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THESIS ABSTRACT 

 

Samantha McQueen Zeman 

 

Master of Science 

 

Department of Biology 

 

March 2015 

 

Title: Orientation Behavior and Feeding Ecology of the Scyphomedusa Chrysaora 

fuscescens 

 

 

Chrysaora fuscescens is a cnidarian scyphomedusa that occurs in the northern 

California Current. In this upwelling system, medusae are seasonally abundant, and 

individuals can ingest 10-60% of the standing stock of vulnerable zooplankton taxa per 

day. Yet little is known about this medusa’s feeding ecology. Using laboratory 

pseudokreisels, C. fuscescens feeding rates and behavior were quantified in the presence of 

a controlled flow field. C. fuscescens collected aboard research cruises were dissected, and 

prey items were counted in order to calculate feeding rates and prey selectivity. In the lab, 

C. fuscescens feeding rates were not affected by shear flow, and medusa maintained 

position by swimming counter-current. Field work demonstrates high feeding rates and 

positive prey selection for  nonmotile taxa. For the first time, high clearance rates of 

ichthyoplankton have been documented. An understanding of jellyfish behavior can help 

explain jellyfish distributions and trophic impacts in a productive upwelling system.   
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CHAPTER I 

GENERAL INTRODUCTION 

 

 Cnidarian jellyfish consume a variety of plankton taxa and are potential keystone 

predators (Arai 1997, Pauly et al. 2009). Despite their simple nervous and muscular 

systems, jellyfish are effective at clearing the water of potential prey (Acuna et al. 2011), 

can compete with pelagic fish for food resources and can restructure marine ecosystems 

in heavily exploited areas (Lyman et al. 2006, Purcell 2009). Review articles and food 

web models demonstrate the importance of jellyfish as key parts of the trophic structure 

in marine ecosystems (Kremer and Sullivan 2011, Brodeur et al. 2011).  

 Top-down control of zooplankton populations by jellyfish is demonstrated in a 

variety of coastal ecosystems (Matsakis and Conover 1991, Purcell 1992, Brodeur et al. 

2002). Prey selection indices have shown that certain zooplankton groups are more 

susceptible to predation by certain types of jellyfish. For example, larvaceans and 

ichthyoplankton (fish eggs and larvae) can be preferentially selected over more abundant 

prey items (Purcell 2003, Purcell 1997). These selection pressures are important because 

they highlight key trophic connections and indicate which prey items may be more 

vulnerable. Prey selection, feeding rate data, and food web models also reveal 

competitive overlap with fish species (Purcell and Sturdevant 2001, Brodeur et al. 2014).  

 Medusae can form large aggregations of individuals at distinct physical features 

such as fronts or pcynoclines (Graham et al. 2003). Complex flow patterns within frontal 

zones accumulate buoyant particulate matter to create regions of high plankton biomass 

(Flint et al. 2002). This phenomenon of dense aggregations is not uncommon and is a 

characteristic of the spatial and temporal variability of marine plankton (McManus and 

Woodson, 2012). Non-random orientation at physical boundaries has been noted in 

mesoplankton at upwelling and downwelling fronts and in Scyphozoan medusae at tidal 

currents and frontal systems (Genin et al. 2005, Morris 2006, Fossette et al. 2015). Active 

swimming by plankton at flows associated with physical features can maintain their 

position in an aggregation with possible benefits including enhanced feeding, 

reproduction and defense (Folt and Burns 1999, Genin et al. 2005, Graham et al. 2003).   
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 Chrysaora fuscescens is a large scyphomedusa in the northern California Current 

(NCC) system which can be found from the Gulf of Alaska to Mexico (Suchman et al. 

2008, Carlton 2007). Medusae occur in large numbers off the western coast of the United 

States with abundances reaching 1800 L medusae per 10
5
 m

3
 in the summer months 

(Shenker 1984). On smaller spatial scales, C. fuscescens have been shown to aggregate at 

fronts within the California Current (Graham 1994, Morris 2006).  Diet and isotope work 

demonstrate the predation impact of these large jellyfish on crustacean and gelatinous 

zooplankton populations; adult medusae have the ability to remove 60% d
-1

 of the 

standing stock of vulnerable taxa, and potential trophic overlap with forage fish species 

(Suchman et al. 2008, Brodeur et al. 2008).  

 C. fuscescens is a cruising predator: contraction and relaxation of the bell creates 

a characteristic flow field and vortices that bring fluid and potential prey in contact with 

tentacles and oral arms. The full pulsation cycle allows fluid to be brought into the 

subumbrellar region during contraction and subsequent relaxation entrains a large volume 

of water near feeding structures (Ford et al. 1997, Dabiri et al. 2005). The relationship 

between the rowing pulsations and prey capture has been studied in still water. However, 

flows that are characteristic of the natural environment likely influence prey capture by 

altering fluid motions around the bell and oral arms but these effects are not well-studied 

(Katiji et al. 2011, Hamlet and Miller 2012). For instance, Aurelia sp., a large 

Scyphozoan, will pulse asymmetrically in response to shear flow. This asymmetry 

between the two sides of the bell leads to stronger contractions on one side of the bell 

which may increase marginal bell velocities and entrain more fluid (Rakow and Graham 

2006).  

 Laboratory experiments and field work were used to answer the following 

questions: (1) Does C. fuscescens have an increased clearance rate in shear flow, if so, (2) 

Are enhanced clearance rates driven by prey concentration, increased encounter in flow 

or a combination of the two?, (3) Does swimming in shear affect the orientation behavior 

of C. fuscescens? and, (4) What are the in situ feeding rates and prey selectivity of C. 

fuscescens in the northern California Current?  A more complete picture of jellyfish 

trophic dynamics and orientation behavior is crucial especially considering increases in 

gelatinous zooplankton abundance in some regions due to invasions, fishing activities, 
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euthrophication and other anthropogenic forcings (Graham et al. 2003, Purcell et al. 

2007, Richardson et al. 2009). The NCC may not represent a region of atypical jellyfish 

biomass, but studying Chyrsaora can provide baseline data for distribution patterns and 

important trophic relationships in a dynamic upwelling system.   
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CHAPTER II 

LABORATORY CLEARANCE RATES 

 

INTRODUCTION 

 Scyphozoan medusae are ubiquitous members of the marine zooplankton and 

laboratory research has expanded on the importance of predator-prey interactions on 

feedings rates (Purcell 1997, Hansson and Kiørboe 2006b, Kremer and Sullivan 2011).  

Laboratory experiments reveal high feeding potential of jellyfish on a variety of 

zooplankton prey assemblages (Purcell 1997, Suchman and Sullivan 2000, Purcell 2009). 

Jellyfish feeding is highly coupled to swimming behavior. As a medusa contracts and 

relaxes its bell, it produces defined vortices that bring prey in contact with stinging cells 

on the oral arms and tentacles. Particle imaging techniques, using neutrally buoyant 

particles and videography, allows researchers to visualize and quantify the fluid velocities 

around the bell margin (Ford et al. 1997, Colin and Costello 2002). However, much of 

this work has been done in still water which does not take into account the turbulent 

environment that jellyfish inhabit. For instance, interactions between currents and 

jellyfish swimming have been shown to play a role in jellyfish aggregations (Rakow and 

Graham 2006, Fossette et al. 2015).  

 Medusae may be concentrated by advective flow patterns at large scale 

hydrographic features, such as convergent fronts. At sites of downwelling currents, strong 

swimming medusae may actively swim in counter-current direction in order to maintain 

position and not become dispersed. Accumulation would also occur if medusae swam 

parallel to the front as they would be entrained again by downwelling velocities. This 

scenario could explain the observation of Chrysaora fuscescens swimming in non-

random directions at frontal zones (Graham 1994). Directed swimming likely maintains 

jellyfish in regions of fluid flow and velocity gradients. Jellyfish have exhibited 

asymmetrical pulsing to maintain their heading into vertical shear (Rakow and Graham 

2006). Asymmetric pulsing, and the interaction of fluid flow along feeding appendages, 

could disrupt or enhance fluid vortices and therefore alter the feeding potential of 

jellyfish. 
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 Clearance rates, or the ability of a predator to clear prey from the fluid, are useful 

calculations to compare feeding rates using the same prey items. Laboratory feeding 

studies have been conducted in either still water or flow, but the possible effects of these 

separate conditions on feeding rates have not been quantified (Suchman and Sullivan 

2000, Titelman and Hansson 2006). In this study, I examined the effect of velocity shear 

and prey concentrations on the clearance potential of C. fuscescens. If there is a change in 

clearance rates, is it driven by prey concentration, fluid movement, or an interaction 

between the two variables?  

 

METHODS 

Experimental Tank and Velocity Measurements  

 A 120 L (70 × 38 × 76 cm) pseudokreisel was used as the experimental tank 

designed after Hamner (1989) (Figure 2.1). Circular flow was created by pumping water 

into a head tank that dispensed water through a thin layer of plastic punctured with square 

holes to create laminar flow at the inlet. The tank was supplied with seawater with the use 

of a submersible utility pump (Danner Manufacturing Inc., model 18B) that rested in a 10 

gallon sump. Water was returned to the pump via an outlet flow that emptied back into 

the sump (Figure 2.1). Seawater was filtered through a 10 µm filter bag while the tank 

was filled. During still water experiments, a plug was placed in the outlet hole of the 

pseudokreisel to keep the tank volumes equivalent for all treatments. 

