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DISSERTATION ABSTRACT

Daniel H. Parks

Doctor of Philosophy

Department of Physics

June 2013

Title: X-ray Scattering Techniques for Coherent Imaging in Reflection Geometry,
Measurement of Mutual Intensity, and Symmetry Determination in Disordered
Materials

The advent of highly-coherent x-ray light sources, such as those now available

world-wide in modern third-generation synchrotrons and increasingly available in

free-electron lasers, is driving the need for improved analytical and experimental

techniques which exploit the coherency of the generated light. As the light

illuminating a sample approaches full coherence, a simple Fourier transform

describes the diffraction pattern generated by the scattered light in the far field;

because the Fourier transform of an object is unique, coherent scattering can

directly probe local structure in the scattering object instead of bulk properties.

In this dissertation, we exploit the coherence of Advanced Light Source

beamline 12.0.2 to build three types of novel coherent scattering microscopes.

First, we extend the techniques of coherent diffractive imaging and Fourier

transform holography, which uses iterative computational methods to invert

oversampled coherent speckle patterns, into reflection geometry. This proof-of-

principle experiment demonstrates a method by which reflection Bragg peaks, such

as those from the orbitally-ordered phase of complex metal oxides, might eventually

be imaged. Second, we apply a similar imaging method to the x-ray beam itself
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to directly image the mutual coherence function with only a single diffraction

pattern. This technique supersedes the double-slit experiments commonly seen in

the scattering literature to measure the mutual intensity function by using a set

of apertures which effectively contains all possible double slit geometries. Third,

we show how to evaluate the speckle patterns taken from a labyrinthine domain

pattern for “hidden” rotational symmetries. For this measurement, we modify the

iterative algorithms used to invert speckle patterns to generate a large number of

domain configurations with the same incoherent scattering profile as the candidate

pattern and then use these simulations as the basis for a statistical inference of

the degree of ordering in the domain configuration. We propose extending this

measurement to position-resolved speckle patterns, creating a symmetry-sensitive

microscope. The three new techniques described herein may be employed at current

and future light sources.
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CHAPTER I

INTRODUCTION AND OUTLINE

The classical wave nature of light as evidenced by its ability to diffract and

form interference patterns was conclusively demonstrated long ago, by Young in

1807 [1] and soon thereafter by Arago’s confirmation of Fresnel’s spot [2]. While

these and other discoveries laid the groundwork for the development of modern

optical theory, the diffraction of light as a tool for investigations in material science

was strongly constrained by the lack of bright point sources to those applications,

such as crystallography, which did not require tremendous transverse coherence.

With the revolution of the visible-light lasers in 1960 [3–5] and the consequent high

temporal and spatial coherence they provided, theories of coherent diffraction and

speckle [6] took on new urgency. However, at x-ray energies the extremely limited

coherence available at first- and second-generation synchrotron light sources made

the resulting weakly visible interference effects a nuisance rather than a resource.

Today, with high brightness and moderately coherent x-rays available from

undulators at third-generation synchrotrons such as the Advanced Light Source at

Lawrence Berkeley National Laboratory and the promise of fully-coherent x-rays in

the near future from free-electron lasers, the synchrotron community is dedicating

enormous effort to develop and implement techniques which exploit the ability of

coherent diffraction not to probe just bulk structure, as in crystallography, but to

image materials at nanometer resolution with chemical sensitivity.

In this dissertation we describe three experiments using coherent x-rays in

novel forms of microscopy. First, we demonstrate lensless imaging techniques

in a reflection geometry, opening the door to imaging of a wealth of systems
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such as the electronic ordering phases in complex transition metal oxides.

Second, we demonstrate the use of holographic techniques to directly image the

coherence function of the x-ray beam. Third, we combine numerical modeling and

simulation with innovative speckle metrology to evaluate the presence of apparent

“hidden” rotational symmetries in speckle pattern of a magnetic thin film sample;

coupled with position-resolved measurement, this would constitute a “symmetry

microscope” for nominally disordered materials.

We organize this dissertation as follows.

In Chapter II, we consider the fundamental background of coherent diffraction

at synchrotron light sources. This includes: fundamental results from scalar

diffraction theory (including the Kirchoff diffraction integral, the near-field Fresnel

approximation, the far-field Fraunhofer approximation, fast methods of calculating

diffraction patterns, and the role of partial coherence in the far-field intensity), and

the beamline and experimental endstation apparatus used in these experiments.

Because one of the experiments discussed in this dissertation involves scattering

from magnetic thin-film samples, we also briefly review the basics of resonant

magnetic diffraction.

In Chapter III, we consider the theoretical background specific to the

inversion of speckle patterns by finding numerical solutions to the phase problem.

We review a variety of iterative algorithms which can successfully invert suitable

diffraction patterns and discuss the conditions necessary to form an invertible

diffraction pattern. We then conduct several simulations to demonstrate the

performance of the iterative phasing algorithms and how the phase retrieval

transfer function estimates the resolution of a reconstructed image. We conclude

by reviewing an alternative solution to the phase problem, Fourier transform

2



holography, and consider how it overlaps with the other iterative methods in the

case of non-ideal reference waves.

In Chapter IV, we apply the techniques of Chapter III to reflection

geometry, imaging a known test sample through a highly novel method which

has applicability to a variety of interesting condensed matter samples. In this

chapter we discuss the factors behind our choice of geometry and apertures; how

best to mount the sample to maximize recovered image fidelity, the collection

and conditioning of a high-quality diffraction pattern, and the reconstruction

of the wavefield leaving the sample. We also dedicate considerable length to

understanding exactly how all the experimental parameters contribute to the

achievable resolution in the final recovered image.

In Chapter V, we apply the holographic techniques introduced in Chapter

III to the imaging the x-ray beam’s degree of coherence, a second order property

of the electric field. We show how to fabricate a set of holographic apertures

which function as a continuous set Young’s double-slits to measure the degree of

correlation between all possible separation vectors simultaneously. From an initial

experiment, we recover an estimate of the coherence factor along both principal

axes, and discuss how future improvements could eliminate the effect of the direct

synchrotron beam bleeding through the apertures, which we did not consider in the

initial design of the experiment.

In Chapter VI, we adopt the iterative algorithms introduced in Chapter III

and used in Chapter IV to the simulation of labyrinthine magnetic domains in

thin films with perpendicular magnetic anisotropy. With the domain generator

algorithm we aim to produce domain configurations belonging to the class of

3



solutions described by an arbitrary incoherent scattering lineshape. We discuss

at length gory and tedious algorithmic details.

In Chapter VII, we use the domain generator developed in Chapter VI

to interpret the presence of a possible “hidden” angular symmetry in a speckle

pattern taken from a magnetic thin-film sample. Due to the ability to find similar

candidate symmetries in the speckle patterns generated from random numbers, we

endeavor to answer two basic questions about the experimental candidate: what

would such a symmetry look like in the real space domain configuration, and how

can we determine whether any particular candidate symmetry reflects an ordering

mechanism in the sample or a random fluctuation in the speckle pattern?

In Chapter VIII, we summarize the research and provide an outlook to future

research in these areas.
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CHAPTER II

BACKGROUND

In this chapter we review the fundamental background behind the three

experiments described in the later chapters of this dissertation. As all of three

experiments operate within the domain of coherent x-ray scattering, we first

derive several key results in coherent scalar diffraction theory, show how both

near- and far-field diffraction patterns may be rapidly calculated with numerical

methods, and consider the effect of partial coherence on the far-field intensity

pattern. Next, we briefly discuss resonant magnetic scattering, and how this can be

modeled realistically as a coherent scattering process; coherent magnetic resonant

scattering is a key component in the final chapter of the dissertation. Finally, we

review the basic physics of x-ray radiation as produced by an undulator source

such as those at the Advanced Light Source, and discuss specifically how this

radiation is delivered through ALS beamline 12.0.2 to the 12.0.0.2 experimental

endstation. The chapter concludes with a section on the capabilities of the

scattering endstation used in these experiments.

2.1. Scalar Diffraction Theory

As the experiments in this dissertation were all conducted at beamline 12.0.2

of the Advanced Light Source and beamline 12.0.2 is a coherent scattering beamlne,

in this section we will derive some useful results in coherent scalar diffraction

theory. From the scalar wave equation and Green’s Theorem, we will find the

exact Kirchoff diffraction integral. We will then consider two limiting forms of

the integral applicable to the near- and far-fields. This treatment mainly follows

5



that of Goodman [7], although there are many excellent resources on the history

and development of this theory [8–12]. For simplicity, we do not consider the full

vectoral nature of the electric and magnetic fields which arises under inclusion of

field polarization.

2.1.1. The Kirchoff Diffraction Integral

Many advanced treatments of scalar diffraction theory derive the exact

Kirchoff diffraction integral. The standard derivation proceeds along the following

steps. First, from Maxwell’s equations, they show an optical disturbance in the

monochromatic limit follows the Helmholtz equation. Combined with Green’s

theorem, the Helmholtz equation permit several choices of Green’s functions for

the optical disturbance in the forms of expanding spherical waves. In physically

realistic diffraction situations, such as the diffraction of light through an aperture

in an opaque screen, the expanding waves fall off in intensity sufficiently quickly

that we may treat them as outgoing and consider only the waves passing through

the aperture as contributing to the electric field at a point past the aperture. The

integral in Green’s theorem then reduces to the well-known Kirchoff diffraction

integral:

U(x, y) =
1

iλ

∫∫

aperture

U(u, v)
exp(ikr)

r
cos(θ) ds (Equation 2.1.)

where λ is the wavelength of the monochromatic wave, U(u, v) is the value of the

wavefield within the (u, v) source plane, U(x, y) is the value of the wavefield in the

(x, y) observation plane, and r and θ are the distance and angle between any given

pair of points (u, v) and (x, y). We illustrate this geometry in Figure 2.1..
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In addition to its mathematical rigor, Equation 2.1. expresses the Huygens-

Fresnel principle by stating that the diffracted field at some point behind the

aperture may be expressed by treating each point in the aperture as the source

of an expanding spherical wave which then adds in superposition. In fact, up to

the cosine term and the prefactor, we could write down Equation 2.1. directly from

the Huygens-Fresnel principle. That cosine term is sometimes referred to as the

obliquity factor, which changes somewhat depending on the particular choice of

Green’s function used in the derivation of Equation 2.1.. Different choices of G and

thereby different obliquity factors lead to nearly identical results in the far field

but may show small differences very close to the aperture [13], ultimately due to

differences in the treatment of the complicated fringing fields near the rim of the

aperture.

We reproduce the full derivation of Equation 2.1. as described above in

Appendix A.

2.1.2. Fresnel and Fraunhofer Approximations

While accurate, the Kirchoff integral presents serious difficulties in terms of

calculation. As the integral generally permits no analytic solutions, we must employ

numerical techniques. Each point in the observation plane requires an independent

two-dimensional integral over the source plane, as both the distance r01 and the

obliquity factor change for each point. Consequently, direct numerical evaluation of

the integral runs in very slow O(N2) time, where N is the total number of pixels in

the discretized source plane. However, as the distance between the source plane and

the observation plane becomes significantly larger than the size of the aperture, fast

approximations to the integral become available.
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FIGURE 2.1.. Coordinates and planes for the Kirchoff, Fresnel, and Fraunhofer
diffraction integrals.

2.1.2.1. The Fresnel Approximation

We define the coordinates used the upcoming approximations in Figure 2.1..

In the source plane with the aperture, we index points with cartesian coordinates

(u, v). In the observation plane where we measure the diffraction pattern, we index

points with cartesian coordinates (x, y). Some distance z separates the two planes.

For ease of notation, we replace cos θ = z/r, making the diffraction integral:

U(x, y) =
z

iλ

∫∫

source

U(u, v)
exp(ikr)

r2
du dv (Equation 2.2.)
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To simplify Equation 2.2. we make approximations to the distance r. First,

we write the exact form of r in terms of the plane coordinates:

r =
√

(x− u)2 + (y − v)2 + z2

= z

√

1 +

(

x− u

z

)2

+

(

y − v

z

)2

As z increases, r → z. In the Fresnel approximation, we first expand r as a Taylor

series:

r = z



1 +
1

2

(

(

x− u

z

)2

+

(

y − v

z

)2
)

− 1

8

(

(

x− u

z

)2

+

(

y − v

z

)2
)2

+ ...





(Equation 2.3.)

In Equation 2.2., r occurs in two places. For the polynomial r in the denominator,

we must keep only the first-order of Equation 2.3., particularly when the aperture

size much smaller than the propagation distance. For the r in the exponential,

the high susceptibility of the complex exponential to errors in the distance

approximation requires us to keep to second order. After factoring out a constant

phase factor, the approximations to r give the Fresnel integral

U(x, y) ≈ eikz

izλ

∫∫

source

U(u, v) exp

[

ik

2z

(

(x− u)2 + (y − v)2
)

]

(Equation 2.4.)

Equation 2.4. is generally accurate for separation distances z greater than the

size of the aperture. We will discuss a numerical method for rapidly evaluating

Equation 2.4. in a later section.
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2.1.2.2. The Fraunhofer Approximation

In the case when z becomes very large with respect to the size of the

aperture, a further approximation becomes available. Expanding the phase factor in

Equation 2.4., we write:

e
ik
2z ((x−u)2+(y−v)2) = e

ik
2z

(x2+y2) × e
ik
2z

(u2+v2) × e
−ik
z

(xu+yv)

Assuming z ≫ k(u2 + v2), the middle term on the right hand side has no effect

on the integrand. The left-most term has no variables of integration and may be

pulled into the pre-factor of the integral. This leaves only the last term:

U(x, y) =
eikzeik(x

2+y2)/2z

izλ

∫∫

source

U(u, v) exp

[

− ik

2z
(xu+ yv)

]

du dv

(Equation 2.5.)

So for very large separation z, the wavefield at the observation plane is proportional

to the Fourier transform of the wavefield passing through the aperture in the source

plane.

The region of applicability for this approximation may be further clarified.

Returning to the assumption which eliminated part of the phase factor, we define

the Fresnel number Nf as

Nf =
r2

zλ
(Equation 2.6.)

where r is now the characteristic size of the aperture (for a circular aperture, its

radius). Generally, the Fresnel regime is considered those combinations of r, z, λ

for which Nf ≥ 1. The Fraunhofer regime is considered Nf ≪ 1.

The reduction of the diffraction integral to a single Fourier transform is

a tremendous result in optics due to the vast base of knowledge surrounding

10



the Fourier transform. In addition to the known analytic Fourier transforms,

there exist fast numerical algorithms to calculate the Fourier transform of an

arbitrary function in O(N logN) time instead of O(N2) [14–16]. Most scientific and

numerical programming packages include Fast Fourier transform (FFT) algorithms,

and the highly parallel nature of the algorithm presents a nearly-ideal use case for

GPU computation [17].

2.1.3. Detection

At x-ray wavelengths, current detector technology cannot measure the full

complex wavefield found in the far field. This results from averaging over many

cycles of the wavefield in order to form an estimate of its amplitude. In fact, any

sort of detector will respond not to the electric field, but the intensity at a point in

space, given by:

I(x, y) = 〈U(x, y, t)U∗(x, y, t)〉

= |U(x, y)|2 (Equation 2.7.)

We therefore lose information about the phase of the electric field. In

crystallography, this was originally referred to as “the phase problem.” We will

return to its importance in discussing coherent imaging techniques.

2.2. Near-field Propagation

In the experiments described in this dissertation, we will propagate coherent

wavefields in the near-field regime. In contrast to far-field Fraunhofer diffraction

where we find asymptotically exact solutions by fast numerical implementations of

11



the Fourier transform, near-field diffraction patterns resist simple calculation. Any

attempt to calculate the near field diffraction pattern must reinsert the quadratic

phase factor which we dropped in making the Fraunhofer approximation. This

term creates the difficulty in finding analytic solutions to the integral. Direct

numerical calculations of the Fresnel integral are prohibitively expensive and

efficient FFT-based methods are highly desirable. Here, we review a common

FFT-based algorithm for near-field coherent wave propagation and summarize

its strengths, weaknesses, and zone of applicability. The treatment of this section

primarily follows Mas [18]; the same information can also be found in many sources

dealing with coherent optics [7, 8]

2.2.1. Discretization of the Integral

To use FFT methods we must first discretize the integral. Assuming the array

over which the function is being evaluated is N × N pixels in size, we define the

following discrete variables:

u = nδ0, v= mδ0

x = aδz, y = bδz

Here, δ0 and δz describe the size of a pixel in the source plane and observation

plane, respectively. The pixel indices n and m run between 0 and N − 1. The

size in pixels of the propagated array is the same size as the source array. After

discretization, Equation 2.2. becomes:

U(aδz, bδz) =
eikze

ik
2z

(a2+b2)δz

iλz

N−1
∑

n=0

N−1
∑

m=0

U (nδ0,mδ0) e
iπ
λz (n2+m2)δ20e

−2iπ
λz

(na+mb)δ0δz

(Equation 2.8.)
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The canonical form of the discrete fourier transform (DFT) of a series of sampled

data xn is [19]:

F (k) =
N−1
∑

n=0

xne
−2πikn/N (Equation 2.9.)

Matching Equation 2.8. and Equation 2.9. requires the following equality:

δz =
λz

Nδ0
(Equation 2.10.)

So by discretizing the integral it initially seems we must accept a change in pixel

size according to Equation 2.10..

Often, convenient evaluation of the discrete Fourier sum involves shifting the

indices n and m from the range (0, N − 1) to (−N/2, N/2 − 1). This change of

variables allows the visual center of the array to be the coordinate origin, and more

accurately reflects the behavior of the fourier transform in decomposing signals into

both positive and negative frequencies.

2.2.2. Fresnel Integral as Convolution

For reasons relating to the accuracy of the phase component [18], we avoid

direct calculation of the Fresnel integral and instead use the convolution theorem.

Given two functions f(u), g(u), their convolution {f ∗ g} is given by

{f ∗ g}(x) =
∫

f(u)g(x− u)du (Equation 2.11.)
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Using Equation 2.11., we rewrite Fresnel integral in Equation 2.4. as:

U(x, y, z) = U(x, y, 0) ∗H(x, y, z) (Equation 2.12.)

H(x, y, z) =
eikz

iλz
e

ik
2z (x2+y2)

H(x, y, z) is called the Fresnel propagator. The convolution theorem allows

Equation 2.12. to be calculated via Fourier transforms as

U(x, y, z) = F
−1 {F {U(x, y, 0)}F {H(x, y, z)}} (Equation 2.13.)

We can analytically solve the Fourier transform of the propagator H(x, y, z), which

greatly speeds up the calculation.

F{H(x, y, z)}(fx, fy) =
eikz

iλz

∞
∫∫

−∞

e
iπ
λz

(x2+y2)e−2iπ(xfx+yfy) dx dy

=
eikz

iλz

∞
∫∫

−∞

exp

[

iπ

λz

(

x2 − 2xfxλz + y2 − 2yfyλz
)

]

dx dy

=
eikz

iλz

∞
∫∫

−∞

exp

[

iπ

λz

(

(x− fλz)2 + (y − fλz)2 − λ2z2(f 2
x + f 2

y )
)

]

dx dy

= exp
[

−iπλz
(

f 2
x + f 2

y

)] eikz

iλz

∞
∫∫

−∞

exp

[

iπ

λz

(

x2 + y2
)

]

dx dy

= C exp
[

−iπλz
(

f 2
x + f 2

y

)]

(Equation 2.14.)

In Equation 2.14., we have buried both the exponential prefactor and the integral

into a multiplicative constant, which we ignore as the conservation of energy

determines the overall magnitude of the diffraction pattern and the global phase
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is irrelevant. Inserting Equation 2.14. into Equation 2.13. gives

U(x, y, z) ∝ F
−1
{

F {U(x, y, 0)} exp
[

−iπλz
(

f 2
x + f 2

y

)]}

(Equation 2.15.)

The scaling factor λz governs the relationship between the coordinates x, y

and their conjugate frequencies fx = x
λz
, fy = y

λz
. However, the pixels in the

observation plane also obey the scaling law expressed in Equation 2.10.. With these

relationship and the discrete variables introduced earlier, we discretize Equation

2.15. as

E(aδz, bδz) ∝ DFT-1

{

DFT {U(mδ0, nδ0)} exp
(−iπλz
N2δ20

(

m̃2 + ñ2
)

)}

(Equation 2.16.)

where m̃, ñ are the coordinate indices in the Fourier domain after applying the

first DFT. The near field diffraction pattern can therefore be calculated through

a convolution nominally requiring three Fourier transforms. When propagating the

same wavefield through a spectrum of distances, we can precompute the Fourier

transform of the wavefield and directly evaluate the Fresnel kernel in the far field.

Consequently, propagating through a spectrum of N distances requires only N + 1

rather than 3N Fourier transforms.

2.2.3. Nyquist Limitations on the Region of Applicability

For the numerical evaluation of the integral to remain valid, the phase term

in Equation 2.16. must be properly sampled within the Nyquist limit, meaning

the argument of the exponential can vary only up to iπ between any two adjacent

points. As only propagation distance z varies, we calculate how large z may become
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FIGURE 2.2.. Simulation of near-field diffraction from a Fresnel zone plate. At left,
a view of the simulated zone plate. At right, slices through the diffraction pattern
as a function of distance.

without violating the Nyquist sampling condition at the edge of the array:

iπ ≥ d

dm̃

[−iπλz
N2δ20

(

m̃2 + ñ2
)

δ20

]

ñ=0, m̃=N/2

(Equation 2.17.)

z ≤ Nδ20
λ

(Equation 2.18.)

This limit applies to both the magnitude and the phase of the propagated

wave; above this limit, the propagated wavefield becomes unreliable due to aliasing

in the phase factor, and other algorithms must be used to reach the far field.

While Equation 2.10. implies that the pixel size of the propagation increases

linearly with z, Equation 2.15. in fact experiences no such stretching. This is

because the use of both a forward and inverse DFT to implement the convolution

cancels the scale factor which stretched the field of view of the plane propagated

through direct evaluation.

2.2.4. Example

We show the near field diffraction patterns from a Fresnel zone-plate in

Figure 2.2.. Fresnel zone plates act as diffractive elements to focus the x-rays at
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a desired focal distance f from the aperture [12]. The transmittivity in a zone plate

with binary transmittivity is given by:

T (r) =
1

2
± 1

2
sgn

[

cos

(

πr2

λf + λ2/4

)]

(Equation 2.19.)

The inclusion of ± allows the central zone to be either opaque or transmissive.

Because cos(x2) oscillates very rapidly as x increases, we limit the simulation of

the zone plate according to the Nyquist condition. In analogy to Equation 2.17. we

calculate the maximum radial extent R0 in pixels of a properly sampled zone plate:

π ≥ d

dR

[

π(δ0R)
2

λf + λ2/4

]

R=R0

(Equation 2.20.)

R0 ≤
λf + λ2/4

2δ20
(Equation 2.21.)

Figure 2.2. shows the binary zone plate described by Equation 2.19. with

focal length 1mm at λ = 2.48µm. We have truncated to radial extent R0/3, well

short of the Nyquist limit. The magnitude of the near-field diffraction pattern as a

function of z from the Nyquist-limited zone plate (not shown) is in the right panel

on a log scale. For the parameters used in this simulation, the Nyquist limit for

the propagation according to Equation 2.18. is 2064µm. We easily observe not just

the primary focal spot at 1000µm but also odd harmonics f/3, f/5, f/7, etc with

decreasing power in successive harmonics. The existence of multiple focus points is

equivalent to the spectral decomposition of a periodic square wave.
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2.3. Partial Coherence

The Kirchoff diffraction integral Equation 2.1., the Fresnel approximation

Equation 2.4., the Fraunhofer approximation Equation 2.5., and the detection

formula Equation 2.7. assume the ideal case of perfectly coherent illumination.

In fact, no wavefield exhibits perfect coherence, and a more accurate treatment

of the formation of far-field intensity patterns must include a consideration of

the role of imperfect, or partial, coherence. In this section, we briefly discuss the

canonical qualitative example of partially coherent diffraction, Young’s double slit

experiment, then derive a highly useful formula, Schell’s Theorem, to describe how

a partially coherent far-field intensity pattern is produced from the fully-coherent

idealization.

The theory of partially coherent diffraction has been advanced by many

researchers, most importantly Wolf [9]. This treatment mainly follows Goodman

[7]. Due to the ability of synchrotron beamlines to produce highly monochromatic

light, we will derive the desired result under the assumption of only a single

frequency of light in the experiment which is referred to as the quasimonochromatic

assumption. Elaboration of the theory of partial coherence in the case of pink light

may be found in the above cited sources.

2.3.1. Coherence, Qualitatively: Young’s Double Slit Experiment

To illustrate the way speckle formation depends on coherence, we

qualitatively consider the canonical Young’s double-slit experiment shown in

Figure 2.3.. In this experiment, monochromatic light of wavelength λ from a

distant source is incident from the left on a pair of thin slits s1 and s2, from which

it diffracts into the far field to form a band of light and dark interference stripes
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FIGURE 2.3.. Young’s double slit experiment illustrates spatial coherence. Light of
wavelength λ is incident from left on two slits s1 and s2, from which it diffracts
into the far field to form a series of interference fringes. Points p1 and p2 in
this schematic mark an interference maximum and minimum, respectively. The
introduction of a constant relative phase shift φ into the light passing through s2
moves the location of the fringes.

on a detector. Examining the solid interference curve, at p1 the interference is

constructive because the path lengths s1p2 and s2p2 differ by an even number

of wavelengths (the path length difference is s1m); at p2, the interference is

destructive because the path lengths differ by an odd number of wavelengths.

However, if the phase of the wave at s2 is retarded by some amount φ, the location

of the maxima and minima shift as shown in the dashed interference pattern.

When the relative phase between s1 and s2 is completely stable, we say that the

wavefront is fully coherent. If the phase retardation φ varies randomly in time,

however, the interference pattern also varies in location. In this case, a suitably

long measurement of the intensity averages over all the movement of the pattern

and shows reduced fringe contrast. In this latter case of random phase variations

across the wavefront, we say that the wavefront is partially coherent.
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Such random variations in φ may also be understood qualitatively by

imagining the point source illuminating the apertures as an extended collection

of point sources, all emitting incoherently from the others. Each source generates

a wavefront which passes through the slits at some oblique angle, forming an

interference pattern at a different location on the far field screen. Summing the

interference patterns gives the reduced contrast. Given the time-averaging nature

of recording the interference pattern, this view is equivalent to a single source point

randomly changing its position relative to the slits and thereby introducing the

phase variation φ. This geometric interpretation of the experiment grants a limiting

relationship for describing when we may consider as fully coherent the illumination

over an aperture subtending an angle θ relative to some source with extent d [12]:

dθ = λ/2π

2.3.1.1. Coherence, Quantitatively: Schell’s Theorem

We now conduct a more formal analysis of the far-field intensity under

partially coherent illumination. First, we define some common terms. The amount

of phase correlation between two points of an electric field is given by the so-called

mutual coherence function, first introduced by Wolf [20, 21]

Γ12(τ) = 〈U1(t+ τ)U∗
2 (t)〉 (Equation 2.22.)

where U1 is the electric field at some point 1, U2 is the electric field at some point

2, τ is a time delay, and the angle brackets indicate a time average. Because the

fields at different points in space can change in magnitude without disrupting
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the phase relationship, we often normalize the mutual coherence function by the

intensities of the fields to give the complex degree of coherence γ12(τ):

γ12(τ) =
〈U1(t+ τ)U∗

2 (t)〉
√

〈|U1(t)|2〉 〈|U2(t)|2〉
(Equation 2.23.)

Although a complex number in general, the magnitude of γ12 lies between 0 and 1

by the Cauchy-Schwartz inequality. Assuming quasimonochromatic illumination, we

often wish to consider the degree of coherence between two points at τ = 0. This

refers only to the retardation between the two points resulting from path length

difference, and still requires a time average:

J12 = Γ12(0) = 〈U1(t)U
∗
2 (t)〉 (Equation 2.24.)

µ12 = γ12(0) =
〈U1(t)U

∗
2 (t)〉

√

〈|U1(t)|2〉 〈|U2(t)|2〉
(Equation 2.25.)

J12 is called the mutual intensity and µ12 is called the complex coherence factor.

In mathematical treatments of the double slit experiment [7, 10], the visibility

of neighboring fringes crucially contains the coherence factor:

V =
2
√
I1I2

I1 + I2
|µ12|

When careful fabrication makes identical pinholes and careful technique illuminates

them equally, this reduces to:

V = |µ12|; (I1 = I2) (Equation 2.26.)
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Equation 2.26. provides a straightforward and widely-used method of measuring

the degree of partial coherence. In a traditional experiment of this type, a set of

pairs of small, identical pinholes are fabricated with various separation distances,

and each pair carefully aligned to maximize interference fringe visibility [22, 23].

However, ensuring each pinhole is equally illuminated so that I1 = I2 is a tedious

task which makes measurements of the coherence low resolution.

Better techniques for measuring the coherence factor rely on a general

consideration of the impact of partial coherence on the recorded far-field intensity.

Under the assumption that the degree of coherence between any two points in the

source plane depends only on the difference of their coordinates (∆u,∆v), we may

produce the partially coherent far-field intensity fully-coherent far-field Ifc through

a convolution:

Ipc(x, y) = Ifc(x, y) ∗ F{µ(∆u,∆v)} (Equation 2.27.)

We fully derive Equation 2.27., which Goodman refers to as Schell’s Theorem, in

Appendix A. In terms of the application of Equation 2.27. to the measurement

of the degree of coherence, rewriting using the convolution theorem solves for the

coherence factor:

µ(∆u,∆v) =
F−1 {Ipc(x, y)}

P(∆u,∆v)
(Equation 2.28.)

where P(∆u,∆v) is the autocorrelation of the wavefield leaving the source plane.

Consequently, through clever choice of the source apertures, we can easily measure

the coherence of the illumination.
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FIGURE 2.4.. Pinhole diffraction with partially coherent illumination; the pinhole
radius is r and the coherence function is a gaussian with standard deviation σ.

2.3.2. Example

Figure 2.4. shows the results of simulations using Equation 2.27. to calculate

the partially coherent intensity pattern formed from a circular pinhole of radius

r. In the fully coherent case, the functional form of the intensity goes as the well-

known Airy pattern
(

J1(ρ)/
√
ρ
)2
, where J1 is a Bessel function of the first kind

of first order and ρ is the radial coordinate on the detector. The coherence factor

µ(∆u,∆v) in these simulations is a gaussian with standard deviation σ. By varying

σ, we generate diffraction patterns of very high coherence (σ = 8r), diffraction

patterns of very low coherence (σ = r/4), and diffraction patterns where the degree

of coherence takes some intermediate value relative to the size of the aperture. As

the coherence decreases, so does the visibility of the Airy fringes until the fringes

eventually disappear.
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2.4. Resonant Magnetic Scattering

In Chapter VII we will consider resonant scattering from magnetic thin film

samples with perpendicular anisotropy. Hannon [24] first gave the proper scattering

factors for resonant magnetic scattering in terms of the polarization en of the

incoming photons, the polarization e′n of the outgoing photons, the magnetization

vector M and various transition matrix elements f j
i :

f (n) = (en · e′n)fn
c + i(en × e′n) ·Mnfn

m1
+ (en ·Mn)(e′n ·Mn)fn

m2
(Equation 2.29.)

The first term of Equation 2.29. is nonzero only in the case when the

polarization of the incoming light is not rotated by the scattering process, as it

is for magnetic scattering. For the linear σ polarization on beamline 12.0.2, this

term therefore corresponds entirely to charge scattering alone, as indicated by

the fc scattering factor. The second factor gives rise to XMCD in the case of

circularly polarized light. However, as we use linear σ light and will be scattering

from thin-film samples in which the magnetization is strongly favored to be out

of plane (M = |M |k̂), this scattering factor requires that a magnetic signal

rotate the outgoing polarization en into π orientation. In ordinary scattering, the

matrix element fc overwhelms the matrix element fm1
. However, the L3 electronic

resonance strongly enhances the magnetic scattering. The third factor, quadratic in

M, is much weaker than the other two terms and generally close to zero anyways

as σ · k̂ = 0. In other situations away from normal incidence this term gives rise to

magnetic linear dichroism.

Because the charge scattering remains on the σ polarization but the magnetic

scattering rotates into π polarization, the two scattering signals do not interfere.
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Consequently, Equation 2.29. predicts that in the case of linear polarization the

charge and magnetic scattering intensities become separable:

I = |Mnfn
m1

|2 + |fn
c |2 (Equation 2.30.)

To set the groundwork for simulating the scattering pattern, we also consider

the scattering process explicitly from the point-of-view of the index of refraction

and XMCD. Following the example of Lovesey and Collins [25], we decompose

the linearly-polarized incident illumination into equally weighted left- and right-

circularly polarized fields labeled U+(u, v) and U−(u, v), respectively. The index of

refraction seen by each polarization depends on parallel or anti-parallel alignment

between the magnetization at a given point in the sample and the angular

momentum of the incident field. We model the effect of the magnetization on the

index of refraction as a shift ∆n in the base index of refraction n0 that would be

observed in the absence of magnetic dichroism. Dichroism here enters as a change

in the sign of the shift to the optical constants.

n↑↑ = n0 +∆n

n↑↓ = n0 −∆n

n0 = 1− δ + iβ

∆n = −∆δ + i∆β
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For simplicity, we express the shift in δ and β as a simple scalar multiplication:

n↑↑ = 1− (1 + ∆)δ + i(1 + ∆)β

n↑↓ = 1− (1−∆)δ + i(1−∆)β

Parallel and anti-parallel alignments of the spins relative to the propagation

direction of the beam have value ±1. Labeling the magnetization as a function

of position m(u, v), the index of refraction as a function of polarization and position

becomes:

n+(u, v) = 1 + (1 + ∆×m(u, v)) δ − i(1 + ∆×m(u, v))β (Equation 2.31.)

n−(u, v) = 1 + (1−∆×m(u, v))δ − i(1−∆×m(u, v))β (Equation 2.32.)

