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DISSERTATION ABSTRACT 
 
Ann Maureen Klein 
 
Doctor of Philosophy  
 
Department of Biology 
 
September 2015 
 
Title: Microbial Biodiversity of the Atmosphere 

 

Microorganisms are critical to the functioning of terrestrial and aquatic ecosystems 

and may also play a role in the functioning of the atmosphere. However, little is known 

about the diversity and function of microorganisms in the atmosphere. To investigate the 

forces driving the assembly of bacterial microbial communities in the atmosphere, I 

measured temporal variation in bacterial diversity and composition over diurnal and inter-

day time scales. Results suggest that bacterial communities in the atmosphere markedly 

vary over diurnal time scales and are likely structured by inputs from both local terrestrial 

and long-distance sources. To assess the potential functions of bacteria and fungi in the 

atmosphere, I characterized total and potentially active communities using both RNA- and 

DNA- based data. Results suggest there are metabolically active microorganisms in the 

atmosphere that may affect atmospheric functions including precipitation development and 

carbon cycling.  

This dissertation includes previously published and unpublished co-authored 

material.  
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CHAPTER I 

INTRODUCTION 

 

Biological diversity patterns in space and time and the processes underlying these 

patterns are central to ecology and evolutionary biology. Despite the extraordinary 

abundance, ubiquity, and diversity of microorganisms, the study of microbial biodiversity 

has lagged behind that of macroorganisms. Furthermore, most of what is known about 

microbial biodiversity and biogeography is limited to terrestrial and aquatic 

environments. But microorganisms are ubiquitous and diverse in the atmosphere as well 

(Després et al., 2012).  

Little is known about the biology of the atmosphere relative to aquatic and 

terrestrial habitats due to technical and conceptual limitations. Technical limitations have 

significantly hindered the study of the air. Low densities of airborne microorganisms can 

make even sensitive molecular analyses difficult because of the small amount of 

biological material present in the air. Due to recent advances in molecular techniques and 

DNA sequencing capabilities, the technical limitations for study airborne microorganisms 

have been largely overcome. Conceptual limitations continue to impede the advancement 

of our understanding of life in the atmosphere. Most of what is known about airborne 

microorganisms is based on the longstanding assumption that the atmosphere is a conduit 

for the dispersal of microbes rather than a dynamic habitat where microorganisms 

actively metabolize and reproduce. Viewing the air as a microbial habitat has the 

potential to radically expand the scope of biodiversity and biogeography research 

(Womack, Bohannan, and Green, 2010).  

These technical and conceptual limitations have resulted in two fundamental gaps 

in our understanding of atmospheric microbial ecology. First, although airborne 

communities are known to be diverse and dynamic in space and time (e.g. Brodie et al., 

2007; Maron et al., 2006; Bowers et al., 2012), patterns in this variation and the forces 

underlying them remain relatively unexplored. Second, the majority of aerobiological 

research has focused on the role of the atmosphere in the dispersal of terrestrial and 

aquatic organisms rather than on the possibility that the atmosphere is a microbial habitat. 
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Thus, very little is known about the potential function of metabolically active microbial 

communities in the atmosphere.  

For my dissertation research, I studied the diversity and potential function of 

bacterial and fungal communities in the atmosphere. In Chapter II, I review what is 

known about the function and diversity of microbial communities in the atmosphere and 

identify gaps in our knowledge of microbial communities in the atmosphere, which I 

attempted to address in my dissertation research. I conducted a time series study to 

measure bacterial community diversity and composition over multiple time scales in 

order to better understand the drivers of bacterial community assembly in the atmosphere. 

To study the metabolically active portion of microbial communities in the atmosphere, I 

developed a novel bioaerosol collection method. This allowed me use both RNA- and 

DNA-based analyses to study fungal communities in the atmosphere over the Amazon 

rainforest and bacterial communities in the atmosphere at a high elevation research 

station. The use of RNA-based methods allowed me to study the potentially 

metabolically active portion of microbial communities in the atmosphere and make 

inferences about their potential functions.  

This dissertation includes previously published and unpublished co-authored 

material. Chapter II was previously published in Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences with Brendan J. M. Bohannan and 

Jessica L. Green as co-authors. Chapter III was previously published in Biogeosciences 

Discussions with Paulo E. Artaxo, F. Yoko Ishida, Rebecca C. Mueller, Scott R. Saleska, 

Kenia T. Wiedemann, Brendan J. M. Bohannan, and Jessica L. Green as co-authors. 

Chapter V was prepared for submission to Frontiers in Microbiology with Brendan J. M. 

Bohannan, Daniel A. Jaffe, David A. Levin, and Jessica L. Green as co-authors. 
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CHAPTER II 

BIODIVERISTY AND BIOGEOGRAPHY OF THE ATMOSPHERE 

 

This paper was published in Philosophical Transactions of the Royal Society of London. 

Series B, Biological Sciences. I wrote the paper and substantial edits and comments were 

contributed by my co-authors, Brendan J. M. Bohannan and Jessica L. Green 

 

Introduction  

As humans, we have an intimate relationship with the air around us. This 

relationship is by and large unconscious; we breathe in without thinking, move through 

the eddies and tides of air often without notice. This largely unconscious relationship has 

led to a delayed appreciation of the air as a biological entity. But air is as alive as soil or 

water. Not only does it host large macroscopic organisms such as a soaring hawk or a 

drifting wildflower seed, but it also hosts a wide variety of microorganisms. Hundreds of 

thousands of individual microbial cells can exist in a cubic meter of air (Burrows et al., 

2009b), representing perhaps hundreds of unique taxa (Brodie et al., 2007; Fierer et al., 

2008; Bowers et al., 2009). The ecology of these organisms – their diversity, distribution 

and interactions – is poorly understood. Given our intimate relationship with air, this lack 

of knowledge comes at a great cost. The life of the air, especially the microbial life, is in 

constant interaction with human life, both directly as a source of pathogenic and 

beneficial microbes (Kellogg & Griffin 2006) and indirectly through biological effects on 

atmospheric processes (Deguillaume et al., 2008). The atmosphere – the layers of air 

surrounding the Earth – has been described as ‘one of the last frontiers of biological 

exploration on Earth’ (Rothschild & Mancinelli 2001).  

In this paper, we summarize our current state of knowledge of the ecology of the 

atmosphere, with an emphasis on the atmosphere’s biogeography. Biogeography is the 

study of patterns in the distribution of life and the processes that underlie these patterns 

(Lomolino et al., 2006). The air has long been recognized as an important conduit for the 

movement of organisms from one geographical location to another, and thus is important 

for the biogeography of land and water. However, it is commonly assumed that the 

atmosphere is not a habitat in its own right but merely a conveyance for terrestrial and 
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aquatic life. We review evidence that challenges this assumption and suggests the 

existence of metabolically active and actively reproducing organisms in the atmosphere. 

We argue that the atmosphere has a biogeography of its own. Our discussion will focus 

on microorganisms, the numerically dominant forms of life in the atmosphere.  

 

A Brief History of Aerobiology  

 Aerobiology has captivated scientists for centuries. Antoni van Leeuwenhoek – 

commonly known as the founder of microbiology – was one of the first to ask whether 

the air could be a habitat for microorganisms (Gregory 1971), observing that ‘there may 

be living creatures in the air, which are so small as to escape our sight’ (van 

Leeuwenhoek 1941). Charles Darwin collected airborne dust on the HMS Beagle; this 

dust was found to contain 17 ‘different organic forms’ of microorganisms (Darwin 1846). 

Microorganisms have recently been isolated from these samples, demonstrating the 

ability of some airborne microbes to remain viable after long periods of time (Gorbushina 

et al., 2007). Darwin’s contemporary Louis Pasteur, one of the first to systemically study 

airborne microorganisms, showed that there are viable bacteria and molds in the air, and 

that the densities of these organisms vary from location to location (Pasteur 1861).  

When flight in fixed-wing aircraft became possible in the early 1900s, interest in 

aerobiology took wing as well. Phytopathlogist Fred C. Meier was perhaps the most 

enthusiastic proponent of studying microbes at high altitudes. Meier was adept at creating 

sampling devices and recruiting others to participate in his studies. Charles and Anne 

Lindbergh collected fungal spore samples for Meier using his ‘sky-hook’ device during a 

flight over the Arctic from North Haven, Maine to Copenhagen, Denmark (Meier & 

Lindbergh 1935). Amelia Earhart took Meier’s collection device with her during her 

attempt to circumnavigate the globe. According to Meier, Earhart’s collections, had she 

not perished during her voyage, would have been an ‘invaluable’ sample set that spanned 

the circumference of the globe over massive bodies of water where little sampling had 

been previously conducted (Montague 1937).  

Despite this long and rich history of study, we know very little about the biology 

of the atmosphere relative to aquatic and terrestrial habitats. Technical limitations have 

hindered the study of the air. Low densities of microorganisms in the air can make even 
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sensitive molecular analysis difficult because of the small amount of biological material 

present in the air. Additionally, the lack of standardization in air collection and sample-

processing methods complicate comparisons across studies (Kuske 2006; Peccia & 

Hernandez 2006). Owing to this lack of methodological standardization, it is unclear 

whether large differences in density estimates among studies can be attributed to 

biological variation (reviewed in Peccia & Hernandez 2006; Burrows et al., 2009b). 

Conceptual limitations also continue to impede the advancement of our 

understanding of life in the atmosphere. Most of what is known about airborne 

microorganisms is based on the assumption that the atmosphere is a conduit for the 

dispersal of microbes rather than a dynamic habitat where microorganisms actively 

metabolize and reproduce. Characterizing the role of biological processes in the 

atmosphere has enormous implications for furthering our understanding in a number of 

disciplines, from atmospheric chemistry and meteorology to biodiversity and 

biogeography.  

 

An Atmospheric Habitat for Microorganisms 

In the atmosphere, microorganisms may belong to one of three groups—those that 

are not metabolically active, those that are metabolically active but rarely reproduce and 

those that are both metabolically active and actively reproducing. Microbes can form 

inactive propagules (e.g. spores) that disseminate through the atmosphere; however, for 

these organisms, the atmosphere would not be a ‘habitat’ in the conventional sense. We 

suggest that microbes that remain metabolically active in the atmosphere but rarely 

reproduce are organisms for which the atmosphere serves only as an accidental dispersal 

mechanism. The last group – both metabolically active and reproducing – can be thought 

of as ‘residents’ of the atmosphere. We argue below that, despite past assumptions, 

residents of the atmosphere are likely to exist, and that the atmosphere can act as a habitat 

for microbial life. We rely on four sources of information to make these arguments: that 

large portions of the atmosphere have environmental characteristics consistent with other 

microbial habitats; that biogeochemical cycling (probably mediated by microbes) occurs 

in the atmosphere; that at least some microbes found in the atmosphere are metabolically 
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active; and that residence times of microbes in the atmosphere are long enough that 

actively reproducing residents could exist.  

 

The atmosphere is not the most extreme microbial habitat 

By several measures (pH, temperature, ultraviolet (UV) radiation, resource and 

water availability), the atmosphere appears to be less extreme than many other microbial 

habitats. The pH of clouds and rainwater ranges from 3 to 7 (Warneck 1988), a narrower 

range than that found in many microbial habitats. Microbes have adapted to a much wider 

range of pH conditions that occur in air, from highly acidic conditions near pH 0 

(Schleper et al., 1995) to extremely alkaline conditions up to pH 11 (Jones et al., 1998).  

Temperature can vary widely throughout the atmosphere, but includes ranges that are 

suitable for microbial life. In the lower atmosphere (up to 20 km above the Earth’s 

surface), average temperatures decrease with altitude and range from an average of 158C 

(at sea level) to 2568C (at 20km) (NOAA NASA US Air Force 1976). Many 

microorganisms are capable of growth at temperatures near and below 08C (Morita 

1975), with some communities reported to be metabolically active at temperatures as low 

as 2188C (Rothschild & Mancinelli 2001).  

As with temperature, UV radiation, including DNA-damaging UVB, increases 

with altitude (Blumthaler et al., 1992). Increased UV radiation at higher altitudes does not 

necessarily mean that airborne microorganisms are exposed to more UV radiation than 

their terrestrial counterparts, especially those terrestrial organisms that live at high 

elevations. Microorganisms in the atmosphere may have a variety of methods for 

protection from UV radiation in addition to the suite of DNA-repair mechanisms found in 

all microorganisms (Witkin 1976). It has been suggested that airborne microbes may 

mitigate levels of UV exposure by being embedded within larger particles with UV-

attenuating properties, such as dust, pollen or water droplets (Lighthart 1997; Pearce et 

al., 2009). Pigments may also protect microbes from UV; the occurrence of pigmented 

microorganisms in the atmosphere has been correlated with the presence of high levels of 

solar radiation (Tong & Lighthart 1997). These protective mechanisms are especially 

important for the survival of organisms at the upper level of the stratosphere, where 
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levels of mutagenic UVB and UVC are not attenuated by the ozone layer (Smith et al., 

1992).  

Resource availability in the atmosphere is not necessarily lower than that of many 

terrestrial or aquatic environments. In clouds and rainwater, concentrations of nutrients 

(e.g. sulfate and nitrate) reach levels typical of oligotrophic lakes (Pearce et al., 2009). 

Numerous potential carbon sources are found in both clouds and the atmosphere, 

including carboxylic acids and alcohols (at concentrations up to 1 mg l21; Pearce et al., 

2009) as well as a variety of hydrocarbons (at concentrations up to 4 ng l21; Warneck 

1988). In addition to available resources for supporting heterotrophic metabolisms, the air 

provides a suitable habitat for phototrophs. Pigmented microorganisms found in the 

atmosphere could be using pigments for photosynthesis. Gene sequences from putative 

photoautotrophs have been amplified from air samples (Brodie et al., 2007), although to 

our knowledge, no photoautotrophs have been isolated from the atmosphere.  

 

Microbes in air are metabolically active  

Direct in situ evidence of microbial metabolic activity in the atmosphere is rare 

and limited primarily to approaches that require culturing of microbes in the laboratory. 

For example, bacteria aerosolized in the laboratory have been shown to be capable of 

metabolizing glucose (Dimmick et al., 1975) and dividing (Dimmick et al., 1979), 

suggesting that aerosolization is not a barrier to metabolic activity and reproduction. 

Sattler et al., (2001) showed that microorganisms incubated in cloud water at 08 have 

generation times of 3.6 – 19.5 days and take up labeled substrates at rates typical of 

bacteria in lake water. Microorganisms isolated from cloud water degrade organic acids 

when cultured in artificial cloud water at 58C and 178C (Vaïtilingom et al., 2010).  

These approaches have significant limitations. The environmental conditions 

microbes are exposed to in clouds (e.g. temperatures of -15°C in super-cooled droplets) 

cannot be easily reproduced in the laboratory. Culturing aerosolized microbes in the 

laboratory is likely to impose a bias and may not be representative of the airborne 

community (Pace 1997). A few studies have avoided these biases by using culture-

independent methods for detecting metabolic activity. For example, Hill et al., (2007) 

observed that 76 per cent of cells in cloud water reduced the dye CTC (5-cyano-2,3ditolyl 
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tetrazolium), suggesting that this proportion was metabolically active. Measurements of 

ATP concentrations in cloud water approximate what would be expected for 

metabolically active cells at the cell density at which they are found in clouds (Amato et 

al., 2007b), suggesting that microbes can be metabolically active in the atmosphere.  

 

Biogeochemical cycling may occur in the atmosphere 

 If metabolically active microbes are present in the atmosphere, they should leave 

chemical ‘footprints’ of their metabolisms. For example, microbes are intimately 

involved in biogeochemical transformations, and evidence for such transformations in the 

atmosphere would support the hypothesis of a resident microbiota. Nitrogen cycling in 

clouds (including mineralization and nitrification) has been demonstrated (Hill et al., 

2007), suggesting the presence of metabolically active microbes. There is some evidence 

for carbon cycling in clouds, although it is not as clear-cut as the case for nitrogen. For 

example, bacteria have been isolated from clouds that are able to use organic compounds 

commonly found in cloud water, including acetate, formate, succinate, L-lactate, 

formaldehyde and methanol as carbon sources (Amato et al., 2007a; Vaïtilingom et al., 

2010). Bacterial end products of these metabolic reactions are also commonly found in 

cloud water (Amato et al., 2007a), suggesting that these microbes are actively 

transforming these compounds in clouds. Microbial degradation of organic compounds in 

the atmosphere may not be limited to cloud aerosols. Bacteria have been collected outside 

of clouds that can degrade a variety of dicarboxylic acids, producing end products that 

can be further transformed in the atmosphere (Ariya et al., 2002).  