 For all treatments, the volume of the tank was approximately 118 L. A 100 µm 

mesh, located before the outlet flow, was used to contain prey in the body of the tank. 

Water velocities were measured in three dimensions with a Nortek Acoustic Doppler 

Velocimeter (ADV). The down-looking ADV probe (beam frequency: 25 Hz , sampling 

rate: 200 Hz) was used to take measurements in a 50 × 30 cm window located in the 

center of the tank where the ADV was not constrained by the tank design (Figure 2.2). In 

a pseudokreisel, the highest flow and shear are generated near the tank walls; therefore, 

this measurement window represents a region of high velocity and shear (Figure 2.3, 

Figure 2.4). Average velocities were measured at 4 cm intervals along nodes marked on a 

1 cm
2
 grid situated behind the pseudokreisel. Velocity measurements were processed 

using ExploreV 1.59 (programmer Alexander Sukhodlov, Nortek) and vector maps were 
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plotted in Matlab (Mathworks, R2007a).  High-flow treatments were characterized by 

maximum flow velocity of 8.54 cm s
-1

 and mid-flow treatments were characterized by 

maximum velocity of 4.17 cm s
-1

. (Figure 2.3, Figure 2.4). Maximum flow velocities 

were constrained by the minimum and maximum flow rates that the medusae could 

withstand and still exhibit ‘normal’ behavior. These flow conditions are also within the 

range of velocities encountered in the California Current system (Woodson et al. 2009; 

McClatchie et al. 2012). Vertical shear (S) was calculated from ADV measurements as, 

 

S= δw / δx 

 

where w is water velocity in z-axis direction and x is distance on the x-axis. Average 

shear rate was 0.30 s
-1

 in high flow (max: 8.54 cm s
-1

) and 0.16 s
-1 

in mid-flow (max: 4.14 

cm s
-1

) conditions (Figure 2.3, Figure 2.4). 

 

Subsampling Prey Items  

 Experimental prey items, 2-day old Artemia nauplii, were subsampled from a 1 L 

beaker with a 1 mL disposable pipette. Artemia are not natural prey items, but are often 

used in feeding studies because of their ease to culture and similarity to crustacean prey 

(Clifford and Cargo 1978). A bubbler was placed in the 1 L beaker to maintain a 

homogenous prey distribution. Upon removal of the air stone, a 1 mL subsample was 

pipetted from the middle of the beaker and nauplii were counted. This subsampling 

technique was repeated 10 times for each treatment and for both high (506 Artemia L
-1

) 

and low (57 Artemia L
-1

) prey concentrations. Lower prey concentrations represent a 

realistic range of prey concentrations in the field and the high prey concentration 

accounts for high satiation potential of coelenterates (Clifford and Cargo 1978, Hansson 

and Kiørboe 2006). 
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Figure 2.1. Layout of 120 L pseudokreisel used for C. fuscescens orientation and feeding 

experiments. Red arrows represent general flow patterns in the tank created by pumping 

water into the head tank and through plastic material punctured with square holes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. (A) Set-up of ADV measurements in experimental pseudokreisel with (B) a 

view from the side of the tank showing placement of ADV probe-head and (C) an up-

close view of probe and 1 cm
2 

grid. The red rectangle represents the approximate location 

of the 50 × 30 cm measurement area where ADV measurements were taken.  
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Maintaining Medusae  

Wild caught Chrysaora fuscescens were housed in large aquaria at the Oregon 

Coast Aquarium in Newport, Oregon. Jellies were starved for 16-22 hours before feeding 

experiments. Thirteen medusae, which ranged in size from 6 to 9 cm, were used in the 

feeding experiments.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Velocity vector map (A) in high-flow (max: 8.84 cm s
-1

) using the 50 × 30 cm 

measurement window as working section of the tank. Contour map of shear stress (B) 

calculated from velocity measurements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Velocity vector map (A) in medium-flow (max: 4.14 cm s
-1

) using the 50 × 30 

cm measurement window as working section of the tank. Contour map of shear stress (B) 

calculated from velocity measurements.  

A B 

A B 
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Clearance Rate Experiments 

Studies by Suchman and Sullivan (2000), Titelman and Hansson (2006), and 

Clifford and Cargo (1978) were used as guides for experimental design and analysis. 

Clearance rate experiments were conducted at the Oregon Coast Aquarium in winter 

2014. Five treatments, with two prey and three flow regimes, were used to assess the 

effect of flow and prey concentration on feeding rates (Table 2.1).  Prior to the start of 

each experiment, an individual medusa was placed in the tank and monitored for 5 min to 

allow the animal to acclimate to the tank. If the medusa was actively pulsing, Artemia 

were placed into the tank and black, plastic bags were wrapped around the tank to keep 

out ambient light. In control experiments, prey distributions were examined by eye to 

ensure that Artemia were evenly distributed in the tank.   

The medusa was allowed to feed for one hour and was observed every 10 min to 

check if on behavior of jelly. The behavior of the medusa was observed to ensure that 

individuals were swimming and not remaining motionless in the tank. After one hour, the 

plastic was removed and the medusa was quickly dipped from the surface a 2 L container. 

Upon removal, the medusa was rinsed with fresh seawater to remove prey items adhering 

to the outside of the medusa; these prey items were then returned to the experimental 

tank. The medusa was returned to holding tanks and used for subsequent treatments. The 

water in the pseudokreisel and sump was then siphoned through a 63 µm sieve. In the 

high-flow treatments, prey escaped through the 100 µm mesh and were lodged in a 10 

µm filter bag that was also rinsed and cleaned. The uneaten prey were transferred to a 1 L 

beaker for subsequent subsampling. Controls were conducted for each treatment to 

determine that 98% of nauplii were retained using experimental protocol. Each medusa 

was observed under multiple conditions. A repeated measure design was implemented so 

that 13 medusae were used in each of the five treatments (Davis, 2002). 

Ingestion rate (I) was calculated as,  

I = Cin – Cout /t 
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where Cout  is prey concentration (L
-1

) at end of the experiment, Cin is prey concentration 

(L
-1

) at beginning of experiment, and t is incubation time (h).  A linear model was 

employed since food reduction was less than 50% (Båmstedt et al. 2000).  

Clearance rate (F) was determined with the following equation: 

F  = V/t × ln(Cin/Cout) 

where V (L)  is volume of tank, Cout is prey concentrations (L
-1

) at end of experiment, Cin 

is prey concentration (L
-1

) at beginning of experiment, and t is incubation time (h) 

(Titelman and Hansson 2006). 

 

Table 2.1. Summary of velocity measurements, shear rates, prey concentrations and 

number of medusae used for feeding rate experiments.   

 

Maximum Flow 

(cm s
-1

) 

Maximum Shear 

(s
-1

) 

Mean Artemia 

concentration (L
-1

) 

Total medusa used 

in experiment 

Still Water na 55 9 

Still Water 

 

na 502 13 

4.14 

 

0.37 509 5 

8.54 0.97 60 10 

8.54 0.97 508 13 

 

 

Statistics 

 Using R 2.15 (R Core Team 2013), multivariate repeated measures analysis of 

variance (MANOVA) was used to evaluate the effect of flow and prey concentration on 

clearance rate. Simple linear regression models were employed to highlight patterns in 

clearance and ingestion rates with regard to prey density and bell diameter. 
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RESULTS 

 

Medusae 3, 4, 5, and 6 were not used in all of the treatments, either because they 

died during the course of the experiments, or they were exhibiting poor health.  Medium 

flow (max: 4.14 cm s
-1

) treatments were suspended because medusae were dying and I 

decided to maximize data points for the two extreme flow regimes (still water and high 

flow). There was large variability in clearances rates with a minimum of 12 L
 
h

-1
 and a 

maximum of 114 L
 
h

-1 
(Figure 2.5). During periodic checks, medusae were actively 

pulsing in the tank.  Medusae were not dissected to calculate feeding rates, but Artemia 

were visible inside the guts and in patches on oral arms, demonstrating that ingestion was 

occurring.  

 

 

Figure 2.5. Box plots of measured clearance rates of C. fuscescens. The red line 

represents the median and whiskers represent the maximum and minimums. The top and 

bottom of the blue box are 25% and 75% percentiles, respectively. Outliers are 

represented as individual points. 
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 Since the data violated the assumption of sphericity (p=0.006), a multivariate 

model was used to analyze effects of prey concentration and flow velocity on clearance 

rate. Clearance rates in low prey concentrations were significantly higher than in high 

prey concentrations (F1,8=5.5; p=<0.05) which could be attributed to prey saturation (low 

prey, high-flow: mean=64; high prey, still water: mean=35; high prey, high-flow: mean= 

42). There was no significant main effect of flow (F1,8=1.57; p=0.25) or an interaction 

between flow and prey (F=0.421,8; p=0.53) (Figure 2.6, Table 2.2). Ingestion rate data 

were pooled to determine that ingestion rate increased linearly with prey density (I = 

28.838 Artemia/L + 1173.9, R
2
 = 0.68, p<0.001, df=43 ). There was no significant linear 

relationship between clearance rates and bell diameter (F=4.8; df=11, p=0.6).  