In the Born approximation, the relationship between the field incident on the

sample and the field leaving the sample is given by:

Uout(u, v) = Uin(u, v) exp [ikt(u, v)n(u, v)] (Equation 2.33.)

where k is the usual wavevector 2π/λ, t(u, v) is the thickness of the sample, and

n(u, v) is the index of refraction. We will use thin samples of approximately

constant thickness t where we assume the Born approximation holds. Due to the

orthogonality of the left- and right-circular polarizations, the incoherent sum of the
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intensity of each polarization gives the total far-field intensity [7]:

I(x, y) = |F {U+(u, v)} |2 + |F {U−(u, v)} |2 (Equation 2.34.)

U+(u, v) ∝ Uin(u, v) exp [iktn+(u, v)]

U−(u, v) ∝ Uin(u, v) exp [iktn−(u, v)]

Finally, by setting m(u, v) to a constant across space, we can simulate the

effect of saturating the sample to record just the charge-scattering component

of the signal in the absence of magnetic contrast. Generally speaking, the lack

of charge ordering in the sample which could cause additional modulation in the

illumination makes the saturation image just the Fourier transform of the aperture.

2.5. Beamline and Endstation

In this section we take a virtual tour of beamline 12.0.2 at the Advanced

Light Source in Berkeley, CA. The beamline was originally constructed by the

Center for X-Ray Optics at Lawrence Berkeley National Laboratory in 2002 as

a demonstration instrument for coherent scattering at soft x-ray wavelengths.

The beamline has two branches; branch 12.0.2.1 was used to test optical elements

and filters for coherent scattering, and branch 12.0.2.2 was designed for coherent

scattering from magnetic and complex-oxide systems. In this dissertation, we

describe results from the 12.0.2.2 branch only. For some discussion of the design

considerations in the scattering branch, see Chesnel [26].

The x-ray radiation used on this beamline is produced by a 55-period

undulator insertion device. Like all undulator sources, the emitted beamline

displays high brightness due to its low divergence. As the undulator functions as
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essentially a “black box” source of radiation which we do not alter except for the

undulator gap to tune the energy, we do not review undulator physics here. We do,

however, present some fundamental undulator results in Appendix A. Attwood [12]

provides a good introduction to undulator radiation specifically and synchrotron

radiation more generally.

2.5.1. Beamline Elements

In Figure 2.5.(a), we show a rough cartoon schematic of the beamline. The

first element of the beamline is a N = 55, λu = 8.0cm undulator. X-rays emitted

from the sector 12 undulator first impinge upon a water-cooled four-jaw aperture,

which functions to accept only the central cone of the undulator beam. This

aperture is set by hand. Following the four-jaw, a retractable, planar, gold-coated

mirror M0 deflects the beam between the 12.0.2 branches and the 12.0.1 branch.

The planar design of the mirror allows deflection without disrupting the focus of

the beam. A secondary role of M0 is attenuating high harmonics of the undulator

beam. These elements do not appear in Fig. 2.5.(b)

Downstream of M0 comes the monochromator assembly, consisting of the

iridium spherical focusing mirror M2 [27], a varied line-space grating, and a set of

adjustable exit slits. In Fig. 2.5.(b), M2 is the box marked A, and the grating and

slits are found in the box marked B. M2 focuses the beam on the grating, from

which the beam diffracts similarly to optical light through a prism. By adjusting

the width of the exit slit, we define narrow acceptance angle and therefore allow

to pass a narrow range of wavelength. By rotating the grating, we can select

different wavelengths without disrupting the focus of the beam (cite someone).

The grating was designed as a collaboration between CXRO and Hitachi, and is
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FIGURE 2.5.. Beamline schematic and photographs with salient features marked.
Explanations provided in text.

29



fabricated from an extremely low-roughness gold film [28]. To measure the energy

resolution established by the monochromating elements, we insert a thin titanium

film between the monochromator slits and the next downstream element, focusing

mirror M4. The L3 electronic resonance of titanium is centered at 453.8eV with

width 0.22eV [29]. By measuring the photocurrent on the downstream mirror

as a function of energy, we are able to determine the spectrum of the incoming

radiation.

M4 and M5 together form a Kirkpatrick-Baez pair [30] which focuses the

beam at the center of the chamber via grazing incidence reflection; M4 focuses

in the horizontal direction, and M5 in the vertical. Both mirrors have spherical

shape and are coated with tungsten. M4 images the beam emitted from the

undulator source, approximately ten meters upstream, while M5 images the exit

slits from the monochromator. The ratio of the distance between the undulator

source and the enstation determines the degree of demagnification; on branchline

12.0.2.2, the demagnification is a factor of eight, while on branchline 12.0.2.1

the demagnification is by a factor of fourteen. However, both depth-of-focus

effects and aberrations in the focusing optics ultimately result in a spot size

somewhat larger than might be predicted by the source size and demagnification

ratio. In Figure 2.5.(b), M4 is found in the box marked C and M5 is found in

the box marked D. While the focus of the beamline should nominally not require

adustment, the K-B system does permit fine-tuning via a CXRO controller.

Box E labels the location of a multilayer mirror and vertical beampipe

leading to a phosphorescent YAG crystal and microscope which we use to monitor

the focus of the beamline. As the total path length from the multilayer mirror to

the YAG is nominally the same as that from the multilayer mirror to the center
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of the chamber and the depth of focus is relatively large, we assume that a well-

focused beam image on the YAG crystal indicates a well-focused beam on the

sample. As a multilayer mirror, the reflectively depends strongly on energy in order

to generate constructive interference through the Bragg condition. The optimum

reflectivity of this mirror is at 250eV .

2.5.2. Beamline Optical Parameters

The following beamline optical parameters are reproduced from Rosfjord

[27]. In the time since publication, upgrades to the source and the inevitable

contamination of mirrors have surely altered the values somewhat, but they are

useful in ball-parking the performance of the 12.0.2.2 beamline.

In Figure 2.6. we show the coherent power in the central radiation cone as a

function of photon energy at both the first and third undulator harmonics [31].

Energy (eV) λ (nm) Beamline Efficiency θcen (µrad)
n = 3

Coherent flux
(focal plane; BW = 0.1%)

500 2.48 0.00567 33.57 4.39E10
600 2.07 0.00534 30.65 2.54E10
700 1.77 0.00433 28.37 1.20E10
800 1.55 0.00251 26.54 3.80E09

TABLE 2.1. Optical parameters for ALS beamline 12.0.2.2

2.5.3. Endstation

The 12.0.2.2 endstation, nicknamed “flangosaurus,” is in the F box of

Fig. 2.5.(b) and is photographed in more detail in Fig. 2.5.(c). The design of the

endstation centers around the requirements of coherent scattering from complex

materials; namely, scattering angles up to 2θ = 180◦, the use liquid nitrogen or
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FIGURE 2.6.. Tuning curves for ALS undulator U8 at first and third harmonics.

helium cryogens to reach low-temperature phases, upstream pinholes to define

illumination with a high degree of coherence, and vectoral electromagnets to apply

magnetic fields.

2.5.3.1. Angular Range

The chamber itself is a titanium ultra-high vacuum scattering chamber

with a series of external flanges mounted along the scattering plane at intervals

of 2θ = 180◦, to any of which a CCD detector may be mounted. Some of these

flanges are labeled D in Fig. 2.5.(b). The chamber rotates on a set of rotary seals,

labeled C, by an additional 2θ ≈ ±7◦, which in combination with the flange

series provides access to most 2θ between 0◦ and 180◦. On occasion, we have failed

to reach particular Bragg peaks which at resonance fall into one of the 2θ dead-

zones. The choice of titanium as the construction material reflects its non-magnetic

character.
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FIGURE 2.7.. Degrees of freedom in the 12.0.2.2 endstation. The 12.0.2.2
endstation has motorized control of x, y, z, and θ, but not χ or φ

2.5.3.2. Vectoral Magnets

The bulk of the endstation’s volume is dedicated by a set of octupolar

vectoral electromagnets, one of which is labeled B in Fig. 2.5.(c). The experiments

in this dissertation use only a fraction of the capability of the magnets. For more

extensive details on magnet capabilities and calibration, see Turner [32] or Arenholz

[33]. By applying different amounts of current to the eight different magnets, we

can create a magnetic field of arbitrary orientation with sustained magnitude of

approximately 0.4T at the center of the chamber. We can apply slightly higher

fields for short periods of time; however, excessive current eventually causes

the water coolant to reach 100◦C at which point the current supply turns off

automatically via interlock and must be reset.

2.5.3.3. Sample Manipulation

We show the coordinate system describing the scattering plane and motorized

degrees of freedom in Figure 2.7.. The sample is moved between experimental

position and transfer position by means of a motorized, cantilevered manipulator.

The primary directions of motion for the manipulator are the two dimensions

33



transverse to the beam; the x̂ direction is parallel to the ground, and the ŷ

direction is perpendicular to the ground. The manipulator can also move parallel

to the beam along the ẑ axis, but this direction of motion is uncommon.

Along x̂, the experimental position at the center of the chamber is

approximately x = 4mm, while the transfer position is at x = −364mm. Given the

large range of travel along this direction, we do not expect this motor to produce

accurate positions at resolution below about 50µm. Additionally, this motor

exhibits backlash when undergoing small motions. Along ŷ, the range of motion

is much less, ranging between y = −2mm and y = 2mm. We trust the accuracy

of the y motor to a much greater extent than x, and in experiments where we use

the manipulator motor to align pinholes mounted directly on the sample with the

beam, we see reproducible movements at ∆y < 5µm resolution.

We associate a rotation with each cardinal direction. Rotations about x

we label θ; rotations about y we label φ; and rotations about z we label χ. The

12.0.2.2 endstation has motorized control only of θ. φ may be varied through the

load-lock mechanism whereby samples are moved from the manipulator out of

vacuum, but this control is manual and there is no read-back. No in-situ control

of χ is possible, and so all alignment of χ must be done ex-situ through shims

or various other ad-hoc means. Lack of χ control in particular presents serious

difficulties to scattering experiments, as small misalignments of the sample may

deflect the signal entirely off the detector. For scattering from a Bragg peak,

such misalignment may not be discovered until beamtime because discovery of

the alignment requries the beam. Further complicating the χ problem is a slight

misalignment of the chamber in either φ or χ, which become coupled at large θ.
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2.5.3.4. Pinholes

The sample manipulator also holds two high-precision piezoelectric motors

manufactured by Attocube AG, on which we mount an array of pinholes.

Currently, this array includes pinholes of 3µm, 5µm, and 10µm diameter. The

horizontal attocube uses an optical encoder for position readback, while the vertical

attocube is resistive. We use the pinholes to select the degree of coherence with

which the sample is illuminated, or to select the size of the illumination and

thereby the size of the speckles in the far field intensity pattern.

2.5.3.5. Cryogens

In order to reach low-temperature phases, the sample manipulator may be

cooled with either liquid nitrogen or liquid helium. We measure temperature both

the end of the cryostat as well as on the sample-holder, which is connected to the

cryostat via a copper braid. Typically, the temperature reading at the sample

rides about ten Kelvin higher than on the cryostat, presumably due to greater

radiative transfer. With liquid helium, the minimum achievable temperature is

around twenty Kelvin.

2.5.3.6. Detectors

The most common detector used on the endstation and the only detector used

in the experiments in this dissertation is a high-sensitivity, high efficiency CCD,

labeled F is Fig. 2.5.(c). CCD detectors are now commonplace at synchrotron

sources. For a review of CCD physics, see Janesick [34]. The detector used on

12.0.2.2 was manufactured by Andor Technology, and is an area detector with

2048 × 2048 pixels each of side-length 12.5µm. The readout time for the detector
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at full-resolution is approximately five seconds, which is considered very slow by

modern standards. The dynamic range of the detector is set by a combination

of the pixel well-depth and the analog-digital converter in the detector’s readout

electronics. As the AD converter functions only up to 216, we can measure a

maximum of 65536 counts/pixel before saturating the camera. A rough conversion

between the number of incident photons recorded in a pixel and the number of

registered AD counts is counts ≈ E/3.64, where E is the energy of the incoming

photons. At x-ray energies, this means that the a few hundred photons will

saturate a pixel; combined with the slow readout speed, the extreme dynamic

range present in a typical far-field signal requires multiple exposures to accurately

reproduce across the full field of view. To this end, we often physically block the

central portion of the diffraction signal; the beam block apparatus is labeled E in

Fig. 2.5.(c).

A recent addition to the endstation capabilities is the long focal-length

photographic macro lens labeled A in Fig. 2.5.(c). The use of this lens in concert

with a CCTV detector allows real-time visual monitoring of the sample inside the

chamber. Recently, we have begun combining small phosphorescent samples on the

same mount with the experimental sample in order to precisely align the beam to

a specific position on the experimental sample. Use of this lens requires that a 2θ

flange be terminated with a glass window.
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CHAPTER III

COHERENT DIFFRACTIVE IMAGING

3.1. Introduction

In this chapter we will review method, algorithms, and requirements broadly

grouped as coherent diffractive imaging whereby we can invert properly prepared

speckle patterns through numerical solutions to the phase problem. We structure

this chapter as follows. First, we show the importance of the lost phase component

in generating an image of the scatterer. Second, we show the iterative nature of

the phase reconstruction algorithms and provide explicit forms for several of these

algorithms commonly seen in the literature. Third, we discuss the requirements for

a speckle pattern to be invertible with the listed algorithms, including oversampling

and coherence requirements. Fourth, we present a good metric for judging the

resolution of an image after phase reconstruction, the phase-retrieval transfer

function. Fifth, we present some sample reconstructions of simulated data and

judge their resolution; primarily, we focus on the impact of the support constraint

with an eye towards the interpretation the experimental data reconstructed in

the next chapter. Sixth, we present the theory of an alternative method of phase

retrieval through holography, and examine how it overlaps with the iterative

inversion methods in the limit of non-ideal reference waves.

The methods presented in this chapter do not represent original research, but

rather a limited and specific introduction to the techniques used later. Coherent

imaging algorithms have become a mature microscopy applicable to a vast range

of materials at both synchrotron and free-electron laster facilities, including test-
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FIGURE 3.1.. The importance of the phase in image formation. Swapping the
Fourier magnitudes of the two images exerts surprisingly little effect on the hybrid
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patterns [35–37], biological samples such as yeast cells [38–41] and viruses [42, 43],

magnetic nanostructures [44–49], quantum dots [50, 51], ceramic nanofoams

[52, 53], radiation damage in nanowires [54], and the strain and deformation in

nanoparticles [55]. References in the citations above give many additional examples.

For a review of coherent imaging in the context of coherent scattering techniques

more broadly, see Nugent [56]. For an in-depth review of imaging algorithms in

particular, see Quiney [57].

3.2. The Importance of the Fourier Phase Component

We return to the phase problem originally exposed in Equation 2.7.

Because we may write any complex number x + iy in polar coordinates

as A exp (iφ), where A =
√

x2 + y2 and φ = tan−1(y/x), the loss of the
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phase information φ during the detection process initially seem a relatively

inconsequential concern. After all, the phase represents only half the information

of the complex wavefield. However, a brief demonstration will quickly disabuse this

notion. In Figure 3.1., we show the effect of swapping the magnitude component of

the Fourier transform of two fictitious real-valued objects, forming hybrid Fourier

signals containing the magnitude of one transform and the phase of the other.

After taking the inverse Fourier transform of the mixed signals, the real-space

hybrids still most closely resemble the original image from which we retrained the

phase component . While swapping the magnitude component introduces obvious

distortions into the hybrid image, the phase component truly encodes the image.

For this reason, in terms of forming a real-space image of the scattering object, the

loss of the phase component in the detection process appears catastrophic.

Information about the real-space object remains in the modulus of the

speckle pattern; for example, an inverse transformation of the intensity gives the

autocorrelation.

3.3. Imaging Algorithms

Following a suggestion by Sayre [58] that the phase of a diffraction pattern

could be reconstructed given a suitable level of oversampling beyond the Nyquist-

Shannon limit, researchers have developed a variety of algorithms which, under

the correct experimental conditions, iteratively reconstruct the phase information

destroyed during the detection process. Post phase reconstruction, a simple Fourier

transform of the complex diffraction pattern generates a real-space image of the

scattering object. Here, we review several of these algorithms and describe their

applicability to coherent scattering experiments at beamline 12.0.2.
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3.3.1. Iterative Algorithm Overview

Phase retrieval algorithms all share at their core a common strategy to

solving the phase problem: iterative enforcement of constraints in both real- and

Fourier-space derived from a priori information about the nature of the scattering

object. For example, in Fourier-space we know that the modulus of the estimate

must match that recorded on the detector during the experiment; in real-space,

researchers often construct experiments which confine the scattering object to a

small area of space with well-defined boundaries. Schematically, we understand

the approach as follows. We form an initial guess at a solution from the Fourier

modulus and a random set of phases. We then propagate the guess solution to the

sample plane under the assumption of fully coherent illumination by a Fourier

transform. In real-space, we require that the estimate of the object meet the

constraints imposed by the a priori knowledge. Some algorithms may refine the

real-space constraint [59]. We then propagate the constrained estimate back to
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Fourier space, where the modulus of the estimate must match the measured Fourier

modulus. If, after meeting the real space constraints, the estimate satisfies some

termination condition such as a threshold in an error metric or self-consistency, we

consider the estimate a solution.

We define the Fourier-space constraint operator Pm which replaces the Fourier

modulus with that measured on the detector as

ρ′(r) = Pm {ρ(r)} = F
−1

{

√

I(q)
F {ρ(r)}
|F {ρ(r)}|

}

(Equation 3.1.)

where I(q) is the intensity recorded on the detector and ρ(r) is the solution

estimate in real space. We introduce the ρ′(r) notation to simplify the following

equations.

The real-space constraint is weaker and more subtle, and we can understand

much of the history of phase retrieval algorithms as ways to strengthen it and

consequently improve the robustness of the solution. To satisfy the oversampling

condition required by the Shannon theorem, we confine the real-space object to a

limited region within the image called the support, which we label S. Outside the

support, the object does not exist, and so we know that the value of the estimate

there must be zero. Given the nature of the scattering experiment, additional

constraints may apply to the real-space image; for example, some reconstructed

images may contain only pixels with positive real value. Such constraints help the

convergence of the algorithm by reducing the size of the search space. In this case,

we understand the set S to describe the intersection of the pixels inside the support

and pixels which have positive real value. Different approaches to enforcing this

constraint give the various algorithms seen in the literature. Although we present

several algorithms to emphasize the diversity of thought found in the literature, in
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practice most reconstructions seem to be performed either by alternating several

iterations of the hybrid input-output algorithm with an iteration of the error-

reduction algorithm, or with the difference map algorithm.

3.3.1.1. The Error Reduction Algorithm

The error reduction algorithm (abbreviated ER) [60–62] approaches the real-

space constraint as simply as possible, setting the value of the estimate outside the

support to zero during every iteration. If ρ(n)(r) demarcates the estimate of the

solution at some iteration n of the algorithm, the updated estimate ρ(n+1)(r) given

by the error reduction algorithm is:

ρ(n+1) =















ρ′(n)(r) r ∈ S

0 r /∈ S

(Equation 3.2.)

Fienup demonstrated that this algorithm is equivalent to a gradient descent along a

particular error metric [63]. As a gradient search method, this algorithm stagnates

in local minima within the solution space without finding the global minimum

which corresponds to the solution.

3.3.1.2. The Solvent Flipping Algorithm

The solvent flipping algorithm [64], which ultimately takes its name from

crystallographic phasing methods in which a solvent is placed in the crystal, flips
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the value of the estimate outside the support:

ρ(n+1) =















ρ′(n)(r) r ∈ S

−ρ′(n)(r) r /∈ S

(Equation 3.3.)

3.3.1.3. The Averaged Successive Reflections Algorithm

The averaged successive reflections algorithm [65], combines the input and

the output to gradually relax the region outside the support to its required value of

zero:

ρ(n+1) =















ρ′(n)(r) r ∈ S

ρ(n)(r)− ρ′(n)(r) r /∈ S

(Equation 3.4.)

3.3.1.4. The Hybrid Input-Output Algorithm

Proposed by Fienup [63, 66], the hybrid input-output algorithm (abbreviated

HIO) draws on nonlinear feedback control theory to mix the current estimate

ρ(n) with the semi-updated estimate Pm

{

ρ(n)
}

. This algorithm uses a feedback

parameter β; β = 0.8 is common. HIO essentially generalizes ASR which allows for

an optimal amount of feedback instead of the fixed amount in the earlier algorithm.

ρ(n+1) =















ρ′(n)(r) r ∈ S

ρ(n)(r)− βρ′(n)(r) r /∈ S

(Equation 3.5.)

We will use this highly successful and popular algorithm extensively in analyzing

the forthcoming experiment.
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3.3.1.5. The Relaxed Averaged Alternating Reflectors Algorithm

The relaxed averaged alternating reflectors algorithm [67] (abbreviated

RAAR) also incorporates a feedback parameter β. This algorithm coincides with

the hybrid input-output algorithm in the case of β = 1.

ρ(n+1) =















ρ′(n)(r) r ∈ S

βρ(n)(r) + (1− 2β)ρ′(n)(r) r /∈ S

(Equation 3.6.)

3.3.1.6. The Difference Map

Introduced by Elser [68], the difference map (abbreviated DM) is an umbrella

term for a general set of algorithms with several parameters and two instances of

the Fourier constraint operator Pm rather than the single instance found in the

other algorithms. First, we build a modified version of ρ(r) by

ρm(r) =















ρ(r) r ∈ S

−γmρ(r) r /∈ S

(Equation 3.7.)

and then, in analogy to the definition of ρ′(r) in Equation 3.1., we define

ρ′′(r) = Pm {ρm(r)} (Equation 3.8.)

We can then express the difference map using the ρ′ and ρ′′ terms as

ρ(n+1) =















2ρ′(n)(r)− βρ′′(n)(r) + β
(

(1 + γs) ρ
′(n)(r)− γsρ

(n)(r)
)

r ∈ S

ρ(n)(r)− βρ′′(n)(r) r /∈ S

(Equation 3.9.)
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Elser recommends as optimal values γm = β−1 and γs = −β−1.

3.3.1.7. Performance of Reconstruction Algorithms

Several publications have examined the performance of the various

reconstruction algorithms in great depth. For a review of the convergence

properties of several algorithms, as well as recommended improvements to the

HIO algorithm from a conjugate-gradient and saddle-point optimization point of

view, see Marchesini [69, 70]. For an evaluation of the HIO, ER, DM, and RAAR

algorithms in the presence of both an inaccurate support and missing data behind a

central beam-stop, see Huang [40].

3.3.1.8. Uniqueness

In 1982, Bates published a series of articles [71–73] which demonstrated the

uniqueness of the phase retrieval problem, excepting several trivial degeneracies.

First, shifting the original (or reconstructed) image within the image plane results

in the same far-field intensity pattern:

|F {f(x− x0, y − y0)}|2 =
∣

∣

∣

∣

∫∫

f(x− x0, y − y0)e
−i(kxx+kyy)dx dy

∣

∣

∣

∣

2

=

∣

∣

∣

∣

e−i(kxx0+kyy0))

∫∫

f(x′, y′)e−i(kxx′+kyy′)dx′ dy′
∣

∣

∣

∣

2

= |F {f(x, y)} |2 (Equation 3.10.)

Second, multiplying the image by an overall phase factor exp (iφ) results in the

intensity pattern as the phase disappears by the same argument as above. Third,

the dual of a function f(x, y), which we write f ∗(−x,−y), produces the same far-

field intensity pattern through a well-known symmetry in the Fourier transform.
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In more than one dimension, Barakat and Newsam [74] demonstrated that

only the pathologically rare case of data with a separable Fourier amplitude breaks

the uniqueness of phase retrieval. They demonstrate that if we can decompose

a Fourier signal F (k) into the product A(k)B(k), each of which have inverse

transforms a(x) = F−1 {A(k)} and b(x) = F−1 {B(k)}, then both A(k)B(k)

and A∗(k)B(k) share a far field intensity but generally correspond to different real

space images unless a(x) = a∗(−x) or b(x) = b∗(−x). Such a degeneracy is the only

possible source of non-uniqueness in more than one dimension for perfect data.

Of course, experimental data has many sources of non-perfection, including

shot noise in the intensity pattern and partially coherent illumination. Generally

speaking, these sources of error do not permit multiple solutions, but rather

prevent the existence of any exact solution. This being the case, the reconstruction

algorithms will produce only a close estimate of the image upon convergence.

3.3.2. Oversampling

Reconstruction of the lost phase requires oversampling of the signal with

respect to the Nyquist limit. Qualitatively, the speckle pattern recorded on the

detector must have speckles larger than one pixel in order to accurately record

the minima between the speckles. Quantitatively, we can state two equivalent

formulations of the oversampling requirement. First, if we reconstruct a speckle

pattern of size N × N pixels, the reconstructed image must fit entirely within a

box of size N
2
× N

2
pixels. Second, the autocorrelation of the image, given by the

inverse Fourier transform of the speckle intensity, must not overlap itself through

the circular boundary conditions at the image edge, as this creates aliasing.
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When diffracting from an isolated sample, we often know its size in real space

a priori from optical microscopy, and may then verify oversampling condition

prior to performing the scattering experiment as 2π/|q|max gives the pixel size

in the reconstruction. In practice, for the coherence lengths of the beam and

the corresponding sample size we can image and the value of |q| recorded by the

detector, scattering experiments at 12.0.2 always oversample the diffraction pattern.

Only when we perform highly incoherent scattering does the diffraction pattern

become undersampled in the Nyquist sense, but as incoherent scattering does not

generate speckle, we cannot do imaging experiments anyways.

Occasionally, researchers report a reduced two-dimensional oversampling

ratio, typically calculated by N2/(
∑

S), where N2 gives the total number of pixels

in the reconstructed image and
∑

S gives the total number of pixels within only

the support region.

3.3.3. Coherence and Signal Level Requirements

Because third-generation x-ray light sources have both incomplete coherence

and a small coherent fraction, substantial attention has now been paid to adapting

the coherent algorithms listed above to work with less than fully-coherent

conditions. When using the above algorithms, the object should fit within the

coherence length of the beam, as deviations from full coherence seriously disrupt

the reconstruction [75] However, given a well-specified coherence function, we

can modify the the propagator between the near and far fields and the constraint

operator Pm to more realistically reflect the degree of coherence [76, 77].

Researchers have investigated the level of signal necessary to obtain a

reliable reconstruction [78], and better estimators of the intensity to improve
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reconstructions from sparse measurements [79]. As we conduct scattering at soft x-

ray energies on hard condensed matter samples, we have no pressing need to avoid

radiation damage by limiting the time the sample spends in the beam. In the hard

x-ray regime or for experiments using biological specimens, radiation damage and

the amount of time the sample spends in the beam become critical concerns.

3.4. The PRTF and RFTF: Estimating Resolution

Phase retrieval algorithms of the type just discussed will recover the phase

of the speckle pattern only imperfectly for a variety of reasons, including: limited

coherence, distortions of the Fourier modulus from dust on the CCD or non-

linearities in the CCD photoresponse, shot noise, and misestimation of the real-

space constraints such as an inaccurate support. The phasing algorithms will

therefore reliably reconstruct only a portion of the Fourier phases, while other

phases will vary randomly with the starting seed. Generally speaking, the phases at

reciprocal space points with high scattering intensity will reconstruct more reliably

as they are less subject to SNR issues from counting statistics. For many samples

of interest, we find the highest scattering intensity near the center of the diffraction

pattern at reciprocal magnitudes corresponding to large real-space features.

Several metrics have been proposed to evaluate the reliability of the phase

retrieval process as a function of reciprocal space magnitude; as the reconstructed

phase increasingly fluctuates along with |q|, we interpret the reconstruction as

untrustworthy below a certain length-scale, setting the nominal resolution of the

image. Given a large number of solution estimates Ei(u, v) converged from random,

independent seeds, the so-called “phase retrieval transfer function,” or PRTF

[38, 52, 80], attempts to quantify the degree of phase reliability in Fourier space
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by averaging together the various Fourier phase components.

PRTF(q) =

∣

∣

∣

∣

〈

F {Ei(u, v)}
|F {Ei(u, v)} |

〉

i

∣

∣

∣

∣

(Equation 3.11.)

Equation 3.11. gives the form of the PRTF; i labels the independent

reconstructions. Dividing the Fourier transform of a reconstruction by its

modulus leaves just the phase component. The phase component must always

have magnitude unity, but as we averaged together many random phases the

modulus of the average naturally approaches zero by the usual statistics of phasor

addition. We therefore interpret the value of the PRTF in a straightforward

way: highly reproducible phases at reciprocal space point q give PRTF(q) = 1,

while points with highly varying phases give PRTF(q) = 0. Subtlety enters the

interpretation when deciding at what intermediate value we should declare the

phase unreproducing; no strict agreement exists in the literature, so we adopt a

value of 0.5 as a reasonable limit on the resolution of the average reconstruction.

While measuring the randomness in phase reconstructions helps establish the

resolution of the final averaged image, the reproducibility of the phase component

does not guarantee correctness. We must instead examine the extent to which the

average of many reconstructions satisfies the known constraint: the measured far-

field speckle pattern. Defined in analogy to the R-factor in crystallography, the

“R-factor transfer function,” abbreviated RFTF, measures the agreement between

the Fourier modulus of the average of the many reconstructions Ei(u, v) and the
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speckle pattern [80, 81].

RFTF(q) =
1

√

1 + σ2(q)
(Equation 3.12.)

σ2(q) =

∣

∣

∣|F {〈Ei(u, v)〉i}| −
√
I(q)

∣

∣

∣

2

I(q)
(Equation 3.13.)

Equation 3.12. and Equation 3.13. taken together mathematically define the RFTF;

I(q) denotes the measured speckle intensity pattern. While the PRTF in Equation

3.11. naturally varies between zero and unity, the RFTF in Equation 3.12. behaves

in a slightly more complicated fashion. At points q where the fourier modulus of

the average estimate exactly matches the measured experimental fourier modulus,

σ2 = 0 and RFTF(q) = 1. At points q where the fourier modulus of the average

estimate exactly falls towards zero, as often happens at large |q| when averaging

many independent reconstuctions, σ2 = 1 and RFTF(q) = 1/
√
2. It is unlikely but

not forbidden for an average reconstruction to place more Fourier power at some q

than exists in the speckle pattern, in which case σ2 → ∞ and so RFTF(q) → 0.

Both Equation 3.11. and Equation 3.12. define the transfer functions at all

measured points q. However, common practice reduces the dimensionality of the

analysis via an azimuthal average and presents results as PRTF(|q|) or RFTF(|q|)

instead.

3.5. The Impact of the Support Constraint on Reconstruction

As mentioned above, a variety of experimental factors can lead to poor

reconstruction or a reconstruction which fails outright. Among the most important

of these are the size and shape of the support constraint; the former may be set

during the reconstruction calculation, while the choice of sample or illuminating
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FIGURE 3.3.. Reconstructions for various supports. (a) shows a symmetric object
with tight support; (b) a symmetric object with loose support; (c) an asymmetric
object with tight support; (d) an asymmetric object with loose support. (e)
shows the PRTF for the four reconstructions, calculated from 500 independent
reconstructions each with 1000 iterations.

apertures predominately set the latter. Here, we show in-depth the effect of the

support constraint on the resolution of the reconstruction. Several researchers

have explored the impact of a correct support on the quality of the reconstruction

[82, 83].

3.5.1. Support Requirements

In the following simulations, we use as the test object a portion the classical

“Lena” image often used as a canonical test object in coherent imaging. The size

of the test object is 512 by 512 pixels. The results we show are each the average

of five-hundred independent reconstructions, each with a thousand total iterations

alternating between nineteen iterations of the HIO algorithm and a single iteration

of the ER algorithm. In these simulations, we do not show a RFTF plot as it

closely tracks the shown PRTF.
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Two factors dominate the impact of the support constraint on the quality of

the reconstruction: symmetry and looseness. In Figure 3.3. we show reconstructions

from four support permutations. Fig. 3.3.(a) and (b) show reconstructions which

use a symmetric support. In these two simulations, the true support of the object is

a circle of radius sixty pixels, making the diffraction pattern highly oversampled.

Fig. 3.3.(a) shows the reconstruction using the true, tight support, while in

Fig. 3.3.(b) we substantially loosened the support. Immediately, we note the low

resolution of the reconstruction with the loose support; we find confirmation of this

judgment in Fig. 3.3.(e), which shows the PRTF of the reconstructions. While the

simulation with the tight support reaches the PRTF cutoff at approximately half

an inverse pixel, that with the loose support hits the cutoff at 0.1 inverse pixels.

