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ABSTRACT ARTICLE HISTORY

We develop a large-scale regularity theory of higher order for divergence- ~ Received 14 September 2015
form elliptic equations with heterogeneous coefficient fields a in the Accepted 10 February 2016
context of stocha_xstic .homogenizatior). The Iarge—_scale regularity of KEYWORDS
a-harmonic functions is encoded by Liouville principles: The space of ke regylarity; higher-order
a-harmonic functions that grow at most like a polynomial of degree k correctors; Liouville principle;
has the same dimension as in the constant-coefficient case. This result random elliptic operator;
can be seen as the qualitative side of a large-scale Ck""—regularity theory, regularity theory; stochastic
which in the present work is developed in the form of a corresponding homogenization
Ck""—”exce§s decay” es_timate: For a given a-harmonic function u on MATHEMATICS SUBJECT
a ball Bg, its energy distance on some ball B, to the above space of CLASSIFICATION
a-harmonic functions that grow at most like a polynomial of degree k 35B65; 60H25; 35B27; 35J15;
has the natural decay in the radius r above some minimal radius rg. 35J47

Though motivated by stochastic homogenization, the contribution

of this paper is of purely deterministic nature: We work under the

assumption that for the given realization a of the coefficient field,

the couple (¢,0) of scalar and vector potentials of the harmonic

coordinates, where ¢ is the usual corrector, grows sublinearly in a mildly

quantified way. We then construct “kth-order correctors” and thereby

the space of a-harmonic functions that grow at most like a polynomial of

degree k, establish the above excess decay, and then the corresponding

Liouville principle.

1. Introduction

We are interested in the regularity of harmonic functions u associated with a uniformly elliptic
coeflicient field a in d space dimensions (by which we understand a tensor field satisfying
ME|? < & - af and |a€| < |&| for some A > O and any & € RY) via the divergence-form
equation

—V-aVu=0. (1)
Without continuity assumptions, the local regularity of (weak finite-energy) solutions can be
rather low, in particular in case of systems (see e.g., [18, Example 3] for the scalar case and
[9, Section 9.1.1] for De Giorgi’s celebrated counterexample in the systems case). Because
of their homogeneity, the same examples show that even when the coeflicients are uniformly
locally smooth, the large-scale behavior of a-harmonic functions can be very different from the
constant coeflicient, i.e, Euclidean case; see e.g., Proposition 21 in the appendix below. Large-
scale regularity is most compactly encoded in a Liouville statement of the following form: The
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space of a-harmonic functions u of growth not larger than |x| has the same dimension as in
the constant-coefficient case, where the space is spanned by spherical harmonics up to order
k. Because of the above-mentioned counterexamples, such Liouville statements may fail for
uniformly elliptic coefficient fields: For example, in the case of systems, there are nonconstant
harmonic maps that decay to zero at infinity.

The question whether this situation generically improves for certain ensembles of coef-
ficient fields, namely, stationary and ergodic ensembles as in stochastic homogenization,
seems to have first been phrased and partially answered by Benjamini et al. [6, Chapter
6 and Theorem 3] in the context of random walks in random environments: Under the
mere assumption of ergodicity and stationarity, sublinearly growing a-harmonic functions
are almost surely constant. The argument is limited to the scalar case but can deal with
nonuniformly elliptic cases as percolation.

Motivated by error estimates in stochastic homogenization, the topic of a regularity theory
for random elliptic operators was independently addressed in a more quantitative way by
Marahrens and Otto [14]. In Corollary 4 of that paper, for any & < 1, a large-scale C*-inner
regularity estimate for a-harmonic functions has been established, with a random constant of
finite algebraic moments—however under stronger assumptions on the ergodicity, namely, a
finite spectral gap w. r. t. Glauber dynamics in the case of a discrete medium.

A major step forward constitutes the work of Armstrong and Smart [3], where the above
result was improved to a large-scale C*!-inner regularity estimate even in case of (symmetric)
systems, by showing that the approach of Avellaneda and Lin [5] for obtaining (large-scale)
regularity of a-harmonic maps, which itself is based on a Campanato-type iteration, can be
extended from periodic to random coefficient fields. Under a strong assumption of ergodicity,
namely, that of a finite range of dependence, optimal exponential moments for the random
constant are obtained.

This work motivated the paper of Gloria et al. [11], which in turn is the basis for the
present paper. In that work, another tool from periodic homogenization, namely, the vector
potential o for the harmonic coordinates (next to the well-known scalar potential ¢, also
called the corrector), was transferred to the random case, see (7) and (8) for the characterizing
properties. This allowed to establish a C1*-Liouville theorem, meaning that the space of sub-
quadratically growing a-harmonic functions is almost surely spanned by the constants and
the d a-harmonic coordinates x; + ¢;. This holds even for nonsymmetric systems and was
shown under the mere assumptions of stationarity and ergodicity. More precisely, it relied on
the almost sure sublinear growth of the couple (¢, o) of correctors in the sense of

lim ¢, =0, 2)
r— 00
where
1 1/2
£ 1= Sup — (][ 19> + |o|? dx) : (3)
R>r R Bgr

This sublinear growth (2) was shown to hold under the assumptions of stationarity and qual-
itative ergodicity. In a second step, large-scale C1*-inner regularity estimates for a-harmonic
functions were obtained, where the random constant satisfies a stretched exponential bound
under mild decay assumptions on the spatial covariance of a. In a later version of [11], the
optimal stochastic moments for the random constant were obtained.
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In the context of nonlinear elliptic systems in divergence form, the result of Armstrong
and Smart [3] on the large-scale C*!-estimate was generalized by Armstrong and Mourrat
[2] to nonsymmetric coeflicients and well beyond finite range, further confirming that the
random large-scale regularity theory holds under just a mild quantification of ergodicity, like
expressed by standard mixing conditions.

In the present work, we go beyond C and establish a large-scale Ck*-theory in the
form of a corresponding excess decay and Liouville result, see Theorem 3 and Corollary
4. This lifts the result of Avellaneda and Lin [5] from the periodic to the random case. To
streamline presentation, we first establish the C>*-versions of our theorems, see Theorem 7
and Corollary 8.

Let us clearly state that the contribution of this paper is exclusively on the deterministic
side. The large-scale regularity is obtained under the assumption that the given realization
a of the coeflicient field is such that the corresponding corrector couple (¢, o) satisfies the
following slight quantification of (2), namely,

lim &, =0 4)
r—>00
with
o
£y 1= Z min{1,2m+1/r}82m. (5)
m=0
Note that (4) is equivalent to Y > &om < 00.

In a recent preprint by the authors of the present paper [8], it is shown that (4) holds for
almost every realization a in case of a stationary ensemble of coefficient fields under mild
quantification of ergodicity in the form of an assumption on a mild decay of correlations of a:
More precisely, given a stationary centered tensor-valued Gaussian random field & on R and
a bounded Lipschitz map ® : R**?¢ — R4*9 taking values in the set of A-uniformly elliptic
tensors, the coefficient field

a:= ®(a)

almost surely admits correctors with the property (4) assuming just decay of correlations in
the sense

(a(x)a))| < Clx — y|=°

for some C > 0andsome 8 € (0, c(d, 1)) (where (-) denotes the expectation). Note that under
the assumption of a spectral gap for the ensemble, as far as the corrector ¢ is concerned (but
not the “vector potential” o), an estimate like (4) could also be deduced to hold almost surely
from [12, Proposition 2], modulo the passage from a discrete to a continuum medium.

The key building block for this large-scale C*-theory is the space of a-harmonic functions
that grow at most like a polynomial of degree k at infinity. Proposition 2 and Corollary 4 imply
that under our assumption (4) this space has the same dimension as in the Euclidean case—
e.g., for k = 2 the space of a-harmonic functions that grow at most quadratically is spanned by
1+d+ @ — 1 maps -, which partially answers the question by Benjamini et al. [6, Chapter
6]. The kth-order excess (11), by the decay of which we encode the C5¢-theory, measures the
distance to this space in terms of the averaged squared gradient. As our construction shows,
there is a one-to-one correspondence between the asymptotic behavior of functions in this
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space and apyn,-harmonic polynomials of degree k. However, there is no natural one-to-one
correspondence between elements of this space and kth-order aj,y,,,-harmonic polynomials.

In a recent preprint by Armstrong, Kuusi, and Mourrat published after our present work,
a higher-order regularity result related to our present results is obtained [1], however, under
a much stronger assumption on the decorrelation of coefficient fields (namely, finite range of
dependence).

Before stating our results, let us recall the definition of the correctors (¢, ). The corrector
¢ satisfies the equation:

—V.a(e;+ Ve;) = 0. (6)
The flux correction g;; is defined as:
qi = a(ei + Vi) — apome; 7)

where aj,,, is the homogenized tensor, i.e., apome; is the expectation of a(e; + V¢;). In our
analysis, we will only use that ap,,, is some constant elliptic coefficient. We introduce the
corresponding vector potential o;jx (antisymmetric in its last two indices) by requiring that

V. O‘ij = q,J (8)

For the actual construction of a o with stationary gradient, we refer to [11]; in this note, we
just use the property (8). In the context of periodic homogenization, both the scalar and the
vector potentials ¢ and o may be chosen to be periodic. In stochastic homogenization, one
cannot always expect to have a stationary (¢, o) (for instance in d < 2 even in case of finite
range of dependence) but, as mentioned above, we expect sublinear growth in the sense of (4)
under mild ergodicity assumptions.