 

 

Figure 2.6. Average clearance rates from four experimental trials with high-flow (max: 

8.84 cm s
-1

) and still water and high prey (mean = 505 Artemia L
-1

) and low prey (mean= 

58 Artemia L
-1

) concentrations (N=9). Error bars represent standard deviation.  
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 Table 2.2. Results of Type III Repeated Measures MANOVA. 

                                       

                                              F stat.                      df                  p value         

         Flow Rate                            1.57                  8                      0.25 

         Prey Concentration*            5.50                  8                      0.05 

         Flow × Prey                         0.42                   8                      0.54 

          *represents significant effect 

 

 

DISCUSSION 

  

These results represent the first calculated feeding rates for C. fuscescens under 

laboratory conditions. In previous studies with scyphomedusae, the average clearance 

rates on Artemia range from 60 L cm
-1

 day
-1

 for Chrysaora quinquecirrha (Feigenbaum 

et al. 1982) and 41 L cm
-1

 day
-1

 for Pelgia noctiluca (Morand et al. 1987). Even though 

feeding rate variability was common, these previous studies present lower clearance rates 

than C. fuscescens (mean=120 L cm
-1

 day
-1

). These high clearance rates for C. fuscescens 

could be explained by a variety of factors: tank volume, experimental design, and capture 

dynamics between predator and prey. The volume of the incubation tank is an important 

consideration because Chrysaora are cruising, tentaculate predators that need large, 

unobstructed volumes of water in order to display natural behaviors. Calculations suggest 

that using an experimental tank that is 15,000 times the biovolume of the study organism 

would produce reliable results (Toonen and Chia 1993, Hansson 2006). A 4-cm 

Chrysaora, with approximate biovolume of 165 mL, would need an appropriate volume 

tank >2000 L (Purcell 1992). The larger tank volume (120 L) in this study could explain 

the increase in clearance rates as compared to previous studies that used 20-25 L tanks 

(Feigenbaum et al. 1982). Counting prey items also adds uncertainty to calculated feeding 

rates because of the inherent error in sub-sampling (van Guelpen et al. 1982). Also, 

starved jellyfish in high prey environments will exhibit elevated clearance rates (Hansson 

and Kiørboe 2006a).   
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The third factor is tied to the ability of the predator to encounter and capture prey. 

Medusae were not continually observed in this study so it is difficult to address 

differences in behavior. For example, C. fuscescens may exhibit higher feeding rates 

because of a phenotypic trait that increases flux of fluid into subumbreller region or more 

efficient handling of prey during capture events (Ford et al. 1997, Hansson and Kiørboe 

2006b). Jellyfish generate flow patterns that depend on moving a large volume of water 

to maximize prey encounter. Therefore, altering pulsations could decrease or increase the 

encounter radius. It may also constrain the selectivity of prey as the fluid velocity 

generated by pulsing will place a limit on prey that have fast or slow escape responses 

(Suchman & Sullivan 1998, Hansson & Kiorbøe 2006). It is apparent that C. fuscescens 

can clear large volumes of crustacean plankton. These baseline feeding rates are also 

useful as part of larger datasets used to create predictive models of feeding rates (Purcell 

2009).  

In pseudokreisel experiments, medusae are encountering velocity gradients that 

could interrupt eddies around the bell margin and feeding appendages. Results show that 

feeding in this flow has no effect on clearance rates of C. fuscescens. Experiments in 

Chapter III demonstrate the counter-current orientation behavior of C. fuscescens in 

pseudokreisels. Assuming this behavior in clearance rate experiments, medusae are 

maintaining their position and consistently encountering volumes of fluid containing non-

depleted prey items. The artificial nature of the pseudokreisel creates a homogenous prey 

distribution, in an enclosed volume, which could allow for high encounter rates that are 

similar in flow and still water. Clearance rates were significantly decreased in high prey 

concentrations which could be attributed to prey saturation (Hansson et al. 2005) or the 

possibility of prey-dependent changes in swimming at different prey concentrations. 

Chrysaora quinquecirrha decreased pulsation rate and increased velocities in response to 

prey, which demonstrates that feeding rates are likely altered in presence of prey but does 

not explain if prey concentrations were a factor (Matoanoski et al. 2001).  
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CHAPTER III 

ORIENTATION BEHAVIOR 

 

INTRODUCTION 

 

Jellyfish aggregations are defined as an accumulation of individuals due to 

passive current drifting, behavioral modification on part of the medusa, or an interaction 

of these two factors. Large scale hydrographic features, such as upwelling fronts or 

eddies, can retain and concentrate planktonic organisms. Aggregations are a common 

phenomena and seen in many gelatinous clades (Lucas and Dawson 2014). 

Scyphomedusae are often observed in dense aggregations and studies suggest that 

swimming in a non-random direction may contribute to maintenance of these 

aggregations. Medusae in aggregations have been shown to orient to a variety of physical 

factors including sun position (Hamner et al. 1994) circulation patterns (Zavodnik 1987, 

Purcell et al. 2000, Fossette et al. 2015),  Langmuir cells (Hamner and Schneider 1986, 

Larson 1992), haloclines (Graham et.al. 2003), wind-driven waves (Shanks and Graham 

1987) and fronts (Graham 1994). 

Chrysaora fuscescens is known to form large aggregations of individuals at 

frontal features (Graham et al. 2001). Fronts are classified as boundaries between two 

water masses that differ in hydrographic properties such as temperature or salinity. The 

formation and evolution of fronts is spatially and temporally complex and can be 

associated with upwelling events, topography, river plumes, etc. The associated 

convergence and divergence of fluid flow can entrain particulate and animals creating 

regions of enhanced plankton biomass (Cromwell and Reid 1955, Federov 1986, Olson et 

al. 1994). In situ studies of C. fuscescens in the California Current system demonstrate 

active directional swimming at convergent fronts. At upwelling shadows in Monterey 

Bay, CA, C. fuscescens occurs in dense patches that can be explained by physical forcing 

and swimming behavior of the medusae. In this scenario, medusae remain concentrated at 

convergent zones because of active vertical swimming matching downwelling velocities 

of frontal flow (Graham 1994).  ROV video transects at convergent fronts support 

directed swimming behavior; medusae are seen orienting northward on the southern side 
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of the front and orienting southward on the northern side of the front. The medusae swim 

perpendicular to the greatest flow which counteracts dispersive currents and maintains 

aggregations along the front (Morris 2006). The importance of physical processes should 

not be understated and on a local scale zooplankton behavior plays a key role in 

maintaining these aggregations (Hamner 2001).  

 Laboratory studies with Aurelia sp. orienting into shear flow supports orientation 

behavior in the field. Shear stress across the bell surface initiated asymmetric pulsing 

behavior. Asymmetric pulsing allowed the medusa to maintain position in the flow field 

and this behavior may be common in other Scyphozoans (Rakow and Graham 2006, 

Purcell et al. 2000). Further inquiry into the role of velocity shear as a possible cue to 

orient to flow is a logical step as velocity gradients are a fundamental physical 

characteristic of frontal convergences (Cromwell and Reid 1956).  Exploring C. 

fuscescens interactions with flow fields will lead to a greater understanding of jellyfish 

distribution patterns. This is worthwhile as Chrysaora inhabit a highly productive 

upwelling system, overlap in time and space with lucrative commercial fisheries and we 

are only recently gaining insights into their ecology and behavior (Suchman et al. 2008, 

Suchman et al. 2012, Brodeur et al. 2014, Conley and Sutherland 2015). Chrysaora in the 

NCC may not be demonstrating irregular population trends, but understanding how 

jellyfish interact with fluid flow can identify possible areas of increased jellyfish 

biomass. These behaviors may translate to other Scyphozoan populations and be useful to 

consider when discussing the potential increase in jellyfish biomass in heavily exploited 

marine ecosystems (Purcell et al. 2007, Condon et al. 2012, Purcell 2012). 

Few studies demonstrate how scyphomedusae behaviorally orient at small scales 

in response to a controlled environmental cue.  I used flow generated in a laboratory 

pseudokreisel as a cue for the orientation behavior of individual C. fuscescens. Does 

C.fuscescens swim in a non-random direction in response to shear flow, if so, is this 

swimming orientation different than in still water?   
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METHODS 

Experimental Tank and Velocity Measurements 

Behavior trials were conducted in a 120 L (70 × 38 × 76 cm) pseudokreisel based 

on the design of Hamner (1989). Pseudokreisels offer unique tank designs for delicate 

gelatinous taxa by creating continuous circular flow and minimizing contact with walls 

and outflow (Raskoff et al. 2003, Chapter II: Figure 2.1).Orientation behavior of C. 

fuscescens to current flow was assessed in three different flow treatments: still water, 

medium flow (max.:4.14 cm s
-1

), and high flow (max.:8.84 cm s
-1

). Flow levels are 

comparable to horizontal frontal velocities from the field (McClathchie et al. 2012, 

Graham and Largier 1997). The average shear rates were 0.16 s
-1

 for medium flow and 

0.30 s
-1

 for high flow. Flow velocities were measured with an Acoustic Doppler 

Velocimeter (ADV) in a 50 × 30 cm rectangular located in the middle of the 

pseudokreisel (Chapter II: Figure 2.2). The measurement window became the working 

section of the tank and was representative of flow in the pseudokreisel. Flow in the 

pseudokreisel created high velocity and shear along the walls and minimal flow in the 

center of tank (Chapter II: Figure 2.3). Refer to Chapter II for methodology details. 