 

Microbes likely go through multiple generations of growth in the atmosphere 

The studies described above support the idea that the atmosphere is an 

environment capable of supporting resident (i.e. metabolically active and actively 

reproducing) microbial communities. The environmental stressors imposed by an aerial 

habitat are not unique, and there are multiple examples of microorganisms that have 

adapted to live under conditions more extreme than those found in the atmosphere. If 

environmental conditions are not likely to prevent the presence of resident microbes in 

the atmosphere (at least in the lower atmosphere), what else might prevent their 
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presence? It has been suggested (Sattler et al., 2001; Burrows et al., 2009b) that residence 

time may be the largest limiting factor for resident microbial communities in the 

atmosphere.  

Residence times of microbes probably vary as a function of the size of the 

particles they are associated with, and as a function of air temperature and relative 

humidity, among other factors (Williams et al., 2002; Burrows et al., 2009b; Pearce et al., 

2009). There have been no direct estimates of microbial residence times in the 

atmosphere. Currently, the best estimates of residence times are derived from 

mathematical models of particle transport (Williams et al., 2002; Burrows et al., 2009a). 

The most recent estimates of residence times for bacteria-sized particles range from 2.2 to 

188.1 days (Burrows et al., 2009a). The shorter estimates assume efficient removal of 

bacteria by rain, ice and snow; the longer estimates do not assume this. Is this sufficient 

time for a resident microbiota to develop (i.e. to complete one or more generations)? 

Microbes have been shown to have generation times as short as 20 min, under ideal 

conditions, but under the conditions present in the atmosphere (cold and nutrient-poor), 

microbial generation times are likely to be substantially longer. As discussed above, 

Sattler et al., (2001) measured generation times of microbes in cloud water, and reported 

generation times of 3.6 – 19.5 days, similar to the generation times of microbes in cold, 

oligotrophic Arctic lakes (Panzenboeck et al., 2000). These rough estimates of residence 

and generation times suggest that at least some microbes could be undergoing more than 

50 generations of growth while in the atmosphere.  

 

What We Know About Air Biogeography  

Viewing the air as a microbial habitat has the potential to radically expand the 

scope of biodiversity and biogeography research. Biogeography has historically focused 

on understanding biological variation across the surface of the Earth, and has thus been 

primarily limited to the study of aquatic and terrestrial ecosystems. Understanding 

biological variation in aerial ecosystems opens the possibility for a truly unified view of 

biogeography, one that links biodiversity across each component of the biosphere: the 

lithosphere, hydrosphere and atmosphere. A preliminary picture of microbial life in aerial 

ecosystems is just beginning to emerge.  
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Density patterns for airborne microbes 

The vast majority of aerobiology studies report patterns in the density (i.e. 

concentration) of microorganisms (reviewed in Burrows et al., 2009b). Although the 

quantification of total, community-level abundance has a rich history in microbiology 

(Whitman et al., 1998), plant and animal surveys rarely report patterns in community-

level abundance. This difference may reflect the reality that researchers commonly 

document what is most tractable to measure.  

Aerobiologists have historically measured the density of culturable 

microorganisms, reporting the number of colony-forming units per volume of air sampled 

(CFU m23). Culture-based studies suggest that, as in terrestrial and aquatic systems, 

microbial densities vary with space, time and environmental conditions in the air. For 

example, the density of culturable microbes has been shown to decrease with increasing 

altitude (Fulton 1966), and numerous studies have documented seasonal and diurnal 

temporal variation in the density of culturable microorganisms in the atmosphere 

(Bovallius et al., 1978; Lindemann & Upper 1985; Lighthart & Shaffer 1995; Tong & 

Lighthart 1999, 2000; Fang et al., 2007). Culture techniques, however, reveal only a 

fraction of microbial life. More recent studies use epifluorescent microscopy and report 

the total count of microbial cells per volume of air sampled (cells m23). There is some 

evidence that total cell density counts from microscopy parallel culture-based counts 

(Tong & Lighthart 1999, 2000); however, few studies have enumerated airborne 

microbial densities using both approaches, making comparative inferences problematic. 

The density of microorganisms in the atmosphere has also been estimated using particle 

transport models (Burrows et al., 2009a). Modeling approaches suggest that atmospheric 

cell density varies spatially, and that patterns in airborne cell density can occur on a 

global scale (Figure 1).  
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Figure 1. Simulated concentration (103 m -3) of 1 µm bacteria in near-surface air based 
on an adjusted general circulation model (Burrows et al., 2009). 
 

Patterns of species distribution in the atmosphere 

Although the majority of aerobiology has focused on community-level abundance 

patterns, culture-based research has provided a foundation for exploring taxa-level 

patterns. The study of taxa-level distributional patterns, such as a species’ geographical 

range, is central to biogeography. Culture-based work has begun to address fundamental 

questions about the upper boundary of microbial geographical ranges in the atmosphere. 

Isolated cultures of the common mold, Penicillium notatum, have been collected at an 

altitude of 77 km, and the bacteria Micrococcus albus and Mycobacterium luteum at an 

altitude of 70 km (Imshenetsky et al., 1978; Figure 2). Culture-based studies have also 

been used to understand the link between atmospheric environmental conditions and the 

occurrence of particular microbial species. For example, the occurrence of Micrococcus 

has been shown to correlate with the concentration of airborne particulate matter 

(Mancinelli & Shulls 1978); this might explain why airborne Micrococcus species are 

commonly dominant in urban environments (Fang et al., 2007). Finally, culture-based 

studies can help identify ubiquitous species that are likely to have large geographical 
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range sizes. Spore-forming organisms, such as Bacillus species and other Gram-positives, 

tend to dominate culture-dependent surveys of airborne microbial diversity and thus may 

have large geographical ranges (Mancinelli & Shulls 1978; Lighthart 1997; Fang et al., 

2007).  

 

 

 

Figure 2. Isolation of microbes from the atmosphere. Shaded portions of the columns 
correspond to the altitude from which the organisms were sampled by meteorological 
rocket and isolated in the laboratory. The first column depicts the altitude at which dust 
particles were sampled and detected (adapted from Imshenetsky et al., 1978). 
 

Airborne microbial community composition  

Species do not exist in isolation; they occur together in complex ecological 

communities. To understand the mechanisms that shape biological variation on Earth, 

biogeographers study patterns in the composition and diversity of ecological communities 

in space and time. The development of environmental molecular biology has led to an 

explosion of investigations on the biodiversity and biogeography of microbial 

communities in terrestrial and aquatic environments (Green & Bohannan 2006). 

However, we currently know very little about microbial diversity in the atmosphere. Most 

studies demonstrating spatio-temporal variability of airborne microbial communities have 

been limited to culture-dependent methods. Recently, culture-independent molecular 

approaches have begun to be applied to airborne microbial communities. In contrast to 

culture-based studies, these molecular-based studies have revealed that airborne 
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microbial assemblages can be as diverse as those in terrestrial environments, including 

soils (Maron et al., 2005; Brodie et al., 2007).  

The first applications of molecular techniques in aerobiology typically analyzed a 

single environmental sample (Hughes et al., 2004). More recently, investigators have 

begun to explore the biogeography of the atmosphere, by comparing microbial 

communities across multiple samples. Most comparative studies have focused on 

temporal variation in community structure at the same spatial location, with results 

ranging from pronounced differences in the daily (Fierer et al., 2008) and seasonal 

(Fröhlich-Nowoisky et al., 2009) cycles of airborne microbial community structure, to 

relatively static community structure across time (Bowers et al., 2009; Pearce et al., 

2010).  

There has been little research on the spatial variation of microbial communities in 

the atmosphere. Because microbial community composition can shift dramatically over 

short time scales (Fierer et al., 2008), comparative analyses between spatial locations 

require statistically controlling for time. Brodie et al., (2007) published the most 

definitive evidence for spatial variation of airborne microbial communities. In two Texas 

cities, these investigators pooled air filters in a manner that resulted in a random air 

sample per city, collected on a weekly basis for 17 weeks. In any given week, the data 

showed significant differences in community composition between cities; however, 

temporal and meteorological influences proved to be a greater factor in explaining 

variability of aerosol bacterial composition. Future research that explores spatial 

variability in microbial diversity, while accounting for temporal variability, will 

significantly expand our understanding of atmospheric biogeography.  

 

Comparative Biogeography of Air, Water and Land 

The studies reviewed above indicate that microorganisms vary in abundance, 

distribution and diversity in the atmosphere. Yet, the air remains the least understood 

environment from a biogeographic perspective. Patterns in the variation of 

microorganisms in the atmosphere have not been well documented, nor have the 

processes that underlie these patterns been identified. What might these patterns and 

processes look like in the atmosphere? Here, we consider defining attributes of land, 
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water and air environments, and how these attributes may contribute to similar and 

different biogeography patterns across these domains. Building on a rich history of 

research in terrestrial and aquatic systems, we explore two patterns that are likely to play 

an important role in shaping the emerging field of air biogeography: environmental 

diversity gradients and the existence of biogeographic regions. Ultimately, a more unified 

understanding of the biosphere will entail comparing and contrasting these patterns 

across the lithosphere, hydrosphere and atmosphere.  

 

An ocean of air 

The vast majority of biogeographic studies to date have focused on terrestrial 

environments. However, there is increasing interest in the biogeography of marine 

environments (e.g. DeLong 2009; Tittensor et al., 2010), and marine biogeography may 

be the best model for what a biogeography of the atmosphere might look like. Landscape-

scale analyses of terrestrial environments have often been reduced to two spatial 

dimensions (with soil depth ignored), simplifying both the measurement of biogeographic 

patterns and the development of theory to explain these patterns. But marine 

environments, much like the atmosphere, are unavoidably three-dimensional. A given 

terrestrial environment (a particular forest, for example) is relatively long-lived and 

stationary; a given marine environment (e.g. a particular mass of ocean water) can be 

ephemeral and under constant motion, much like the atmosphere. We suggest that the 

major environmental gradients in marine environments (light/UV, temperature, nutrients 

etc.) vary in space and time at rates and scales more similar to the atmosphere than those 

of terrestrial systems. Given our assumption that atmospheric biogeography may be most 

similar to marine biogeography, we primarily focus our discussion below on the 

biogeographic patterns and processes shown to be important in marine systems.  

 

Environmental diversity gradients in the atmosphere 

Environmental gradients – geographical gradients in the abiotic and biotic 

environment – have been used for centuries as a tool to understand the ecological and 

evolutionary forces that shape biological diversity. Environmental gradients have inspired 

some of the earliest hypotheses about the origin and spread of life on Earth (Linnaeus 
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1781). Since Linnaeus, hundreds of studies of community structure along gradients of 

elevation, latitude and depth have contributed to the foundations of modern ecology and 

biogeography (Lomolino et al., 2006).  

Despite the wealth of plant and animal environmental gradient research, there 

have been relatively few studies of microbial diversity gradients. The resounding 

message from recent microbial depth gradient research is that, as with macro-organisms, 

the structure and composition of microbial communities are significantly influenced by 

environmental variability. For example, in the ocean, temperature, pressure, light and 

nutrients vary from sea level to the sea floor. Recent culture-independent studies clearly 

demonstrate that this environmental variation influences the vertical distribution of 

oceanic microbial diversity, for example, patterns of taxonomic richness, RNA/DNA 

ratios, gene copy number and metabolic pathways (DeLong et al., 2006; Johnson et al., 

2006; Wilms et al., 2006; De Corte et al., 2008; Brown et al., 2009; Treusch et al., 2009). 

In the atmosphere, temperature, pressure and moisture vary from sea level to the 

outermost layer of the atmosphere. Given the strong evidence for shifts in community 

structure along similar types of environmental gradients, it is parsimonious to assume that 

microbial biodiversity changes in predictable ways with altitude in aerial systems.  

Another widely studied environmental diversity pattern is the increase in numbers 

of animal and plant species as one travels from the poles towards the tropics. This 

latitudinal diversity gradient has been recognized for centuries (Mittelbach et al., 2007), 

and in recent years, this pattern has received heightened attention in the microbial 

biogeography literature. Although the generality of latitudinal diversity gradients remains 

equivocal, both molecular-based studies (Fuhrman et al., 2008) and biodiversity models 

(Barton et al., 2010) have revealed a decrease in species richness with latitude for marine 

microbes. The most parsimonious explanation for an aerial latitudinal diversity gradient 

is that the diversity of the atmosphere reflects the diversity of terrestrial and marine 

systems (i.e. aerial communities are a random sample of metacommunities on the surface 

of the Earth). However, the possibility exists that the atmosphere has a unique latitudinal 

diversity pattern. Numerous mechanisms have been proposed to explain latitudinal 

diversity gradients that may be relevant in the atmosphere, including gradients in energy, 
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temperature and moisture. To our knowledge, there have been no published studies on a 

latitudinal diversity gradient for microorganisms in the atmosphere.  

 

Biogeographic regions in the atmosphere  

One of the most striking biogeographic patterns at a global scale is the existence 

of biogeographic regions. The globe is divided into six unique biogeographic regions, 

areas of the Earth’s land surface that contain unique plants and animals (Wallace 1876; 

Lomolino et al., 2006). These unique biotas are hypothesized to exist because of 

vicariance, the evolutionary separation of species owing to historic barriers to dispersal. 

More recently, attempts have been made to define marine biogeographic regions 

(Lomolino et al., 2006). This is more challenging for several reasons: marine systems 

have fewer dispersal barriers, are more dynamic in space and time, have a more 

complicated geological history and are more obviously three dimensional in nature. 

Nonetheless, there are large-scale differences in marine biotas, even among pelagic 

organisms. These patterns are believed to be driven by environmental barriers (e.g. warm 

tropical oceans act as barriers to cold-adapted organisms) and differences in the 

biogeography of the underlying benthos and/or adjacent coastal regions, differences 

believed to reflect tectonic and oceanographic history.  

Could there be biogeographic regions in the air? The short answer is that we do 

not know. No studies have attempted to ask whether there are large-scale patterns in the 

distribution of airborne microorganisms. However, there are reasons to believe that such 

patterns are possible. There are large-scale patterns in the distribution of masses of air 

that could conceivably drive large-scale patterns in air organisms. At the largest scale, 

differential heating of air at the tropics and poles combines with the Earth’s rotation to 

produce six ‘cells’ of air blanketing the globe (Figure 3). Mixing of air is more frequent 

within cells than between them, resulting in barriers to air movement, and the potential 

for vicariance. These mixing barriers often coincide with strong differences in 

temperature between adjacent cells; thus, environmental barriers could augment physical 

barriers to dispersal. The major cells of air are relatively stable geographically, and rest 

on areas of the Earth’s surface that are often biogeographically distinct. Thus the input of 

organisms to each cell could be distinct, and reflect tectonic and/or oceanographic 
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history, much like the influence of benthic or coastal biogeography on marine pelagic 

distributions. Together, this suggests that large-scale patterns in the distribution of air 

organisms are possible. We suggest that a logical starting place for such studies is to ask 

whether airborne communities are more similar within the six major air cells than among 

them.  

 

Figure 3. The six major air cells of the Earth’s atmosphere (source: NASA). 

 

These major cells of air are restricted latitudinally (i.e. they occur within 

particular bands of latitude; Figure 3). If these cells do represent biogeographic regions, 

differences in microbial community structure among these cells could reinforce 

latitudinal patterns in airborne microbial communities (if such patterns exist; see above). 

There is also the potential for biogeographic patterns within these major cells. Individual 

air masses (volumes of air with particular environmental characteristics) continually 

form, move and disperse within the major air cells. If these masses are sufficiently long-

lived to allow for multiple generations of microbial growth, they could harbor unique 

resident microbial communities, analogous to patterns in the distribution of plant and 

animal communities in biogeographic ‘provinces’ within regions. However, to date, no 

study has attempted to determine whether microbial communities are more similar within 

particular air masses than among them.  
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Conclusion  

Despite the potential importance of understanding the distribution of life in the 

air, there are major gaps in our current understanding of the air’s biogeography. These 

gaps include a lack of accurate and comprehensive estimates of many important attributes 

of life in the air such as estimates of microbial densities and residence times, the 

proportion of organisms that are metabolically active, generation times of airborne 

organisms and the structure of airborne microbial communities. The use of new 

technology and standardization of techniques across studies will allow for a more 

complete understanding of the distribution of life in the atmosphere.  