Finally, let us give a brief historical overview on stochastic homogenization of elliptic
PDEs. The qualitative theory of stochastic homogenization was initiated by Kozlov [13] and
Papanicolaou and Varadhan [17]; the first (nonoptimal) quantitative estimate—derived under
the assumption of finite range of dependence—is due to Yurinskii [19]. Naddaf and Spencer
introduced spectral gap inequalities to quantify ergodicity in stochastic homogenization [16].
Gloria and Otto [12] were the first to obtain optimal estimates on the size of the homogeniza-
tion error in the linear elliptic case, though with nonoptimal stochastic integrability. Optimal
stochastic integrability—however, with nonoptimal estimates on the size of the error—was
obtained by Armstrong and Smart [3]. Finally, recently optimal error estimates with optimal
stochastic integrability were established by Gloria and Otto [10] and Armstrong et al. [1].
For a more probabilistic viewpoint of stochastic homogenization of linear elliptic equations,
see [15]. In the case of fully nonlinear elliptic equations, a logarithmic rate of convergence
has been established by Caffarelli and Souganidis [7] under a very weak assumption on
decorrelation; Armstrong and Smart [4] have obtained a power-law rate of convergence in
the case of finite range of dependence.

Notation. Throughout the paper, we use the Einstein summation convention, i.e., we
implicitly take the sum over an index whenever this index occurs twice. For example, b;0;v is
an alternative notation for (b - V)v and b;Vv; is an alternative notation for 2?21 b;Vv;.

By C, we denote a generic constant whose value may be different in each appearance of
the expression C; similarly, by e.g., C(d, 1), we denote a generic constant depending only on
d and A whose value again may be different for every use of the expression C(d, ).

By :={E e RAxd (Eij + Eji) (anom)ij = 0}, we denote the space of matrices E;; for which
Ejjxix; is an ape,»-harmonic second-order polynomial.
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The notation P (or P(x)) generally refers to a polynomial. By Pk, we denote the space
of homogeneous polynomials of degree k. By Pghom, we denote the space of homogeneous
polynomials of degree k which are aj,,,-harmonic. On the space Pk we introduce the norm
[|P|| := sup,cp, |P(x)]; note that any other norm on this finite-dimensional space would do
as well, since we do not care for C(k)-constants.

2. Main results

The proof of our large-scale C** regularity theory relies in an essential way on the
existence of kth-order correctors for the homogenization problem, which enable us to
correct apom-harmonic polynomials of degree k by adding a small (in the L?-sense)
perturbation.

The ansatz for the deformation of an aj,,,-harmonic polynomial P, homogeneous of degree
k(ie,P e Pghom), into an a-harmonic function u with the same growth behavior is motivated
by homogenization: We consider P as the “homogenized solution of the problem solved by u,”
so that we think in terms of the two-scale expansion u &~ P + ¢, P and have that the error
Yp := u — (P + ¢r0rP) satisfies —V - aVyp = V - ((¢ra — o) VO P). To construct u, we
reverse the logic and first construct a solution y¥p to the above elliptic equation and then set
u:= P+ ¢xoxP + ¥p.

Theorem 1 (Existence of higher-order “correctors for polynomials”). Letd > 2, k > 2, and
suppose that the corrector ¢ and the flux-correction potential o satisfy the growth assumption
(4). Let 1y be large enough so that e,,, < o holds [the existence of such ry is ensured by (4)],
where &g = e9(d, k, 1) > 0 is a constant defined in the proof below. Given any P € P¥, there
exists a ‘corrector for polynomials” yp satisfying

—V.-aVyp =V - ((¢pia — o;)V;P) %)

as well as

1 1/2
sup —r— <][ Vsl dx) < C(d kW) |Plle2, (10)
rR>r R Br
for any r > ry. Moreover, Yp depends linearly on P.

Our vp indeed enable us—in conjunction with the first-order correctors ¢;—to correct
anom-harmonic kth-order polynomials.

Proposition 2. Letd > 2,k > 2, and let P € P‘i‘hom. Suppose that yp satisfies (9). We then
have

=V -aV (P + ¢i0;P + yp) = 0.
Let us now state our C** large-scale regularity result.
Theorem 3 (C* large-scale excess-decay estimate). Let d > 2, k > 2, and suppose that (4)

holds. Let u be an a-harmonic function. Let yp = 0 for linear polynomials P (in order to simplify
notation) and let Yp be the functions constructed in Theorem 1 for higher-order polynomials.
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Consider the kth-order excess

K 2
Exci(r) := . elg{ ][ Vu—-V Z(P" + ¢i0iPc + ¥p )| dx. (11)
K Thom T k=1

Let 0 < a < 1 and let ry be large enough so that 3, < &y holds (the existence of such ry is
ensured by (4)), where g9 = eo(d, k, A, &) > 0 is a constant defined in the proof below. Then for
all r,R > ro with r < R the Ck¢ excess-decay estimate

r)Z(k—l)-‘rZa

Exci(r) < C(d, kA, @) (E Exci(R) (12)

is satisfied.

Our large-scale CkT1:* excess-decay estimate entails the following kth-order Liouville
principle.

Corollary 4 (kth-order Liouville principle). Letd > 2, k > 2, and suppose that the assumption
(4) is satisfied. Then the following property holds: Any a-harmonic function u satisfying the
growth condition

1 1/2
lim inf — (][ |u|? dx) =0 (13)
r—>oco r 3
is of the form
k
u=a+bixi+o)+ Y (Pc+¢idiPe + ¥p,)
K=2

with somea € R, b € R% and P, € Pghom for2 < k < k (ie, P is a homogeneous
Anom-harmonic polynomial of degree k). Here, the yp denote the higher-order correctors whose
existence is guaranteed by Theorem 1.

In particular, the space of all a-harmonic functions satisfying (13) has the same dimension
as if a was replaced by a constant coefficient, say apom.

Note that the defining Eq. (9) and the growth condition

1 1/2
lim — (][ |wp|2dx> =0
r—>0o0 r B,

together determine the corrector of order k only up to a-harmonic “polynomials” of order
k — 1: The first-order corrector ¢; is determined only up to an additive constant; the second-
order corrector p (for a quadratic polynomial P) is determined only up to corrected affine
functions of the form x — & - (x+ @) + cwith & € R and ¢ € R, and so on. Let us denote by
Pk the space of solutions to the problem —V - aVv = 0 which satisfy the growth condition

1 ) 1/2
rli)ngorlcT(]irlvl dx) =0.
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With this notation, our higher-order correctors yield a canonical isomorphism of the quotient
spaces

Sk Bk—1 ~ Bk /Dk—1
Parom! Pang = PalPa

Ahom

defined by:
[Pl [P+ ¢ - VP+ yp]

forany P Pc]fhom' Note that this isomorphism is independent of the particular choice of the

correctors ¢ and Vp.

The basic strategy of the proof of Theorems 1 and 3 is as follows:

o First, under the assumption that we already have constructed an appropriate kth-order
corrector on a ball B, we show a C* excess-decay estimate on large scales within this
ball for a-harmonic functions (Lemma 14). This result directly implies Theorem 3 as soon
as we have proven the existence of a corrector on R¥ (i.e., as soon as we have established
Theorem 1). The basic idea for this first part of the proof is a standard approach from
regularity theory: We transfer the regularity properties of the constant-coeflicient equation
—V - apomVitpem = 0 to the equation —V - aVu = 0. To accomplish this, we employ an
error estimate for the homogenization error.

« Our C5 estimate implies a C*~ 1! theory for a-harmonic functions on balls Bg, provided
that we have already constructed an appropriate kth-order corrector on Bg. This is done in
Lemma 17.

« Atlast, we are able to build our corrector, starting from small balls and iteratively doubling
the size of our balls: We decompose the right-hand side of Eq. (9) into contributions from
dyadic annulli. In each step, we add the contribution from the next larger scale & ;mro
determined as the Lax-Milgram solution to the problem

-V an; _vy. (XBzero_BZ”’fo (pia — 0;)VO,;P),

to the corrector on the old scale w;mm. At this point, we make use of the Ck-11 theory to
show that after possibly subtracting an appropriate k—1-th order a-harmonic “polynomial,”
the new contribution S;mro displays kth-order decay in the interior {|x| < 2"y}, down to
the ball {|x| < ro}. This ensures that on a ball of a given fixed size r with r < 2™, the
contribution from the next larger scale does not destroy the smallness of the corrector.
We are therefore able to construct the corrector on the next larger scale wﬁmﬂm as the
sum of the corrector on the old scale w}z)’"ro and the new contribution “g‘gmm minus the
aforementioned a-harmonic “polynomial” This iterative enlargement is carried out in
Lemma 18 and finally enables us to prove Theorem 1.

« The kth-order Liouville principle stated in Corollary 4 is an easy consequence of our C<+1¢
large-scale excess-decay estimate.

3. A C?“ large-scale regularity theory for homogeneous elliptic equations with
random coefficients

For the reader’s convenience, we shall first provide a proof for the C>% case of our theorems, as
in this case, the proofs are less technical while already containing the key ideas. In particular,
the overall structure of our proofs is the same as in the Ck case. Since we shall use a somewhat
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simplified notation in the C22 case, let us reformulate the C>® case of our theorems using this
notation.

Theorem 5 (Existence of second-order correctors). Let d > 2 and suppose that the corrector
¢ and the flux-correction potential o satisfy the growth assumption (4). Let ry be large enough
so that g5, < e holds [the existence of such ry is ensured by (4)], where eg = g9(d, L) > 0isa
constant defined in the proof below. Given any E € R¥*9, there exists a second-order corrector

Y satisfying
— V- aVyg = E;V - [0jj + 0ji + a(piej + ¢jei)] (14)
as well as
1 1/2

sup — ( Vel dx) < C(d, 1)|Ele,s

rR>r R \JB,
for any r > ry. Moreover, the corrector Vg depends linearly on E.

