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ABSTRACT

The di�usion approximation of the Wright-Fisher model of population
genetics leads to partial di�erentiable equations, the Kolmogorov for-
ward and backward equations, with a leading term that degenerates at
the boundary. This degeneracy has the consequence that standard PDE
tools do not apply, and solutions lack regularity properties. In this paper,
we develop a regularizing blow-up scheme for the iteratively extended
global solutions of the backward Kolmogorov equation presented in a
previous paper, which are constructed from a known class of solutions,
and establish their uniqueness for the stationary case. As the model
describes the random genetic drift of several alleles at the same locus
from a backward perspective, the occurring singularities result from the
loss of an allele.While in an analytical approach, this provides substantial
di�culties, from a biological or geometric perspective, this is a natural
process that canbeanalyzed indetail. Thepresented scheme regularizes
the solution via a carefully constructed iterative transformation of the
domain.
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1. Introduction

The Wright-Fisher model [13, 39] models the most basic component of mathematical
population genetics, i.e. genetic dri�. In a �nite population of �xed size, parents are randomly
sampled and pass on the alleles they are carrying to the o�spring generation. By repeating this
process over many (non-overlapping) generations, the model describes the evolution of the
probabilities of the di�erent alleles in the population. In the basic setting, the model covers
a single locus only. Extensions to several loci are possible, as is the inclusion of mutation,
selection, or a spatial population structure. This has driven the research in mathematical
population genetics ([4, 11]), inspired by the pioneering work of Kimura [23–25].

Nevertheless, the originalmodel remains of considerablemathematical interest, in particu-
lar when we follow Kimura and consider the di�usion approximation. This di�usion approx-
imation leads to a model with an in�nite population size and continuous time. Its dynamics
may then be described by the so-called forward and backward Kolmogorov equations. The
forward equation is a partial di�erential equation of parabolic type anddescribes the evolution
of the model over time. The backward equation, which is the adjoint of the former w. r. t. a
suitable product, in contrast, models a process that runs backward in time as it describes
the probability of ancestral states. According to this biological interpretation, the equation is
not parabolic. Mathematically, however, we can easily convert it into a parabolic equation by
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simply replacing −t by t. Putting it simply, a backward equation with a �nal condition can
be converted into a forward equation with an initial condition. More serious mathematical
di�culties arise from the fact that both equations become degenerate at the boundary.

This paper investigates solutions of the Kolmogorov backward equation for the relative
frequencies 0 ≤ pi ≤ 1 of the alleles i = 0, . . . , n , that is

−
∂

∂t
u(p, t) =

1

2

n∑

i,j=1

pi(δij − pj)
∂

∂pi
∂pju(p, t) =: L∗

nu(p, t) (1.1)

The frequency p0 does not appear in (1.1) because of the normalization
∑n

i=0 p
i = 1. When

one of the frequencies pi becomes 0, the corresponding coe�cient also becomes 0. Thus,
the di�erential operator in (1.9) becomes degenerate at the boundary of our domain, the
probability simplex1n = {(p1, . . . , pn) : pi > 0,

∑n
j=1 p

j < 1}. In fact, a suitable extension of
the solution of (1.1) to the boundary of 1n and the investigation of its properties will be our
main concern and achievement.

There have been two lines of research on these Kolmogorov equations, one with tools from
the theory of stochastic processes, see for instance [7, 9, 10, 22], as well as with tools from the
theory of partial di�erential equations [5, 6]. By its general nature, this approach is capable
of certain existence, uniqueness and regularity results, but cannot come up with explicit
formulas, for instance for the expected time of loss of an allele. Therefore, the second line
of research uses less general tools, but makes detailed use of the speci�c and explicit structure
of the model. This has also included the global aspect, that is, connecting the solutions in the
interior of the simplex and on its boundary faces, and a number of representation formulas
has been derived. This aspect is also covered to some extent in Section 5.10 of [11] as well as
in [4], but we wish to illustrate certain results in more detail and with a di�erent focus.

In the literature, using an observation of [31], one usually writes the Kolmogorov backward
operator in the form

3∗
nu(x, t) :=

1

2

n∑

i,j=0

xi(δij − xj)
∂

∂xi
∂xju(x, t), (1.2)

using the variables (x0, x1, . . . , xn) with
∑n

j=0 x
j = 1 in place of L∗

nu(p, t) (cf. equation (1.1))

with (p1, . . . , pn) and p0 = 1 −
∑n

i=1 p
i implicitly determined (for our notation, see Section

2.1, in particular (2.2) and (1.11). That is, one includes the variable x0 and works on the
simplex {x0+x1+. . . xn = 1, xi ≥ 0}. This formulation has the advantage of being symmetric
w. r. t. all xi, but the downside is that the operator invokesmore independent variables than the
dimension of the space on which it is de�ned. Thus, the elliptic operator becomes degenerate.
Here, we have opted to work with L∗

n, but for the comparison with the literature, we shall
utilize the version (1.2).

Much of the literature to be referenced here is based on the observation ofWright [40] that
the degeneracy at the boundary may be removed if one includes mutation. More precisely,
let the mutation rate mij be the probability that when allele i is selected for o�spring, the
o�spring carries the mutant j instead of i; furthermore, one de�nes mii = −

∑
j6=imij. The

corresponding Kolmogorov backward operator then becomes

3∗
nu(x, t) :=

1

2

n∑

i,j=0

xi(δij − xj)
∂

∂xi
∂xju(x, t) +

n∑

j=0

n∑

i=0

mijx
i ∂

∂xj
. (1.3)
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Wright [40] discovered that calculations may be considerably simpli�ed by assuming

mij =
1

2
µj > 0 for i 6= j, (1.4)

that is, the mutation rates depend only on the target gene (the factor 1
2 is inserted solely for

purposes of normalization) and are positive. With (1.4), (1.3) becomes

3∗
nu(x, t) :=

1

2

n∑

i,j=0

xi(δij − xj)
∂

∂xi
∂xju(x, t) +

1

2

n∑

j=0

(
µj −

n∑

i=0

µix
j

)
∂

∂xj
. (1.5)

In this case, one obtains a unique stationary distribution for the Wright–Fisher di�usion,
given by the Dirichlet distribution with parameters µ0, . . . ,µn. A further simpli�cation
occurs when

µ0 = · · · = µn =: µ > 0, (1.6)

i.e., when all mutation rates are identical. The assumption (1.4) that the mutation rates only
depend on the target gene is not very plausible from the biological perspective (the mutation
rate should rather depend on the initial instead of the target gene, but (1.6) remedies that
de�cit in a certain sense), but in the present context the more crucial issue is the assumption
of positivity.

Several papers have studied this model and derived explicit formulas for the transition
density of the process with generator (1.5) including [3, 8, 14–16, 28, 32–34]; these, however,
were rather of a local nature, as they did not connect solutions in the interior and the boundary
strata of the domain. Furthermore, Kingman’s coalescent [26] has proven to be a very useful
tool in this line of research, that is, the method of tracing lines of descent back into the past
and analyzing theirmerging patterns (for a quick introduction to that theory, see also [21]). In
particular, some of these formulas likewise extend to the limiting case µ = 0 in (1.6); Ethier
and Gri�ths [8] showed that the following formula for the transition density

P(t, x, dy) =
∑

M≥1

d0M(t)
∑

|α|=M,α∈Zn
+

(
|α|

α

)
xαDir(α, dy), (1.7)

which had previously been derived under the assumption µ > 0, also applies to the
case µ = 0. Here, Dir is the Dirichlet distribution, and d0M(t) is the number of equivalence
classes of lines of descent of lengthM at time t in Kingman’s coalescent for which analytical
formulas have been derived in [34]. (1.7) has been studied further in many subsequent
papers, for instance [16]. However, the Dirichlet distribution in (1.7) becomes singular when
y approaches the boundary of K.

Shimakura in [33] came up with the somewhat less explicit formula

P(t, x, dy) =
∑

m≥1

e−λmtEm(x, dy)

=
∑

K∈5

P(t, x, y)dSK(y)

=
∑

K∈5

e−λmtEm,K(x, y)dSK(y). (1.8)
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Here, the λm are the eigenvalues of the elliptic operator, and Em is the projection onto the
corresponding eigenspace, and the indexK enumerates the faces of the simplex. This solution
is de�ned on the entire simplex, and it matches all (independent) data on di�erent boundary
strata as t tends to 0. However, the transitions from a face into one of its boundary faces
are not accounted for in this scheme, which considers the solutions on the individual faces
separately. Thus, (1.8) is simply a decomposition into the various modes of the solutions of a
linear PDE, summed over all faces of the simplex. In particular, Shimakura’s solution satis�es
corresponding regularity properties. Altogether, this illustrates the rather local character of
the solution scheme.

In the present paper, we want to get a more detailed analytical picture of the behavior
at the boundary and investigate global solutions, speci�cally their uniqueness, on the entire
state space including its strati�ed boundary. In an important recent work, Epstein andMazzeo
[5, 6] have developed PDE techniques to tackle the issue of solving PDEs on a manifold with
corners that degenerate at the boundary with the same leading terms as the Kolmogorov
backward equation for theWright-Fishermodel (1.1) in the closure of the probability simplex
in (1n)−∞ = 1n × (−∞, 0). A crucial ingredient of their analysis is the construction

of appropriate function spaces. In our context, their spaces Ck,γ
WF(1n) would consist of k

times continuously di�erentiable functions whose kth derivatives are Hölder continuous with
exponent γ w. r. t. the Fisher metric. In terms of the Euclidean metric on the simplex, this
means that a weaker Hölder exponent (essentially γ

2 ) is required in the normal than in the
tangential directions at the boundary. Using this framework, they then show that if the initial

values are of classCk,γ
WF(1n), then there exists a unique solution in that class. This result is very

satisfactory from the perspective of PDE theory (see e.g. [20]). In the situation that we are
facing in this paper, however, the data and the solutions are not even continuous, let alone of
some class C0,γ (1n), as we want to study the boundary transitions. Likewise, the (stationary)
uniqueness assertion does not apply, which Epstein and Mazzeo have established for largely
regular (in particular, globally continuous) solutions by amodi�ed version theHopf boundary
point Lemma and some maximum principle (yielding a similar, but more general result as
Proposition 10.2 in [19]).

The same also holds for other works which treat uniqueness issues in the context of
degenerate PDEs, but are not adapted to the very speci�c class of solutions at hand. This
includes the extensive work by Feehan [12] where – amongst other issues – the uniqueness
of solutions of elliptic PDE whose di�erential operator degenerates along a certain portion
of the boundary ∂0� of the domain � is established: for a problem with a partial Dirichlet
boundary condition, where the boundary data are only given on ∂�\∂0�, a so-called second-
order boundary condition is applied for the degenerate boundary area; this condition says that
a solution needs to be such that the leading terms of the di�erential operator continuously
vanishes towards ∂0�, while the solution itself is also of class C1 up to ∂0�. Within this
framework, Feehan than shows that – under certain technical assumptions – degenerate
operators satisfy a corresponding maximum principle for the partial boundary condition,
which assures the uniqueness of a solution. Although this in principle may also apply to
solutions of Wright–Fisher di�usion equations, this does not entirely cover the situation at
hand, since, if n ≥ 2, L∗ only partially degenerates towards the boundary (instances of
codimension 1). More precisely, its degeneracy behaviour is stepwise, corresponding to the
strati�ed boundary structure of the domain 1n, and hence does not satisfy the requirements
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for Feehan’s scenario. Furthermore, in the language of [12], the intersection of the regular and
the degenerate boundary part ∂∂0�, would encompass a hierarchically iterated boundary-
degeneracy structure, which is beyond the scope of that work.

Therefore, in this paper, we continue the detailed investigation of the boundary behavior of
solutions of the (extended) Kolmogorov backward equation (1.1) started in [19] (the concept
of solution developed there expands a notion of solution which is well-known in the literature
(cf. [27, 29])). In analytical terms, the issue is the regularity of solutions at singularities of
the boundary, that is, where two or more faces of the simplex 1n meet. When considering
particular extension paths from the boundary into the interior of the simplex (they have
nothing to do, however, with Kingman’s coalescent lines of descent as utilized in some of
the literature discussed above), these may result in boundary singularities at certain strata of
the boundary of the domain, and we are interested in the directions in which the singularities
of the boundary of the simplex are approached from the interior, because we want to resolve
these boundary singularities.

In contrast to the approaches discussed above that invoke strong tools from the theory
of stochastic processes, our approach is not stochastic, but analytic and geometric in nature,
which means that the spirit of our approach is rather related to that of [5, 6]. In contrast
to that approach, however, we develop geometric constructions, within the framework of
information geometry, that is, the geometry of probability distributions, see [1, 2], in order
to have an approach that on one hand is naturally capable of studying such generalizations
as indicated above, but on the other hand can still derive explicit formulas. This is part of a
general research program, see [17–19, 35–38]. The biological interpretation provides a key to
some of our technical arguments. Alleles can disappear from the population in di�erent order.
We work on the n-dimensional probability simplex, which represents the relative frequencies
of (n+1) alleles in a population. Its k-dimensional boundary faces F1, F2 represent population
states with only (k+1) alleles.When two such faces meet in a (k−1)-dimensional subface F0,
we can approach each point in F0 from either F1 or F2, but this then corresponds to di�erent
orders of the loss events. Therefore, the resulting limits might a priori be di�erent. Therefore,
there arises the issue of continuity of the solution of our process on faces of codimension 2 or
higher in the boundary of the probability simplex. And for such discontinuous solutions, the
maximum principle does not apply to show uniqueness. For this reasons, we need to combine
biologically correct continuity and extension assumptions with a careful blow-up process that
resolves the remaining ambiguities. This constitutes the main technical achievement of this
paper.