To some degree, the loose support allows the reconstruction to shift in space,

an allowed symmetry of the Fourier modulus, and the resulting low resolution

subsequently reflects imperfect alignment of the independent reconstructions.

Mostly, however, the low resolution reflects bad reconstructions due to insufficient

constraint in real-space. Critically, both Fig. 3.3.(a) and (b) demonstrate a

rotational symmetry not present in the original object, arising from a superposition

of the original object and its dual. We will discuss this more in the next section.

Fig. 3.3.(c) and (d) show reconstructions which use an asymmetric support.

The true support of the object is again a circle of radius sixty pixels, but with a

notch cut from the corner. We modify the support constraint similarly to follow

the incursion with a small gap of several pixels between the perimeter of the object

and the boundary of the support used in Fig. 3.3.(c), while we make the gap very

large in Fig. 3.3.(d). This notch breaks the symmetry of the support and forbids

the simulation from superposing the original object and its dual. Breaking the
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symmetry and maintaining a tight support allows for a very good reconstruction

with PRTF cutoff at 0.85 inverse pixels. However, Fig. 3.3.(d) attests that an

asymmetric object and support do not guarantee a quality reconstruction when the

support becomes excessively loose. By making the support asymmetric but much

larger than the object, the same problems manifest in (d) as in (b).

Consequently, for the best and most easily achieved reconstruction we require

both a tight and asymmetric support constraint.

3.5.2. Twinned Solutions

Fig. 3.3.(a), (b), and (c) expose a dangerous pathology in the phase-retrieval

process: the presence of a twinned solution [84, 85]. If some function f(r) generates

a speckle pattern F (q), the symmetry of the Fourier transform says that f ∗(−r)

must generate F (q) as well. Consequently, when inverting the speckle pattern F (q),

any given reconstruction may generate f(r), the rotated conjugate f ∗(−r), or even

a linear combination c1f(r) + c2f
∗(−r). In this latter case, the reconstructed image

gives a bad solution to the inversion of the speckle pattern but the reconstruction

algorithms may stagnate at a local minimum in the optimization from which

uniquely recovering f(r) or f(−r) becomes impossible.

We can imagine strategies to avoid twinned solutions; for example, calculating

pairwise cross-correlations between all the independent reconstructions may help

in identifying to which configuration each reconstruction belongs. In Figure 3.4. we

show the effect on the PRTF of isolating and averaging the three possible solution

configurations using such a cross-correlation scheme applied to the reconstructions

after 1000 iterations. Defining the normalized cross-correlation of two independent
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2 3

FIGURE 3.4.. Isolating the reconstruction configurations permitted by a symmetric
support. (0), (1), (2), and (3) show the original object and the three configuration
averages. The cut-off value of |q| in the PRTF moves outward compared to
Fig. 3.3..

reconstructions Ei and Ej as

CCi,j =
max(Ei ⋆ Ej)

√

max(Ei ⋆ Ei)×max(Ej ⋆ Ej)
(Equation 3.14.)

we identified three modal values in the distribution of the CCij. When Ei and Ej

were of the same configuration, CCi,j > 0.98. When Ei and Ej were f(r) and

f(−r) (or vice versa), CCi,j ≈ 0.87. When either Ei or Ej, but not both, was the

superposition, CCi,j ≈ 0.94. We found that the superposition solution appeared

in approximately half the reconstructions, and f(r) and f ∗(−r) equally split the

remaining half. In comparing the PRTF of Fig. 3.4. to that of the tight symmetric

reconstruction in Fig. 3.3.(e), we see that the cutoff value of |q| has shifted from

approximately 0.5 inverse pixels outwards to approximately 0.8 inverse pixels for

the non-superposed configurations.
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While we can separate configurations in simulation, we prefer to avoid

solutions poisoned by twinning through designs which discourage the twinning

pathology in the first place. This pathology most acutely effects any support

constraint which displays even approximate inversion symmetry, and for this

reason simple, symmetric shapes such as circles and squares often used in other

coherence experiments represent a nearly worst-case scenario in terms of imaging.

Asymmetric objects, such as the support used in Fig. 3.3.(c), forbid the simulation

from selecting either f ∗(−r) or the superposition f(r) + f ∗(−r).

3.5.3. Updating the Support

The poor PRTF and visually twinned solution in Fig. 3.3.(d) indicate it

would be appropriate to tighten the estimate of the support and further iterate

the independent estimates to generate an improved reconstruction. Following

the approach of Marchesini [59], we update the support in the following way.

To generate an updated support S(u, v) from an ensemble of independent

reconstructions Ei(u, v), we blur the magnitude component of the average

reconstruction through a convolution, then threshold the blurred image with

respect to some fraction t of the maximum.

S(u, v) =















1, |〈Ei(u, v)〉| ∗K > tmax {|〈Ei(u, v)〉 ∗K}

0, otherwise

(Equation 3.15.)

Here, K is some convolution kernel suitable for blurring; we typically use a gaussian

with a standard deviation of two or three pixels. Achieving a good refinement of

the support requires some trial and error with respect to the size of the convolution

kernel and the value of the threshold fraction t. This method of updating the
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support finds common use in the context of forward-scattering experiments

in which the central maximum of the diffraction pattern has been blocked to

prevent damage to the detector from high x-ray intensity. The missing low spatial

frequencies contain information about the support, and the iterative algorithms

must reconstruct that information along with the rest of the speckle pattern. In our

experiments, we avoid the need to reconstruct missing diffraction intensities but

automatically updating the support from the loose initial estimate does increase the

reliability of the reconstructed real-space image.

3.6. Fourier Transform Holography

The imaging algorithms presented above represent one way to recover

the phase information from a far-field diffraction measurement given suitable

constraints on the solution and certain considerations during the experiment.

However, iterative phasing algorithms present formidable computational

requirements due to the large number of Fourier transforms required, the non-

convexity of the optimization problem, and the lack of a guarantee of convergence.

In this section we review an alternative method recovering the phase information

of a diffraction pattern using holographic techniques. This method, called Fourier

transform holography, was first proposed by Stroke in 1965 [86]; early examples at

x-ray wavelengths are Trebes [87] and McNulty [88]. Our interest in the technique

was piqued by Eisebitt [89], who successfully employed this technique in imaging

labyrinthine magnetic domains. For more information, also see Schlotter [90, 91]
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FIGURE 3.5.. The basic geometry of Fourier transform holography, showing object
and reference apertures, the sample, and the far-field detector.

3.6.1. Theory of Holographic Image Formation

In familiar visible-light holography, the light scattered from an illuminated

object interferes with light from a known reference [10, 92, 93]. Fourier transform

holography adapts this approach to the Fourier domain by coherently illuminating

at least two objects, one of which forms a reference wave by virtue of sufficiently

small size. We demonstrate how to achieve this requirement in principle at soft

x-ray wavelengths in Figure 3.5.. A gold film with two holes masks some sample

under investigation; in the film, we fabricate two apertures. Still in analogy to

visible-light holography, we refer to the large aperture as the object aperture

and the small aperture as the reference aperture. In this simple geometry, the

superposition of the illumination passing through the object aperture and the

illumination passing through the reference aperture gives the total exiting electric

field at the aperture plane.

U(u, v) = O(u, v) +R(u, v) (Equation 3.16.)
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To calculate the far-field diffraction pattern, we simply Fourier transform the

field U(u, v), then square the magnitude of the transform. Here, we use the tilde

notation to signify a field propagated to the Fourier domain and we leave the (u, v)

and the (x, y) coordinates implicit after first use.

I(x, y) = |F {U(u, v)}|2

= |F {O(u, v) +R(u, v)}|2

= |Õ + R̃|2

= ÕÕ∗ + ÕR̃∗ + Õ∗R̃ + Õ∗R̃∗ (Equation 3.17.)

Recognizing the Fourier formulation of the cross-correlation integral, we inverse

transform the intensity in Equation 3.17.:

F
−1 {I(x, y)} = F

−1
{

ÕÕ∗ + ÕR̃∗ + Õ∗R̃ + Õ∗R̃∗
}

= O ⋆ O +O ⋆ R +R ⋆ O +R ⋆ R (Equation 3.18.)

From left to right, we identify the four terms of the Equation 3.18.: the

autocorrelation of the object, the cross-correlation of the object and reference,

the cross-correlation of the reference and the object, and the autocorrelation of

the reference. We now consider the relationship between the two cross-correlation

terms, which due to the non-commutativity of the cross-correlation operator are not

equal. Instead, we recall that the distributive property of the complex conjugate

provides (ab)∗ = a∗b∗, and that the complex conjugate operates under the Fourier

transform as F {f ∗(x)} = f̃ ∗(−k), where x and k are the conjugate variables of the
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transform. These two properties require that O ⋆ R and R ⋆ O are rotated complex

conjugates of each other.

The critical mathematical insight into Fourier transform holography comes in

formalizing the assumption of a small reference aperture. We take this to the limit

where R(u, v) ≈ δ(u − u0, v − v0); (u0, v0) are the coordinates of the reference

relative to the object aperture. Under this approximation, the object-reference

cross-correlation becomes

O ⋆ R =

∫∫ ∞

−∞

O∗(u, v)δ(u− u0 − u′, v − v0 − v′) du′ dv′

= O∗(u− u0, v − v0) (Equation 3.19.)

So by using an infinitesimal reference we recover an exact image of the full complex

wavefield leaving the object aperture, solving the phase problem through a unique

encoding of the zeros the phase in the far field diffraction pattern. We also recover

the rotated conjugate of the wavefield in the object aperture, but this second image

contains no additional information as it exists solely a consequence of the symmetry

of the Fourier transform.

3.6.2. Image Formation with Large References

In practice, we cannot make references well-approximated by a delta function

δ(u− u0, v− v0), and must accept that any physical implementation of the reference

apertures will have some shape function S(u, v). We include this shape function

in the calculation by defining the reference as the convolution of the shape S with

the δ-function describing the position relative to the object; the object-reference
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cross-correlation then becomes:

O ⋆ R = O∗(u, v) ∗ [δ(u− u0, v − v0) ∗ S(u, v)]

= [O∗(u, v) ∗ δ(u− u0, v − v0)] ∗ S(u, v)

= O∗(u− u0, v − v0) ∗ S(u, v) (Equation 3.20.)

Here, we have relied upon the associativity of the convolution operator.

Equation 3.20. simply says that as the reference becomes larger, the object-

reference cross-correlation becomes blurrier. For experiments which perform no

further analysis of the hologram besides inverting the far-field diffraction pattern,

this presents a fundamental trade-off in the Fourier transform holography strategy.

Making the reference aperture larger increases the illumination it transmits and

thereby increases the intensity of the cross-correlation which gives the image of the

field in the object aperture. However, making the reference larger simultaneously

decreases the resolution of the final image by convolving the image of the object

with a more extended function, leading to a blurry image. The situation becomes

substantially complicated when the shape function S(u, v) becomes sufficiently

large that it may also include structure, whether directly in the shape or in

the field passing through the aperture. More advanced schemes for using larger

references to increase flux have been described by several researchers [94, 95].

Due to the increased difficulty of fabrication and analysis, we do not attempt to

implement those techniques.
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FIGURE 3.6.. A basic Fourier transform holography simulation with a δ-like and
large circular reference. (a) shows the simulated test object with both a δ-like
reference and a larger circular reference, (b) the central portion of the far-field
diffraction pattern, (c) the inverse Fourier transform of (b) with the various terms
of Equation 3.18. labeled.

3.6.3. Simulation of Image Formation

We illustrate these core Fourier transform holography concepts with a

simulation shown in Figure 3.6.. Fig. 3.6.(a) shows the fictitious test object,

which we have made a square donut with a protuberance to provide orientation;

it transmits in an essentially binary fashion, with the white region having

transmittivity one and the black regions having zero. We include two reference

apertures with the test object: along the horizontal axis we place a small, δ-like

aperture, and along the vertical axis we place a much larger circular aperture.

Fig. 3.6.(b) shows the modulus of the central region of the Fourier transform

of (a) (contrast has been reduced for visibility). The Fourier modulus displays

the interference fringes characteristic of separated apertures. We easily observe
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fringes with their periodicity along the vertical axis, particularly in the ring of

intensity surrounding the central scattering maximum; however, we find no fringes

with periodicity along the horizontal axis by visual inspection alone. The much

larger integrated area of the large reference versus the small reference causes this

difference in fringe visibility.

Fig. 3.6.(c) shows the inverse Fourier transform of (b) and the visual

representation of Equation 3.18.; the various terms of that equation are labeled

on the image. At center we find AC, the sum of the autocorrelations of the three

apertures, all co-centered. CC1 and CC ′
1 denote the cross-correlation of the test

object and the small δ-like reference and its rotated complex conjugate. CC2

and CC ′
2 denote the cross-correlation of the test object and the large circular

reference and its rotated complex conjugate. CC3 and CC ′
3 denote a term missing

from Equation 3.18.: the cross-correlation of the two references and its complex

conjugate. Generalizing the reference function R(u, v) in Equation 3.16. to allow for

multiple reference apertures will produce a cross-correlation between every possible

pair of references. The various cross-correlations are displaced from the center of

the (∆u,∆v) coordinate system by the relative displacement between the aperture

pair. In the case of the autocorrelations, there exists no relative displacement

between the aperture and itself, centering the autocorrelations at (∆u,∆v) = (0, 0).

Convolution with the tiny δ-like reference makes CC ′
1 and CC ′

1 sharp but dim. In

contrast, convolution with the larger aperture makes CC2 and CC ′
2 much brighter

but blurry; this confirms the intensity-resolution trade-off predicted by Equation

3.20..
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FIGURE 3.7.. The holographic separability condition. For object-reference cross-
correlation to avoid overlappingthe autocorrelation of the object, the center-to-
center distance between the object and reference apertures must exceed 3R + r.

3.6.4. The Holographic Separability Condition

We implicitly assume in the simulation of Fig. 3.6. that the autocorrelations

and the various cross-correlations do not overlap in the (∆u,∆v) plane. In

experimental realizations of Fourier transform holography, we generally strive to

meet this condition as there exists no method for decomposing an arbitrary sum of

the autocorrelation and a cross-correlation within the overlap region. Consequently,

the need for separability of the hologram terms imposes a constraint on the design

of the apertures. We graphically consider the holographic separability condition

in Figure 3.7., showing the basic aperture arrangement in Fig. 3.7.(a) and the

holographic images in Fig. 3.7.(b). The aperture arrangement extends that in

Fig. 3.6., with a large object aperture, here a circle of radius R, and two small

reference apertures of radius r. Some distance dv separates the object and vertical

reference, while dh separates the object and horizontal reference. In the holographic

domain, the autocorrelation region remains circular in shape but now has radius
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2R. The center-to-center distance between the autocorrelation region and the cross-

correlation terms CCv and CCh remains dv and dh, respectively, and the radius

of the cross-correlations is R + r. The ring graphic used for the cross-correlations

illustrates the increase in extent from convolution with the finite-size reference.

From Fig. 3.7., the derive the condition for an object-reference cross-correlation to

stay wholly separate from the object autocorrelation:

dobj−ref ≥ 3R + r (Equation 3.21.)

In Fig. 3.7.(b), dv > dobj−ref and dh < dobj−ref . As a result, the horizontal cross-

correlation fails the separability condition and overlaps with the autocorrelation.

3.6.5. Hybrid Holography-Imaging in the Large Reference Limit

We now consider the usefulness of the Fourier transform holography geometry

even in the case of non-ideal apertures. In particular, due to the difficulty of

fabricating very small, high quality references using standard techniques such as

focused-ion beam milling, we examine options for analyzing diffraction patterns

using references significantly larger than the δ-like assumption of Equation

3.19.. Fig. 3.6. already illustrates this situation. In this case, the convolution

with the large reference serves to reduce the resolution of the object-reference

cross-correlation. However, combining the initial Fourier transform holography

result as in Fig. 3.6. with the iterative algorithms demonstrated earlier allows

the deconvolution of the object and reference by more exactly solving the phase

problem in the large-reference limit. From this point of view, we should consider

the object-reference aperture system more generally as a single, large, asymmetric
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FIGURE 3.8.. Combining holography and iterative phasing with a tight support.
(a) shows the original object; (b), (c), and (d) the averaged reconstruction
(magnitude component) from 500 independent trials after 50, 100, and 1000
iterations, respectively. (e) and (f) show the PRTF and RFTF for the recovered
test objects, respectively.

aperture, in which the “reference” aperture provides a powerful symmetry-breaking

component to the real-space image.

We simulate the effect of a large reference aperture in Figure 3.8.. Extending

the previous simulations of iterative phasing algorithms, we use as the object

aperture a circular pinhole of radius 60 pixels but now include a large reference of

radius 6 pixels inside the holographic separability distance given in Equation 3.21..

In addition to being much larger than a single-pixel δ approximation, the reference

may also contain structure from the underlying test image. We show the original

object in Fig. 3.8.(a), and the average reconstruction of 500 independent trials after

50, 100, and 1000 iterations each in (b), (c), and (d), respectively. After just 50

iterations the we recognize the average reconstruction, and after 100 iterations the
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FIGURE 3.9.. Combining holography and iterative phasing with a loose support.
(a) shows the original object; (b), (c), and (d) the averaged reconstruction
(magnitude component) from 500 independent trials after 50, 100, and 1000
iterations, respectively. (e) and (f) show the PRTF and RFTF for the recovered
test objects, respectively.

averaged reconstruction has, according to the PRTF in Fig. 3.8.(e) and RFTF in

(f), achieved nearly perfect reconstruction; after 1000 iterations, the PRTF does not

pass the cutoff at any |q|. Qualitatively, the reconstruction behavior of the Fourier

transform hologram closely resembles that seen in the asymmetric notched support

in Fig. 3.3.(c). However, using a multipartite support seems to give even faster,

better reconstructions [85].

The Fourier transform holography approach also provides an easy method for

generating a good initial estimate of the size and shape of the support. Referring

back to Fig. 3.7., the we can estimate object aperture by the perimeter of the

object-reference cross-correlation and the object-reference separation distance

by finding the distance between the center of the cross-correlation and the
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autocorrelation. We have more difficulty estimating the size of the reference

aperture. However, as the simulation in Figure 3.9. shows, even a relatively poor

estimate of the support can lead to good reconstructions with the Fourier transform

holography apertures. In this simulation, we repeat that of Fig. 3.8. but enlarge

the support. We can glimpse the extent of the larger support in Fig. 3.9.(b) as

the wispy region surrounding the main object. After 100 iterations, however, the

average reconstruction has strongly converged, and after 1000 iterations the PRTF

cutoff extends to approximately 0.5 inverse pixels. At this point, tightening the

estimate of the support and additional iterations would generate an improved

reconstruction.
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CHAPTER IV

COHERENT IMAGING IN REFLECTION GEOMETRY

4.1. Introduction and Motivation

Nearly the entirety of the coherent imaging literature, including the papers

cited earlier, describes experiments conducted in a transmission or forward-

scattering geometry. Some exceptions to this rule exist [55, 96, 97], but generally

only in the case of imaging nanoparticles in a Bragg geometry in which case the

samples provide a support constraint endogenously, or with optical light and a

very simple sample in a manner which logically replicates the requirements of a

transmission experiment.

An extension of coherent imaging techniques in reflection geometries to

extended and more arbitrary samples beyond nanoparticles would vastly increase

the range of interesting physical samples amenable to coherent techniques. As a

canonical example of our goals in this regard, we highlight the orbitally-ordered

phase in half-doped manganite [98]. In this phase, the lattice, charge, spin, and

orbital degrees of freedom in the 3d electrons of the manganese atoms become

coupled, but on length-scales which are incommensurate and for reasons not yet

fully understood. Previous work in our group by Josh Turner [32] focused on

measuring the dynamics of this phase through XPCS, but the techniques did not

exist to invert those speckle patterns to form images of the field leaving the crystal.

For this and other purely electronic phases which are characterized by charge or

orbital ordering, such as the spin-spiral state of dysprosium, magnetite below the

Verwey transition [99], and the charge stripes in cuprates and nickelates [100, 101],
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coherent imaging provides a unique opportunity to directly image phases accessible

to few other techniques.

In this chapter, we develop a technique which could image extended samples

in reflection geometries. We first consider various possible imaging geometries,

then how to mount the sample properly to ensure best image fidelity in the

reconstruction. Next, we explain in detail the steps to collect and condition the

diffraction data to make it suitable for phase reconstruction using the iterative

algorithms discussed in the previous chapter. Because the imaging geometry we

use in this experiment separates the sample and the support-defining apertures,

we then reconstruct the sample and back-propagate it to the original sample

plane, developing a metric to judge the correct propagation distance. Finally, we

spend considerable time to understand the effect which separating the sample and

apertures exerts on the resolution of the final propagated image. The techniques we

describe in this chapter were partially published earlier [102].

4.2. Choosing a Geometry for Reflection Imaging

In reflection geometry, we find a much higher degree of difficulty in

establishing the support constraint necessary for diffractive imaging.

In Figure 4.1. we show cartoon schematics of three possible sample geometries

for imaging in reflection. On the basis of the location of the aperture, we broadly

label these geometries “On sample,” “Upstream,” and “Downstream.” In the

following sections, we consider the advantages and disadvantages of these three

geometries, paying particular attention to light-in-light-out conditions in both low-

angle and high-angle scattering situations.
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FIGURE 4.1.. Three candidate geometries for coherent imaging in reflection.
Dashed circles indicate potential light-in-light-out violations.

4.2.1. Pinhole on Sample

The most direct, and most obvious, strategy to apply coherent imaging

techniques developed in transmission geometries to the reflection geometries of

interest by placing a pinhole directly on the sample. An experiment in which

apertures were produced by means of photolithography on a known test-pattern

sample for coherent imaging in the visible regime using lasers was reported earlier

by researchers [97]. At x-ray energies, however, fabricating a pinhole directly on the

surface of a sample poses a set of unique challenges.

First, the high penetrating power of x-rays requires a relatively thick coating

of gold over the surface of the sample to block all scattering except from within

the aperture. The apertures fabricated on the surface of the sample must fit

within the coherence length of the beam for the coherent-scattering assumption
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to remain valid. Consequently, for some range of small incident angles, the ratio of

the thickness of the gold coating to the size of the aperture introduces a light-in-

light-out problem due to the shadows cast over the aperture by the layer of gold.

Second, many of the samples available for imaging orient such that the

scattering plane lies in the same plane specular reflection. In these cases, we

record an incoherent superposition of the desired signal from within the pinhole

and the undesired diffuse signal from the gold and the specular reflection. At

small incidence angles, the specular reflection from a gold coating would almost

certainly overwhelm the relatively weak coherent diffraction pattern, poisoning the

reconstruction.

However, at large incidence angles, the approach of putting a pinhole aperture

directly on the sample would avoid both problems more fully, as moving near

normal incidence ameliorates both the the aspect ratio and shadowing problems

and the strength of the specular reflection drops with increasing angle [10].

Additionally, making good pinholes on a sample will generally require some

sort of lithographic method, either photo- or electron-beam assisted. In either case,

the combination of photoresist and the strong chemicals used to remove it may

damage the sample.

4.2.2. Pinhole Upstream of Sample

We next consider the issues around a pinhole upstream of the sample, as

researchers often use photo-correlation experiments to restrict the illumination to

a mutually coherent area without regard for the form the illumination takes on the

sample.
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z = 4um z = 16um z = 64um z = 256um
FIGURE 4.2.. Reconstructions fail in an upstream-pinhole geometry as the
illumination becomes more diffuse with increasing distance. Top, PRTF for
reconstructions with an upstream pinhole; bottom, near-field illumination functions
and the resulting averaged reconstructions.
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The light-in-light-out problem present in the case of high incidence angle is

obvious. Because the beam is large compared to the coherence area, the extent

of the mask surrounding the aperture must be very large so that the only light

reaching the sample is that which passes through the aperture instead of passing

around the sides of the mask. Consequently, at high angle the aperture mask

blocks not only the incident x-ray beam but the diffracted x-ray beam as well.

We could possibly solve this problem by fabricating a complicated set of apertures

on the mask for both entry and exit of the illumination. Because of the angular

relationship between exit and entry, however, the correct separation distance

between the two apertures would depend strongly on the separation distance

between the pinhole and the sample surface. We would struggle mightily to control

that parameter with the level of precision required for this geometry.

In the case of low incidence angle, no light-in-light-out problem exists.

However, a second and more fundamental problem takes its place: while the edge

of the pinhole provides a support when considering only the pinhole plane, by the

time the illumination reaches the sample it has already diffracted substantially

and become diffuse. We simulate the outcomes of imaging experiments using a

forward-propagated wavefield in Figure 4.2.. The simulation parameters here are

an asymmetric pinhole of radius 3µm with illumination energy 640eV . We show

the propagation distance z on the Figure. As z increases, the illumination (bottom

row) becomes more diffuse and the averaged reconstruction, formed by the same

procedure as in Fig. 3.3. with several rounds of support refinement, becomes less

clear. The PRTF for the simulations, shown in the top row, quantifies the degree to

which the resolution suffers under diffuse illumination.
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The lack of a well-defined support constraint is the primary cause of the loss

of resolution. As the illumination becomes diffuse, contributions to the speckle

pattern come from all parts of the sample instead of just the central illumination

spot. Consequently, no support constraint whether supplied by hand or optimized

by Equation 3.15. will accurately capture the illuminated region in a manner

consistent with the requirements of the iterative algorithms.

Because of these limitations, we consider an upstream pinhole the worst

geometry for imaging experiments.

4.2.3. Pinhole Downstream of Sample

Finally, we consider the limitations of a downstream pinhole. Of the three

arrangements considered, a downstream pinhole diverges most strongly from

the expectations of transmission coherent imaging by establishing the support

constraint and selecting the coherent portion of the beam only after the x-rays have

diffracted from the sample.

In the case of small incidence angle, no light-in-light-out problem exists.

In the case of large incidence angle, we encounter two separate light-in-

light-out problems. First, if the mask over-rotates it will block the incoming

beam. For this reason, we cannot keep the normal of the aperture plane parallel

to the outgoing beam for incidence angles greater than forty-five degrees. This

introduces the second problem, identical to the “On sample” arrangement: because

we fabricate the apertures in the mask through lithography or focused-ion-beam

milling, the orientation of the pinholes is typically along with normal of the mask

instead of cutting through at some angle, and consequently above forty-five degrees

we again find an aspect ratio problem with the thickness of the gold film and the
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size of the aperture. In Fig. 4.1., this aspect ratio problem appears minor due to

the exaggeration of the cartoon; in reality the aspect ratio problem becomes more

serious.

In either case, this arrangement does provide the strong support constraint

so necessary for coherent imaging and does not modify the sample, destructively or

otherwise. For these reasons, we pursue this strategy for the experiment described

next. However, meeting the support and no-modify conditions requires a trade-off:

the solution procedure becomes two-step. First, we must use the coherent imaging

algorithms to recover the complex wavefield passing through the apertures. Second,

we must propagate the recovered wave-field back to the sample plane from the

aperture plane. While we can achieve both steps, the limited coherence length of

the beam ultimately means that we must place the apertures as close to the sample

surface as possible. Next, we describe how to mount the sample and apertures

to minimize the separation distance in reflection, and how that distance may be

measured with at least some accuracy.

4.3. Sample Mounting

We show the basic geometry for reflection imaging with an aperture in the

near field in Figure 4.3.. Fig. 4.3.(a) shows the scattering geometry. The x-ray

beam approaches from the left onto a sample mounted on the standard beamline

puck, which we have rotated to some incident angle θ. We fabricate the apertures

in the silicon nitride membrane on the backside of a commercially-available silicon

wafer. We mount the silicon wafer in a slot cut into the body of the puck at

the angle 90◦ − θ. This angle orients the wafer normal to the scattered x-rays,

and consequently maximizes the signal transmitted through the apertures by
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FIGURE 4.3.. The mounting geometry for reflection imaging. (a) shows the
incoming x-rays incident on the sample with angle θ, passing through the pinholes,
and reflecting to the detector in the far field at 2θ. (b) diagrams the separation
distance z between the sample and the apertures; we measure ∆, not z.

presenting the full aspect of the apertures to the scattered beam in the near field.

The scattered light passes through the apertures and diffracts onto the detector at

scattering angle 2θ.

The most critical aspect of the sample mounting process is minimizing the

distance between the surface of the sample and the near field apertures along the

path of the scattered light. Fig. 4.3.(b) reorients the boxed region of Fig. 4.3.(a)

to show how the angle of incidence and the height of the sample relative to the

apertures effect the near-field propagation distance. Mounting the sample in

such a way that it stays in direct physical contact with the wafer so that no gap

exists helps minimize the propagation distance z. Labeling the distance between

the sample-wafer point of contact and the apertures ∆, the propagation distance

76



a ab b

c c dd e e

1mm

e

x
FIGURE 4.4.. The aperture plane and the sample viewed through the window of
the silicon wafer with an optical microscope. Left, a photograph taken with the
microscope; right, a cartoon reduction emphasizing the salient features.

follows the simple trigonometric relationship:

z =
∆

tan (θ)
(Equation 4.1.)

We require the formulation of the distance z in terms of the distance ∆ as given

in Equation 4.1. because while we have no method for directly measuring z

after putting the apertures in place, we can easily measure ∆ using standard

microscopes.

In Figure 4.4. we illustrate measuring the quantity ∆ using an optical

microscope with encoded translation stages. This figure shows the sample and

puck viewed along the z axis of Fig. 4.3.(b) with the puck held in a special mount

cut such that the aperture wafer rests parallel to the ground and viewable from

normal incidence. The left panel of Fig. 4.4. shows a micrograph of the puck, wafer,

and sample taken while in the mounting jig; the right panel shows a simplified

cartoon of the same image. We label the salient features a through e: a is the

tilted surface of the puck, b is the silicon wafer made parallel to the ground, c is
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the window etched into the silicon wafer, d is the sample, and e is empty space.

As the first step in measuring ∆, we use a “dummy” silicon wafer similar to the

one which contains the apertures but whose silicon nitride membrane we have

removed. With the sample visible through the popped window, we measure the

slot-sample separation x by centering the edge of the slot (the a/b boundary) in the

microscope’s field of view, zeroing the coordinates on the microscope’s translation

encoder, then re-centering on the edge of the sample; this gives x on the encoder

readout. Replacing the “dummy” wafer with the actual apertures and measuring

the distance from the slot edge to the pinholes gives ∆ simply as the difference of

the two measurements:

∆ = xapertures − xdummy (Equation 4.2.)

Several obvious sources of error can lead to inaccuracies in ∆. First, the puck

and its mounting jig freely rotate on the optical table of the microscope. As a

result, the jig may be slightly misaligned with respect to the translation axis, and

the measurement of the distance from the slot edge to either the sample edge or

the pinholes therefore less than true by a factor of the cosine of the misalignment

angle. Second, the rough edge left by cutting the slot into the puck makes defining

the precise location of the slot problematic. Typically, we attempt to zero the

translation coordinates on the same easily-identifiable feature. Because of these

two difficulties we consider any particular measurement of ∆ good only to within

several microns.

Figure 4.5. shows the physical implementation of the puck with a sample and

apertures correctly aligned. Upper left shows a photo from the side with the puck,

sample, and dummy wafer in profile. In the cartoon schematic to the right of the

photo, a marks the sample, b the silicon wafer, and d the puck. Lower left shows
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Ag paint

FIGURE 4.5.. A sample and “dummy” aperture wafer correctly mounted on a
puck. a marks the sample, b the dummy wafer, c the window etched into the
silicon, and d the puck. We see no gap between the wafer and sample, and the
sample sits about halfway up the window.
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the same sample rotated so as to view it from the upstream point of view. Here

we see the etched window and through it the sample. In the cartoon schematic

of this photo, we mark the window c. In the upper photo, we see no gap between

the corner of the sample and the silicon wafer, the first condition for minimizing

the propagation distance. In the lower photo, close examination shows that the

sample comes up to about halfway within the window, indicating that it is nearly

the correct height to minimize ∆; this follows from most of our pinhole apertures

being located nearly in the center of the window.

To minimize ∆, we must ensure no gap exists between the aperture wafer and

the sample edge. We must carefully manage the height of the sample above the

puck, as we lack an easy way to adjust the height of the apertures. In other words,

xapertures is fixed but xsample has some freedom to vary, albeit with some difficulty.

In aligning samples, the lack of a puck with a continuously variable height surface

meant that adjustments to the height of the sample came through manual discrete

variation of the adhesives used to fix the sample to the puck and inert shims

placed between the puck and the sample. We first measured xapertures for the four

orientations of the wafer, then measured xsample using various combinations of

double-sided scotch tape, aluminum foil, and thin stainless steel shims provided by

the machine shop until ∆ reached an acceptable value. Given an upper limit on the

acceptable value of z and the incidence angle of the experiment (set, for example,

by the resonant Bragg condition), Equation 4.1. sets a range of acceptable ∆ values

between approximately 5µm and z tan (2θ). In the case of ∆ < 5µm, we typically

assume that, given the precision in the measurements of xapertures and xsample, such

a small distance risk blocking the apertures with the sample. In Fig. 4.5., no tape

or shims are visible as we found the sample fortuitously at the correct height even
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in their absence. In this case, we mounted the sample to the puck by means of

silver paint in the back corners; we marked this in the cartoon on the portion of

the sample farthest from the wafer.