Due to the linear dependence of ¢ on E, below we shall also write E;j/;; in place of yg.

Note that our second-order correctors indeed enable us—in conjunction with the first-
order correctors ¢;—to correct ayo,-harmonic second-order polynomials.

Proposition 6. Let d > 2 and let E € & (i.e., assume that the polynomial Ejjxix; is apom-
harmonic). Suppose that g satisfies (14). We then have
-V aVEij(x,-xj =+ xigbj =+ d),-xj =+ WZ]) = 0.

Our C*“ large-scale regularity theorem reads as follows.

Theorem 7 (C*> large-scale excess-decay estimate). Let d > 2 and suppose that (4) holds. Let
u be an a-harmonic function. Let Wg be the second-order corrector constructed in Theorem 5.
Consider the second-order excess

Excy(r) := inf |Vu — V(bi(x; + ¢i) + Ejj(xixj + xiepj + dixj + wij))|2 dx. (15)
beR4,EcE JB,

Let 0 < a < 1 and let ry be large enough so that 3, < & holds [the existence of such r is

ensured by (4)], where g9 = €o(d, A,«¢) > 0 is a constant defined in the proof below. Then for
allr,R > ry with r < R the C*>* excess-decay estimate

7\ 2+2a
Excy(n) < Cdma) () Exca®) (16)
is satisfied.
Our large-scale excess-decay estimate entails the following C** Liouville principle.

Corollary 8 (C>% Liouville principle). Let d > 2 and suppose that the assumption (4) is
satisfied. Then the following property holds: Any a-harmonic function u satisfying the growth
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condition

1 1/2
lim inf —— (][ lu|? dx> =0
r—oo r2te \ Jp

for some o € (0, 1) is of the form

u=a+ bi(xi+ ¢i) + Ejj(xixj + xihj + ¢ixj + V¥ij)
withsomea € R, b € R%, andE € & (i.e., someE € Rddeor which Ejjx;x; is an apom-harmonic
polynomial).

Let us start with the proof of Proposition 6, which only requires a simple computation.

Proof of Proposition 6. Making use of the fact that Ejj((ahom)ij + (ahom)ji) = 0 (in the third
step below), we compute

E,-]-V . (O’,’j + O’ji) + E,-jV . a(¢iej + ¢jei)

8
(=) EijCIij + Eijq;'i + EijV . a(qb,-ej + ¢j€i)

(7)
= Ejj(aj((Id)ik + 0kPi) — (@nom);ji) + Eij(aix((Id)jk + 9kPj) — (ahom)ij)

+ E;jV - a(¢iej + djei)
= Eij(ajk(9kxi + kpi) + aik(9kxj + 0kpj))

+EjV - a(iVx; + ¢ Vx)
= E,-j(aV(xi + ¢) - ij + aV(xj + ¢]) -Vx;) + Ezjv . a(¢,-ij + d)ij,-)
6
© B4V - (aV(xi + ¢5) + x:aV (x5 + ¢))) + EgV - a(diVx; + ¢ Vi),
We therefore obtain

E,:,V . (U,'j + UJ,) + EijV . a(d),-ej + e,-qu)
= EjV - aV(xixj + xi9j + ¢ix)),

which together with (14) implies our proposition. O

3.1. The C*“ excess-decay estimate
To establish our C>* excess-decay estimate, we make use of the following lemma, which

essentially generalizes Theorem 7 to correctors which are only available on balls Bg.

Lemma9. Letd > 2. ForanyE € £, denote by Vg a solution to the equation of the second-order
corrector (14) on the ball Br (without boundary conditions); assume that Wy depends linearly
on E. Set

1/2
-1 712
£7 o= sup p max |Vyg|© dx . (17)
¥.r.R rSpIS)R <E65,|E|=1][BP
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For an a-harmonic function u in B, consider the second-order excess

Exea(r) = inf ][ Vit = 9 (b 00) + Byt + iy + 9 + )| de. (1)
beR4,EcE JB,
Forany 0 < o < 1, there exists a constant &y,in > 0 depending only on d, A, and « such that
the following assertion holds:
Suppose thatry > 0 satisfies ey R < Emin. Then forallr € [ro, R] the Cc2e excess-decay
estimate
—_— 7\ 2+2a ~—
Bxe < Cda) (5)  Bxa® (19)
is satisfied.
Note that the infimum in (18) is actually attained, as the average integral in the definition
of Excy(p) is a quadratic functional of b and E. Denote by b”™" and EP™" a corresponding
optimal choice of b and E in (18). We then have the estimates

R2|Er,min . ER,min|2 + |br,min N bR,min|2 < C@d, A, Ol)]g;(-éz(R) (20)
and

RP|EP™M2 4 phmin|2 < C(d, A, o) 4 |Vul? dx. (21)
Br

Proof of Theorem 7. Theorem 7 obviously follows from Lemma 9 by setting 5 := ¥, with
Yk being the second-order corrector whose existence is guaranteed by Theorem 5. O

The following lemma is essentially a special case of our C>* large-scale excess-decay
estimate Lemma 9; it entails the general case of Lemma 9 (see below).

Lemma 10. Letd > 2 andletR,r > Osatisfyr < R/4andeg < 1. ForanyE € &, denote by Vg
a solution to the equation of the second-order corrector (14) on the ball Br (without boundary
conditions); assume that g, depends linearly on E. For an a-harmonic function u in B, consider
again the second-order excess (18). Then the excess on the smaller ball B, is estimated in terms
of the excess on the larger ball Br and our quantities eg and Vrg: We have

~ r\4 2 - r\—d

Exc;(r) < C(d, 1) (—) + (e L R? max ][ \Vg|? dx (—)

R E€&,|E|=1 /B, R
x Excy (R).

Before proving Lemma 10, we would like to show how it implies Lemma 9.

Proof of Lemma 9. First choose 0 < @ < 1/4 so small that the strict inequality C(d, 1)6* <
6?12 is satisfied (with C(d,A) being the constant from Lemma 10). Then, choose the
threshold &, for &,, + €7 ro.R SO small that the estimate

4 2/(@d+1)?* | 2 —d 2420
c@n [0t + (e ™ 42 o] <0

holds.
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Let M be the largest integer for which &R > r holds. Applying Lemma 10 inductively
with R,, := 6™ 1R, 1, := 0™R for 1 < m < M, we infer

Exc;(0MR) < (0712 MExc, (R).

Since we have trivially

—d
—_—~ r —~
Excy(r) < <—> Excy (rpr)
™M

and since by definition of M, we have r > Orys and thus 6 < 61 % [where we recall 6 =
0(d, x,a)], we infer

—~ r\2+2a —

Exca(n) = i) () Bxea(R).
It remains to show the estimates for |b""" — pR™i%| and |E-™in — ERMiN| 45 well as the bounds

for |b"™"| and |E"""|. To do so, let us first estimate the differences |[pRm™in — prm™in| and
|ERmomin _ Ermsmin| We have the estimate

][ [V (™ — b (xi 4 i)
B

m

+ V(Egm’min — E;jm’min)(xixj' + xippj + pixj + 12’11) |2 dx

2
dx

<2 ][ ‘Vu — VB (x4 i) — VEirj""m"" (xixj + xi¢; + pixj + Vi)
B,,
. . ~ 2
+2 ][ ‘Vu — bem’mm(xi + ¢i) — VE?m’mm(xixj + xi¢; + dixj + Vij) dx
B

m

— R, \¢ —
< 2Excy(rm) + 2| — ) Exca(Ry)
T,

m

o\ 220 Ry, 2420
< C(d, A @) (%) X (R) + C(d, 1, )0~ <T) fxey(R)

2 —
= Cdna) (T) O™ " Bxe®).
From Lemma 11 below, we thus obtain

|me,min _ bt’m,mil’l| + R|ERm,min _ Erm,min| S C(d’)\.’a)(eol)m /E.;CZ(R)

Note that a similar estimate for the last increment |p™™Min — prmin| 4 R|Era-min _ prmin
can be derived analogously. Taking the sum with respect to m and recalling that R; = R and
tm = Ry+1, we finally deduce

M
|bR,mi1’l _ br,min| + R|ER,miH _ Er,min| S C(d, }\.)(X) Z(el){)m E/;éz(R)

m=0
< C(d, A, )/ Exca (R).

It only remains to establish the last estimate for |b"™Min| and |ER™n. By the previous estimate,
it is sufficient to prove the corresponding bound for b®™" and ER™" This in turn is a
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consequence of the inequality

b

<2Ex;(R) +24 |Vulldx <44 |Vul*dx
Br Br

, , - 2
VB (i ¢) + VEG™ (xix; + xidhy + dixj + V)| dx

together with Lemma 11 below. O

The following lemma quantifies the linear independence of the corrected polynomials x; +
®i, Eij(xixj + xi¢j + ¢ixj + ¥;); it is needed in the previous proof.