Let us now describe in more speci�c terms what we achieve in this paper. Based on
the previous work [19], we continue the analysis of solutions of the (extended) Kolmogorov

backward equation for the di�usion approximation of the Wright–Fisher model



L∗U(p, t) = −

∂

∂t
U(p, t) in

(
1n

)
−∞

= 1n × (−∞, 0)

U(p, 0) = f (p) in 1n, f ∈ L2
( ⋃n

k=0 ∂k1n

) (1.9)

for U( · , t) ∈ C2
p

(
1n

)
for each �xed t ∈ (−∞, 0) and U(p, · ) ∈ C1((−∞, 0)) for each �xed

p ∈ 1n resp. the stationary (extended) Kolmogorov backward equation
{
L∗U(p) = 0 in 1n\∂01n

U(p) = f (p) in ∂01n

(1.10)



452 J. HOFRICHTER ET AL.

for U ∈ C2
p

(
1n

)
where

L∗u(p, t) :=
1

2

n∑

i,j=1

(
pi(δij − pj)

) ∂

∂pi
∂pju(p, t). (1.11)

is the corresponding backward operator.
Emerging solutions of the backward Kolmogorov equation may be interpreted as proba-

bility distributions over ancestral states yielding some given current state of allele frequencies
with time running backward as indicated by the name. Such an ancestral state could have
possessed more alleles than the current state, as on the path towards that latter state, some
alleles that had been originally present in the population could have been lost. In analytical
terms, one could assume that such a loss of allele event is continuous, in the sense that
the relative frequency of the corresponding allele simply goes to 0. Geometrically, however,
this means that the process from the interior of a probability simplex enters into some
boundary stratum and henceforth stays there. Also, when two or more alleles got lost, they
could have disappeared in di�erent orders from the population. A corresponding global and
hierarchical solution for the Kolmogorov backward equation that persists and stays regular
across di�erent such loss of allele events in the past was constructed in the preceding paper
[19] (Propositions 8.1 f.), which was technically rather involved:

Proposition (pathwise extension of solutions, informal version of Proposition 3.2). Let

k, n ∈ N with 0 ≤ k < n, and let uIk be a proper solution of the Kolmogorov backward equation

(1.9) restricted to1
(Ik)
k for some �nal condition f ∈ L

2(1(Ik)
k

)
. For d = k+1, . . . , n, there exist

extensions ū
ik,...,id
Ik

:=
(
ū
ik,...,id−1
Ik

)id−1,id
in

(
1

(Id)
d

)
−∞

of ū
ik,...,id−1
Ik

(starting with u
ik
Ik

≡ uIk) with

ū
ik,...,id
Ik

(p, t) = uIk(π
ik,...,id(p), t)

d−1∏

j=k

pij
∑d

l=j p
il
, (p, t) ∈

(
1

(Id)
d

)
−∞

(1.12)

and a global extension SU
ik,...,in
Ik

in
(⋃

k≤d≤n 1
(Id)
d

)
−∞

by putting

SU
ik,...,in
Ik

(p, t) := uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

= uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

uIk(π
ik,...,id(p), t)

d−1∏

j=k

pij
∑d

l=j p
il
χ

1
(Id)

d

(p) (1.13)

and we have 


L∗SU

ik,...,in
Ik

= −
∂

∂t
SU
ik,...,in
Ik

in
(⋃

k≤d≤n 1
(Id)
d

)
−∞

SU
ik,...,in
Ik

( · , 0) = SF
ik,...,in
Ik

in
⋃

k≤d≤n 1
(Id)
d

(1.14)

withSF
ik,...,in
Ik

∈ L2
(⋃

k≤d≤n 1
(Id)
d

)
being an analogous extension of the �nal condition f = fIk

in 1
(Ik)
k ; in particular, we have SU

ik,...,in
Ik

∣∣
1

(Ik)

k

( · , 0) = f in 1
(Ik)
k .
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This result allows us to extend any solution of the Kolmogorov backward equation that
lives on a certain stratum (“proper solution”) to all corresponding strata of higher dimension
of some larger domain. The obtained extension then solves the analogous problem in the
entire larger domain, for a �nal condition which is likewise an extension of the original �nal
condition. In terms of the Wright–Fisher model, where a proper solution models ancestral
states of a certain set of alleles over time, this scheme yields corresponding ancestral states
on all those sets from which the original set can be reached by a (multiple) loss of alleles.
These states are again modelled over time; the �nal condition which is met by the solution
corresponds to an analogous extension of the original target set which spans all relevant
higher-dimensional strata. The scheme is versatile and can be applied for all potential losses
of alleles.

The result improves results in the literature (cf. [27, 29], and is indispensable for a complete
understanding and a rigorous solution of the Kolmogorov backward equation. The present
paper completes this approach by establishing the uniqueness for this class of solution in the
stationary case.

The key is the degeneracy at the boundary of the Kolmogorov equations. While from an
analytical perspective, this presents a profound di�culty for obtaining boundary regularity
of the solutions of the equations, from a biological or geometric perspective, this is very
natural because it corresponds to the loss of some alleles from the population in �nite time
by random dri�. And from a stochastic perspective, this has to happen almost surely. For this
reason, the above equations are not accessible by standard theory (cf. e.g. [30]), because the
square root of the coe�cients of the second order terms of L∗ is not Lipschitz continuous
up to the boundary. As a consequence, in particular the uniqueness of solutions to the
above Kolmogorov backward equations may not be derived from standard results. Instead,
such degenerate equations arising from population biology have been analyzed by Epstein
and Mazzeo (cf. [5, 6]) only recently. While their aim was to develop a general and widely
applicable theory, we rather focus on the speci�c properties of the Wright-Fisher model to
obtain results that do not readily follow from the general theory.We shall derive the regularity
and uniqueness of a certain class of solutions that are the hierarchically extended solutions of
the Kolmogorov backward equation developed in [19].

Our aim is the global regularity in the closure of the domain, and this will be achieved by
resolving any incompatibilities between di�erent boundary strata. For that purpose, we shall
construct an appropriate transformation of the relevant part of the domain (i.e. the simplex
1n, cf. below). As a result, we can work on a domain that is a product of a simplex and a
cube. Thereby, the iteratively extended solutions are turned into corresponding solutions of
the transformed equation, which are then of su�cient global regularity; in particular, they
are globally continuous. For generic iteratively extended solutions this does not yet yield
a corresponding regularity. However, the transformation scheme is still applicable, and the
transformation image may be extended that way as well (see 7.3 (iii)). In any case, before such
a transformation, a solutionmay be highly irregular, and certainly not globally continuous on
the closed simplex.

In the stationary case, such transformed solutions are uniquely de�ned by their values
on the vertices of the domain (analogously to a globally continuous solution of the original
problem in 1n, cf. Section 6). It just needs to be shown that a complete set of boundary data
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on the simplex generates su�cient boundary data on the larger domain which is produced by
the blow-up.

Theorem (informal version of Theorem 7.3 on p. 481). Let n ∈ N+, i0 ∈ {0, . . . , n} and a

solution u{i0} : 1
({i0})
0 −→ R be given. Then an extension SU of u{i0} to the entire simplex (cf.

Proposition 3.2) is unique within the class of all extensions U which satisfy certain ’extension

constraints‘ and additional boundary regularity of the blow-up image if n ≥ 2.

2. Notation

2.1. The simplex

Wewant to consider relative frequencies (of alleles) in a population, and therefore, we shall use
the probability simplex as the corresponding state space. In this subsection, we shall introduce
a suitable simplex notation as well as the appropriate function spaces (see also [18]).

Let p0, p1, . . . , pn denote the relative frequencies of alleles 0, 1, . . . , n. Aswe have
∑n

j=0 p
j =

1 ⇔ p0 = 1 −
∑n

i=1 p
i, this leads to an n-dimensional state space

1n =
{
(p0, . . . , pn) ∈ R

n+1
∣∣pj > 0 for j = 0, 1, . . . , n and

n∑

j=0

pj = 1
}

(2.1)

or equivalently

1n :=
{
(p1, . . . , pn) ∈ R

n
∣∣pi > 0 for i = 1, . . . , n and

n∑

i=1

pi < 1
}
, (2.2)

which is the (open) n-dimensional standard orthogonal simplex

The closure of this simplex is

1n =

{
(p1, . . . , pn) ∈ R

n
∣∣pi ≥ 0 for i = 1, . . . , n and

n∑

i=1

pi ≤ 1

}
. (2.3)

In order to include the time parameter t ∈ (−∞, 0], we also write

(1n)−∞ := 1n × (−∞, 0).

The boundary of the simplex ∂1n = 1n\1n consists of boundary strata, the faces,
which are (sub-)simplices themselves, from the (n − 1)-dimensional facets down to the
0-dimensional vertices. Each subsimplex of dimension k ≤ n − 1 is isomorphic to the
k-dimensional standard orthogonal simplex 1k. To denote a particular subsimplex, we
introduce index sets1 Ik = {i0, i1, . . . , ik} ⊂ {0, . . . , n} with ij 6= il for j 6= l and put

1
(Ik)
k :=

{
(p1, . . . , pn) ∈ 1n

∣∣pi > 0 for i ∈ Ik; p
i = 0 for i ∈ In\Ik

}
. (2.4)

1In fact, any such ordering is just a relabeling of the standard set with standard ordering {0, . . . , n} and consequently,
one could just work with Ik = {0, . . . , k} for k = 0, . . . , n. However, by the choice of notation, we wish to emphasize
some combinatorial aspect, which is based on the underlying model: Di�erent orderings correspond to di�erent
modes of allele extinction (which are all present in the model) and hence, a full description needs to account for all
of them simultaneously (cf. also [19]).
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The index set In may be omitted, thus 1n = 1
(In)
n . The index 0 corresponding to p0 plays an

important role: On 1
(Ik)
k we have

p0 =





1 −
∑

i∈Ik\{0}

pi if 0 ∈ Ik,

0 if 0 /∈ Ik.
(2.5)

So, if 0 ∈ Ik, we require
∑

i∈Ik\{0}
pi < 1, otherwise

∑
i∈Ik\{0}

pi = 1.

Each of the ( n+1
k+1 ) subsets Ik of In corresponds to a boundary face 1

(Ik)
k (k ≤ n − 1). The

k-dimensional part of the boundary ∂k1n of 1n is therefore

∂k1
(In)
n :=

⋃

Ik⊂In

1
(Ik)
k ⊂ ∂1(In)

n for 0 ≤ k ≤ n − 1. (2.6)

For notational consistency, we also put ∂n1n = 1n. This boundary concept can iteratively be

applied to simplices in the boundary of some 1
(Il)
l , Il ⊂ In for 0 ≤ k < l ≤ n. We thus have

∂k1
(Il)
l =

⋃

Ik⊂Il

1
(Ik)
k ⊂ ∂1

(Il)
l . (2.7)

Regarding theWright–Fishermodel, the simplex1
({i0,...,ik})
k corresponds to the state where

precisely the k + 1 alleles i0, . . . , ik are present in the population. The boundary ∂k1n, i.e.
the union of all corresponding subsimplices, represents the state with any k + 1 alleles. In

the set of alleles i0, . . . , ik corresponding to 1
({i0,...,ik})
k , the elimination of one of the alleles

corresponds to a transition to ∂k−11
({i0,...,ik})
k , and the particular component in that boundary

then indicates which of the alleles got eliminated.
We also introduce spaces of square integrable functions for our subsequent integral

products on 1n and its faces (which will mainly be used implicitly, for details cf. [37])2,

L2
( n⋃

k=0

∂k1n

)
:=

{
f : 1n −→ R

∣∣∣ f |∂k1n is λk-measurable and

∫

∂k1n

|f (p)|2 λk(dp) < ∞ for all k = 0, . . . , n

}
. (2.8)

In order to de�ne an extended solution on 1n and its faces (indicated by a capitalized U),
we shall in addition need appropriate spaces of pathwise regular functions. Such a solution
needs to be at least of class C2 in every boundary stratum (actually, a solution typically always
is of class C∞, which likewise applies to each boundary stratum). Moreover, it should stay

regular at boundary transitions that reduce the dimension by one, i.e. for1(Ik)
k and a boundary

face1k−1 ⊂ ∂k−11
(Ik)
k . Thus, derivatives in the interior which are tangential towards the face

under consideration have to smoothly connect with derivatives in that stratum, whereas for
the normal derivatives, there is a smooth extension on the stratum.

2Here, λk stands for the k-dimensional Lebesgue measure, but when integrating over some 1
(Ik)

k
with 0 /∈ Ik , the

measure needs to be replaced with the one induced on 1
(Ik)

k
by the Lebesgue measure of the containing R

k+1 –

this measure, however, will still be denoted by λk as it is clear from the domain of integration1
(Ik)

k
with either 0 ∈ Ik

or 0 /∈ Ik which version is actually used.
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Turning from some speci�c boundary transition to the entire simplex, wemay require that
a corresponding property applies to all possible boundary transitions within 1n that reduce

the dimension by one, thus formally for 1
(Id)
d and its boundary of codimension 1 ∂d−11

(Id)
d

for all Id ⊂ In, 1 ≤ d ≤ n. Globally, this raises the issue of incompatibilities, as a 1
(Id−1)

d−1 may

represent a boundary stratum of both some 1
(Id)
d and some 1

(̃Id)
d ; still, a solution needs to be

well-de�ned everywhere. However, the class of solutions, which comply with such pathwise
regularity even on the (entire) strati�cation of the domain, is certainly larger than that of plain
globally smooth solutions.

Correspondingly, we de�ne for l ∈ N ∪ {∞}

U ∈ Cl
p

(
1n

)
:⇔ U|

1
(Id)

d ∪∂d−11
(Id)

d

∈ Cl(1
(Id)
d ∪ ∂d−11

(Id)
d ) for all Id ⊂ In, 1 ≤ d ≤ n

(2.9)

with respect to the spatial variables. Likewise, for ascending chains of (sub-)simplices with
a more speci�c boundary condition, we put for index sets Ik ⊂ · · · ⊂ In and again for l ∈

N ∪ {∞}

U ∈ Cl
p0

( n⋃

d=k

1
(Id)
d

)
:⇔




U|

1
(Id)

d

is extendable to SU ∈ Cl(1
(Id)
d ∪ ∂d−11

(Id)
d ) with

SU|
∂d−11

(Id)

d

= Uχ
1

(Id−1)

d−1

χ{d>k} for all max(1, k) ≤ d ≤ n

(2.10)

with respect to the spatial variables; χ denotes the characteristic function of a set, i.e. = 1
there and 0 elsewhere.