Most importantly, to move our understanding of life in the air forward, air 

biologists must learn to think like biogeographers. This includes designing studies that 

allow the disentangling of spatial and temporal effects on the distribution of life in the air, 

as well as using our knowledge of atmospheric dynamics to develop testable hypotheses 

regarding the biogeography of air. We feel that it would be especially fruitful to ask 

whether airborne communities are more similar within air cells and/or air masses than 

among them. Finally, studies of the biogeography of land and sea suggest that there are a 

number of biogeographic patterns that may be universal (Green & Bohannan 2006; 

Martiny et al., 2006). These include: (i) the distance– decay relationship (how similarity 

in community composition varies with the spatial, temporal or environmental distance 

that separates them), (ii) the taxa – area (or taxa – volume) relationship (how taxa 

richness increases with spatial scale), and (iii) latitudinal diversity patterns. These 

patterns are a promising starting point for developing a biogeography of the air.  

The study of the biogeography of the air is in its infancy, but it has the potential to 

greatly alter how we think of the distribution of life on Earth. Given the important role 

the air plays in the dispersal of surface organisms, a more detailed understanding of the 

distribution of life in the atmosphere will allow us to better understand the distribution of 

life throughout the globe. It will also allow us to determine whether there are common 

patterns (and ultimately processes) underlying the distribution of life in the lithosphere, 

hydrosphere and atmosphere, bringing biologists a step closer to a comprehensive 

understanding of the distribution of all life.  
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Bridge to Chapter III 

In Chapter II, I reviewed the history of aerobiology and the current state of 

knowledge about microbes in the atmosphere and I discussed the technical and 

conceptual limitations that have hindered their study. I presented evidence supporting the 

idea that the atmosphere could be a habitat for microorganisms and reviewed that is 

known about spatial and temporal diversity patterns in the atmosphere. I identified major 

gaps in our understanding of the microbial ecology of the atmosphere and suggested that 

overcoming these gaps will require studies that allow for the disentangling spatial and 

temporal effects on the diversity and composition of microbial life in the atmosphere. I 

advocated for the use of culture-independent DNA sequencing technology to explore the 

diversity and function of airborne microorganisms in situ. In Chapters III - V, I present 

my research on temporal patterns and potential function of microbial communities in the 

atmosphere, which was motivated by the information in Chapter II.  
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CHAPTER III 

CHARACTERIZATION OF ACTIVE AND TOTAL FUNGAL COMMUNITIES 

IN THE ATMOSPHERE OVER THE AMAZON RAINFOREST 

 

This paper was published in Biogeosciences Discussions and is in review at 

Biogeosciences. I conceived the experiments, processed the samples, analyzed the data, 

and wrote the paper. Assistance in experimental design, sampling, data analysis, and 

writing the manuscript was provided by my co-authors: Paulo E. Artaxo, F. Yoko Ishida, 

Rebecca C. Mueller, Scott R. Saleska, Kenia T. Wiedemann, Brendan J. M. Bohannan, 

and Jessica L. Green. 

 

1. Introduction 

Fungi are critical to the functioning of terrestrial ecosystems and may also play an 

important role in the functioning of the atmosphere. Fungi are abundant and ubiquitous in 

the atmosphere, with an estimated global land surface emission rate of 50 Tg/year for 

fungal spores alone. Fungal bioaerosols are not only abundant but also affect physical and 

chemical processes in the atmosphere. Fungal spores and cellular fragments affect 

precipitation by acting as ice and cloud condensation nuclei (Després et al., 2012; Morris 

et al., 2013; Pouleur et al., 1992; Richard et al., 1996), and metabolically active fungi 

sampled from the atmosphere are capable of transforming compounds known to play a 

major role in atmospheric chemistry, including carboxylic acids (Ariya, 2002; Côté et al., 

2008; Vaïtilingom et al., 2013), formaldehyde, and hydrogen peroxide (Vaïtilingom et al., 

2013) 

The in situ function of airborne fungi will depend on the physiological state of 

fungal cells. Metabolically active vegetative cells have the potential to transform 

atmospheric compounds and ultimately alter atmospheric chemistry, whereas dormant 

spores do not. The ice nucleation efficiency of fungal cells also likely depends on their 

physiological state; vegetative cells derived from potentially active fungi are more 

efficient ice nucleators than spores. Vegetative forms of Fusarium (a filamentous fungi) 

as well as several lichen fungi have been shown to nucleate ice at temperatures as warm 

as -1°C (Després et al., 2012) (Figure 14), and ice nucleation by hyphae has been 
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observed at -2.5°C (Pouleur et al., 1992). In contrast, dormant spores – particularly those 

with surface hydrophobins – are generally poor ice nucleators. For example, ice 

nucleation of rust (Puccinia) spores requires temperatures lower than -10°C (Morris et 

al., 2013), and Penicillium spores nucleate ice at temperatures of approximately -22°C 

(Iannone et al., 2011). 

Despite its importance, we know relatively little about the physiological state of 

fungal cells in the atmosphere. Specifically, we know little about the taxonomic 

composition of metabolically active airborne fungi and how this compares to the 

composition of the total fungal community. One way to survey the total and active 

communities is to measure community composition from rDNA (i.e. rRNA genes) and 

rRNA in ribosomes. Sequencing rDNA provides information about the total community, 

which includes both active and dormant individuals, whereas rRNA sequences provides 

information about the potentially active community, because ribosomes are more 

abundant in active cells than dormant cells (Prosser, 2002). This approach has been 

applied to study active fungal communities in soils and on decaying plant material 

(Baldrian et al., 2012; Barnard et al., 2013, 2014; Rajala et al., 2011) but has not been 

applied to fungal communities in the atmosphere.  

Information about the taxonomic composition of airborne fungi that are present in 

different physiological states could be used to advance atmospheric science in multiple 

ways. For example, such data could be used to improve estimates of the ice nucleating 

capacity of fungal bioaerosols. Recent estimates of the ice nucleating capacity of fungal 

bioaerosols based on culture-based approaches – the abundance of colony forming units 

(CFUs) – have led some scientists to conclude that atmospheric fungi have a low ice 

nucleation efficiency (Iannone et al., 2011). However, these culture-based data may be 

misleading, as the vast majority of fungi require identification using culture-independent 

approaches (Borneman and Hartin, 2000). Culture-independent identification of active 

fungal taxa sampled from the atmosphere could be used to direct selective culturing of 

potentially important fungi to test their ice nucleation efficiencies and their metabolic 

capabilities in the laboratory.  

In this study, we used culture-independent approaches to measure the composition 

of total and active atmospheric fungal communities in situ and a mass-balance model to 
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aid in the interpretation of our results. Our study system is the atmosphere above the 

Amazon rainforest canopy. We chose this system because fungal bioaerosols make up a 

substantial proportion of aerosol particulate matter over the Amazon (Elbert et al., 2007; 

Heald and Spracklen, 2009) and are estimated to be a dominant force responsible for 

cloud formation over the Amazon (Pöschl et al., 2010). We used a combined approach of 

DNA and RNA sequencing to address the following questions: 1) What is the 

composition of total airborne fungal communities? 2) What is the composition of active 

airborne fungal communities? 3) What likely drives differences in the composition of the 

total and active airborne fungal communities? 4) Is the diversity and structure of fungal 

communities in the atmosphere similar to that found in terrestrial environments?  

 

2. Methods 

2.1. Sample collection 

Sampling was conducted on the ZF2 K34 flux tower (S -2.60907, W -60.20917, 

67 m a.s.l.) in the Reserva Biologica do Cueiras in central Amazonia, about 60 km NNW 

of Manaus, Brazil. The site is operated by the Instituto Nacional de Pesquisas da 

Amazonia (INPA) under the Large Scale Biosphere-Atmosphere Experiment in 

Amazonia (LBA) program (Martin et al., 2010). Tower height is approximately 54 m. 

Surrounding vegetation is undisturbed, mature, terra firme rainforest, with a leaf area 

index of 5–6 and an average canopy height of 30 m. Samples were collected at the end of 

dry season over four days, December 8-11, 2010, from a height of 48m above the forest 

floor. Aerosol samples were collected using SKC BioSamplers (BioSampler SKC Inc.). 

Samplers were filled with 20 mL of a water-based preservation solution (LifeGuard Soil 

Preservation Solution, MO BIO Laboratories, Inc) to prevent DNase and RNase activity 

and maintain cells in stasis to allow accurate community profiling of the total and active 

fungal community. Twelve impingers were operated at 12.5 L/min from approximately 

9:00 am – 4:00 pm each day. At the end of each day, the sampling liquid from all 

impingers was pooled and stored at -20C.  
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2.2. Nucleic acid isolation and cDNA synthesis 

Samples were transported on ice to the University of Oregon where the liquid 

sample from each day was separated into two aliquots, one to be used for DNA extraction 

and the other for RNA extraction. The divided samples were filtered through 0.22 µm 

cellulose nitrate filters. DNA was extracted from filters using the MO BIO PowerWater 

DNA Isolation Kit according to the manufacturer’s instructions with a 100 µl elution 

volume. RNA was extracted from filters using the MO BIO PowerWater RNA Isolation 

Kit with the following modifications. The DNase steps included in the kit were omitted. 

RNA was eluted in 50 µl. The extracted RNA was treated with DNase I (RNase-free) 

(Fermentas International, Inc) according to the manufacturer’s instructions. DNase 

reactions were cleaned (Zymo Research Clean and Concentrate-5) and eluted into 50 µl. 

cDNA was synthesized from the total RNA extract using the SuperScript II First-Strand 

Synthesis System (Invitrogen, Life Technologies Corporation) with random hexamers. 

All RNA was converted into cDNA in six synthesis reactions and one reverse 

transcriptase negative control reaction. 

 

2.3. Library preparation and sequencing 

To increase the concentration of cDNA to levels required for sequencing, we used 

multiple displacement amplification (GenomiPhi V2, GE Healthcare) according to the 

protocol described in Gilbert et al., (2010) including second-stand synthesis, 

amplification, and de-branching of amplification products. The fully de-branched 

products were sheared by sonication (24 cycles, 30 seconds each) using the Bioruptor 

sonication system (Diagenode). cDNA fragments were end-repaired (End-It DNA End-

Repair Kit, Epicentre Biotechnologies), cleaned and concentrated (Zymo Research Clean 

and Concentrate-5) and eluted in 40 µl. A-overhangs were added to the end-repaired 

fragments using Klenow exo(-) (Epicentre Biotechnologies) in a 50 µl reaction. Reaction 

products were cleaned and concentrated (Zymo Research Clean and Concentrate-5). 

Standard paired-end, barcoded Illumina adaptors (Table 3) were ligated to the fragments 

using T4 ligase (Fermantas). Reaction products were cleaned and concentrated (Zymo 

Research Clean and Concentrate-5) and eluted in 12 µl. To enrich fragments with ligated 

adaptors, PCR amplification was performed using primers containing the flowcell 



 

 

 

24 

adaptor and complementary to the Illumina sequencing primer (Table 3). PCR reactions 

were performed using Phusion DNA polymerase (New England Biolabs) with 12 µl 

template, 10 µl 5x HF buffer, 1 µl 10 mM dNTPs, 2 µl 10 mM primer mix, 0,5 µl 

enzyme and 25.5 µl water for a final reaction volume of 50 µl. PCR cycling conditions 

were as follows: 30 seconds denaturation at 98°C followed by 18 cycles of 98°C for 30 

seconds, 65°C for 30 seconds and 72°C for 30 seconds following by a final extensions at 

72°C for 5 minutes. PCR products were size fractionated by gel electrophoresis (2.5%, 

low-melt agarose). Products in the range of 150-500 bp were excised, and DNA from the 

excised gel pieces was extracted (QiagenMinElute Gel Extraction) and eluted into 20 µl. 

DNA was quantitated using a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies 

Corporation) and combined in equal molar concentrations. Shotgun metatranscriptome 

libraries were sequenced (150 base pairs, paired-end) on the Illumina HiSeq 2000 

(Illumina, Inc.) platform at the University of Oregon Genomics Core Facility. LSU rDNA 

amplicons were sequenced (250 base pairs, paired-end) on the Illumina MiSeq platform 

at the Dana-Farber Cancer Institute Molecular Biology Core.  

The D1-D2 region of the large subunit (LSU) rRNA gene was targeted using PCR 

with the primers LR0R (5’-ACCCGCTGAACTTAAGC-3’) and LR3 (5’-

CCGTGTTTCAAGACGGG-3’) (http://sites.biology.duke.edu/fungi/mycolab/ 

primers.htm). LSU amplicon libraries were prepared using a two-stage PCR procedure as 

described in (Kembel and Mueller, 2014) using unique combinatorial barcodes (Gloor et 

al., 2010) to identify samples (Table 4).  

 

2.4.  Sequence pre-processing 

2.4.1.  Metatranscriptome 

Overlapping paired end reads were aligned and joined using fastq-join 

(https://code.google.com/p/ea-utils/wiki/FastqJoin). Joined reads and non-overlapping 

single-end reads were trimmed and filtered using PrinSeq (Schmieder and Edwards, 

2011). Sequences <75 bp, > 2% Ns, and/or mean quality score <20 were removed. 

Sequence artifacts defined as exact duplicates with >5,000 sequences were removed. 

Sequences in the Dec. 10 sample were primarily artifacts, so this metatranscriptome 

sample was excluded from further analysis. Putative rRNAs in the remaining sequences 
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were identified using SortMeRNA (Kopylova et al., 2012) with the non-redundant 

version of the following databases: rfam 5.8S (version 11.0) (Burge et al., 2013); Unite 

(November 2011 version) (Kõljalg et al., 2013), and Silva 18S and Silva 28S (Release 

115) (Quast et al., 2013). Of 5,165,185 quality-filtered reads, 1,915,994 with an average 

length of 137.5 bp were identified as putative rRNAs (Table 5).  

 

2.4.2.  LSU amplicons 

Forward and reverse barcodes were combined to make a 12 bp barcode on the 

forward read. Only forward reads derived from the LR3 region were used for analysis. 

This region has been shown to have high species-level resolution even with short read 

lengths (Liu et al., 2012).  

 

2.4.3.  Multi-environment sequences 

LSU sequences from four soil studies (Barnard et al., 2013; Kerekes et al., 2013; Penton 

et al., 2013, 2014) and one phyllosphere study (Kembel and Mueller, 2014) were 

compared to air samples collected for this study (Table 6). Raw sequence data and 

associated metadata were downloaded from publically available databases. 12 bp 

barcodes were added to all sequences to identify each sample in downstream analysis. 

 

2.5.  LSU amplicon and metatranscriptome sequence processing 

All sequences were processed in QIIME version 1.7 (Caporaso et al., 2010). 

Briefly, libraries were individually demultiplexed and filtered for quality. Sequences with 

an average quality score less than 20, shorter than 150 bp and with greater than 2 primer 

mismatches were discarded. The same parameters were used across all samples except 

the metatranscriptome rRNAs were a size cut off of greater than 75 bp was used. 

Sequences from Kembel and Mueller (2014) and Penton et al., (2014) were randomly 

subsampled to 25% and 60% respectively. Sequences were clustered into operational 

taxonomic units (OTUs) at 97% sequence similarity using closed reference BLAST 

(Altschul et al., 1990) against the Ribosomal Database Project Fungal LSU training set 1 

(Cole et al., 2014). Taxonomy was assigned to each OTU was that of the most similar 

representative in the RDP database.  
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Following sequence processing and quality filtering, a total of 55,414 amplicon 

and 1,915,994 metatranscriptome LSU sequences generated for this study and 1,577,458 

LSU sequences from soil and phyllosphere studies were retained (Table 6). For analyses 

using only samples from this study, the data were rarefied to 5,300 sequences per sample. 

For analyses that compare samples in this study to samples from other studies, the data 

were rarefied to 500 sequences per sample.  

 

2.6. Statistical analyses and data availability 

All statistical analyses were conducted in R (R Core Team, 2014) primarily using 

the vegan (Oksanen et al., 2013) package for ecological statistics and the ggplot2 

(Wickham, 2009) package for visualizations. Sequence files and metadata have been 

deposited in Figshare (http://dx.doi.org/10.6084/m9.figshare.1335851). Data from other 

studies used for cross environment analyses are available using the databases and 

identifiers referenced in the respective manuscripts.  

