomic patterns of 

introgression and were able to detect individuals with very low levels of admixture, 

precisely estimate individual- and population-level admixture and detect candidate super 

invasive alleles driven to high frequency by selection. Below, we discuss some general 

aspects of the sequencing technique for conservation genomics and lessons from its 

application to the genomics of hybridization.  

Overlapping paired-end RAD for conservation genomics 

By assembling contigs of 400 bp or more adjacent to RAD loci, overlapping 

paired-end RAD provides sufficient flanking sequence for SNP assay design 

simultaneous with SNP discovery. The ability to generate sufficient flanking sequence 

has previously been a limitation of RAD sequencing for converting rapid SNP discovery 

to a set of high-throughput assays23,47. Our approach can rapidly provide a multitude of 

candidate SNP markers for high-throughput assay development. Here, we only analysed a 

few thousand diagnostic markers that had been previously identified. In general, the 
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majority of contigs of 300–400 bp or longer would be expected to contain SNPs relevant 

for most population genomic or conservation applications.  

Assembling RAD contigs provides more continuous genomic sequence data for 

discriminating paralogous loci. This is a particular challenge in salmonids because of 

their ancestral genome duplication, which created homeologous duplicate sequence 

across the genome26, 27, 48. Here we found examples of loci sharing very similar sequence 

over ~50 bp, so that they were grouped together in previous analysis, but diverged 

beyond that length. As a result, we were able to further screen the candidate diagnostic 

SNP loci we had previously identified23,30 by removing the 8% that aligned to multiple 

RAD contigs. Ongoing validation of the reduced set will determine the success rate of 

these refined candidate markers.  

Our approach to RAD contig assembly produced a single contig with high 

average read depth for most of our RAD loci. Nonetheless, the assembly and validation 

of RAD contigs can be challenging46. Assemblies using the de Bruijn graph technique of 

VELVET39 produced consistently shorter contigs than a simpler (but more 

computationally intensive) assembly algorithm in CAP340. This contrasts with the results 

of Etter et al.33,36, who had better success with VELVET in assembling the reverse reads 

from nonoverlapping paired-end RAD. Willing et al.34 used nonoverlapping paired-end 

RAD in guppies and assembled the reverse reads for 91.3% of loci into a single contig 

with generally lower sequence coverage than used at the assembly step here. That study 

used the assembler LOCAS, specifically designed by one of the authors for low-coverage 

data. Davey et al.46 had poor results with LOCASOPT and VELVET in assembling 

paired-end RAD data from Heliconius butterflies, but better results using the 
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computationally intensive VELVETOPTIMISER. In our trout data set, over 87% of loci 

produced a single contig of both forward and reverse reads with CAP3, and many of the 

remainder could be filtered out as paralogs. 

Techniques like overlapping paired-end RAD sequencing may allow new 

analytical power. Compared with other markers like microsatellites, SNPs can be limiting 

in that they typically exhibit only two alleles in natural populations. More power to 

understand population genetic processes would come from using multi-allelic haplotypes 

instead of SNPs in analyses of high-throughput sequence data49,50. Because of the 

relatively long contigs that can be generated33, 34, 36 and because haplotype phase is 

known across read pairs and thus can be inferred along the length of RAD contigs, 

paired-end RAD offers the possibility of using haplotype- rather than SNP-based 

analyses. Genealogical relationships among multiple haplotypes are very useful for 

inferring demographic and evolutionary history51,52.  

Assessing genome-wide patterns of introgression 

Here we provide one of the first genome-wide assessments of human-mediated 

introgressive hybridization in salmonid fishes (see also Lamaze et al.53). Our results 

confirm previous patterns of hybridization between introduced RBT and native WCT in 

the North Fork Flathead system12, 13. Population-level admixture estimates were generally 

consistent for diagnostic microsatellites and RAD-based SNP loci, suggesting that 

thousands of diagnostic loci are generally unnecessary for approximate estimates of 

population- level admixture. However, one estimate did differ: the estimate for Dutch 

Creek was over 40% higher using the microsatellite data (Figure 4B). This may be 

explained by selection against RBT alleles in chromosomal regions near RAD loci and/or 
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sampling error from using only seven diagnostic microsatellite loci, especially for 

populations with low levels of introgression. Given the variation in introgression we 

observed here among SNP loci, the genomic location of those microsatellite loci could 

also be a major source of variation.  

Overestimation of admixture (by using only a handful of neutral loci) could cause 

populations to not be protected under conservation laws, such as the U.S. Endangered 

Species Act (ESA). For Lahontan cutthroat trout, listed under the ESA, 10% RBT 

admixture is the threshold for a population to be protected as if it were nonhybridized 

(pure native) Lahontan. Based on sampling theory for neutral loci, it is likely that 50–100 

diagnostic loci would improve accuracy to levels approaching that of thousands of RAD 

loci, if those diagnostic loci are widely distributed across the genome23.  

At the individual level, overlapping paired-end RAD sequencing allowed 

detection of very low levels of RBT introgression. Here, we detected RBT alleles in all 

94 samples analyzed, over half of which did not exhibit RBT alleles at seven 

microsatellite loci12. Some of the assumed RBT-diagnostic alleles could actually exist in 

non-hybridized WCT populations. Additional RAD sequencing of pure-native 

populations (e.g. isolated above barriers in the Flathead River) could help identify 

assumed diagnostic RBT alleles that might exist in WCT (e.g. due to maintenance of 

ancestral polymorphism).  

Genome-wide marker coverage is an important advance for conservation and 

management because it allows powerful screening of individuals to prevent inadvertent 

release of hybridized individuals into populations (e.g. during assisted migration, brood 

stock development, translocation and reintroduction) and identification of markers for 
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rapid screening for early detection of hybridization. From a landscape genetics 

perspective, the ability to precisely estimate admixture would allow fine spatial mapping 

of hybridization and introgression patterns. This approach may be useful in monitoring 

and preventing the spread of invasive species and their alleles in many plant and animal 

species facing hybridization threats in nature54.  

Dense coverage of markers across the genome allows for detection of candidate 

super invasive alleles—alleles of an invasive taxon that rise to much higher frequency 

(level of introgression) than the genomic background, analogous to outlier loci in genome 

scans for selection55. Here we detected several candidate super invasive alleles as 

evidenced by the distributions of admixture proportions among SNPs (in all populations) 

containing a long tail of outlier loci. Several of these loci were consistent as outliers 

across populations. Further study is needed to confirm that these are indeed RBT alleles 

that have introgressed into these WCT populations. The haplotype information provided 

by longer overlapping paired-end RAD (e.g. using 250-bp reads as provided by Illumina 

MiSeq technology) may facilitate that analysis. Further study would also be needed to 

identify the phenotypic and fitness consequences of these invasive alleles.  

BLAST searching revealed close sequence matches for two candidate invasive 

alleles to vertebrate genes (LTBP-2 and FRYL). Super invasive alleles may be under 

positive selection and increase fitness in hybridized populations. Alternatively, they may 

spread by having phenotypic effects on dispersal or through segregation distortion, 

despite reducing overall fitness from outbreeding depression56. The LTBP family of 

proteins interacts with TGF-beta and has a wide range of developmental and 

physiological functions, including effects on fertility57-59, although the specific 
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relationship between LTBP-2 and TGF-beta is unclear60. In RBT, the related protein 

LTBP-3 and other related proteins have been implicated in early ovarian development 

and early embryonic development61-63, suggesting the hypothesis that the RBT allele at 

this locus positively affects fecundity in admixed individuals. It is exciting that future 

research and additional studies like this one will help understand mechanisms driving 

super invasive alleles and genome-wide introgression in natural populations. 

 

BRIDGE TO CHAPTER IV 

We have seen in chapters II and III that restriction site flanking DNA can be used 

to probe genomic sequence.  Chapter IV describes work that inverts this process by using 

known genomic sequence to assay restriction enzyme specificity.  Modifications to the 

molecular RAD site preparation allow quantification of both cleavage sites and flanking 

preferences in type II restriction endonucleases.  This is done using sequenced genomes 

as substrates in order to map sequencing events back to their cleavage sites in a countable 

fashion.  Sequenced genomes provide easily acquired complex substrates that contain all 

possible short nucleotide stretches in known number and context.  The methods described 

in chapter IV leverage these previously mapped templates to quantify restriction enzyme 

activity in a massively parallel fashion.   
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CHAPTER IV 

MASSIVELY PARALLEL RESTRICTION ENZYME ASSAY 

This work was published in volume 189 of the journal of Nucleic Acids Research 

in 2013 in collaboaration with Quimby A, Zhu Z, and Johnson EA.  I was responsible for 

experimental design, bench work, analysis, and manuscript preparation.   