2.2. The cube

Wenext introduce some notation for cubes and their boundary instances and de�ne for n ∈ N

an n-dimensional cube�n as

�n :=
{
(p1, . . . , pn)

∣∣pi ∈ (0, 1) for i = 1, . . . , n
}
. (2.11)

Analogous to 1n, if we wish to denote the corresponding coordinate indices explicitly, this
may be done by providing the coordinate index set I′n := {i1, . . . , in} ⊂ {1, . . . , n}, ij 6= il for
j 6= l as upper index of�n, thus

�
(I′n)
n =

{
(p1, . . . , pn)

∣∣pi ∈ (0, 1) for i ∈ I′n
}
. (2.12)

This is particularly useful for boundary instances of the cube (cf. below) or if for other
purposes a certain ordering (ij)j=0,...,n of the coordinate indices is needed. For �n itself and
if no ordering is needed, the index set may be omitted (in such a case it may be assumed
I′n ≡ {1, . . . , n} as in equation (2.11)). Please note that a primed index set is always assumed
to not contain the index 0 (resp. i0 = 0, which we usually stipulate in case of orderings) as in
(2.11), we do not have the coordinate index 0.

In the standard topology on R
n, �n is open (which we always assume when writing �n),

and its closure�n is given by (again using the index set notation)

�
(I′n)
n =

{
(p1, . . . , pn)

∣∣pi ∈ [0, 1] for i ∈ I′n
}
. (2.13)
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As in the case of the simplex, the boundary ∂�n of�n consists of various subcubes (faces)
of descending dimensions, starting from the (n− 1)-dimensional facets down to the vertices
(which represent 0-dimensional cubes). All appearing subcubes of dimension 0 ≤ k ≤ n− 1
are isomorphic to the k-dimensional standard cube �k and hence will be denoted by �k if it
is irrelevant or clear from the context which particular subcube we consider. We also put

�
(I′k)

k :=
{
(p1, . . . , pn)

∣∣pi ∈ (0, 1) for i ∈ I′k; p
i = 0 for i ∈ I′n\I

′
k

}
(2.14)

down until�(∅)
0 := (0, . . . , 0) for k = 0.

If necessary, we may also identify a certain boundary face�k of ∂�n for 0 ≤ k ≤ n− 1 by
only giving the values of the n − k �xed coordinates, i.e. with indices in I′n\I

′
k, which may be

either 0 or 1, hence

�k =
{
pj1 = b1, . . . , p

jn−k = bn−k

}
(2.15)

with j1, . . . , jn−k ∈ I′n, ir 6= is for r 6= s and b1, . . . , bn−k ∈ {0, 1} chosen accordingly. If we
wish to indicate the total k-dimensional boundary of �n, i.e. the union of all k-dimensional
faces belonging to�n, we may write ∂k�n for k = 0, . . . , n with ∂n�n := �n.

Finally, when writing products of simplices and cubes which do not span all considered
dimensions, we indicate the value of the missing coordinates by curly brackets marked with
the corresponding coordinate index, i.e. for In = {i0, i1, . . . , in} and Ik ⊂ In with ik+1 /∈ Ik we
have e.g.

1
(Ik)
k × {1}({ik+1}) × �

(I′n\(I
′
k∪{ik+1}))

n−k−1

:=
{
(pi1 , . . . , pin)

∣∣pi > 0 for i ∈ Ik, p
ik+1 = 1, pj ∈ (0, 1) for j ∈ I′n\(I

′
k ∪ {ik+1})

}
(2.16)

with pi0 = p0 = 1 −
∑k

j=1 p
ij . If coordinates are �xed at 0, the corresponding entry may be

omitted, e.g. we may just write 1
(Ik)
k for 1

(Ik)
k × {0}(In\Ik).

Furthermore, we also introduce a (closed) cube �
(I′k)

k with a removed base vertex �
(∅)
0

somewhat sloppily denoted by⊠
(I′k)

k , i.e.

⊠
(I′k)

k := �
(I′k)

k \�
(∅)
0 =

{
pi1 , . . . , pik ∈ [0, 1]

∣∣∣
k∑

j=1

pij > 0
}
. (2.17)

For functions de�ned on the cube, the pathwise smoothness required for an application
of the corresponding Kolmogorov backward operator (cf. p. 463) may be de�ned as with the
simplex in equality (2.9) in [19]; hence, we put

ũ ∈ Cl
p(�n) :⇔ ũ|�d∪∂d−1�d

∈ Cl(�d ∪ ∂d−1�d) for every�d ⊂ �n (2.18)

with respect to the spatial variables, implying that the operator is continuous at all boundary
transitions within�n. This concept likewise applies to subsets of�n where needed.

3. Hierarchical extended solutions of the Kolmogorov backward equation

In this section, we recall the main results from [19]; for details please see also there.We de�ne
a class of extensions by imposing extension constraints (de�nition 6.1 in [18]); more precisely,
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an extension is required to be smooth and constrained to vanish towards certain boundary
strata:

De�nition 3.1 (extension constraints). Let Id be an index set with |Id| = d + 1 ≥ 2, 0, s ∈ Id
and 1

(Id)
d = {(pi)i∈Id\{0}|p

i > 0 for i ∈ Id} with p0 := 1 −
∑

i∈Id\{0}
pi. For d ≥ 2 and a

solution u :
(
1

(Id\{s})
d−1

)
−∞

−→ R of the correspondingly restricted Kolmogorov backward

equation (1.9), i.e. u( · , t) ∈ C∞
(
1

(Id\{s})
d−1

)
for t < 0, u(p, · ) ∈ C∞((−∞, 0)) for p ∈ 1

(Id\{s})
d−1

and

−
∂

∂t
u = L∗u in

(
1

(Id\{s})
d−1

)
−∞

, (3.1)

a function ū :
(
1

(Id)
d

)
−∞

−→ R with ū( · , t) ∈ C∞
(
1

(Id)
d

)
for t < 0 and ū(p, · ) ∈

C∞((−∞, 0)) for p ∈ 1
(Id)
d is said to be an extension of u satisfying the extension constraints

if
(i) for t < 0ū( · , t) is continuously extendable to the boundary ∂d−11

(Id)
d such that it

coincides with u( · , t) in 1
(Id\{s})
d−1 resp. vanishes on the remainder of ∂d−11

(Id)
d and is

of class C∞ with respect to the spatial variables in 1
(Id)
d ∪ ∂d−11

(Id)
d ,

(ii) it is a solution of the corresponding Kolmogorov backward equation in
(
1

(Id)
d

)
−∞

, i.e.

− ∂
∂t ū = L∗ū in

(
1

(Id)
d

)
−∞

.

For d = 1, this analogously applies to functionsuwith− ∂
∂tu = 0 (in accordancewithL∗

0 ≡ 0),
and consequently the equation in condition (ii) is replaced with L∗ū = 0. Furthermore, an
extension which encompasses multiple extension steps satis�es the extension constraints if
this holds for every extension step.

The presented extension scheme then �rst yields the existence of simple extensions of
solutions from a boundary instance of the considered domain to the interior (Proposition 6.4
in [19]), from which one can advance to the existence of pathwise extensions (Propositions
8.1 in [19]):

Proposition 3.2 (pathwise extension of solutions). Let k, n ∈ N with 0 ≤ k < n,

{ik, ik+1, . . . , in} ⊂ In := {0, 1, . . . , n} with ii 6= ij for i 6= j and Ik := In\{ik+1, . . . , in}, and let

uIk be a proper solution of the Kolmogorov backward equation (1.9) restricted to 1
(Ik)
k for some

�nal condition f ∈ L2
(
1

(Ik)
k

)
. For d = k + 1, . . . , n and Id := Ik ∪ {ik+1, . . . id}, an extension

of ū
ik,...,id−1
Ik

in
(
1

(Id−1)

d−1

)
−∞

to ū
ik,...,id
Ik

:=
(
ū
ik,...,id−1
Ik

)id−1,id
in

(
1

(Id)
d

)
−∞

as by Proposition 6.4

in [19] satis�es the extension constraints 3.1 if (and for d ≥ k+ 2 and [f ] 6= 0 in L2
(
1

(Ik)
k

)
also

only if) putting r(d) = id−1 for the extension target face index, and we respectively have

ū
ik,...,id
Ik

(p, t) = uIk(π
ik,...,id(p), t)

d−1∏

j=k

pij
∑d

l=j p
il
, (p, t) ∈

(
1

(Id)
d

)
−∞

(3.2)

with p0 = 1 −
∑

i∈Id\{0}
pi and π ik,...,id(p) = (p̃1, . . . , p̃n) such that p̃ik = pik + . . . + pid ,

p̃ik+1 = . . . = p̃id = 0 and p̃j = pj for j ∈ Id\{ik, . . . , id}.
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We combine all extensions into a function SU
ik,...,in
Ik

in
(⋃

k≤d≤n 1
(Id)
d

)
−∞

by putting

SU
ik,...,in
Ik

(p, t) := uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

= uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

uIk(π
ik,...,id(p), t)

d−1∏

j=k

pij
∑d

l=j p
il
χ

1
(Id)

d

(p) (3.3)

with p0 = 1 −
∑

i∈In\{0} p
i is in C∞

p0

( ⋃
k≤d≤n 1

(Id)
d

)
with respect to the spatial variables for

t < 0 as well as in C∞((−∞, 0)) with respect to t, and we have




L∗SU
ik,...,in
Ik

= −
∂

∂t
SU
ik,...,in
Ik

in
(⋃

k≤d≤n 1
(Id)
d

)
−∞

SU
ik,...,in
Ik

( · , 0) = SF
ik,...,in
Ik

in
⋃

k≤d≤n 1
(Id)
d

(3.4)

withSF
ik,...,in
Ik

∈ L2
(⋃

k≤d≤n 1
(Id)
d

)
being an analogous extension of the �nal condition f = fIk

in 1
(Ik)
k ; in particular, we have SU

ik,...,in
Ik

∣∣
1

(Ik)

k

( · , 0) = f in 1
(Ik)
k .

This scheme already allows us to recover the existence result by Littler [29]. Assembling all
pathwise extensions eventually yields the existence of the global extensions (Proposition 8.4
in [19]). By global iterative extensions, we obtain the following existence result (Theorem 9.1
in [19]):

Theorem 3.3. For a given �nal condition f ∈ L2
( ⋃n

d=0 ∂d1n

)
, the extended Kolmogorov

backward equation(1.9) corresponding to the n-dimensional Wright–Fisher model in di�usion

approximation always allows a solution SU :
(
1n

)
−∞

−→ R with SU( · , t) ∈ C∞
p

(
1n

)
for each

�xed t ∈ (−∞, 0) and SU(p, · ) ∈ C∞((−∞, 0)) for each �xed p ∈ 1n.

4. Motivation

To motivate the regularization scheme, we use the example of SU
ik,...,in
Ik

in 1
(In)
n as in equa-

tion (3.3). We can see the incompatibilities in geometric terms. For every t < 0, for the top-

dimensional component ūik,...,inIk
incompatibilities may arise in the domain where we have

pin + pin−1 = 0, hence 1
(In−2)
n−2 (whereas for the next component this is the set given by

pin + pin−1 + pin−2 = 0, hence1
(In−3)
n−3 , and so forth). On all other boundary strata of arbitrary

(lower) dimension, ūik,...,inIk
and the other component as in equation (3.2) respectively are

continuously extendable and of class C∞ with respect to the spatial variables there. Thus,
we have to address one stratum of the boundary gap for each component of the solution.

Altogether, the full hierarchical solution SU
ik,...,in
Ik

this way comprises a nested incompat-

ibility in 1
(In−2)
n−2 in the sense that each ū

ik,...,id
Ik

does not extend continuously to 1
(Id−2)

d−2 for
d = n, . . . , k + 2. This implies that the desired transformation needs to a�ect all relevant
dimensions in an iterative manner. In each step, one dimension from the simplex is removed
and converted into a dimension of the corresponding cube component, i.e. the corresponding
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coordinate is released from the simplex property
∑

i p
i ≤ 1. In doing so, with each iteration,

the relevant component of the solution gains the required regularity at the corresponding
level while all other components remain una�ected; eventually, the entire solution resp. all its
components are transformed such that they extend smoothly to the boundary.

Altogether, a�er n− k− 1 of these steps, the relevant component of1(In)
n is converted into

a cube of dimension n − k − 1, and the transformed solution is su�ciently regularized; in
particular, it will then smoothly extend to the full boundary.

4.1. Analysis of a simple example

A crucial aspect of our procedure is the resolution of the singularities that appear with those
iteratively extended solutions. This will be done by suitable blow-up transformations. To give
an example, we use a solution for n = 2 (cf. Proposition 3.2): we then have e.g.

SU0,1,2
{0} = u{0}χ1

({0})
0

+ ū0,1{0}χ1
({0,1})
1

+ ū0,1,2{0} χ
1

({0,1,2})
2

in
2⋃

d=0

1
({0,...,d})
d , (4.1)

and of course only the top-dimensional component

ū0,1,2{0} (p) = p0 ·
p1

1 − p0
in 1

({0,1,2})
2 (4.2)

(with p0 = 1 − p1 − p2) resp. its continuous extension yields incompatibilities. Hence, we

may transform3 it via p̃1 := p1 + p2 and p̃2 := p2

p1+p2
into4

ũ0,1;2{0} (p̃) = (1 − p̃1)(1 − p̃2), (4.3)

which smoothly extends to�({1,2})
2 (as then also Ũ0,1;2

{0} = u{0}χ�0+ū0,1{0}χ�
({1})
1

+ũ0,1;2{0} χ
�

({1,2})
2

).

This observed smooth extendability of ũ0,1;2{0} in particular applies to the additional 1-

dimensional face N1 := {0}({1}) × ⊠
({2})
1 of �

({1,2})
2 , which is produced during the

transformation (cf. below). As pointed out above, for greater n, we have to recursively apply
such transformations in order to resolve all appearing singularities.

5. The blow-up transformation and its iteration

We shall now present the details of the blow-up transformation and derive all necessary
results. We start with the basic transformation (cf. also Figure 1) and proceed to the results
for a suitably iterated application of this blow-up transformation, by which we can resolve all
singularities of our solution.