Behavior was recorded at 30 frames per second with a digital video camera (Sony HDR-

CX560V Handycam) that was mounted in front of the pseudokreisel. A 1-cm
2 

grid placed 

behind the tank provided a spatial scale for video analysis. Individual medusae were 

placed in the pseudokreisel with a fixed concentration of prey (10 Artemia L
-1

) to 

stimulate pulsing behavior (Bailey and Batty 1983). Artemia are not natural prey items, 

but are often used to quantify feeding rates in the laboratory (Clifford and Cargo 1978). 

Each medusa was videotaped for 10 minutes at each flow regime (still water, medium 

flow: 4.14 cm s
-1

, high flow: 8.54 cm s
-1)

. Prior to commencing video recording, medusae 

were observed in no flow to ensure that they were pulsing normally. Medusae were 

removed from the tank for 5 minutes between flow treatments to allow flow levels to 

reach a steady state and to allow any air bubbles to escape.  
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Angle Measurements 

Swimming angles were measured from each 10-minute video in Image J (U. S. 

National Institutes of Health, USA). Angles were imposed on a circular plot with a 

reference vertical axis running from bottom of tank (270°) to top of tank (90°). For flow 

treatments, angles were only measured when the bell was in the 50 × 30 cm window in 

which ADV velocity measurements were collected. Refer to methodology in Chapter II. 

This measurement window represents an area of high velocity and high shear created by 

the circular flow in the tank (Chapter II: Figure 2.3). During flow treatments, medusae 

were not always swimming in the working section of the tank. To maximize data points, 

measurements were taken every one second (30 frames). To maintain consistent frame 

numbers for analysis, medusae in still water treatments were monitored throughout the 

entire tank and angle measurements were taken every three seconds (90 frames). 

Measurements were not collected in frames when the medusa was not swimming in a 

vertical plane or touching the walls of the pseudokreisel.  

 

Statistics  

Because of the directional nature of the data, circular statistics (Batschelet 1981) 

were employed to describe the data and compare treatments.  Uniformity of angle 

direction was analyzed for each treatment using Rao’s spacing test, as provided in Matlab 

CircStat toolbox (Berens 2009). Based on our preliminary observations of medusae 

swimming in pseudokreisels, we predicted that medusae would show a preference for 

swimming vertically with aboral surface oriented either directly upward or downward. 

Under this assumption, the predicted distribution was bimodal and therefore, the method 

of doubling the angles was applied to transform data into a unimodal sample (Batschelet 

1981). Watson’s U
2 

test was then used to test for differences in swimming direction 

between treatments.  
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RESULTS 

Randomness and Swimming Angles 

 

Assuming a bimodal sample, the distribution of swimming means were non-

random in still water (N=6, U=242°, U0.05=180°). There was no significant difference in 

mean orientation between high flow and medium flow samples (U
2

0.05,6,6=0.0396); 

therefore, data from the medium and high flow treatments were pooled. Medusae were 

non-randomly distributed in flow (N=12, U=212°, U0.05 = 180°, Table 3.1). There was a 

significant difference in swimming orientation between flow and still treatments 

(U
2

0.05,12,6=0.3607, mean still water = 75°, mean flow=263°, Table 3.2).  

 

 

Table 3.1. Results from Rao’s spacing test to determine randomness of distribution. If  

U>Ucrit, then H0 can be rejected. 

Treatment N U stat. Ucrit  

Still Water* 6 242° 180° 

Flow* 12 212° 180° 

*indicates significance at α=0.05 

 

 

Table 3.2. Results for Watson’s U
2 

test to determine difference in swimming direction. If 

U
2
 > Ucrit, then H0 can be rejected.  

Treatments Watson’s U
2 

U0.05,n1,n2 

Medium Flow vs. High-Flow U
2
=0.04 Ucrit = 0.21 

Flow vs. Still Water* U
2
 = 0.36 Ucrit = 0.28 

*indicates significant difference  

 

 

 

 

Medusae Behavior 
 

During flow treatments, medusae swam consistently in a vertical orientation 

either with or against bulk flow. This behavior maintained a medusa’s position near 

regions of the tank with maximum velocity and shear. Though medusae periodically 
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swam horizontally through the center of the tank where flow velocities were minimal, as 

they approached the walls, they shifted to a vertical orientation due to active swimming 

against the flow. Swimming direction was between 180° and 360° in 86% of the analyzed 

frames. Individual medusae were filmed swimming in vertical positions at 90° and 270°. 

Other angle measurements, away from the vertical (90° and 270°), occurred when 

medusae were shifting position.  In flow treatments, medusae spent the majority of the 

time pulsing nearly vertically downward (mean=263°, Figure 3.1).  On the other side of 

the tank, medusae demonstrated the same orientation behavior by swimming upward 

against the bulk flow.  

In still water, medusae swam vertically at the top or bottom of the tank and 

seldom swam though the center of the tank.  This behavior created a bimodal distribution 

of swimming angles (Figure 3.1). Medusae rarely changed position once they achieved a 

certain heading. Often, individuals in still water swam in horizontal circular paths at the 

bottom of the tank and these angles were not analyzed. Medusae in still water maintained 

a vertical heading at the water’s surface (Figure 3.1). 

 

DISCUSSION 

 

In laboratory experiments, C. fuscescens are able to actively orient and maintain 

position in flow velocities that they would encounter in the California Current system 

(Woodson et al. 2009). Swimming direction in flow was significantly different then 

medusae swimming in still water. Even when the medusae were not in the 50 × 30 cm 

measurement grid, they were pulsing parallel to water flow in another section of the tank. 

Medusae were generally swimming counter-current and maintaining a nearly vertical 

heading, even at the highest flow velocity (Figure 3.2). In still water, C. fuscescens 

frequented either the bottom or the top of the tank, creating a non-random distribution in 

the pseudokreisel.  This behavior has been noted in other scyphozoans in laboratory tanks 

and shallow waters (Zavodnik 1987, Matanoski et al. 2001). This suggests that C. 

fuscescens may favor swimming with aboral surface in a vertical position. However, the 

artificial nature of the pseudokreisel, e.g. wall effects and minimal fluid flow, may have 

influenced medusae behavior in the still water experiments. 
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Figure 3.1. Circular plots of C. fuscscens swimming angles in A) still water and B) flow 

treatments. Vertical swimming upward and downward is indicated by 90° and 270°, 

respectively. Instantaneous swimming angles from all individuals are plotted in gray. 

Labels on the dashed circular lines indicate the number of angles measured. Blue vector 

arrows represent the mean directions of each individual.  Longer vectors indicate less 

dispersion around the mean for each individual medusa in still water (N=6) and flow 

(N=12). The red vector is the grand mean direction and grand mean vector length based 

on all individuals.  

 

 

 

These findings complement previous field work that measured current direction 

and compass headings of large scyphozoans in situ. Medusae were distributed non-

randomly and swam countercurrent in response to tidal currents (Fossette et al. 2015). 

This orientation behavior observed in laboratory pseudokreisels could explain how 

medusae are orienting at fronts in response to downwelling currents. As medusae are 

passively entrained by convergent flow at a frontal system, they may counter the 

downwelling velocities by swimming vertically upward. If the medusa’s swimming speed 

is strong enough to counter the plunging velocities, this behavior could accumulate and 
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maintain medusae in a band near the surface. The importance of active swimming in 

aggregation maintenance is inferred from previous studies (Graham 1994) and model 

scenarios (Fossette et al. 2015, Franks 1992).  

  Rheotaxis, or behavioral orientation to flow, is a well-studied occurrence in 

taxonomically diverse aquatic organisms demonstrating its importance for maintaining 

individuals in flow. Researchers speculate that rheotaxtic behavior could be a response to 

current shear as demonstrated in orientation studies with copepods, fish, and sea turtles 

(Montgomery et al. 1997, Genin et al. 2005, Kobayashi et al. 2014). Shear mediated 

behavior is seen in Aurelia sp. as it maintains position in shear flow by pulsing 

asymmetrically. This righting behavior has not been studied in Chrysaora, but they could 

employ a similar strategy as Scyphozoans share similar sensory organs. C. fuscescens has 

eight rhopalia arranged along the bell margin with statocysts and ‘plates’ of sensory cells 

that allow medusae to detect and change orientation with respect to gravity (Sotje et al. 

2011). The neuronal bases for these behaviors are not fully understood but future work 

could explain mechanisms as the complexity of jellyfish nervous systems become more 

appreciated (Satterlie 2010, Katsuki and Greenspan 2013). For instance, discoveries with 

the large nudibranch, Tritonia tetraquetra, show pedal neurons that are directly sensing 

and mediating orientation into flow (Murray and Willows 1995).  