Although we attempted to mount samples systematically, the courseness

of the available materials and the variability of the final measurement even

under nominally identical conditions meant that such ex-situ mounting became

fundamentally a process of trial and error.

4.4. Aperture Design Criteria

The set of apertures we place downstream from the sample must balance

several competing factors, namely: flux, coherence, final image fidelity and ease

of sample mounting, and in the case of holographic imaging the holographic

separability condition.

Two factors argue for large apertures. First, the limited flux available at

the beamline and the rather high number of photons required to form an image

invertible to high spatial resolution argue for large apertures in order to decrease

integration time. Second, at a given separation distance between the aperture and

the sample, the recovered wavefield propagated from the aperture to the sample

plane will retain higher fidelity with a large aperture. Equivalently, a large aperture

allows a greater separation distance between aperture and sample at a given level of

fidelity, and consequently allows for easier mounting of the sample with less trial

and error. An in-depth discussion of the effect of aperture size and separation

distance will occur later.

Coherence considerations argue for smaller apertures. Because the imaging

algorithms assume fully coherent illumination and a Fourier transform propagator,
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FIGURE 4.6.. Several candidate multi-partite aperture designs illustrating different
balances of illumination criteria.

we must limit the extent of the aperture or set of apertures to within the beam’s

coherence length at the energy of interest. For typical coherence lengths available

at beamline 12.0.2, this means that the apertures must all fit within a circle of

approximately 4µm.

Finally, pursuit of a holographic imaging scheme, whether for easier

reconstruction using iterative algorithms or in order to avoid using them entirely,

requires that the object and reference aperture meet the holographic separability

condition expressed in Equation 3.21..

We show four candidate aperture designs which balance these criteria in

different ways in Figure 4.6.. In Fig. 4.6.(a), we maintain holographic separability

and fully coherent illumination by making the object aperture relatively small.

With the coherence length 4µm and the holographic separability condition 3R + r,

we assume R1 ≈ 1µm. Here, we also assume reference aperture size r2 is small

enough to approach a delta function. In order to meet these requirements, we

sacrifice flux and propagation fidelity or easy sample mounting.

In Fig. 4.6.(b) we keep the object aperture R1 at the previous 1µm size but

enlarge the reference aperture substantially with r2 ≫ r1. This increases the
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total flux in the experiment, but in order to remain fully coherent we now clearly

violate the holographic separability condition. In addition, a very large “reference”

does not help with fidelity or mounting. Finally, as the size of the “reference”

approaches that of the “object,” we lose the valuable symmetry-breaking supplied

by the second aperture as the apertures regain centro-symmetry.

In Fig. 4.6.(c) we keep the reference small and enlarge the object so that

R2 > R1. To maintain separability with the larger R2, we move the reference

aperture farther from the object aperture. In comparison to (a), this increases

total flux. Maintaining separability, however, requires that the apertures fall out

of the bounds of the coherence length marked L. For this reason, we also must

discount the improved fidelity afforded by the larger aperture, as this refers only

to the propagated solution and we would consider untrustworthy a reconstructed

image with apertures known to accept incoherent light.

In Fig. 4.6.(d), we again consider the larger object aperture with radius

R2. In contrast to (c), we keep the apertures within the coherence length but

in doing so violate the separability condition. Such an aperture arrangement

requires iterative phasing algorithms which are assisted by the multipartite nature

of the support. In exchange, we achieve higher flux and better fidelity than the

arrangement in (a).

When this project was developed, interest in the group was very high in

pursuing an explicitly holographic imaging scheme. For this reason, we selected

an aperture design most similar to that in Fig. 4.6.(a). However, in hindsight

the reflection imaging experiment would have been more successful with an

arrangement of apertures most similar to Fig. 4.6.(d).
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FIGURE 4.7.. The aperture set and experimental sample used for proving imaging
in reflection.

In Figure 4.7.(a) we show an electron micrograph of the experimental

apertures fabricated by means of focused ion-beam milling into a 1µm layer of

gold evaporated onto a silicon nitride membrane. The object aperture measures

approximately 1µm in radius, and along the two principal axes we placed a

nominal reference aperture. While we requested references as small as feasible, our

collaborator who fabricated the apertures reported that very small apertures are

difficult with FIB. At approximately 640nm in diameter, the references approach

the large-reference limit discussed earlier. However, as the supplied micrograph

of the apertures provides a view only from the beam-side of the gold film and

the apertures exhibit a tapered structure along the beam direction, we consider

the aperture size measurements somewhat unreliable. The object and reference

apertures have a center-center separation distance of around 4µm due to our

assumption of 5µm horizontal coherence length.
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4.5. Reconstruction of a Known Test Sample

We now show results of the experiment in which we demonstrate the efficacy

of downstream-pinhole arrangement for imaging in reflection geometry.

4.5.1. Description of the Sample

To prove the validity of the downstream-pinhole imaging technique, we

demonstrate the successful imaging of a known test pattern sample. We show

an electron micrograph of the known sample in Figure 4.7.(b). Fabricated by

collaborators at the Center for X-Ray Optics, the test sample consists of a two-

dimensional series of nickel islands (lighter) deposited onto a silicon substrate

(darker) using photolithography. A Barker code of sequence seven describes the

position and size of the nickel regions [103, 104]. This function was recommended

to use to avoid problems with the near-field Talbot effect seen from more regular

patterns such as checkerboards [105, 106].

The size of the smallest element in the image’s vertical direction measures

approximately 434nm, and the size of the smallest element in the image’s

horizontal direction measures approximately 217nm. The largest features measure

1µm horizontally and 2µm vertically. These measurements all refer to the size when

measured at normal incidence. We purposely distorted the feature size ratio in

order to correct for the geometric foreshortening effect when operating in small-

angle geometry. We wanted to set the features sizes such that the image features

in the reconstruction became nearly square when setting the incidence angle of the

x-rays to twenty degrees.

In this sample, the difference in reflectivity between the nickel and silicon

regions provide the contrast mechanism for the reconstructed image.
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4.5.2. Data Acquisition

After minimizing the distance between the apertures and the sample surface,

we aligned the sample in the beamline 12.0.2 endstation to give maximum signal

with θ = 20◦ and an incident energy of 500eV . We chose that energy to maximize

both signal and coherence.

With the sample aligned and the position optimized for maximum signal, we

collected data in a series of acquisitions rather than a single very long acquisition

to allow for correction of drift of the speckle pattern on the detector or change

in the speckle pattern due to fluctuations in the beam. During each exposure

of the detector, we exposed for fifteen seconds which accumulated signal up to

near the saturation point of the most intensely exposed pixels. We added twelve

such exposures to create a single frame in the data series, and we took sixty total

frames. The total acquisition time of the data collection was therefore three hours,

not counting the approximately five seconds required to read the data from the

detector after each fifteen second exposure. We acquired signal for so long to ensure

a sufficient signal in the face of uncertainty regarding the level of necessary signal.

After we finished acquiring signal from the sample, we closed the main endstation

valve to block the beam and collected a dark frame for subtraction with identical

acquisition parameters. The dark frame contains low levels of background signal

from the chamber’s ion gauge and small quantities of stray light which enter

through various windows.
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a b c
FIGURE 4.8.. Sorting experimental speckle pattern configurations to correct for
fluctuations. In (a), the pixel at the coordinate (i, j) represents the peak value of
the normalized cross-correlation between acquisitions i and j. (b) and (c) show
the sum of the two resulting configurations after further conditioning (square root
scale).

4.5.3. Data Conditioning

We put each of the sixty signal frames through several steps of conditioning

prior to reconstruction. In order, these steps are: configuration sorting, dust

removal, hot pixel removal, dark frame subtraction, and frame alignment.

4.5.3.1. Configuration Sorting

Although the we knew sample to be static and we ran the experiment at room

temperature, we still observed morphological fluctuations in the speckle pattern

distinct from variations in overall intensity. Given the known fluctuations in

sample position relative to the beam caused primarily by undamped vibrations, we

hypothesize that the sample moving slightly within the beam, resulting in a small

change in the illumination function across the sample, caused these fluctuations

in the speckle pattern. To divide the series of speckle patterns into groups of

self-similar configurations acquired during periods of stability, we calculated the
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normalized covariance, first defined in Equation 3.14. between all possible pairs of

acquisitions. We show the result of these calculations in Figure 4.8.(a). In this plot,

the pixel at image coordinate (i, j) represents the correlation coefficient between

the i-th and j-th acquisitions in the series, with white pixels corresponding to

more similar pairs speckle patterns and black pixels corresponding to less similar

pairs of speckle patterns. The hypothesized instability of the sample relative

to the beam can be easily visualized by tracing the image intensity across the

bottom row, which plots the correlation of the first acquisition against all 59

subsequent acquisitions. The correlation coefficient stays high until approximately

acquisition 15, at which point the images rapidly decorrelate. However, several

frames later the patterns recorrelate, presumably as the sample returns to the most

stable equilibrium position from whatever small excursion it underwent. A second

short decorrelation begins at approximately acquisition 44, but the sample again

recorrelates several acquisitions later. Interestingly, comparing the correlation of

the frames in the first decorrelation region to the frames in the second decorrelation

region shows a second region of mutual similarity; we mark these regions with the

dotted boxes in Fig. 4.8.(a).

Fig. 4.8.(b) and (c) show the summed acquisitions from the primary and

secondary speckle configuration after the additional conditioning described below.

In comparing (b) and (c) side-by-side, we find the differences in the speckle

configuration difficult to spot. However, comparing them by rapidly flipping

between the two shows exchange of intensity between the large speckles, generated

by the object aperture, as well as variation in the intensity fringes caused by

interference from the two smaller reference apertures. As we find the majority of
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FIGURE 4.9.. Removing dust and similar distortions from the speckle pattern.
(a) shows the speckle pattern afflicted by dust; (b) shows the same pattern after
replacing the dust with interpolated intensity. We zero the bright central pixels to
improve the visibility of the surroundings.

the signal in the primary configuration Fig. 4.8.(b), the following analysis will use

only that data unless explicitly stated otherwise.

4.5.3.2. Dust Removal

Small dust particles or bits of fiber which have accumulated on the detector

surface can distort the measurement of the speckle pattern by partially or wholly

attenuating the transmission of the x-rays to the detector. We show examples

of dust on the detector surface in Figure 4.9.(a), although the reduced contrast

of the image makes them difficult to see. The highly oversampled nature of the

diffraction pattern on the CCD leads to smoothly-varying speckle on the length

scale of the important dust specks near the bright central speckles. We exploit this

smooth variation to correct for the dust by replacing the data within specified dust-

afflicted pixels with a spline interpolation of the intensity generated from clean

neighboring pixels. Currently, this requires us to mark dust by hand, typically

using a bitmap image editor to generate a binary mask of dust locations, as

developing an algorithm which reliably distinguishes between dust and speckle
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minima poses great difficulty. Fig. 4.9.(b) shows the same speckle pattern after

successful dust removal. Each acquisition uses the same dust locations.

4.5.3.3. Hot Pixel Removal

After dust removal in each acquisition, we remove hot pixels created when

high energy particles such as cosmic rays hit the detector or where the CCD

damage leads to spurious current leakage. We use a simple median filter to remove

hot pixels, replacing any pixel which exceeds a certain multiple t of the median

pixel value in the surrounding environment withthat median value. Given a median

filter M̂ we define the hot pixel removal operator Ĥ as

Ĥ (I(x, y); t) =















M̂ (I(x, y)) , I(x, y) > tM̂ (I(x, y))

I(x, y), otherwise

(Equation 4.3.)

Next, we subtract a background dark image from each frame. In this

particular data set, we acquired a series of dark images with the same acquisition

parameters as the signal. Because the dark frames do not drift or reconfigure

as the signal frames do, we performed the interpolative dust removal and hot

pixel filtering after averaging the dark frames along the time axis. Subtracting

the conditioned average dark frame 〈D(x, y)〉 from one of the sixty signal frames

In(x, y) is then simple:

I ′n(x, y) = |In(x, y)− 〈D(x, y)〉| (Equation 4.4.)

Often, however, we do not collect a dark frame with the same acquisition

parameters as the signal. In these circumstances, we must consider the acquisition
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FIGURE 4.10.. Aligning experimental speckle patterns to compensate for drift on
the detector. (a) shows the distance in pixels each frame drifted relative to the first
frame, (b) the center of the frames sum after aligning, (c) the center of the frames
sum before aligning.

time of the signal τn and the acquisition time of the dark images τd, and the dark

current DC background IDC of the CCD. With these additional parameters we

generalize Equation 4.4.:

I ′n(x, y) =

∣

∣

∣

∣

|In(x, y)− IDC | −
τn
τd

|〈D(x, y)〉 − IDC |
∣

∣

∣

∣

(Equation 4.5.)

We most easily measure IDC by averaging over several tens of pixels in the corner

of the image where the signal is very low. On average, we find a dark current of 410

counts at the detector’s operating temperature of −50◦C and a per-pixel readout

time of 1µs.

4.5.3.4. Frame Alignment

In the last step of conditioning the data for phase retrieval, we align and

sum the conditioned frames from each of the two configurations. Instability

in the sample or in the endstation led to the intensity pattern drifting on the

detector over the course of the series of acquisitions. To correct for the drift of

the speckle pattern, we cross-correlated the first frame in each of the two speckle

91



configurations with the subsequent members of the configuration. We used the

location of the cross-correlation peak to shift the drifted speckle pattern back

into alignment with the reference image; using numerical FFT algorithms, we

find the cross-correlation peak of two aligned images at pixel (0,0) and the cross-

correlation peak of two images displaced by a vector (∆x,∆y) at either (∆x,∆y) or

(−∆x,−∆y) depending on which Fourier transform we conjugate. Figure 4.10.

shows the necessity of this step of the conditioning. In Fig. 4.10.(a), we show

the drift distance, defined as
√

(∆x)2 + (∆y)2, between the first frame of the

acquisition and all subsequent frames as a function of frame number. We calculate

that the speckle pattern had drifted by more than 20 pixels on the detector by the

end of the acquisitions. In Fig. 4.10.(b) and (c), we compare the effect of aligning

frames. By not aligning the frames, the large amount of drift over the detector

severely reduces the contrast in a manner analogous to reducing the coherence

of the pattern, hampering the effectiveness of the reconstruction algorithms. In

comparison, aligning the frames maintains the high degree of contrast between

the speckles. We notice this reduction in contrast most particularly in the cross-

hatched pattern in the intensity which comes from interference with the reference

waves.

Fig. 4.8.(b) and (c) show the sums of the acquisitions separated into the two

configurations.

4.5.4. Reconstruction of Conditioned Data

With the data conditioned we estimate the initial support for the phase

reconstruction. As explained earlier, we base our initial estimate of the support

on measurements of the auto- and cross-correlation terms in the inverse Fourier
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FIGURE 4.11.. Estimating the initial support using the inverted hologram as a
guide. (a) shows the inverted hologram with the various correlation terms (log
scale), (b) the dimensions of the hologram terms and the support estimate derived
from them.

transform of the conditioned far-field intensity. We show the magnitude component

of the correlation terms in Figure 4.11.(a). At center we see the autocorrelation; the

four circles in the plus configuration are the object-reference cross-correlation terms

and their rotated conjugates, and the two small dots along the diagonal are the

reference-reference cross-correlation and its rotated conjugated. In the background

where the signal should be zero, we see some fluctuations caused primarily not by

counting statistics in the speckle pattern but rather by unresolved distortions in

the detector response from dust or dead pixels. However, the magnitude inside

the cross-correlation terms exceeds the average magnitude of the surrounding

background by approximately a factor of seventy-five, so we do not worry about

this signal in the reconstruction.

In Fig. 4.11.(b) we show a cartoon representation of the elements of (a) which

contribute to the support estimate. We find that an ellipse with major and minor

axes of approximately 156 and 140 pixels, respectively, fits the autocorrelation well.
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The major and minor axes of the cross-correlation terms are approximately 96 and

88 pixels. We estimate the size of the object aperture by dividing the axes of the

autocorrelation in half. Nominally, this gives an ellipse with major and minor axes

of 78 and 70 pixels, but because we will refine this initial estimate further we set

the object aperture at 88 by 80 pixels instead. We have more difficulty estimating

the size of the reference apertures, but the size of the cross-correlations compared

to half the size of the autocorrelation argues for a circle of approximately 20

pixels in diameter. The reference apertures have the further difficulty of position,

so in the support estimate we make them circles with diameter 30 pixels, co-

centered with the cross-correlation terms. Finally, because each reference generates

two cross-correlation terms, we must properly select the correct pair of cross-

correlations in order to correctly place the references in the support; selecting the

primary cross-correlation of one reference and the conjugate of the other leads to

a poorly converged solution. To resolve this dilemma, we include in the support a

reference for both horizontal correlations, but only a single vertical reference. This

arrangement allows the reconstruction algorithms to find which of the horizontal

correlations correctly pairs with the selected vertical correlation.

The prior efforts to ensure a high degree of coherence in the experiment,

to condition the data into a state suitable for reconstruction, and to generate a

good initial estimate of the support constraint place the reconstruction into a well-

formed state that successfully completes with no major intervention. Beginning

with the initial support derived from the correlation terms of the hologram, we

followed the reconstruction procedure described earlier for the simulated test

pattern. We reconstructed 100 independent trials from random seeds by alternating

99 iterations of the hybrid input-output algorithm with 1 iteration of the error-
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FIGURE 4.12.. Progression of support refinement and image reconstruction in
the barker code data. (a) and (b) show the initial support estimated from the
hologram and reconstruction; (c) and (d) show the first autorefined support and
reconstruction; (e) and (f) show the final autorefined support and reconstruction;
(g) and (h) show the hand-refined support and reconstruction. All reconstructions
show only the square root of the magnitude component.

reduction algorithm for 1000 total iterations per independent trial. After all the

trials had completed, we aligned the magnitude components and averaged the

complex results. Using the averaged reconstruction, we refined the estimate of

the support using Marchesini’s blur-and-threshold algorithm, then repeated the

reconstruction procedure with the refined support. We repeated the refinement

loop until the support became self-consistent after five updates, at which point we

performed an additional refinement of the support by hand on a pixel-by-pixel basis

using a bitmap image editor.

In Figure 4.12. we show details from various stages within the reconstruction.

Fig. 4.12.(a) and (b) show the initial support and the square root of the magnitude

of the averaged reconstruction. As expected from the simulations, even with

an intentionally loose support the average reconstruction is well-defined and
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localized within the support region, which we mark in (b) with a white dotted

line. Supplying the algorithm with a single location for the vertical reference

but two locations for the horizontal reference also behaves as expected, with

the reconstruction placing power in only one of the two options. Refinement of

the support eliminated the alternative horizontal reference automatically. In

Fig. 4.12.(c) and (d), we show the first algorithmically refined support and the

resulting average reconstruction. The refinement algorithm substantially tightens

the support, particularly around the object, although the difference in scale makes

direct comparisons to (a) difficult. Small features become more evident in (d)

compared to (b) as the quality of the reconstruction improves and sharpens. In

Fig. 4.12.(e) and (f), we show the last algorithmically refined support and the

resulting average reconstruction. Compared to the first refinement, slight changes

appear in the support but the average reconstruction remains nearly identical. This

story persists in examining Fig. 4.12.(g) and (h), which show the hand-optimized

support and average reconstruction. From a qualitative standpoint, most of the

improvement in the reconstruction comes from the first refinement of the support,

with little additional improvement.

We calculate the quantitative degree of improvement in the reconstruction

in Figure 4.13., which shows the PRTF and RFTF for each of the reconstructions

in Fig. 4.12.. The average reconstruction in the case of the initial support passes

the PRTF cutoff at approximately 0.39 inverse pixels. This improves substantially

after the first round of support refinement, passing the cutoff at approximately 0.49

inverse pixels. Further refinement of the support until self-consistency of the update

squeezes additional resolution from the reconstruction, reaching 0.52 inverse pixels.

The additional hand-optimizations of the support constraint hardly move the
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FIGURE 4.13.. Resolution estimates (PRTF and RFTF) for the experimental
phase reconstruction shown in Figure 4.12..

PRTF cut-off value. This analysis confirms that discussed in qualitative terms from

simple visual inspection of the reconstructions in Fig. 4.12.; the initial estimate

from the hologram correlation terms gives a reasonable reconstruction which

support refinement improves, but not dramatically. However, support refinement

presents diminishing returns, and convergence of the reconstruction occurs quickly

due to the strongly convergent nature of the separated and multipartite apertures.

As typical, the RFTF generates somewhat different numbers, but the trend in the

quality of the reconstruction does not change from that seen in the PRTF.

4.6. Propagation of the Reconstruction

The ex situ alignment technique we use to minimize the distance between

the near-field apertures and the sample surface ultimately means that the true

distance between the apertures and the surface in situ remains unknown. By the

optical microscope measurements discussed earlier, we can estimate the correct

propagation distance. However, various factors conspire to lower the accuracy of

this estimate. In particular, the sample-aperture configuration may shift slightly
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when being transferred to the experimental position, and the divergence of the

beam past the focal point of the beamline’s optics may introduce a phase curvature

in the wavefront which alters the “true” back-propagation distance away from

that which, when put into the propagation algorithms, gives the correctly back-

propagated image. For these reasons, we require a numerical method to judge when

we have found the correct back-propagation distance of the wavefield recovered at

the apertures.

4.6.1. The Acutance Metric

We base our focusing metric on the general tendency of the diffraction

phenomenon to spread out sharp features of the wavefield as it propagates away

from the sample plane. In evaluating the correctness of the back-propagation, we

therefore use a quantity called acutance which detects the amount of derivative

content in the magnitude of the back-propagated wavefield:

Acutance{ψ(z)} =

∫∫

space

|∇ |ψ(z)||2 d2r (Equation 4.6.)

In Equation 4.6., ψ is the wavefield, z the propagation distance, and ∇ the gradient

operator. The square of the gradient operator is expressed in the usual cartesian

coordinates as:

|∇ |ψ(z)||2 =
(

d|ψ(z)|
dx

)2

+

(

d|ψ(z)|
dy

)2

(Equation 4.7.)

Equation 4.7. defines the gradient through analytic derivatives, but in our

calculations the we represent the wavefield by a discrete numerical array. We

therefore implement discrete numerical derivatives through Sobel filters, defined
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as:

dψ(z)

dx
≈













−1 0 +1

−2 0 +2

−1 0 +1













∗ ψ(z) (Equation 4.8.)

dψ(z)

dy
≈













−1 −2 −1

0 0 0

+1 +2 +1













∗ ψ(z) (Equation 4.9.)

The matrices in Equation 4.8. and Equation 4.9. define discrete convolution

kernels which act on the discretized ψ(z) through the convolution operator ∗. The

calculation of the derivative along either principal axis therefore requires the array

element where we will calculate the derivative as well as its eight nearest neighbors.

A number of software packages provide straightforward methods of implementing

such discrete convolution kernels.

The acutance metric works by squaring the gradient of the back-propagated

wavefield ψ(z), then summing the result over the entire back-propagation plane.

As ψ(z) comes into correct focus at the sample, the amount of derivative content

increases and the acutance peaks. We first examine simulations of back propagated

wavefields to verify the behavior of the acutance metric, then turn attention to the

back propgation of the experimental barker code data.

4.6.2. Finding the Correct Propagation Distance: Simulated Data

In Figure 4.14. we show the acutance curves calculated for the propagation

of the wavefield recovered for a simulated test object of randomly distributed,

perfectly absorptive gold balls on a uniformly transmissive substrate. The sample-
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FIGURE 4.14.. Acutance calculation for a simulated test object as a function
of propagation distance. In (a), we integrate the calculation for the forward and
backward propagation over all space. In (b), we integrate only within the subregion
of the simulated aperture. Black dots mark distances in Fig. 4.15.

aperture separation distance is z = 100µm, the pinhole radius 1.4µm, and the

illumination energy 500eV . In Fig. 4.14.(a), we calculate the acutance strictly

according to Equation 4.6. by integrating the square of the gradient over all space.

We perform the calculation for both forward and backward propagated fields in

order to qualitatively isolate the solution against the background behavior of the

acutance; in both directions, the acutance starts high due to the large derivative

signal generated at the edge of the aperture, then decreases as the aperture edge

becomes diffuse. In only the backward direction, however, do we see a peak at the

known solution distance z = 100µm. Fig. 4.14.(b) shows the same calculation

repeated after we set as region of integration a circular disk co-centered with the

near-field aperture but with a radius of 1.2µm. With this modification, we aim to

remove the influence of the relatively sharp aperture edge by not including it in the

integration. In comparison to the series in (a), discarding the aperture edge greatly

suppresses the acutance at low z and improves the visibility of the solution peak.
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FIGURE 4.15.. Inputs to the acutance calculation of Fig. 4.14. as a function of
propagation distance. Top images show the magnitude of the propagated wavefield;
bottom images the square of the gradient of the wavefield.

101



0 25 50 75 100 125 150 175
Propgation distance (um)

10

15

20

25

30

35

40

45

A
cu
ta
nc
e
(A
.U
)

backward
forward

0 25 50 75 100 125 150 175
Propgation distance (um)

10

15

20

25

30

35

40

45

50

55

A
cu
ta
nc
e
(A
.U
)

backward
forward

a b

FIGURE 4.16.. Acutance calculation for the recovered Barker code image as a
function of propagation distance. (a) shows calculation with integration over all
space, (b) with integration over original aperture only.

The black dots in Fig. 4.14. mark the propagation distances where we examine

particular propagated wavefields.

Figure 4.15. shows the magnitude component of these propagated fields and

the gradient as computed by Sobel filter. At zero propagation distance away from

the aperture, the edge and the interior near-field diffraction pattern all contribute

to the gradient and the acutance. As z increases towards the solution at z =

100µm, the diffraction from the aperture edge becomes diffuse and the simulated

test object begins to come into focus. The acutance peak spans approximately the

range between z = 75µm and z = 125µm. As expected, the solution at z = 100µm

has the most well-defined edges and consequently the highest acutance signal.

Moving past the peak to the high-z side, we again defocus the sample and reduce

the sharpness of its edges; the acutance drops.

4.6.3. Finding the Correct Propagation Distance: Experimental Data

With an expectation of the behavior of the acutance when back propagating

from a small aperture to the sample plane, we return to the experimental data and
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the recovered wavefield at the aperture plane. We repeat the analysis performed

for the simulated test sample nearly exactly, propagating the wavefield in both

directions to identify anomalous peaks and integrating first over all space, then

over a restricted subregion of the aperture. Figure 4.16. shows the results of

the calculation, with the integration over all space in Fig. 4.16.(a) and over the

restricted region in Fig. 4.16.(b). Compared to the results from the simulated test

sample, the experimental data does not surprise. The acutance starts high in both

the forward and backward directions, then drops with increasing z. Only in the

backward direction near z = 100µm do we see a possible solution peak. When

calculating the acutance over all space, the edge of the pinhole contributes a large

signal at small z which mostly dissipates by the distance where solution comes in to

focus; when calculating the acutance over the subregion, the solution peak becomes

more prominent.

In Figure 4.17. we show the wavefield and its squared gradient at selected

propagation distances. The uppers rows in Fig. 4.17. show the results from

propagation in the backward direction, towards the sample plane. As with the

simulated sample, the result comes into focus within several tens of microns

and disappears over approximately the same distance. The distance of the peak

acutance, 98µm, is close to the 80µm separation distance estimated ex situ by

optical methods. As explained earlier, we consider the initial estimate imprecise

for several reasons. In an additional test of the solution, the lower rows show the

wavefield and gradient at the same propagation distances when propagating in

the opposite direction, away from the sample plane. We find no solution when

propagating the wavefield in this direction.
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FIGURE 4.17.. Selected propagated images in the backwards direction (magnitude
component) and their gradients. We find best acutance at z = 98µm.
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a b c d

FIGURE 4.18.. Comparing differently-propagated images to the known solution.
(a) shows an SEM image of the test sample, with the approximate field of view
of the solution highlighted, (b) the back propagation in the case of the sample
plane parallel to the aperture plane, and (c) and (d) tilt the sample plane to the
experimental geometry.

4.6.4. Comparison of Propagated Solution to Known Sample

Because we performed the experiment with a known sample, the ultimate

proof of the reconstruction and back propagation comes in comparing the final

recovered image to an image of the sample obtained through other means, such as

electron microscopy. We show this comparison in Figure 4.18.. Fig. 4.18.(a) shows

an SEM image of the sample including the geometric foreshortening correction

to account for the small-angle scattering geometry. We have highlighted the

approximate field of view of the back-propagation, which we show in (b); we have

not matched the length scale of the images. The high degree of fidelity between (a)

and (b) provides indisputable experimental evidence that the two-step solution of

first recovering the wavefield at the aperture plane, then back-propagating to the

sample plane provides a viable technique for lensless imaging in reflection geometry.

Comparing the known solution to the recovered solution also confirms that due to

the near-field bandpass effect, features which lie strictly outside the nominal field of

view at z = 0 can still be observed as high momentum-like signal diffracts into the

aperture.
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4.6.5. Propagating to a Tilted Sample Plane

In implementing this back-propagation focusing procedure, we have assumed

that the tilt of the sample plane relative to the aperture plane does not seriously

distort the final image. Here, we repeat the calculation for z = 98µm but include

a correction for the relative tilt of the two planes. Because the sample plane

inclines relative to the aperture plane only about the θ axis, all pixels in each row

of the image have the same propagation distance, but each row has a different

propagation distance. We therefore calculate the propagation to the tilted plane

through a composite set of propagations in which we perform an independent

propagation for each of the rows in the image The true back-propagation distance

for each row of the propagated image is

z(n) = z0 ±
δ × nr

cos (90◦ − θ)
(Equation 4.10.)

where z0 is the best distance in the absence of inclination, nr the index of the

row running from -N/2 to N/2, δ the pixel pitch, and θ the angle of incidence in

degrees. We use the ± symbol because of the solution degeneracy between the

correctly-orientated apertures and their complex-conjugate rotation. In either case,

we show the + correction in Fig. 4.18.(c), and the - correction in Fig. 4.18.(d).

Only with very close inspection do any differences become visible, and none

obviously distort the image within the nominal field of view. We attribute the lack

of distortion to the small size of the aperture and distance correction relative to

z0. Compared to the 98µm back propagation distance before correction and the

width of the acutance peak in Fig. 4.16., the correction is negligible. However,

in experiments where we position the apertures closer to the sample or use much
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lower angle of incidence, the effect of the distance correction may become more

significant.

Algorithms have been published in the literature which claim to implement

near-field propagation between tilted source and observation planes [107, 108], but

the limited use of the calculation made more intensive efforts at implementation

unworth the effort.

4.7. Estimating the Resolution of the Propagated Solution

As part of becoming a useful and viable technique, lensless reflection imaging

requires an estimate of the resolution of the final image under variation of the

several relevant experimental parameters. The well-known difficulty of calculating

exact solutions to the Fresnel integral for all but the simplest integrands prevents

analytical solutions to the question of image resolution. Instead, in this section we

use numerical simulation to develop an empirical understanding of how the key

parameters of aperture size, sample-aperture distance, and illumination wavelength

combine to effect the resolvability of sharp edges in this imaging geometry. For

simplicity, we restrict the simulated objects and apertures to one dimension,

and discuss the complications of extrapolating the results to more realistic two

dimensional objects. Finally, we check the consistency of the simulation results by

comparing against an estimate of the resolution in the final recovered image of the

barker-code test pattern.

In the near-field Fresnel regime where our imaging geometry encodes the

wavefield, the wavefield exhibits both space- and momentum-like aspects. Broadly

speaking, however, we expect that as the size of the pinhole decreases or the

distance between the sample and pinhole increase, the resolution will worsen due
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to decreased acceptance of momentum-like signal. In other words, the pinhole will

behave as a type of low-pass filter.

4.7.1. The Simulated Imaging System
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FIGURE 4.19.. Schematic representation of the numerical simulations conducted to
estimate the final resolution in the reflection imaging experiment.

Figure 4.19. shows the configuration of the simulations we use to estimate the

resolution of the final image. We label the steps of the simulation a-e. First, we

create a wavefield in the sample plane with some wavelength λ; following tradition,

we make the sample a knife-edge with maximum value one and minimum value

zero (a). Second, we forward-propagate the wavefield a distance z to the aperture

plane (b), where the propagated wavefield encounters a semi-transmissive pinhole

function with radius r and a soft edge controlled by parameter k. We model the

pinhole as entirely absorptive with no refractive component; the pinhole fully

transmits the wavefield at the center, fully attenuates the wavefield a distance

greater than r from the center, and partially attenuates it near the edge (c). This

soft-edge acts as an apodizer to improve the visual quality of the propagation. We

then propagate the product of the pinhole and wavefield back to the sample plane
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FIGURE 4.20.. Illustration of the effect of including a soft edge in the aperture
function. (a) shows propagation with a hard edge pinhole, (b) with soft-edge
pinhole, (c) the form of the apodizer function, and (d) the impact of the apodizer
strength k on the resolution of the propagated image.

(d) where the loss of momentum-like signal blurs the knife-edge. To calculate the

resolution of the back-propagated wavefield, we find the full-width at half-max

(FWHM) of the absolute value of a discrete derivative of the propagated image

(e). Simulating the effect of realistic two-dimensional apertures on two-dimensional

wavefields requires a number of additional simulation parameters to describe

the shape of the apertures and the orientation of the samples. For simplicity, we

therefore restrict our simulations to a single in-plane dimension x; we will consider

some effects of two-dimensional apertures later.