 

INTRODUCTION 

Type II restriction endonucleases cleave double stranded DNA at a constant 

position with respect to a short (3-8bp) recognition sequence1.  Their exquisite specificity 

has rendered them among the most useful tools in molecular biology1,2.  However, the 

impact of additional variables such as organic solvent, ion, small molecule and enzyme 

concentrations has large effects on the specificity of restriction endonucleases, often 

leading to cleavage at non-cognate sites (termed star activity)3-7.  Many commonly used 

restriction endonucleases show some star activity even under standard reaction 

conditions3.  The DNA substrate itself can also modulate cleavage.  It has been noted that 

nucleotides flanking the recognition site confer large contributions to the energetics of 

cleavage8-12.  Quantitative analysis of star activity and flanking effects will help to 

elucidate the structure-function rules for restriction enzymes, define the window of 

optimal restriction endonuclease specificity as well as tailor reaction conditions toward 

novel target sequences.  

Despite the conserved functionality amongst the restriction endonuclease family, 

these enzymes show great divergence in both sequence and mechanism1,9,13,14.  Apart 

from isoschizomers, most members show little sequence homology to each other or other 
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known proteins1.  Additionally, the variable distribution of base-contacting residues 

amongst the restriction endonucleases has confounded recognition sequence 

prediction9,15,16.  Consequently restriction endonuclease characterization must be carried 

out empirically for each enzyme.  Star activity4,17-21 and flanking preference8-12 have been 

investigated for several enzymes.  These experiments have been performed on 

homogeneous substrates.  A series of oligonucleotides containing different star or 

flanking sequences are synthesized, annealed, cleaved and analyzed one by one, making 

exhaustive studies difficult.  Recognition site determination is typically carried out by 

digestion of a homogeneous plasmid or virus DNA substrate followed by agarose gel 

visualization of cleavage products6,22-25.  This technique is lacking both in its substrate 

complexity and sensitivity.  A given cognate or star site could occur very few times in 

these substrates, and at times not at all.  This limits the ability to accurately quantify 

activity at different cleavage sites due to a lack of diversity of flanking nucleotides.  Star 

activity is often several orders of magnitude lower than cleavage at the cognate site3,17.  

Consequently a large component of star activity will remain cryptic when cleavage 

products must be of sufficient abundance to be visualized on an agarose gel.  

The growing amount of prokaryotic genomic sequence putatively coding for 

uncharacterized restriction endonucleases26,27 in conjunction with ongoing efforts to 

engineer altered specificities22-25,28-30 will be aided by high-throughput methods to 

quantify restriction endonuclease activity instead of the methods currently available.  For 

example, in order to characterize the genome-wide digestion patterns of the methylation-

specific restriction endonuclease AbaSDFI31, genomic rat brain DNA was digested with 

AbaSDFI to map 5-hydroxymethylcytosines, and the digestion products were cloned into 
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plasmids and Sanger sequenced one by one to map 122 cleavage sites to the rat genome.  

A similar strategy was used to demonstrate the relaxed specificity of the restriction 

enzyme TspGWI in the presence of sinefungin by Sanger sequencing 218 clones5. 

High-throughput sequencing has become a valuable tool for analyzing DNA-

protein interactions.  The ability to experimentally pair a DNA-protein interaction to a 

sequencing event has enabled techniques such as ChIP-seq32 to provide sensitive statistics 

on transcription factor-DNA binding. We use derivations of the RAD-seq33 method to 

quantitatively measure restriction endonuclease activity across the sequenced D. 

melanogaster and E. coli genomes.  This method specifically prepares DNA adjacent to 

restriction sites for Illumina sequencing, allowing the relative sequence counts of sites 

with different flanking nucleotides to be determined. The RAD-Seq protocol was carried 

out with serial enzyme dilutions to identify flanking motif enrichment in enzyme-limiting 

reactions.  Modifications were made to the protocol to sequence all cleavage events 

regardless of overhang in order to generate a complex profile of relative activities at 

cognate and star sites in a single experiment. We apply these methods to quantify the 

cleavage patterns of EcoRI and MfeI and to compare star activity with their engineered 

high-fidelity counterparts, and to quantify the effect of flanking nucleotides on MfeI 

activity. 

 

MATERIAL AND METHODS 

All enzymes and buffers were contributed by New England BioLabs. 
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Star activity assay 

To assay restriction enzyme activity on a genome-wide scale we designed an 

unbiased strategy to sequence all digested fragments regardless of overhang (Figure 1).  

1000-1500 base pair fragments of E. coli strain REL606 DNA were digested under star 

conditions, and smaller 300-500 base pair fragments whose decreased molecular mass 

indicated digestion were separated and Illumina sequenced. 1,000,000 reads from both 

EcoRI digests and 650,000 reads from both MfeI digests were mapped back to the 

REL606 genome, and adjacent cleavage sites were computationally analyzed. 

 (1) Generation of random 1000-1500 base pair digestion templates:  3 ug of REL606 

genomic DNA were randomly sheared by sonication (Bioruptor).  DNA fragments 

between 1000-1500 base pairs were then separated and purified by agarose gel 

electrophoresis.  The DNA was then blunt end repaired using Quick Blunting Kit and 3' 

adenylated using Klenow exo−.  To distinguish the sheared DNA ends, non-divergent 

Illumina end 2 adapters composed of annealed oligonucleotides 5'-Phos-

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCT

TCTGCTTG-3' and 5'-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATCT-3' were ligated to the 1000-1500 base pair pool using concentrated T4 

DNA ligase.  10 ng of this sample were used in a 20 cycle Phusion polymerase PCR 

reaction with the Illumina PE primer 2.0 (5'-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATCT-3’) following Phusion product guidelines to select 1000-1500 base pair 

fragments with the Illumina end 2 sequence on each end. 
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Figure 1. The path of a single restriction site–containing genomic locus is shown for both 
the RAD-seq protocol (left) and the modified overhang-independent RAD-seq protocol 
used in the star activity assay (right).   
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(2) Star condition digest:  In order to generate a complex cleavage activity profile, DNA 

from the previous step was digested with an excess of restriction enzyme.  52 ng of DNA 

was digested with 50 units of MfeI (GenBank accession number SRR652142) or MfeI-

HF (accession SRR652141) in a 50 uL reaction containing 1X NEB4 and 5% glycerol for 

24 hours at 37°C.  32 ng of DNA was digested with 200 units of EcoRI  (accession 

SRR652140) in a 50 uL reaction containing 1X NEB1 and 10% glycerol for 24 hours at 

37°C.  32 ng of DNA was digested with 200 units of EcoRI-HF (accession SRR652139) 

in a 50 uL reaction containing 1X NEB4 and 10% glycerol for 24 hours at 37°C. 

 (3) Tagging of cleaved end with Illumina end 1 adapter:  The digested DNA was blunt 

end repaired using Quick Blunting Kit to neutralize all potential overhangs.  The DNA 

was then 3’ adenylated using Klenow exo− and ligated using concentrated T4 DNA 

Ligase to barcoded divergent first-end Illumina adapters composed of annealed oligos 5'-

GGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-

barcode-T-3' and 5'-Phos-barcode-AGATCGGAAGAGCGTCGTGTACTACGTT-3'.  10 

ng of DNA from the ligation reaction was then used as template for an 18 cycle Phusion 

PCR reaction with Illumina primers PE PCR Primer 1.0 (5'-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC

GATCT-3’) and PE PCR Primer 2.0 (5'-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC

TTCCGATCT-3’) following Phusion product guidelines.  Use of a divergent first-end 

adapter requires the paired-end primer to anneal first for amplification to occur.  This 

eliminates the first end sequence on the sheared side.  We used change in molecular mass 

to select for digested molecules.  As the pre-digestion sample ranged from 1000-1500 
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base pairs, we agarose gel-purified 300-500 base pair PCR fragments for sequencing to 

assure cleavage.   

This final library exclusively contained molecules with a first end Illumina 

sequence on the cleaved side and a second end sequence on the sheared side.  The 

experimental samples were sequenced on an Illumina HiSeq 2000 to generate 100 base 

pair single end reads beginning at the cleavage site.  The samples were separated by 

barcode and the reads were mapped back to the E. coli genome to infer the cleavage site.   