Lemma 5.1 (Blow-up transformation). Let Id = {0, 1, . . . , d}. A blow-up transformation 8r
s

with r, s ∈ Id\{0} mapping

1
(Id)
d \1

(Id\{r,s})
d−2 =

{
(p1, . . . , pd)

∣∣pi ≥ 0 for i ∈ Id, p
r + ps > 0

}
(5.1)

3This corresponds to the choices s = 1, r = 2 in Lemma 5.1.
4Here, already the notation of Proposition 5.8 is applied.
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Figure 1. An illustration of the blow-up transformation for d = 2.

with p0 := 1 −
∑

i∈Id\{0}
pi C∞-di�eomorphically onto

(
1

(Id\{s})
d−1 \1

(Id\{r,s})
d−2

)
× �

({s})
1

=
{
(p̃1, . . . , p̃d)

∣∣p̃i ≥ 0 for i ∈ Id\{s}, p̃
r > 0; p̃s ∈ [0, 1]

}
(5.2)

with p̃0 := 1 −
∑

i∈Id\{0,s}
p̃i and altogether

1
(Id)
d 7−→

(
1

(Id\{s})
d−1 × �

({s})
1

)
\Nr (5.3)

with

Nr := 1
(Id\{r,s})
d−2 × {0}({r}) × ⊠

({s})
1 , (5.4)

as an additional (d − 1)-dimensional face of 1
(Id\{s})
d−1 × �

({s})
1 , is given by

p̃i := pi for i 6= r, s, (5.5)

p̃r := pr + ps, (5.6)

p̃s :=





ps

pr + ps
for pr + ps > 0

0 for pr + ps = 0.
(5.7)

Corollary 5.2. While we obtain Nr = 1
(Id\{r,s})
d−2 ×⊠

({s})
1 as an additional (d− 1)-dimensional

face with 8r
s , the existing (d − 1)-dimensional faces of 1

(Id)
d including their boundaries are

mapped as follows:

1
(Id\{s})
d−1 7−→ 1

(Id\{s})
d−1 × {0}({s}), (5.8)

1
(Id\{r})
d−1 \1

(Id\{r,s})
d−2 7−→

(
1

(Id\{s})
d−1 \1

(Id\{r,s})
d−2

)
× {1}({s}) (5.9)
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and

1
(Id\{i})
d−1 \1

(Id\{i,r,s})
d−3 7−→

(
1

(Id\{i,s})
d−2 \1

(Id\{i,r,s})
d−3

)
× �

({s})
1 for i ∈ Id\{r, s}. (5.10)

Remark 5.3. If the p̃s in Lemma 5.1 is chosen di�erently with

p̃s :=
pr

pr + ps
, (5.11)

this �ips the orientation of the p̃s-coordinate in �
({s})
1 as p̃s now has to be replaced by 1 −

p̃s wherever it occurs. This, however, does not a�ect the statements of Lemma 5.1, whereas

in Corollary 5.2 the images of 1
(Id\{r})
d−1 \1

(Id\{r,s})
d−2 and 1

(Id\{s})
d−1 \1

(Id\{r,s})
d−2 are interchanged.

Thus, unless stated otherwise, in the following we shall always assume that the p̃s-coordinate
is chosen with an orientation as given in Lemma 5.1.

That we put p̃s := 0 where pr + ps = 0 in Lemma 5.1 (cf. second line of equation 5.5)
may appear somewhat surprising as the set pr + ps = 0 li�s under the blow-up to the new
boundary face, and the range of p̃s on that locus is what gives this subset a larger dimension.
However, the main purpose is to be able to locate the set a�er the blow-up (which makes the
blow-up well-de�ned). In the remainder, it will be crucial to identify all strata of the domain
and the data/solution given on them a�er the blow-up.

Proof of Lemma 5.1. The transformation corresponds geometrically to a scaling of the
domain into the p̃s-direction with scaling factor 1

p̃r
. The assertion about the transformation

domains is straightforward since we have 0 ≤
ps

pr+ps ≤ 1 on 1
(Id)
d \1

(Id\{r,s})
d−2 . Likewise,

the C∞-di�eomorphism property follows since 8r
s is smoothly di�erentiable as long as

p̃r = pr + ps > 0 and the inverse transformation (8r
s)

−1 is likewise smooth. The latter
is given by

pr = p̃r(1 − p̃s), (5.12)

ps = p̃rp̃s, (5.13)

pi = p̃i for i 6= r, s. (5.14)

By this, it also becomes obvious that (8r
s)

−1 maps
(
1

(Id\{s})
d−1 \1

(Id\{r,s})
d−2

)
× �

({s})
1 onto

1
(Id)
d \1

(Id\{r,s})
d−2 .

Consequently, we obtain for an iterated application of the blow-up transformation:

Proposition 5.4. Let k, n ∈ N with 0 ≤ k ≤ n − 2, {ik, ik+1, . . . , in} ⊂ In := {0, 1, . . . , n}
with ii 6= ij for i 6= j and Id := In\{id+1, . . . , in} for d = k, . . . , n − 1. A repeated blow-up

transformation8
rn−k−1
sn−k−1 ◦ . . .◦8

r1
s1 with8

rm
sm as in Lemma 5.1 with rm = in−m and sm = in−m+1

for m = 1, . . . , n − k − 1maps 1
(Ik+1)

k+1 onto itself and

1
(Id)
d 7−→ 1

(Ik+1)

k+1 × �
(Id\Ik+1)

d−k−1 for d = k + 2, . . . , n (5.15)
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and altogether

1
(In)
n 7−→

(
1

(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
\

n−1⋃

j=k+1

Nj. (5.16)

The n− k− 1 additional (n− 1)-dimensional faces Nk+1, . . . ,Nn−1 of 1
(Ik+1)

k+1 ×�
(In\Ik+1)

n−k−1 are

given by

Nk+1 = 1
(Ik)
k × {0}({ik+1}) × ⊠

(In\Ik+1)

n−k−1 (5.17)

and

Nj = 1
(Ik+1)

k+1 × �
(Ij−1\Ik+1)

j−k−2 × {0}({ij}) × ⊠
(In\Ij)

n−j (5.18)

for j = k + 2, . . . , n − 1.
Explicitly, 8

rn−k−1
sn−k−1 ◦ . . . ◦ 8

r1
s1 is given by

p̃i1 := pi1 + · · · + pin , (5.19)

p̃i2 :=





pi2 + · · · + pin

pi1 + pi2 + · · · + pin
for pi1 + · · · + pin > 0

0 for pi1 + · · · + pin = 0,
(5.20)

...

p̃ij :=





pij + · · · + pin

pij−1 + pij + · · · + pin
for pij−1 + · · · + pin > 0

0 for pij−1 + · · · + pin = 0,

(5.21)

...

p̃in :=





pin

pin−1 + pin
for pin−1 + pin > 0

0 for pin−1 + pin = 0
(5.22)

for p ∈
⋃n

d=0 1
(Id)
d . If in any step the coordinate p̃sj is chosen with alternative orientation (cf.

remark 5.3), p̃sj needs to be replaced by (1 − p̃sj).

Proof. The Proposition will be proven in parallel with Propositions 5.7 and 5.8, cf. below.

The next Lemma is concernedwith the transformation behaviour of the operator L∗
n, at �rst

for a single blow-up step. All considerations apply to L∗
n in its domain1n as well as, taking the

restriction property of L∗
n (cf. [19]) into account, in the closure 1n resp. to the transformed

operator L̃∗
n in the subsequent transformed images of the domain (the domain in question

may not be stated explicitly – this will be done in Proposition 5.7):

Lemma 5.5. Let I′n := {1, . . . , n} be an index set with r, s ∈ I′n and let {i1, . . . , in} be an

ordering of I′n such that r, s ∈ {i1, . . . , im} for some m ≤ n. When changing coordinates
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(pi)i∈I′n 7→ (p̃i)i∈I′n by 8r
s , the operator

L∗
n =

1

2

n∑

i,j=1

aij(p)
∂

∂pi
∂

∂pj
(5.23)

with aij(p) = pi(δij − pj) for i, j ∈ {i1, . . . , im}, aij = 0 else for i 6= j is transformed into

L̃∗
n =

1

2

k∑

k,l=1

ãkl(p̃)
∂

∂ p̃k
∂

∂ p̃l
(5.24)

with ãkl(p̃) = p̃k(δkl − p̃l) for k, l ∈ {i1, . . . , im}\{s}, ãss(p̃) =
p̃s(1−p̃s)

p̃r
, ãsl = ãls = 0 for l 6= s

and ãkl(p̃) = akl(p) (with the coordinates yet to be replaced) for all remaining indices. This also

holds if the p̃s-coordinate is chosen with opposite orientation (cf. remark 5.3).

For the proof, we need the following lemma:

Lemma 5.6. A partial di�erential operator

n∑

i,j=1

aij(p)
∂

∂pi
∂pju(p) +

n∑

i=1

bi(p)
∂

∂pi
u(p) + c(p)u(p) (5.25)

transforms under a change of the spatial coordinates � −→ �̃, p 7−→ p̃ into

n∑

k,l=1

ãkl(p̃)
∂2

∂ p̃k∂ p̃l
ũ(p̃) +

n∑

k=1

b̃k(p̃)
∂

∂ p̃k
ũ(p̃) + c̃(p̃)ũ(p̃) (5.26)

with ũ
(
p̃(p)

)
= u(p) and

ãkl(p̃) =

n∑

i,j=1

aij(p)
∂ p̃k

∂pi
∂ p̃l

∂pj
for k, l = 1, . . . , n, (5.27)

b̃k(p̃) =

n∑

i=1

bi(p)
∂ p̃k

∂pi
+

n∑

i,j=1

aij(p)
∂2p̃k

∂pi∂pj
for k = 1, . . . , n, (5.28)

c̃(p̃) = c(p). (5.29)

Proof. Let p̃ be a change of coordinates and ũ such that u(p) = ũ(p̃(p)). Then we have by the
chain rule

n∑

i,j=1

aij
∂

∂pi
∂pju =

n∑

i,j=1

n∑

k=1

aij
∂

∂pi

(
∂ p̃k

∂pj
∂

∂ p̃k
ũ

)

=

n∑

i,j=1

( n∑

l,k=1

aij
∂ p̃l

∂pi
∂ p̃k

∂pj
∂

∂ p̃l
∂ p̃kũ +

n∑

k=1

aij
∂2p̃k

∂pi∂pj
∂

∂ p̃k
ũ

)

=

n∑

l,k=1

n∑

i,j=1

aij
∂ p̃l

∂pi
∂ p̃k

∂pj
∂

∂ p̃l
∂ p̃kũ +

n∑

k=1

n∑

i,j=1

aij
∂2p̃k

∂pi∂pj
∂

∂ p̃k
ũ (5.30)
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and

n∑

i=1

bi
∂

∂pi
u =

n∑

i=1

n∑

k=1

bi
∂ p̃k

∂pi
∂

∂ p̃k
ũ =

n∑

k=1

n∑

i=1

bi
∂ p̃k

∂pi
∂

∂ p̃k
ũ. (5.31)

Now putting ãlk, b̃k and c̃ as in equation (5.27), we have

n∑

i,j=1

aij
∂

∂pi
∂pju +

n∑

i=1

bi
∂

∂pi
u + cu =

n∑

l,k=1

ãlk
∂

∂ p̃l
∂ p̃kũ +

n∑

k=1

b̃k
∂

∂ p̃k
ũ + c̃ũ.

Proof of Lemma 5.5. When changing coordinates (pi) 7→ (p̃i), the coe�cients of the 2nd
order derivatives aij transform as

ãkl =
∑

i,j

aij
∂ p̃k

∂pi
∂ p̃l

∂pj
, (5.32)

while we may get additional �rst order terms with coe�cients
∑

i,j a
ij ∂2p̃k

∂pi∂pj
(cf. Lemma 5.6).

For the transformation at hand, we have (cf. equations (5.6) and (5.5))

∂ p̃k

∂pi
= δki + δkr δ

s
i for k 6= s (5.33)

and (cf. equation (5.7))

∂ p̃s

∂pi
=

pr

(pr + ps)2
δsi −

ps

(pr + ps)2
δri =

1 − p̃s

p̃r
δsi −

p̃s

p̃r
δri . (5.34)

Therefore, (5.32) yields

ãkl(p̃) =
∑

i,j

aij(p)(δki + δkr δ
s
i )(δ

l
j + δlrδ

s
j ) (5.35)

for k, l 6= s, that is,

ãkl(p̃) = akl(p) + akt(p)δlr + asl(p)δkr + ass(p)δkr δ
l
r

= pk(δkl − pl) − pkpsδlr − psplδkr + ps(1 − ps)δkr δ
l
r

= p̃k(δkl − p̃l) (5.36)

for k, l ∈ {i1, . . . , im}\{s} using the given form of the aij, whereas for all other index pairs not
containing the index s, we always have

akt(p)δlr = asl(p)δkr = ass(p)δkr δ
l
r = 0 (5.37)

and hence

ãkl(p̃) =
∑

i,j

aij(p)δki δ
l
j = akl(p), (5.38)
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thus proving the last statement. Furthermore, we have for arbitrary l 6= s

ãsl(p̃) =
∑

i,j

aij(p)

(
1 − p̃s

p̃r
δsi −

p̃s

p̃r
δri

)
(δlj + δlrδ

s
j )

=
1 − p̃s

p̃r
(asl(p) + ass(p)δlr) −

p̃s

p̃r
(arl(p) + art(p)δlr)

=

(
−

1 − p̃s

p̃r
p̃rp̃sp̃l +

p̃s

p̃r
(1 − p̃s)p̃rp̃l

)
χ{i1,...,im}(l)

−
p̃s

p̃r
p̃r(1 − p̃s)δlr +

(
1 − p̃s

p̃r
p̃rp̃s(1 − p̃rp̃s) +

p̃s

p̃r
p̃r(1 − p̃s)p̃rp̃s

)
δlr = 0 (5.39)

as well as ãls = 0 (l 6= s) by symmetry and �nally

ãss(p̃) =
∑

i,j

aij(p)

(
1 − p̃s

p̃r
δsi −

p̃s

p̃r
δri

)(
1 − p̃s

p̃r
δsj −

p̃s

p̃r
δrj

)

= ass(p)

(
1 − p̃s

p̃r

)2

+ arr(p)

(
p̃s

p̃r

)2

− 2asr(p)
p̃s(1 − p̃s)

(p̃r)2

= p̃s(1 − p̃rp̃s)
(1 − p̃s)2

p̃r
+ (1 − p̃s)(1 − p̃r + p̃rp̃s)

(p̃s)2

p̃r

− 2p̃rp̃s(1 − p̃s)
p̃s(1 − p̃s)

p̃r
=

p̃s(1 − p̃s)

p̃r
. (5.40)

Thus, all ãkl have the desired expression.
Possible additional �rst order terms would have to contain second derivatives of p̃. the only

component for which they do not obviously vanish is p̃s. But we have (cf. equation (5.34))

∂

∂pj
∂

∂pi
p̃s =

2

(pr + ps)3
(psδri − prδsi )(δ

r
j + δsj ) +

1

(pr + ps)2
(δsi δ

r
j − δri δ

s
j ) (5.41)

and subsequently

∑

i,j

aij
∂

∂pi
∂

∂pj
p̃s =

2

(pr + ps)3

(
ps(arr + ars) − pr(asr + ass)

)
+

1

(pr + ps)2
(asr − ars)

=
2

(pr + ps)3

(
pspr(1 − pr − ps) + prps(pr − 1 + ps)

)
= 0, (5.42)

for which again the particular expression for the aij is needed.
If p̃s is chosen with di�erent orientation as in remark 5.3, instead of equation (5.34) we

then have

∂ p̃s

∂pi
=

p̃s

p̃r
δsi −

1 − p̃s

p̃r
δri . (5.43)

This means that in the respective formulae the indices r and s are swapped, which in turn
is matched by the corresponding inverse transformation which now yields pr = p̃rp̃s and
ps = p̃r(1 − p̃s).
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For an iterated application of the blow-up transformation, we obtain thus:

Proposition 5.7. In the setting of a full blow-up transformation as in Proposition 5.4, the

operator L∗ =
∑

pi(δij − pj) ∂
∂pi

∂

∂pj
in 1

(In)
n is transformed into 5

L̃∗ =
1

2

k+1∑

j,l=1

p̃ij(δ
j
l − p̃il)

∂

∂ p̃ij

∂

∂ p̃il
+

1

2

n∑

j=k+2

p̃ij(1 − p̃ij)
∏j−1

l=k+1 p̃
il

∂2

(∂ p̃ij)
2 (5.44)

in
(
1

(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
\
⋃n−1

j=k+1 Nj.