4.7.2. Effect of the Imaging System Parameters on Image Resolution

In these simulations, the soft-edged pinholes intentionally deviate from the

experimental reality of hard-edged pinholes. Figure 4.20. illustrates the motivation

for including the soft edge. In Fig. 4.20.(a), we see back propagation from a hard-

edged pinhole, and in Fig. 4.20.(b) from a soft-edged pinhole. The soft-edged
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pinhole substantially suppresses the Fresnel ringing from the aperture’s hard

edge. The soft edge of the aperture consequently functions as an apodizer which

we can use both in simulations and in the analysis of experimental results after

reconstructing the wavefield at the aperture plane. The apodizer can take any

functional form which satisfies the boundary conditions of unity at the aperture

center and zero at the aperture edge. In Equation 4.11., we give the exact form

of the function used in these simulation, the normalized top half of a Fermi-Dirac

function, where the radius of the aperture r replaces the chemical potential and

the thermal energy kT becomes a unitless description of the apodization strength

k. Figure 4.20.(c) shows the apodizer function with three different values of the

strength parameter.

Apodizer(x) = max






0,

[

e(
x
r
−1)/k + 1

]−1

− 1
2

[e−1/k + 1]
−1 − 1

2






(Equation 4.11.)

We show the effect of the apodizer strength on the resolution of the back-

propagated image in Fig. 4.20.(d) with the pinhole radius set to 1µm, the energy

650eV, and the pixel pitch 10nm. As expected, the FWHM of the knife edge

increases monotonically with z. However, the slopes of individual data series remain

close, indicating that the apodizer has little effect on the sharpness of the knife-

edge feature. In the case of minimal apodization (k = 0.01), the wild swings in the

FWHM result from Fresnel ringing dominating as z increases. The apodizer must,

of course, attenuate the momentum-like signal near the edge of the aperture coming

from the sharp sample feature, an effect most easily seen in the slight increase

in slope between k = 0.1 and k = 0.25. However, the tremendous suppression of

aperture ringing makes up for the slight loss of image resolution at apodization
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FIGURE 4.21.. Calculating the effect of the imaging system on resolution. (a)
shows the FWHM as a function of distance from aperture edge and aperture
distance; (b) shows the FWHM as a function of aperture radius and aperture
distance; (c) shows slopes of the linear fits in (b) at a single energy; and (d) repeats
(c) with several apertures.

strengths near k = 0.1, and we use this default apodization value in all remaining

simulations.

Next we examine the effect of moving the knife-edge away from the center

of the aperture’s field of view by decreasing the distance labeled x in Fig. 4.19..

To make the measurement invariant to the size of the aperture, plot FWHM

as a function of x/r, where r is the aperture radius. During the design of the

experiment and the initial analysis of the first experimental results, we expected

that proximity to the edge of the aperture’s field of view would strongly effect the
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resolvability of the image element due to a presumed higher loss of momentum-like

signal. As the data in Figure 4.21.(a) shows, however, if such an effect is present

in these one dimensional simulations it looks much weaker than anticipated. In

particular, the FWHM when x/r = 0.8 exceeds the FWHM when x/r = 0.9

while we expect the opposite. Because of these results, we assume that in these

simulations the final resolution of the image element does not depend on distance

to the edge of the aperture field of view.

Finally and most importantly among the principal experimental parameters,

we investigate the effect on the knife-edge FWHM from changing the size of the

aperture. Figure 4.21.(b) shows the FWHM as a function of z for a series of pinhole

sizes which we could realistically use in reflection imaging experiments, subject to

coherence limitations. As expected, increasing the size of the aperture improves

the resolution of the final image due to the increased acceptance of momentum-

like signal at any given sample-aperture separation distance. Linear fits in the

same panel extrapolate down to zero separation. In all cases, the excellent linear

fit demonstrates the direct relationship between the propagation distance and the

FWHM of the knife-edge derivative. At small propagation distances, the deviation

of the extrapolated FWHM from the simulated FWHM results from the “true”

value of the FWHM falling below the 10nm resolution of the simulation. To extract

the dependence of the FWHM on the aperture size, we note that the slope of the

linear fits to the FWHM vs z data decrease with increasing aperture size and so

we plot the slope as a function of reciprocal aperture in Figure 4.21.(c). A linear

function of the inverse aperture size clearly describes the slopes of the FWHM vs z

data series.
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The functional dependence on the FWHM of the derivative of the final

propagated image therefore varies proportionally to z and inversely to r. We

anticipate the effect of the remaining free variable, the energy, from its appearance

in the quadratic phase factor of the Fresnel integral. In that calculation, λ and

propagation distance z appear together as a product, and the FWHM must depend

inversely on the energy. The full functional dependence on the experimental

parameters is then given by:

FWHM(r, z, E) = c
z

rE
(Equation 4.12.)

Lastly, we calculate the constant of proportionality in Equation 4.12. by

plotting the slope of a FWHM vs z data series as a function of rE, systematically

varying both inputs. The linear fit to the data in Figure 4.21.(d) has slope

8.3× 10−7eV ·m, and Equation 4.12. becomes

FWHM(r, z, E) =
8.3× 10−7(eV ·m)z(m)

r(m)× E(eV )
(Equation 4.13.)

As a sanity check, we verify Equation 4.13. with the values z = 100µm, E = 650eV ,

r = 1µm, as we chose this energy and aperture radius for the simulations in

Figure 4.20. We expect the result, 128nm, by examining the k = 0.1 series at

z = 100µm.

With the exception of the phenomenological proportionality constant, the

general form for the FWHM in Equation 4.13. does not surprise. In terms of

resolution, ratio z/r behaves as essentially a numerical aperture, and the energy

comes in only because the rotation of information from the space-like into the
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FIGURE 4.22.. The simulated imaging system modified to include the PRTF-
related loss of resolution in the far field.

momentum-like basis happens as a function of both propagation distance z as well

as wavelength.

4.7.3. Including Reconstruction Effects in the Resolution Estimate

Considering the imaging experiment as a whole, a second principal

contribution to the loss of resolution comes from the phase retrieval algorithms.

In the above investigation, we assumed that the phase-retrieval process perfectly

estimated the exact solution to the phase problem, but a more accurate simulation

must include the lost resolution as measured by the PRTF. We modify the

experimental schematic originally shown in Figure 4.19. into that shown in

Figure 4.22.. The extended simulation proceeds as follows. We first forward
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propagate the same simulated knife-edge sample to a hard-edged pinhole in the

near field aperture plane, then propagate the modulated wave to the far field with

the Fourier transform. In the far field, we reduce the high-frequency content of the

diffraction pattern by multiplying with a low-pass filter. We then inverse Fourier

transform the low-passed signal to bring it back to the aperture plane, where we

multiply by the same apodizer described in Equation 4.11.; after that, we back-

propagate the apodized wave-field from the aperture plane to the sample plane. As

before, we measure the FWHM of the magnitude of the derivative taken along the

in-plane coordinate at the known location of the knife edge feature.

Given the now-vast range of possible parameters, we restrict the simulation to

a few realistic values. We again set the apodizer strength k = 0.10, the energy E =

650eV , the radius of the near field aperture r = 1.0µm, and place the knife edge

exactly in the center of the aperture’s field of view. For the far-field low-pass filter

which simulates the PRTF, we use a gaussian with variable standard deviation σ.

As z → 0, the simulation measures just the effect of the far-field PRTF. As σ → ∞,

the simulation measures just the effect of the near-field aperture.

Figure 4.23.(a) shows the effect of including a proxy PRTF in the simulation.

Because the PRTF destroys high-frequency signal with no regard for sample-

aperture separation distance, we most easily identify its effect at small z, where we

find the trivial result that decreasing σ leads to a broader FWHM. As z increases

away from zero, linearly-increasing contribution to the FWHM from the near-field

aperture overwhelms the contribution from the PRTF. In Fig. 4.23.(b) we attempt

to quantify this relationship by adding in quadrature the FWHM value at z = 0 to

the FWHM value as a function of z when σ = ∞. While the behavior of the model

in Fig. 4.23.(b) tracks the numerical simulations in Fig. 4.23.(a) in a qualitative
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FIGURE 4.23.. Effect on image resolution of including a simple phase-retrieval
transfer function. (a) shows the results of one-dimensional simulations with
array length N with near-field filter and PRTF. (b) shows the results of adding
in quadrature the FWHM at z = 0 for the various σ series.

sense, we do not see an exact correspondence. We model the PRTF explicitly as a

gaussian, but from a band-pass point of view the behavior of the near-field aperture

is more complicated.

4.7.4. Resolution Estimates for a Two-Dimensional Image

To conclude the investigation into the resolution possible with this imaging

geometry, we note some of the complications which arise in the more general case of

two-dimensional images.

We illustrate the main difficulty through a pair of two-dimensional

simulations in Figure 4.24.. In Fig. 4.24.(a), we show the back-propagated image

(magnitude component) at the sample plane when using a circular aperture

of radius 2um, and in Fig. 4.24.(b) we show the derivative along the axis

perpendicular to the knife edge sample. Similarly, Fig. 4.24.(e) and (f) show a

repeat of the simulation, but using a square aperture with side-length 400µm in
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FIGURE 4.24.. In two dimensions, the resolution as measured by the FWHM
depends on the aperture geometry. (a) shows a knife-edge object after interacting
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place of the original circular aperture. The dashed lines in all figures mark the cuts

through which we will examine the resolution.

We first consider the resolution in two dimensions when using the square

aperture. In Figure 4.24. we show the value of the both the image in (e) and

its derivative in (f), taken along a series of linecuts at increasing distances from

the center. In the one-dimensional case, moving the feature towards the edge of

the aperture seemed to have little, it any, effect on the outcome of the FWHM

measurement. We see the same behavior repeated here, with the linecuts through

the image as shown in (g) and through the derivative as shown in (h) displaying

no strong dependence on proximity to the aperture edge. We find some small

changes visible in the fringe structure, but attribute this to the complicated two-

dimensional ringing near the edge rather than characterize it as a loss of resolution.

In both plots, we normalize the linecuts to highlight the similarity of the data.

We present linecuts at the same position relative to the aperture edge

but through the circular aperture data Figure 4.24.(c) and (d) and, in marked

contrast to both the expectations of the one-dimensional simulations and the two-

dimensional square aperture, they display a strong dependence on proximity of

the feature to the edge of the aperture. Direct visual inspection of the data in

Fig. 4.24.(a) also shows the effect in the broadening of the derivative as the linecut

marker moves farther from center.

As we consider the part of the knife edge closer to the edge of the circular

aperture, the momentum-like signal diffracting from that portion of the sample

falls outside the acceptance of the aperture more quickly. Consequently, that

portion of the knife-edge feature essentially experiences a smaller effective aperture.

This does not happen with the square aperture, whose constant width preserves
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the diffracted signal. In two dimensions, the shape of the aperture becomes an

additional component to incorporate in the estimate of the final image resolution.

As with other calculations in the Fresnel regime, however, analytic solutions seem

unlikely, and Equation 4.13. should be used with the understanding that additional

complexities lurk in the shape of the aperture and the orientation of the sample

feature. More exact understanding of a particular experiment will therefore depend

on numerical modeling.

4.7.5. Comparing the Resolution Model to Experiment

Finally, we apply our resolution model against the data acquired in the actual

imaging experiment. Figure 4.25.(a) shows the wavefield after back-propagating to

the sample plane while Fig. 4.25.(b) and (c) show the derivative of the propagated

image along the x and y axes, respectively. In this calculation, we used the same

apodizer as in the earlier two-dimensional simulations to help suppress Fresnel

ringing from the hard edge of the aperture. Based on the energy of the illumination

used to form the diffraction pattern, the known distance from the sample to the

CCD detector, and the size of the CCD detector, we calculate a pixel size of 32nm

in Figure 4.25.(a). Dashed lines in Fig. 4.25.(b) and (c) show the approximate

location of the data used to measure the FWHM.

We show the measurement of the FWHM from the two derivative images

in Figure 4.25.(d) and (e). In contrast to the simulations done to understand the

resolution possible in the experiment, we do not know the exact location of the

derivative peak. For this reason, we fit the derivative data with cubic splines to

interpolate both the peak location and the closest value of the FWHM points.

We measure the FWHM of the derivative along the x axis at 146nm, while along
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the y axis at 137nm. This discrepancy could reflect either a standard variation

as we might expect in interpolated experimental data or the result of a slightly

larger effective aperture along the y axis due to the geometric foreshortening of the

aperture resulting from misalignment of the aperture plane relative to the CCD.

Analyzing the derivative near the center of the field of view likely suppresses the

complications associated with feature orientation and edge proximity. In any case,

according to Equation 4.13., the expected FWHM at E = 500ev, z = 98µm,

r = 1µm is 163nm.

Given the calculated 32nm pixel pitch, the actual pinhole radius may slightly

exceed the nominal value. Measuring the semi-major and semi-minor axis lengths

of the recovered wavefield at the aperture plane as approximately 40 and 35 pixels,

we get a pinhole radius of approximately 1.1µm to 1.3µm. With these values, we

expect a FWHM between 148nm and 127nm.

Including the PRTF calculated previously changes the result only slightly, as

the effect of the near field filter dominates the loss of resolution measured by the

FWHM. Based on the calculated pixel pitch of 32nm and the 0.53 inverse pixel

resolution achieved in the reconstruction, the real-space resolution at the aperture

plane is approximately 60nm. Adding this in quadrature to the FWHM calculated

for r = 1µm, r = 1.1µm, and r = 1.3µm, we estimate the anticipated resolution

in the final propagated image as 174nm, 160nm, or 141nm, respectively. We believe

these predictions sufficiently match the experimental measurement to consider the

simulations of the expected resolution of the reflection imaging geometry valid.
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CHAPTER V

HOLOGRAPHIC IMAGING OF THE DEGREE OF COHERENCE

5.1. Introduction and Motivation

Future X-ray sources under investigation or proposed for construction exhibit

high degrees of both longitudinal and transverse coherence. As researchers adapt

existing experiments or develop entirely new experiments with these brilliant

and highly coherent light sources in mind, they will require good methods

of characterizing and precisely measuring the spatial coherence of the X-ray

beam. In this chapter we will demonstrate a method of leveraging the Fourier

transform holography techniques discussed earlier to quickly image the modulus

of the complex coherence factor in two dimensions with diffraction-limited

resolution. We will first explain the technique, then demonstrate an experimental

realization, and finally present a path towards future improvement. In addition

to the holography techniques already explained, the high-precision nature of this

scattering experiment means that we will also repeat many of the data conditioning

steps used for the imaging experiment as well.

5.2. Theory of Holographic Imaging of the Coherence Factor

Recalling Schell’s Theorem Equation 2.28., we see that the deconvolution of

the apertures becomes extremely simple under certain conditions. In particular,

apertures with arbitrarily-extendable and locally-flat autocorrelation will provide

a trivial measurement of µ(∆u,∆v) over the extent of the autocorrelation. Such

apertures are known to exist in the form of a special type of coded-aperture array
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the coherence function in two dimensions with a single diffraction pattern. At left,
the apertures; at right, their autocorrelation.

called uniformly redundant arrays [109–115], but we show here an alternative

approach adapted from Fourier-transform holography which meets the same

requirements.

We show the basic holography scheme in Figure 5.1.. An array of small

apertures, labeled ri with nominal characteristic size d, surround a larger square

hole of length L, labeled O. We fabricate the apertures so that the separation

between any given small hole ri and a nearest-neighbor matches the size L of large

aperture O. Additionally, we place small apertures to only one side of the large

aperture; in Fig. 5.1.(a), we show this by placing no small apertures below the

dashed horizontal line, but allow apertures on both sides of the vertical dashed

line. Although Fig. 5.1. shows only four small holes, in principle we allow an

infinite number so long as they maintain the separation condition. All together,

we label the ensemble aperture function A(u, v). The combination of O and any

of the ri forms an independent hologram; for this reason we will refer to the ri as

the references and O as the object. Alternatively, a set of apertures of this type
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may be thought of as massive collection of double pinhole experiments, in which

each ri and some point in O form a pinhole pair. By choosing the inter-reference

spacing to be the same as the size of O, we construct a set of apertures which form

a continuous and extendable set of double pinhole separation vectors.

We derive an expression for the autocorrelation of the set of apertures by

a simple extension to the prior theoretical treatment of the Fourier transform

holography experiment (earlier equation); f̃ indicates the Fourier transformed

version of real-space function f(u, v) and ⋆ is the correlation operator:

A(u, v) = O(u, v) +
N
∑

i=1

ri(u, v)

|Ã|2 =
(

Õ +
N
∑

i=1

r̃i

)(

Õ∗ +
N
∑

i=1

r̃∗i

)

= ÕÕ∗ + Õ
N
∑

i=1

r̃∗i + Õ∗

N
∑

i=1

r̃i +
N
∑

i=1

N
∑

j=1

r̃∗i r̃j

Grouping terms and recognizing the Fourier representation of the cross-correlation,

an inverse Fourier transform brings this back to real space as

A ⋆ A = O ⋆ O +
N
∑

i=1

(ri ⋆ ri) +
N
∑

i=1

(ri ⋆ O) +
N
∑

i=1

(O ⋆ ri)+

N
∑

i=1

N
∑

j 6=i

(ri ⋆ rj + rj ⋆ ri) (Equation 5.1.)

In analogy with (earlier equation), we identify the terms in the aperture

autocorrelation A ⋆ A left to right as: the autocorrelation of O, the autocorrelations

of the references ri, the object-reference cross-correlations, their rotated complex

conjugates, and finally the reference-reference cross-correlations and their rotated

complex conjugates. These terms all appear variously in Fig. 5.1.(b). The
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autocorrelation terms AC(O) and AC(R) exists in the central region of size 2L×2L.

We label the cross-correlations between O and ri as CCi and they tesselate to fill

space outside the AC region; the conjugates CC∗
i appear rotated in the lower half

plane, which is why we restrict the placement of the ri to only one side of O. The

cross-correlations between ri and rj appear in the corners of the CCi as black dots

and we do not individually label them because we do not use them in the analysis.

In the experiment, the reference-reference cross-correlations appear as large but

highly localized spikes in the signal which we can safely ignore.

Under the assumption that the illumination exhibits no significant structure

across O, a set of apertures of this sort presents the extensible and locally-flat

autocorrelation necessary to directly image the complex coherence factor via

Equation 2.28..

5.3. Numerical Simulation of the Experiment

We now develop a basic numerical model of the experiment which we will use

to build analytical techniques for the interpretation of the experimental data.

5.3.1. Non-ideal Reference Apertures

Our primary interest lies in the spectrum of O ⋆ ri terms. An assumption

of ideal references is unrealistic, as we saw in the fabrication of the holography

mask for the reflection imaging experiment. Although convenient to treat the

references as uniform, actual fabrication techniques create sub-100nm apertures

with significant variations in size and shape. Additionally, we may misalign the

apertures relative to the illumination and the beam intensity may vary over the

reference array. For these reasons we assign an overall amplitude to each reference
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FIGURE 5.2.. Numerical simulations of the Fourier transform holography
coherence measurement, including randomly weighted reference apertures. (a)
and (c): autocorrelations (object-autocorrelation region zeroed); (b) and (d): cross-
sections through the dashed lines showing effect of reference weights and overlaps.

function. However, we do assume that the apertures stay below the minimum

simulation length-scale. We therefore model the references as:

ri = aiδ(u− ui + ǫ, v − vi + ǫ) (Equation 5.2.)

Figure 5.2. shows results from a numerical simulation of the proposed set of

apertures, simulated in accordance with the layout shown in Fig. 5.1.. We have

assumed uniform illumination over O in the simulation, but we have included
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Equation 5.2. in the model with random coefficients ai. To start, we have set any

positional jitter as described by ǫ to zero. The complex coherence factor we assume

to be a simple gaussian function.

In Fig. 5.2.(a), we show the top half of the-autocorrelation of the exit

wave accounting for partial coherence. Because of the extreme brightness of the

autocorrelation compared to the cross-correlations, we have set the autocorrelation

region, marked as the dashed box AC, to zero for visibility. Cross-correlations

surrounding the autocorrelation, here appearing as a mosaic of tiles due to

their random scalar multiplication by the ai. In Fig. 5.2.(b), we plot the value

of the autocorrelation taken along cross-sections A and B. Both cross-sections

demonstrate both the multiplication of each cross-correlation by its random weight

as well as the overall curvature imparted to the autocorrelation by the gaussian

coherence function.

Fig. 5.2.(a) intentionally lacks realism to illustrate the effect of the random

aperture weights. A more realistic model of the apertures includes jitter in their

positions, leading to gaps or overlaps between neighboring cross-correlations.

Because we use the same technique to account for gaps and overlaps, we show in

Figure 5.2.(c) a simulation in which we have made the reference spacing smaller

than the object size in order to introduce overlaps between all cross-correlations.

These overlaps create spikes in the cross-sections shown in Fig. 5.2.(d). If we had

instead created gaps by making the inter-reference spacing larger than the aperture,

we would see zeroes between the cross-correlations instead.
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5.3.2. Removal of Random Weights

We now consider how the random weights ai may be removed to restore

a smooth image of the coherence factor. Because the coherence function has a

different value at all points in the (∆u,∆v) plane while the scalar multipliers ai are

uniform across a given CCi, apertures of the type now considered have sufficiently

redundant information that the effects of the illumination and coherence separate.

In the case of overlapping cross-correlations as in Fig. 5.2.(c) we regularize the

relative illumination between two neighbors by requiring that linear fits performed

over some range of each of the neighbors intersect at the midpoint of the overlap.

We define an operator L which operates on some function f(x) to return the slope

and intercept of a best-fit linear approximation:

m, b = L {f(x1) : f(x2)} (Equation 5.3.)

where x1 and x2 are the endpoints of the range over which L fits f . Any suitable

fitting procedure or algorithm can supply L . Considering the cross-sections along

the ∆u direction in Fig. 5.2.(c), we apply Equation 5.3. over two neighboring

object-reference cross-correlations CCi and CCj to generate a slope and intercept

for each:

mi, bi = L {CCi(∆u0,∆v0) : CCi(∆u1,∆v0)}

mj, bj = L {CCj(∆u2,∆v0) : CCj(∆u3,∆v0)}
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entirety of each region for the linear fit.

Calling the overlap midpoint ∆umid, we calculate the ratio of the relative

illuminations as:

ai
aj

≈ mi∆umid + bi
mj∆umid + bj

(Equation 5.4.)

The ratio ai/aj then multiplies CCj, or equivalently the reciprocal may multiply

CCi.

In these equations, we have left the particulars of the input points unspecified

as they will depend on experimental specifications, but some obvious considerations

are universal. It is required that the range of each CCi input be entirely over

that CCi and contain no part of an overlap. Due to the expected curvature of

the coherence function, using smaller rather than larger ranges of inputs gives

better results, as does using a range of inputs nearer to, rather than farther from,

the overlap. However, while a small number of points better resists the effect of

curvature, a larger number of points will better resist noise in the autocorrelation.

Figure 5.3. shows results of regularizing the relative illumination by linear

interpolation; these data have gaps instead of overlaps, but we perform the same
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analysis as we ignore both gaps and overlaps equally-well. In this simulation,

we perform a chained analysis, picking an “anchor” cross-correlation term and

regularizing the illumination of its neighbors through Equation 5.4., then treating

those neighbors as new anchors and regularizing their neighbors and so forth

until no neighbors remain. In Fig. 5.3.(a) we show the outcome of selecting as

input range the entire extent of whichever cross-correlation was under analysis,

labeled “fit all,” as well as selecting smaller regions only several pixels in width

near the overlap, labeled “fit edge.” In both cases, we traversed the set of cross-

correlations once with the left-most cross-correlation as anchor and again with

the right-most cross-correlation as anchor, then averaging the results from both

trajectories. Averaging across results with different starting points helps limit the

effect of systematic errors which can accumulate due to the chained nature of the

regularization process.

Both sets of fit ranges restore a gaussian profile. However, the two series differ

near the center, as a linear fit taken over the full extent of the cross-correlation fails

to replicate the curvature of the coherent function and consequently misestimates

the illumination factor. Further improvement in this respect would be possible by

doing a third fitting starting at center to include in the average.

5.4. Experimental

5.4.1. Apertures

The aperture scheme used in this experiment, which we show in Figure 5.4.

essentially reproduces that proposed in Fig. 5.1.(a). The central object aperture has

a side length L ≈ 1.5µm. The smaller reference apertures have inter-reference

spacing 1.5µm, and an approximate diameter of 100nm each. However, as the
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FIGURE 5.4.. SEM of the set of apertures used to measure the beam’s degree
of coherence. The object aperture measures approximately 1.5 µm, while the
references have a diameter of approximately 100nm and are separated by 1.5 µm.
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100nm size of the references approaches the minimum feature size possible in

800nm-thick gold, some variation exists in size which reflects in the random weight

ai for the corresponding cross-correlations. The reference grid has six rows and ten

columns.

The apertures were fabricated by Weilun Chao at the Center for X-ray

Optics using photolithographic processes for the mask; gold was deposited by

electroplating.

5.4.2. Data Collection and Conditioning

Data collection and conditioning for this transmission-geometry experiment

broadly follows the procedures explained earlier for the reflection imaging

experiment with some differences. In particular, the extreme aspect ratio of

the reference apertures makes them into tubes through the gold film which

require precise angular alignment in the φ and θ coordinates to ensure maximum

transmission. Also, the very bright signal which occurs in transmission geometry

requires the use of a beam-block over the center of the diffraction pattern; however,

as the experiment shows high sensitivity to signal in the central maximum, we must

record behind the blocker as well. This requires merging exposures to extend the

dynamic range of the detector.

We collected the data presented here at 640eV, near the L3 resonance of

manganese. Given the incident energy, the distance between the sample and

detector, and the angle subtended by the detector, the maximum recorded |q| gives

a per-pixel resolution of approximately 42nm.
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a b

FIGURE 5.5.. Alignment of the experimental apertures with high-pass filters.
(a) shows the high-passed correlation spectrum before alignment (incident energy
500eV), and (b) after (incident energy 640eV).

Compared to the reflection imaging experiment, improvements in beamline

stability mean we can skip frame alignment or configuration sorting on the recorded

images.

5.4.2.1. Angular Alignment

Prior to collecting data, we first align the sample in angles φ and θ in

order to maximize the signal transmitted through the reference apertures. While

optimization of θ proceeds rapidly due to the motorization of the coordinate, we

must tediously optimize φ manually and with no readback. To evaluate the quality

of transmission through the references, we form the image of the cross-correlation

spectrum then run it through a high pass filter. When all the references transmit,

the high pass signal shows an outline of all the correlations in the spectrum. When

a reference transmits no light, its location in the spectrum appears dark. We

illustrate this effect in Figure 5.5.. Fig. 5.5.(a) shows the high-passed correlation

spectrum with the sample in its initial position, while (b) shows the correlation
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FIGURE 5.6.. Blending datasets to extend the dynamic range of the detector. (a)
and (b) show the input datasets, (c) the blending function, and (d) the merged
data.

spectrum after alignment. We attribute the increase in visible edges within the

correlation spectrum to increased transmission of light through the references.

5.4.2.2. High Dynamic-Range Exposure Merging

Due to the limited dynamic range available on most CCD detectors and the

slow read time of the CCD at beamline 12.0.2, in this experiment we take separate

sets of data a low |q| and at high |q|, then merge them together into a single

continuous dataset. The beamblock which we use to protect the detector from the
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direct beam in experiments with high flux makes a natural delineation between the

two regions.

We show the two datasets in Figure 5.6.(a) and (b). In (a), we have moved

the blocker over the bright central portion of the diffraction pattern, allowing

for long exposures to record large |q| without saturating the detector. We label

this data I1. In (b), we have removed the blocker to collect data from the low

|q| section of the diffraction pattern; because we are only interested in those pixels

not illuminated in (a), we reduced the vertical readout region in order to quicken

acquisitions. This may be seen in the black strip at the bottom portion of (b)

which marks the end of the readout. We label this data I2.

First, we match the signal levels in a region of the diffraction pattern where

the two datasets overlap, marked in Fig. 5.6.(a) and (b) with dashed box Rfit. In

the matching region, we attempt a least-squares optimization in order to solve a

minimization problem in three variables:

minimize {I1 − sI2 + (sD2 −D1); s,D1, D2} (Equation 5.5.)

Here, we optimize: s, an overall scale factor; D1, a constant offset to intensity

pattern I1; and D2, a constant offset to intensity pattern I2. D1 and D2 differ

because I1 and I2 may have a different number of total exposures or a different

exposure time per exposure, leading to differing amounts of signal from the

chamber ion gauge or the CCD dark current. After optimizing s, D1, and D2, we

match I1 and I2 by

I ′2 = s× (I2 −D2) +D1 (Equation 5.6.)
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We then merge exposures I1 and I ′2 through a spatially weighted average near

Rfill, the region to be filled. In this case, Rfill corresponds to the blocker visible

in Fig. 5.6.(a), which we estimate by tracing a mask in a bitmap image editor. We

construct the blending function B from Rfill through two convolutions:

B =K2 ∗min(K1 ∗Rfill, 1) (Equation 5.7.)

where the convolution kernels K1 and K2 are given by:

K1 =circ(w) (Equation 5.8.)

K2 =A exp
[

−r2/(2w2)
]

(Equation 5.9.)

The merged image is then straightforward:

I1,2 = BI1 + (1− B)I ′2 (Equation 5.10.)

The mechanism of Equation 5.7. is simple. The first convolution with K1, the circle

function, simply expands Rfill. The second convolution with K2 gives the expanded

fill region a soft edge to eliminate stitching artifacts between I1 and I2. The final

sum, Equation 5.10., weights more heavily I2 near Rfill. We show the final blended

image in Fig. 5.6.(d); we see no blending artifacts.

5.4.2.3. Dedusting and Debeaming

As in the reflection imaging experiment, dust on the detector distorts

the signal in undesirable ways and we must remove it via interpolation. In

Figure 5.7.(a), we show the central portion of the merged data, and in (b) we
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FIGURE 5.7.. Both the dust on the surface of the detector and the direct
transmission from the beam distort the autocorrelation in undesirable ways. (a)
shows the central diffraction maximum with dust and beam; (b) the autocorrelation
with no conditioning; (c), (d), (e), and (f) the autocorrelation after various
conditioning strategies.
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show the magnitude component of its inverse Fourier transform. Dark spots in

the central maximum result from dust; we also see a superimposed image of the

beam, which has punched its way through the 800nm gold coating to contribute a

spurious signal near |q| = 0. We mark two dust spots and the beam with its long

horizontal tail in (a). At the center of Fig. 5.7.(b) we have zeroed the bright object-

object autocorrelation as we did earlier in Fig. 5.2.. The object-reference cross-

correlations surround the center and contain the envelope of the complex coherence

factor. Outside of that, we expect a uniform region of zeroes resulting from the

oversampling of the diffraction pattern. Instead, we see a large amount of signal

representing the power spectrum of the distortions introduced into the diffraction

pattern by the dust and beam. This power diffuses throughout the autocorrelation

plane, overlapping and interfering with the true cross-correlation signal.

We show various attempts to remove the dust and spurious beam signal in

Fig. 5.7.(c)-(f). In (c), we interpolate around just those dust particles within in the

first-order diffraction peaks; this removes the vast majority of the “checkerboard”

effect. In (d), we interpolate around all visible dust particles anywhere in the

diffraction pattern; this presents no particular improvement to the strength of

the noise spectrum, as dust particles in the high-order diffraction peaks create

very small distortions to the diffraction signal when compared to those particles

near the center of the image. In (e), we attempt to remove through interpolation

just the long horizontal tail of the direct beam; most of the power of the beam

signal remains, but we cannot remove it through interpolation both because the

interpolation control points are always somewhat contaminated by the beam

but also because the beam peak and diffraction peak coincide, making accurate

interpolation therefore more difficult. In (f), we combine the (d) and (e) to generate
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the flattest background signal possible. The residual background in (f) shows the

power spectrum of the partially removed direct beam signal, and we probably can

do no better through operations on the diffraction data.

We also attempted to remove the beam during the data acquisition by taking

an image of just the direct beam transmitted through an identically prepared

gold film lacking any apertures. However, we found the morphology of the beam

extremely sensitive to the position of the blank film, and therefore we could not use

any of the images to correctly subtract the beam signal.

5.4.3. Extracting the Coherence Function

The slowly-varying nature of the beam signal overlapping the cross-

correlations means that at the edge of the cross-correlation array we can subtract

the beam signal with a relatively high degree of accuracy. In Figure 5.8.(a), we

show the top portion of the cross-correlation region and draw through it two

dashed lines showing where we take sections of the data for comparison. The upper

line lies just outside the correlation region and measures only the signal provided

by the beam. The lower line lies just inside the correlation region and measures the

sum of the beam signal and the unpolluted cross-correlation signal. Both series

of data are complex-valued. In Fig. 5.8.(b), we plot the magnitude component

of the two sections and the magnitude of their complex-valued difference. The

difference signal shows the isolated cross-correlation signal. The phase of the

difference signal at any given point results from a combination of phase structure in

the illumination, a phase difference introduced as part of the scalar multiplication

via the reference, and misalignment of the diffraction pattern prior to the inverse
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FIGURE 5.8.. Extracting the coherence factor for the horizontal (∆u) direction.
(a) shows the cross-correlations; (b) shows plots the data taken along the two
dashed lines in (a), and also their difference; (c) shows the rescaled data; (d) shows
the rescaled data less the apparently unreliable correlations at +∆u. We fit the
rescaled data to a gaussian.