Fidelity index determination 

The fidelity index (FI) was determined for EcoRI-HF and MfeI-HF by the 

standard method3.  The substrate used for all FI determinations was lambda DNA. 

Flanking sequence preference assay 

To determine the flanking sequence preferences of MfeI, Drosophila 

melanogaster genomic DNA was digested in saturating and enzyme-limiting conditions.  

The DNA adjacent to the restriction sites was then PCR amplified and Illumina 

sequenced as per the RAD-Seq protocol33. 550,000 reads from each digest were mapped 

to the Drosophila genome.  Flanking sequence preference was inferred from motif 

enrichment in enzyme-limiting conditions.   

 1) MfeI digests:  Digests were carried out in 50 uL reactions containing 786 ng of D. 

melanogaster strain Oregon-R genomic DNA, 1x NEB 4, 1% glycerol and varying 

amounts of MfeI for 15 minutes at 37°C.  A range of partial digest conditions was 

achieved by varying the amount of enzyme through 12 serial dilutions each decreasing 

enzyme concentration by a factor of two as follows:  Reaction 1 contained 10 units 

(GenBank accession number SRR652186), Rxn 2: 5 units (accession SRR652187), Rxn 
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3: 2.5 units (accession SRR652188), Rxn 4 : 1.25 units (accession SRR652189), Rxn 5: 

0.63 units (accession SRR652190), Rxn 6: 0.31 units (accession SRR652191), Rxn 7: 

0.16 units (accession SRR652192), Rxn 8: 0.08 units (accession SRR652193), Rxn 9: 

0.04 units (accession SRR652194), Rxn 10: 0.02 units (accession SRR652195), Rxn 11: 

0.01 units (accession SRR652196), Rxn 12: 0.005 units (accession SRR652197). 

 2) RAD-Seq library preparation:  RAD-Seq libraries were prepared according to Baird et 

al.
33 with the following parameters.  MfeI RAD adapters were composed of annealed 

oligonucleotides of the form 5′-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCC

TACACGACGCTCTTCCGATCT-barcode-3′ and 5′-Phos-AATT-barcode-

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT

ATCATT-3′.  Each of the 12 experimental digests was ligated to an MfeI RAD adapter 

with a unique barcode to allow sequencing on the same Illumina HiSeq 2000 lane.  Prior 

to amplification, reactions 1-4 (high-enzyme), 5-8 (mid-enzyme), and 9-12 (low-enzyme) 

were pooled to increase the sequence contribution of the lower enzyme samples as the 

concentration of digested fragments was expected to be much greater in the higher 

enzyme samples. The final step in the RAD-Seq library preparation protocol is a PCR 

enrichment of DNA restriction fragments flanked by both sequences necessary for 

Illumina sequencing.  10 ng of the high-enzyme ligation were PCR amplified using 

Phusion polymerase with PE PCR Primer 1.0 and a shortened PE PCR Primer 2.0 (5'-

CAAGCAGAAGACGGCATACGA-3’) for 15 cycles.  This was increased to 17 cycles 

with 15 ng ligation template for mid-enzyme libraries and 20 cycles with 20 ng template 

for low-enzyme libraries.   
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Fragments averaging 550 base pairs were agarose gel-purified from each reaction 

and sequenced on an Illumina HiSeq 2000 to generate single end 100 base pair reads.  

Data processing 

Sequence reads were aligned to Drosophila melanogaster genome build 5.4.52, or 

E. coli genome REL606 using Novoalign v2.07 (Novocraft.com). Custom Perl scripts 

counted the sequence reads at each genomic location. For the flanking nucleotide assay, 

the flanking nucleotides were inferred from the genome reference sequence for each 

aligned read, and the total counts of reads for each flanking sequence tracked. For the star 

activity assay, the reads found for each recognition sequence was normalized by their 

count in the genome. 

 

RESULTS 

Star activity assay 

Restriction enzymes are known to digest DNA at non-cognate sequences called 

star sites. We developed a star activity assay for quantifying the relative activity of 

restriction enzymes at cognate and non-cognate sites using genomic DNA as a substrate. 

The star activity assay comprises shearing genomic DNA to a defined length, digestion 

with a restriction enzyme, and selecting amplified fragments much smaller than the 

original sheared fragments for sequencing. Because the DNA fragments are blunted after 

digestion, the sequencing adapters ligate equally well to cognate and non-cognate sites. 

The full sequence of the digested site can be recovered after alignment of the sequence 

read back to the reference genome. Thus, the relative sequencing coverage of each 

genomic locus can be quantified, and the normalized sequencing coverage of each 
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particular site sequence motif, represented many times across a genome, can be 

determined. 

MfeI star activity 

After digestion of E. coli genomic DNA with MfeI in star activity conditions for 

24 hours, non-cognate sequences with single base pair changes from the cognate 

CAATTG were seen at digested sites. The bulk of non-cognate reads came from 

CAACTG and its reverse complement CAGTTG, and a small number of additional reads 

were created by digestion of CAATTA, CAATTC, CACTTG, and their reverse 

complements TAATTG, GAATTG, and CAAGTG (see Table 1).  These star sites were 

also seen after digestion with an engineered high-specificity version of MfeI (MfeI-HF, 

NEB), although at much lower coverage compared to wild type MfeI (see Table 1).  For 

example, the percent of total reads for the most abundant star site, CAACTG, was more 

than six-fold higher for MfeI compared to MfeI-HF.  MfeI-HF also showed a substantial 

reduction in star activity compared to the wild type enzyme when fidelity index was used 

as the metric.  The FI determined in this study of MfeI-HF in NEB4 is over 500, while 

the previously determined FI of wild type MfeI in NEB4 is only 323, demonstrating a 

greater than 16-fold reduction in star activity on a simple substrate.  While both of these 

assays demonstrate the increased fidelity of the engineered MfeI-HF, their results cannot 

be quantitatively compared due to differences in substrate and reaction conditions.   

EcoRI star activity 

After digestion of E. coli genomic DNA with EcoRI in star activity conditions for 

24 hours, six non-cognate sequences with single base pair changes from the cognate 

GAATTC were seen at digested sites, although three of these made up a very small 
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Table 1.  Percent of reads at star sites after digestion with MfeI. 

 

fraction of the reads (see Table 2). These star sites comprised a significant portion of all 

sequences from the EcoRI digestion, with more than 31% of all reads coming from 

GAATTT sites, and GAAGTC and GAATTA sites having 4% and 2% of all reads, 

respectively. The sites GAACTC, GAATTG, and GAATGC together made up only 

~0.4% of all reads.  The high fidelity version of EcoRI had much improved specificity in 

star activity conditions. The percent of total reads coming from star sites was 3,000-fold 

lower in EcoRI-HF compared to EcoRI (see Table 2). As in the comparison of MfeI to 

MfeI-HF, the coverage difference between EcoRI and EcoRI-HF was less pronounced 

with the minor-frequency star sites. FI testing also showed a drastic improvement in 

specificity for the engineered EcoRI-HF.  The FI determined in this study of EcoRI-HF in 

NEB4 is over 16000, while the previously determined FI of wild type EcoRI in NEB4 is 

only 43, demonstrating a greater than 4000-fold reduction in star activity on lambda 

DNA. 

Flanking sequence preference of MfeI at cognate site CAATTG 

We also examined how the digestion of cognate sites is affected by the flanking 

nucleotide sequence. The simpler restriction-site associated DNA (RAD) method was 

used to generate short DNA tags at each cognate cleavage site. As in the previous assay, 

the number of tags found at each locus was used as a measure of digestion efficiency. By 
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Table 2.  Percent of reads at star sites after digestion with EcoRI. 

 

calculating a normalized coverage for each particular flanking sequence the influence of 

these sequences on restriction enzyme activity could be determined. 

We digested genomic DNA from Drosophila melanogaster with the restriction 

enzyme MfeI using enzyme concentrations that ranged from fully saturating to very 

limiting (10 – 0.005 units). We reasoned that the highest enzyme concentrations would 

digest every available cognate site to near completion, whereas enzyme preferences for 

particular sequences in the flanking nucleotides would be apparent at the lowest 

concentrations. RAD libraries were made for each enzyme concentration and sequenced 

to an average of ~3X coverage for all sites. The sequence reads were mapped to the 

genomic sequence and the flanking nucleotides extracted for each site.  The read counts 

for sites or half-sites sharing a flanking sequence were binned, and the average coverage 

calculated. 