Aggregations of medusae are mostly limited to the class Scyphozoa and potential 

aggregators can be predicted based on phenotypic traits; such as alteration of generations 

and prey preference (Hamner and Dawson 2009). This suggests a possible benefit for 

jellyfish to occur en masse. Feeding and reproduction are two essential activities for 

species survival. These medusae inhabit an environment where resources, including prey 

and conspecifics, are patchy (Mackas et al. 1985). Medusae would benefit from 

accumulating in areas of high prey concentrations, which is an often-cited property of 

convergent zones (Franks 1992). Aggregations could be beneficial for feeding on 

temporary time scales but jellyfish also have high satiation and clearance rates (Chapter 

II, Acuna et al. 2011) which could deplete zooplankton stocks. For example, sampling at 

large Aurelia blooms showed decreased zooplankton concentrations within the bloom 

versus background ocean conditions (Uye et al. 2003). Aggregations could also be 
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advantageous for reproduction as Chrysaora is a broadcast spawner that benefits from 

large accumulations of conspecifics (Uye et al. 2003, Widmer 2008).  

 

 

 

 

 

 

 

 

Figure 3.2. Sequence of frames showing C. fuscescens orienting into high flow (max: 

8.84 cm s
1
). 
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CHAPTER IV 

IN SITU FEEDING ECOLOGY OF CHRYSAORA FUSCESCENS 

 

INTRODUCTION 

 The ecological role of gelatinous zooplankton as predators and competitors in 

marine ecosystems has become a significant field of study in recent years (Purcell 1997, 

Sullivan and Kremer 2011).  In situ gut content analysis is a standard technique used to 

resolve diet compositions of pelagic cnidarians (Purcell 1997, Suchman et al. 2008). 

More importantly, data from the field can be used to look for trends and patterns in 

trophic relationships. Documented predation impacts of cruising gelatinous predators on 

zooplankton populations vary between and within prey taxa of interest. Predation work 

on large Scyphozoans in coastal ecosystems illustrates their potential to remove up to 

25% day
-1

 of mesozooplankton biomass (Purcell 1992, Olesen 1995, Uye and Shimauchi 

2005). On the other hand, lower predation rates of < 1% day
-1

 are documented on 

copepod stocks in Prince William Sound and the North Sea (Purcell 2003, Hansson et al. 

2005). Notably, predation potential on fish early life stages can be as high as 30% day
-1 

but lower rates are also frequent (0-3% h
-1

) (Purcell et al. 1994, Purcell et al. 2014).  

Variability in calculated feeding rates is not uncommon, but there are distinct trends 

toward high clearance rates for soft-bodied taxa and lower clearance rates of larger, more 

abundant zooplankton such as copepods (Purcell 2003). 

 Prey selectivity occurs when prey are ingested in different proportions than the 

background plankton (Pearre 1982). Prey selection can be attributed to active pursuit by 

the predator or to differential prey vulnerability based on direct encounter or capture 

events (Greene 1986). In gelatinous species, encounter and capture events can be 

constrained by several factors: direct handling, marginal bell velocities, nematocyst type, 

chemical cues, and prey escape responses (Purcell 1997).  Even as non-visual predators, 

large Scyphozoans preferentially ingest prey taxa in different proportions than the 

ambient prey field (Suchman and Sullivan 1998, Purcell and Sturdevant 2001, Grahman 

and Kroutil 2001). Understanding prey selectivity is essential for recognizing vulnerable 

taxa and the potential for cascading effects on marine food web structure.   
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 Chrysaora fuscescens is the most abundant cnidarian scyphomedusa in the 

northern California Current and has the potential to deplete 1-12% day
-1

 of zooplankton 

standing stocks and can consume up to 60% day
-1

 of euphuasiid eggs standing stock 

(Suchman and Brodeur 2005, Suchman et al. 2005). These studies document high 

potential for direct predation on zooplankton prey and the possibility of competition, 

especially with planktivorous fish species. As such a ubiquitous jellyfish in the summer 

months, previous work only represents a small sample size (N=31) spread over 2 years. 

The observed results are intriguing, making it worthwhile to continue to monitor and 

sample these medusae in this productive upwelling center. In this study, we 

opportunistically sampled C. fuscescens medusae in the Northeast Pacific during summer 

2014. Gut content analysis was performed to calculate clearance and ingestion rates in 

conjunction with prey electivity and carbon ingestion calculations.  

 

METHODS 

Medusae and Plankton Collection 

 Chrysaora fuscescens medusae used for gut content analysis were dip-netted at 13 

survey stations from Brookings, Oregon to Queets River, Washington during June, July, 

and September 2014 (Table 4.1; Figure 4.1). Captured medusae were immediately placed 

in 2 L containers with 5% buffered formalin solution. Prey were enumerated with a 

Nikon SMZ1000 stereoscope by dissecting medusae and identifying prey in oral arms, 

tentacles, gastric pouches, and regurgitated in formalin. Depending on sampling 

constraints, horizontal or vertical plankton tows were used to quantify the ambient 

zooplankton abundance at each station. Zooplankton prey were categorized into 

taxonomic groups based on class or order. At stations 1-3, plankton assemblages were 

collected with 100-um mesh ring net towed horizontally at the surface for approximately 

5 min. At all other stations (4-12), vertical tows with a 202 µm mesh were taken from 5 

m off the bottom to the surface. A calibrated TSK Flowmeter was used for vertical tows 

to calculate the volume filtered. Zooplankton samples were preserved in 5% buffered 

formalin. Plankton samples were subsampled using a Hensen-Stempel pipette to obtain at 
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least two 1-mL subsamples to quantify zooplankton abundance. Prey were counted and 

identified to the same taxonomic groupings as medusae guts.   

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

. 

Figure 4.1. Map of study site with stations marked by numbers where C. fuscescens 

andplankton tows were collected in June, July and September 2014.  Refer to Table 4.1 

for a summary of each station. 
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Table 4.1 Summary of C. fuscescens collection data from 13 sample stations in June, 

July, and September 2014. Refer to Figure 4.1 for map of study site. na corresponds to 

plankton tows with no corresponding flowmeter data. 

 

 

 

 

 

 

 

 

Station. Location 
Collection 

Date 

Surface 

Temp. 

(°C) 

N 

Bell 

Diameter 

(cm ± 

SD) 

Prey 

Ingested 

(N ± SD) 

Zooplankton 

Density (m
-3

 

± SD) 

 

1 
42.00° N, 

124.39° W 
June 19 10.8 1 17 10 na 

2 
43.29° N, 

124.17° W 
June 21 10.5 1 15 30 na 

3 
47.53° N, 

124.42° W 
June 22 13.4 3 8 ± 1 355 ± 297 9000 ± 1000 

4 
47.00° N, 

124.56° W 
June 23 13.4 1 16 20 4000 ± 300 

5 
47.00° N, 

124.24° W 
June 23 13.1 1 15 7025 4000 ± 300 

6 
46.68° N, 

124.29° W 
June 24 15.1 5 15 ± 3 12 ± 4 3000 ± 200 

7 
46.14° N, 

124.07° W 
June 25 12.5 3 14 ± 2 502 ± 180 

11000 ± 

2000 

8 
46.64° N, 

124.19° W 
June 24 12.1 1 7 20 13000 ±800 

9 
44.65° N, 

124.19° W 
June 27 11.6 1 23 7251 5000 ± 400 

10 
46.45° N, 

124.29° W 
July 1 16.9 5 17 ± 3 102 ± 57 na 

11 
44.65° N, 

124.18° W 
July 22 11.1 3 24 ± 4 36 ± 5 2000 ± 100 

12 
44.65° N, 

124.30° W 
July 22 15.6 1 14 18 3000 ± 600 

13 
44.39° N, 

124.06° W 
Sept. 30 15.4 11 25 ± 9 58 ± 47 4000 ± 900 

    N=37    
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Selection Index 

 Pearre’s C tests were used to quantify prey selection patterns by individual C. 

fuscescens. Pearre’s C uses a 2 X 2 contingency table to compare prey groups in medusa 

guts to prey present in the plankton (Pearre 1982) (Table 4.2). 

A Chi-square was used to test whether there was a significant difference between 

zooplankton prey in the guts compared to background prey: 

                 χ
2
 = (adbe – bdae)

2 
× n / a×b×d×e 

The values of C range from -1 to 1, with 0 indicating neutral selection. Negative values 

represent negative selection for prey type (occurrence is low in guts vs. plankton) and 

positive values represent positive selection for prey type (occurrence is high in guts vs. 

plankton).  

 

Table 4.2. Contingency table used to calculate Pearre’s C using proportions of prey in 

medusa gut and background prey field. 

                                                                Prey Type 

                                                          A                    Others  Total 

 Diet                                       ad                                bd                                    ad + bd = d 

            Environment                        ae                                 be                                     ae + be = e 

            Total                            ad + ae = a             bd + be = b                ad + ae + bd + be = n 

 

                                         C = ± [(│adbe - bdae│- n/2)
2
/ a×b×d×e]^1/2 
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Feeding Rates 

 Two common metrics used to express feeding rates are ingestion (prey consumed 

predator
-1

 day
-1

) and clearance rate (L cleared predator
-1

 day
-1

). Clearance rate is useful to 

compare C. fuscescens prey removal efficiency on similar prey items, but cannot be used 

to compare different prey types (Purcell, 1997). Ingestion rates can be used to estimate 

daily ration and detect trends in feeding rates. Ingestion rate (I) for a specific prey type 

was calculated as: 

I= (G/D) × 24 

where G = prey count in gut, D = prey digestion time (h), 

Gut content analysis was used to quantify prey specific clearance rate (F) -- the liters 

cleared of a specific prey type by medusa per day-- using the following equation:  

F= (G/ D × C) × 24 

where C = ambient plankton concentration (# L
-1

).  