Fourier transform which introduces a linear phase ramp; none of these are relevant

to measuring the modulus of the coherence factor.

We show the data across the whole range of ∆u before and after rescaling

according to Equation 5.4. in Fig. 5.8.(c), excepting the cross-correlation at the far

right of the ∆u coordinate as insufficient signal through the reference generated an

unusable signal in that (∆u,∆v) range. Given the nearly gaussian profile of the

synchrotron x-ray source and its relatively incoherent nature, we expect from the

Van Cittert-Zernike theorem [8, 116–120] a nearly gaussian profile to the coherence

factor. In general, the rescaled data conforms to this expectation, although with
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FIGURE 5.9.. Extracting the coherence factor for the vertical (∆v) direction. (a)
shows the cross-correlations; (b) shows plots the data taken along the two dashed
lines in (a), and also their difference; (c) shows the rescaled data.

some asymmetry in tails. Lacking a theoretical justification for a beam with more

coherence in one direction in ∆u than another, we repeat the gaussian fit excluding

the two right-most cross-correlations in Fig. 5.8.(d). In this case the gaussian fit

seems very good, and has a standard deviation of about 3.8µm.

We repeat the bulk of the process for the vertical axis in Figure 5.9.. First,

we subtract the beam signal from the superposition of the beam and correlation

signal near the positive ∆u edge of the cross-correlation array. In this instance, we

must put more of a gap between the two series as the bright reference-reference

cross-correlations get in the way of the signal. We plot the magnitude of the two

cross-sections and the magnitude of their difference in Fig. 5.9.(a). We rescale the
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magnitude of the isolated cross-correlation signal identically to the method in the

horizontal data, then again fit to a gaussian. Fig. 5.9.(b) shows the unscaled data,

the rescaled data, and the gaussian fit. Again, the gaussian seems a good match,

with standard deviation 4.4µm. As expected, we find the coherence greater in

the vertical direction due to the greater filtering of the beam along the vertical

direction, particularly at the exit slits of the monochromator (lower divergence of

the source?).

However, as in the ∆u case, the data has artifacts. In particular, after

subtraction we observe “bowing” in the central portion of many of the cross-

correlations. This effect matches with simulations in which we measure the beam

signal too far away from the cross-correlation signal, and the subtraction introduces

large errors relative to the value of the correlation signal. We believe the general

behavior of the extracted coherence factor in the vertical direction reliable, but

treat the behavior within any particular cross-correlation region with suspicion.

5.4.4. Data Interpretation Difficulties

In attempting to interpret this result, certain aspects of the fitting remain

unclear. While we may explain the offset of the peaks of both fits from (∆u,∆v) =

(0, 0) as resulting from relative misalignment of the aperture axes, detector axes,

and beam axes, the constant offset of the gaussian fit is troubling. As all wavefront

have only finite coherence, we fully expect the obvious limiting condition

lim
∆u→∞

µ(∆u) = 0 (Equation 5.11.)
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FIGURE 5.10.. Possible object aperture designs for an improved iteration of the
measurement. “Original” refers to the aperture from the shown experimental
results. Dark grey indicates the transmissive region of the aperture.

While we are tempted to dismiss the offset as an artifact of the rescaling process,

which might drag some poorly subtracted background up to a significant value,

the fact that we can easily distinguish the edge-most cross-correlations against

the background contradicts this argument. Due to the limited extent of the

measurement in both direction, we cannot rule out other possibilities such as a

form of the coherence factor with a longer tail than a gaussian. Until we reconduct

the experiment with a more extensive set of apertures to allow a measurement at

greater |∆u| and |∆v|, we assume the above limit must always be in force, and that

any non-zero offset is spurious.

5.5. Possibilities for Future Improvements

During the design of the aperture array, we did not anticipate the incomplete

attenuation of the direct beam by the gold and the consequent spurious signal in
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the central maximum of the diffraction pattern. The presence of this signal poses a

serious challenge to the experiment as we can only subtract the power spectrum

of beam from the correlation signal very near a location where we measure the

beam signal alone. For this reason, the current aperture design can measure the

coherence factor µ(∆u,∆v) in two dimensions simultaneously, but only in the

extremely restricted sense of two orthogonal one-dimensional measurements as done

above. As we do not expect separable coherence functions in general, we require a

better set of apertures which allow interpolation of the slowly-varying beam signal

at far more points in the (∆u,∆v) plane. Such a design would allow a fine-grained

interpolation of the beam and isolation of the cross-correlation signal in a true two-

dimensional fashion.

5.5.1. New Aperture Designs

We show a cartoon of several such design in Figure 5.10.. In comparison with

the original square aperture used in the experimental results already presented,

we shrink the size of all five designs below the inter-reference spacing. This

size discrepancy introduces gaps between all the cross-correlations where we

can measure the signal from the beam in isolation. While the aperture design

labeled “simple” is merely a smaller version of the aperture used in the earlier

experiment, “strip-h”, “strip-v”, “double”, and “donut” all slice through the

aperture to introduce additional points for measuring the power spectrum of the

beam. Assuming that the beam signal varies slowly in (∆u,∆v), sufficient sampling

points allow an interpolation of the beam in two-dimensions even with irregularly

spaced data via a cubic Clough-Tocher algorithm [121–123].
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FIGURE 5.11.. A simulation of using improved aperture designs to handle
pollution by the beam. (a) shows the partially coherent cross-correlation spectrum,
including random weights and coherence function. (b) shows the same with semi-
empirical beam signal. (c) shows the locations where we measure the beam for
interpolation. (d) shows (b) after subtraction of the interpolant, and hi and vi cross
sections for coherence recovery.

We show elements from the scattering simulation with the hypothetical

“donut” design in Figure 5.11.. Fig. 5.11.(a) shows the cross-correlation spectrum

with the central autocorrelation zeroed as usual; this image includes random

reference weight and a gaussian coherence factor of standard deviation 4µm. In

Fig. 5.11.(b), we show the cross-correlation spectrum following the inclusion of

a realistic direct-beam signal in the diffraction pattern. In this simulation, we

took the form of the beam directly from the series of measurements of the beam

on the CCD detector undertaken in an attempt to directly subtract a portion of

the direct-beam signal. Based on the known cross-correlation spectrum in (a),

we measure just the beam’s power spectrum at the locations marked white in

Fig. 5.11.(c). These pixels provide the anchor points for a complicated interpolation

available in scipy.interpolate.griddata. In Fig. 5.11.(d), we show the magnitude
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of the difference between the data in Fig. 5.11.(b) and the beam signal estimated

through interpolation. In the cross-correlations at the top of the image, the beam

signal overwhelms the true cross-correlation signal and introduces serious artifacts

into the difference. The labels h1...h10 and v1...v10 and their corresponding dashed

lines indicate where we will measure the performance of the aperture designs.

5.5.2. Comparison of Aperture Performance

To compare the performance of the various aperture designs, we repeat the

rescaling and fitting procedure used to extract the coherence length from the

experimental data. The cross-sections we use to recover the known coherence factor

we label in Fig. 5.11.(d) as h1 through h10 and v1 through v10. Cross sections with

even numbers measure near the edge of the cross-correlations, while those with odd

numbers measure the interiors; we expect all the designs to recover the coherence

factor well near the edge of the correlation where we can measure the beam signal,

artifacts from poor interpolation of the beam more seriously distort measurements

on the interior. In the experimental data set, we recorded twelve unique beam

profiles, which we combine in pairs to generate seventy-two unique beam signals

polluting the true correlation signals. In addition, we simulate the recovery of the

coherence factor using eight randomly generated sets of reference weights ai, giving

five hundred seventy six unique simulations of the coherence factor recovery along

each cross-section for each aperture. To judge the performance of each aperture,

we plot the average and standard deviation of the recovered coherence factor at

each aperture and cross-section. Because we know the true coherence factor in the

simulation, we condition the lists of recovered coherence factors by removing those

obvious outliers which result from failed fits to the rescaled cross-correlations.
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FIGURE 5.12.. Measuring the performance of the improved apertures in recovering
the known degree of coherence. The top two plots show recovery along the
horizontal direction at the various cross-sections marked in Fig. 5.11.(d). The
bottom two plots show recovery along the vertical direction. The dashed line shows
the target recovery; all advanced apertures outperform the aperture design used in
the experiment.
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We plot the performance of each aperture in Figure 5.12.. In the upper two

images, we show the mean and standard deviation of the recovered horizontal

coherence length σh, as measured on the edge cross-section or in the interior of the

correlations. The darker dots show the performance of the recovery near ∆v = 0,

and the lighter dots the performance as ∆v increases. The lower two plots show the

same data organization as the upper two, but present the statistics of the recovered

σv. We plot the recovery target of 5µm in all four plots as a dashed horizontal line.

In both directions, the performance of the apertures presents no real

surprises. As expected, the simplest aperture fares the worst in recovering the

coherence factor in the interior of the correlations. However, the more sophisticated

designs which increase the density of sampling points for the beam recover the

coherence factor with a high degree of accuracy all the way to the outer regions

of the correlation spectrum, at which point the signal from the beam becomes

too bright in comparison to the correlations and interpolation artifacts hinder the

recovery. Importantly, the sophisticated “double” aperture with slices along both

axes seems to fare no better than the simpler “strip-h” aperture, which has a slice

only along the horizontal axis.

We additionally compare the recovery from the complicated two-dimensional

interpolation to the method used in the experimental data earlier, when we directly

subtracted the beam signal from the polluted correlation signal a few pixels away.

This simpler method is represented by the square boxes of the second and fourth

plots, and was performed at the h5 and v5 cross-sections. Notably, we observe that,

at least in simulations, the recovered coherence lengths are self-consistent but in

the horizontal direction they systematically underestimate the coherence. From

this result, we conclude that even at the very edge of the aperture where only
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a few pixels separate the beam and cross-correlation data, the two-dimensional

interpolation provides a much better estimate of the beam.

5.5.3. Larger References

The ratio of the correlation signal to the spurious beam signal is the limiting

factor in recovering the coherence factor. As ∆u and ∆v increase, the beam signal

seems to fall off more slowly than the coherence factor, and consequently the beam

signal dominates near the edge of the correlation spectrum.

For this reason, we anticipate that increasing the size of the references from

their current δ-like size would substantially improve the recovery of the coherence

factor. Larger references would lead to blurrier cross-correlations, but would leave

the coherence function alone, Equation 2.27. shows. Several obvious factors limit

the upper size of the references. First, the correlations cannot become so blurred

that the gaps introduced by the more sophisticated apertures close entirely, as

we must measure the beam signal in isolation. Second, the illumination over the

references must remain approximately uniform so that the effect of the reference on

the correlation signal can be approximated as a scalar multiplication.
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CHAPTER VI

SIMULATION OF DOMAIN PATTERNS IN MAGNETIC THIN FILMS WITH

PERPENDICULAR ANISOTROPY

In this chapter, we develop an algorithm for the simulation of labyrinthine

magnetic domain patterns in thin films with perpendicular anisotropy. At least one

algorithm already exists for the simulation of domain patterns of this type [124],

and has been used in various applications including hysteresis loops and return-

point memory [125–127], Barkhausen instabilities [128], and magnetic domain

pattern formation and growth dynamics [129, 130]. Here, we develop a similar

but independent model which eschews the explicit time dependence which comes

from the usual approaches to minimizing the system’s Hamiltonian in favor of very

precise control over the scattering lineshape, which we use as the Fourier constraint.

Iterative phasing algorithms of the type presented earlier, which repeatedly enforce

constraints in real- and Fourier-space until a solution converges, have strongly

influenced the algorithm developed in this Chapter.

We pursue this work to enable the statistical interpretation of magnetic

speckle patterns with possible rotational symmetries at specific length-scales, which

we will discuss in the next chapter.

6.1. Magnetic Thin Film Physics, in Brief

All ferromagnetic materials, whether single-crystal or thin-film, require

differing energies to magnetize depending on the orientation of the applied field

relative to the crystal axes. We refer to this orientational dependence as the

magnetic anisotropy of the sample. For a detailed review of the microscopic
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a b
FIGURE 6.1.. Two real magnetic multilayer samples show potential goal domain
configurations. (a) shows domains in a Co/Pd multilayer, (b) in Tb/Co.

contributions to the magnetic anisotropy, see Johnson [131]. In very brief mention,

key contributions to the anisotropy include: the long-range dipolar interaction;

electronic spin-orbit coupling, which reflects the material’s crystal symmetry; the

magneto-elasticity, whereby strain in a sample may favor a particular magnetic

alignment to reduce stress-energy; and importantly the geometry of the sample, as

the behavior of spins at a surface or interface may depart significantly from their

behavior in bulk due to the change in symmetry. In multilayer samples grown by

sputtering, which provide the basis for this simulation work, the extreme thinness

of the layers in the multilayer structure and the sputtering technique promote

through strain and interfacial change of symmetry an easy axis of magnetization

perpendicular to the plane of the sample; the magnetization in the sample strongly

favors alignment parallel or anti-parallel to the field.

Within the thin film, two competing interactions establish the characteristic

length-scale and morphology of the domain configuration. The ferromagnetic

interaction between neighboring spins promotes the parallel alignment of neighbors,

while the dipolar interaction favors the anti-parallel alignment of neighboring spins.
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Competition between the ferromagnetic interaction, which favors maximal domain

size, and the dipolar interaction, which favors minimal domain size, results in

domains of intermediate size. In Figure 6.1. we show the domain patterns in two

different types of multilayer samples. Fig. 6.1.(a) (courtesy Jimmy Kan and Eric

Fullerton, UCSD) shows perpendicular domains in a cobalt-palladium multilayer,

imaged using magnetic force microscopy [132]. Fig. 6.1.(b) (courtesy Joshua Turner

and Peter Fischer) shows perpendicular domains in a terbium-cobalt multilayer,

imaged using full-field x-ray microscopy with zone plates [133, 134]. With these

simulations we endeavour to produce domains of the labyrinthine type shown in

Fig. 6.1.(a).

6.2. Solution Classes for Iterative Algorithms

In coherent imaging experiments, the modulus of the complex far-field

diffraction pattern supplies the Fourier constraint. If we label the estimate of

the solution wavefield at some iteration n as En, the Fourier transform of En as

F {En} = |Ẽn| exp(iφn), and the experimentally measured far-field intensity I,

enforcement of the Fourier constraint replaces the estimated Fourier modulus with

the measured modulus:

F̂ (En) = F
−1
{√

I exp (iφn)
}

(Equation 6.1.)

In conjunction with the real-space constraint, Equation 6.1. ultimately leads to a

unique solution because of the one-to-one relationship between the real-space and

the Fourier representations of a two-dimensional function; two different real-space

functions cannot generate the same fully coherent and adequately sampled speckle
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pattern. We seek a modification of Equation 6.1. which allows the generation of a

class of similar solutions rather than a particular unique solution.

We illustrate the idea of unique members of a class of solutions in Figure 6.2.;

Fig. 6.2. (a) and (c) show two coherent speckle patterns taken from a scattering

experiment at the Co L3 edge of a Co/Pd multilayer sample. In Fig. 6.2.(b) and

(d), we show the intensity in the speckle patterns at a given radius from center,

averaged along the azimuthal coordinate (marked θ) to “despeckle” the data. In

both (b) and (d), the dashed line plots a least-squares fit to the despeckled average

with the functional form of a squared lorentzian:

〈I(|q|)〉θ =
s

(

[(|q| − |q|0)/w]2 + 1
)2 (Equation 6.2.)

Here, |q|0 is the radial distance of the peak away from center, w the width of

the peak, and s an overall scaling factor. The width factor w relates to the FWHM

of the peak by FWHM = 2w
√√

2− 1 ≈ 1.29w. For scattering patterns from

magnetic samples such as this, we interpret the central radius |q|0 as describing the

average domain periodicity and the width w as relating to the domain correlation

length. The difference between the speckle patterns reflects the differing underlying

domain configuration and the one-to-one relationship between the scatterer and the

Fourier modulus. Although structure persists in the azimuthal average because

of the limited number of speckles at each value of the radial coordinate, from

one speckle pattern to another the least-squares fit to the despeckled scattering

envelope remains essentially unchanged. The underlying domain configuration

uniquely determines the precise arrangement of the speckle, but the statistical

averages expressed in the scattering lineshape describe the configurations in a non-
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FIGURE 6.2.. Scattering lineshapes describe solution classes. Two different domain
configurations generate two different speckle patterns (a) and (c), which share
respective lineshapes (b) and (d). Summing many speckle patterns in (e) reduces
the speckle contrast and clarifies the average lineshape.

154



particular way. By adding together many independent speckle patterns, we wash

out the particulars of the individual configurations and leave behind the average

incoherent scattering lineshape. In Fig. 6.2.(e), we show the average of twenty-six

scattering patterns taken with the same beam over different points on the same

sample, and in Fig. 6.2.(f) we show the azimuthal average in analogy to (b) and

(d). In this sense, the azimuthally-averaged scattering lineshape describes a class of

configurations, to which both Fig. 6.2.(a) and (c) belong.

When interpreting experimental speckle patterns, we use inverse meters

(or fractions thereof) for the units of the scattering wave vector q, and the size

of reciprocal space subtended by each pixel on the detector depends on the

wavelength of the illumination and the distance between the sample and the

detector. In the simulations of domain patterns we will conduct later, the Fourier

transform of the domain pattern still generates the reciprocal representation, but

the simulation does not require a true physical length scale and instead we use

pixels as the unit directly. Consequently, a domain pattern simulation of size N×N

with a scattering profile given by Equation 6.2. and with radius |q|0 = N/l will

have an average domain periodicity in the real space image of l pixels.

6.3. Modification of the Fourier Constraint

We now consider how to modify Equation 6.1. to accept as a solution not a

unique diffraction pattern but rather an arbitrary member of the class of solutions

described by a scattering lineshape such as that shown in Fig. 6.2.(b), (d), and

(f). Such a modification must meet several requirements. First, the incoherent

scattering class must be two dimensional to allow for structure in the rotation

coordinate; this requirement forbids applying the azimuthal average used in

155



Figure 6.2. as a despeckling procedure. Second, the updated estimate of the Fourier

modulus must belong to the despeckled scattering class. Third, the updated

modulus estimate must retain the speckle characteristic of the underlying real-space

estimate; this requirement forbids a trivial modification of Equation 6.1. in which

we simply replace
√
I with the desired despeckled scattering envelope. Finally, as

in coherent imaging, self-consistency under enforcement of the constraints defines a

solution.

Given a goal despeckled scattering intensity profile G and a despeckling

operator D, a modification to Equation 6.1. which meets these requirements is:

F̂ (En) = F
−1

{√

G

D(|Ẽn|2)
|Ẽn| exp (iφn)

}

(Equation 6.3.)

The update operation in Equation 6.3. merely multiplies the previous complex

Fourier estimate Ẽn by the ratio of the goal scattering profile and the current

scattering profile. When the current scattering profile reaches the goal scattering

profile, the estimate becomes self consistent. By operating only on the despeckled

profiles, we preserve the speckle specific to the underlying domain configuration.

Multiplying by the ratio of the goal scattering profile to the current scattering

profile ensures matching the goal scattering profile during every iteration when

finding a solution.

The simulation can use neither of the two strategies used in Fig. 6.2. to

despeckle the scattering pattern; the azimuthal average because it assumes

azimuthal symmetry, and the sum of many speckle patterns because |En| gives

only a single speckle pattern. Instead, we calculate an estimate of the incoherent

scattering pattern by a convolution of the fully coherent speckle pattern with some
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FIGURE 6.3.. Applying the modified Fourier-space constraint of 6.3. to a simulated
speckle pattern. (a) shows the incoming Fourier modulus |Ẽ|, (b) the speckle
blurred according to Equation 6.4., (c) the goal scattering profile with four-fold
symmetry, (d) the rescaler function, and (e) the updated fourier modulus.

reasonable blurring kernel K. We define the despeckling operator as

D(|Ẽn|2) = |Ẽn|2 ∗K (Equation 6.4.)

and so

F̂ (Ẽn) =

√

G

|Ẽn|2 ∗K
|Ẽn| exp (iφn) (Equation 6.5.)

Finally, to satisfy Parseval’s Theorem we require conservation of the total power of

the speckle pattern before and after the application of Equation 6.5.. We therefore

multiply the rescaled Fourier representation by an overall scaling factor p:

p =

√

∑

|Ẽn|2
∑

|F̂ (Ẽn)|2
(Equation 6.6.)
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We break down the operation of Equation 6.5. in Figure 6.3.. The incoming

fourier modulus |Ẽ| (a) gets blurred by the convolution kernel K according to

Equation 6.4. to give the despeckled intensity pattern in (b). Fig. 6.3.(c) shows

the goal intensity profile; we use a squared lorentzian with the same center and |q|0

as the despeckled pattern in (b) but with an additional four-fold symmetry. The

ratio of (b) and (c) calculated at all points in space give the rescaling ratio in (d).

At the brightest azimuths of (c), the rescaler reaches unity because the speckles

along those axes do not require modulation. However, along the minima azimuths

in (c), (b) contains too much intensity, and consequently the rescaler suppresses

the values at those locations. We show the updated Fourier modulus in (e), as the

product of the incoming fourier modulus (a) and the rescaler (d). We leave the

phase component of the Fourier estimate unchanged, as in imaging.

Notably, Fig. 6.3.(a) displays much smaller speckles than the experimental

speckle patterns in Figure 6.2.. We do this purposefully to minimize the extent

of the despeckling convolution kernel K and despeckle the intensity without

significantly distorting the lineshape. In these simulations, we use for K a gaussian

with standard deviation one-quarter the FWHM of the scattering lineshape.

Because the degree of oversampling in Fourier space or equivalently the extent

of zero-padding around the sample in real-space sets the size of the speckles in

simulations such as these, minimizing the speckle size corresponds to simulating

a sample which fills the entire real-space image. Due to the cyclic behavior of

the discrete Fourier transform, solutions to the speckle class will have toroidal

boundary conditions.

The calculations in Fig. 6.3. take place in a simulation with no net

magnetization, making the value of the central pixel in the speckle pattern zero.

158



In simulations with a non-zero net magnetization, we must modify the incoming

speckle pattern before rescaling the intensity envelope so that a convolution of

the DC component does not pollute the nearby speckles. We perform this small

correction by replacing the central speckle with the average of its nearest neighbors

prior to rescaling; after rescaling the intensity envelope, we restore the original

value of the central speckle to maintain the net magnetization of the simulation.

In terms of preserving the power of Fourier transform, we do not include the DC

component in the sums of Equation 6.6..

6.4. Real-Space Constraints on the Magnetization

While modifying the traditional Fourier modulus constraint familiar from

imaging to accommodate a class of solutions requires only relatively straightforward

changes, the constraints applied to the real-space representation of the domain

pattern contain more complexity and freedom. In diffractive imaging, the real-

space constraints typically involve the compactness of the solution; for simulating

magnetic domains, however, minimizing the distortion applied by the Fourier

constraint requires a small K and consequently no oversampling. For this reason we

use no support constraint. Instead, we make assumptions regarding other aspects of

the sample.

First, we model the real-space representation as a scalar field whose value

represents the out-of-plane component of the magnetization; we require the field

to be real-valued and range between negative one and positive one, the former

implying out-of-plane magnetization antiparallel to the propagation of the beam

and the latter parallel. Second, we encourage the real-space representation to favor

fully saturated magnetization values of either negative one or positive one to reflect
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the perpendicular anisotropy of the sample. Finally, apart from biasing the local

magnetization, we also constrain the overall magnetization of the sample in order to

simulate the magnetization configuration all the way from the initial reversal point

through remnance.

Deciding which constraints to enforce in the real-space representation presents

the primary difficulty, as enforcing them typically becomes just a matter of coding

efficiency. Given an estimate of the out-of-plane magnetization En at some iteration

n, we label and satisfy the above constraints as follows:

Bounds constraint: B̂(En) = sgn (En)×min (|En|, 1) (Equation 6.7.)

Saturation constraint: Ŝ(En) = (1 + α)En − αE3
n (Equation 6.8.)

Magnetization constraint: M̂(En) = En + (W (En)×m0) (Equation 6.9.)

These constraints operate on each site in the simulation independently, and

in numerical codes we implement them through fast vectorized functions. In

comparison to the easily-understood reality constraint and bounds constraint

B̂, the saturation constraint Ŝ and the net magnetization constraint M̂ require

additional explanation.

6.4.1. The Saturation Constraint

In explaining the saturation constraint, we assume that the magnetization has

local minima of free energy which occur when the magnetization points entirely out

of plane, or when |En| = 1. This restates the perpendicular anisotropy of the thin
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film. The simplest polynomial free energy which models the desired behavior is

F = F0 −
1

2
E2

n +
1

4
E4

n (Equation 6.10.)

and the “force” felt by a local spin which undergoes an excursion away from the

energy minima at En = ±1 is

− dF

dEn

= En − E3
n (Equation 6.11.)

Consequently, when updating the estimate of the real-space representation we bias

the current estimate En towards saturated local spins by adding in some fraction of

Equation 6.11.:

Ŝ(En) = En + α

(

− dF

dEn

)

= (1 + α)En − αE3
n (Equation 6.12.)

In the simulations we will show, we keep the bias parameter α set to 0.5 but the

results do not seem particularly sensitive to the specific value.

6.4.2. The Magnetization Constraint

As Equation 6.8. rapidly biases the value of the individual sites in the

simulation towards ±1, we naturally modify the value of domain walls to satisfy the

global magnetization constraint. Here, we define a simulation site as being along a

magnetic domain wall if at least one of its nearest neighbors differs in sign and find

domain walls in the current estimate En at some site indexed i with the following

161



binary function:

W (En,i) = min

(

1,

Neighbors
∑

j

[

1− 1 + sgn(En,i × En,j)

2

]

)

(Equation 6.13.)

The wall function Wi evaluates to zero if all the neighbors j of site i have the same

sign as i, but evaluates to one if one or more of the neighbors have a differing

sign. We calculate the value by which to promote the spins in the domain walls

by comparing the current net magnetization to the desired average magnetization

M0, with N the number of sites in the simulation:

m0 =

M0N +
∑

i

En,i

∑

i

Wi

(Equation 6.14.)

In a strict sense, altering the value of spins in the domain walls via Equation

6.8., Equation 6.13., and Equation 6.14. will satisfy the net magnetization

constraint. However, if the desired average magnetization M0 differs too much from

the current average magnetization
∑

En,i/N , application of Equation 6.9. may

break the bounds constraint Equation 6.7.. For this reason, we apply the bounds

constraint a second time at little computational cost compared to the four Fourier

transforms required to implement F̂ .

6.5. Self-consistency Determines Iterate Convergence

Given the various constraint operators F̂ , B̂, Ŝ, M̂ , we generate a new

estimate by:

En+1 = B̂M̂B̂Ŝ Re F̂En (Equation 6.15.)
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FIGURE 6.4.. Converging a magnetic domain pattern from a seed of random
numbers. Left, the self-consistency parameter ǫ vs iteration number; right, the
domain pattern after the marked number of iterations.

With the various constraint operators defined, the simulation iterates to a self-

consistent solution. Here, we define self-consistency as the degree to which two

sequential estimates differ:

ǫ =
1

N

∑

space

|(En − En−1)| (Equation 6.16.)

In the simulations in this chapter, we accept as sufficiently self-consistent ǫ < 0.002.

We show the simulation of a labyrinthine magnetic domain pattern in

Figure 6.4.. In this simulation, we set as the initial real-space estimate E0 a field

of random numbers uniformly distributed between negative one and positive one.

Evolution of the domain pattern occurs by repeated application of the operator

sequence Equation 6.15., with the real-space estimate after each iteration being

used to compute the degree of self-consistency ǫ according to Equation 6.16.. In

the left panel of Fig. 6.4. we show the logarithm of the degree of self-consistency

as a function of iteration number. The simulation rapidly converges according to

the self-consistency parameter, and inspection of the domain patterns confirms this
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FIGURE 6.5.. Chained simulations allow movement between solution classes. First,
we converge a domain pattern from a random seed (a), then sequentially change the
goal profiles to generate different solutions (b) (c) and (d).

conclusion. Along with each domain pattern we show the iteration number of the

simulation; after even only five iterations, the features of the labyrinth have already

become apparent and the spins have segregated into well-defined parallel and anti-

parallel domains. As the simulation proceeds, refinements take place across the

labyrinth until eventually the calculation terminates after (in this case) the fifty-

second iteration. However, the vast majority of the iterations occur in a highly-

converged regime; without close inspection, the differences between iterations ten,

twenty-five, and fifty-two become nearly invisible.

6.6. Varying Solution Classes in Chained Simulations

Once a simulation has converged, we can use it as the starting point in a

second simulation in which we slightly adjust the scattering profile. A chained

simulation of this sort allows an “apples-to-apples” comparison of the effect of

164



different scattering profiles as opposed to the “apples-to-oranges” approach of

comparing two simulations which start from independent random seeds. We show

a set of simulations where we use a converged domain pattern as the starting point

in a second stage in Figure 6.5.. Simulating on a 256 × 256 grid, we converge a

domain pattern with scattering lineshape given by Equation 6.2. with central radius

|q|0 = 20 pixels and width w = 9.7 pixels. This value of the central radius leads

to domains with average periodicity 256/20 = 12.8 pixels. We then systematically

increase the central radius |q|0 from 20 to 50 pixels, generating the domain pattern

in column (b) with |q|0 = 30 pixels, in column (c) with |q|0 = 40 pixels, and

column (d) with |q|0 = 50 pixels. The average domain size in these cases becomes

8.6, 6.4, and 5.2 pixels, respectively. Between the results presented in Fig. 6.5., we

converged unshown intermediates to avoid drastic and unrealistic perturbations

of the domain configuration. In all these simulations, we held the width of the

scattering profile constant and the net magnetization zero.

However, we must take care in re-evolving the domain pattern to a changed

goal scattering profile. By eschewing the requirement of inverting a specific speckle

pattern to allow a class of solutions, we accept not only instances of domain

patterns which generally look similar but also solutions which display obvious

morphological differences in the real-space representation. We show in Figure 6.6.

a set of simulations in which a scattering lineshape of form Equation 6.2. with

|q|0 = 25 pixels and w = 7.8 pixels re-converges using a lineshape with |q|0 = 25

pixels but w = 19.4 pixels. Fig. 6.6.(a) shows the two profiles in cross-section, (b)

the simulation converged to the first, narrower, profile, and (c) through (g) the re-

convergence under a variety of simulation trajectories and procedures. We identify

three broadly distinct morphologies: (c) alone; (d) alone; and (e), (f), and (g) as
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FIGURE 6.6.. Different simulation trajectories lead to different solution
morphologies. (a) shows the two scattering lineshapes used in the growth
simulation with fixed center but variable width, (b) the domains converged to
the first lineshape, and (c)-(g) the domains reconverged under various simulation
procedures; details in text body.
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a set. The difference between these outcomes lies not in the constraints but in the

methods of their enforcement.

In Fig. 6.6.(c), we do not directly re-converge the simulation after the primary

convergence shown in (b), but instead perform an independent convergence from

the same random seed. This simulation provides the clearest insight into how

broadening the scattering profile might effect the real-space configuration, or

what it means to reduce the domain correlation length. To satisfy the lineshape’s

demand of both larger feature sizes (scattering signal near center of diffraction

pattern) and smaller features sizes (scattering signal near edges of diffraction

pattern), the domain configuration adopts a more disordered appearance.

In Fig. 6.6.(d), we move directly from the narrow primary profile to the

wide second profile in a single step, demanding rapid and drastic changes in the

domain pattern. The simulation most easily meets the demand for the smaller

features required by the scattering profile through the nucleation of small, isolated

domains within existing domain of the opposite orientation. While the simulation

constraints strictly permit this type of morphology, it does not conform to the

general expectations of domain formation supplied by experimental microscopies

that we get from Fig. 6.1.. Energetic considerations disfavor the formation of island

domains in the center of an already saturated region, especially when compared to

a simpler reconfiguration of domain walls.

In Fig. 6.6.(e) we see this latter strategy pursued by the simulation when the

path from the narrow primary profile to the broad second profile passes through

many intermediate profiles in which the width w changes slowly. Under this

approach, expanding and contracting domain walls, rather than spurious nucleation

deep in domains, provide the needed diversity of feature sizes. Fig. 6.6.(f) and (g)
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confirm this effect modifying the Fourier constraint F̂ in Equation 6.3.. Rather

than accepting all the changes implemented by an the Fourier rescaling, we choose

to keep only those which act within the domain walls regions:

En+1 = B̂M̂B̂Ŝ Re F̂2En

F̂2(En) =W (En)F̂ (En) + [1−W (En)]En (Equation 6.17.)

The wall function W comes from Equation 6.13. and the other constraint operators

remain unchanged. Using this modified Fourier constraint, shifting between the

goal profiles in a single step as in Fig. 6.6.(f) or a series of small steps as in (g)

produces nearly identical outcomes.