The single nucleotide adjacent to MfeI had a strong effect on site preference (see 

Figure 2A).  As the amount of MfeI was diluted, the sequencing reads became 

concentrated on preferred sites, creating higher coverage depth for preferred sites and 

lower coverage depth for sites that were digested less efficiently.  If the site sequences are 
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ranked by the change in sequencing coverage from the most enzyme to the least, the 

greatest increase in coverage is the palindromic GCAATTGC, and the greatest decrease  

is the palindromic ACAATTGT.  In general, there is very strong concordance in the 

coverage change for sites that are reverse-complements of each other, as would be 

expected (see Table 3).  All the sites with a 5’ G base or 3’ C base have an increase in 

coverage under dilute conditions, demonstrating that MfeI has a strong preference for 

these nucleotides adjacent to the cognate cut site.  A 5’ T base or 3’ A base has a near 

neutral effect on coverage, and 5’ A or C bases or 3’ T or G bases have a negative effect 

on coverage, demonstrating that their presence in the flanking sequence makes an MfeI 

restriction site less likely to be cleaved in dilute enzyme conditions. 

 This preference for certain sequences by the MfeI restriction enzyme extends 

beyond the single adjacent base. The 5’ G base preference becomes even more 

pronounced when the dinucleotide is 5’ (A/T)G, but the 5’ (G/C)G dinucleotide has a 

reduced sequencing coverage (see Figure 2B). The preference for A or T bases in the 

second 5’ position away from the cut site is also true for the (A/T)T versus (G/C)T 

dinucleotides (see Figure 2C), but dinucleotides with a 5’ A or C base adjacent to the 

restriction cut site have more complicated interactions. The TA dinucleotide has a very 

strong positive effect on sequencing coverage, while (A/C/G)A are all weakly to strongly 

negative (see Figure 2C). The TC dinucleotide has the lowest sequencing coverage of all 

dinucleotides, while (A/C/G)C have only a weak effect on coverage (see Figure 2C).  Our 

data show the flanking effects of each dinucleotide to operate independently of the sum 

of its parts. 
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Table 3.  The change in sequencing coverage from enzyme saturating to limiting 
conditions for each of the 16 single-nucleotide flanking pairs surrounding the cognate. 
MfeI site 
 

 

 

Flanking sequence preference of MfeI at star site CAACTG 

The abundant non-cognate site CAACTG identified in wild type MfeI star activity 

conditions was analyzed for flanking nucleotide preferences in order to compare flanking 

effects in star versus cognate activity.  There was a wide range of site sequencing 

coverage depending on the flanking nucleotide sequence of the CAACTG site. There was 

a 2.3-fold difference in coverage between sites with a 5’ T base and the poorly cut star 

sites with a 5’ A base (see Figure 3) which is of larger magnitude than the single base 

flanking effects seen at the cognate site.  Interestingly, the effect of particular flanking 

sequences differed between the cognate and star sites. The 5’ G base was most preferred 
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Figure 2. MfeI activity is affected by flanking base preference. All graphs plot 
normalized sequencing coverage (y-axis) versus units of enzyme (x-axis). Blue circles, G 
base; green triangles, T base; yellow squares, A base; red triangles, C base. (A) Changes 
in sequencing coverage for the different bases adjacent to the MfeI half site, i.e. NCAA. 
(B–E) Changes in sequencing coverage for the different distal bases of the dinucleotide 
adjacent to the MfeI half site, for the dinucleotide NG-CAA (graph B), NT-CAA (graph 
C), NA-CAA (graph D), NC-CAA (graph E).   
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by the cognate site, whereas a 5’ T base was most preferred by the star site. The effect of 

flanking sequences also differed for the two distinct half sites of the CAACTG star site.  

Whereas palindromic 5’ and 3’ flanking sequences about the cognate MfeI sites confer 

the same effect, the distinct star half sites CAA and CAG respond differently.  While  

both preferred a 5’ T base and a 5’ A base reduced sequencing coverage the most, the 

next most preferred 5’ base was a C base for the CAA half site and a G base for the CAG 

half site (see Figure 3).  Our data show that MfeI star site flanking preferences are 

distinct from those of cognate sites and that each asymmetric star half site may have 

distinct flanking preferences as well.   

 

Figure 3. MfeI activity is affected by flanking base preference at CAACTG star sites. 
Bars represent the percentage of wild-type MfeI star activity assay reads mapping to 
CAACTG sites having a particular 50 adjacent base, with a higher percentage indicating 
that adjacent base creates a favourable context for digestion. Because the star site is 
asymmetric, adjacent base preferences are shown for the two half sites, CAA (black) and 
CAG (gray). 
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DISCUSSION 

The power of next-generation sequencing has typically been applied to the 

characterization of the sequence or function of a genome. Here we use the massively 

parallel nature of next-generation sequencing to assay the enzymatic activity of 

restriction endonucleases that cleave both strands of double-stranded DNA. We 

developed a novel assay to allow the characterization of restriction enzyme recognition 

sites without any prior knowledge, and also used the related RAD-Seq method to assay 

the effect of flanking sequence on restriction enzyme cleavage.  

We first quantitatively assayed the activity of both EcoRI and MfeI and their 

high-fidelity counterparts (EcoRI-HF and MfeI-HF) by mapping cleavage events to the E. 

coli reference genome.  For each enzyme the majority of reads mapped to the cognate 

sites, demonstrating the correlation between cleavage efficiency and read count as well as 

highlighting the method's utility in de novo recognition site discovery.  This unbiased 

detection method also simultaneously quantified star activity over all DNA 

configurations present in the E. coli genome.  The star activity occurred at sites with one 

base pair substitutions with respect to the cognate sites as has been previously observed19.  

For both enzymes only a subset of the possible single substitution sites produced 

sequence reads, which effectively identified those degenerate sites capable of generating 

appreciable star activity.  Different star sites showed a wide range of activity indicating 

the degree to which specific base changes are tolerated by the restriction enzyme.  In the 

case of EcoRI, the three most abundant star sites in our data (GAATTT, GAAGTC and 

GAATTA) have been previously shown to be the three most efficiently cleaved17,18.  The 

high-fidelity restriction enzymes developed by New England Biolabs showed drastically 
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reduced star activity compared to wild type.  The assay was able to quantify this 

reduction across all potential cleavage sites and validate that no major cryptic DNA 

sequences are cleaved by the engineered high fidelity variants.  

Massively parallel sequencing was also used to quantify the flanking preferences 

of MfeI.  The relative presence of flanking nucleotides in sequence reads generated from 

the same complex substrate was compared across 12 enzyme concentrations using RAD-

Seq.  Drosophila genomic DNA was used as substrate in order to provide sufficient 

diversity of MfeI sites. Under enzyme saturation, an equal contribution of reads from 

sites was observed regardless of flanking sequences.  As enzyme concentration was 

decreased, flanking nucleotide preferences of progressively larger magnitude were 

observed.  When reads were binned by a single flanking nucleotide, G-CAATTG sites 

were shown to be favorable while A-CAATTG and C-CAATTG were shown to be 

unfavorable and T-CAATTG was relatively neutral.  Binning reads by flanking 

dinucleotides showed even larger effects. While the general trends seen when examining 

single flanking nucleotides were still apparent, the dinucleotide analysis underscored the 

unique energetic contributions to cleavage of each unique sequence context.  This was 

shown in our data by the ability of a given nucleotide in the second position away from 

the cut site to confer either a positive or negative effect on cleavage depending on the 

identity of the adjacent nucleotide.  For example, the thymine nucleotide in the second 

position away from the cut site led to increased cleavage for TG-CAATTG, TA-

CAATTG and TT-CAATTG but decreased cleavage for TC-CAATTG.   

We also analyzed MfeI star activity from the first set of experiments with respect 

to flanking sequence.  While the E. coli genome is not of sufficient complexity for 
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exhaustive flanking sequence analysis, it does provide enough diversity to confidently 

investigate effect of the adjacent base.  Because digestion at the CAACTG star site was 

incomplete, we expected flanking preferences to be apparent much as they were in 

enzyme-limiting conditions at cognate MfeI sites.  Indeed, we found that the flanking 

sequence affected CAACTG star site cleavage as well.  In contrast to the palindromic 

MfeI cognate site, flanking preferences differed on each side of the asymmetric star sites.  