 

2.7.  Mass-balance model 

We use a global, well-mixed, one-box material-balance model to predict the 

relative abundances of fungal cells measured as gene copies sampled in the active and 

total portions of atmospheric bioaerosols. Model description and details are available in 

Appendix A. 

 

3. Results and Discussion 

3.1. Basidiomycota dominate total airborne fungal communities 

Measurements of airborne fungi using culture-based methods such as quantifying 

spore and colony-forming unit counts have been conducted for centuries (Després et al., 

2012). In comparison, there have been few culture-independent studies of the fungal 

composition of atmospheric samples (e.g. Boreson et al., 2004; Bowers et al., 2013; 

Fierer et al., 2008; Fröhlich-Nowoisky et al., 2009, 2012; Pashley et al., 2012; Yamamoto 

et al., 2012). Using a culture-independent approach, we found the composition of total 

airborne fungal communities primarily included taxa belonging to the phyla Ascomycota 

and Basidiomycota (Figure 4). This result is similar to what is observed in environments 
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on the Earth’s surface (James et al., 2006) and what has been reported in other studies of 

fungi in the atmosphere (Bowers et al., 2013; Fröhlich-Nowoisky et al., 2009, 2012; 

Yamamoto et al., 2012). 

Basidiomycota dominated the total airborne community in our air samples (mean 

relative abundance = 90.2±6.9%) (Figure 4). Within the phylum Basidiomycota, 

Agaricomycetes were the most abundant class in our samples. Agaricomycetes have been 

previously detected in air samples (Fröhlich-Nowoisky et al., 2012; Woo et al., 2013; 

Yamamoto et al., 2012) and are common in tropical soils (Tedersoo et al., 2014) and leaf 

surfaces (Kembel and Mueller, 2014). Within the Agaricomycetes, the most abundant 

order was the Polyporales (mean = 55.7±2.3%). Polyporales have been detected in 

culture-independent studies of urban aerosols (Yamamoto et al., 2012) and culturable 

representatives have been isolated from cloud water (Amato et al., 2007). Given that 

these are largely saprotrophic (i.e. wood-decay) fungi (Binder et al., 2013; Larsson et al., 

2007), it is parsimonious to assume there is a significant local source of Polyporales on 

the forest floor.  

 

Figure 4. Basidiomycota dominate the total fungal community. 

 

The presence of Agaricomycetes may have implications for atmospheric 

processes. Ice nucleation efficiency within the Agaricomycetes is variable, with some 

taxa capable of nucleating ice at temperatures as warm as -17°C (Haga et al., 2014) 

(Figure 14). These temperatures are warmer than what has been measured for Penicillium 

spores (Iannone et al., 2011) although not as warm as what has been measured for other 
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spore types (Morris et al., 2013), hyphal fragments (Pouleur et al., 1992), and lichen 

fungi (Després et al., 2012). Despite the low ice nucleation efficiency of some taxa in this 

group, given the high abundance of Agaricomycetes over the forest canopy, this group 

could still have a significant impact on cloud formation and precipitation in the tropics.  

  

3.2. Ascomycota dominate active airborne fungal communities 

The composition of total and active fungal communities over the Amazon 

rainforest canopy significantly differed (ADONIS, R2 = 0.342, p = 0.029). The active 

community in the atmosphere over the forest canopy was dominated by Ascomycota 

(mean relative abundance = 80.4±20%) (Figure 4). Basidiomycota comprised a smaller 

fraction of the sampled genes (mean = 7.3±6.8%) with the remainder of identified 

sequences belonging to the phyla Chytridiomycota and Glomeromycota. This result 

makes sense in light of the natural histories of many of the Ascomycota, which have 

single-celled or filamentous vegetative growth forms that are small enough to become 

aerosolized, while many of the Basidiomycota are too large to be easily aerosolized, other 

than in the form of metabolically inactive spores. 

The most abundant classes of Ascomycota detected were Sordariomycetes (mean 

= 27.1±6.6%), and Lecanoromycetes (mean = 17.5±7.6%). Sordariomycetes have been 

detected in air samples (Fröhlich-Nowoisky et al., 2009, 2012; Yamamoto et al., 2012) 

and have been shown to be abundant on tropical tree leaves (Kembel and Mueller, 2014) 

and tropical soils (Peay et al., 2013). In most ecosystems, Sordariomycetes are 

endophytes, pathogens, and saprotophs (Zhang et al., 2007). Xylariales, which includes 

both endophytes and plant pathogens (Zhang et al., 2007), was the most abundant order 

within the Sordariomycetes in our samples.  

Lecanoromycetes were the second most abundant class of Ascomycota detected 

over the rainforest canopy. This group has been detected in other culture-independent 

studies of fungi in the atmosphere (Fröhlich-Nowoisky et al., 2012; Yamamoto et al., 

2012). The Lecanoromycetes contain 90% of the lichen-associated fungi (Miadlikowska 

et al., 2007). Lichens are a symbiosis between a fungus and a photosynthetic partner such 

as eukaryotic algae or cyanobacteria. Lichens are known to be hardy and may be 

particularly well-adapted for long distance transport and metabolic activity in the 
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atmosphere. Lichens are often the dominant life forms in environments that have 

conditions similar to those found in the atmosphere, including low water (Kranner et al., 

2008) and nutrient availability, wide temperature variations, and high UV irradiance (e.g. 

Solhaug, Gauslaa, Nybakken, & Bilger, 2003) (Onofri et al., 2004).  

Another notable trait of lichens is their efficient ice nucleation capacity. Although 

there have been no investigations specifically on the most abundant lichen species 

detected in this study, Physcia stellaris (mean = 8.3±3.8%) and Rinodina milvina (mean 

= 4.8±3.4%), there have been multiple studies of the ice nucleation efficiency of many 

other lichen fungi species. Ice nucleation activity of lichens has been measured at 

temperatures warmer than -8°C, including 13 of 15 taxa tested by Henderson-Begg and 

colleagues (Henderson-Begg et al., 2009) and 9 of 15 taxa tested by Kieft (Kieft, 1988). 

These studies have demonstrated that lichens are among the most efficient biological ice 

nucleators. Therefore, their presence in the atmosphere may have a significant impact on 

cloud formation and precipitation. This ice nucleation capacity may also enable lichens to 

control the extent of their dispersal through the atmosphere. It is possible that lichens 

achieve this by nucleating ice formation, which leads to precipitation and ultimately 

deposition. This phenomenon has been shown to occur in some phytopathogenic bacteria 

(Morris et al., 2008, 2010) and potentially fungi as well (Morris et al., 2013).  

 

3.3. Dominance of Basidiomycota in total communities and Ascomycota in active 

communities is consistent with mass-balance predictions 

Our mass balance model (Appendix A) predicted Basidiomycota would dominate 

the total community because they produce orders of magnitude more spores and have 

smaller aerodynamic diameters compared to Ascomycota. Consistent with this prediction, 

the total airborne community was dominated by Basidiomycota in our air samples (mean 

relative abundance = 90.2±6.9%) (Figure 4). There have been some empirical studies 

reporting the opposite pattern, with a higher relative abundance of Ascomycota compared 

to Basidiomycota (Bowers et al., 2013; Fierer et al., 2008; Pashley et al., 2012). There 

has been one study focused on airborne fungal communities in the Amazon Basin 

(Fröhlich-Nowoisky et al., 2012). Although the site of this study was the atmosphere 
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above a rural pasture (versus a tropical rainforest, as in our study) these investigators also 

found that Basidiomycota dominate airborne fungal communities  

Our mass-balance model explains the differences in composition between the total 

and active air communities. However, some of the differences we observed may be 

partially attributable to the use of different approaches in characterizing the total and 

active communities. In this study, the total community was characterized by PCR-based 

amplification and sequencing of LSU genes, whereas the active community was 

characterized through random sequencing of all the RNA present in the samples. Shotgun 

metatranscriptome sequencing and PCR-based community characterization approaches 

each have their own biases (Hong et al., 2009; Morgan et al., 2010). Our data suggest that 

the selection of LSU primers led to biased results. For example, the high relative 

abundance of lichen fungi in the active community was unexpected because this group 

was not present in the total community and has only been detected in low abundance in 

other PCR-based studies of fungi in the atmosphere (Fröhlich-Nowoisky et al., 2012). We 

tested the LR0R-LR3 primer pair using the SILVA TestPrime tool (Klindworth et al., 

2013) and found coverage of the Lecanoromycetes with this primer pair was 71.4%. 

Importantly, the order Teloschistales, which contains the most abundant species in the 

active community, would not be detected with this primer pair. However, the general 

pattern that Ascomycota were much less abundant than Basidiomycota in the total 

community is not likely due to primer bias as overage of the phylum Ascomycota by the 

LR0R-LR3 primer pair is 85.5% according to TestPrime. Our findings underscore the 

value of using a combination of PCR-based and shotgun-based sequencing approaches, 

particularly in environments that are understudied and where little is known about 

microbiome structure and function. 

 

3.4. Fungal air communities above the forest canopy are most similar in composition 

to tropical phyllosphere and soil communities 

We compared total and active fungal air communities to communities from 

tropical, temperate, and tundra soils and from the surfaces of tropical tree leaves. 

Community composition significantly differed across environment types (ADONIS, R2 = 

0.167, p = 0.001), and fungal communities in the atmosphere were compositionally 



 

 

 

31 

distinct from communities in other environments (Figure 5). Ascomycota was the most 

abundant phylum across all soil and phyllosphere samples (soil mean relative abundance 

= 78.4±14.9%, phyllosphere = 90.9±4.9%) followed by Basidiomycota (soil mean 

relative abundance = 19.0±14.9%, phyllosphere = 7.4±4.5%) (Figure 6). We expected 

communities to be distinct across habitat types because environmental conditions may 

differ across the habitat types and select for different communities. However, in the 

atmosphere, dispersal and mixing of fungi from multiple habitat types may be driving the 

observed community composition differences instead of environmental selection.  

 

Figure 5. The compositions of the total and active fungal communities are distinct. 
Sørensen similarities are depicted, ordinated via NMDS. 
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Figure 6. The active atmospheric fungal community over the Amazon rainforest is most 
similar to fungal communities found in tropical soils and on plant leaves. 

 

The diversity of fungal communities in the atmosphere is within the range of 

diversities reported for terrestrial environments, including those of tropical leaf surfaces, 

tropical soils, temperate grassland soils, and tundra soils. Overall taxonomic richness, 

defined as the number of OTUs, significantly varied among environment types (ANOVA, 

F(5,237) = 66.89, p < 0.001) (Figure 15). Tukey’s HSD post-hoc comparisons indicated 

that the richness of air communities, both total and active, was greater than tundra soil 

communities and did not significantly differ from temperate grassland soil communities. 

In general, air communities were less diverse than tropical forest phyllosphere and soil 

communities with the exception of tropical forest soils and active air communities, which 

did not significantly differ. Similar patterns have been observed in soil communities 

where taxonomic richness in arctic soils was significantly lower than soils from 

temperate and tropical ecosystems (Fierer et al., 2012).  

Total air communities were most similar to tropical phyllosphere communities 

(mean Sørensen similarity = 0.015±0.009; statistic) and active air communities were most 
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similar to tropical soil communities (mean Sørensen similarity = 0.010±0.007) (Figure 

16). These results suggest that inputs of fungi into the atmosphere over the canopy are 

derived from local, as opposed to long-distance, sources. This suggestion makes sense 

since fungal spores and hyphae are relatively large aerosol particles with short residence 

times in the atmosphere, limiting opportunities for long-distance dispersal. While these 

results are suggestive, detailed information is lacking regarding the potential influence of 

terrestrial source environments and their role in structuring airborne fungal communities. 

 

4. Conclusion 

Fungi in the atmosphere play an important role in atmospheric processes 

including precipitation development through ice nucleation. This is of particular 

significance in the atmosphere over the Amazon rainforest canopy where fungi constitute 

a large fraction of the total aerosol content (Elbert et al., 2007; Heald and Spracklen, 

2009) and precipitation is aerosol-limited (Pöschl et al., 2010). Our study represents the 

first culture-independent survey of fungal communities over the Amazon rainforest 

canopy. It is also the first to measure metabolically active microbial communities in the 

atmosphere using an RNA-based approach. Using this RNA-based approach, we found 

evidence for the presence of potentially active fungi in the atmosphere, including lichen 

fungi. While an understanding of the structure of fungal communities in the atmosphere 

is beginning to emerge, studies on the function of these communities have lagged behind. 

We suggest that future research focus on understanding the functional capacity of 

airborne microbes with traits particularly well-suited for survival and metabolic activity 

in extreme environments. As with any environment, understanding both the structure and 

function of microbial communities in the atmosphere is needed to assess their potential 

impact on ecosystem processes such as water and carbon cycling. This study opens the 

door for future investigations of the diversity and function of fungal communities in the 

atmosphere.  

 

5.  Bridge to Chapter IV 

In Chapter III, I used RNA- and DNA- based analyses to study active and total 

fungal communities in the atmosphere over the Amazon rainforest and their relationships 
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to potential source environments. I found that lichen fungi were abundant in the active 

community. This finding has implications for atmospheric function in the Amazon 

because lichen fungi are efficient ice nucleators and precipitation in the Amazon is 

dependent on nucleation by aerosols. I found the composition of the active community 

more closely resembled local source environments including tropical soils and leaf 

surfaces than did the composition of the total community. This suggests that composition 

the active fungal community was likely influenced by local sources. In Chapter IV, I 

build upon this finding with a study of the temporal dynamics of the diversity and 

composition of bacterial communities in the atmosphere and their relationships to 

potential sources at a high elevation research station.  
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CHAPTER IV 

TEMPORAL VARAITION IN BACTERIAL DIVERSITY OF THE 

ATMOSPHERE 

 

1. Introduction 

Studies of temporal variation are valuable for understanding what drives the 

assembly of biological communities and for predicting how these communities may 

change in the future (Shade et al., 2013). In the atmosphere, bacterial communities vary 

over multiple time scales including seasonal, inter-day, and diurnal (reviewed in Després 

et al., 2012). Time series analyses have provided key information about the influence of 

terrestrial and aquatic sources in structuring atmospheric bacterial communities. 

However, it is not known over which time scales they are most variable, and how this 

variation may be related to changes in inputs from source environments or to 

environmental conditions.  

Most studies of bacterial dynamics in the atmosphere have focused on changes in 

the concentration of cells rather than their taxonomic composition. This is largely 

because most studies have used culture-based methods, which miss the majority 

microbial diversity (Rappé and Giovannoni, 2003). Culture-independent methods have 

been applied to bacterial communities in the atmosphere only in recent years. Variation in 

the concentration of cells in the atmosphere has been measured over seasonal and diurnal 

time scales (reviewed in Despres et al., 2012). Seasonally, the highest concentrations 

typically occur in summer and fall (Despres et al., 2012). Potential mechanisms that 

contribute to high densities of cells in the atmosphere include the presence of a strong 

source from deciduous leaf surfaces, anthropogenic activity such as tilling and crop 

harvesting (Lighthart 1984), and seasonal changes in meteorological conditions including 

temperature and precipitation (Burrows et al., 2009). Diurnally, airborne cell 

concentrations tend to rise during the morning as leaf and soil surfaces dry and as wind 

speed in the boundary layer increases, and then they decrease in the afternoon hours 

(Jones and Harrison, 2004). These temporal changes in concentration are due, in part, to 

changes in source inputs. Moving beyond the study of cell concentrations in the 

atmosphere, to that of bacterial community composition, may tell us about the relative 
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importance of different source inputs and the conditions that favor upward flux from 

those sources.  

Our understanding of bacterial community dynamics in the atmosphere remains in 

its infancy. Culture-independent analyses have demonstrated significant seasonal 

variation in overall community composition and in the relative abundances of specific 

taxonomic groups (e.g. Bowers et al., 2013; Bowers et al., 2011; Maron et al., 2006). This 

variation across seasons has been explained by changes in weather and atmospheric 

conditions (Maron et al., 2006), human activity (such as the seasonal application of 

fertilizer to agricultural fields (Fröhlich-Nowoisky et al., 2014), and changes in sources 

such as the emergence and senescence of deciduous tree leaves (Bowers et al., 2013). 