Lemma 11. Suppose that for every E € £ \ {0}, the functions ¢ and g satisfy

p~? ][ lp1? dx + p~2|E| 2 ][ |Vl dx < &,
B,D

By

where gy = &o(d) is to be defined in the proof below. Then for any b € R* and any E € &, we
have the estimate

1b]* + p2|EI* < C(d) ][ |Vbi(x; + ¢i) + VE;i(xixj + xij + dixj + Vi) |* dx.  (22)
By

Proof. Poincaré’s inequality (with zero mean) and the triangle inequality imply

1/2
(][ |Vbi(xi + ¢i) + VEj(xixj + xi¢hj + ¢ixj + V)| dx)
B,

- C(d) P acR

L1 1/2
i bix; + E; 2d
C(d) ’ LGR (]ip |bixi + Ejixixj — al x)

1/2
1nf (f |bigi + El](xld)] + ¢ixj + 1,[’z]) a| dx) ]

1/2
1
> ———in (][ |bi(xi + ¢i) + Ejj(xixj + xipj + ¢ixj + w,]) —al? dx)

| V

On the one hand, by transversality of constant, linear, and quadratic functions, we have

1/2
pigﬂg <][ |bix; + Ejjxixj — al? dx) Z@(IlerplEl)

On the other hand, we have by the triangle inequality and Poincaré’s inequality,

P acR

12
lnf (f |bii + Eij(xi¢j + ¢ixj + WI]) a| dx)

1/2 1/2
2 1 2
9| dx) + plE|~ _ max ( IVl dx)
By

P Ee&,|E|=1

1
= C@) | (bl + pIEI); (

By
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Putting these estimates together, by boundedness of the integrals in the previous line by &7 p*
our assertion is established. O

Proof of Lemma 10. In the proof of the lemma, we may assume that

Exc;(R) =4 |Vul® dx. (23)
Br
To see this, recall that the infimum in the definition of ngvcz (R) is actually attained. Denote
the corresponding choices of b and E by b™" and E™". Replacing u by u — b!"" (x; + ¢;) —
EIT]’.“"” (xixj + xi¢hj + Pixj + 1/~f,~j), we see that we may indeed assume (23): The new function is
also a-harmonic due to (6) and Proposition 6.
We then apply Lemma 20 below to our function u. This yields an aj,,,,-harmonic function
Upom close to u which in particular satisfies

][ |Vipom|? dx < C(d,A) 4 |Vul? dx.
Bry2 Br

By inner regularity theory for elliptic equations with constant coefficients, the aj,,,,-harmonic
function uy,,, satisfies

|V ttom (0)| + Rsup |VZupom| + R sup | V2 upopm|
Bprya Br/a

1/2 12
< C(d,)) ][ |V itpom|® dx < C(d,)\) ( |Vul|? dx> )
Bry2 B

bR,Taylor = Vit (0),

ER,TLZ)/ZOY = vzuhom (0)

Let us define

R, Taylor

Since —V - apom Vipom = 0 holds, we infer E (@hom)ij = 0 and therefore ERTwylor ¢ ¢

(note that E}; Taylor Eﬁ Ty lor). By Taylor’s expansion of Vuy,,, around x = 0, we deduce for

any x € Bg/4 the bound

_ bR,Taylor 1 ER sTaylor

V tthom () (xjei + xie)) | < 1x|% sup |V upom|.

27 Brya
Making use of the identity
(1d + (V$)") Vitom — V ( B G+ ) + S B i+ gy + ¢>,~xj>>
R
+ v Or(¢]ez + ¢iej)

1
= (Id + (V¢)f) <Vuhom(x) _ bR,Taylor _ ER ,Taylor

> i (xje,- + Xi€j)) s
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the previous estimate yields in connection with the bound for |V3upom| and r < R/4

Jo

(1d + (V)) Vitom — V < bR (s + ) + ER T (i + xihy + d>ixj))

2
R, Taylor

+ E (pjei + diej)

4
< C(d, ) (%) i IVl dxx]é 1d + (V) |? dx.
R r

By the Caccioppoli inequality for the a-harmonic function x; + ¢; (6), we have

C(d, x)
2

Ix + ¢|* dx < C(d, 1) (1 + €3,). (24)
Byr

][ d+ (V)" dx <
The approximation property of upem + @iditpom in Br/ from Lemma 20 below implies

2 srN\—d
IVt — V (thom + $iditipom)|* dxx < C(d, e/ TV (= IVul? dx.
R R
B, Br

Combining the last three estimates and the equality

Vu—_V ( RTaylor( 4 di) + ER ,Taylor

(xixj + xipj + Pixj + 1/71;;'))

[(Id + (V) Vitpom — V ( BT (x4 ) + ER T iy + xighy + ¢>ixj>)
1 aylor aylor 7

+ EES,T yl (¢jei —+ ¢,€])] — EE;Q_’T yl ((,bjei + (,biej + VWZ])

[Vt =V tthom + Gidithom) | + &1V dittnom

we infer

A
54]€3r

2

Vu—V ( BRI (4 i) + ER T (eixi + xihj + i + xZ,-,-))

(1d + (V))) Vitpom — V ( BT (x4 ) + ER T s + xihy + ¢ixj)>

1R Tayl
+ EEf; Y (jei + diej)

2

1 ,Taylor 7
EE,I; (pjei + piej + Vij)

|V — V (tpom + Giditnom)|* dx
B,

+4][ |¢iV dittpom|* dx

B,
r\4

<cdr (=) (1+¢ |Vul? dx
<R) ( 7‘) Bx

+ C(d)|ER™®or2 (rs + max ][ Vg |? dx)

Ee&,|E|=1
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—d
+ C(d, 1)/ @D ( ) |Vul? dx
R} T

+ C(d)rzef sup |V2uhom|2.
Brya

This finally yields in connection with the above bounds on VZUpom in Brys (recall that
ERTaylor _ Vzuhom(o))

A

< C(d, ) (%)4 (1+¢2) ]{3 IVul? dx

2
R, Taylor

(xixj + xij + Pixj + IZij))

Vu—V( RTaylor( 4 b)) + E

+C(d,)»)R_2][ |Vu|2dx(re +  max ][IW/?EIzdx)
Br B

E,|E|=1

+ C(d, e @ (R) |Vul? dx
Br

+C(d,)r*e?R> 4 |Vul* dx
Br

4 - —d
< C(d,n) [(%) n (af{(d*”z +R? max 4 |[Vig)? dx) (%) ]

E€& El=1Jp,

|Vul|? dx,
Br
d d 2
where in the last step we have used the inequality &2 < (%) ek < (%) 8}22/ @+ The new
bound directly implies the desired estimate. O

3.2. The C'"! excess-decay estimate

We now show how our C** excess-decay estimate for the second-order excess Exc, from
Lemma 9 entails a C''! excess-decay estimate for the first-order excess Exc.

Lemma 12. Letd > 2 and R > 0. For any E € &, denote by g a solution to the equation of
the second-order corrector (14) on the ball Br (without boundary conditions); assume that IZE
depends linearly on E. There exists a constant € y,in > 0 depending only on d and X such that the
following assertion holds:

Suppose rg € (0, R] is so large that &, < &pmin and

1/2
sup p~' [ max ][ \VyEl> dx | < emin
ro<p<R Eeé&,|E|=1 B,

hold. Let u be an a-harmonic function on Br. Then there exists bR € RY for which the estimate

2
Vi — VBR(xi + )2 dx < C(d, 1) (%) \Vul? dx

B, Br
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holds for any r € [ro, R]. Furthermore, bX depends linearly on u and satisfies

bR < Cd,r) 4 |Vul? dx.
Br

Proof. In Lemma 9, fix o := 1/2. We then easily verify that Lemma 9 is applicable in our
situation. Set bR := b"0™" and ER := E"™"; this implies that bR depends linearly on u. The
estimate (21) takes the form

RIERPZ + 1bR?> < Cd,r) 4 |Vul? dx.
Br

Furthermore, applying Lemma 9 with ry playing the role of  and r playing the role of R, we
deduce from (20)

P2 [ER — EPmin2 4 |pR — oM < C(d, A)Exca(r)

(19) r\2+2a — 7\ 2+2a
< cdr (= Exca(R) < C(d, ) (= |Vul|? dx.
( R) 2 ( R> e

We now estimate

Vi — Vb (x; + ¢i) | dx
B,

. . L2
<3 ][ )Vu — VO (xi + i) — VEZ"mm(xixj + xi¢j + ¢ixj + Wij)’ dx
By
. L2
+3 ][1; ‘VE;-’mm (x,-xj + x,‘¢j + ¢,‘Xj + %) dx
+3 ][ (B2 — bRV (x; + )| dx
B,

< 3Excy(r)

+ C(d)|E"™™ | <][ lg1* + r*[Id + (V$)'|* dx + max ][ |V¢E|2dx>
B, E€&,|E|=1 B,

+ 3[b7 — bR ][ [1d + (V) |? dx
B,

(19,24) T2t ~ romin2.2, 2 2 2
= @y (3) Exa® + CAMIE A + A+ el +e) )
+ C(d, 1) |b"™" — BR12(1 4 £3,)
2420 . .
< Cd, 1) (%) Excy (R) + C(d, 1) [EP™1 22 4+ C(d, 1) | — bR|2.

In conjunction with the two previous estimates, we infer

|Vu — VbR (x; + ¢)|* dx
B,

<C@dn) [(%)ma + ((%)2 + (%)Ha) n (%)Ha] i IVul? dx.

Our lemma is therefore established. O
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3.3. Construction of second-order correctors

Using the C"! theory established in the previous subsection, we now proceed to the construc-
tion of our second-order corrector. The following lemma provides the inductive step; starting
from a function which acts as a corrector on a ball Bg, we construct a function acting as a
corrector on the ball Byg.