Notably, the MfeI star site flanking preferences are distinct from the cognate site flanking 

preferences, which is consistent with biophysical work suggesting star site-enzyme 

complexes are profoundly different from their cognate counterparts2,34. 

In this paper we present new high-throughput methods to characterize restriction 

endonuclease activity.  The two techniques link Illumina sequence reads to cleavage 

events of highly complex substrate provided by sequenced genomes to assay enzyme 

activity in a highly parallel fashion.  The data acquired from their application to MfeI and 

EcoRI is consistent with previously described principles regarding restriction enzyme 

activity.  These techniques are easily applied to both previously characterized and newly 

discovered type II restriction endonucleases.  Genome sequencing has yielded many 

thousands of putative restriction endonucleases26, so the ability to quickly characterize 

their activity over all possible recognition sites will yield novel target specificities at a 

much higher rate than is currently possible.  Additionally, the structure-function 

relationship of restriction enzymes has been long-studied; these methods provide a rapid 

way to generate data about target specificity and activity for enzymes in altered 

conditions or altered protein structure. Thus, the methodology presented and validated in 
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this study will serve as a basis for applying the power of massively parallel analysis to the 

active and essential field of restriction enzymology. 

 

BRIDGE TO CHAPTER V 

 The work described in the following chapter directs the power of high-throughput 

sequencing toward gene regulation in a new way.  Like the restriction endonuclease assay 

described above, sequencing reads are linked through molecular library preparation to 

biological events.  In this case, transcriptional activation from a putative enhancer region 

is linked to output of a transcribed barcode that can be counted in high-throughput 

sequencing experiments.  This allows for millions of stretches of DNA to be assayed in 

parallel for their ability to initiate transcription from a minimal promoter.  We apply this 

new method to study hypoxia in Drosophila and couple the results with RNA-Seq data 

showing differentially expressed genes to provide a genome-wide analysis of the hypoxic 

regulatory network.  
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CHAPTER V 

GENOME-WIDE IDENTIFICATION OF HYPOXIC ENHANCERS 

 I was the primary contributor to all aspects of the work with experimental design 

and analysis contributions from Johnson EA and experimental contributions from Preston 

JL and Randel MA. 

 

INTRODUCTION 

Gene expression is differently regulated in different cell types and in response to 

changes to environmental conditions. This regulation is achieved in part by the activity of 

enhancers1-5, specific DNA sequences that bind transcription factors to control the rate of 

transcription initiated at nearby promoters. Even for relatively simple processes, such as 

the acute response to changes in oxygen availability, the identification and 

characterization of the enhancers used to shift the network of gene expression to a new 

mode remains limited. 

The transcription factor hypoxia-inducible factor-1 (HIF-1) is directly inhibited 

by the presence of cellular oxygen via protein degradation of the HIF-1α subunit6. Once 

stabilized, HIF-1α moves to the nucleus and up-regulates the transcription of target 

genes. Although HIF-1 remains a central regulator in models of how cells respond after 

experiencing low oxygen7,8, more recently other transcription factors have been 

implicated in the hypoxic response in a complex network of regulatory events. For 

example, the immunity response transcription factor NF-ΚB is also activated by hypoxia 

and regulates the transcription of HIF-19,10, while HIF-1 appears to play a reciprocal role 

in the regulation of NF-kB targets11. Likewise, HIF-1 sensitizes the heat shock response 
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by directly regulating heat shock factor (HSF) transcription during hypoxia. Thus, the 

broader picture that has emerged is that the stress response transcription factor pathways 

are not isolated regulatory units but rather cooperate and co-opt each other to modify the 

cell’s functions in a complex manner.  

High-throughput sequencing tools have become widespread in gene expression 

studies12-14. For example, RNA-Seq has become a powerful tool for analyzing differential 

gene expression by quantifying the RNA abundance of the transcriptome. However, 

RNA-Seq does not provide empirical information about the regulatory events leading to a 

change in transcript abundance. ChIP-Seq provides information about where transcription 

factors bind to the genome, but binding events do not always result in an active enhancer 

or change in the rate of transcription. Other sequencing methods assay open chromatin 

conformations (DNAse-Seq, FAIRE) as a reliable proxy for enhancers. However, until 

recently the typical functional assay for enhancers was to clone the putative regulator 

upstream of a reporter gene driven by a minimal promoter. 

Several next-generation sequencing-based methods have been used to dissect the 

function of individual nucleotides within previously known enhancers15-18 as well as scan 

genomic sequence for enhancer activity19.  Here we use a novel variation on these high-

throughput enhancer screening methods to identify regions of the Drosophila genome 

with increased activity under hypoxia.  Our technique combines the sheared genomic 

fragments to be assayed for activity with a UTR randomer tag system for highly 

multiplexed tracking of transcriptional activity.  The construct library is modularly 

synthesized in vitro making the relative placement of construct elements easily mutable. 

The work presented here is the first implementation of a massively parallel reporter assay 
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to study cis-regulatory activity during an environmental stress response.  A library of 

4,599,881 random 400-500 bp fragments spanning the Drosophila melanogaster genome 

was used to identify 31 hypoxic enhancer regions. The regions coincide with genes up-

regulated under hypoxia and with binding site motifs from multiple transcription factors 

involved in the hypoxic response. This work provides mechanistic details of the hypoxic 

response by empirically identifying regulatory regions that drive hypoxic transcription, 

linking them to target genes from RNA-Seq differential expression data, and identifying 

trans-acting factors in silico. This genome-wide scan demonstrates the complexity of the 

hypoxic response, which involves multiple regulators acting in concert to control the 

expression of a wide variety of targets.  

 

MATERIALS AND METHODS 

All DNA sequencing was performed on the Illumina HiSeq.  All PCR reactions 

contained a final concentration of 400nM of each primer and used Phusion Polymerase in 

1X HF buffer. 

Library synthesis 

The linear reporter library used to assay enhancer activity was constructed 

entirely in vitro (Figure 1A). The sequence space being assayed for enhancer activity, in 

this case the Drosophila melanogaster genome, was sonically sheared to generate random 

enhancer-sized fragments.  Adapter ligation and 5’ PCR addition were used to add the 

Illumina first-end sequence upstream of the sheared DNA and part of the minimal 

promoter downstream.  5’ PCR additions are used to add minimal promoter elements, an 

intron to stabilize mRNAs20, the 20N randomer tag, and Illumina paired-end sequence 
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upstream of an arbitrary ORF, in this case GFP.  The synthetic minimal promoter used 

was designed to contain several core motifs and has been shown to function with a wide 

range of enhancers21.  The two fragments are then ligated together to create the final 

construct library pictured in Figure 1A.  The reporter library was diluted to a target of 

10,000,000 molecules and regenerated by PCR so that the library could be adequately 

characterized by paired-end sequencing.  An aliquot of the reporter library is used for 

paired-end sequencing to match randomer tags located in the 5’ UTR to the non-

transcribed genomic region driving their expression.  The library is then transfected into 

cells for massively parallel enhancer assay (Figure 1B).   

Drosophila melanogaster strain Oregon-R genomic DNA was sonically sheared 

using the BioRuptor.  400-500bp fragments were isolated by gel electrophoresis then 

end-repaired using Blunt Enzyme mix (NEB) and 3’ adenylated using Klenow exo- 

(NEB).  This sample was then ligated to an asymmetric adapter with T-overhang 

composed of annealed oligonucleotides Genomic-Adapter-1 and Genomic-Adapter-2.  