If in any step the coordinate p̃sj is chosen with alternative orientation (cf. remark 5.3), p̃sj ,

whenever it appears in the above formulae, is replaced by (1 − p̃sj).

Thus, the iterated blow-up translates the (extended) Kolmogorov backward equation in

1n into a corresponding di�erential equation in
(
1

(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
\
⋃n−1

j=k+1 Nj. For

the iteratively extended solutions of the Kolmogorov backward equation introduced in the
preceding chapter, the transformation behaviour is as follows:

Proposition 5.8. Let k, n ∈ N with 0 ≤ k ≤ n− 2, {ik, ik+1, . . . , in} ⊂ In := {0, 1, . . . , n} with

ii 6= ij for i 6= j and Id := In\{id+1, . . . , in} for d = k, . . . , n − 1, and let uIk in
(
1

(Ik)
k

)
−∞

and

SU
ik,...,in
Ik

in
(⋃

k≤d≤n 1
(Id)
d

)
−∞

as in Proposition 3.2. Then a repeated blow-up transformation

8
rn−k−1
sn−k−1 ◦ . . . ◦ 8

r1
s1 with 8

rm
sm as in Lemma 5.1 with rm = in−m and sm = in−m+1 for m =

1, . . . , n − k − 1 converts

SU
ik,...,in
Ik

(p, t) := uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

= uIk(p, t)χ1
(Ik)

k

(p) +
∑

k+1≤d≤n

uIk(π
ik,...,id(p), t)

d−1∏

j=k

pij
∑d

l=j p
il
χ

1
(Id)

d

(p) (5.45)

on
(⋃

k≤d≤n 1
(Id)
d

)
−∞

into

Ũ
ik,ik+1;ik+2,...,in
Ik

(p̃, t) := uIk(p̃, t)χ1
(Ik)

k

(p̃)

+
∑

k+1≤d≤n

ũ
ik,ik+1;ik+2,...,id
Ik

(p̃, t)χ
1

(Ik+1)

k+1 ×�
(Id\Ik+1)

d−k−1

(p̃) (5.46)

on
(⋃

k≤d≤n 1
(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
−∞

with

ũ
ik,ik+1;ik+2,...,id
Ik

(p̃, t) := ū
ik,ik+1
Ik

(π̃ ik+1(p̃), t)
d∏

j=k+2

(1 − p̃ij) for d = k + 2, . . . , n (5.47)

5Please note that on boundary instances of�
(In\Ik+1)

n−k−1
, i.e. p̃il = 0 for some l ∈ In\Ik+1 , the corresponding summands

are assumed not to appear in the right sum in equation (5.44), which may be interpreted as a result of a successive
restriction. The given domain is the maximal domain for the operator as it is not de�ned on the exception set⋃n−1

j=k+1
Nj (however, cf. also Lemma 7.1 for the stationary case).
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with π̃ ik+1(p̃ij) := p̃ij for ij ∈ Ik+1, π̃ ik−1(p̃ij) := 0 else. The transformed functions

ũ
ik,ik+1;ik+2,...,id
Ik

smoothly extend to
(
1

(Ik+1)

k+1 × �
(Id\Ik+1)

d−k−1

)
−∞

respectively; consequently also

Ũ
ik,ik+1;ik+2,...,in
Ik

smoothly extends to
(
1

(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
−∞

. Furthermore, it may be

simpli�ed to

Ũ
ik,ik+1;ik+2,...,in
Ik

(p̃, t) ≡ ũ
ik,ik+1;ik+2,...,in
Ik

(p̃, t) in
(
1

(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1

)
−∞

. (5.48)

If in any step the coordinate p̃sj is chosen with alternative orientation (cf. remark 5.3), p̃sj in the

above formulae needs to be replaced by (1 − p̃sj).

For the stationary components, we have in particular:

Corollary 5.9. For k = 0 and w. l. o. g. i0 = 0, the transformed function of Proposition 5.8 in

equation (5.48) simpli�es to

Ũ
i0,i1;i2,...,in
{i0}

(p̃) = u{i0}(1) ·

n∏

j=1

(1 − p̃ij) in�
(I′n)
n , (5.49)

while in accordance with Proposition 5.4 the domain is mapped

1
(Id)
d 7−→ �

(I′d)

d for d = 0, . . . , n (5.50)

and altogether

1
(In)
n 7−→ �

(I′n)
n \

n−1⋃

j=1

Nj. (5.51)

The n − 1 additional (n − 1)-dimensional faces N1, . . . ,Nn−1 of ∂�
(I′n)
n are given by

N1 = {0}({i1}) × ⊠
(I′n\I

′
1)

n−1 (5.52)

and

Nj = �
(I′j−1)

j−1 × {0}({ij}) × ⊠
(I′n\I

′
j)

n−j (5.53)

for j = 2, . . . , n − 1, whereas the operator L∗ =
∑

pi(δij − pj) ∂
∂pi

∂

∂pj
in 1

(In)
n is transformed

into

L̃∗ =
1

2

n∑

j=1

p̃ij(1 − p̃ij)
∏j−1

l=1 p̃
il

∂2

(∂ p̃ij)
2 in�

(I′n)
n \

n−1⋃

j=1

Nj. (5.54)

Proof of Propositions 5.4–5.8. We prove the assertions of the three Propositions in parallel:

Our aim is to transformSU
ik,...,in
Ik

into a function that does not feature any incompatibilities and
hence is su�ciently regular with respect to the entire closure of the (transformed) domain. For
that purpose, we shall show that the full blow-up via a repeated application of the coordinate
transformation 8r

s of Lemma 5.1 with the indices r and s to be picked as shown in each

step yields the desired result for Ũ
ik,ik+1;ik+2,...,in
Ik

, while the transformation behaviour of the
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domain and the operator is as stated in Proposition 5.4. For notational simplicity, we will
usually suppress the t-component in the notation for our domains throughout this proof; for

instance, we shall write 1
(In)
n instead of

(
1

(In)
n

)
−∞

.

Starting with the top-dimensional component of SU
ik,...,in
Ik

, which is

ū
ik,...,in
Ik

(p, t) = ū
ik,...,in−1
Ik

(π in−1,in(p), t) ·
pin−1

pin−1 + pin

= uIk(π
ik,...,in−1(π in−1,in(p)), t)

n−2∏

j=k

pij∑n
l=j p

il
·

pin−1

pin−1 + pin
in 1(In)

n (5.55)

with pi0 ≡ p0 = 1 −
∑n

j=1 p
ij (if i0 6= 0, one may change the coordinates, i.e. permute the

vertices correspondingly), we initially put 6 r1 := in−1 and s1 := in. Changing coordinates

(pi) 7→ (p̃i) by 8
r1
s1 maps 1

(In)
n onto 1

(In−1)
n−1 × �

({in})
1 and 1

(In−1)
n−1 onto 1

(In−1)
n−1 × {0}({in}),

whereas the entire domain 1
(In)
n is transformed into

(
1

(In−1)
n−1 × �

({in})
1

)
\Nn−1 with

Nn−1 := 1
(In−2)
n−2 × {0}({in−1}) × ⊠

({in})
1 (5.56)

being an additional (n−1)-dimensional face of1(In−1)
n−1 ×�

({in})
1 (cf. Lemma 5.1). At the same

time, the (n−2)-dimensional incompatibility at1(In−2)
n−2 of the continuous extension of ūik,...,inIk

to ∂n−11
(In)
n is removed as the transformation yields

ũ
ik,...,in−1;in
Ik

(p̃, t) := ū
ik,...,in−1
Ik

(π̃ in−1(p̃), t) · (1 − p̃in)

= uIk(π
ik,...,in−1(π̃ in−1(p̃)), t)

n−2∏

j=k

p̃ij∑n
l=j p̃

il
· (1 − p̃in)

in 1
(In−1)
n−1 × �

({in})
1 (5.57)

by equation (5.12) et seq. (note π̃ in−1(p̃) = π in−1,in(p)). Hence, the complete function SU
ik,...,in
Ik

is transformed into

Ũ
ik,...,in−1;in
Ik

(p, t) :=
∑

k≤d≤n−1

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

+ ũ
ik,...,in−1;in
Ik

(p, t)χ
1

(In−1)

n−1 ×�
(In\In−1)

1
(p) (5.58)

with the transformed top-dimensional component ũik,...,in−1;in
Ik

(p̃, t) smoothly extending to

1
(In−1)
n−1 × �

({in})
1 with

ũ
ik,...,in−1;in
Ik

(p̃, t)
∣∣
1

(In−1)

n−1 ×{0}({in}) ≡ ū
ik,...,in−1
Ik

(p̃, t) in 1
(In−1)
n−1 × {0}({in}). (5.59)

6Alternatively, one could also put r1 := in and s1 := in−1 , which would correspond to inverting the orientation of the
p̃s1 -coordinate as in remark 5.3 (cf. also below) plus subsequently swapping the coordinate indices in and in−1, thus

p̃in would get replaced by 1 − p̃in−1 and p̃in−1 with p̃in .
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As ūik,...,in−1
Ik

itself smoothly extends to ∂n−21
(In−1)
n−1 , thus ũik,...,in−1;in

Ik
now smoothly extends to

the entire (∂n−21
(In−1)
n−1 )×�

({in})
1 , in particular to1

(In−2)
n−2 ×�

({in})
1 ⊂ Nn−1 (however, ū

ik,...,in−1
Ik

resp. its continuous extension to ∂n−21
(In−1)
n−1 still has an incompatibility at 1(In−3)

n−3 ).

The operator L∗ = 1
2

∑n
i,j=1 p

i(δij − pj) ∂
∂pi

∂

∂pj
in 1

(In)
n transforms into (cf. Lemma 5.5)

L̃∗ =
1

2

∑

j,l 6=n

p̃ij(δ
j
l − p̃il)

∂

∂ p̃ij

∂

∂ p̃il
+

1

2

p̃in(1 − p̃in)

p̃in−1

∂

∂ p̃in

∂

∂ p̃in
(5.60)

on
(
1

(In−1)
n−1 ×�

({in})
1

)
\Nn−1 sincewe have ãkl(p̃) = pk(δkl −pl) = p̃k(δkl −p̃l) for k, l 6= in−1, in.

If p̃in is chosen with alternative orientation (cf. remark 5.3), then p̃in needs to be replaced by
(1 − p̃in) everywhere.

As already indicated, the transformed solution is still not smoothly extendable to the full
boundary of the transformed domain: its (n−2)-dimensional incompatibility is resolved, but
its lower-dimensional incompatibilities persist. Thus, the highest-dimensional incompatibil-
ity now is of dimension n − 3, and hence the situation is ready for another application of the
blow-up transformation.

Thus, we need an iterative procedure to resolve all incompatibilities. For this purpose, we
assume that a�er the m-th step (m = 1, . . . , n − k − 2) an already transformed function

Ũ
ik,...,in−m;in−m+1,...,in
Ik

with (note that we again associate coordinates p resp. p̃ etc. to the domain

before/a�er the (m + 1)-th transition; furthermore, we will use the convention ū
ik
Ik

≡ uIk to
simplify the notation)

Ũ
ik,...,in−m;in−m+1,...,in
Ik

(p, t) =
∑

k≤d≤n−m

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

+
∑

n−m+1≤d≤n

ũ
ik,...,in−m;in−m+1,...,id
Ik

(p, t)χ
1

(In−m)

n−m ×�
(Id\In−m)

d−n+m

(p)

(5.61)

with

ũ
ik,...,in−m;in−m+1,...,id
Ik

(p, t) = ū
ik,...,in−m

Ik
(π̃ in−m(p), t)

d∏

j=n−m+1

(1 − pij) (5.62)

for d = n − m + 1, . . . , n and

ū
ik,...,in−m

Ik
(p, t) = ū

ik,...,in−m−1
Ik

(π in−m−1,in−m(p), t) ·
pin−m−1

pin−m−1 + pin−m

= uIk(π
ik,...,in−m−1(π in−m−1,in−m(p)), t)

n−m−2∏

j=k

pij∑n
l=j p

il
·

pin−m−1

pin−m−1 + pin−m
(5.63)

in 1
(In−m)
n−m . The corresponding total domain as an image of 1(In)

n is given by

(
1

(In−m)
n−m × �

(In\In−m)
m

)
\

n−1⋃

j=n−m

Nj (5.64)
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with additional (n − 1)-dimensional faces from previous steps

Nn−m = 1
(In−m−1)
n−m−1 × {0}({in−m}) × ⊠

(In\In−m)
m (5.65)

and

Nj = 1
(In−m)
n−m × �

(Ij−1\In−m)

j−n+m−1 × {0}({ij}) × ⊠
(In\Ij)

n−j (5.66)

for j = n − m + 1, . . . , n − 1.