As the results in (c), (f), and (g) all satisfy the available constraints and

lack the obvious implausibility of (d), we lack clear rules on how to distinguish

between the solution morphologies without greater input from microscopy of actual

domain patterns. The difficulties of evolving a domain pattern between two very

different scattering profiles with no concurrent change in net magnetization may

also reflect an inherently unrealistic possibility. We take as the primary lesson from

such simulations that, as with all models, blind application can lead to poor results,

and we must employ caution in their interpretation.

6.7. Creating Angular Symmetries With the Solution Class

Next, we explore the impact of introducing angular symmetries into the goal

scattering profile, which we will use in interpreting data in the following Chapter.
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We build rotational symmetries into the scattering profile G(q) according to

G(q) = G0(|q|)
(

1 +
∑

m

αm cos(mθ)Rm(|q|)
)

(Equation 6.18.)

where θ is the azimuthal coordinate, m the symmetry order, G0(|q|) the

isotropic scattering profile which has already been demonstrated, Rm(|q|) are the

|q| envelopes within which the cosine terms are confined, and αm, valued between

0 and 1, sets the strength of the symmetry. This multiplicative modulation of

the scattering profile modifies simulation constraints in the simplest way which

generates angular symmetries in reciprocal space and the only modification which

does not require complicated intervention on a per-speckle basis in order to

generate the correlation. Using this formulation, we can easily simulate arbitrary

symmetry orders at arbitrary length scales.

Figure 6.7. demonstrates the effect on the real-space representation of

introducing a four-fold symmetry (m = 4) at various length scales |q|. We

first converged each simulation from the same seed using the same isotropic goal

scattering profile; this seed and scattering profile converge to give Fig. 6.6.(b).

After convergence, we changed the goal profile in a single step to include the four-

fold symmetry with α4 = 1.0. In column (a), the simulation modulates all length

scales equally by setting R4(|q|) = 1. This modulation leads to pronounced changes

in the real space representation as the domains now preferentially align along the

principal axes of the simulation and no longer align along the diagonals. The

bottom image in the column shows the magnitude of the difference between the

ordered domain pattern and the isotropic pattern of Fig. 6.6.(b); the bright spots

in the image indicate where domains have flipped orientation in order to satisfy the

new scattering profile. Some of the changes involve where two domains of the same
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FIGURE 6.7.. Introducing rotational symmetries in the Fourier profile leads to
reconfigurations of the domain pattern. In (a), we modulate all |q| with a four-fold
symmetry. In (b), (c), and (d) we restrict the modulation to narrower ranges of |q|.
The bottom row shows the difference between the above results and the isotropic
domains in Fig. 6.6.(b).
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sign combine by bridging and splitting a domain of the opposite sign; the remainder

of the changes consist of minor modifications to the domain wall configuration

which straighten sides and square corners.

The simulation in column (b) restricts the symmetry to length scales near the

center of the scattering ring through radial envelope

R4(|q|) =















1, |q|0 + w > |q| > |q|0 − w

0, otherwise

In this case, the domains still realign along the principal axes but the restricted

modulation range lowers the visual impact. While the realignment of the domains

remains evident, features which place more spectral power in higher |q|, such as

domain corners, experience less evolution. As in the case of modulation at all

length scales, changes to the domain configuration involve both bridging and

splitting as well as minor domain wall realignment.

The simulation in column (c) restricts the symmetry to large length scales on

the interior of the scattering ring through the radial envelope

R4(|q|) =















1, |q|0/2 + w > |q| > |q|0/2− w

0, otherwise

In this case, changes to the real space domain configuration remain essentially

invisible without the aid of the explicit differences. No domains bridge in making

this modulation in the scattering profile, and minor reconfigurations of domain

walls seem the only changes in the pattern.
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Similarly, column (d) restricts the symmetry to small length scales at larger

radial coordinates than the center of the scattering ring; the radial envelope is

R4(|q|) =















1, 2|q|0 + w > |q| > 2|q|0 − w

0, otherwise

As with modulating the domain pattern below |q|0, we find no changes in the

domain pattern except minor modification of domain walls; we see no major

bridging points where domain polarity reverses in order to satisfy the new

scattering profile.

These simulations produce no startling results. Even with the maximum

strength symmetry (αm = 1), the effect of the symmetry depends strongly on its

location in |q| relative to the center of the scattering ring |q|0. We understand this

easily: the intensity of the Fourier transform at any particular radius |q| describes

the importance of that length scale in the real-space configuration, so we cannot

expect modulations to regions of |q| lacking appreciable scattering intensity to

produce readily visible alterations in the real-space configuration.
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CHAPTER VII

A SYMMETRY MICROSCOPE FOR DISORDERED MATERIALS

7.1. Introduction and Motivation

Condensed matter physics is rich with systems which display only short range

order [135], such as the labyrinthine domains in perpendicular magnetic thin films

[136], as well as superconductors [100, 137, 138], liquid crystal and copolymer

films [139, 140], biological membranes, granular flows, reaction-diffusion systems

[141–143], and Rayleigh-Benard convection [144]. The lack of long-range order in

these and other systems precludes translational symmetry but does allow different

local, or short-range, ordering within the same sample. Scientists have essentially

solved the structure problem of ordered materials, with even crystals of proteins or

other complex biological samples often solvable to atomic resolution through highly

refined electron and x-ray diffraction methods [145–147]; in contrast, the lack of

long-range order in liquid, amorphous, or glassy materials makes the determination

of the microstructure exceptionally challenging [148–150]. Coherent diffraction,

through its sensitivity to the unique configuration of the sample at the point of

illumination, offers a path forward on characterizing and understanding the local

structure of disordered materials [151]. In particular, coherent scattering from

isotropic systems enables the search for otherwise hidden rotational symmetries

preserved by the Fourier transform during the diffraction process.

We motivate the forthcoming analysis with an example of an apparent hidden

rotational symmetry in a perpendicular magnetic thin film, shown in Figure 7.1..

In Fig. 7.1.(a) we show the speckle pattern containing the candidate; the isotropy
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FIGURE 7.1.. A candidate rotational symmetry in a magnetic speckle pattern from
a cobalt-palladium thin film. (a) shows the speckle pattern with the coordinates
and length scales marked; points labeled 1 and 2 have the same |q| but a relative
angle ∆ separates them. (b) shows the angular correlation within the dashed bands
of (a). (c) shows two cross-sections through (b) at the arrows labeled A and B. A
cuts through the symmetry candidate and B outside the ordered lengthscale.

of the domain labyrinth scatters x-rays to all azimuths θ, and the dominance of

a single characteristic length-scale within the labyrinth means that the lineshape

in |q| peaks at some non-zero value. Here, we find the maximum scattering

intensity at approximately 2.5 × 10−2nm−1, corresponding to a feature size of

2π/|q| ≈ 250nm. To search the pattern for hidden rotational symmetries, we adopt

the angular cross-correlation defined by Wochner [152]:

C(|q|,∆) =
〈I(|q|, θ)I(|q|, θ +∆)〉θ − 〈I(|q|, θ)〉2θ

〈I(|q|, θ)〉2θ
(Equation 7.1.)

Equation 7.1. describes the degree of correlation between the original speckle

pattern and the same pattern rotated about the center by some angle ∆. This

correlator maintains the structure of the familiar cartesian correlation function but

rotates rather than translates.
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Applying Equation 7.1. to the dashed region of Fig. 7.1.(a) generates

Fig. 7.1.(b). Two main features require explanation. First, we note the stripes

across |q| at ∆ = 0 and ∆ = π; these correspond to the autocorrelation peak

and the spatial inversion peak, respectively. The latter results from the strong

absorption contrast present in the magnetic sample when we tune the illumination

to the L3 resonance, which in turn makes the exiting illumination strongly real-

valued and gives the speckle pattern approximate inversion symmetry; both phase

retardation in the sample and phase structure in the incident illumination partially

break this symmetry. Second, we note the pronounced eight-fold oscillation visible

by eye at approximately 2.5 × 10−2 nm−1, near the center of the scattering ring.

While some amount of structure pervades the entirety of the correlation image, the

strength of the oscillation suggests the existence of a hidden rotational symmetry

within the nominally disordered sample. We emphasize the strength of the eight-

fold feature by plotting in Fig. 7.1.(c) a pair of cross-sections taken along the ∆

coordinate at the |q| values marked A and B in Fig. 7.1.(b). The magnitude of the

eight-fold oscillation in cross-section A dominates the residual structure present

nearby in cross-section B.

Such pronounced structure raises two basic questions. First, how do

nominally disordered magnetic domains differ from those ordered only within a

narrow annular band of reciprocal space? Second, how can we distinguish between

the sort of trivial statistical structure caused by correlating a small number of

speckles and the sort of structure in the correlation which indicates a true local

ordering mechanism at work? To illustrate the critical importance of the latter

question, we show examples of applying the angular correlation in Equation 7.1. to

simulated realistic speckle patterns generated from a real-space object composed
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FIGURE 7.2.. Finding symmetries in completely random speckle patterns. (a)
shows a partially coherent speckle pattern generated from an array of random
numbers and a circular illumination function. (b)-(j) show angular correlation
functions from speckle patterns like (a), correlated within the marked region of |q|.

of random numbers in Figure 7.2.. Fig. 7.2.(a) shows the type of speckle pattern

being correlated and the dashed lines the approximate range of |q| used in the

calculation; as we will explain later, we optimized the simulation parameters to

closely match the speckle morphology to that in Figure 7.1.(a). Fig. 7.2.(b)-(j)

show a variety of apparent angular symmetries visually similar to those identified

as the experimental candidate; however, because we design the real-space object

to lack all symmetry, we understand these symmetry signatures as a small-size

effect from the limited number of speckles being correlated at any particular |q|.

For the same reason that a string of coin flips landing as heads does not prove a

coin biased, we must therefore remain skeptical of any particular candidate speckle

symmetry and interpret it in the context of the expected correlation statistics

rather than through appeals to its appearance.

Directly imaging the structure of the domains producing this signal would

clearly provide great insight into the nature of local ordering with disorder, but our

lensless reflection imaging work demonstrates that imaging experiments can present
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serious challenges and difficulties in terms of design, execution, and data acquisition

and analysis. In circumstances where the material under investigation undergoes

subtle changes in ordering or configuration, the tremendous effort required to

achieve a single image quickly becomes prohibitive as such experiments may require

a large number of data points in order to establish statistical patterns of behavior.

In this chapter, we use the domain simulation algorithms developed perviously to

rapidly simulate the labyrinthine domain patterns characteristic of magnetic thin

films with perpendicular anisotropy, and then in turn use the simulated patterns

first to help understand how the magnetic domain configuration of an ordered

sample might differ from a wholly disordered one and next to help sufficiently

understand the statistics of the angular correlation function to judge whether the

candidate speckle pattern in Fig. 7.1.(a) shows evidence of an ordering mechanism

or mere statistical fluctuation.

7.2. Simulation of Candidate Symmetry

We now simulate the candidate symmetry using the algorithms developed

earlier. The candidate symmetry lies at the center of the scattering ring (2.5 ×

10−2nm−1), with a width on the 1024×1024 detector of approximately 10

pixels. We therefore model the radial envelope R8(|q|) similarly to that used

in Fig. 6.7.(b), but with a narrower annulus. Figure 7.3. shows the results of a

chained simulation, first converging the domain pattern from a random seed to

the disordered state then slowly increasing the strength of the symmetry order

parameter α to unity.

Although the symmetry under investigation here most resembles that

previously simulated in Fig. 6.7.(b) due to placing the modulation at the peak
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a b c
FIGURE 7.3.. Simulating the candidate rotational symmetry observed in Fig. 7.1..
(a) shows domains with α8 = 0, (b) α8 = 0.5, (c) α8 = 1.0.

of the scattering intensity, the results in Fig. 7.3.(b) and (c) are not nearly so

dramatic as in the earlier m = 4 simulation. As Fig. 6.7.(c) and (d), in which

the modulation occurred in a low-intensity region of the scattering pattern and was

consequently did not drive any significant changes to the domain configuration, in

the case of the experimental candidate symmetry the apparent symmetry region in

|q| is simply too thin to induce noticeable changes in the real-space representation.

7.3. A Realistic Scattering Model

To use simulated domain patterns as a statistical basis to judge apparent

rotational symmetries in experimental speckle patterns, we must develop a

scattering model which transforms them into simulated speckle patterns as

realistically as possible. We broadly separate the scattering model into two

domains: the accuracy of the sample transmittance function, and the accuracy
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of the illumination function. In the case of the illumination function, we find a

variety of parameters to investigate, including the size of the upstream pinhole, the

distance between the pinhole and the sample, the degree of partial coherence, and

the blocker prior to the detector which protects the detector from the intense direct

beam.

7.3.1. Sample Transmittance and Magnetic Circular Dichroism

First, we consider the transmittance of the sample. In the Born

approximation, the relationship between the field incident on the sample and the

field leaving the sample is given by:

Uout(u, v) = Uin(u, v) exp [ikt(u, v)n(u, v)] (Equation 7.2.)

where k is the usual wavevector 2π/λ, t(u, v) is the thickness of the sample, and

n(u, v) is the index of refraction. For thin film samples such as those we simulate,

the thickness remains approximately constant over the whole extent. However,

the index of refraction exhibits magnetic circular dichroism and so the index of

refraction changes as a function of the magnetization and the polarization state.

We implement the dichroic scattering formalism of Equation 2.34. in

Figure 7.4.. The domain pattern used as scattering object has |q|0 = 290 pixels and

w = 120 pixels, approximately what we find for experimental diffraction patterns.

As illumination function, we use a circle of radius 95 pixels; we slightly deform

the circle to introduce the radial intensity flares at high |q|. To set the correct

transmission function, we used a thickness t of 60nm, a wavelength of 1.93nm

corresponding to the cobalt L3 resonance, and obtained the values of δ and β from
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e f
FIGURE 7.4.. Simulation of realistic dichroic speckle patterns. (a) and (b) show
the speckle from left- and right- polarizations; (c) the sum of (a) and (b); (d) the
charge scattering alone by m(u, v) = const.; (e) the isolated magnetic speckle by
the difference of (c) and (d); (f) the Fourier modulus of the domain configuration
directly.
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the CXRO material database website [29]. The free parameter ∆ corresponds to

the degree of magnetic contrast, and after some variation we found that a value

around ∆ = 0.2 gives good qualitative agreement with experimental speckle

patterns; conceivably, we could obtain a more accurate measure of ∆ from XMCD

spectra of magnetized cobalt.

Fig. 7.4.(a) and (b) show the intensity patterns corresponding to the two

circular polarizations. In each (a) and (b), the magnetic-scattering speckles around

|q|0 and the Airy fringes from the pinhole intertwine such that the Airy fringes

appear discontinuous, and cannot be followed around all azimuths. Fig. 7.4.(c)

simulates the diffraction pattern from linearly polarized light in accordance with

Equation 2.34. by adding the patterns from (a) and (b). In (c), the Airy fringes

become continuous. Fig. 7.4.(d) shows the diffraction pattern obtained by setting

m(u, v) to a constant, simulating the effect of just the charge component of the

scattering. Fig. 7.4.(e) shows the difference of (c) and (d), clearly demonstrating

that when simulating the dichroic diffraction pattern through the optical constants

method, the charge and magnetic scattering become separable as predicted by

the scattering factor formalism and Equation 2.30.. We may therefore isolate

the magnetic scattering by subtracting a signal which contains charge scattering

only. Fig. 7.4.(f) shows the result of skipping the dichroic scattering model, which

requires a Fourier transform for both polarization, and instead directly forming

the speckle pattern by the Fourier transform of the domain pattern with parallel

and anti-parallel spins relative to the beam propagation vector set to ±1. Up

to a multiplicative scaling constant, the speckle pattern formed through the

full dichroic scattering model matches identically the speckle pattern formed by

the Fourier transform of the domain pattern. As the formation of the speckle
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pattern in Fig. 7.4.(e) requires two Fourier transforms and that in (f) only one,

we therefore model the dichroic scattering process through the Fourier transform of

the magnetization alone.

7.3.2. Optimization of the Illumination Function Parameters

With the scattering model for the sample established, we next consider the

impact of the illumination function and the degree of coherence on the appearance

and statistics of the speckle pattern. We try to optimize three variables so that

the angular correlation of a simulated speckle pattern matches the angular

correlation of the candidate symmetry in terms of the height and width of both

the autocorrelation peak at rotation coordinate ∆ = 0 and the spatial inversion

peak at ∆ = π. Assuming a perfectly circular aperture filtering the beam, we

optimize the radius of the pinhole and the separation distance between the pinhole

and the sample. Assuming an azimuthally-symmetric gaussian as the coherence

function, we optimize the width of the gaussian. Changing the several parameters

gives the following primary effects: increasing the pinhole radius decreases the

average speckle size and narrows the width of the correlation peaks; decreasing

the coherence length decreases the speckle contrast, decreasing the height of both

correlation peaks; increasing the sample-pinhole separation distance increases the

phase curvature in the illumination at the sample plane, decreasing the inversion

symmetry of the speckle pattern and decreasing the height of the correlation peak

at ∆ = π relative to that at ∆ = 0. As can be seen in Fig. 7.1., the value of the

correlation peaks can vary substantially over |q|, and for that reason we match an

average of the correlation taken over a range of |q| near the |q| of the candidate.

182



C
o
rr

e
la

ti
o
n
 v

a
lu

e

C
o
rr

e
la

ti
o
n
 v

a
lu

e

a b

FIGURE 7.5.. Optimizing the illumination function in the scattering model;
parameters to optimize include pinhole radius, pinhole distance, and coherence
length. (a) shows a portion of the angular correlation before optimization, (b) after
optimization.

Figure 7.5. shows cross-sections through the angular correlation functions

near |q|0, the length-scale of the candidate symmetry, for two points in the

illumination parameter space. In Fig. 7.5.(a), we used pinhole 3.2µmin radius, an

illumination coherence length of 5.7µm, and a the pinhole-sample separation of

3mm. Under this set of parameters, the simulated angular correlation mismatches

the experimental data at both peaks. Qualitatively, we note the peaks are too wide,

so the pinhole is too small; the peaks are too tall, so the coherence length is too

long, and the ratio of the ∆ = π peak to the ∆ = 0 peak is too high, so the pinhole

propagation distance is too short. In Fig. 7.5.(b), we show the best attained match

between the simulated and experimental correlations, with pinhole radius 4.2µm,

coherence length 4.1µm, and pinhole-sample separation distance 7mm. These values

all closely agree with known or estimated endstation and beamline parameters.

Further increasing the simulated pinhole-sample separation distance does not

improve the match of the ∆ = π peak, implying either some phase structure to

the beam incident on the upstream pinhole as a result of the beamline optics or the
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a b
FIGURE 7.6.. Comparison of real (a) and simulated (b) magnetic speckle patterns

direct Fourier transform of the magnetization does not fully capture the complex

modulation of the illumination passing through the magnetic domains. Neither

explanation would be surprising.

We directly compare the candidate speckle pattern to a realistic simulation

using the optimized illumination parameters in Figure 7.6.. Qualitatively,

the resemblance seems very good. In Figure 7.6.(b), we have not included an

approximation of the beamblock, which in future simulations we model as a

rectangular region of width approximately twenty pixels on the detector, extending

from the center to the very edge of the speckle pattern. Within the blocker region

we set the scattering intensity to zero. The blocker does not effect in a significant

way the simulation results shown in Figure 7.5..

7.4. Statistics of the Angular Correlations

With the correct simulations parameters established, we now prepare to

interpret the candidate experimental symmetry in the context of statistical
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expectations regarding the angular correlation of magnetic speckle patterns

developed from a large number of speckle patterns simulated as realistically as

possible. In contrast to highly analytical derivations of speckle statistics[6], we here

adopt a semi-empirical approach based in analysis of simulated speckle patterns.

For this judgment, we adopt relatively simple metrics. First, we will consider

the robustness of decomposing the angular correlation of the candidate at each

|q| into a cosine series, assuming that the presence of an order-forming mechanism

will lead to cosine coefficients well outside the range seen from simulations in which

we restrict the domain configuration to the disordered state. Because inspecting

components in this way supposes a symmetry of a particular order m, we will also

consider a second metric for reducing the cosine spectrum at a given |q| across

the m axis, measuring the concentration of the power of the spectrum in any m

without regard for which particular m.

7.4.1. Cosine Decomposition of Angular Correlation

Figure 7.7. illustrates the steps of the cosine decomposition process. The

simulation algorithm and scattering model described earlier generate the realistic

simulated speckle patterns displayed in Fig. 7.7.(a) and (b). The patterns in (a)

and (b) show the scattering from a disordered configuration and a configuration

ordered within the main scattering ring with order parameter α = 0.5, respectively.

In Fig. 7.7.(c) and (d), we show the angular correlation of each of the two speckle

patterns calculated by the correlation equation Equation 7.1.; the region of

correlation lies within the dashed annulus. As seen in Fig. 7.5., the scattering

model used here has difficulty exactly reproducing the spatial inversion peak of

the correlation, which may consequently distort the cosine decomposition of the
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FIGURE 7.7.. Example angular correlation and cosine decomposition of two
different speckle patterns. (a) and (b) show speckle patterns from domain
configurations without and with intentional ordering, respectively; (c) and (d)
their angular correlations; (e) and (f) the corresponding cosine decompositions of
the correlations. (g) shows the average cosine decomposition (log scale) from many
simulations. The range of cosine components m is the even numbers between two
and thirty-two.
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simulated correlations in comparison to the cosine decompositions of experimental

data. For this reason, we replace the region of the autocorrelation and spatial-

inversion peaks in the correlation with a cubic spline interpolation. Because

all cosine orders are unity at the narrow autocorrelation and spatial inversion

peaks, removing the peaks primarily corrects a DC offset in the cosine series. In

Fig. 7.7.(e) and (f), we decompose the correlations at each |q| according to the

usual cosine expansion given by

a|q|,m =
1

N

N
∑

∆=0

C(|q|,∆) cos(2πm∆/N) (Equation 7.3.)

where N is the number of pixels along the ∆ coordinate of the correlation and the

1/N prefactor keeps a|q|,m independent of N . We calculate the cosine series for

the even symmetry orders between two and thirty-two; Friedel symmetry of the

correlation function forbids odd orders. For speed, we calculate Equation 7.3. by

selecting components of the Fourier transform.

At small |q|, we see in both the correlations and their respective cosine series

the tell-tale signs of small-size fluctuations at low |q|. The small number of speckles

being correlated near the lower bound of the correlation region, marked as a dashed

annulus in Fig. 7.7.(a) and (b), leads to large oscillations in the values of the

cosine coefficients. These oscillations rapidly damp as |q| increases and with it the

number of speckles correlated. At large |q| near the edge of the array, a pronounced

four-fold symmetry appears even in the disordered domain configuration. This

unavoidable artifact results from the discrete lattice on which we conduct the

domain simulation; features of approximately one pixel in size must naturally

exhibit a four-fold symmetry. In Fig. 7.7.(f) we also see the intentional m = 8
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symmetry near the center of the scattering ring. This symmetry dominates the

spectrum of the correlation within the scattering ring.

In Fig. 7.7.(g) we show with log scaling the average cosine spectrum taken

from decomposing several thousand independent speckle patterns generated

through the same process as those shown in (a) and (b). In this plot, the small-size

fluctuations as |q| → 0 become evident in the large residual signal which remains

after the averaging of so many cosine series. As |q| increases, however, the average

cosine component rapidly tends to zero. At very high |q| we again see the lattice

artifact with a more complicated harmonic structure revealed by the averaging

process.

In judging the likelihood of a candidate symmetry, we want to know its

relationship to the a|q|,m ensemble. Next, we consider how the variation of the

various simulation parameters and consequent variation of speckle size and shape

changes the distribution of cosine component values. In the following analysis, we

examine only those components within approximately the central scattering ring,

which for the optimized experimental parameters lies between the residual small-

size signal at low |q| and the lattice artifact at high |q| shown in Fig. 7.7.(g). To

plot their occurrence, we sort the component values sort into forty equally-spaced

bins and normalize by dividing the total count in each bin by the total count of all

bins. In the following Figures we plot the histograms on both linear and log scales

to emphasize the behavior of the distribution at the peak and along the long tail.

7.4.2. Effect of Varying Pinhole Radius

First, we consider the effect of changing the size of the illumination function

in Figure 7.8.. Here, we assume a perfectly circular pinhole in direct contact
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FIGURE 7.8.. Cosine component frequency vs pinhole radius. At left, the
occurrence of all symmetry orders; at center and right, only the m = 8 and m = 22
symmetry orders, respectively.

with the sample (z = 0), in contrast to the usual scattering model. However, we

retain a realistic coherence length of 4µm. Variation of the size of the upstream

pinhole exerts a powerful effect on the distribution of the cosine coefficients.

Generally speaking, smaller apertures lead to a greater spread in coefficient values.

This relationship holds whether examining the entire ensemble of coefficients in

Fig. 7.8.(a), or the m = 8 or m = 22 components individually in Fig. 7.8.(b)

and Fig. 7.8.(c). The cause of this broadening: a smaller illumination function

illuminates fewer domains, which in turn leads to fewer and larger speckles. At any

given |q|, correlating a smaller number of speckles leads to greater fluctuation in

the angular correlation and its cosine decomposition solely due to finite-size effects.

7.4.3. Effect of Varying Pinhole Distance

Next, we consider variation of the pinhole-sample separation distance z in

Figure 7.9.. We vary this in 1mm steps between 2mm and the value found to

produce the most realistic speckle for the scattering model, 7mm. The radius of

the pinhole for these calculations was 4.2µm and the coherence length 4µm. In

comparison to the variation of the radius, variation of the separation distance
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FIGURE 7.9.. Cosine component frequency vs pinhole-sample distance. At left, the
occurrence of all symmetry orders; at center and right, only the m = 8 and m = 22
symmetry orders, respectively.

produces almost no discernible change in the coefficient distribution. The same

explanation for the major changes in coefficient distribution under variation of

the radius hold equally well for variation of the separation distance: forward

propagation of the pinhole does not significantly change the size of the speckles,

as the majority of the illumination function’s power remains in the central spot

which in this separation regime remains of approximately constant size. Instead,

both the speckle morphology and the inversion symmetry of the pattern change,

but this does not change the cosine decomposition of the angular correlation after

removing the autocorrelation and spatial inversion peaks.

7.4.4. Effect of Varying Coherence Length

We vary the final parameters of the illumination, the coherence length, in

Figure 7.10. to either side of its estimated value of 4µm. While variation of the

pinhole radius directly effects the size of the speckles, variations in the coherence

length near the size of the pinhole radius primarily change the speckle contrast, as

was seen in Fig. 7.5. when optimizing the illumination properties of the scattering

model for maximum realism. Imagining a fully coherent speckle pattern and the
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FIGURE 7.10.. Cosine component frequency vs degree of coherence as expressed
through the coherence length. At left, the occurrence of all symmetry orders; at
center and right, only the m = 8 and m = 22 symmetry orders, respectively.

incoherent goal profile used in the domain simulations, we would expect that a

decrease in coherence leads to a tightening of the coefficient distributions as the

reduced contrast gives the speckle pattern less freedom to fluctuate. Figure 7.10.

confirms this effect, showing a broadening of the coefficient distribution as we

increase the coherence length of the illumination. As under variation of the pinhole

radius, this effect does not discriminate between symmetry orders, and may be

observed as well in m = 8 (Fig. 7.10.(b)) as in m = 22 (Fig. 7.10.(c)).

7.4.5. Effect of Varying Blocker Size

Finally, we address the role of the beam block, whose wire casts a shadow

onto the detector and places spurious zeros in the speckle pattern. In the scattering

model, we model the wire of the blocker as a rectangle of zeros with a width of

some number of pixels. In Figure 7.11., we observe only minor changes to the

coefficient distribution for m = 8 and essentially no change in the m = 22

distribution, and even then only for unrealistically thick blockers (experimental

blocker size is approximately 10 pixels). For this reason, we can safely neglect this

aspect of the scattering model for any value within shouting distance of reality.
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FIGURE 7.11.. Cosine component frequency vs size of beam block. At left, the
occurrence of all symmetry orders; at center and right, only the m = 8 and m = 22
symmetry orders, respectively.

7.4.6. The Concentration Metric

In all parameter variations, the skew-symmetric distribution of the

cosine coefficients appears highly similar, but we have failed to find a common

analytic form which accurately describes the distribution to either side of the

peak. However, as the linear behavior of the distribution on the log-scale plots

demonstrate, a simple stretched exponential must describe the limiting form of

the distribution at high coefficient value. Fitting the tail of the distribution in the

case of the more sparse experimental data allows extrapolation of the distribution

so that we can judge the relative occurrence of supposed rare components, such

as experimental candidate, at a more reliable precision. Judgments based on the

statistical basis provided by simulations of the a|q|,m distributions require very close

agreement of the pinhole radius and the coherence length between the experiment

as performed and the scattering model used to generate the speckle patterns.

As Fig. 7.5. shows, however, we cannot completely match the experimental

speckle patterns with the current scattering model, and as Fig. 7.8. and Fig. 7.10.

demonstrate, small variations in the scattering model may have serious effects
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on evaluating the likelihood of rare candidates which fall far on the tail of the

component value distribution. For this reason, we next examine a more robust

metric which measures the degree to which the power of the cosine decomposition

concentrates in a few components:

C (|q|) =
(

M
∑

m=0

a2|q|,m

)

/

(

M
∑

m=0

a|q|,m

)2

(Equation 7.4.)

Equation 7.4., which evaluates to between 1/M and unity, achieves its maximum

value when only one of the M components in the decomposition has a non-zero

value, and its minimum value when all the components in the decomposition have

the same value.

7.4.7. Invariance of Concentration to Illumination Parameters

We apply Equation 7.4. to the same spectra whose cosine components we

plotted earlier to investigate the effect of the same parameter variations on this

concentration metric, and show the results in Fig. 7.12.. In Fig. 7.12.(a), we show

the distribution of concentration values under variation of the pinhole radius;

in Fig. 7.12.(b) we vary the propagation distance z; in Fig. 7.12.(c) we vary the

coherence length of the illumination; and in Fig. 7.12.(d) we vary the width of the

blocker where it passes through the scattering ring. The values of the parameters

other than that being varied remain unchanged from earlier. In contrast to the

variability seen in the cosine component distribution under variation of the pinhole

radius and the coherence length of the illumination, the concentration metric

exhibits essentially no dispersion under variation of any of the scattering model

parameters. As in the histograms of the cosine components, the limiting behavior
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FIGURE 7.12.. Relative occurrence histograms for the concentration metric.
Parameter varied: (a) pinhole radius; (b) pinhole distance; (c) coherence length;
(d) blocker size.
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FIGURE 7.13.. Relative occurrence histograms for the concentration metric under
variation of the ordering strength α.

of the distribution as the concentration value increases becomes a stretched

exponential as seen by the linear behavior of the log-scaled series. At the extreme

right-hand side of the log-scaled series we see some Poisson noise caused by the

finite number of simulated speckle patterns.

From such distributions we may easily calculate the relative occurrence

probability of a candidate at some |q| through the value of its concentration C (|q|).

7.4.7.1. Effect of Varying Ordering Parameter

In Figure 7.13. we show the effect of varying the ordering parameter α,

originally defined in Equation 6.18.. For extremely weak ordering (α = 0.2), we

notice essentially no variation in the concentration metric. At α = 0.4, we begin to

see a distinct rightward shift and broadening of the distribution, and at α = 0.6 we

would consider the modal value of the concentration rather unlikely in the isotropic
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FIGURE 7.14.. Statistical evaluation of candidate symmetry. Simulated
concentration data (grey) and experimental concentration data (black) taken from
within the central scattering ring. Experimental data comes from the ensemble of
speckle patterns collected contemporaneously with the candidate in Fig. 7.1..

α = 0 case. Nevertheless, even using this designed metric, sensitivity to rotational

symmetries seems rather low due to the natural fluctuation of speckle patterns.

7.4.8. Evaluation of Experimental Candidate

We now evaluate the experimental candidate in terms of the component

concentration of Equation 7.4.. Contemporaneously with the speckle pattern

presented as experimental candidate, we recorded twenty-six additional speckle

patterns in an attempt to do a ptychographic image reconstruction of the domain

pattern. This data set allows us to compare the distribution of experimental

speckle concentrations to the simulated basis. We show a plot of the concentration

from both the experimental and simulated speckle patterns in Figure 7.14.; we
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plot only the concentration from the center portion of the ring, with |q|min =

2.07× 10−2nm−1 and |q|max = 3.26× 10−2nm−1.

The experimental and simulated concentrations match extremely well.

In comparison to the data shown earlier, for the precise comparison with the

experimental data we calculated the concentration after decomposing the speckle

pattern into all even cosine orders between two and one-hundred eighty, the

Nyquist limit. This lowers the concentration relative to that seen in Fig. 7.12. Both

the simulated and experimental data peak at C ≈ 0.03 and undergo a stretched-

exponential decline with increasing concentration. The misalignment of the

experimental and simulated concentrations at large C finds an easier interpretation:

Poisson noise. With only a few thousand pixels in the experimental dataset,

extreme small-size fluctuations will afflict concentrations which the simulated basis

places at an expected occurrence of one in one thousand or less. The two dashed

vertical lines show the relative occurrence value on the log-scale we expect to see

from a single pixel and from ten pixels in the experimental concentration data.