The ligation product was gel-purified and used as PCR template with primers Illumina P5 

and Genomic-R to create a library of molecules containing a random 400-500 bp stretch 

of Drosophila melanogaster genomic sequence between the Illumina end one sequence 

and the beginning of a synthetic promoter.  Separately, The GFP coding sequence 

followed by the SV40 terminator was PCR amplified from plasmid pGreen-H-Pelican 

with primers GFP-F and SV40-R.  This product was then used as template for a PCR 

reaction using primers SV40-R and Marker-1-F.  This product was then used as template 

for a PCR reaction using primers SV40-R and Marker-2-F. This product was then used as  
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Figure 1.  Enhancer library synthesis and assay. (A) DNA of interest is fragmented (step 
1) and ligated to divergent adapters (step 2) leaving potential enhancer fragments with 
Illumina sequence on one side and the beginning of the synthetic minimal promoter on 
the other.  The GFP gene is used as a template for a series of 5’ PCR additions in order to 
add Illumina sequence, 20N randomer tag, and the majority of the minimal promoter and 
intron (step 3).  The two sides are ligated together to create a linear construct with 
complexity in the enhancer region upstream of the transcription start site as well as 
complexity in the randomer tag region in the 5’ UTR (step 4).  The sample is submitted to 
paired-end sequencing in order to match the potential enhancer region to the randomer 
tag in the 5’ UTR that is used to report its activity.  (B) The enhancer library is 
transfected into cells (step 1) and total RNA is purified and reverse transcribed to create 
cDNA (step 2).  The cDNA is used as template for a PCR reaction (step 3) with a reverse 
primer complimentary to the Illumina end 2 sequence present in the construct and a 
forward primer complimentary to the stretch of the minimal promoter upstream of the 
randomer tag.  The forward primer adds Illumina end 1 seqeunce and an experimental 
barcode for multiplexing.  This amplicon is ready to be loaded onto the Illumina flow cell 
for single-end sequencing of randomer tags (step 4) in order to quantify enhancer activity. 
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template for a PCR reaction using primers SV40-R and Marker-3-F to create a library of 

molecules containing a GFP sequence downstream of a minimal promoter with randomer 

tag and Illumina paired-end sequences. The genomic sequence-containing library and 

minimal promoter library were then 3’ adenylated and 3’ thymidylated respectively with 

Klenow exo- then ligated together.  The heterodimer (1819-1919 bp) was gel-purified 

and subsequently selected for proper orientation by PCR with primers SV40-R and 

Illumina P5.  To reduce library complexity to a scale that was tractable by paired-end 

sequencing, DNA was quantified using the Qubit system (Invitrogen) and serially diluted 

to produce an estimated 10,000,000 molecules that were used as template to regenerate 

the library by PCR with primers SV40-R and Illumina P5.  An aliquot of this library was 

used as template for a PCR reaction with primers Illumina-P7 and Illumina-P5 to 

generate a paired-end Illumina-sequencing library such that the first-end sequence 

contained the beginning of the genomic region and the paired-end sequence contained the 

corresponding randomer tag (Figure 1A).  Aliquots were also used to generate 

transfectable quantities of the full-length reporter library by PCR amplification of the 

entire fragment using primers SV40-R and Illumina-P5.   

Transfection, RNA extraction, and randomer tag sequencing 

Six 5mL flasks were plated to 80% confluency with S2 cells and transfected with 

Fugene HD and 2.6ug reporter library DNA at a 3:1 ratio.  The following day three plates 

were placed under hypoxia (99.5% N2 and 0.5% O2) for five hours and thirty minutes 

and three were left in atmospheric conditions.  Total RNA from both conditions was 

extracted using Trizol and treated with DNAse Turbo (Ambion).  RNA was converted to 

cDNA with SuperScipt III first strand synthesis kit (Invitrogen) using oligo dT20 
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primers.  cDNA was used as template for PCR with primers flanking the randomer tag to 

create an amplicon ready for Illumina sequencing. All PCR reactions used Illumina-P7 

reverse primer and the following barcoded forward primers to allow multiplexing: RNA-

BC-1 for hypoxic sample 1, RNA-BC-2 for hypoxic sample 2, RNA-BC-3 for hypoxic 

sample 3, RNA-BC-4 for normoxic sample 1, RNA-BC-5 for normoxic sample 5, RNA-

BC-6 for normoxic sample 6. The resulting 178-bp amplicons were combined and 

sequenced on the Illumina Hiseq.   

RNA-Seq 

RNA from the same experiments used to quantify enhancer activity was used for 

RNA-Seq.  mRNA was purified using Dynabeads (Invitrogen) from 10ug of total RNA 

and chemically fragmented using Ambion Fragmentation Reagent.  cDNA libraries were 

made with SuperScipt III first strand synthesis kit using random hexamer primers 

followed by second-strand synthesis with DNA Pol I (NEB).  The double stranded DNA 

was end-repaired using NEB Quick Blunting Kit and 3’ adenylated using Klenow exo-.  

The samples were ligated to divergent Illumina adapters with in-line barcodes (Hypoxic 

GGTTC, Normoxic CTTCC) and PCR amplified with Illumina primers.  300-450 bp 

fragments were gel-purified and sequenced on the Illumina HiSeq (hypoxic condition: 

Accession SRX467593, normoxic condition: Accession SRX467591).  6,855,528 reads 

from each sample were aligned to the Drosophila melanogaster transcriptome (Flybase, 

r5.22) using TopHat22.  The bam outputs were analyzed by cufflinks and the resulting 

transcripts.gtf files were compared using cuffdiff to identify differentially expressed 

genes.  Some ncRNAs were also analyzed for differential expression.  As they are not 

present in the transcriptome build, RNA-Seq reads were aligned to each ncRNA using 



 

77 

 

Bowtie223 and their expression level is reported by normalized number of aligned reads 

in each condition. 

Computational enhancer activity analysis pipeline 

Paired-end fastq files (Accession SRX468157) linking genomic regions in the 

first-end read to randomer tags in the paired-end read were parsed to a fasta file with the 

randomer tag as the sequence name and the genomic sequence as the sequence. This file 

containing 32,061,029 sequences was aligned to the Drosophila melanogaster genome 

(NCBI build 5.3) using Bowtie223. Reads were processed into a match-list linking 

randomer tags to the genomic coordinates of their corresponding test sequence. 

Randomer tags from hypoxic and normoxic RNA amplicon sequencing were 

extracted from fastq files (Accessions SRX468694, SRX468097) and experimental 

replicates were separated by barcode.  18,261,667 randomer tags from hypoxic sample 1, 

14,226,458 from hypoxic sample 2, 14,697,154 from hypoxic sample 3, 14,406,854 from 

normoxic sample 1, 14,988,132 from normoxic sample 2, and 11,516,478 from normoxic 

sample 3 were referenced to the paired-end match list to generate genome-wide enhancer 

activity tables by 100bp bins.  The genomic fragments ranged from 400-500bp so the bin 

corresponding to the alignment as well as the four downstream bins were credited 1 

count.  In the cases where randomer tags matched multiple genomic fragments, bins were 

credited a fraction of a count based on the likelihood of that linkage in the paired-end 

match data.  This created a genome-wide count table of enhancer activity in each 

replicate.  The count table was then analyzed in R for differential activity between 

hypoxic and normoxic replicates using a negative binomial test in the DESeq24 package.  

The bins were filtered by overall count (θ=0.5) and the test was run with default variance 
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estimation.  This generated a p-value and a p-value adjusted for multiple hypothesis 

testing (Benjamini-Hochberg procedure) for each 100bp bin.  Hypoxic enhancer regions 

were defined at bins up-regulated under hypoxia with adjusted p-value < 0.1 (p-value < 

1.55 e-05) and extend to include adjacent bins with p-value < 0.05.  

Enhancer sequence motif analysis 

Identified enhancer regions were searched for stress transcription factor binding 

sites using the BoBro BBS motif-scanning algorithm25 with position weight matrices 

from the JASPAR database26.  This algorithm was used to identify binding site positions 

and calculate a global p-value of enrichment for HIF-1 (JASPAR ID: MA0259.1), FOXO 

(MA0480.1), HSF (MA0486.1) and NF-kB (MA0105.3) binding sites in enhancer 

sequences compared to the Drosophila melanogaster genome background. 

 

RESULTS 

Discovered hypoxic enhancers 

Transcriptional activity from 4,599,881 fragments that were 400-500bp in size, 

spanning the Drosophila melanogaster genome at 17.39X coverage, was analyzed by 

100bp bins and 31 significant hypoxic enhancer regions (q-value < 0.1, p-value < 1.55 e-

05) were identified (Table 1).  These enhancer regions range in size from 100 to 800bp 

and confer 2 to 18-fold changes in expression under hypoxia.  The discovered enhancers 

are found throughout the genome and are located proximally to genes up-regulated under 

hypoxia in our RNA-Seq experiments.  The ten most strongly up-regulated genes all 

contain a discovered enhancer within 20kb.  16 of 31 discovered enhancers are located  

within 20kb of one of the 90 up-regulated genes.  The probability of this positional 
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Table 1.  Properties of discovered hypoxic enhancers.  Genes up-regulated under hypoxia 
are from RNAseq experiments from the same RNA pools used to quantify enhancer 
activity unless denoted by an asterisk in which case they were observed to be up-
regulated under hypoxia in Drosophila by Li et al.27. 
 