The functions ũik,...,in−m;in−m+1,...,id
Ik

smoothly extend each to 1
(In−m)
n−m × �

(Id\In−m)

d−n+m , and we
have

ũ
ik,...,in−m;in−m+1,...,id
Ik

|
1

(In−m)

n−m ×�
(Id−1\In−m)

m
= ũ

ik,...,in−m;in−m+1,...,id−1
Ik

(5.67)

for d = n − m + 2, . . . , n and

ũ
ik,...,in−m;in−m+1
Ik

|
1

(In−m)

n−m
= ū

ik,...,in−m

Ik
. (5.68)

With ū
ik,...,in−m

Ik
being smoothly extendable to ∂n−m−11

(In−m)
n−m , also the functions

ũ
ik,...,in−m;in−m+1,...,id
Ik

smoothly extend to
(
∂n−m−11

(In−m)
n−m

)
× �

(Id\In−m)

d−n+m , in particular all

additional faces are covered.
Furthermore, we assume that the operator L∗ has the corresponding form

L∗ =
1

2

n−m∑

j,l=1

pij(δ
j
l − pil)

∂

∂pij

∂

∂pil
+

1

2

n∑

j=n−m+1

pij(1 − pij)
∏j−1

l=n−m pil

∂2

(∂pij)
2 (5.69)

on
(
1

(In−m)
n−m × �

(In\In−m)
m

)
\
⋃n−1

j=n−m Nj.

For the (m+1)-th blow-up step going to be applied now, we �rst notice that ūik,...,in−m

Ik
resp.

its continuous extension to ∂n−m−11
(In−m)
n−m still has an incompatibility at1(In−m−2)

n−m−2 ⊂ 1
(In−m)
n−m ,

corresponding to pin−m + pin−m−1 = 0. Consequently, this may be resolved by a blow-up
transformation8

rm+1
sm+1 with rm+1 = in−m−1 and sm+1 = in−m (note that, due to the stipulation

i0 = 0, we always have rm+1, sm+1 6= 0), mapping the simplex part of the domain (cf.
Lemma 5.1)

1
(In−m)
n−m 7−→ 1

(In−m−1)
n−m−1 × �

({in−m})
1 (5.70)

resp.

1
(In−m−1)
n−m−1 7−→ 1

(In−m−1)
n−m−1 × {0}({in−m}) (5.71)

and altogether

1
(In−m)
n−m 7−→ 1

(In−m−1)
n−m−1 × �

({in−m})
1 \Nn−m−1 (5.72)

with

Nn−m−1 := 1
(In−m−2)
n−m−2 × {0}({in−m−1}) × ⊠

({in−m})
1 (5.73)

being an additional (n − m − 1)-dimensional face of 1(In−m−1)
n−m−1 × �

({in−m})
1 .
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From this, when gradually adding the cube part�(In\In−m)
m with coordinates pin−m+1 , . . . , pin ,

equation (5.70) turns into

1
(In−m)
n−m × �

(Id\In−m)

d−n+m 7−→ 1
(In−m−1)
n−m−1 × �

(Id\In−m−1)

d−n+m+1 for d ≥ n − m, (5.74)

and by applying equation (5.72) to the previous image of the initial domain 1
(In)
n in equa-

tion (5.64), we obtain for the transformed total domain

(
1

(In−m−1)
n−m−1 × �

(In\In−m−1)
m+1

)
\

n−1⋃

j=n−m−1

Ñj (5.75)

with Ñn−m, . . . , Ñn−1 being the images of the previous additional faces: The faces

Nn−m+1, . . . ,Nn−1 are only a�ected indirectly as they contain the full 1
(In−m)
n−m as a factor,

and hence only the in−m-th coordinate is moved from the simplex to the cube, thus

Ñj = 1
(In−m−1)
n−m−1 × �

(Ij−1\In−m−1)

j−n+m × {0}({ij}) × ⊠
(In\Ij)

n−j (5.76)

for j = n − m + 1, . . . , n − 1, whereas Nn−m ≡ Ñn−m is virtually not a�ected as only
pin−m = 0 is transformed into p̃in−m = 0. For the ‘new’ additional (n − 1)-dimensional
face Ñn−m−1 (resulting from Nn−m−1), we may – having added the remaining dimensions

– relax the condition p̃in−m > 0 in equation (5.73), which ensures Nn−m−1 6= 1
(In−m−2)
n−m−2 , into∑n

j=n−m p̃ij > 0 and hence obtain

Ñn−m−1 := 1
(In−m−2)
n−m−2 × {0}({in−m−1}) × ⊠

(In\In−m−1)
m+1 . (5.77)

At the same time, ūik,...,in−m

Ik
and ũik,...,in−m;in−m+1,...,id

Ik
, d = n−m+1, . . . , n get transformed

into

ũ
ik,...,in−m−1;in−m,...,id
Ik

(p̃, t) = ū
ik,...,in−m−1
Ik

(π̃ in−m−1(p̃), t)
d∏

j=n−m

(1 − p̃ij) (5.78)

in 1
(In−m−1)
n−m−1 × �

(Id\In−m−1)

d−n+m+1 for d ≥ n − m, and hence

Ũ
ik,...,in−m−1;in−m,...,in
Ik

(p, t) :=
∑

k≤d≤n−m−1

ū
ik,...,id
Ik

(p, t)χ
1

(Id)

d

(p)

+
∑

n−m≤d≤n

ũ
ik,...,in−m−1;in−m,...,id
Ik

(p, t)χ
1

(In−m−1)

n−m−1 ×�
(Id\In−m−1)

d−n+m+1

(p).

(5.79)

The transformed functions ũik,...,in−m−1;in−m,...,id
Ik

then each smoothly extend to 1
(In−m−1)
n−m−1 ×

�
(Id\In−m−1)

d−n+m+1 , and we have

ũ
ik,...,in−m−1;in−m,...,id
Ik

|
1

(In−m−1)

n−m−1 ×�
(Id−1\In−m−1)

m+1

= ũ
ik,...,in−m−1;in−m,...,id−1
Ik

(5.80)

for d = n − m + 1, . . . , n and

ũ
ik,...,in−m−1;in−m

Ik
|
1

(In−m−1)

n−m−1
= ū

ik,...,in−m−1
Ik

. (5.81)
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With ū
ik,...,in−m−1
Ik

being smoothly extendable to ∂n−m−21
(In−m−1)
n−m−1 , the functions

ũ
ik,...,in−m−1;in−m,...,id
Ik

also smoothly extend to
(
∂n−m−21

(In−m−1)
n−m−1

)
× �

(Id\In−m−1)

d−n+m+1 , by which all

additional faces are covered; in particular, ũik,...,in−m−1;in−m

Ik
smoothly extends to Nn−m−1 resp.

eventually ũik,...,in−m−1;in−m,...,in
Ik

extends to Ñn−m−1 (however, ū
ik,...,in−m−1
Ik

resp. its continuous

extension to ∂n−m−21
(In−m−1)
n−m−1 still has an incompatibility at 1(In−m−3)

n−m−3 ).
To analyze the transformation behaviour of the operator, we �rst note that the requirements

of Lemma 5.5 on aij are met as for i, j ∈ {i1, . . . , in−m} we have aij(p) = pi(δij − pj) by
equation (5.69), while all other non-diagonal coe�cients vanish. Hence, by the Lemma, we
have for i, j ∈ {i1, . . . , in−m}

ãij(p̃) = p̃i(δij − p̃j), (5.82)

while for ãijij with j = n − m + 1, . . . , n we obtain

ãijij(p̃) = aijij(p) =
pij(1 − pij)
∏j−1

l=n−m pil
=

p̃ij(1 − p̃ij)
∏j−1

l=n−m−1 p̃
il
. (5.83)

Likewise, ãin−min−m takes the form

ãin−min−m(p̃) =
p̃in−m(1 − p̃in−m)

p̃in−m−1
, (5.84)

whereas all other coe�cients vanish. Altogether, this yields

L̃∗ =
1

2

n−m−1∑

j,l=1

p̃ij(δ
j
l − p̃il)

∂

∂ p̃ij

∂

∂ p̃il
+

1

2

n∑

j=n−m

p̃ij(1 − p̃ij)
∏j−1

l=n−m−1 p̃
il

∂2

(∂ p̃ij)
2 (5.85)

on
(
1

(In−m−1)
n−m−1 × �

(In\In−m−1)
m+1

)
\
⋃n−1

j=n−m−1 Nj. If p̃in−m is chosen with alternative orientation

(cf. remark 5.3), then p̃in−m needs to be replaced by (1 − p̃in−m) everywhere.
Thus, a�er the (m+1)-st blow-up step, the structure of domain, solution and operator is the

same as before, just with the indexm replaced bym + 1. Eventually, a�er n − k − 1 blow-up
steps domain, solution and operator have attained the asserted form of the corresponding
statements. In particular, the remaining uIk as a proper solution smoothly extends to the

entire boundary of1(Ik)
k , and hence so does ū

ik,ik+1
Ik

in1
(Ik)
k+1, implying that each ũ

ik,ik+1;ik+2,...,id
Ik

smoothly extends to 1
(Ik+1)

k+1 × �
(Id\Ik+1)

d−k−1 , and eventually Ũ
ik,ik+1;ik+2,...,in
Ik

smoothly extends to

1
(Ik+1)

k+1 × �
(In\Ik+1)

n−k−1 . Moreover, the restriction property in equations (5.80) and (5.81) yields
equation (5.48).

Proof of Corollary 5.9. In the given setting, we have ū
i0,i1
{i0}

(p̃) = u{i0}(p̃
i0 + p̃i1)

p̃i0

p̃i0+p̃i1
=

u{i0}(1)(1 − p̃i1) in 1
({i0,i1})
1 = �

({i1})
1 (and 1

({i0})
0 = {0}({i0})), which proves the asserted

form of the (simpli�ed) solution, the domain and the additional faces.

However, the global smoothness of the transformed solution of Proposition 3.2 observed in
the precedingCorollary does not necessarily hold for other functions in question, i.e. arbitrary
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iteratively extended solutions U satisfying the extension constraints 3.1 (this corresponds to
U particularly being of class C∞

p0
). However, we still have a weaker global regularity assertion

for the transformed function Ũ on the entire image of the simplex (only formulated for the
stationary component corresponding to the setting of Corollary 5.9):

Lemma 5.10. Let n ≥ 2, Id := {i0, i1, . . . , id} ⊂ {0, 1, . . . , n} for d = 0, . . . , n with ii 6= ij for

i 6= j and u{i0} : 1
({i0})
0 −→ R. Then an iterated extension U =

∑n
d=0 ud ∈ C∞

p0

( ⋃n
d=0 1

(Id)
d

)

of u{i0} obeying the extension constraints 3.1 is transformed by a successive blow-up transforma-

tion 8
rn−1
sn−1 ◦ . . . ◦ 8

r1
s1 as in Proposition 5.4 into a function Ũ =

∑n
d=0 ũd :

⋃n
d=0�

(I′d)

d −→

R with extension to all faces
{
p̃i1 = 1, . . . ,

{
p̃in = 1

}
(which can be considered as boundary

instances of any�
(I′d)

d ⊂ �
(I′n)
n ) which is of class C∞

p and vanishes on the mentioned faces.

For the proof, we trace the extendability of Ũ towards the additional faces back to that

of U in 1
(In)
n for approaching the incompatibilities – which will be accomplished by the next

lemma. Note that in the following we will use a disjoint formulation of the additional faces by
putting

Nj = �
(I′j−1)

j−1 × {0}({ij}) × ⊠
(I′n\I

′
j)

n−j . (5.86)

Lemma 5.11. In the setting of a full blow-up transformation as in Proposition 5.4, for d =

1, . . . , n the additional face Nd = �
(I′d−1)

d−1 ×{0}({id})×⊠
(I′n\I

′
d)

n−d ⊂ �
(I′n)
n corresponds to1

(Id−1)

d−1 ⊂

1
(In)
n with additional values existing for

pid+1+···+pin

pid+pid+1+···+pin
, . . . , pin

pin−1+pin
(which can be considered

as limits of corresponding sequences). Furthermore, for j = 1, . . . , d − 1 the face {p̃ij = 1} ⊂

�
(I′d−1)

d−1 corresponds to pij−1 = 0 in1
(Id−1)

d−1 , in particular its interior corresponds to1
(Id−1\{ij−1})

d−2 .

Proof. To take account of the ‘additional’ faces Nm of �
(I′n)
n produced during the blow-up

transformations, we carry out the inverse of the full blow-up transformation of Proposition 5.4
(cf. equations (5.19)–(5.22)), yielding

p̃i1 := pi1 + · · · + pin , (5.87)

p̃i2 :=





pi2 + · · · + pin

pi1 + pi2 + · · · + pin
for pi1 + · · · + pin > 0

0 for pi1 + · · · + pin = 0,
(5.88)

...

p̃ij :=





pij + · · · + pin

pij−1 + pij + · · · + pin
for pij−1 + · · · + pin > 0

0 for pij−1 + · · · + pin = 0,

(5.89)

...
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p̃in :=





pin

pin−1 + pin
for pin−1 + pin > 0

0 for pin−1 + pin = 0
(5.90)

for p ∈
⋃n

d=0 1
(Id)
d and conversely

pi1 = p̃i1(1 − p̃i2), (5.91)
...

pij = p̃i1 · · · p̃ij(1 − p̃ij+1), (5.92)
...

pin−1 = p̃i1 · · · p̃in−1(1 − p̃in), (5.93)

pin = p̃i1 · · · p̃in (5.94)

for p̃ ∈
⋃n

d=0�
(I′d)

d (note that we also have pi0 = 1 − p̃i1); however, the given equations also

smoothly extend to the entire�
(I′n)
n .We can therefore also transform theNd ⊂ �n back to1n,

i.e. p̃id = 0 implies pid , . . . , pin = 0, whereas 0 < p̃i1 , . . . , p̃id−1 < 1 leads to pi1 , . . . , pid−1 > 0.
If however p̃ij = 1, this corresponds to pij−1 = 0 (and pi1 , . . . , pij−1 , pij+1 . . . , pid > 0 if 0 <

p̃i1 , . . . , p̃ij−1 , p̃ij+1 , . . . , p̃id < 1 and p̃id+1 = 0).