Less is know about inter-day variability in atmospheric community composition, and the 

few studies that exist report conflicting results. For example, some studies have 

documented patterns of high variability in community composition from day to day 

(Bertolini et al., 2013; Fierer et al., 2008; Smith et al., 2013), whereas others have 

reported the opposite pattern (Bowers et al., 2009). When observed, variation across days 

has been attributed to variation in human activity in urban environments (e.g. grass 

mowing (Fierer et al., 2008)) and meteorological changes (e.g. amount of precipitation 

(Maron et al., 2006)). Significant day to day variation in community composition has also 

been observed due to inputs from long-distance sources caused by dust storm events, 

which launch dust-associated bacteria into the upper levels of the atmosphere, where they 

can then travel thousands of miles before returning to Earth’s surface (Smith et al., 2013). 

To our knowledge, no studies have used DNA sequencing to investigate diurnal variation 

in community composition in the atmosphere. One study by Maron et al. (2006) used a 

DNA fingerprinting technique to investigate temporal variability in composition over 

diurnal time scales. However, relative to sequencing approaches, fingerprinting 

approaches do not provide the same resolution of taxonomic information, and they are 

difficult to standardize which makes comparison across studies challenging.  

To address this gap, we collected bioaerosol samples diurnally over multiple days 

at Mt. Bachelor Observatory (MBO), a mountaintop high elevation research station. 

MBO is an ideal site for studying temporal dynamics in airborne microbial communities, 

particularly in relation to sources of airborne bacteria. MBO has been used as a model 
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system to look at long distance sources of bacteria because the summit of Mt. Bachelor 

(elevation 2.8 km above sea level) regularly encounters air masses from the free 

troposphere with no recent contamination from the boundary layer or local emissions, 

making it possible to collect cells which have been aloft in the atmosphere for over one 

week (Smith et al., 2013; Weiss-Penzias et al., 2006). MBO is also ideal for analyzing 

local sources of bacteria, due to diurnal dynamics at the summit. Air from the boundary 

layer, which has interacted with the earth’s surface, predominates at MBO during the day, 

and air from higher elevations, which has not recently interacted with the surface, 

predominates at MBO during the night. Thus during the day, solar radiation heats air in 

the boundary layer, and air surrounding the mountain rises over the summit via 

convection. At night as solar heating and convection taper off, cooler air masses, 

sometimes from the troposphere, drop down and push the heated boundary layer down 

the mountain. Combined, this means that bacterial communities in the atmosphere at the 

summit may vary diurnally and across days as they are derived from different layers of 

the atmosphere with different properties and histories. Specifically, atmospheric bacteria 

sampled at night are more likely to have dispersed over long distances compared to 

bacteria sampled during the day, which likely come from local sources. In this 

manuscript, we asked the following questions: 1) How does airborne bacterial diversity 

and composition vary over diurnally and across days? 2) How does temporal variability 

in bacterial community diversity and composition correlate with changes in the 

atmospheric environment and air mass sources?  

 

2. Methods 

2.1. Sample collection 

Sampling was conducted over five days August 12-16, 2013 at the Mt. Bachelor 

Observatory (MBO) (43.98° N, 121.7 °W), a mountaintop research station, 30 km WSW 

of Bend, OR. MBO is located at the summit of Mt. Bachelor, an inactive volcano, at 2763 

m above sea level. Aerosols were collected on to 47mm diameter cellulose nitrate filters 

with 0.2 µm pore size (Nalgene Analytical Test Filter Funnels, Thermo Fisher Scientific). 

Filters were placed approximately 1 m above ground level. Each sterile filter and housing 

unit was individually wrapped and sealed until use. Three filters were run in parallel with 
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each filter powered by two vacuum pumps (Welch model 2524) connected in series. Flow 

rates were approximately 12 L/min. Sampling was conducted continuously from 12:00 

pm August 13, 2013, until 12:00 pm August 17, 2013. Filters were changed every fours 

hours over five days resulting in 30 total samples. After each sampling interval, lids were 

placed on filter housing, and stored at -20°C.  

 

2.2. Environmental data and back trajectories  

 Meteorological and atmospheric chemistry data including atmospheric pressure, 

temperature, water vapor, wind speed and direction, UV irradiance, total gaseous 

mercury, CO, and ozone were collected as part of normal operations at MBO (see Weiss-

Penzias et al., 2006 for details). Sub-micron scattering (450 nm, 550 nm, and 700 nm), 

PM2.5, and PM10 data were also collected, however these measurements were not used 

in our analyses due to an instrument failure which resulted in the loss of 24 hours of data. 

The four-hour means corresponding to the bioaerosol sampling intervals were used for 

statistical analysis. Kinematic back trajectories were calculated using HYbrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) model version 4 (Draxler and 

Rolph, 2003) using global meteorological data from the Global Data Assimilation System 

archive.  

 

2.3. Nucleic acid isolation and library preparation 

Samples were transported on dry ice to the University of Oregon and stored at -

80°C. Two types of controls, with and without blank filters, were processed identically to 

samples including DNA extraction, barcoding, and sequencing. Each of the three filters 

per time point were processed and sequenced separately. Sequences for each time point 

were combined for downstream analysis. DNA was extracted from filters using the MO 

BIO PowerWater DNA Isolation Kit according to the manufacturer’s instructions with 

the following modifications (MO BIO Laboratories, Inc.). DNA was eluted in 100 µl 

elution buffer (QIAGEN). Due to the presence of inhibitors, DNA was diluted 1:8 for 

PCR. 16S genes (rDNA) were amplified using bacterial/archaeal primers 515 forward 

(5’-GTGTGCCAGCMGCCGCGGTAA-3’) and 806 reverse (5’-GGACTACHVGGG 

TWTCTAAT-3’) (Caporaso et al., 2012). The reverse primer also contained a 12 base-
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pair barcode at the 5’ end in order to assign sequences to samples. PCR reactions were 

performed in triplicate on each DNA and cDNA sample. Each 25 µl reaction contained 

0.25 µl Phusion Hot Start II DNA polymerase (Life Technologies Corporation) 5 µl HF 

buffer, 0.5 µl 10 mM dNTPs (New England Biolabs, Inc.) 0.5 µl forward primer (10 

µM), and 0.5 µl reverse primer (10 µM), 13.25 µl H2O, and 5 µl template. PCR cycling 

conditions were as follows: initial denaturation at 98°C for 90 seconds followed by 35 

cycles 98°C for 20 seconds, 52°C for 30 seconds and 72°C for 30 seconds following by a 

final extension at 72°C for 10 minutes. Triplicate reactions were pooled, cleaned using 

the MinElute 96 UF PCR Purification Kit (QIAGEN), and eluted in 20 µl elution buffer. 

The cleaned PCR products were quantitated using a Qubit 2.0 Fluorometer (Invitrogen, 

Life Technologies Corporation) and combined in equal molar concentrations. The pooled 

library was concentrated (Zymo Research Clean and Concentrate-5, Zymo Research) and 

eluted into 50 µl elution buffer. PCR products were size fractionated by gel 

electrophoresis (2%, low-melt agarose). Products in the range of 250-350 bp were 

excised, and DNA from the excised gel was extracted (Qiagen MinElute Gel Extraction, 

QIAGEN) and eluted into 30 µl elution buffer. The eluate was cleaned a final time 

(Zymo Research Clean and Concentrate-5, Zymo Research) and eluted into 30 µl elution 

buffer. The final library was quantitated and diluted from 59.42 nM to 10 nM. The 

amplicon library was sequenced (250 base pairs, paired-end) on the Illumina MiSeq 

platform at the Dana-Farber Cancer Institute Molecular Biology Core. 

 

2.4.  Sequence processing 

Sequences were processed using QIIME version 1.8 (Caporaso et al., 2010) and 

the UPARSE pipeline (USEARCH version 7.0.1090) (Edgar, 2013). Briefly, libraries 

were demultiplexed in QIIME using the split_libraries_fastq.py without quality filtering 

or trimming. Sequences in fastq output from QIIME were quality filtered and trimmed 

using the fastq_filter USEARCH script. Sequences were trimmed to 296 bp. Sequences 

with a maximum expected error (fastq_maxee) >0.5 were removed. Sequences for which 

there was no identical match were removed using the derep_fulllength and sortbysize 

USEARCH scripts. Sequences were clustered into operational taxonomic units (OTUs) at 

97% sequence similarity using the UCLUST algorithm (Edgar, 2010). 
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Representative sequences from each OTU were screened for chimeras using the 

uchime_ref script against the ChimeraSlayer reference database (Broad Microbiome 

Utilities (http://microbiomeutil.sourceforge.net/). Headers for representative sequences 

were reformatted and sequences were numbered sequentially using the fasta_number.py 

script. Original sequences were mapped to OTUs using the usearch_global script. The 

resulting OTU map was converted to a tab-delimited OTU table using a modified version 

of the uc2otutab.py script. The tab-delimited OTU table was converted to BIOM 

(McDonald et al., 2012) format. Taxonomy was assigned to representative sequences 

using the RDP Naïve Bayesian Classifier (Wang et al., 2007) against the Greengenes 

database (version 13_5, http://greengenes.secondgenome.com/downloads/database/13_5) 

in QIIME.  

OTUs for which relative abundance in control samples was significantly 

correlated with their relative abundance in air samples were removed using the 

filter_otus_from_otu_table.py script in QIIME. A total of 89 of 1,060 OTUs were 

removed. Additionally, all OTUs identified as belonging to the class “Chloroplast” and 

family “Mitochondria” were removed using the filter_taxa_from_otu_table.py script.  

 

2.5. Statistical analyses 

All statistical analyses were conducted in R (R Core Team, 2014) using the vegan 

package (Oksanen et al., 2013) for ecological statistics and the lubridate package 

(Grolemund and Wickham, 2011) for parsing date-time data. The JTK_Cycle algorithm 

(Hughes, Hogenesch, and Kornacker, 2010) implemented in R was used to identify OTUs 

with significant periodicity in their relative abundances. 

 

3. Results 

3.1. Sequence statistics 

A total of 5,163,477 sequences were generated. Following sequence processing 

and quality filtering, a total of 1,174,199 sequences remained, which were binned into 

991 OTUs. The mean number of sequences and OTUs per sample was 19,136 ± 7,708.60. 

Each sample was subsampled to 13,000 sequences, after which 962 OTUs remained. 
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There were 38 OTUs shared across all samples, and 557 that were unique to one sample. 

The average number of unique OTUs per sample was 18.567 ± 13.599.  

 

3.2. Environmental characteristics 

There were two general patterns of transport histories of the air masses that 

arrived at the summit during sampling. On the dates 8/12-8/14 air masses moved over the 

Pacific Ocean and on to land from the north and west. On 8/13 and 8/14 the air masses at 

that reached the summit of Mt. Bachelor at 2:00 pm travelled at low elevations and likely 

had significant interaction with the Earth’s surface (Figure 7).  

 

 

 
Figure 7. NOAA HYSPLIT back trajectories of air masses arriving at the Mt. Bachelor 
summit at 2:00 pm each day of sampling. Each trajectory represents the transport history 
of air masses 72 hour before reaching the summit of Mt. Bachelor. 
 

Conditions at the summit over these days were generally characterized by high ozone, 

low/increasing CO, and low relative humidity (Figure 8). These conditions are consistent 

with what is observed when air from the free troposphere interacts with the summit. Air 
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masses that arrived at MBO during the last half of the sampling period traveled longer 

distances in the three days before reaching the summit than did air masses during the first 

three days of sampling. These faster traveling air masses moved on to land from the south 

and west. On 8/15 and 8/17 the air masses reaching the summit traveled at elevations 

higher than the summit and thus did not likely interact much with the surface (Figure 7). 

Conditions at the summit on 8/15-8/17 were generally characterized by decreasing ozone, 

high/decreasing CO, and high relative humidity (Figure 8). High and increasing CO was 

likely due to the transport of smoke from wildfires burning in northern California and 

southern Oregon during sampling.  

 

 

Figure 8. Significant predictors of community richness 
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3.3. Temporal variation in composition 

Communities significantly varied in day (8:00 am – 8:00 pm) versus night (8:00 

pm – 8:00 am) samples (ADONIS, Canberra distances, F = 1.5346, p < 0.001). 

Communities did not significantly differ by day of the week. In ordination space, several 

environmental conditions were significantly correlated with variability in community 

composition. Environmental conditions that vary diurnally including air temperature (R2 

= 0.4187, p = 0.0004) and UV (R2 = 0.2947, p = 0.008) were significantly correlated with 

changes in composition. As can be seen in Figure 9, the environmental vectors are in the 

same direction as spread of day versus night samples and so were associated with 

variation between day and night samples. Other environmental variables significantly 

associated with community composition included ozone (R2 = 0.2231, p = 0.0315), wind 

speed (R2 = 0.3586, p = 0.0021), and wind direction (R2 = 0.3866, p = 0.008) varied 

across days. In Figure 9, vectors for these variables are orthogonal to the axis showing 

diurnal variation.  

 

 

Figure 9. Ordination of Canberra distances with environmental vectors 
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Five OTUs were found to have significant diurnal variation in relative using the 

JTK_CYCLE algorithm (Hughes, Hogenesch, and Kornacker, 2010) (Figure 10). Two 

OTUs were members of the phylum Chloroflexi. One Chloroflexi OTU (class C0119) 

exhibited somewhat irregular periodicity but generally peaked in relative abundance in 

the early evening. The second Chloroflexi OTU (order WCHB1.50) generally peaked in 

relative abundance around midday. Two Solirubrobacterales OTUs reached their 

maximum relative abundance during the midday hours. The relative abundance of one 

Rhizobiales OTU also varied diurnally and had highest relative abundance at night.  

 

Figure 10. Taxa with significant diurnal periodicity in relative abundance. Grey bars 
indicate night samples (8:00 pm – 8:00 am). 
 

3.4. Temporal variation in diversity 

Richness significantly varied across days (F = 3.349, p = 0.0196) and was 

significantly greater in day versus night samples (F = 8.26, p = 0.00765). Variation in 

community richness was significantly associated with environmental factors that vary 

across days (ozone, CO, relative humidity) and within days (air temperature) (Figure 9 

and Table 1). The best model explained an estimated 49% of the total variance in 

richness. Significant predictors of community richness based on stepwise model selection 

included variables associated with wildfire activity (high CO) and influence of free 

troposphere air (low relative humidity and high ozone). Richness was also significantly 

predicted by air temperature. 
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Table 1. Parameter estimates for linear model predicting community richness 

 Estimate SE t-value p-value 

Ozone (ppbv)  4.87664 1.27552 3.823 0.000779 

Carbon monoxide (ppbv)  -0.13415 0.08181 -1.64 0.113571 

Temperature (°C) 10.42569 2.55455 4.081 0.000402 

Relative humidity 2.49157 0.86974 2.865 0.008337 

 

4. Discussion 

In this paper, we described the temporal dynamics of bacterial community 

diversity and composition at a high elevation site over diurnal and inter-day time scales. 

Information about how communities vary through time can increase understanding of 

bacterial community assembly and transport patterns in the atmosphere. This is important 

because the transport and composition of bacteria through the atmosphere has 

consequences for microbial biogeography and ecosystem function at the Earth’s surface 

(e.g. through the introduction of pathogens from the atmosphere). There is a paucity of 

information about how atmospheric bacterial communities vary diurnally and across 

days, and the few previous studies of variation in community composition across days 

have yielded conflicting results. We found strong signatures of diurnal variation in 

composition and richness, and in contrast to most other studies of variation across days, 

we found a form of stability across days, with communities that did not significantly vary 

in composition but did vary in richness.  

 

4.1. Communities were most variable over diurnal time scales 

In the atmosphere at the summit of Mt. Bachelor, variation in bacterial 

communities over diurnal time scales was more pronounced than variation across days. 

Both composition and richness varied diurnally, whereas only richness varied across 

days. Diurnal variation in richness could be explained by diurnal periodicity in cell 

concentrations in the atmosphere. While we did not quantify cell concentrations in this 

study, strong diurnal periodicity in the concentration of atmospheric bioaerosols has been 

observed in multiple studies across many environments (Després et al., 2012; Tong and 

Lighthart, 1999; Lighthart and Shaffer, 1995), with higher cell concentrations during the 
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day versus night. If cell concentrations were higher at MBO during the day relative to 

during the night, this larger pool of individuals could result in higher taxonomic richness. 

Research in terrestrial and aquatic systems has shown that taxa richness increases with 

increasing numbers of individuals per sample (Bunge and Fitzpatrick, 1993).  