Lemma 13. Let d > 2 and let ry > 0 satisfy the estimate €3,, < €9, where g9 = go(d, A) is to

be chosen in the proof below. Then the following implication holds:
Let R = 2Mry for some M € Ny. Suppose that for every E € R?*4 we have a solution y to
the equation
—V - aVyg = EgV - xeloy + oji + a(die; + gjen)]

subject to the growth condition

1/2 M
r! (][ VYR dx) < Cu(d, M|E| Y min{1,2"ro/r}eqmy,
By m=0

for all r > 1o, where C1(d, ) is a sufficiently large constant to be chosen in the proof below.
Assume furthermore that ¥ depends linearly on E.
Then for every E € R4 there exists a solution Y2 to the equation

—V - aVYE* = EjV - X, (05 + 0ji + a(ie + ¢jei)]
subject to the growth condition

M+1

/2
r! (][ VYR dx) < CudWIE Y. min{l,2"ro/r}em,
m=0
for all r > ro. Furthermore, yrZR depends linearly on E and we have
1/2
r1 (J%, V2R — vy R dx) < Ci(d, )|Eleypany,.

Proof. To establish the lemma, we first note that the assumptions of the lemma ensure that
the C11 excess-decay lemma (Lemma 12) is applicable on Bg with yp := wg. To see this, we
estimate for any r € [y, R]

1/2
rt (][ VYR dx) < C1(d, 1) |E|eas, < Ci(d, 1)|E|eo.
B,

By choosing &9 > 0 small enough depending only on d and A and C; (which is to be chosen
at the end of this proof), we can ensure that the assumption of Lemma 12 regarding smallness
of ey . pis satisfied.

Let now £X be the weak solution on R? with square-integrable gradient, which is unique
up to additive constants and whose existence follows from the Lax-Milgram theorem, to the
problem

—V - aVER = EijV - XBy—Br (05 + 07i) + EjV - Xpye—pra(diej + gjer).
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Obviously, VX depends linearly on E; after fixing the additive constant, for e.g., by requiring
/. B & R dx = 0, £ itself depends linearly on E. Furthermore, we have the bound

/R [ IVEEI” dx < COIE? fR X Bl * + X3y |91 dx
and therefore

/R ) |VER|? dx < C(\)|E|*R*He2,,. (25)

As 55 is a-harmonic in Bg, Lemma 12 now implies the existence of some bg e R? for which
the estimates

IR12 < C(d,r) 4 |VER? dx < C(d, M|EI*R*e2, (26)
Br

and

][wsE VO + 601 de < ) ( ][ VER? dx

< Cd, k)|E|2r28§R

hold for all r € [rg, R] and which linearly depends on E.
Furthermore, we have for r > R

g IVER — V(bR)i(xi + ¢ dx

24
2 oq, x)< /|V§§|2dx+|b§|2(1+8§,)>
B,

d
(25,26) R
< C(d,M)|E]*R? <<?) +1+ s§r> e3r

< C(d, \)|E|*R*e3;.

The combination of both r-ranges yields

1/2
<][ IVSE V(b )ilxi + @i )| dx) < C(d, M) |E| min{1,2R/r}&3R. (27)
In total, we see that

o= YR 4R — R)itxi + o)

is the desired function (note in particular that the last term is a-harmonic), provided we
choose C; to be the constant appearing in (27). O

We now establish existence of second-order correctors by means of the previous lemma.

Proof of Theorem 5. We just need to construct an “initial” second-order corrector ¥ subject
to the properties of Lemma 13; then Lemma 13 yields a sequence (d/émro)m which is a Cauchy
sequence in H! (Bg) for every R > 0 due to the last estimate in the lemma and our assumption
(4) which implies summability of 5m,,. Thus, the limit 1/ satisfies the Eq. (14) in the whole
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space, depends linearly on E, and satisfies the estimate

1/2 o0
r1 <][ IVyg|? dx> < C1(d, M)|E| Z min{1,2"ry/r}egmy,
B, m=0

for any r > ry.
To construct ¥, just use Lax-Milgram to find the solution ¥ on R with square-
integrable gradient (unique up to an additive constant) to the equation

=V - aVyy = E;V - [xs, (05 + 0ji + a(piej + pjei)].

Obviously, after fixing the additive constant appropriately ¥’ depends linearly on E. Further-
more, we have the energy estimate

/R VY dx < COIE? /R 128,01 + | xp, a0 dx,

ie, foranyr > rg
/ VYR |? dx < C(d,A>|E|2/ ¢ + lo'|* dx
B, By,
and therefore
][ VYR dx < C(d, VIEPre} g+

< C(d, 1) |E|*r* min{1, (ro/r) }s

We note that this provides the starting point for Lemma 13, possibly after enlarging the
constant C; in the statement thereof. O

3.4. Proof of the C>“ Liouville principle

The C>* Liouville principle (Corollary 8) is an easy consequence of our large-scale excess-
decay estimate (Theorem 7).

Proof of Corollary 8. Let o € (0,1) be such that

1 1/2
lu)? dx) =0
R2+a (][f;R

holds. By the Caccioppoli estimate, we deduce

1/2
dim RH& (][ |Vul® dx> = 0.

Fix r > rg. The excess-decay estimate from Theorem 7 yields together with the trivial bound
Exc2(R) < fp. |Vul® dx that

11

Excy(r) < C(d, 1, ) (%)ma Exc,(R)

1/2\ 2
< C(d, A, a)r* > (R1+a (f |Vul? dx> ) :
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Passing to the limit R — oo, we deduce that
Excy(r) =0

holds for every r > ry. Therefore, on every B, with r > ry, Vu can be represented exactly as
the derivative of a corrected polynomial of second order (since the infimum in the definition
of Exc; is actually attained, as noted at the beginning of the proof of Lemma 10), i.e., we have

Vu = Vbi(x; + ¢i) + VE;(xixj + xidj + dixj + Vi)

in B, for some b" € R? and some E" € &. It is not difficult to show that for r large enough,
the b" and E" are actually independent of r and define some common b € RY and E € &:
For example, one may use Lemma 9 to compare the b, E" for two different radii r1, 7, > rg;
the estimate for |b" — b"2| and |E™ — E"| then contains the factor Exc, (max(ry,;2)) and is
therefore zero. Moreover, the gradient Vu determines the function  itself up to a constant,
i.e., we have

u=a+ bi(xi + ¢i) + Ejj(xixj + xihj + dixj + i)

for some a € R, some b € R?, and some E € £ C R¥¥4, O

4. A Ck Jarge-scale regularity theory for elliptic equations with random
coefficients

We now generalize our proofs from the C>* case in order to correct polynomials of order k
and obtain our Ck large-scale regularity theory. We proceed by induction in k.

To establish our C5* regularity theory, let us first show Proposition 2, which - like the
proof of Proposition 6 in the C> case - only requires a simple computation.

Proof of Proposition 2. Making use of the fact that we have (aj,);j0;9;P = 0 (in the third step
below), we obtain

—V - (0;V;P)

= (V . Oi) . Va,P

® 4 vap

D a(ei + Vo) - Vo;P

OV (@Pale; + Vo).

This yields
V- ((¢ia — 0i)V;P)
=V - a(¢;V;P + 9;Pe; + 9;PV ;)
=V -aV(P + ¢;0,P),
which together with (9) implies our proposition. O

4.1. The Ck* excess-decay estimate

To establish our C5* excess-decay estimate, we make use of the following lemma, which
essentially generalizes Theorem 3 to correctors that are only available on balls Bg.
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Lemma 14. Letd > 2 and k > 2. Suppose that Theorem 1 holds for orders 2, ...,k — 1, and set
Yp = 0 for first-order polynomials P to simplify notation. For any P € Pf;hum, denote by Yrp a

solution to the Eq. (9) on the ball Bg (without boundary conditions); assume that the &p depend
linearly on P. Set

1/2
R = SUp ,of(kfl) max |Vp|? dx . (28)
” r<p<R PePf, |IPlI=1/B,

For an a-harmonic function u in B, consider the kth-order excess

k—1 2
Bxe(r) :=  inf ][ Vu—V( Y (Pe+$idiPc+Vp,) + (Pt $idiPe+ )| dx. (29)
« € apom J By k=1

Forany 0 < a < 1, there exists a constant &pin, > 0 depending only on d, k, X, and o such
that the following assertion holds:

Suppose that ro > 0 satisfies €25, + EfroR = Emin- Then for all r € [ry, R] the Ck oxcess-
decay estimate

r )Z(k—1)+2a —_~

Exce(r) < C(d, k, A, ) (E fxci(R) (30)

is satisfied.

Note that the infimum in (29) is actually attained, as the average integral in the definition of
Excy(p) is a quadratic functional of P,.. Denote by PL’™" a corresponding optimal choice of P,
in (29). We then have the estimates:

k
3 Ry prmin _ pRoiny2 < C(d, k, &, o) Exek(R) (31)
k=1
and
k
D RV P2 < C(d, kb ) g |Vul* dx. (32)
k=1 R

Proof of Theorem 3. Once we have shown Theorem 1, Theorem 3 obviously follows from
Lemma 14 by setting ¥p, := v¥p,, with ¥p, being the kth-order corrector whose existence
is established in Theorem 1. O

The following lemma is essentially a special case of our C* large-scale excess-decay
estimate Lemma 14; it entails the general case of Lemma 14 (see below).