Proof of Lemma 5.10. By Lemma 5.1 and Proposition 5.4 and Corollary 5.9, the full blow-up
transformation respectively maps

n⋃

d=0

1
(Id)
d 7−→

n⋃

d=0

�
(I′d)

d (5.95)

C∞-di�eomorphically (cf. equation (5.50)). By the C∞
p0
-regularity of U, un in 1

(In)
n smoothly

connects with un−1 in 1
(In−1)
n−1 , and consequently so does ũn in �

(I′n)
n with ũn−1 in �

(I′n−1)

n−1 ; an
analogous statement holds for all lower dimensions. Thus it remains to show that Ũ extends

those faces of�
(I′n)
n given by {p̃ij = 1} for j = 1, . . . , n such that the extension is of class C∞

p .

By Lemma 5.11, the interior of {p̃ij = 1} ⊂ �
(I′n)
n corresponds to pij−1 = 0 and pil >

0 for l 6= j − 1 in 1
(In)
n , thus to 1

(In\{ij−1})

n−1 , which is a boundary face of 1
(In)
n outside the

assumed extension path de�ned by the (ordered) In. Hence by the C∞
p0
-regularity, the relevant

continuous extension ofU needs to be zero there, and this is attained smoothly when coming

from the interior 1
(In)
n . Considering the di�eomorphism properties of the transformation,

this also applies to the cube.

An analogous observation holds for subcubes �
(I′d−1)

d−1 ⊂ �n, d = 1, . . . , n: The interior of

its face {p̃ij = 1} corresponds to1
(Id−1\{ij−1})

d′−1 ⊂ 1
(Id−1)

d−1 when transformed back to the simplex
(cf. equation (5.95) and Lemma 5.11). This is again outside the assumed extension path, in

particular if starting in 1
(Id−1)

d−1 , and hence the corresponding boundary extension of ud−1

needs to smoothly attain zero there by the C∞
p0
-regularity, which likewise applies analogously

to the cube.
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6. The stationary Kolmogorov backward equation and uniqueness

When we ask for the long-term behaviour of the process, i.e. which alleles are eventually lost
and in which order, we are lead to the stationary Kolmogorov backward equation. Solutions
of this equation have already appeared implicitly in the preceding section as extensions of
solutions in ∂01n since the corresponding operator L∗

0 has 0 as its only eigenvalue.
Although we have already developed the extended setting presented in Section 3, we start

by considering some interior simplex1n, (resp. the corresponding restriction of an extended
solution). Then, for a solution in 1n, we may argue again that all eigenmodes of the solution
corresponding to a positive eigenvalue vanish for t → −∞, while those corresponding to
the eigenvalue zero are preserved. This implies that a solution of the Kolmogorov backward
equation (1.9) in 1n converges uniformly to a solution of the corresponding homogeneous or
stationary Kolmogorov backward equation

{
L∗u(p) = 0 in 1n

u(p) = f (p) in ∂1n

(6.1)

for u ∈ C2(1n) and with boundary condition f (which needs to be attained smoothly in a
suitable sense).

At �rst sight, this looks like a boundary value problem (for some suitably chosen boundary
function f , assuring the uniqueness of a solution). However, as may be expected from the
previous considerations, the role of the boundary here is di�erent from usual boundary value
problems and again requires some extra care: On the one hand, a proper solution in 1n

always converges to the trivial stationary solution (≡ 0), whose (continuous) extension to the
boundary also vanishes at all negative times. On the other hand, any solutionwhich extends to
∂1n is already strongly constrained by the degeneracy behaviour of the di�erential operator
if suitable regularity assumptions on the solution in 1n (cf. also (2.9)) apply:

Lemma 6.1 (Stem lemma). For a solution u ∈ C∞(1n) of equation (6.1) with extension U ∈

C∞
p

(
1n

)
, we have

L∗U = 0 in 1n. (6.2)

Proof. We shall proceed iteratively: Assuming that L∗
kU = 0 for all 1(Ik)

k ⊂ ∂k1n, we show

that this property extends to each 1
(Ik−1)

k−1 ⊂ ∂k−11
(Ik)
k for every 1

(Ik)
k , and hence we obtain

L∗
k−1U = 0 on ∂k−11n. A repeated application then yields (6.2).

W. l. o. g. let 1
(Ik)
k and 1

(Ik−1)

k−1 ⊂ ∂k−11
(Ik)
k with Ik\Ik−1 = {ik}. Then for the operator L∗

k

in 1
(Ik)
k , we have

L∗
k = L∗

k−1 + pik
( ∑

ij∈Ik\{0}

(δ
ij
ik

− pij)
∂

∂pij

∂

∂pik

)
(6.3)

with L∗
k−1 being the restriction of L∗

k to 1
(Ik−1)

k−1 .

We take some p ∈ 1
(Ik−1)

k−1 and choose a sequence (pl)l∈N in 1
(Ik)
k with pl → p and

apply this operator to U at pl ∈ 1
(Ik)
k . The resulting expression inside the bracket is



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 477

controlled by p
ik
l → 0 while approaching p. Since the derivatives of U are bounded in the

interior on a closed neighbourhood of p because of the regularity of U, the expression is

continuous up to p. Likewise, all derivatives of U within 1
(Ik−1)

k−1 are continuously matched

by the corresponding ones in 1
(Ik)
k , thus L∗

k−1(U(pl)) is also continuous up to the boundary
in p (as the corresponding coe�cients are, too). Hence, the whole expression is continuous
up to the boundary in p with L∗

k−1U(p) ≡ L∗
kU(p) = 0, and since p was arbitrary, this applies

to all of 1
(Ik−1)

k−1 .

Assuming the stated pathwise regularity, this con�nes the boundary values of U resp. f
on ∂1n =

⋃n−1
k=0 ∂k1n and consequently, equation (6.1) is rather restated as an extended

homogeneous or extended stationary Kolmogorov backward equation7

{
L∗U(p) = 0 in 1n\∂01n

U(p) = f (p) in ∂01n

(6.4)

forU ∈ C2
p

(
1n

)
with the only ‘free’ boundary values remaining the ones at the vertices ∂01n.

If we also assume global continuity of the solution, the values on ∂01n, however, su�ce as
boundary information determining a solution uniquely. In such a case, a stationary solution
and the stationary component of a global extension as in the preceding section also coincide:

Proposition 6.2. A solution U ∈ C∞
p

(
1n

)
∩ C0

(
1n

)
of the extended stationary Kolmogorov

backward equation (6.4) for some boundary condition f0 : ∂01n −→ R is uniquely de�ned and

coincides with (the projection of) a solution of the extendedKolmogorov backward equation (1.9)
in

(
1n

)
−∞

to1n for a �nal condition f ∈ L2
( ⋃n

d=0 ∂d1n

)
with f ≡ f0χ∂01n as in theorem 3.3.

Furthermore, the space of solutions is spanned by p1, . . . , pn and 1.

Proof. The �rst assertionmay be shown by an iterative application of themaximumprinciple:

On every face1
(Ik)
k ⊂ ∂k1n for all 1 ≤ k ≤ n, the operator L∗ is locally uniformly elliptic, and

hence,U|
1

(Ik)

k

is uniquely de�ned by its values on ∂1
(Ik)
k by virtue of the maximum principle.

Applying this consideration iteratively for ∂01n, . . . , ∂n1n = 1n yields the desired global
uniqueness.

Next, we will show that a �nal condition f = χ
1

({i0})
0

for some i0 ∈ In gives rise to an

extended solution SU(p, t) = SU(p) = pi0 in
(
1n

)
−∞

resp. 1n proving the second assertion.

With f as described, the extended solution (cf. theorem 3.3) is solely given by SU ≡ SUi0 , i.e.

SU{i0}(p, t) = u{i0}(p, t)χ1
({i0})
0

(p)

+
∑

1≤d≤n

∑

i1∈In\{i0}

· · ·
∑

id∈In\{i0,...,id−1}

U
i0,...,id
{i0}

(p, t)χ
1

({i0,...,id})

d

(p) (6.5)

7As already stated, it does not matter whether ∂01n is added to the domain of de�nition of the di�erential equation
or not. Although ∂01n has been included in equation (6.2), we omit this here for formal consistency.
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(cf. equation (8.8) in [19]). Considering an arbitrary 1
(Id)
d ⊂ 1n, Id ⊂ In, we obtain for the

restriction of SUi0 to 1
(Id)
d using equation (3.3)

SU{i0}(p, t)|1(Id)

d

=
∑

i1∈Id\{i0}

· · ·
∑

id∈
Id\{i0,...,id−1}

U
i0,...,id
{i0}

(p, t)

=
∑

i1∈Id\{i0}

· · ·
∑

id∈
Id\{i0,...,id−1}

u{i0}(π
i0,...,id(p), t)

d−1∏

j=0

pij
∑d

l=j p
il

(6.6)

with u{i0}(π
i0,...,id(p), t) ≡ 1 as π i0,...,id(p) ∈ 1

({i0})
0 for all p ∈ 1

(Id)
d and u{i0} = f = 1

in
(
1

({i0})
0

)
−∞

by assumption. Since we have
∑d

l=0 p
il = 1 in 1

(Id)
d , we may replace the

expression
∑d

l=j p
il by 1 −

∑j−1
l=0 p

il and rearrange the sum (by also suppressing the last sum
as the index id does no longer occur), which yields altogether

SU{i0}(p, t)|1(Id)

d

= pi0




∑

i1∈
Id\{i0}

pi1

1 − pi0
· · ·




∑

ij∈
Id\{i0,...,ij−1}

pij

1 −
∑j−1

l=0 p
il

· · ·




∑

id−1∈
Id\{i0,...,id−2}

pid−1

1 −
∑d−2

l=0 pil








 .

(6.7)

As we have p
ij+...+pid

1−
∑j−1

l=0 p
il

= 1 for j = d − 1, . . . , 1, the whole expression reduces to

SU{i0}(p, t)|1(Id)

d

= pi0 . Since 1
(Id)
d was arbitrary, we obtain SU{i0}(p, t) ≡ SU{i0}(p) = pi0 in

the entire 1n.

In terms of the probabilistic interpretation, the extended setting (6.4) also matches the
considerations of Section 3 as equation (6.4)may be viewed as the limit equation for t → −∞

of the extended Kolmogorov backward equation (1.9) (which may be shown as previously).
This is also re�ected in proposition 6.2: For t → −∞ and any solution, the only target sets that
remain attractors for all time are of course the vertices (which correspond to con�gurations
of the model where all but one allele are extinct), and hence the stationary solutions match
the stationary components of the global extensions as in Theorem 3.3, which in turn result

from a non-vanishing �nal condition in ∂01n. Then, every 1
({i})
0 ⊂ ∂01n may give rise to a

solution (component) pi – in particular yielding a positive target hit probability on the entire
1n for all times. However, even the stationary component of solutions as in Theorem 3.3 may
in principle be perceived as time-dependent and also describing the transitional attraction of
target sets in the entire 1n induced by a given ultimate target set in ∂01n.

Altogether, Proposition 6.2 under the given restrictions thus already yields a full descrip-
tion of the stationary model in the entire 1n. However, dropping the global continuity
assumption, a much wider class of (stationary) solutions, i.e. iteratively extended solutions of
the Kolmogorov backward equation obeying the extension constraints 3.1, may be obtained
as described in the preceding section. To establish the uniqueness also for this bigger class, we
may apply the blow-up schemeof Section 5 anddemonstrate the uniqueness of solutions of the
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correspondingly transformed stationary Kolmogorov backward equation on the cube (which
is basically analogous to the simplex, cf. the preceding considerations). The eventual result
will be obtained by applying the uniqueness result for the cube to the transformed iteratively
extended solutions (assuming su�cient regularity if necessary). Again, this is limited to the
stationary components.

7. The uniqueness of solutions of the stationary Kolmogorov backward

equation

The main application of the blow-up scheme is the uniqueness proof for the iteratively
extended solutions of the Kolmogorov backward equation that satisfy the extension con-
straints 3.1. In the present paper, this is limited to the stationary components. First, we
will discuss the uniqueness of solutions of the correspondingly transformed stationary
Kolmogorov backward equation on the cube (which is basically analogous to the simplex, cf.
section 10 in [19]). A�er that, the main result will be stated by applying the uniqueness result
for the cube to the transformed iteratively extended solutions (assuming su�cient regularity
if necessary).

Regarding the uniqueness of stationary solutions on the cube with the transformed
Kolmogorov backward operator given by equation (5.54), we have the cube version of the
simplex result of Lemma 10.1 in [19]:

Lemma 7.1 (stem Lemma, cube version). For a solution u ∈ C∞(�n) of the stationary

Kolmogorov backward equation L̃∗
nu = 0 in�n with

L̃∗
n :=

1

2

n∑

i=1

p̃i(1 − p̃i)
∏i−1

j=1 p̃
j

∂2

(∂ p̃i)
2 (7.1)

and with extension U ∈ C∞
p (�n), we have

L̃∗U = 0 in�n, (7.2)

i.e.

L̃∗
dU = 0 with L̃∗

d :=
1

2

n∑

i=ı̂(d)+1
i6=im

p̃i(1 − p̃i)

i−1∏
j=ı̂(d)+1
j6=im

p̃j

∂2

(∂ p̃i)
2 (7.3)

in �d =
{
p̃i1 = bi1 , . . . , p̃

in−d = bin−d

}
⊂ ∂d�n for all 1 ≤ d ≤ n − 1 and all i1, . . . , in−d ∈

{1, . . . , n}, ik 6= il for k 6= l with ı̂ = ı̂(d) := arg max
i1,...,in−d

{bim = 0} resp. ı̂(d) := 0 if bim = 1 for

all im.

Proof. The statement is proven iteratively: Assuming that equation (7.3) holds in some
(arbitrary) domain �d+1 ⊂ ∂d+1�n, we show that a corresponding formula also holds for
any�d ⊂ ∂d�d+1 ⊂ ∂d�n. A repeated application of the argument then yields the assertion.