Digestion times for prey types were obtained from previous studies with C. fuscescens or 

related scyphomedusae (Purcell et al. 1994, Suchman et al. 2008). In order to compare to 

other studies, ingestion rate and clearance rate were standardized by wet weight. Simple 

linear regression models were used to quantify ingestion rate patterns by medusa 

diameter and prey density. A non-parametric Kruskal-Wallis test was used to test if 

sampling month, depth, and location had an effect on fish egg ingestion rates.  

Carbon Conversions 

 Using biometric equations (Shenker 1984), live bell diameters were converted to 

wet weight and carbon content (0.280% of WW). Hand-dipped medusae were not 

measured prior to being preserved in formalin in order to minimize prey loss via 

handling. Therefore, bell diameters of live medusae were estimated using previously 

derived measurements of C. fuscescens shrinking rates (Suchman et al. 2008). Carbon 

contents for each zooplankton grouping were obtained from the literature (Ross 1982, 
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Martinussen and Bamstedt 1995, Berggreen et al. 2002, Desai and Anil 2004, Espinoza et 

al. 2009). Amount of carbon ingested per prey grouping was calculated by: 

I (prey consumed medusa
-1

 h
-1

) × carbon content of prey (mg C) × 24 

Total carbon ingested per day was calculated by adding all prey types. Average daily 

ration was expressed as mg of carbon ingested per day, as percentage of medusa carbon 

content. Daily carbon ration values were not normally distributed, so a non-parametric 

Mann-Whitney test was used to compare carbon daily ration between medusae at stations 

containing anchovy eggs and stations without anchovy eggs. Simple linear regression was 

used to look for relationship between medusae size and daily carbon ingestion. 

RESULTS 

Diet Analysis 

 Zooplankton in medusae guts and plankton tows were split into the following 

taxonomic groupings: 1) cladocerans, 2) copepods 3) early stage euphausiids 

(meta/nauplius, calyptopes, and furcilia), 4) gelatinous taxa, 5) ichthyoplankton, 6) 

invertebrate eggs, 7) molluscs, 8) other crustaceans, and 9) ‘other’. Cladocerans were all 

Podon and Evadne spp. Copepods included Calanoid copepods in the genera 

Pseudocalanus, Acartia, and Centrophages. Cyclopoids were more rare also and mostly 

consisted of Oithona sp. Gelatinous taxa were mostly larvaceans but also included 

hydromedusae, ctenophores, siphonophores and doliolids. When ichthyoplankton (eggs > 

600 µm and fish larvae) were present in large numbers, the dominant stage was Engraulis 

mordax (northern anchovy) eggs. Other eggs and fish larvae were not identified. 

Invertebrate eggs were mostly euphausiid eggs (400 µm) and for feeding rate 

calculations, invertebrate eggs were further divided into euphausiid eggs and ‘other’ 

invertebrate eggs. Other crustaceans were a mixture of barnacle larvae (nauplii and 

cyprids) and copepod nauplii. The mollucs grouping contained larval gastropods, 

pteropods and bivalves. Gut content analysis also included symbionts classified as non-

prey: Cancer megalopae, hyperiid amphipods, and larval amphipods (Buecher et al. 

2001, Wrobel and Mills 1998). Larval amphipods are included as a non-prey since 
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amphipods are known to colonize and use medusae as reproductive habitat and larvae 

were observed embedded in bell tissue (Fleming et al. 2014).  

 Though the total amount of prey items counted in medusae guts varied by orders 

of magnitude between stations (Table 4.1), there were consistencies in general feeding 

patterns between stations and individuals (Figure 4.2). At most stations, the dominant 

taxa ingested were copepods (17% - 92%) or cladocerans (30% - 77%). At station 1, the 

medusa’s gut contained only 10 prey items and was dominated by barnacle larvae (52%). 

At stations 8 and 13, gelatinous taxa were the dominant prey items (>30%). At stations 1 

and 7, ichthyoplankton were dominant secondary prey taxa. Euphausiid eggs (400 µm) 

were 20% of the diet at station 6. Notably, at stations 7 and 10, ichthyoplankton in 

medusae guts were dominated by northern anchovy eggs (Engraulis mordax) (Figure 

4.2).  

 At all stations, medusae ingested prey in different proportions from background 

plankton (Figure 4.4, Figure 4.5). Copepods were the dominant background zooplankton 

group (30%-70%) at most stations, excluding station 1, where euphausiid eggs comprised 

the majority of the zooplankton (65%) (Figure 4.3). At most stations, copepods were 

ingested at low rates relative to the proportion that was available in the plankton (Figure 

4.4). Cladocerans, gelatinous taxa and invertebrate eggs were usually ingested in greater 

relative proportions while early stage euphausiids, molluscs, and ‘others’ were more 

variable. At station 1, which was dominated by euphausiid eggs (65%), there were no 

eggs counted in the gut.  

 Prey proportions at station 13 (N=11) illustrate the variability within individual 

medusae (Figure 4.6). Gelatinous taxa made up the primary prey ingested (20-50%), but 

secondary taxa varied widely. Spatial variability was also apparent at the Newport 

transect line. Medusae were collected on the same day, 9 km apart, with comparable 

numbers of prey items but different proportions of prey taxa. Also, at Station 13, 

medusae were collected at a large aggregation site. Approximate abundances, using 

photographs with a known scale, were 8 individuals per m
2
. The highest prey proportions 

were larvaceans and ‘other crustaceans’ (mostly barnacle cyprids) (Figure 4.6, Figure 

4.7) 
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Figure 4.2. Relative proportions of zooplankton taxa in C. fuscscens guts collected at 

each station during summer 2014. Table 4.1 and Figure 4.1 contain relavent information 

related to station numbers. N is the number of meduase dissected and parenthesis above 

bar plots are the average number of prey items counted at each station 

Figure 4.3. Relative proportions of background zoopankton taxa in plankton net tows 

from 13 sampling stations during summer 2014. Refer to Table 4.1 for relavent station 

information. 

    (10)    (30)  (355)  (20) (7025) (12) (502)  (20) (7251)(102) (36)    (18)   (58) 

 (10)    (30)    (355)  (20)  (7025)   (12)   (502)  (20)  (7251)   (102)   (36)  (18)     (58) 
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Figure 4.4. Relative proportions of prey groupings organized by collection month in A) 

medusae guts and B) background zooplankton. C) Selection summarized by averaging 

significant C values for each sampling month and prey taxa. Error bars represent standard 

deviation. 
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Figure 4.5. Pearre’s C electivity index as a measure of prey selection by averaging 

significant C values. 1 represents strong positive selection for prey group and -1 

represents strong negative selection. Error bars represent standard deviation.  

 

Selection Index 

 General feeding patterns can also be examined with electivity values (Figure 4.4, 

Figure 4.5). Copepods dominated the background prey field at most stations, but were 

consistently negatively selected. The two exceptions were stations 9 and 11, where 

copepod selection was positive (C = 0.15 and C=0.04, respectively) and copepods were 

>50% of prey ingested. Fish larvae were also negatively selected at all stations when they 

were present in the gut. Cladocerans, fish eggs, and invertebrate eggs were preferentially 

selected while gelatinous taxa and molluscs were also positively selected, but less 

strongly. The highest selection for fish eggs was seen in June (Figure 4.4). The prey 

grouping ‘other crustacean’ had the highest selection in medusae collected in September 

which were all collected at an aggregation site.  Gelatinous taxa were consistently 

positively selected. 
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Figure 4.6. Relative proportions of prey groupings for individual C. fuscescens at survey 

stations along the Newport transect line. Labels are organized by date (month/day/year) 

and station (NH= Newport ;  01,05,10 = 1,5, and 10 nautical miles from shore). Number 

after date is the medusa ID number. Stacked bar plots within the green box are 11 

individuals collected at large aggregation site. Stacked bar plots in red box are 3 

individuals collected at NH05 (Sta. 11) and 1 medusa collected at NH10 (Sta. 12) on the 

same date but 5 nautical miles apart.   
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Figure 4.7: Photograph of C. fuscescens aggregation site from station 13. The net in the 

bottom right corner is approximately 0.70 m.   