In addition to richness, the overall composition of bacterial communities in the 

atmosphere varied diurnally. Specifically, five taxa exhibited significant diurnal 

periodicity in their relative abundances. There was only one OTU, from the order 

Rhizobiales, which decreased in relative abundance during the day and increased in 

relative abundance at night. This could be because this OTU is at a near constant absolute 

abundance in the atmosphere at MBO and at night when there is less influence from local 

sources, the relative abundance of the Rhizobiales OTU increased relative to the 

abundance of other OTUs. Alternatively, the Rhizobiales OTU may have been abundant 

in higher atmospheric elevations, and then move down to the summit sample location at 

night. Two OTUs that also exhibited significant diurnal periodicity in their relative 

abundances were members of the order Solirubrobacteriales, a group of Gram-positive 

bacteria within the phylum Actinobacteria. Most Solirubrobacteriales species are soil-

associated (Albuquerque and da Costa, 2014). They have been detected in outdoor air 

samples (Brodie et al., 2007; Kembel et al., 2012) and in dust (Favet et al., 2013). Two of 

the OTUs with diurnal periodicity in their relative abundances were members of the 

phylum Chloroflexi. Chloroflexi are anoxygenic photoheterotrophs, and many are also 

thermophilic. Members of the phylum have been previously detected in the atmosphere 

(Brodie et al., 2007; Kembel et al., 2012) as well as other types of atmospheric samples 

including rainwater (Cho and Jang, 2014) and dust (Barberán et al., 2014).  

Interestingly, four of the five OTUs with diurnal periodicity are members of the 

Solirubrobacteriales and Chloroflexi, which are frequently found in rock varnish 

(Esposito et al., 2015) Rock varnish is a thin layer composed of metal (Fe and Mn) 

hydroxides and clay minerals that develop on rock surfaces across the globe. 

Assemblages of bacteria are found in rock varnish are distinct from those found on the 

surfaces of non-varnished rock (Esposito et al., 2015). Conditions in rock varnishes select 

for anoxygenic phototrophs such as Chloroflexi, and members of this group are often 

dominant members of the rock-associated community (Esposito et al., 2015). The summit 
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of Mt. Bachelor is primarily covered in volcanic rock including basalt and basaltic 

andesite with little vegetation, so it is parsimonious to assume that these taxa inhabit rock 

surfaces on the summit of Mt. Bachelor. The two Solirubrobacteriales and two 

Chloroflexi OTUs that increased in abundance during the day over the course of 

sampling may have lifted into the atmosphere from local rock surfaces by convection.  

 

4.2. Community composition was stable across days but richness varied 

 In contrast to diurnal time scales, bacterial community composition in the 

atmosphere at the summit of Mt. Bachelor did not vary across days. Most other studies 

have found significant variation across days (Bertolini et al., 2013; Fierer et al., 2008; 

Smith et al., 2012) (although see Bowers et al., 2009 for an exception). Studies that found 

significant variation in composition across days attributed this pattern to human activities 

such as grass mowing in nearby fields (Fierer et al., 2008). It is possible that during the 

time of sampling at MBO, the composition of communities in the atmosphere was stable 

from day to day because there were no significant local disturbances or perturbations that 

were a source of variation in the number and types of bacteria that become airborne. 

These results also suggest that inputs of bacteria from long-distance sources were less 

important relative to local sources in structuring the composition of the communities. If 

long-distance sources were more important, variation across days would be more 

pronounced than diurnal variation because large masses take days to move through a 

location. However, the sampling period would need to be sufficiently long to observe the 

movement of multiple air masses through a single location. Instead we observed 

significant diurnal variation presumably due to the upward flux of bacteria into the 

atmosphere from local sources, which has a strong diurnal pattern. 

 

4.3. Community variation was associated with atmospheric conditions and air mass 

history  

Across all samples, variation in bacterial composition was correlated with 

environmental conditions with strong diurnal patterns including UV and temperature as 

well conditions that varied across days including wind speed/direction and ozone. 

Previous work has shown that atmospheric cell concentrations are positively correlated 
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with air temperature (Bovallius et al., 1978; Harrison et al., 2005). It is possible that 

temperature variation at MBO was linked to the observed variation in community 

composition in our study, because changes in the concentration of cells is likely related to 

changes in the relative inputs from different sources. For example, there were five taxa 

with relative abundances that varied diurnally. Taxa that increased during the day may 

have originated in local sources (i.e. rock surfaces at the summit) and increased in 

abundance as thermal convection increased during the day.  Taxa that increased overnight 

may have consistent absolute abundances in the atmosphere. Their relative abundance 

may have increased at night as the abundance of taxa from local sources decreased (due 

to decreases in thermal convection).  

The richness of bacterial communities in the atmosphere at MBO varied diurnally 

and across days and was significantly correlated with three environmental variables that 

varied across days including CO, ozone, and relative humidity as well as temperature, 

which varied diurnally. Across days, richness was greatest when ozone was high and 

relative humidity was low. The occurrence of free tropospheric air at MBO is 

characterized high ozone and low relative humidity (Weiss-Penzias et al., 2006), so it is 

possible that the increased richness could be due to inputs of bacteria from long distances 

sources in free troposphere air. In addition, richness was low when CO levels were high. 

High levels of CO were likely due to the influence of wildfire smoke, which impacted the 

summit of Mt. Bachelor during sampling. This suggests airborne bacterial communities 

associated with wildfire may be less diverse than air masses not impacted by wildfire. To 

summarize, richness was highest when air masses were more influenced by free 

troposphere air (high ozone, low RH) and less influenced by wildfires (low CO), and 

during the day when thermal convection increases upward flux of microbes from surfaces 

into the atmosphere (Lighthart and Shaffer 1995). This suggests that richness is 

influenced by both local sources (thermal convection during the day lofted microbes up 

from local soils, rocks) and long distance sources (free troposphere air).  

 

5. Bridge to Chapter V 

In Chapter IV, I presented a study of diurnal and inter-day temporal variation in 

the composition and diversity of bacterial communities at Mt. Bachelor Observatory. I 
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found communities in the atmosphere vary over multiple times scales and the 

mechanisms underlying that variation differ depending on time scale. Specifically, I 

showed that variation in community composition within days was more pronounced than 

variation across days, and this variation is likely driven by diurnal variation in upward 

fluxes of bacteria from local sources including rock surfaces. While composition did not 

vary across days, I found significant variation in richness across days and suggested that 

changes in richness could be due to the arrival of distinct air masses at the site. Thus, 

changes in richness across days could be driven by the influence of long distance 

dispersal of bacteria in the atmosphere. In this chapter, I described the temporal dynamics 

of bacterial community diversity and composition. In Chapter V, I expand on these 

results and explore the potential functions of bacteria in the atmosphere Mt. Bachelor 

Observatory by comparing the total and potentially active bacterial communities.  
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CHAPTER V 

MOLECULAR EVIDENCE FOR ACTIVE BACTERIAL COMMUNITIES IN 

THE ATMOSPHERE 

 

This paper was prepared for submission to Frontiers in Microbiology. I conceived the 

experiments, conducted the experiments, analyzed the data, and wrote the paper. 

Assistance with experimental design, data analysis and writing the manuscript was 

provided by my co-authors: Brendan J. M. Bohannan, Daniel A. Jaffe, David A. Levin, 

and Jessica L. Green. 

 

1. Introduction 

Studies of microorganisms in terrestrial, aquatic, and host-associated 

environments have demonstrated that surveying the metabolically active community is 

key to characterizing the functions of microbial communities (e.g. Haglund et al., 2003; 

del Giorgio and Scarborough, 1995; del Giorgio, Prairie, and Bird, 1997; Lillis, Doyle, 

and Clipson, 2009; Peris-Bondia et al., 2011; Baldrian et al., 2012). Yet, little is known 

about the metabolic activity of microbial communities in the atmosphere, an environment 

that is intimately connected to all biomes spanning the globe. This lack of knowledge is 

due to both conceptual and technical limitations. Conceptually, the atmosphere has 

historically been regarded as a dispersal vector for dead, dormant, or inactive cells 

instead of as a habitat with actively reproducing microbial life (Womack, Bohannan, and 

Green, 2010). Technically, low densities of cells have made it difficult to study the 

activity of airborne microorganisms in situ (Behzad, Gojobori, and Mineta, 2015). 

However, there is evidence to suggest that airborne microorganisms may be 

metabolically active. Culture-based analyses of bacteria isolated from clouds have shown 

that bacteria can transform atmospheric compounds including carbon, nitrogen, and 

oxidative species (Vaïtilingom et al., 2011; Vaïtilingom et al., 2013; Amato et al., 2007; 

Hill et al., 2007). Research has also demonstrated that aerosolized cultured bacterial cells 

increase their ribosome production, and thus their protein synthesis potential, when 

supplied carbon substrates in the lab (Krumins et al., 2014). The next step is to apply 



 

 

 

51 

culture-independent methods on atmospheric samples, targeting active cells, in order to 

learn about their potential functions. 

One culture-independent approach for surveying the composition of active 

microbial communities is through the analysis of rRNA in ribosomes (Schippers and 

Neretin, 2006; Lennon and Jones, 2011; see review by Blazewicz et al., 2013). The vast 

majority of culture-independent microbiology research relies on rDNA (i.e. rRNA gene) 

sequence data, which provides information about the total community (including both 

active and dormant individuals). In contrast, rRNA sequences provide information about 

the potentially active community, because ribosomes are more abundant in active than 

dormant cells (Kerkhof and Kemp, 1999; Fegatella et al., 1998). Studies that have 

combined both rDNA and rRNA data have led to a wide range of ecological insights 

including how microbial communities respond to environmental change (Barnard, 

Osborne, and Firestone, 2013), which taxa contribute to key biogeochemical processes 

(Schostag et al., 2015), and what mechanisms shape microbial community assembly 

(Zhang et al., 2014). An emergent theme from comparative rDNA and rRNA analyses is 

that the active and total community can be fundamentally different from one another, in 

both structure and composition. For example, in many environmental systems it is the 

rare members of the total community that are dominant in the active community (Zhang 

et al., 2014; Baldrian et al., 2012; Hugoni et al., 2013; Jones and Lennon, 2010; Wilhelm 

et al., 2014; Campbell et al., 2011). This suggests that through using rDNA data alone, 

we may be underestimating the functional importance of taxa that are members of the 

“rare biosphere” (Jones and Lennon, 2010; Campbell et al., 2011) in the total community.  

In this paper, we applied a culture-independent approach to survey the 

composition of potentially active microbial communities in the atmosphere. We focused 

our study on bacteria because they are abundant in the atmosphere with concentrations 

ranging from 104-105 cells/m3 (Burrows et al., 2009) and, due to their small size, can have 

atmospheric residence times that are long enough for growth and reproduction to occur 

(see Womack, Bohannan, and Green, 2010). We applied comparative 16S rDNA and 

rRNA sequence analyses to characterize the structure and composition of the active and 

total bacterial community in air sampled from a high elevation research station location at 

the summit of Mt. Bachelor, Oregon. Mt. Bachelor is an ideal site for studying the 
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potential activity of airborne microbial communities. Due to the geography of the 

mountain and the surrounding topography, the summit (elevation 2.8 km above sea level) 

regularly encounters air masses from the free troposphere, making it possible to collect 

cells, which have been aloft in the atmosphere for over one week (Weiss-Penzias et al., 

2006). By collecting cells that have been in the atmosphere for extended periods of time, 

the active community should more closely reflect the activity of cells in the atmosphere 

and not activity in potential local source environments like water or soil. We asked the 

following questions: 1) What is the diversity and composition of the active and total 

airborne bacterial community, and how do they compare? 2) Which bacteria in the 

atmosphere are potentially metabolically active? 

  

2. Methods 

2.1. Sample collection 

Sampling was conducted over five days August 12-16, 2013 at the Mt. Bachelor 

Observatory (MBO) (43.98°N, 121.7°W), a mountaintop research station, 30 km WSW 

of Bend, OR. MBO is located at the summit of Mt. Bachelor, an inactive volcano, at 2763 

m above sea level. Aerosol samples were collected using SKC BioSamplers (BioSampler 

SKC Inc.). Samplers were filled with 20 mL of a water-based preservation solution 

(LifeGuard Soil Preservation Solution, MO BIO Laboratories, Inc) to prevent DNase and 

RNase activity and maintain cells in stasis to allow accurate community profiling of the 

RNA and DNA communities. Twenty-four impingers were operated at 12.5 L/min from 

approximately 8:00 am – 4:00 pm each day. At the end of each day, the sampling liquid 

from all impingers was pooled and stored at -20°C.  

  

2.2. Nucleic acid isolation and cDNA synthesis 

Samples were transported on dry ice to the University of Oregon where the liquid 

was thawed and filtered through 0.22 µm cellulose nitrate filters (Nalgene Analytical Test 

Filter Funnels, Thermo Fisher Scientific). Field blanks were generated by filtering unused 

LifeGuard Solution through new, sterile filters. RNA and DNA were co-extracted from 

filters using the MO BIO PowerWater RNA Isolation Kit according to the manufacturer’s 

instructions with the following modifications (MO BIO Laboratories, Inc.). The initial 
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DNase step was omitted. RNA and DNA were eluted in 100 µl elution buffer (QIAGEN) 

and then divided in half. One ~50 µl aliquot was treated with 1 µl DNase (DNase I, 

RNase-free, Thermo Fischer Scientific, Inc.) and the other was treated with 2 µl RNase 

(RNase A, DNase and protease-free, Thermo Fischer Scientific, Inc.). Both reactions 

were incubated at 37° for 30 minutes. Reactions were cleaned using the Qiagen MinElute 

Enzymatic Reaction Cleanup Kit (QIAGEN). DNA was eluted in 100 µl and RNA was 

eluted in 50 µl elution buffer. 

cDNA was synthesized from the total RNA extract using the SuperScript II First-

Strand Synthesis System (Invitrogen, Life Technologies Corporation) with random 

hexamers. All RNA was converted into cDNA in seven synthesis reactions and one 

reverse transcriptase negative control reaction. The seven cDNA reactions for each 

sample were pooled, cleaned using Qiagen MinElute Enzymatic Reaction Cleanup Kit 

(QIAGEN), and eluted in 50 µl elution buffer. Blanks were processed identically to 

samples including nucleic acid extraction, cDNA synthesis, barcoding, and sequencing. 

  

2.3. Library preparation and sequencing 

16S genes (rDNA) and transcripts (rRNA) were amplified using bacterial/archaeal 

primers 515 forward (5’-GTGTGCCAGCMGCCGCGGTAA-3’) and 806 reverse (5’-

GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al., 2012). The reverse primer also 

contained a 12 base-pair barcode at the 5’ end in order to assign sequences to samples. 

PCR reactions were performed in triplicate on each DNA and cDNA sample. Each 25 µl 

reaction contained 0.25 µl Phusion Hot Start II DNA polymerase (Life Technologies 

Corporation) 5 µl HF buffer, 0.5 µl 10 mM dNTPs (New England Biolabs, Inc.) 0.5 µl 

forward primer (10 µM), and 0.5 µl reverse primer (10 µM), 13.25 µl H2O, and 5 µl 

template. PCR cycling conditions were as follows: initial denaturation at 98°C for 90 

seconds followed by 35 cycles 98°C for 20 seconds, 52°C for 30 seconds and 72°C for 30 

seconds following by a final extension at 72°C for 10 minutes. Triplicate reactions were 

pooled, cleaned using the MinElute 96 UF PCR Purification Kit (QIAGEN), and eluted 

in 20 µl elution buffer. The cleaned PCR products were quantitated using a Qubit 2.0 

Fluorometer (Invitrogen, Life Technologies Corporation) and combined in equal molar 

concentrations. The pooled library was concentrated (Zymo Research Clean and 
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Concentrate-5, Zymo Research) and eluted into 50 µl elution buffer. PCR products were 

size fractionated by gel electrophoresis (2.%, low-melt agarose). Products in the range of 

250-350 bp were excised, and DNA from the excised gel was extracted (Qiagen MinElute 

Gel Extraction, QIAGEN) and eluted into 30 µl elution buffer. The eluate was cleaned a 

final time (Zymo Research Clean and Concentrate-5, Zymo Research) and eluted into 30 

µl elution buffer. The final library was quantitated and diluted from 59.42 nM to 10 nM. 