 
 

 

Enhancer Locus P-value 
 

Adjusted 
P-value 

Fold 
Change 

Hyp. Gene(s) 
Within 20Kb 

Relative Position 
to Hyp. Gene(s) 

Stress TF  
Binding Sites 

3R:8303000..8303500 7.79 e-22 4.63 e-16 5.08 Hsp70B genes Intergenic Hsf, Hif-1, Foxo 

3L:6256700..6257200 1.83 e-16 2.72 e-11 5.95 impl3 Upstream NF-kB 

3R:8331100..8331800 1.59 e-16 2.72 e-11 4.49 Hsp70Bb Promoter Proximal Hsf, Hif-1, Foxo 

3R:8293200..8293900 2.96 e-16 3.51 e-11 3.83 Hsp70Ba Promoter Proximal Hsf, Hif-1, Foxo 

3R:8334400..8335000 1.18 e-15 1.01 e-10 4.45 Hsp70Bc Promoter Proximal Hsf, Hif-1, Foxo 

2L:8001300..8001800 2.64 e-15 1.74 e-10 6.44 Wwox Intronic Hif-1 

3R:8327800..8328500 8.89 e-13 2.40 e-08 3.70 Hsp70Bbb Promoter Proximal Hsf, Hif-1, Foxo 

2L:20082900..20083500 1.08 e-12 2.79 e-08 6.35 Fok Intronic Foxo, Hif-1 

3L:8685300..8685800 1.07 e-10 2.18 e-06 3.79 Hairy Downstream Hsf, Hif-1, Foxo 

3L:7797800..7798600 1.77 e-10 3.38 e-06 3.07 CG32369 Intronic Hif-1 

3L:9385200..9385800 2.14 e-09 3.62 e-05 3.71 Hsp22,23,26,27 Neighboring Intron Not Detected 

X:17071000..17071300 8.77 e-09 1.24 e-04 4.99 Not Detected Not Detected Not Detected 

X:9767000..9767500 1.27 e-08 1.76 e-04 3.65 CG32695* ORF Not Detected 

2L:2887100..2887600 1.32 e-08 1.79 e-04 5.82 Not Detected Not Detected Hif-1 

3L:11234100..11234900 6.03 e-07 6.63 e-03 2.68 Scylla Upstream Foxo 

3L:3892900..3893100 1.55 e-06 1.59 e-02 2.75 Not Detected Not Detected Hif-1, NF-kB 

2L:5986900..5987500 1.82 e-06 1.81 e-02 2.16 ifc* Intronic Foxo 

3L:9448800..9448900 2.09 e-06 2.03 e-02 5.39 MTF-1* Neighboring Intron NF-kB, Hif-1 

3R:6800900..6801600 2.22 e-06 2.09 e-02 13.82 Not Detected Not Detected Hif-1 

3L:11522800..11523300 2.66 e-06 2.35 e-02 3.04 Not Detected Not Detected NF-kB 

3R:4181100..4181600 2.66 e-06 2.35 e-02 3.87 Atg13 Downstream Foxo, Hif-1 

3R:7781900..7782700 2.69 e-06 2.35 e-02 4.96 Hsp70Aa Promoter Proximal Hsf 

3R:7783900..7784500 2.75 e-06 2.37 e-02 4.18 Hsp70Ab Promoter Proximal Hsf 

3R:21433600..21434000 3.30 e-06 2.72 e-02 9.03 Not Detected Not Detected. Not Detected 

X:16559200..16559700 4.13 e-06 3.23 e-02 6.56 Not Detected Not Detected Foxo 

3R:2902300..2902600 6.21 e-06 4.63 e-02 2.95 Not Detected Not Detected Not Detected 

2R:12896000..12896500 6.88 e-06 5.05 e-02 3.02 Not Detected Not Detected Foxo 

X:17388000..17388500 8.24 e-06 5.75 e-02 6.80 Not Detected Not Detected. Hif-1 

3R:14892300..14892800 9.76 e-06 6.44 e-02 18.01 Not Detected Not Detected Hif-1 

3R:27050000..27050500 1.52 e-05 9.40 e-02 2.78 CG12054* Intronic Hif-1 

3R:25921500..25922100 1.54 e-05 9.44 e-02 2.46 Hif-1 Intronic NF-kB, Hif-1 

 

overlap occurring by chance is 1.43 e-14 using an exact binomial test, supporting that the 

discovered enhancers are linked to endogenous gene expression and implicating their 

likely targets.  4 additional enhancers are proximal to genes previously observed to be up-

regulated under hypoxia in Drosophila
27. 

Location of hypoxic enhancers 

Of the 20 hypoxic enhancer regions proximal (within 20kb) to hypoxic up-

regulated genes, 6 fall in the promoter region of the putative target gene (Figure 2, Table 

1).  All six of these are the homologous Hsp70B enhancers.   



 

80 

 

 

Figure 2.  Hypoxic enhancer activity by 100bp bins at the Hsp70B locus.  Each open 
circle plots the p-value of the difference in randomer tag counts mapping to that 100bp 
bin between normoxia and hypoxia.  Green bars show enhancer regions discovered by 
our genome-wide screen.   (A) The four Hsp70B homologues highlighted in pink are all 
up-regulated under hypoxia and contain homologous promoter proximal hypoxic 
enhancer regions.  Additionally, a fifth homologous enhancer region lacking an ORF was 
discovered at the locus.  (B) The close up of the Hsp70Ba enhancer region shows the 
position of multiple stress response transcription factor binding sites. 
 

Six enhancers were found in introns of putative target genes (Table 1).  These intronic 

enhancers may be placed proximal to alternate transcription start sites in order to confer 

isoform specific up-regulation as seen in the case of Sima, the Drosophila HIF-1α 

homologue (Figure 3).   
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Figure 3.  Hypoxic enhancer activity by 100bp bins at the Sima (HIF-1α) locus.  Each 
open circle plots the p-value of the difference in randomer tag counts mapping to that 
100bp bin between normoxia and hypoxia.  The green bar shows the enhancer region 
discovered by our genome-wide screen.   (A) HIF-1 is the master hypoxic regulator and is 
itself regulated transcriptionally under hypoxia.  Our RNASeq data shows hypoxia 
induces up-regulation of the isoform highlighted in pink.  We identify an intronic hypoxic 
enhancer upstream of the transcription start site of this isoform.  (B) The close up of the 
Sima intronic enhancer region shows both HIF-1 and NF-kB binding sites.   
 

Two enhancers were found in introns of genes neighbouring the putative target and one 

was found in the ORF of the putative target.  The remaining five were found in intergenic 

space up or downstream of putative target genes, as seen for the enhancer region 13 kb 

downstream of the transcriptional regulator hairy (Figure 4).   
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Figure 4.  Hypoxic enhancer activity by 100bp bins at the hairy locus.  Each open circle 
plots the p-value of the difference in randomer tag counts mapping to that 100bp bin 
between normoxia and hypoxia.  The green bar shows the enhancer region discovered by 
our genome-wide screen.   (A) The hairy gene produces a negative transcriptional 
regulator that is up-regulated during hypoxia.  We identify an active hypoxic enhancer 
13kb downstream of hairy.  (B) The close up of the hairy downstream enhancer region 
shows FOXO, HIF-1 and HSF binding sites as well as coincidence with a ncRNA that is 
also up-regulated under hypoxia. 
 

Interestingly, three of the five intergenic enhancers were located immediately proximal to 

a ncRNA.  All of these ncRNAs were themselves up-regulated under hypoxia (Table 2).   

Transcription factor binding motifs 

Identified enhancer regions are enriched for binding sites of stress response 

transcription factors involved in hypoxia.  Transcription factors HSF, HIF-1, FOXO, and 

NF-kB showed highly significant global enrichment across the enhancer regions (Table 

3).  Binding sites occurring in each individual enhancer are listed in Table 1.  26 of 31 

enhancer regions contain binding motifs for at least one of these transcription factors and 
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many contain binding sites for several.  In addition to a pair of HSF binding sites, The 

Hsp70B promoter proximal enhancers contain binding sites for FOXO and HIF-1 (Figure 

2).  The intronic Sima enhancer (Figure 3) contains a pair of HIF-1 binding sites, possibly 

allowing autoregulation, and also contains a NF-kB binding site.  The enhancer region  

downstream of hairy contains HSF, FOXO, and HIF-1 binding sites (Figure 4).  

 

Table 2.  ncRNAs proximal to hypoxic enhancers.  Three of the five enhancers not 
contained within protein coding transcripts coincide with ncRNAs.  Each of these 
ncRNAs is also up-regulated under hypoxia. 
 