Lemma 15. Letd > 2, k > 2, and let R,r > O satisfyr < R/4 and e;p < eo(d, k — 1, 1),
with go(d, k — 1, 1) being the constant from Theorem 1 for the orders 2,...,k — 1. Assume
that Theorem 1 holds for orders 2, ...,k — 1, and let yp = 0 for linear polynomials P in order
to simplify notation. For any P € Pghom, denote by yp a solution to the Eq. (9) on the ball
B (without boundary conditions); assume that yp depends linearly on P. For an a-harmonic
function u on By, consider again the kth-order excess (29). Then the excess on the smaller ball
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B, is estimated in terms of the excess on the larger ball Br and our quantities 3 g and Vl/;p.' We
have

Exci(r) < C(d, k, ) Exci(R)
r\2k 2/@d+1)? | p-2(k—1 72 ry~4
x (—) + (e 4 R26D oy V| dx (—) .
[ R (2’R PPk, [IPll=1/By R

Before proving Lemma 15, we would like to show how it implies Lemma 14.

Proof of Lemma 14. First choose 0 < 6 < 1/4 so small that the strict inequality
C(d, k, M)0% < 92k—D+2¢ js catisfied (with C(d, k, 1) being the constant from Lemma 15).
Then, choose the threshold &, for &5, + €7 ro.R SO small that the estimate

2k 2/(d+1)2 2 —d 2(k—1)+2a
Cd ki) [0 + (/T 62 Jo~!| <o

holds.
Let M be the largest integer for which &R > r holds. Applying Lemma 15 inductively
with R,, := 6™ 1R, r,,, := 0™R for 1 < m < M, we infer

Exci(0MR) < (p2k-D+20)MEye (R).

Since we have trivially

—d
Exci(r) < (L) Exci(rp)
™M

and since by definition of M, we have r > 6rys and thus oM ~ 6’_% [where we recall 0 =
0(d, k, A, @)], we infer

N\ 2k—D+2a
ﬁ) Exa(R).

It remains to show the estimates for ||P;_>m"” — PE’”””H as well as the bounds for ||P,Q’mi”| |. To

Bxe(n) < Cd kb

do so, let us first estimate the differences ||P,}§’”’mm — P,C’”’mm || of two successive polynomials.
We have the estimate
k—1

fl; \V/ Z (Pﬁm,min _ P;m,min + ¢,’3,’(P§m’min _ P’r(m,min) + ‘ppffm'm"”—P;m‘mm>
m k=1
2
+ V<Plljm,mm _ P]Zm,mm + (piai(PIIjm,mzn _ P]Zm,mm) + &me,mm_sz,mm> dx
k—1
< sz YVu—V Z (plf(m,mm + ¢iaiplr(m,mm + wpzm,min)
m k=1
2
— V(P]zm’mm + ¢>i8iP£""mm —+ lzplrcm,min> dx
k—1
42 f Vu—V Z (pfm,mm + ¢iaiP,§m’mm + wp,f’“’"”“)
By, k=1
. . - 2
— v(me,mm + ¢iaipfm,m1n + l//PRm,min) dx
k
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— Ry \¢ —
< 2Exci(rm) + 2 — ) Excr(Ry)
T,

m

Tm 2(k—1D)+2a — _d " 2(k—1)+2a _
< C(d, k, 1, @) <E) Exci(R) + C(d, k1)~ (2 Exck(R)

i\ 2= __
< Cd, k2 ) (%) (0**)"Excr(R).

From Lemma 16 below, we thus obtain

k
> RETH| pRmmin — prwmin|| < C(d, k, &, o) (0%)™ Exc(R).

k=1

A similar estimate for the last increment Zfizl R¥ _1||P,ZM’mi" - P,’(’mi"ll can be derived
analogously. Taking the sum with respect to m and recalling that R; = R and 1, = Ryy41, we
finally deduce

k M
Y RN PR prminy| < C(d, kA o) Y (0%)™ Exck(R)

k=1 m=1

< C(d, k, », @)/ Exci(R).

It only remains to establish the last estimate for ||P,r{’mj”||. By the previous estimate, it is
sufficient to prove the corresponding bound for ||P,§’m’”||. This in turn is a consequence of
the obvious inequality

k—1
f \V4 (Pﬁ,min +¢iaip,§’min + llfpf}mi”)
Br

k=1

2

" V(P,’f’mi” + iy PR 4 &Pf,m) dx

< 2Bxck(R) +24 |VuPdx <44 |Vudx
Bgr Br

in conjunction with Lemma 16 below. O

The following lemma quantifies the linear independence of the corrected polynomials P, +
¢i0;P + ¥p, (with 1 < k < k); it is needed for the previous proof.

Lemma 16. Suppose that the functions ¢ and yp, (2 < k < k) satisfy

k
p? ]{3 1> dx+ Y p2* D max  ||P|| 72 ]{3 |Vp|* dx < &F,
P P

= PP, IPl=1

where gy = eo(d, k) is to be defined in the proof below. Set Yrp = 0 for linear polynomials P in
order to simplify notation. Then for any P € P, (1 < k < k), we have the estimate

k 2
D PP TIPP < € k) ][ dx. (33)
k=1 By

k
VY (P + ¢idiPe + Vp,)
k=1
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Proof. Poincarés inequality (with zero mean) and the triangle inequality imply

k 2
(][ VY (Pt didiPy dx)
Bp k=1
dx)

E (} ¢18 l WPK) a
C(d) ,0 aER ]B -
1/2

dx)
~inf (ﬁp w) ]

> ($i0iPc + Vp,) — a
k=1

On the one hand, by transversality of constant, linear, homogeneous second-order, ..., and

homogeneous kth-order polynomials, we have

1/2

k
1
inf ][ P.—a dx > — Pl
paeR<Bp 2 ) C(d,k)ép

k=1
On the other hand, we have by the triangle inequality and Poincaré’s inequality,

%i&%(ﬁp | )
Sc(d,k)[(sz e, ||) (f |¢|2dx)

1/2
Kk—1 T2
\% d .
+§:p Pell g, max 1(]{3,,' ol x) }

Putting these estimates together, by boundedness of the integrals in the previous line by

2,02(" D our assertion is established. O

1/2

1/2

1/2

1
C(d) p aeR (
ZPK —a

1/2

Y ($idiPc + Vp,) —a

k=1

Proof of Lemma 15. In the proof of the lemma, we may assume that

Exck(R) = 4 |Vul? dx. (34)
Br

To see this, recall that the infimum in the definition of E}Z:k (R) is actually attained. Denote the
corresponding choices of P, by P™". Replacing u by u — ZK I(P"”” + ¢;9; PN + Vpmin) —
(P]Z”i” + d),-B,-P,’c”m + 1/~fp;cmn), we see that we may indeed assume (34): The new function is also
a-harmonic due to (6) and Proposition 2.

We then apply Lemma 20 below to our function u. This yields an aj,,,,-harmonic function
Upom close to u which in particular satisfies

][ [Vinom|? dx < C(d,A) 4 |Vul? dx.
Br)2 Bg
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By inner regularity theory for elliptic equations with constant coefficients, the aj,,,-harmonic
function uy,,, satisfies

k
|V tthom (0)] + RSup |V ttho| + Y R sup [V 1ty
Br/s k=2 Brya
1/2 12
< C(d, k, 1) ][ \Vipom|* dx | < C(d, k1) ( |Vu|? dx) . (35)
Br/2 Br
Let E’Tay for (for 1 < k < k) be the term of order « in the Taylor expansion of Uy, at xo = 0.
We now show (for k > 2, as for k = 1 this assertion is trivial) that P,}j’Tay for € Pghm. The

term-wise Hessian of the Taylor series of uy,, yields the Taylor series of V2uy,,,. We now

know that apep, : V2tpem = 0; thus, the Taylor series of apop : V2 upon is identically zero and

by equating the coeflicients, we deduce app, VZP,IS’TLW Pr — 0 for 2 <k <k

As the term-wise derivative of the Taylor series of uy,,, yields the Taylor series of Vi,
we obtain by the standard error estimate for the Taylor expansion of Vuy,,, at xo = 0 for any
x € Bgy4 the estimate

< |x1¥ sup [V*  upopml.

k
‘Vuhom () — > VP ()
Brya

k=1

Making use of the identity

k
(Id + (V¢)t)Vuhom -V Z(Pllj,Tuylor + ¢iaipllj,Taylor)

k=1

k
+ Z(pivaip’}j,Taylor

K=2

k=1

k
— (1d + (V¢)) (Vuhom OEDY VPE’T“””(x)) :

the previous estimate yields in connection with the bound for |V¥*1uy,,,,| and r < R/4

A

k
(Id + (Vcb)t)Vuhom -V Z(P’IS,Tuylor + ¢iaipllj,Tuylor)

k=1

k 2
+ 3 ¢VaPE ™ d

K=2

2k

< C(d, k, ) (R) IVul? dx x][ 11d + (Vo)'? dx.
Br B,

By the Caccioppoli inequality for the a-harmonic function x; + ¢; (6), we have

C(d, A
|Id + (Vo)'|* dx < (2 )
By r Bor

x4+ ¢|* dx < C(d, M)(1 + &3,). (36)




COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1133

The approximation property of upom + @;0itihom in Br/z from Lemma 20 below implies
—d
][ Vit — V (ttom + $idittpom)|* dx < C(d, )&/ @HD* (R) IVul? dx.
Br

Combining the last three estimates and the equality

k—1
!
Vu—-V Z ( ’I(Q,Taylor + ¢13 PK R Taylor + '(pPR,Taylor>

R, Taylor R, Taylor

_v (P + i PRT 4 &PR,Tayzm)
k

k
= [(Id + (V) ) Vithom — V Z (PRI 4 g0, P ")