The amplicon library was sequenced (250 base pairs, paired-end) on the Illumina MiSeq 

platform at the Dana-Farber Cancer Institute Molecular Biology Core. 

  

2.4. Sequence processing 

Sequences were processed using QIIME version 1.8 (Caporaso et al., 2010) and 

the UPARSE pipeline (USEARCH version 7.0.1090) (Edgar, 2013). Briefly, libraries 

were demultiplexed in QIIME using the split_libraries_fastq.py without quality filtering 

or trimming. Sequences in fastq output from QIIME were quality filtered and trimmed 

using the fastq_filter USEARCH script. Sequences were trimmed to 296 bp. Sequences 

with a maximum expected error (fastq_maxee) >0.5 were removed. Sequences for which 

there was no identical match were removed using the derep_fulllength and sortbysize 

USEARCH scripts. Sequences were clustered into operational taxonomic units (OTUs) at 

97% sequence similarity using the UCLUST algorithm (Edgar, 2010). Representative 

sequences from each OTU were screened for chimeras using the uchime_ref script 

against the ChimeraSlayer reference database (Broad Microbiome Utilities 

(http://microbiomeutil.sourceforge.net/) version microbiomeutil-r20110519). Headers for 

representative sequences were reformatted and sequences were numbered sequentially 

using the fasta_number.py script. Original sequences were mapped to OTUs using the 

usearch_global script. The resulting OTU map was converted to a tab-delimited OTU 

table using a modified version of the uc2otutab.py script. The tab-delimited OTU table 

was converted to BIOM (McDonald et al., 2012) format. Taxonomy was assigned to 

representative sequences using the RDP Naïve Bayesian Classifier (Wang et al., 2007) 

against the Greengenes database (version 13_5, http://greengenes.secondgenome. 

com/downloads/database/13_5) in QIIME. 
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OTUs for which relative abundance in control samples was significantly 

correlated with their relative abundance in air samples were removed using the 

filter_otus_from_otu_table.py script in QIIME. Of the 90 OTUs that were removed, 26 

could not be taxonomically classified. Additionally, all OTUs identified as belonging to 

the class “Chloroplast” were removed using the filter_taxa_from_otu_table.py script.  

  

2.5. Statistical analyses 

All statistical analyses were conducted in R (R Core Team, 2014) primarily using 

the packages vegan (Oksanen et al., 2013), BiodiversityR (Kindt and Coe, 2005) for 

ecological statistics and the ggplot2 (Wickham, 2009) package for visualizations. All 

analyses of beta-diversity were based on Canberra distances. DESeq2 (Love, Huber, and 

Anders, 2014) implemented in QIIME was used to analyze differential abundance of 

OTUs between the RNA and DNA communities.  

  

3. Results 

3.1. Sequence statistics 

A total of 153,088 16S rRNA and rDNA sequences were generated from four 

aerosol samples. Following sequence processing and quality filtering, a total of 55,414 

sequences remained, which were binned into 1,144 OTUs. The mean number of 

sequences and OTUs per sample was 19,136 ± 7,708.60 and 293.88 ± 39.21, respectively. 

Each sample was subsampled to 7,400 sequences, after which 1,076 OTUs remained. 

There were 23 OTUs shared across all samples, and 606 that were unique to one sample. 

The average number of unique OTUs per sample was 75.75 ± 50.26. There were 767 

OTUs across all DNA samples, 652 OTUs across all RNA samples, and 343 OTUs were 

shared between RNA and DNA samples.  

 

3.2. Composition and structure of active and total communities 

Community composition of the RNA and DNA communities significantly 

differed (ADONIS, F(1,6) = 1.22, p = 0.027) at the level of OTUs and at the order level 

(Figure 11). The RNA and DNA communities were dominated by the orders 

Actinomycetales, RB41, Saprospirales, Cytophagales, and Rhodospirillales. The relative 
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abundances of the following orders significantly differed between RNA and DNA, RB41 

(t(3) = 4, p = 0.04), Saprospirales (t(3) = 6, p = 0.01), Rhodospirillales (t(3) = -7, p = 

0.006), Sphingomonadales (t(3) = 10, p = 0.002). Across all OTUs, relative abundance in 

RNA community were correlated with relative abundance in DNA community (Kendall 

rank correlation coefficient, tau = -0.078, p = 5e-04). The structure (richness, diversity, 

patterns of abundance) of the RNA and DNA communities also differed. Shannon 

diversity (t(3) = 10, p = 0.002) and evenness were significantly greater in the DNA 

community (t(3) = 10, p = 0.002) (Figure 12). Richness did not significantly differ (t(3) = 

-0.5, p = 0.7). 

 

 
 

Figure 11. Taxonomic composition of RNA and DNA communities 

 

3.3. Potentially active taxa 

59 OTUs were identified as differentially abundant (DESeq2, adjusted p < 0.05) 

between the RNA and DNA communities including 12 OTUs that were more abundant in 

the DNA community and 47 that were more abundant in the RNA community. To 

identify potentially active taxa, we focused our analysis on OTUs that were shared 

between the RNA and DNA communities and that were overrepresented in the RNA 

community (DESeq2, p < 0.01). Using these criteria, 17 OTUs were identified as 

potentially metabolically active (Table 2).  
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Figure 12. Rank abundance in RNA and DNA communities. 

 

To compare the potential activity of these 17 OTUs to the rest of shared OTUs in 

the community, we plotted the RNA:DNA ratios of all shared OTUs against their rank in 

the DNA community. RNA:DNA ratios are frequently used as an index of bacterial 

activity (e.g. Campbell et al., 2011; Zhang et al., 2014; Baldrian et al., 2012) because the 

number of ribosome per cells is correlated with growth rates in cultured bacterial isolates 

(Fegatella et al., 1998; Kerkhof and Kemp, 1999; but see Blazewicz et al., 2013). The 

taxa with highest potential activity were rare members of the DNA community (Figure 

13). Overall, the higher the RNA:DNA ratio, the rarer the taxon was in the DNA 

community. Specifically, the RNA:DNA ratio was positively correlated with rank in 

DNA (Spearman correlation, ⍴ = 0.421, p-value = 3.604e-16). 

 

Table 2. OTUs significantly overrepresented in RNA 

log2 Fold 

change 

Adjusted 

p-value 

RNA:

DNA 

Taxonomy 

6.09 <0.001 115.33 Actinobacteria, Actinobacteria, Actinomycetales, 

Nocardiaceae  

5.26 <0.001 48 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae  
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5.06 <0.001 122 Proteobacteria, Alphaproteobacteria, Sphingomonadales, 

Sphingomonadaceae  

4.83 <0.001 29 Actinobacteria, Actinobacteria, Actinomycetales, 

Microbacteriaceae  

4.59 0.001 41.5 Proteobacteria, Betaproteobacteria, Burkholderiales, 

Comamonadaceae  

4.39 0.001 25.5 Proteobacteria, Alphaproteobacteria, Sphingomonadales, 

Sphingomonadaceae, Kaistobacter 

4.67 0.001 29.14 Bacteroidetes, Saprospirae, Saprospirales, 

Chitinophagaceae  

4.82 0.001 37.11 Bacteroidetes, Cytophagia, Cytophagales, Cytophagaceae, 

Hymenobacter 

3.72 0.002 8.85 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae  

4.18 0.002 13.07 Proteobacteria, Alphaproteobacteria, Rhizobiales  

3.95 0.003 24.5 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae  

3.92 0.003 23 Proteobacteria, Gammaproteobacteria 

3.51 0.005 10 Actinobacteria, Acidimicrobiia, Acidimicrobiales  

3.88 0.005 11.35 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae  

3.89 0.005 18.79 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae  

3.68 0.009 12.06 Proteobacteria, Alphaproteobacteria, Rhodospirillales, 

Acetobacteraceae, Roseomonas 
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Figure 13. OTUs with highest RNA:DNA ratio are rare in DNA community. OTUs 
significantly overrepresented in RNA community (DESeq2, p < 0.01) are colored by 
taxonomic order.  
 

4. Discussion 

4.1. Rhodospirillales were abundant in both the total and potentially active 

communities 

Culture-independent tools are making it possible to begin mapping the bacterial 

composition of the atmosphere on a global scale. While this endeavor remains in its 

infancy, some general patterns are beginning to emerge. Our DNA-based bacterial 

community data is consistent with prior studies, and includes several taxonomic orders 

commonly found in air samples. For example, the Actinomycetales, which were abundant 

in our samples, are frequently found in the atmosphere (e.g. Gandolfi et al., 2015; Brodie 

et al., 2007; Bowers et al., 2013) and have been found to be abundant in other studies at 

high elevations sites (Bowers et al., 2012) including MBO (Smith et al., 2013). There are 

two reasons to expect this order to be abundant in the atmosphere. First, Actinomycetales 

are ubiquitous in soil and freshwater (Ventura et al., 2007), and thus there is a large 

terrestrial source pool. Second, they produce small spores (Reponen et al., 1998), which 

likely have a long residence time in the atmosphere. Several other taxonomic groups 

found in samples from this study, which have been previously detected in air samples 
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collected at MBO, include Pseudomonadales, Burkholderiales, and Sphingomonadales 

(Smith et al., 2013). One pattern that is unique to our data set is the prevalence of 

Rhodospirillales. In other studies of airborne bacterial communities, Rhodospirillales 

have been detected low relative abundance and have never been found in high relative 

abundance (Bowers et al., 2013; Polymenakou et al., 2008). One potential mechanism 

driving the abundance of Rhodospirillales at MBO could be the nearby marine source. 

MBO is approximately 200 km from the Pacific Ocean, and most air masses travel over 

the Pacific for several days before reaching the summit (Weiss-Penzias et al., 2006). 

Rhodospirillales are frequently found in marine samples (e.g. Yin et al., 2013; Feingersch 

et al., 2010; Li et al., 2014), and their presence in the atmosphere has been reported in a 

study of communities in the upper levels of the atmosphere (~ 8-10 km above sea level) 

(DeLeon-Rodriguez et al., 2013). Researchers found that Rhodospirillales were enriched 

in samples collected during a hurricane (DeLeon-Rodriguez et al., 2013) suggesting that, 

under certain conditions, marine bacteria can be aerosolized and reach the upper levels of 

the atmosphere.  

To our knowledge, this is the first RNA-based analysis of the atmosphere. 

Consistent with what has been reported in other environmental systems (e.g. soil 

(Baldrian et al., 2012), and water (Wilhelm et al., 2014)), we found that the RNA- and 

DNA-community composition differed (Figure 11). Several orders - including RB41 (an 

uncharacterized order of Acidobacteria), Saprospirales, and Sphingomonadales - were 

significantly underrepresented in the RNA relative to the DNA community. RB41 and 

Saprospirales are typically found in soils (King et al., 2010; Janssen, 2006), and 

Saprospirales has also been detected in air samples (Fierer et al., 2008). 

Sphingomonadales are commonly detected in air samples (e.g. Bowers et al., 2011; 

Amato et al., 2007; Després et al., 2012) and are abundant on leaf surfaces (Vorholt, 

2012). These results suggest that soil and leaf surfaces are likely substantial sources of 

bacteria in the atmosphere and may shape the composition of the total community, but 

perhaps not the active community. There was only one order that was significantly more 

abundant in the RNA relative to the DNA community, and this was Rhodospirillales. The 

potential role of metabolically active Rhodospirillales is discussed below. 
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4.2. Potentially active communities were characterized by both dominance and rarity  

Similar to soil, freshwater, and marine systems (e.g. Mikkonen et al., 2014; Zhang 

et al., 2014; Wilhelm et al., 2014), we found that the diversity of the total and potentially 

active communities differed in the atmosphere. Shannon diversity and evenness was 

higher in the DNA community (Figure 12). In contrast, the RNA community was more 

characterized by dominance and rarity (i.e. there were a few abundant organisms and 

many rare organisms). This pattern may be driven by a differential in the activity of taxa, 

given that a few taxa were highly active and the majority of taxa had low activity levels. 

Most comparative DNA- and RNA-community studies do not report on evenness. 

However, two studies of active and total communities in soils yielded conflicting results, 

with one reporting higher evenness in the DNA community (Gremion, Chatzinotas, and 

Harms, 2003), and the other reporting higher evenness in the RNA community 

(Mikkonen et al., 2014). The lack of consistent patterns across studies could reflect 

differences in ecosystem properties. Microbial rank abundance curves are dynamic 

(Lennon and Jones, 2011). Differences in the structure of active and total communities 

depend on ecosystem characteristics including resource availability, perturbation regime, 

and residence time, which change through time and can drive changes in the microbial 

diversity patterns. 

 

4.3. Rare taxa in the total community were disproportionately active  

Across all OTUs, abundance in DNA was correlated with abundance in RNA. 

However, OTUs with the highest RNA:DNA ratio were rare members of DNA 

community. In other words, the potential activity of these OTUs was negatively related to 

abundance in the DNA community (Figure 13). This pattern has been observed in other 

environments including marine (Hugoni et al., 2013; Campbell et al., 2011; Hunt et al., 

2013), freshwater (Wilhelm et al., 2014), and soil systems (Gremion, Chatzinotas, and 

Harms, 2003). Suggesting that across environments, the bacterial taxa that contribute to 

ecosystem functioning appear rare in DNA-based surveys, so their importance may not 

be recognized. This highlights the importance of RNA-based surveys in linking microbial 

community composition to ecosystem function, particularly in relatively uncharacterized 

environments such as the atmosphere.  
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4.4. Rhodospirillales are potentially active in the atmosphere 

Potentially active taxa were identified as belonging to several taxonomic groups. 

Members of the order Rhodospirillales were consistently identified as being active across 

all analyses. At the family level, potentially active individuals include members of the 

following taxonomic groups: Acetobacteraceae; Nocardiaceae; Ellin6075 species; 

Kaistobacter species. Of 343 shared OTUs, 59 significantly differed in abundance. Of 

those, 14 OTUs belonging to the family Acetobacteraceae were more abundant in the 

RNA community. The Acetobacteraceae are members of the order Rhodospirillales. They 

are the acetic acid bacteria, and their metabolism is characterized by the fermentation of 

ethanol to acetic acid (Komagata, Iino, and Yamada, 2014). Ethanol is a common 

chemical in the atmosphere and is a precursor of acetaldehyde and peroxyacetyl nitrate, 

which are both components of smog. This suggests that bacteria in the atmosphere may 

be involved in the cycling of compounds that are relevant to human health.  

The three Acetobacteraceae OTUs with the greatest difference in abundance were 

all identified by BLAST (Altschul et al., 1990) as Acidisphaera rubrifaciens. A. 

rubrifaciens is an aerobic, chemoorganoheterotroph and facultative phototroph which 

was isolated from an acidic hot spring. It produces bacteriochlorophyll a and carotenoid 

pigments, which could protect against UV damage in the atmosphere. Research has 

shown that the optimal growth of A. rubrifaciens occurs in the light with simple organic 

compounds as energy and carbon sources. More specifically, growth can occur on the 

conjugate bases of organic acids (Hiraishi et al., 2000) found in the atmosphere such as 

fumarate, gluconate, lactate, malate, pyruvate, and succinate (Finlayson-Pitts and Pitts Jr 

1999). It is possible that succinate concentrations were elevated during the time of 

sampling at the MBO site, as there were several active wildfires in the region, and 

concentrations succinic acid are often elevated in the atmosphere during biomass burning 

(Kundu et al., 2010; Falkovich et al., 2005). Furthermore, microbes isolated in the 

atmosphere can degrade organic acids, including succinate, and this biological process 

may be more important than abiotic chemical cycling (i.e. photodegradation) 

(Vaïtilingom et al., 2011). The potential ability of airborne bacteria, such as A. 

rubrifaciens, to grow using organic acids has implications for biogeochemical cycling in 

the atmosphere.  
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5. Conclusion 

Airborne metabolically active bacteria may alter the chemistry of the atmosphere 

through the biogeochemical cycling of organic compounds. However, little is currently 

known about which taxa may be active and their potential functions. Our study represents 

the first to use both RNA- and DNA-based methods to identify potentially active bacteria 

in the atmosphere. We found that the RNA community was characterized by the presence 

of a few highly active taxa and many taxa with low activity levels, and taxa that were rare 

in the DNA community were the most likely to be metabolically active. Potentially active 

taxa in the atmosphere included members of the order Rhodospirillales, specifically, 

Acidisphaera rubrifaciens. A. rubrifaciens may be well-suited for growth in the 

atmosphere because it has pigments which can mitigate UV damage, and it grows well on 

simple organic compounds including some common in the atmosphere. We suggest 

future research should combine both culture-independent and culture-dependent 

approaches to assess the potential activity of bacteria in the atmosphere. Culture-

independent approaches could be used to identify potentially active taxa, and then 

culture-dependent methods could be used to isolate organisms and study their physiology 

under various conditions possibly using aerosolization chambers. As with any 

environment, understanding both the structure and function of microbial communities in 

the atmosphere is needed to assess their potential impact on ecosystem processes such as 

carbon cycling. This study opens the door for future investigations of the diversity and 

function of bacterial communities in the atmosphere. 
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CHAPTER VI 

CONCLUSION 

 

This dissertation contributes to the fields of microbiology and ecology by 

examining the microbial life in an understudied environment, the atmosphere. It expands 

the scope of inquiry around microbes in the atmosphere by considering the possibility 

that the atmosphere could be a habitat for microbial life and provides a foundation for 

further inquiry into the identity and function of metabolically active populations of 

microbes in the atmosphere. By measuring temporal variation in bacterial communities in 

the atmosphere, this work also contributes to our understanding of the role of the forces 

structuring microbial communities in the atmosphere.   