Between these two lines, we treat the occurrence value as quite imprecise.

In evaluating the experimental candidate, we consider both the mean and

maximum value within the |q| range of the candidate. We plot these values as

the vertical lines in Fig. 7.14.. Neither measure of the concentration, mean or

max, finds the candidate statistically remarkable. While both measures place the

candidate among the most spectrally-concentrated pixels in the data, all ordered

lists must have elements at the top and this merely confirms earlier suspicions

based on visual judgment alone. Indeed, both measures evaluate the candidate

symmetry at approximately the occurrence rate at which we expect to find a

handful of pixels in a data set the size of that collected.
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For several reasons, we therefore conclude that the preponderance of evidence

supports the interpretation that the candidate symmetry shown in Fig. 7.1. does

not reflect an ordering mechanism, but rather a “lucky” alignment of speckles

expected within the statistics of the angular correlation. First, as shown above,

the average concentration within the candidate symmetry certainly evaluates

higher than the modal concentration value in either the simulated or experimental

dataset, but not profoundly so. Second, the width of the candidate correlation

closely matches the average size of a single speckle; the likelihood of a lucky

speckle alignment drops considerably when speckles must align in |q| as well as ∆.

Finally, the presence of symmetries in speckle patterns generated from pure random

numbers, as in Fig. 7.2., highlights the ease with which we may by chance find

deceptive angular symmetries; these noise-based symmetries also shown a width

of approximately a single speckle.

7.5. Symmetry Microscope in Two Dimensions

By performing the same sort of analysis in as a function of position on the

sample, we construct a sort of “symmetry microscope” specifically sensitive to

otherwise hidden rotational ordering. We show the basic sequence of operations

for such a microscope in the top half of Figure 7.15.. First, we collect a sequence

of coherent speckle patterns by rastering the illumination across the sample in a

position-resolved fashion. At each location, we collect a unique speckle pattern.

We then perform the rotational autocorrelation of Equation 7.1., decompose the

correlation into a cosine spectrum with Equation 7.3., and reduce the correlation

along each resolvable |q| to the concentration given in Equation 7.4.. As Equation

7.4. reduces the spectrum along only the m axis, we require a further reduction
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along the |q| axis to reduce the entire speckle pattern to a single number which

describes the amount of rotational structure present in the speckle pattern. With

this single metric in place, we plot its value vs the raster motor positions at

which we took each speckle pattern. In this way, we plot the degree of rotational

symmetry present across the sample. For a hypothetical sample in which the

ordering signals such as that seen in Figure 7.1. indicate an ordering mechanism

at work, the map of the reduced concentration vs the probe position allows us to

find the ordered region.

In the bottom half of Figure 7.15. we show results from a large-scale two-

dimensional simulation in which we embed two ordered regions inside an otherwise

disordered sea of magnetic domains, then run the symmetry microscope as

described above. The scattering lineshape from the disordered domains matches

that seen in the experimental data, and the simulated illumination uses the optimal

parameters found earlier. The thermometer-shaped ordered region in the lower

left of the sample expresses symmetry m = 8, while the annular region in the

upper right of the sample expresses m = 4; the ordering signal had center and

width approximately that seen in the experimental candidate. We performed

several instances of the domain generator to vary the order parameter α between

zero and unity. The simulated domains are of size 2048 × 2048 pixels, and each

simulated speckle pattern was calculated after displacing the illumination function

by 16 pixels for a total of 16384 speckle patterns. After decomposing each speckle

pattern, we calculated the concentration C (|q|) within the main scattering ring,

|q|0 − w/2 < |q| < |q|0 + w/2.
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FIGURE 7.15.. Mode of operation for a hypothetical “symmetry microscope”. By
running the rotational analysis on a set of position-resolved scattering patterns,
we build a symmetry microscope. Top: basic scan procedure collects, correlates,
and decomposes at each scan location. Bottom: Position-resolved simulation of
concentration using three different reductions of C (|q|).
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We tried three different ways of reducing C along the |q| axis to generate a

single figure of merit C .

1. Arithmetic mean: C =
1

N

|q|max
∑

|q|min

C (|q|)

2. Maximum value: C = max {C (|q|min) : C (|q|max)}

3. Central value: C = C (|q|0)

Of these three methods, the mean performs the worst at all values of α,

as the size of the calculation region dominates that of the supplied symmetry

and the arithmetic mean gets dragged down by low values of C . However, in

analyzing experimental data, we could not presuppose the location and width of

the symmetry. Examining just the center concentration C (|q|0) and the maximum

value max{C (|q|0−w/2 < |q| < |q|0+w/2)} within the calculation region shows no

great deviation. The reason for this is straightforward: in the simulated sample,

the value of the concentration at center will by design nearly match maximum

value seen anywhere in the analysis. However, this represents a näıve idealization

of possible experimental data. In reality, we would probably expect a sample with

hidden rotational symmetry to exhibit some dispersion in the length-scale |q| of

the ordering signature, and in this case plotting the concentration from a single

presumed length scale would risk missing the signal. For these reasons plotting the

maximum value within the calculation region seems the most robust reduction of

C along |q|. Additionally, the concentration metric makes no distinction between

m, and so both the m = 4 and m = 8 regions show equally with no additional

specification in the analysis.
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In contrast to evaluating a single experimental candidate with respect to a

statistical basis, a position-resolved measurement achieves a significant advantage in

terms of interpretation: if a speckle pattern taken from an ordered region shows

little ordering signal due to fluctuations, its neighbors will likely regress to the

mean and keep the region visible. We can see this effect most strongly in comparing

the α = 0.4 images in Fig. 7.15. to the distribution of concentrations for α = 0.4

in Fig. 7.13.. When evaluating a single image at this value of the order parameter,

we must constantly remain aware that the distribution of concentrations remains

similar to the isotropic case of α = 0; in a position-resolved scan, however,

we observe the ordered region quite distinctly due to the aggregating effect of

neighboring sites.

Close examination of all three maps in the α = 0.2 case also holds an

important lesson. In plotting just C as a function of position, we create a blotchy

image in which illusory islands of ordering may appear. Without the anchor of a

statistical expectation for what an ordering signal may look like, the aggregated

fluctuations of the disordered sample present a misleading signal analogous to that

seen in the correlations of speckle patterns from random numbers in Fig. 7.2.. The

same effect would appear if plotting only a single symmetry component. In this

sense, we can strictly ascribe a designation of “more ordered” to portions of the

domain pattern which generate the higher correlation concentration, but only in the

same way that a fair coin may generate a string of several heads or tails in a row.

In any case, implementing a symmetry microscope on a real sample may be a

daunting task. If implemented as a purely scattering experiment, the collection of

thousands of speckle patterns with good counts and well-subtracted backgrounds

would constitute an enormous undertaking. If implemented by in a manner
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analogous to the simulation here, in which we transform sections of a high-fidelity

real-space image into speckle patterns, such an analysis would require a real-space

image with large field of view and high fidelity. However, most real-space imaging

techniques, such as the MFM in Figure 6.1.(a), capable of resolving small features

are poorly suited to the task of imaging a large area. It seems likely that the best

hope for this sort of microscope is a restricted one-dimensional scan with fine steps

in the illumination between collected speckle patterns, or to use ptychographic

techniques to first image the domains with relatively sparse illumination, then do

the fine analysis from the reconstructed image. For an example of ptychography

applied to magnetic domains, see Tripathi [153].
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CHAPTER VIII

SUMMARY AND OUTLOOK

In this dissertation, we have discussed three experiments dedicated to

advancing coherent techniques both at present light sources as well as future high-

brightness, high-coherence light sources. Each of the three experiments functions

as a novel form of microscopy, exploiting the one-to-one correspondence between

a scatterer of coherent illumination and the far-field intensity pattern to perform

a type of lensless imaging or look for hidden symmetries revealed by the Fourier

transform.

In Chapter IV, we designed, built and tested a novel lensless microscope

specifically geared towards coherent imaging in reflection geometry. An effective

coherent imaging technique suitable for reflection and Bragg geometry opens

the door to applying three decades of development in iterative algorithms to the

vast range of samples in condensed matter physics whose behavior is still poorly

understood.

Additionally, our numerical modeling work in determining the resolvability

of features in the final recovered image shows we fully understand the trade-

offs involved in this imaging geometry. The rather unimpressive resolution

demonstrated in the proof-of-principle experiment here can be primarily attributed

to the limited coherence of the present light source and the desire to initially

pursue an explicitly holographic imaging strategy. However, future developments

promise great improvement in the resolution achievable in this geometry. First,

the ever-improving coherence at present light sources due to accelerator upgrades

and the promise of fully-coherent future light sources will allow much larger object
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apertures to be used in the experiment; as our modeling demonstrates that the

resolution increases linearly with the radius of the object aperture, we expect

improved resolution from coherence considerations along. Second, the efficacy of

the holographic aperture arrangement in conjunction with the iterative phasing

algorithms shows the holographic separability condition to be unnecessary; future

work may use a larger object aperture which violates holographic separability

to achieve higher resolution. Third, in the time since our initial work on the

experiment, we have dramatically improved our skills in positioning the apertures

close to the surface of the sample, which also improves the resolution of the final

image; it may also be possible in future work to engineer a special puck which

allows the height of the sample to be precisely adjusted, allowing arbitrarily close

alignment of the sample surface and apertures without tedious manual mounting

and remounting of the sample.

One critical requirement in applying this imaging technique to more

interesting physical samples is improving our understanding of the focusing metric

during back propagation. For the test pattern, the acutance metric we used to

determine when we had found the sample plane succeeded in large part due to

the large amount of derivative content in the sample owing to its binary nature.

Samples of real physical interest will certainly contain less derivative content

and focusing will correspondingly be more difficult unless an alternative metric is

developed.

In Chapter V, we demonstrated a novel use of holographic techniques

to image the coherence factor of the synchrotron x-ray beam, adjusting the

magnitude of the object-reference cross-correlations in order to recover the

coherence factor embedded in the curvature of the autocorrelation intensity as
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predicted by rigorous theories of partial coherence. In doing numerical modeling

of the experiment prior to its physical realization, we did not understand the

extent to which the direct beam would pass through even nearly a micron of

gold and disrupt the measurement with spurious signal at the center of the

diffraction pattern. To improve the measurement, we have shown additional

extensive modeling of modified apertures which allow the spurious beam signal to

be measured independently of the coherence signal. However, an honest evaluation

of this technique shows that while it may be pedagogically interesting to use

holographic ideas to encode the coherence factor into an autocorrelation pattern,

coded aperture techniques are more efficient and better suited to performing the

measurement quickly and with precision.

More intense future development of this technique may be warranted if the

nanofabrication of efficient coded aperture designs proves too difficult, or if further

development of analysis strategies shows it is possible to use this sort of holography

mask to image a sample as in Chapter IV while simultaneously measuring the

coherence of the illumination.

In Chapter VI and Chapter VII, we showed how the speckle pattern obtained

by coherent scattering from a specific part of a sample could be analyzed for hidden

rotational symmetries, and proposed coupling this measurement with position-

resolution to form a symmetry microscope specifically sensitive to ordering invisible

to other techniques. To perform the judgment, we modified the iterative phasing

algorithms used to invert speckle patterns to instead accept as a Fourier constraint

an incoherent scattering lineshape. This new algorithm allows the generation of

a nearly unlimited number of different configurations which display the same

scattering statistics. Using the statistical basis provided by a large number of
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speckle patterns, we examined the statistics of the two-point angular correlation

function introduced by Wochner. We then used those statistics to interpret an

experimental speckle pattern taken from a magnetic thin film which displayed

a potential “hidden” rotational symmetry. Based on several factors, including

that statistical basis and highly similar candidate symmetries in speckle patterns

generated from random numbers, we concluded that the experimental candidate

reflected a rare but not statistically unexpected fluctuation in the speckle pattern.

We concluded by showing that operating the measurement as a form of microscopy

by evaluating speckle patterns in position-resolved fashion could more robustly

identify regions of otherwise hidden rotational ordering in domain patterns.

The outlook for this technique depends on both technological as well as

fundamental factors. Technologically, to build a true symmetry microscope we

must be able to quickly image a large area of a sample in order to scan for regions

with high hidden symmetry. The most promising technique for this capability

is ptychography, which reconstructs an extended real-space image from speckle

patterns with overlapping illuminations. Beamline 12.0.2 is ill-equipped to

implement this technique due to low brightness and slow detector readout time;

future beamlines and light sources will be much brighter, and much faster detectors

are now available. Additionally, the choice of magnetic domains instead of the

similar patterns in other systems makes recording speckle patterns very time-

consuming due to the low efficiency of magnetic scattering even at resonance.

The most important factor for a symmetry microscope is the degree to which

hypothetical ordering mechanisms in samples such as magnetic thin-films actually

do create rotational symmetries only within narrow ranges of wavevectors. In cases

where a rotational symmetry extends across all reciprocal space magnitudes, the
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real-space image becomes identifiably ordered without resort to Fourier techniques,

and in cases where the symmetry is localized, our simulations show the differences

in the real-space image to be nearly invisible. For this reason, whether the signal

this technique is designed to find actually exists or not is still an unanswered

question. However, work published from our group did indicate a marked change

in the angular correlation statistics in an exchange-biased magnetic thin-film when

cooled below the blocking temperature.
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APPENDIX

DERIVATION OF OPTICAL AND SYNCHROTRON FORMULAE

A.1. Derivation of the Kirchoff Diffraction Formula

From Maxwell’s Equations it is a straightforward exercise to derive the scalar

wave equation an optical disturbance U(x, y, t) must obey:

∇2U − n2

c2
∂2U

∂t2
= 0 (Equation A.1.)

If we limit the form of U(x, y, t) to the monochromatic wave U(x, y, t) = U(x, y)eiωt,

then Equation A.1. assumes the familiar form of the Helmhotz equation:

∇2U − n2ω2

c2
U = 0

(

∇2 + k2
)

U = 0 (Equation A.2.)

Because we need to derive the relationship between the wavefield at an

aperture and wavefield at some observation plane, the task at hand now becomes

using the bare bones of the Helmholtz equation to describe the relationship of

the wave at some point of observation P0 to the value of the electric field over

some arbitrary surface S enclosing volume V . The two quantities are illustrated in

Figure A.1.(a). This derivation requires the additional mathematical tool of Green’s

theorem, which states that if U(P ) and G(P ) are two complex-valued functions of

position and if U(P ), G(P ), and their first and second partial derivatives are all
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FIGURE A.1.. Geometries used in the derivation of the Kirchoff diffraction
formula. (a) shows the surfaces and volume in Green’s Theorem, (b) transmission
through an opaque screen, and (c) the geometry of the alternative Green’s
functions Equation A.10. and Equation A.11..

continuous within and on S, then the following relationship holds:

∫∫∫

V

(U∇2G−G∇2U)ds =

∫∫

S

(

U
∂G

∂n
−G

∂U

∂n

)

ds (Equation A.3.)

Here, the variable of differentation n refers explicitly to the “outward” direction

from the surface.

To apply Equation A.3. to the diffraction problem, we must ensure no

discontinuity in U or whatever function we choose for G at P0, and to this end

we carve out a small bubble around P0 of radius ǫ; we will later take the limit of

ǫ→ 0. This creates a second surface of integration Sǫ. Following Kirchoff, we use as

the initial function of G an expanding spherical wave centered about P0:

G(P1) = exp (ikr01) /r01 (Equation A.4.)
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Here, P1 is some test point within V and r01 is the distance between P0 and P1.

Equation A.4. also has the virtue of satisfying the Helmholtz equation and as U

satisfies it by definition, Equation A.3. becomes

∫∫

S

(

U
∂G

∂n
−G

∂U

∂n

)

= −
∫∫

Sǫ

(

U
∂G

∂n
−G

∂U

∂n

)

(Equation A.5.)

We now take the limit of ǫ → 0. In this limit, the conditions of validity for

Equation A.3. require that U → U(P0) and
∂U
∂n

→ 0. Additionally, we evaluate the

partial derivative ∂G
∂n

on the surface Sǫ as

∂G(P1)

∂n

∣

∣

∣

∣

P1∈Sǫ

=
exp(ikǫ)

ǫ

(

1

ǫ
− ik

)

(Equation A.6.)

Equation A.6. includes a hidden minus sign which must be included to account for

the antiparallel nature of n̂ and r01 at all points on Sǫ. With these three limiting

behaviors in hand, we calculate the limit of the integral:

lim
ǫ→0

∫∫

Sǫ

(

U
∂G

∂n
−G

∂U

∂n

)

= lim
ǫ→0

4πǫ2
[

U(P0)
exp(ikǫ)

ǫ

(

1

ǫ
− ik

)]

= 4πU(P0)

So the wave at P0 is given by the boundary conditions on S:

U(P0) =
1

4π

∫∫

S

(

G
∂U

∂n
− U

∂G

∂n

)

(Equation A.7.)

Now we consider the field propagating forward from some aperture in

an opaque screen, which we illustrate in Figure A.1.(b). Here, we divide the
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surface S into two sections S1 and S2; S1 lies parallel to the screen, while S2

becomes approximately hemispherical as R increases. On the surface S2, G(P1) =

exp(ikR)/R, and as R becomes very large, the normal derivative becomes ∂G/∂n =
(

ik − 1
R

)

eikR/R ≈ ikG. Therefore, the integral over surface S2 becomes:

∫∫

S2

G

(

∂U

∂n
− ikUG

)

ds =

∫∫

S2

G

(

∂U

∂n
− ikU

)

R2 dΩ (Equation A.8.)

where Ω is the solid angle of subtended by S2. Because the magnitude |RG| is

always unity, the integral above will tend towards zero under the condition that

lim
R→∞

R

(

∂U

∂n
− ikU

)

→ 0 (Equation A.9.)

This is simply a fancy way of saying that U must vanish at least as fast as an

expanding spherical wave, and therefore all waves in the problem are outgoing.

Consequently, we must evaluate the integral only over S1.

To derive the diffraction formula, Kirchoff assumed that both the function

U and its derivative ∂U/∂n vanished at the opaque screen. However, this requires

that the wave be zero everywhere behind the screen in contradiction of the physical

reality of the optical disturbance we are describing. Sommerfeld removed this

contradiction by choosing two alternative Green’s functions G− and G+ which

maintain Equation A.7.. In addition, either G or ∂G/∂n vanishes at S1, freeing

U from non-physicality.

G−(P1) =
exp(ikr01)

r01
− exp(ikr12)

r12
(Equation A.10.)

G+(P1) =
exp(ikr01)

r01
+

exp(ikr12)

r12
(Equation A.11.)
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We show quantities described by G− and G+ in Fig. A.1.(c). G− describes two

source points P0 and P2 for G, equidistant from P1 on each side of the screen; the

sources emit out of phase. G+ has the same arrangement with the sources emitting

in phase.

We only consider G−. Clearly, at any P1 along the aperture G− vanishes, and

therefore the diffraction integral Equation A.7. becomes

U−(P0) =
−1

4π

∫∫

aperture

U
∂G−

∂n
ds (Equation A.12.)

The derivative ∂G−/∂n evaluates similarly to that of Kirchoff’s G. First, we note

that on surface S1 and for the propagation distances we are considering at x-ray

wavelengths:

r01 =r12

cos(~n, ~r01) =− cos(~n, ~r12)

r01 ≫λ

With these considerations stated, we calculate the derivative:

∂G−

∂n
(P1) = cos(~n, ~r01)

(

ik − 1

r01

)

exp (ikr01)

r01
− cos(~n, ~r12)

(

ik − 1

r12

)

exp (ikr12)

r12

=2 cos(~n, ~r01)

(

ik − 1

r01

)

exp(ikr01)

r01

≈ 2ik cos(~n, ~r01)
exp(ikr01)

r01
(Equation A.13.)
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Substituting Equation A.13. into Equation A.12. generates the diffraction integral

we expect from a qualitative understanding of wave phenomena:

U(P0) =
1

iλ

∫∫

aperture

U(P1)
exp(ikr01)

r01
cos(~n, ~r01) ds (Equation A.14.)

Equation A.14. expresses the Huygens-Fresnel principle by stating that the

disturbance at point P0 may be expressed by treating each point P1 in the aperture

as the source of an expanding spherical wave which then adds in superposition at

P0. In fact, up to the cosine term, we could write down Equation A.14. directly

from the Huygens-Fresnel principle. That cosine term, which Goodman calls

“a relatively simple mathematical construct that allows us to solve diffraction

problems without paying attention to the physical details of exactly what is

happening at the edge of the aperture,” is sometimes referred to as the obliquity

factor, and changes somewhat depending on the choice of G. Different choices of

G and thereby different obliquity factors lead to nearly identical results in the far

field but may show small differences very close to the aperture [13], ultimately due

to differences in the treatment of the complicated fringing fields near the rim of the

aperture.

A.2. Derivation of Schell’s Theorem

In this section we fully present the derivation of Schell’s Theorem, Equation

2.27.. In the far field, Equation 2.24. gives the mutual intensity between two points

J12, from which we may obtain the usual intensity by setting points one and two

equal. Substituting two instances of Equation 2.2. into Equation 2.24. (one for

each point in the source plane) gives a four-dimensional integral as each of the two
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points in the time average has two coordinates:

I(x, y) =

〈

1

(λz)2

∫∫

aperture

P (u1, v1)U(u1, v1) exp(−ikr1) du1 dv1

∫∫

aperture

P ∗(u2, v2)U
∗(u2, v2) exp(ikr2) du2 dv2

〉

=
1

(λz)2

∫∫∫∫

aperture

P (u1, v1)P
∗(u2, v2)J(u1, v1; u2, v2)

exp (−ik(r2 − r1)) du1 dv1 du2 dv2 (Equation A.15.)

We now introduce the following change of variables:

∆u = u2 − u1, ū =
u1 + u2

2

∆v = v2 − v1, v̄ =
v1 + v2

2

which facilitates the simplifying assumption

J(u1, v1; u2, v2) = I0µ(∆u,∆v) (Equation A.16.)

By assuming that the degree of coherence depends only on the difference in

position of the two points, we assert that the degree of coherence has the same

statistical properties everywhere on the wavefront. For example, in a double

pinhole experiment with totally uniform illumination, under this assumption any

positioning of the pinhole pair would satisfy the uniform illumination requirement

and the fringe visibility would be unaffected by pinhole position because only

pinhole separation matters. In practice, intensity variations make this assumption

difficult to test.
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We simplify the exponential in Equation A.15. by making the same

approximations as in deriving the Fraunhofer approximation from the Kirchoff

integral, only with more variables:

ri =
√

(ui − x)2 + (vi − y)2 + z2

= z
√

1 + ((ui − x)2 + (vi − y)2) /z2

≈ z
[

1 + (u2i + v2i + x2 + y2 − 2uix− 2viy)/2z
]

r2 − r1 ≈
[

(u22 + v22)− (u21 + v21) + 2x(u1 − u2) + 2y(v1 − v2)
]

/(2z)

= [ū∆u+ v̄∆v − x∆u− y∆v] /z

Putting these simplifications back into Equation A.15. gives:

I(x, y) =
I0

(λz)2

∫∫∫∫

P

(

ū− ∆u

2
, v̄ − ∆v

2

)

P ∗

(

ū+
∆u

2
, v̄ +

∆v

2

)

× µ(∆u,∆v) exp

[−2πi

λz
(ū∆u+ v̄∆v)

]

× exp

[

2πi

λz
(x∆u+ y∆v)

]

dū dv̄ d∆u d∆v

While still a four-dimensional mess, the exponentials begin to look familiar. We

again drop first exponential factor as its argument tends toward zero:

I(x, y) =
I0

(λz)2

∫∫∫∫

P

(

ū− ∆u

2
, v̄ − ∆v

2

)

P ∗

(

ū+
∆u

2
, v̄ +

∆v

2

)

× µ(∆u,∆v) exp

[

2πi

λz
(x∆u+ y∆v)

]

dū dv̄ d∆u d∆v

The final step of the derivation of the far field intensity given an aperture and a

degree of coherence in the source plane is to recognize the integral over coordinates

ū and v̄ as the autocorrelation of the field exiting the aperture, albeit in a slightly
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non-standard form:

I(x, y) =
I0

(λz)2

∫∫ [∫∫

P

(

ū− ∆u

2
, v̄ − ∆v

2

)

P ∗

(

ū+
∆u

2
, v̄ +

∆v

2

)

dū dv̄

]

× µ(∆u,∆v) exp

[

2πi

λz
(x∆u+ y∆v)

]

d∆u d∆v

=
I0

(λz)2

∫∫

P(∆u,∆v)µ(∆u,∆v) exp

[

2πi

λz
(x∆u+ y∆v)

]

d∆u d∆v

∝ F {P(∆u,∆v)× µ(∆u,∆v) } (Equation A.17.)

Equation A.17. for the intensity in the far field is just the Fourier transform of

the product of the autocorrelation of the wavefront passing through the aperture

and the complex coherence factor. In the limiting case of µ(∆u,∆v) = 1 which

describes full coherence, we recover the expected result that the fully coherent

far field intensity pattern is the Fourier transform of the autocorrelation of the

wavefield leaving the aperture. Rewriting Equation A.17. with the convolution

theorem gives

Ipc(x, y) = Ifc(x, y) ∗ F{µ(∆u,∆v)}

= |F{P (u, v)}|2 ∗ F{µ(∆u,∆v)}

= F
{

F
−1 {|F{P (u, v)}|2} × µ(∆u,∆v)

}

(Equation A.18.)

where Ipc(x, y) is the partially coherent intensity, Ifc(x, y) is the intensity

pattern which would be formed under fully coherent illumination, and ∗ denotes

convolution. Equation A.18., referred to as Schell’s Theorem, provides a powerful

approach to calculating partially coherent diffraction patterns, simplifying the full

four dimensional integral in Equation A.15. into a set of three Fourier transforms,

all calculable by FFT. A slight rearrangement of Equation A.18. solves for the
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coherence factor:

µ(∆u,∆v) =
F−1 {Ipc(x, y)}

P(∆u,∆v)
(Equation A.19.)

Equation A.19. shows that an experimental measurement of the partially coherent

diffraction pattern can combine with sufficiently good a priori knowledge of the

aperture to directly measure the coherence function.

A.3. Undulator Radiation

In this section we will discuss the generation of undulator radiation and the

several of its properties most applicable to the coherent scattering experiments

presented in this dissertation. The main source for this discussion is Attwood [12];

an advanced and generally incomprehensible discussion of synchrotron radiation

more broadly can be found in Jackson [154].

A.3.1. Undulator Fundamental Frequency and Harmonics

At beamline 12.0.2, an undulator source produces the x-rays for the

experiments. The undulator consists of a periodic series of permanent magnets

through which deflect a relativistic beam of electrons. As the electrons traverse

the undulator, the magnetic field causes them to undulate transverse to their

direction of motion and emit radiation. In Figure A.2. we show a cartoon of a basic

undulator design and the coordinate system used in the derivation of the undulator

equation. We construct a simple model of the magnetic field inside the undulator as

By(z) = B0 cos

(

2πz

λu

)

(Equation A.20.)
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e- beam

θcen

λ z

y

x

λu

FIGURE A.2.. A basic schematic of undulator design. Incoming relativistic
electrons undulate due to the force exerted by a periodic magnetic structure, and
radiate in return. Relativistic effects compress the radiation into x-ray wavelengths.

where λu is the wavelength of the undulator.

The Lorentz force equation gives the usual expression for the force on the

electrons:

dp

dt
= q (E+ v ×B) (Equation A.21.)

Due to relatively short length of the undulator device, we may ignore the effect of

the electric field; for longer undulator devices, retention of the electric field leads to

the free-electron laser [155, 156]. Additionally, if we assume to first order that the

only component of the velocity is vz, then the only term of the cross product is the

x component −vzBy. Equation A.21. then becomes:

mγ
dvx
dt

= evzBy

dvx
dt

=
e

mγ

dz

dt
B0 cos

(

2πz

λu

)

vx =
Kc

γ
sin

(

2πz

λu

)

(Equation A.22.)
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In Equation A.22. we have collected various constants into the so-called deflection

parameter K, which represents the strength of the magnetic field in the undulator.

We use the usual definition of γ to transform Equation A.22. into an expression for

vz:

γ = 1/
√

1− (v2x + v2z)/c
2

v2z
c2

= 1− 1

γ2
− v2x
c2

= 1− 1

γ2
− K2

γ2
sin2

(

2πz

λu

)

vz
c

=

√

1− 1

γ2
− K2

γ2
sin2

(

2πz

λu

)

≈ 1− 1

2γ2
− K2

4γ2

[

1− cos

(

2πz

λu

)]

(Equation A.23.)

In the last step, we have assumed that K/γ is small enough for the binomial

expansion of the square root to first order, and we have used a trigonometric

identity for sin2.

So vz is a function of z as the magnetic field shifts momentum between vx

and vz but conserves energy. The relation between vz and z through the cosine

necessarily results in a series of harmonics for the emitted radiation, which is

beyond the scope of this treatment. Instead, we focus on the fundamental by

dropping the cos term, which is equivalent to the earlier assumption that vx ≈ 0
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or the assumption that the average axial velocity 〈vz〉 suffices to first-order:

〈vz〉
c

≈ 1− 2 +K2

4γ2

= 1− 1

2γ2K

γK = γ/
√

1 +K2/2

So when we consider the average axial velocity rather than the instantaneous

velocity we must modulate γ by a factor which describes how much velocity is

actually dispersed into the transverse component of the motion.

We now consider the wavelength of light emitted by the undulating charges.

By the usual contraction factor, the periodicity of the undulator according to the

electrons is λe = λu/γK , where we are using the γK defined immediately above,

and the frequency is fe = cγK/λu. According to the relativistic Doppler effect, the

frequency fe emitted by electrons within the moving frame of reference is observed

in the laboratory frame of reference as

f =
fe

γK(1− β cos θ)
(Equation A.24.)

where θ is the angle between the direction of travel and the observer. In considering

undulator radiation, we assume the angle θ to be small, and approximate cos θ ≈

1− θ2/2. Consequently, the observed fundamental wavelength λ0 = c/f is given by

λ0 = λu
(

1− β + βθ2/2
)

(Equation A.25.)
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As β → 1, we approximate 1− β ≈ 1/2γ2K , and the observed emitted wavelength is

λ0 =
λu
2γ2K

(

1 + γ2Kθ
2
)

=
λu
2γ2

(

1 +
K2

2
+ γ2θ2

)

(Equation A.26.)

Therefore, we see that an undulator may be constructed to generate x-ray

wavelengths even with a period of several centimeters due to the relativistic

contraction of the period by a factor γ2, which is set by the energy of the storage

ring. However, as the observation angle increases, so does the fundamental

wavelength; for this reason, we use only the on-axis radiation.

In treatments of undulator radiation which do not neglect the cosine term

in Equation A.23., the resulting solution to the differential equation requires

harmonics of the form

λn =
λ0
n

(Equation A.27.)

Only odd harmonics (n = 1, 3, 5...) appear in the forward direction. The

direction of emission of even harmonics is not parallel to the propagation axis of

the electron beam.

A.3.2. Spatial Distribution of Undulator Radiation

Within the electron beam’s frame of reference, the transverse motion caused

by motion within the periodic magnetic field appears as standard dipole radiation,

whose radiated power P per unit solid angle Ω is given by the well-known formula

[154]:

dP

dΩ
=
e2a2 sin2 Θ

16π2ǫ0c3
(Equation A.28.)

222



where a is the acceleration (here along the laboratory x direction) and Θ is the

angle between a and the direction of radiation propagation.

The relativistic transformation between an angle θ in the laboratory frame

and θ′ in the moving frame of the electrons is given by

tan θ =
sinθ′

γ (β + cos θ′)
(Equation A.29.)

In the limit of large θ′, for highly relativistic electrons with β ≈ 1, θ → 1/2γ.

This indicates that the radiated power of the undulator compresses to a narrow

“searchlight” cone of small divergence, important for increasing brilliance and

coherence. A more careful calculation predicts that for an undulator with N

periods, this radiation cone is found within approximately a half-angle of

θcen ≈ 1

γK
√
N

(Equation A.30.)

A.3.3. Spectral Distribution of Undulator Radiation

Because beamline 12.0.2 performs many experiments at energies

corresponding to electronic resonances, we now consider the approximate spectral

width of the undulator radiation predicated by Equation A.26.. Directly on axis

with θ = 0, we find the wavelength λ. Somewhat off axis, with θ 6= 0, we find a

slighter different wavelength λ+∆λ:

λ =
λu
2γ2

(

1 +
K2

2

)

(Equation A.31.)

λ+∆λ =
λu
2γ2

(

1 +
K2

2
+ γ2θ2

)

(Equation A.32.)
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Solving this pair of equations for the dispersion ∆λ/λ gives

∆λ

λ
= γ2θ2

(

1 +
K2

2

)

(Equation A.33.)

For an undulator with N periods, in the central radiation cone θcen this becomes

∆λ

λ
=

1

N

(

1 +
K2

2

)2

(Equation A.34.)

The undulator radiation has a fairly narrow spectrum due to the large number of

periods. The bandwidth may be further reduced by operating at a higher harmonic

n, as λn = λ0/n. In this case, the bandwidth is:

∆λ

λ
=

1

nN

(

1 +
K2

2

)2

(Equation A.35.)

In general, for resonant scattering we require still more energy resolution, so we use

a grating monochromator to select just a portion of the incoming wavelengths.
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