+ Z $iVO;PL T"y"”} Z ¢ivope " Z VY gt = V9 i

k=2 K=2

[Vt = ttom + Gidithom) | + &1V dittnom

Jo

we infer

k—1
Tt
Vu-vY (Pf’T“y’“’ + 0, PRI 4 z/fPR,Taylor)
k=1

2

Taylor dx

(PR Taylor+¢iaipf,

o,
B,

+ 1} Pf,Taylar)

k
(1d+ (V) )WVithan — ¥ 3 (B 4 gy )
k=1

2
+ Z 6V, PR ,Taylor dx
k=2
+C<k)][ sz P dx
TK 2

+C(k)f Z‘vaTaylor

’KZ

2 dx

64 |VY rior

B,| WPnyl

+ 6][ |Vt — V (tpom + Giditinom)|* dx
B,

|0iV dithpom|* dx
B,

k
< C(d k1) (}—2)2 (1 +&2) B \Vul? dx
R
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k
+C(d k) Y eV P22
k=2

k—1
R, Tayl _
O Y NP max 12172 f (99l d
B,

K=2

R, Tayl — 7
+C@RIET™IE max 17172 1V
Pep‘é(hom B,

2 —d
+Cd ey (2) Vul? dx
Y

+ C(d)rzef sup |V2uhom|2.
Br/a

dx

This finally yields in connection with the bounds on V¥, in Br/4 (35) which in particular

imply ||

. . . d
where in the last step, we have used the inequality 2 < (%) e} < (

K

R, Tayl -~ 1/2
V| < Cd kR ( fy, V0l d)

Jo

k-1
R, Tayl R, Tayl
Vu—-V Z (PK wer + d)iaiPK wer + ‘/fPR,Taylar>
k=1

2

_ V<P5,Taylor + ¢iaiP]I<2,Taylor + 1/~/PR,Taylor> dx
k

k
< C(d, k, 3) (}-2)2 (1 +¢2) ][ \Vul? dx
B

R

k

2(k—1)

+Cd kel :(é) \Vul? dx
k=2 Br

k—1
+C(d,k,n) 4 [Vul* dx Y R max ||P|| 2
Br 2 PePx

+Cd kA 4 |Vul> dx x R2*=D max ||P||”

Bg PePy,
2 —d
+ C(d, 2)e/ Y (%) \Vul? dx
Br
+ C(d, A)rzsz_z |Vu|? dx
Br
) r 2k
<Cd k4 1vul dx[ (=)
Br R

|Vp|® dx
B,

2][ |Vp|* dx
B,

2 - r\—d
+ si/R(dH) + R max ][ |Vyp|? dx (—) j|,
’ pePk IIPlI=1JBg R

hom

R
r

d 2/(d+1)2
) €R

and e <

&y,r as well as (10) for 2 < k < k — 1. Our new estimate now implies the desired bound. [
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4.2. The Ck—1" excess-decay estimate

Like in the C** case, we now show how the Ck¢ excess-decay estimate for the kth-order
excess Exc (in Lemma 14) entails a Ck—1! excess-decay estimate for the (k — 1)th-order
excess Excp_;.

Lemma 17. Letd > 2, k > 2, and R > 0. Assume that Theorem 1 holds for the orders
2,...,k — 1, and let Yp = 0 for linear polynomials P in order to simplify notation. For any
Pe Pghom, denote by &p a solution to the Eq. (9) on the ball B (without boundary conditions);
assume that the yp depend linearly on P. Then there exists a constant &, > 0 depending only
on d, k, and A such that the following assertion holds:

Suppose ro € (0, R] is so large that €3z, < &min and

ro<p<R pPePk ||P||=1/B,

hom

1/2
sup p_(k_l) ( max |V&P|2 dx) = Emin

hold. Let u be an a-harmonic function on Br. Then there exists P,If IS P,’;hom 1<k<k-1)
for which the estimate

Jo

holds for any r € [ro, R]. Furthermore, the PR depend linearly on u and satisfy

2
20k—1)
dx < C(d, k1) (%) ][ \Vul? dx
B

R

k—1
Vi— VY (PR + ¢itiPR + v
k=1

k-1
SOREDIBRIE < Cdka) o Vul dx

k=1 Br

Proof. In Lemma 14, fix o := 1/2. We then easily verify that Lemma 14 is applicable in our
70,Min

situation. Set PR := P"™"; this implies that the PR depend linearly on u. The estimate (32)
takes the form:

k
> CREDIPRE < Cdkn) [Vl dx.

k=1 Br

Furthermore, applying Lemma 14 with ry playing the role of  and r playing the role of R, we
deduce from (31)

k
> AUy PR — prminy 2 < C(d, k, 2)Bxcr(r)

k=1

(30) N\ 2k—=D+20
< C(d k) (E> Exck(R)

7\ 2(k—1)+2a )
< C(d, k1) <E> \Vul? dx.
Br
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We now estimate

fl;r
o
B,

k—1

Vu-—V Z (Pf + ¢;0;PR +- x/fpg)

k=1

2
dx

k—1
VM _ V Z (P’r(,min + ¢iaip,?mm + ]Z[P;,mirl)

k=1

2

= V(PP GNP+ o )| dx

2
dx

+3 ][ V(PR BB + )
B, k

+3][
B,

< 3Exci(r)

2
dx

k—1
VY (PR = PR G P = PR+ )
k=1

+ C(d b ||P™ |2 ( ][ B2 + 2[1d + (V)" 2 dx
B,

+ ¢ 20=2) max |Vp|? dx)
PPy, oIIPI=1/B;
k—1
+ C(d, k) Y D ppmin — pRj 2 ][ 1d + (Vo)'|? dx
k=1 By
k-1
+C(d k) Y IIPE™" — PP max ][ P NP + Vel dx
pePs,, IIPII=1Jp

K=2 r

(10,30,36) r\2k—D+2a
< Cld k) <§) Exci(R)
miny 2 2(k—1) ;.2 2 2
+ Cld kWP PPE D] + (L 65) + 3 )
k—1
+ C(d, k1) Y PPET D PEm — PRIP(1 + £3,)
k=1
k—1
+ C(d, k1) Y PV PE — PRI (e} + 3 )
k=2
2(k—D+20 )
< C k1) () Excx(R) + C(d, k, 1)L 220D
k—1

+C(dk2) Y PP — PR

k=1
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In conjunction with the two previous estimates, we infer

A
< C(d,k,k)[ (é)z(kfl)JrZa N (<£>2(k1) N (1_2)2(k1)+2a> N (}-2)2(k1)+2a}

x][ |Vul|? dx.
Br

Our lemma is therefore established. O

k—1 2
Vu—-vVYy_ (P,’j + ¢i0:PR + wpg) ‘ dx
k=1

4.3. Construction of correctors of order k

Using the C*~1! theory established in the previous subsection, we now proceed to the
construction of our kth-order corrector. The following lemma provides the inductive step;
starting from a function which acts as a kth-order corrector on a ball Bg, we construct a
function acting as a kth-order corrector on the ball Byp.

Lemma 18. Letd > 2, k > 2, and assume that Theorem 1 holds for the orders2,...,k— 1. Let
ro > 0 satisfy the estimate €3, < g9, where g9 = &o(d, k, 1) is to be chosen in the proof below.
Then the following implication holds:
Let R = 2Mry for some M € Ny. Suppose that for every P € P, we have a solution vE to
the equation
—V - aVyg§ =V - (x5 ($ia — 0:) VO;P)

subject to the growth condition

1/2 M
e <][ VYR dx) < Culd kI[Pl Y min{1,2"ro/rlem,
B,

m=0

for all r > 1o, where Cy(d, k, 1) is a sufficiently large constant to be chosen in the proof below.
Assume furthermore that ¥ depends linearly on P.
Then for every P € P* there exists a solution ¥3R to the equation

~V - aVyR = V - (xpy (¢ia — 0:)V;P)

subject to the growth condition

M+1

1/2
(k=D (][ va%"|2dx> < Ci(dk,WIIPI| ) min{1,2"ro/r}ezmy
B

m=0

forall r > ro. Furthermore, YR depends linearly on P and we have
1/2
re=1) <][ ViR — vyk? dx> < Ci(d, k, M)|[Pl|egp1 .
B,

Proof. To establish the lemma, we first note that the assumptions of the lemma ensure that
the Ck—11 excess-decay lemma (Lemma 17) is applicable on By with yp := w}lf. To see this,
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we estimate for any r € [rg, R]

1/2
k=D (][ Vg dx) < Cid k M|IPlle2r, < Ci(d: k, V)I|Plleo.
B,

By choosing g9 > 0 small enough depending only on d, k, A, and C; (which is to be chosen at
the end of this proof), we can ensure that the assumption of Lemma 17 regarding smallness
of ey . pis satisfied.