 

 

 

 

 

 

 

 

Table 3.  P-value of stress transcription factor binding site enrichment in discovered 
enhancer sequences. 
 

 

 

 

 

DISCUSSION 

We used a novel parallelized reporter assay to conduct the first genome-wide 

functional enhancer screen of a cellular response to environmental stress.  Our work 

demonstrates a new method with wide applicability and identifies DNA regulatory 

sequences conferring hypoxic activity.  We identify 31 hypoxic enhancer regions and 

Transcription 
Factor  

P-value of 
Enrichment  

HSF 6.22 e-12 

Hif-1 6.49 e-06 

Foxo 1.01 e-04 

NF-kB 6.67 e-04 

Enhancer Locus ncRNA Position of ncRNA 
relative to enhancer  

Hypoxic 
read counts 

Normoxic 
read counts 

3R:8303000..8303500 CR32865 overlapping 66 13 

3L:8685300..8685800 CR44526 3 bp upstream 31 14 

3L:6256700..6257200 CR44522  201 bp upstream 6 1 
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analyze them with respect to up-regulated hypoxic genes and stress response transcription 

factors. 

RNA-Seq was performed on the same RNA pools used to quantify hypoxic 

enhancer activity in order to identify putative target genes proximal to identified enhancer 

regions.  Differentially expressed genes identified in our RNA-Seq experiments are 

corroborated by previous analyses of the Drosophila hypoxic response27,28.  The majority 

of enhancer regions were proximal (within 20 kb) to endogenously up-regulated genes, 

indicating that our enhancer assay identifies active in vivo regulatory elements.  We 

identified enhancer regions proximal to previously described hypoxic genes including 

lactate dehydrogenase6,27,  the transcriptional regulator hairy29, the reductase Wwox30, 

and the cell cycle inhibitor scyl31.  Additionally, the Hsp70B promoter proximal 

enhancers identified in our assay have been previously shown to be active in vivo
32,33.  

The large positional overlap between up-regulated genes and enhancer regions allowed 

analysis of the architecture of hypoxic regulation.  Interestingly, only the Hsp70B 

enhancers were found at the promoter of putative target genes.  The majority of enhancer 

regions were found in introns and intergenic space.  Enhancers were found in introns of 

putative target genes as well as introns of neighboring genes (Table 1).  Enhancer regions 

in intergenic space corresponded with known ncRNA loci and in each case the ncRNA 

was itself up-regulated under hypoxia (Table 2).  These findings highlight the unbiased 

view of the regulatory landscape provided by genome-wide empirical assays and 

underscore the prevalence of activity outside of promoter regions.  

Some of the enhancer regions were not proximal to an identifiable up-regulated 

gene.  These enhancers could act on more distal targets, on proximal targets with 
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expression too low to be detected by our RNA-Seq experiment, or they may have activity 

in isolation but be attenuated by other elements in their native hypoxic context.  

Conversely, many up-regulated genes did not have a proximal enhancer identified by our 

screen.  This could be due to a requirement of action from multiple disjunct regulatory 

modules at the native locus or lack of resolution in our assay.  The multiple hypothesis 

testing correction imposed by analyzing activity across 1.2 million 100 bp bins sets a 

stringent p-value threshold which was not robust to noise at many loci.  Genomic regions 

of interest can still be analyzed independently to identify enhancer activity.  Future uses 

of the technique will benefit from further optimization of library synthesis and assay. 

Nonetheless, this work presents a large list of empirically identified enhancer regions 

robust to false discovery rate that coincide with the most highly up-regulated hypoxic 

genes. 

The transcription factors HIF-1, HSF, NF-kB , and FOXO regulate hypoxic gene 

expression and have been shown to exhibit overlapping activity and reciprocal 

regulation9-11,34,35.  The enhancer regions identified in this study are highly enriched for 

their binding site motifs and many display multiple sites allowing signal integration of 

stress response pathways.  We observe an intronic enhancer in Sima which contains both 

HIF-1 and NF-kB binding sites, suggesting HIF-1 autoregulation and integration of NF-

kB signaling at a basal level in the hypoxic response. The enhancer region, while intronic 

to the full-length Sima transcript isoforms, is upstream of an alternative transcriptional 

start site that produces a transcript isoform that is up-regulated after hypoxia, whereas the 

full-length isoforms do not have altered expression after hypoxic stress.  This short 

isoform lacks the bHLH and PAS domains of the full-length isoform, suggesting it 
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neither binds DNA nor heterodimerizes. Interestingly, this hypoxic regulation of a short 

isoform resembles the hypoxic induction of a short isoform of the HIF-1 regulator fatiga 

(Drosophila HIF-1 Prolyl Hydroxylase) by an intronic HIF-1 enhancer36. 

Our findings reiterate the complexities of the hypoxic response while providing 

new details. The enhancer regions identified demonstrate regulatory activity distributed 

throughout non-coding genomic space and underscore the role of intronic enhancers in 

the hypoxic response.  We observe coincidence between enhancer regions and ncRNA 

activity in agreement with previous evidence showing local transcription to be a general 

property of active enhancers37.  We present a set of sequences capable of driving 

hypoxia-specific expression and demonstrate a new genome-wide technique for the 

identification of context-specific enhancers. 
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CHAPTER VI 

CONCLUSIONS 

 

Genomics has become a foundational discipline whose influence has touched all 

aspects of biological research.  The ability to efficiently identify and contextualize causal 

nucleic acid stretches has opened new avenues in systems biology, developmental 

biology, and population genetics.  Additionally, the genomics era has brought exciting 

progress to health science as genome-wide studies provide new insights into regenerative 

and personalized medicine.  Synthetic biology has also advanced greatly with next-

generation genomic techniques allowing massively parallel quantification of regulatory 

modules.  The work presented in this dissertation employs and develops massively 

parallel genomics techniques to identify and contextualize functional DNA loci across 

species and applications. 

 In Chapter II we looked into the genome of the model organism C. elegans using 

RAD-Seq.  This long studied roundworm has played an important role in identifying 

conserved metazoan genes involved in basic cellular processes.  We advanced this pursuit 

by employing RAD-Seq to rapidly identify genes essential to mitotic spindle assembly.  

Chapter III directs RAD-Seq to query the genomes of Montana salmonids in the North 

Fork of the Flathead River.  Here genomics transcends the research arena to inform 

natural resource management.  The large number of population-specific DNA 

polymorphisms identified by RAD-Seq allowed deep analysis of the impact of introduced 

rainbow trout on the indigenous cutthroat populations.  Indeed, evidence of introgression 
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was discovered in our genomics-era approach that eluded previous low-throughput DNA 

analyses.   

 Chapter IV moves from association studies towards functional applications of 

massively-parallel sequencing.   We presented a novel assay capable of quantifying the 

cleavage activity of restriction enzymes over millions of DNA sequences simultaneously.  

The assay parlays the existence of sequenced genomic DNA as a complex experimental 

substrate.  We linked sequencing events to restriction digest events in order to quantify 

the specificity of EcoRI and MfeI across all possible sites in parallel.  This yielded 

valuable information about their off-target activity as well as context-specific effects that 

would have been drastically more difficult to obtain using previous methods.  The 

specific details about MfeI and EcoRI activity will be of use in molecular cloning and the 

presented technique can be used to characterize the large number of restriction enzymes 

recognized in bacterial metagenomic sequence. 

 Chapter V applied genomics tools to study live cells.  We developed a technique 

capable of testing millions of potential DNA regulatory elements in parallel inside 

cultured insect cells and used it to investigate the hypoxic regulatory network.  By using 

random barcodes to track the transcriptional activity of fragments spanning the 

Drosophila genome, we were able to provide the first genome-wide screen of regulatory 

elements mediating the response to an environmental stress.  We then analyzed this data 

with respect to endogenously upregulated genes seen in our RNA-Seq data and 

transcription factor binding motifs.  We uncovered an exciting level of complexity as 

enhancer elements often fell far outside of promoter regions and often integrated signals 

from multiple stress response pathways.  Many were even associated with differentially 
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expressed ncRNAs.  This study provided an empirical set of DNA sequences capable of 

enhancing hypoxic transcription and a generalizable method for transcriptional enhancer 

discovery.  Taken together, the work presented in this dissertation makes significant 

progress in a variety of biological research areas unified by genomic theory and 

methodology. 
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