 

 

Feeding Rates and Daily Carbon Rations 

 Clearance rates can be a useful metric of the efficiency of prey removal. Averaged 

clearance rates varied considerably, even within prey taxa (Appendix A). Across stations, 

clearance rate potential ranged from 6 to 7,353 L day
-1

.  On average, gelatinous taxa and 

fish eggs were cleared at higher rates than the more commonly ingested prey such as 

copepods (gelatinous taxa: mean=1,472  L day
-1

; fish eggs: mean=5,327 L day
-
1 ; 

copepods= 487 L day
-1

). Ingestion rates also varied across stations; for example, 

individual ingestion rates of copepods ranged from 4 – 15,508 copepods day
-1

. The 

highest ingestion rates of nonmotile prey, fish and invertebrate eggs, reached 1,095 fish 

eggs day
-1

 and 2,515 euphausiid eggs day
-1

 (Appendix B). Medusae diameter was not a 

significant predictor of feeding rate but, for more vulnerable prey, taxon density in the 

background plankton predicted ingestion rates in medusae (Table 4.3). Unidentified 

factors are more important for explaining ingestion rates in copepods and cladocerans. 

Samples collected near the Columbia River (Sta. 6, 7, and 10) had significantly higher 

fish egg ingestion rates than other sampling stations (χ
2 

= 15.5, d.f.=6, p=0.02). 

 

 



 

37 

 

Table 4.3. Results of simple linear regression of medusae ingestion rates for different 

prey groups by prey density. I= ingestion rate of single medusa per day and D=density of 

prey grouping per m
3
. Euph.=euphausiid. 

Prey Group p-value Model Equation R
2 

Euph. Eggs <.0001 I=4.6(D)-(-117) 0.34 

Fish Eggs <.0001 I=13.1(D)-(-21.9) 0.62 

Gelatinous Taxa 0.03 I=0.29(D)- 120 0.11 

Cladocerans 0.37 Average Ingestion=589 na 

Copepods 0.96 Average Ingestion = 897 na 

 

 

 

 The average daily carbon rations varied between stations (Table 4.4). There was 

no significant relationship between size of medusa and carbon ingestion (F=0.134, 

p=0.72). Carbon ingestion rates were highest at stations 5, 7, and 9, exceeding 10% 

medusa body carbon. Stations 5 and 9 had large prey ingestion rates, exceeding 7,000 

prey items, and station 7 had relative gut proportions of ichthyoplankton >20%. Carbon 

daily ration was significantly different at stations where anchovy eggs were present 

(anchovy: 1 ± 2 % body C day
-1

; no anchovy: 0.8 ± 3 % body C day
-1

; Mann-Whitney: 

W=144, p=0.02).  

 

DISCUSSION 

Diet Analysis and Prey Selection 

 Gut content analysis work during summer 2014 reveals high variability in prey 

selection and feeding rates of C. fuscescens. Proportions of prey in medusae guts varied 

between stations, months, and individuals. Despite this variability, medusae regularly 

ingested prey at different proportions than the background prey field. C. fuscescens 

positively selects for nonmotile prey and negatively selects for copepods and fish larvae. 

This suggests that fish eggs, invertebrate eggs, and larvaceans are more vulnerable to 

predation by C. fuscescens. These results mostly contradict prey selection trends of other 

large scyphozoans. Aurelia sp. demonstrates positive selection for small copepods and 

cladocerans and negative selection for larvaceans in Prince William Sound (Purcell and 
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Sturdevant 2001). Graham and Kroutil (2001) also noted positive selections of small 

copepods in Aurelia aurita and negative selection of large copepods. Field studies with 

Chrysaora quinquecirrha document positive selection of copepods and negative selection 

of copepod nauplii stages, larvaceans and polycheate larvae (Purcell 1992). 

C.quinquecirrha in laboratory experiments shows negative selection for copepod nauplli 

and positive selection for adult copepods (Suchman and Sullivan 1998). A strong positive 

selection for ichthyoplankton (fish eggs and larvae) has also been noted (Purcell et al. 

1994, Purcell 2001). Interestingly, positive selection for larger copepods is noted in most 

prey selectivity studies. Comparing selection indices between species is not advisable as 

sampling design and spatial and temporal trends in ambient prey fields or predators could 

be affecting selection criteria (Shiplett 2011). For instance, results from this study 

demonstrate variation in electivity indices over different months. Selection results 

substantiate C. fuscescens selection trends in previous field work; negative selection for 

copepods and positive selection for euphausiid eggs (Suchman et al. 2008). 

 Medusae prey selection exemplifies the complexity of predator-prey dynamics in 

marine systems. Medusae are not actively pursuing prey; instead prey selection is 

connected to direct encounter and capture events (Greene 1968). Chrysaora have long, 

trailing tentacles and oral arms that can extend meters beyond the bell margin (Morandini 

and Marques 2010). These numerous appendages can widen the encounter zone and 

increase prey encounter rates (Madin 1988). As a cruising predator, Chrysaora swims 

continuously, creating complicated velocity and vortex fields. Ford et al. (1997) 

calculated marginal bell velocities for Chrysaora quinquecirrha to explain predation on 

zooplankton prey with different swimming velocities. In the present study, most medusae 

analyzed were large enough (mean = 19 ± 8) to produce marginal bell velocities that 

would overwhelm the fastest prey item which would suggest that escape responses are 

insignificant factors. Still, the medusa is producing a complex hydrodynamic signal that 

could be recognized by quick swimming prey (e.g. copepods) who can then escape (Allan 

1976, Alldredge 1982, Fisher et al. 2000, Buskey and Hartline 2003, Dabiri et al. 2005). 

The importance of prey behavior (i.e. swimming) has been noted in laboratory feeding 

experiments (Suchman and Sullivan 1998, Fitzgeorge-Balfour et al. 2013). 

 



 

39 

 

Table 4.4. Daily carbon rations by station. Stations 3 and 8 were not included in 

calculations because bell diameters did not fit the model provided in Shenker (1984). 

 

*represents stations with medusae ingesting northern anchovy eggs  

 

Feeding Rates and Daily Carbon Rations 

 C. fuscescens exhibit potential for high clearance and ingestion rates of nonmotile 

and gelatinous taxa. Fluctuating trends in feeding rates are noted in several gut analysis 

studies (Purcell 1992, Purcell 2003). Previous diet analysis work in the California Current 

with C. fuscescens points to high ingestion of euphausiid eggs and gelatinous taxa over 

copepods (Suchman et al. 2008). At certain stations, ingestion rates of copepods can be 

substantial, so it is unwise to overlook predation effects on these abundant zooplankton 

that are important trophic links in marine food webs (Turner 2004). The standardized 

feeding rates on copepods from this study (mean=3.3 copepods g
 
WW

-1
 day

-1
) were 

comparable to other Scyphozoans (typically under 10 copepods g
 
WW

-1
 day

-1
) (Purcell 

1992, Purcell 2003).  

  In this study, euphausiid eggs were a dominant prey item in individual medusae 

but overall were not selected over copepods. High feeding rates of northern anchovy eggs 

 

Station 

 

mg C medusae
-1

 (± 

SD) 

 

mg C ingested 

day
-1

 

(± SD) 

 

% C day
-1

 

(±SD) 

 

1 913 0.25 0.03 

2 570 0.45 0.08 

4 772 0.25 0.03 

5 671 75 11.2 

6* 548 ± 527 0.24 ± 0.1 0.04 ± 0.02 

7* 366 ± 143 18 ± 10.2 4.45 ± 2 

9 1985 84 4.2 

10* 853 ± 544 1.8 ± 1.5 0.41 ± 0.1 

11 2053 ± 860 0.8 ± 0.5 0.06 ± 0.1 

12 469 0.26 0.05 

13 2743 ± 1048 0.88 ± 0.4 

 

All medusae 

 

0.04 ± 0.02 

 

0.9 ± 2.4 
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are notable, but no surprise, as high spatial overlap with important forage fish species has 

been proposed (Brodeur 2014). The medusae with the highest anchovy egg feeding rates 

were collected in late June at stations near the Columbia River plume which overlaps in 

time and space with regions of high anchovy spawning biomass (Parnel et al. 2008). High 

clearance rates of fish eggs could have negative effects as predation on early life stages 

may affect recruitment (Bailey and Houde 1989). It is difficult to quantify predation 

potential without a thorough knowledge of Chrysaora and fish egg abundances in the 

NCC. Northern anchovy spawn multiple times in a season, between February and June, 

and are sensitive to environmental shifts (Brodeur et al. 2006). Fisheries scientists 

recognize that northern anchovy are the most abundant forage fish in the California 

Current system with egg densities as high as 5,600 per m
2
 (Emmett 1997). This study 

substantiates that Chrysaora is able to exploit pulses of fish eggs.  

 Carbon daily rations (mean=0.9 % C day
-1

) are comparable to 1.3% C day
1 

calculated for C. fuscescens and 2.1% C day
-1 

for Aurelia sp. (Suchman et al. 2008, Ishii 

and Tanaka 2001). These studies put forward that medusae are food limited since rates 

<2% are low for carbon requirements (Malej 1989). It has been suggested that these 

numbers are low because gut content work does not take into account night-time feeding 

(D’ambra et al. 2013). In this instance, most medusae were collected in the day-time. 

Variable carbon ingestion rates could also be attributed to the unique lifestyle of a 

jellyfish. The jellyfish body plan, constituted by low-carbon content, water-laden tissues 

and energetically efficient propulsion allow for low energy demands and high growth 

rates (Pitt et al. 2013, Gemmell et al. 2013). These traits are especially desirable in an 

environment where prey items are patchy and exploitation of prey pulses is essential. 