Let �d+1 =
{
p̃i1 = b1, . . . , p̃in−d−1 = bn−d−1

}
and �d =

{
p̃i1 = b1, . . . , p̃in−d = bn−d

}

with in−d 6= i1, . . . , in−d−1 and bn−d ∈ {0, 1}. If we have in−d < ı̂(d + 1), then as
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p̃in−d → 0 resp. p̃in−d → 1, the value of the operator in equation (7.3) applied to U – with the
occurring derivatives and the coe�cients being continuous – depends continuously on p̃ up
to the boundary. Thus equation (7.3), which already has the corresponding form for�d (note
ı̂(d) ≡ ı̂(d + 1)), also holds on�d.

If we rather have in−d > ı̂(d + 1) and bn−d = 1, then, when choosing some p̃ ∈ �d and a
sequence (p̃l)l∈N in�d+1 with p̃l → p̃, the expression

1

2

p̃
in−d

l (1 − p̃
in−d

l )
∏in−d−1

j=ı̂(d)+1
j6=im

p̃
j
l

∂2

(∂ p̃
in−d

l )
2U(p̃l) (7.4)

is controlled by (1−p̃
in−d

l )while approaching p̃ and –with the derivatives ofU being bounded
on a closed neighbourhood of p̃ because of the regularity of U – is continuous up to p̃.
Analogous to the previous case, all other summands of the operator in equation (7.3) are
also continuous on the boundary, thus proving that the corresponding form of equation (7.3)
(with the in−d-th summand deleted) holds in�d (again ı̂(d) ≡ ı̂(d + 1)).

If instead in−d > ı̂(d + 1) and bn−d = 0, then we may multiply the whole equation (7.3)
by p̃in−d . If now p̃in−d → 0, then by a similar argument as above all derivatives of the operator
that do not contain p̃in−d in the denominator of their coe�cient continuously vanish, whereas
the values of all other summands are also continuous up to the boundary. Thus, equation (7.3)
holds on�d with the index ı̂(d + 1) replaced by ı̂(d) = in−d.

The obtained equation (7.2) may again be perceived as an extended version of the
stationary Kolmogorov backward equation on the cube (cf. also equation (6.4), although the
domains do not fully correspond), and we have (cf. Proposition 10.2 in [19]):

Proposition 7.2. A solution U ∈ C∞
p (�n) ∩ C0

(
�n

)
of the extended stationary Kolmogorov

backward equation

L̃∗U = 0 in�n (7.5)

with L̃∗ as in equation (7.3) is uniquely determined by its values on ∂0�n.

Proof. The uniqueness may be shown by a successive application of the maximum principle
for strata of increasing dimension, starting from ∂0�n. We shall �rst show that in every
instance of the domain �d ⊂ ∂d�n for all 1 ≤ d ≤ n, the solution U|�d

is uniquely
de�ned by its values on ∂�d: If equation (7.3) on �d comprises d derivative terms, it is
straightforward to see that the operator is locally uniformly elliptic on �d, hence satis�es
the assumptions of Hopf ’s maximum principle. Since the solution is of class C0 on �d, this
yields the desired uniqueness. If, in contrast, �d is such that the operator on �d comprises
only d′ < d derivative terms, we �rst show the uniqueness on each d′-dimensional �bre of�d

(with corresponding boundary part), which follows from an analogous consideration: Clearly,
on each �bre the operator is locally uniformly elliptic and the solution is continuous up to the
respective boundary, thus the uniqueness likewise follows from Hopf ’s maximum principle.
By assembling, the desired uniqueness is then obtain for the entire �d. Applying these con-
siderations successively for ∂0�n, . . . , ∂n�n = �n yields the desired global uniqueness.
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With the blow-up scheme at hand, the preceding uniqueness result may also be conveyed
to the simplex 1n, assuming some additional regularity for the transformation image (which
still does not imply an analogous regularity for the pre-image). We �nally arrive at:

Theorem 7.3. Let n ∈ N+, Id := {i0, i1, . . . , id} ⊂ {0, 1, . . . , n} for d = 0, . . . , n with ii 6= ij

for i 6= j and u{i0} : 1
({i0})
0 −→ R be given. Then an extension SU

i0,...,in
{i0}

:
⋃

0≤d≤n 1
(Id)
d −→

R as in Proposition 3.2 is unique within the class of extensions U which satisfy the extension

constraints 3.1, i.e.

(i) are of class C∞
p0

( ⋃
0≤d≤n 1

(Id)
d

)
with U|

1
({i0})
0

= u{i0} and

(ii) solve the stationary Kolmogorov backward equation(6.4) in
⋃

0≤d≤n 1
(Id)
d ,

as well as, in case n ≥ 2, whose

(iii) transformation image Ũ :
⋃n

d=0�
(I′d)

d −→ R by a successive blow-up transformation

8
rn−1
sn−1 ◦ . . . ◦ 8

r1
s1 as in Proposition 5.4 has an extension to the entire boundary ∂�

(I′n)
n

which is of class C∞
p

(
�

(I′n)
n

)
∩ C0

(
�

(I′n)
n

)
.

Consequently, also the global extension SU{i0} as in Proposition 8.4 in [19] or in Theorem 3.3 is

unique.

Proof. The assertion for the trivial case n = 1 directly follows, as SU
i0,i1
{i0}

is already su�ciently

regular in 1
(I1)
1 ≡ �

(I′1)
1 for an application of the maximum principle: In particular, it is

globally continuous, and along with the locally uniform ellipticity of the Kolmogorov back-
ward operator, the uniqueness follows. For n ≥ 2, any function U which is a solution of the

stationary Kolmogorov backward equation (6.4) in 1
(In)
n by a full blow-up transformation of

the domain transforms into a function Ũ, which solves the stationary Kolmogorov backward

equation (5.44) in
⋃n

d=0�
(I′d)

d (cf. Proposition 5.4 resp. Corollary 5.9 and Lemma 5.10).

Furthermore, with the assumed regularity a�er a full blow-up, it has an extension to �
(I′n)
n

which is pathwise smooth as well as globally continuous and by Lemma 7.1 solves the

stationary Kolmogorov backward equation L̃∗S̃U = 0 in �
(I′n)
n with L̃∗ as in equation (7.3).

Hence, the uniqueness result of Proposition 7.2 applies and proves the uniqueness of the
transformed function (and, in view of the injectivity of the blow-up, also the uniqueness of

U) – for speci�ed boundary data on the entire ∂0�
(I′n)
n . Thus, we only need to show that these

boundary data are uniquely determined by the assumptions made.
This is straightforward: In accordance with Lemma 5.10, Ũ or its corresponding contin-

uous extension vanishes on {p̃ij = 1} ⊂ ∂�
(I′n)
n , j = 1, . . . , n. As by assumption (iii) the

continuous extendability applies to the entire�
(I′n)
n , Ũ resp. its extension even vanishes on

{
p̃i1 = 1

}
, . . . ,

{
p̃in = 1

}
. (7.6)

In particular, this means that Ũ or its extension vanishes on any vertex�0 ⊂ ∂0�
(I′n)
n – which

may always be written as

�0 =
{
p̃ij = bj for j = 1, . . . , n

}
with bj ∈ {0, 1}– (7.7)
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except for the vertex�(∅)
0 = {(0, . . . , 0)}, where it attains the value u{i0} as stated previously.

Thus, the (transformed) boundary data given on all vertices are the same for any extension in

question, and sinceSU
i0,...,in
{i0}

:
⋃

0≤d≤n 1
(Id)
d −→ R as in Proposition 3.2 satis�es the extension

constraints and has an extension to the entire boundary ∂�
(I′n)
n which is in C∞

p (�
(I′n)
n ) ∩

C0
(
�

(I′n)
n

)
(thismay be seen directly from equation (5.49)), it also is the unique extension.

Acknowledgments

We wish to thank the referee for his/her comments that we have found very helpful for improving our
presentation.

Funding

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no.
267087. J. H. and T. D. T. have also been supported by eight scholarships from the IMPRS “Mathematics
in the Sciences” during earlier stages of this work.

References

[1] Amari, S., Nagaoka, H. (2000). Methods of Information Geometry. Translations of Mathematical
Monographs, Vol. 191. Providence, RI: American Mathematical Society.

[2] Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L. Information Geometry. Monograph, to appear.
[3] Baxter, G.J., Blythe, R.A., McKane, A.J. (2007). Exact solution of the multi-allelic di�usion model.

Math. Biosci. 209:124–170.
[4] Bürger, R. (2000). TheMathematical Theory of Selection, Recombination, andMutation. New York:

John Wiley.
[5] Epstein, C.L., Mazzeo, R. (2010). Wright-Fisher di�usion in one dimension. SIAM J. Math. Anal.

42:568–608.
[6] Epstein, C.L., Mazzeo, R. (2013). Degenerate Di�usion Operators Arising in Population Biology.

Princeton, NJ: Princeton University Press.
[7] Ethier, S.N. (1976). A class of degenerate di�usion processes occurring in population genetics.

Comm. Pure Appl. Math. 29:483–493.
[8] Ethier, S.N., Gri�ths, R.C. (1993). The transition function of a Fleming-Viot process.Ann. Probab.

21:1571–1590.
[9] Ethier, S.N., Kurtz, T. (2005). Markov Processes: Characterization and Convergence. New York:

Wiley.
[10] Ethier, S.N., Nagylaki, T. (1980). Di�usion approximations of Markov chains with two time scales

and applications to population genetics. Adv. Appl. Prob. 12:14–49.
[11] Ewens,W.J. (2004).Mathematical PopulationGenetics I. Theoretical Introduction. Interdisciplinary

Applied Mathematics. New York: Springer-Verlag.
[12] Feehan, P.M.N. Maximum principles for boundary-degenerate linear parabolic di�erential oper-

ators. Preprint, arXiv arXiv:1306.5197.
[13] Fisher, R.A. (1922). On the dominance ratio. Proc. Roy. Soc. Edinb. 42:321–341.
[14] Gri�ths, R.C. (1979). A transition density expansion for amulti-Allele di�usionmodel.Adv. Appl.

Probab. 11:310–325.
[15] Gri�ths, R.C. (1980). Lines of descent in the di�usion approximation of neutral Wright-Fisher

models. Theoret. Popn. Biol. 17:37–50.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 483

[16] Gri�ths, R.C., Spanó, D. (2010). Di�usion processes and coalescent trees. In: Bingham, N.H.,
Goldie, C.M., eds. Probability and Mathematical Genetics, Papers in Honour of Sir John Kingman.
LMS Lecture Note Series, Vol. 378. Cambridge: Cambridge University Press, pp. 358–375.

[17] Hofrichter, J. (2014). On the di�usion approximation ofWright-Fisher models with several alleles
and loci and its geometry, PhD thesis, University of Leipzig, Leipzig, Germany.

[18] Hofrichter, J., Tran, T.D., Jost, J. A hierarchical extension scheme for solutions of theWright–Fisher
model. To appear in Comm. Math. Sci.

[19] Hofrichter, J., Tran, T.D., Jost, J. A hierarchical extension scheme for backward solutions of the
Wright–Fisher model. Submitted.

[20] Jost, J. (2013). Partial Di�erential Equations. Graduate Texts in Mathematics, Vol. 214. Berlin:
Springer.

[21] Jost, J. (2014). Mathematical Methods in Biology and Neurobiology. Universitext. London,
Heidelberg.

[22] Karlin, S., Taylor, H.M. (1981).ASecondCourse in Stochastic Processes. NewYork: Academic Press.
[23] Kimura, M. (1955). Solution of a process of random genetic dri� with a continuous model.

PNAS–USA 41:144–150.
[24] Kimura, M. (1955). Random genetic dri� in multi-allele locus. Evolution 9:419–435.
[25] Kimura, M. (1956). Random genetic dri� in a tri-allelic locus; exact solution with a continuous

model. Biometrics 12:57–66.
[26] Kingman, J.F.C. (1982). The coalescent. Stoch. Proc. Appl. 13:235–248.
[27] Littler, R.A. (1975). Loss of variability at one locus in a �nite population.Math. Biosci. 25:151–163.
[28] Littler, R.A., Fackerell, E.D. (1975). Transition densities for neutral multi-allele di�usion models.

Biometrics 31:117–123.
[29] Littler, R.A., Good, A.J. (1978). Ages, extinction times, and �rst passage probabilities for a

multiallele di�usion model with irreversible mutation. Theor. Pop. Bio. 13:214–225.
[30] Øksendal, B. (2003). Stochastic Di�erential Equations. Universitext. Berlin: Springer.
[31] Sato, K. (1978). Di�usion operators in population genetics and convergence of Markov chains. In:

Kallianpur, G., Kölzow, D., eds.Measure Theory Application to Stochastic Analysis. LNM, Vol. 695.
Berlin: Springer, pp. 127–137.

[32] Shimakura, N. Équations di�érentielles provenant de la génétique des populations [Di�erential
equations originating from population genetics]. Tohoku Math. J. 29:287–318.

[33] Shimakura, N. (1981). Formulas for di�usion approximations of some gene frequency models.
J. Math. Kyoto. Univ. 21:19–45.

[34] Tavaré, S. (1984). Line-of-descent and genealogical processes, and theor applications in popula-
tion genetics models. Theor. Popn. Biol. 26:119–164.

[35] Tran, T.D. (2012). Information geometry and the Wright-Fisher model of mathematical popula-
tion genetics. PhD thesis, University of Leipzig, Leipzig, Germany.

[36] Tran, T.D., Hofrichter, J., Jost, J. (2013). An introduction to the mathematical structure of the
Wright-Fisher model of population genetics. Theory Biosc. 132:73–82.

[37] Tran, T.D., Hofrichter, J., Jost, J. A general solution of theWright-Fisher model of random genetic
dri�. Submitted.

[38] Tran, T.D., Hofrichter, J., Jost, J. (2014). The evolution of moment generating functions for the
Wright-Fisher model of population genetics.Math. Biosci. 256:10–17.

[39] Wright, S. (1931). Evolution in Mendelian populations. Genetics 16:97–159.
[40] Wright, S. (1949). Adaptation and selection. In: Jepson, G., Mayr, E., Simpson, G., eds. Genetics,

Paleontology, and Evolution. Princeton, NJ: Princeton University Press, pp. 365–389.