 

Summary of Results 

Chapter II 

The study of the microbial diversity of the atmosphere has the potential to greatly 

expand how we think about the distribution of life on Earth. Aerobiology has a rich 

history of study, but technical and conceptual limitations have hindered the study of 

microbial communities in the atmosphere. Advances in molecular biology techniques and 

DNA sequencing have made it possible to study the diversity of airborne communities 

using culture-independent methods. Conceptual limitations can be overcome by viewing 

the atmosphere as a potential habitat for microorganisms and by designing experiments 

accordingly.  

 

Chapter III 

In the atmosphere over the Amazon rainforest, the total and metabolically active 

fungal communities differed the relative abundances of the dominant phyla, Ascomycota 

and Basidiomycota. These differences were predicted using a mass-balance model, which 

took into account differences in the size and abundance of cells from each phylum. The 

metabolically active community more closely resembled communities in potential source 

environments than did the total community. Lichen fungi were abundant members of the 

active community and their abundance in the total community may be underestimated. 
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Lichen fungi are efficient ice nucleators, so their abundance in the atmosphere over the 

Amazon rainforest has implications for precipitation development in this globally 

important region.  

 

Chapter IV 

At Mt. Bachelor Observatory, the diversity and composition of microbial 

communities in the atmosphere varies over multiple time scales. The composition of 

bacterial communities in the atmosphere varied within days and may be related to diurnal 

fluxes of bacteria from local sources including rock surfaces. In contrast to the 

pronounced diurnal variability, community composition was relatively stable across days. 

Diversity varied over both within and across days. Changes in diversity across days could 

be due to influence of distinct air masses that arrived at the summit during sampling 

including air masses from high elevations in the atmosphere and air masses which were 

impacted by wildfires.  

 

Chapter V 

Comparative DNA- and RNA-based evidence suggests that bacteria in the 

atmosphere are metabolically active. At Mt. Bachelor Observatory, the total and active 

communities significantly differed. The species abundance distribution of the active 

community was characterized by dominance and rarity with a few abundant taxa and 

many rare taxa whereas the total community was characterized by more even relative 

abundances of taxa. The total and active communities also differed in composition. As 

has been observed in soil and aquatic environments, taxa that were rare in the total 

community were more like to be metabolically active highlighting the importance of 

RNA-based surveys in studying the function of microbial communities. The order 

Rhodospirillales was overrepresented in the active community and members of this 

community were differentially abundant in the active and total communities. Members of 

this order including Acidisphaera rubrifaciens may be well suited for growth in the 

atmosphere.  
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Future Directions 

The study of microorganisms in the atmosphere sheds light on the processes 

underlying the distribution of microbial life on Earth and contributes to our understanding 

of the roles microorganisms play in atmospheric processes. A productive approach for 

future research may employ both culture-independent approaches as well as culture-

based, manipulative experiments to study the diversity and function of microbial 

communities in the atmosphere. For example, experiments might involve the analysis of 

DNA sequence data from high resolution time series samples and samples local source 

environments in order to better understand the links between local sources and 

environmental conditions in structuring microbial communities in the atmosphere. This 

type of culture-independent data about microbial communities in the atmosphere can also 

be used to inform culture-dependent experiments in the laboratory. For example, RNA-

based sequence data revealed that lichen fungi might be abundant in the atmosphere over 

the Amazon rainforest. The next step could be to isolate lichen fungi from the atmosphere 

over the Amazon and test the ability of these organisms to nucleate ice in order to better 

assess the importance of lichen fungi on precipitation development in the Amazon. 

Similarly, comparative DNA- and RNA-based analyses suggested that members of the 

bacterial order Rhodospirillales might be metabolically active in the atmosphere. Future 

work could involve culturing Rhodospirillales taxa in the laboratory and testing their 

ability to grow using substrates found in the atmosphere. Such studies might involve 

aerosolization-chambers and other methods for recreating the atmospheric environment 

in the lab. These and other experimental approaches have the potential to expand our 

understanding the distribution and function microorganisms in their habitats. This will be 

an important step toward an integrated understanding of microbial life on Earth 

connecting the lithosphere, hydrosphere, and the atmosphere.  
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APPENDIX A 

MASS-BALANCE MODEL FOR CHAPTER III 

We use a global, well-mixed, one-box material-balance model to explain the relative 

abundances of fungal cells measured as gene copies sampled in the active and total 

portions of atmospheric bioaerosols. By material-balance, for any taxon i within a 

biological community, the change in time in the abundance of fungal gene copies, Ni, 

must be equal to the difference in source and sinks: 

𝑑𝑁#

𝑑𝑡
= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 − 𝑠𝑖𝑛𝑘𝑠 

Here we assume sources are equal to the emission of fungal gene copies from the Earth’s 

surface into the atmosphere, Ei (gene copies/hour). We assume sinks are equal to 

deposition of fungal gene copies out of the atmosphere back to the Earth’s surface, Di = 

Niki, (gene copies/hour), where ki (1/hour) represents a first order deposition coefficient. 

We can rewrite Equation (A1) as:  

	
  
𝑑𝑁#

𝑑𝑡
= 𝐸# − 𝑁#𝑘# 

We expect the terms Ei and ki to vary as a function of life history traits including the 

method of cell release into the atmosphere, the physiological state of sampled cells, and 

the aerodynamic diameter of fungal taxa. In this case, Equation (A2) does not directly 

represent the entire airborne fungal gene copy abundance. We assume that a first order 

approximation of fungal bioaerosol behavior may be obtained by subdividing the particle 

distribution into two modes: vegetative cells, Ni,veg, and spores, Ni,spores. We thus model 

fungal gene copy abundance as: 

𝑁# = 𝑁#,345 + 𝑁#,789:47 

We can then write and solve parallel versions of Equation (A2) for each mode. At steady 

state, the expected gene copy abundance taxa i in each mode is: 

𝑁#,345 =
𝐸#,345

𝑘#,345
 

𝑁#,789:4 =
𝐸#,789:4

𝑘#,789:4
 

(A1) 
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Our interest lies in the two most common fungal phyla sampled in the atmosphere: 

Ascomycota, NA, and Basidiomycota, NB. To make predictions about the expected 

relative abundance of gene copies in these two groups, we make informed assumptions 

about the relative magnitude of their respective emission and deposition rates. We begin 

by considering fungal spores. Although a few empirical studies have suggested that 

Ascomycota are more abundant than Basidiomycota in likely source environments 

including tropical soils (Kerekes et al., 2013) and leaf surfaces (Kembel and Mueller, 

2014), Basidiomycota (e.g. Agaricomycetes, the most abundant class of Basidiomycota in 

our samples) produce orders of magnitude more spores per individual than Ascomycota 

(Elbert et al., 2007; Pringle, 2013). For this reason, we assume the emission rate of 

Basidiomycota spores is much greater than that of Ascomycota spores: 

𝐸;,789:47 ≪ 𝐸=,789:47 

Culture-based microscopy data suggests that spores of Ascomycota are typically larger 

than spores of Basidiomycota (Elbert et al., 2007; Ingold, 2001; Yamamoto et al., 2014). 

Owing to the difference in spore size, we expect deposition rate of Ascomycota spores to 

be greater than that of Basidiomycota spores:  

𝑘>,;,789:47 >	
  𝑘>,=,789:47 

Based on these assumptions, it follows that the expected number of Ascomycota spores in 

the atmosphere will be less than the number of Basidiomycota spores: 

𝐸;,789:4

𝑘;,789:4
≪
𝐸=,789:4

𝑘=,789:4
 

 or 

𝑁;,789:47 ≪	
  𝑁=,789:47 

We next consider fungal vegetative cells. Vegetative forms of Ascomycota are generally 

smaller than vegetative forms of Basidiomycota (Moore et al., 2011). Many Ascomycota 

grow as filaments or single cells that are small enough to be aerosolized (Després et al., 

2012). In contrast, many Basidiomycota grow as mushrooms, which are too large to be 

aerosolized (although debris from mushrooms and their mycelia can be aerosolized). Due 
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to this difference in the vegetative forms of each group, we expect emission rate of 

vegetative Ascomycota to be greater than Basidiomycota: 

𝐸;,345 > 𝐸=,345 

No comparative data currently exists on the relative deposition rate of vegetative cells 

across fungal taxa. Research has shown that at the phylum level, the aerodynamic 

diameter of Ascomycota is greater than that of Basidiomycota, resulting in a greater 

deposition rate overall for Ascomycota (Yamamoto et al., 2014). However this work did 

not differentiate between vegetative cells and spores, and there is no a priori reason to 

assume that the deposition rate of Ascomycota vegetative cells are less than or greater to 

that of Basidiomycota cells. For this reason, we make the null assumption that the 

deposition rate of each group is equal:  

𝑘>,;,345 =	
  𝑘>,=,345 

Based on these assumptions, we expect the number of vegetative Ascomycota genes to be 

greater than the number of vegetative Basidiomycota genes: 

𝐸;,345

𝑘;,345
>
𝐸=,345

𝑘=,345
 

 or 

	
  𝑁;,345 > 𝑁=,345 

Equation (A3) predicts that Ascomycota will dominate the active fungal community in 

the atmosphere. 

Finally, we relate the abundance of Ascomycota and Basiodiomycota gene copies in their 

totality to ask if 𝑁; < 𝑁= or 𝑁; ≥ 𝑁=. 𝑁; < 𝑁= if and only if: 

𝑁;,345 + 𝑁;,789:47 < 𝑁=,345 + 𝑁=,789:47 

Rearranging terms and dividing both sides of the equation by 𝑁=,789:47 yields the 

inequality: 

𝑁;,345 − 𝑁=,345

𝑁=,789:47
+
𝑁;,789:47

𝑁=,789:47
< 1 

(A3) 
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or 

𝑁;,345 − 𝑁=,345

𝑁=,789:47
< 1 − 𝜀 

where 𝜀 =
DE,FGHIJF

DK,FGHIJF
 . Empirical data on the discharge of Ascomycota and Basidiomycota 

spores from fruiting bodies suggests that 𝜀 ≤ 0.01 (Elbert et al., 2007). In this case 𝑁; <

𝑁= if and only if: 

𝑁;,345 − 𝑁=,345

𝑁=,789:47
< 0.99 

We expect Equation A4 to hold due to the likelihood that spores greatly out number 

vegetative cells in the atmosphere in both phyla. Spores can be actively discharged into 

the air, whereas vegetative cells are not actively propelled into the atmosphere and 

require aerosolization by mechanical forces like wind. Furthermore, empirical data 

suggests that vegetative cell fragments constitute a small fraction (0.2-16% (Green et al., 

2011)) of the total fungal biomass in the atmosphere. For these reasons, we predict that  

𝑁; < 𝑁= 

Based on the conclusions of this model, we expect Basidiomycota will dominate the total 

community, and Ascomycota will dominate the active community in the atmosphere. We 

note there are many limitations to our model. First, we model fungal gene copy 

abundances assuming a well-mixed atmosphere at steady state. Yet the atmosphere is a 

highly heterogeneous and dynamic environment; the sampled air volume was likely 

neither well mixed nor at steady state over the time intervals we measured. Second, we 

use a global model with emission and deposition as the sole input and output, whereas a 

local model that incorporated site-specific environmental fate and transport terms would 

likely provide more accurate expectations. Third, due to a paucity of data, our estimates 

of fungal gene abundance levels rely on assumptions about the emission and deposition 

rates of vegetative cells and spores across fungal taxonomic groups. Empirically derived 

estimates of these model parameters would significantly improve our approach. Fourth, 

we do not know to what extent vegetative cells and spores are associated with other 

particulate matter and how this affects their deposition and emission rates. Adopting an 

(A4) 
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approach to empirically estimate the aerodynamic diameter of these fungal cell types 

across taxonomic groups would allow for improved estimates of deposition rates 

(Yamamoto et al., 2014).  
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER III 

Table 3. Barcodes and adapter/sequencing primers for metatranscriptome 

Sample Barcode 5' adapter/sequencing primer 3' adapter/sequencing primer 

Dec .8 AAACT AGTTTAGATCGGAAGAGCG
GTTCAGCAGGAATGCCGAG 

ACACTCTTTCCCTACACGA
CGCTCTTCCCATCTAAACT 

Dec. 9 AAAGC AGTTTAGATCGGAAGAGCG
GTTCAGCAGGAATGCCGAG 

ACACTCTTTCCCTACACGA
CGCTCTTCCCATCTAAACT 

Dec. 10 AACAA AGTTTAGATCGGAAGAGCG
GTTCAGCAGGAATGCCGAG 

ACACTCTTTCCCTACACGA
CGCTCTTCCCATCTAAACT 

Dec. 11 AACTG AGTTTAGATCGGAAGAGCG
GTTCAGCAGGAATGCCGAG 

ACACTCTTTCCCTACACGA
CGCTCTTCCCATCTAAACT 

 

Table 4. LSU barcodes and primers 

Sample 
Forward 
barcode 

Reverse 
barcode 

Full 
barcode 

Forward 
primer (LR0R) 

Reverse primer 
(LR3) 

Dec .8 TAATTC AATATC AATATC
TAATTC 

ACCCGCTGA
ACTTAAGC 

CCGTGTTTC
AAGACGGG 

Dec. 9 TACACA AATATC AATATC
TACACA 

ACCCGCTGA
ACTTAAGC 

CCGTGTTTC
AAGACGGG 

Dec. 10 CCCTAA AATATC AATATC
CCCTAA 

ACCCGCTGA
ACTTAAGC 

CCGTGTTTC
AAGACGGG 

Dec. 11 CCGAGG AATATC AATATC
CCGAGG 

ACCCGCTGA
ACTTAAGC 

CCGTGTTTC
AAGACGGG 

 

Table 5. Air sequence summary statistics 

Sample  
# Metatranscriptome 
Sequences 

# rRNA sequences 
(metatranscriptome) 

# LSU amplicon 
sequences 

Dec. 8 331,765 51,361 5,377 

Dec. 9 601,828 97,871 20,766 

Dec. 10 0 0 18,778 

Dec. 11 4,231,592 1,766,762 10,493 
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Table 6. Multi-environment sequence summary statistics 

Study # Samples # Sequences Biome 

Barnard et al., 2013 60 151,125 Temperate grassland soil 

Kerekes et al., 2013 36 26,390 Tropical forest soil 

Kembel and Mueller, 2014 100 771,562 Tropical forest phyllosphere 

Penton et al., 2013 16 82,618 Tundra soil 

Penton et al., 2013 12 93,994 Temperate grassland soil 

Penton et al., 2014 48 451,769 Temperate grassland soil 

This study (amplicons) 4 55,414 Tropical forest air (DNA) 

This study (metatranscriptome) 3 1,915,994 Tropical forest air (RNA) 

 

 

Figure 14. Highest temperatures with ice nucleation activity in lichens and other fungi. 
Data compiled from Després et al., 2012 and C. E. Morris et al., 2013. 
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Figure 15. OTU richness significantly varied among environment types. Letters above 
each box indicate non-significant pairs after Tukey’s test (adjusted p-value > 0.05). 

 

 

Figure 16. Total and active air communities were most similar to tropical phyllosphere 
tropical soil communities. 
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