When medusae were collected at sea, they were previously feeding in an unknown 

volume of the water column (Moriarty et al. 2012). High daily carbon rates may represent 

medusae that encountered prey patches which are not evident in plankton tow samples. 

 High carbon ingestion rates at stations 5, 7 and 9 occurred where medusae were 

ingesting an abundance of high quality, carbon-rich food (copepods and ichthyoplankton) 

(Espinoza et al. 2009). At station 7, fish eggs made up >20% of the gut contents and the 

average prey count was more than ten times lower than at stations 5 and 9. This 

demonstrates the importance of fish eggs as dense, nutrient-rich packets of food that 
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allow for rapid growth (Larson 1986). Abundance data shows that C. fuscescens 

maximum growth rates occur in the late spring and early summer months which coincide 

with predicted spawning events of northern anchovy (Suchman et al. 2012, Parnel et al. 

2008). These snapshots in time show that C. fuscescens is preying on fish eggs at a vital 

time in their lifecycle. This also drives home the importance of sampling over an entire 

season as to ‘catch’ seasonal events.  

 This large variability in feeding rates and newly documented anchovy egg 

predation calls out for more systematic sampling of medusae in the NCC. This study 

represents the first time that ichthyoplankton feeding rates are encountered in C. 

fuscescens, but these results are not surprising considering the noted overlap in time and 

space with northern anchovies. Continuing to quantify these trophic interactions is 

necessary to show the impact of large medusae directly impacting zooplankton stocks, re-

routing carbon pathways, and preying on early life stages of fish. Medusae gut work 

should be done in concert with other large scale sampling of ichthyoplankton, as the 

tangible effects of this predation are hard to tease apart without knowledge of jellyfish 

and prey abundance and distribution. These feeding results are also data points for the 

creation of ecosystem models in the NCC.  These models can be useful tools for 

understanding trophic pathways and predicting responses to environmental changes 

(Ruzicka et al, 2012). 
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CHAPTER V 

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The goals of this project were aimed at understanding jellyfish behavior in flow 

and the feeding ecology of C. fuscescens in situ. These novel results are part of a larger 

field of research focused on examining the role of jellyfish populations in marine 

systems. 

  

Chapter II 

 Experiments in pseudokreisels show that C. fuscescens have high clearance rates 

on Artemia prey and these feeding rates are not affected by flow. This work represents 

the first time that fluid flow was examined as a possible factor affecting feeding rate 

efficiency. Future work in laboratory studies could continue to examine predator-prey 

interactions using natural prey assemblages. Laboratory and field work would also 

benefit from particle imaging techniques by relating the fluid structure created by a 

swimming medusa to actual ingestion rates.  

 

 Chapter III 

 C. fuscescens maintains its position by swimming counter-current to flow fields 

created in pseudokreisels. This behavioral trait explains how C. fuscescens may maintain 

aggregations at frontal convergences by interaction with  complex downwelling currents. 

These data represent another taxonomic grouping using rheotaxic behavior as an adaptive 

advantage. Orientation behavior may help explain the long and rich evolutionary history 

of cnidarian jellyfish. Future studies addressing the exact behavior mechanism (pulsation 

symmetry) will solidify these results and identify important aggregator traits..  
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Chapter IV 

 What are C. fuscescens eating and how much? This seemingly simple question 

will only be answered with systematic and focused gut analysis work. The results of C. 

fuscescens gut analysis work show that these large medusae ingest a variety of 

zooplankton taxa and feeding rates vary by station, month, and individual. This 

variability demonstrates the need for multi-year, mesoscale sampling in the NCC. A 

glimpse into the feeding ecology of C. fuscescens clarifies vulnerable prey and reports the 

first sighting of fish eggs as a sizeable component of Chrysaora diets. Continued 

monitoring of gelatinous zooplankton abundances and predation rates will become 

important components of ecosystem models and long-term gelatinous zooplankton 

studies.  
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APPENDIX A 

CLEARANCE RATES 

 

Table A.1. C. fuscescens clearance rates calculated from gut contents by prey taxa and station. Digestion times  used for copepods , 

other crustacean , and early stage eupahusiids was 6 h, 1.5 h for gelatinous taxa, 4.9 h for eupahusiid eggs, 3.9 h for fish eggs, and 1 h 

for fish larvae.  na represents stations with no taxa in background plankton. Clad= cladocerans, Euph = euphausiid, Gel= gelatinous, 

Crust=crustacean 

 

 

Clearance Rate (L cleared medusa
-1 

day
-1

) ± SD 

Station Clad. Copepod 

 

Early Stage 

Euph. 

 

Fish Eggs Fish 

Larvae 

Gel. 

Taxa 

Euph. 

Eggs 

Mollusc Other 

Crust. 

3 399 ± 

468 

49 ± 36 166 ± 190 na na 598 ± 518 na 1,910 ± 

1,433 

101 ± 56 

4 242 7 0 na 0 0 475 0 34 

5 15,659 7,353 2655 0 na 10626 0 41 5,638 

6 7 ± 5 6 ±4 0 607 ± 480 na 132 ± 215 1,209 0 16 ± 23 

7 1,132 ± 

641 

42 ± 8 86 ± 86 14,362 ± 

9,130 

na 409 ± 153 564 ± 666 16 ± 5 190 ± 77 

8 13 0 0 na 0 219 na 6 31 

9 4,876 6,602 4478 na 11187 24,395 11,447 68 9,081 ± 

1,553 

11 65 ± 112 62 ± 4 22 ± 37 na na 395 ± 255 0 0 109 ± 84 
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Table A.1. (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station Clad. Copepod 

 

Early Stage 

Euph. 

 

Fish Eggs Fish 

Larvae 

Gel. 

Taxa 

Euph. 

Eggs 

Mollusc Other 

Crust. 

12 0 9 62 0 na 759 0 0 11,200 

13 80 ± 93 19 ± 11 76 ± 88 na 0 397 ± 218 na 68 ± 79 183 

Mean 

(± SD) 

883 ± 

2,944 

487 ± 

1767 

295 ± 925 5,327 ± 

8601 

699 ± 

2797 

1,472 ± 

4,728 

1,097 ± 

3,137 

214 ± 688 1,057 ± 

2,708 

L cleared 

g WW
-1 

day
-1 

1 ± 5 0.6 ± 2 0.3 ± 0.9  10 ± 18 0.4 ± 1.5 1 ± 4 0.9 ± 2 0.02 ± 

0.03 

2 ±5 
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APPENDIX B 

INGESTION RATES 

Table B.1. C. fuscescens ingestion rates calculated from gut contents by prey taxa and station. Digestion times used for copepods, 

other crustacean, and early stage euphausiids were 6 h, 1.5 h for gelatinous taxa, 4.9 h for euphausiid eggs, 3.9 h for fish eggs, and 1 h 

for fish larvae.  na represents stations with no taxa in background plankton. Clad= cladocerans, Euph = euphausiid, Gel= gelatinous, 

Crust=crustacean.  

 

 

Ingestion Rate (prey consumed medusa
-1 

 day
-1

) ± SD 

Station Clad. Copepod 

 

Early 

Stage 

Euph. 

 

Fish Eggs  Fish 

Larvae 

Gel. 

Taxa 

Euph. 

Eggs 

Mollusc Other 

Crust. 

1 0 8 0 12 0 0 0 4 24 

2 36 24 0 12 24 80 0 4 4 

3 975 ± 

1,142 

240 ± 185 11 ± 12 21 ±  9 0 32 ± 28 12 ± 4 61 ± 46 45 ± 27 

4 40 20 0 6 0 0 15 0 4 

5 11,016 14,804 1,288 0 0 464 0 4 848 

6 10 ± 7 11 ± 7 0 12 ± 10 0 13 ± 21 5 0 3 ± 4 

7 757 ± 429 227 ± 49 60 ± 60 911 ± 565 216 ± 72 821 ± 355 86 ± 100 7 ± 2 57 ± 38 

8 16 0 0 25 0 112 0 4 12 

9 4,644 15,508 2,536 25 72 2,512 5,378 32 1,052 

10 114 ± 75 149 ±110 42 ± 34 79  ± 73 0 58 ± 61 0 0 14 ± 7 
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Table B.1. (continued). 

 

Station Clad. Copepod 

 

Early 

Stage 

Euph. 

 

Fish Eggs Fish 

Larvae 

Gel. 

Taxa 

Euph. 

Eggs 

Mollusc Other 

Crust. 

11 1 ± 2 109 ± 9 4 ± 2 14 ± 25 0 112 ± 115 0 0 9 ± 9 

12 0 20 8 0 0 64 0 0 4 

13 20 ± 23 24 ± 16 3 ± 4 7 ± 9 0 267 ± 184 0 6 ± 6 37 ± 27 

Average 589 ± 

1,956 

897 ± 3458 282 ± 703 169 ± 390 132 ± 115 349 ± 547 1,115 ± 

2,838 

10 ± 9 92 ± 246 

Prey consumed 

g WW
-1 

day
-1

 

3 ± 9 3.3 ± 12 0.7 ± 2 0.9 ± 2 0.6 ± 0.8 0.8 ± 1 2 ± 8 0.02 ± 0.01 0.2 ± 0.7 
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