We now turn to the construction of Y28 — yX and to that purpose denote by £X the weak
solution on R? with zero mean in Byg and square-integrable gradient, whose existence and
uniqueness follows by the Lax-Milgram theorem, to the problem

—V - aVEp =V - (XBy—By ($ia — 01) VO;P).
Obviously, £X depends linearly on P. Furthermore, by ellipticity, we have the estimate

1/2 1/2
/ |VER|? dx < C(d, 1) sup |V*P| ([ XBZR_BR(|¢a|2+|o|2>dx) (/ |Vs}3|2dx)
R4 R4 R4

Bar

which gives

1/2 1/2
(f |veR? dx> < C(d, 1) sup |[V2P| (/ 19> + |0 dx) .
R4 Bor Bar

The last estimate in turn implies
/ ) \VER|? dx < C(d, k, 1)||P||>R2*=D g2, R34, (37)
R

We now obtain WI%R — glf}f by modifying & 5 by an a-harmonic function of degree k—1. As & 5 is
a-harmonic in Bg, Lemma 17 now implies the existence of some P,}f pEPforl <k <k-1
which depend linearly on P and for which the estimates

(37)
IPRLI1> < C(d K, MR2CTD | VER 12 dx < C(d, k, MIIPIPR* 63, (38)
Br

and

Jo

hold for all € [rg, R].
Furthermore, we have for r > R

A

(36,10) _
< C(d,k,k)(r de IVEFI® dx + [|1P{pl1*(1 + £3,)

k—1 2
r\2(k=1)
VER = VY (PRp+ idiPEp + wpfp)‘ dx < Cd k) () IVES? dx
k=1 ’ R

(37)
<" C(d, k,\)||P| P2y

k—1 2
Vel = 3 (Bl + 0Pl + vy, )| o
k=1

k—1
+ 3 AED )RR +e§,+e§,,>)
K=2
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(37,38) R 2(k—-2)
< C(d,k, A)||p||2R2(k—1) <<?> + 1+ €2r + (1 + &2 +€24) ( ) ) ng

< C(d k, M)||P|>r?* =D R%e2,,

The combination of both r-ranges yields

1
rk—1 B,

< C(d, k, M)||P|| min{1, 2R/r}esR.

In total, we see that

1/2

2
“)
(39)

VEp — Z( P+¢13PKP+WPR)

k—1
o=y ek = 3 (PR + 00iPR e+ v )
k=1
is the desired function (note in particular that the last term is a-harmonic), provided we
choose C; to be the constant appearing in (39). O]

We now establish existence of kth-order correctors by the previous lemma.

Proof of Theorem 1. We just need to construct an “initial” kth-order corrector v/’ subject

to the properties of Lemma 18; then Lemma 18 yields a sequence (w}%mro)m which (after
subtracting appropriate constants) is a Cauchy sequence in H!(Bg) for every R > 0 due to
the last estimate in the lemma and our assumption (4) which implies summability of gymy,.
Thus, the limit ¥p satisfies the Eq. (9) in the whole space, depends linearly on P, and satisfies
the estimate

1/2 00
¢y (f IVypl? dx) < Ci(d kWP Y min{1,2"ro/r}eamy,
B,

m=0

< Cl (dr k& )\')l |P| |82,7'

for any r > 1.
To construct ¥, we use Lax-Milgram to find the (unique) solution ¥’ on R4 with square-
integrable gradient and zero mean on By, to the equation:

—V -aVyy =V - (xp, (dia — o) VI;P).

Obviously, ¥’ depends linearly on P. Furthermore, we have the energy estimate

1/2 1/2
/ VY2 dx < C(d, A) sup | V2P (/ |x8,, a0 1> + | x5, 0 dx) (/ IVl dx) .
R4 R4 R

By,

We therefore get

1/2
(f IV |? dx> < C(d, ) sup | V2P| (/
B B

0

1/2
191> + |o|? dx) :

0
This yields in particular for any r > 7

(VYR 12 dx < C(d, k, 2)||P|)>re®™ ”/ 612 + |o|? dx

B, By,
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and therefore
][ VY2 dx < C(d, k, WP Pr g2 r2td

< C(d, k, VIIP|**Y min(1, (ro/r)*}e? .

We note that this provides the starting point for Lemma 18, possibly after enlarging the
constant C; in the statement thereof. O

4.4. Proof of the kth-order Liouville principle

Like in the C?¢ case, the C5* Liouville principle (Lemma 19 below) is an easy consequence
of our large-scale excess-decay estimate (Theorem 3). The kth-order Liouville principle
(Corollary 4) in turn is an easy consequence of the C*+1: Liouville principle.

Lemma 19. Let d > 2, k > 2, and suppose that the assumption (4) is satisfied. Then the
following property holds: Any a-harmonic function u satisfying the growth condition

1/2
lim 1nfk— (][ lu|? dx) =0 (40)
r—oo0 pkt

for some a € (0, 1) is of the form
k
u=a+bixi+¢)+ Y (Pc+¢idiP + Yp,)
K=2
with somea € R, b € R, and P, e Pghom for2 < k < k (ie, P is a homogeneous
Anom-harmonic polynomial of degree k). Here, the yp denote the higher-order correctors whose
existence is guaranteed by Theorem 1.

Proof of Corollary 4. Obviously, (13) entails (40) with k + 1 in place of kand e.g., o := % By
Lemma 19, any a-harmonic function u subject to condition (13) must be of the form:
k+1
u=a+bixi+¢)+ Y (Pe+didiPc+¥p,), (41)
k=2
with some a € R, b € R% and P, € Py, f0r2 < & < k+ 1. Our stronger growth condition
(13) however shows that we have Py = 0: Since the ¢; grow sublinearly (2) and since ¥p,
grows slower than a polynomial of degree k 4 1 (10), we see that for large |x| the term Py

would be the dominating term in (41) if it was nonzero, contradicting our growth condition
(13). O

Proof of Lemma 19. Leta € (0, 1) be such that

1 1/2
. 2
d =0
R—o00 Rk—i—a (fl;R |U| x>

lim inf

holds. By the Caccioppoli estimate, we deduce

1 1/2
R—oo Ri—1t+a Br
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Fix r > rp. The excess-decay estimate from Theorem 3 together with the trivial bound
Exci(R) < JLBR |Vu|? dx yields

-\ 2(k—1)+2a
) Exci(R)

R

2
1 1/2
§C(d,k,)»,oz)r2(k_1)+2"‘( — (f |Vul? dx) ) :
R Bx

Passing to the lim inf R — oo, we deduce that

Exci(r) < C(d, k, 1, @) (

Exci(r) =0

holds for every r > ry. Therefore, on every B, with r > ry, Vu can be represented exactly as
the derivative of a corrected polynomial of kth order (since the infimum in the definition of
Excy is actually attained, as noted at the beginning of the proof of Lemma 15), i.e., we have

k
Vu=Vb(xi+¢) + VY _(Pi + ¢idiPy + ;)
k=2

in B, for some b" € R? and some P € Pghom (2 < Kk < k); recall that we have used the
convention ¥p = 0 for linear polynomials P. It is not difficult to show that for r large enough,
the b” and P”. are actually independent of r and define some common b € R¥ and P, € P
For example, one may use Lemma 14 to compare the b", P, for two different radii r, 7, > rp;
the estimate for |61 — b™2| and ||P! — P¢|| then contains the factor Excy(max(r, r2)) and is
therefore zero. Moreover, the gradient Vu determines the function u itself up to a constant,
i.e., we have

k
w=a+bixi+o)+ Y (Pc+¢idiPe + Vp,)
k=2
forsomeac R,b e RY and P, € PX (2 <k <k). ]

Ahom
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Appendix A. Approximation of a-harmonic functions by corrected apom-
harmonic functions

Our proofs make use of the following lemma, which is implicitly derived in the course of the
proof of Lemma 2 in [11]. For the reader’s convenience, we recall its proof here.
The lemma essentially states that an a-harmonic function u on a ball B may be approx-

imated on the ball Bg/; up to a small error (of order 8}13/ (d+1)2) by an appropriate aj,-
harmonic function up,,, and correcting this function up,,, using the first-order corrector ¢;.

The purpose of the lemma is the same as in classical elliptic regularity theory: The function
Upom satisfies an elliptic equation with constant coefficients, i.e., it is smooth and good
estimates for its higher derivatives are available. In our proof above, we show by the present
lemma that this high regularity of uj,,, transfers (in an appropriate sense) to u itself.

Lemma 20. Let R > 0 and let u be a-harmonic on Bg. Suppose that ep < 1 [with eg as defined
in (3)]. Then there exists an apom,-harmonic function upe, on Br, satisfying the following two
properties: First, we have the energy estimate

][ IVipom|? dx < C(d, 1) 4 |Vul? dx. (42)
Br)2 Bg

Second, the “corrected” function tpep, + idittnom is a good approximation for u in the sense that

2
][ |Vt = V (thom + @idittnom)|* dx < C(d, ez T+ ][ Vul® dx.
Bry2 Br
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Proof. Choose some R’ € [%R, R] for which

R ][ |Vul> dS < C(d) 4 |Vul* dx (43)
3By Br

holds. Let uj,,, be the apy,-harmonic function in Br which coincides with u on dBp . Testing

the equation —V - apom, Vithen = 0 with up,,, — u (note that this test function is admissible

since we have up,, — u = 0 on dBg), we infer by ellipticity of a and (in the second step)

Young’s inequality

][ Vithoml® dxscm][ IVl Vo] dx
BR/ BR/

<! ][ |Vttpom|* dx + C(L) 4 |Vul* dx, (44)
2 Jpy By
which because of R/2 < R’ < R gives the desired energy estimate. It remains to establish the
approximation property of upom, + ¢i0iUpom-

Denote by no : R — R a smooth function with 7o(s) = 1 fors > 1 and no(s) = 0
fors < 0.Let0 < p < R/4and set n(x) := ny(2(R' — p/2 — |x|)/p). Note that we have
[Vn| < C(d)/p as well as n = 0 outside of Br_, /> and n = 1in Bp_,. Due to p < R/4, we
also have R" — p > R/2. We will optimize in this “boundary layer thickness” p at the end of
the proof.

Let us abbreviate

V= U — Upom — NPi0illpom.

where the purpose of 1 is to have v = 0 on dBg. The desired approximation property of
Unom~+PidiUpom as stated in the lemma will be a consequence of an appropriate energy estimate
for v (recall that we have n = 1 in Bg/; since p < R/4 and R > 3R/4).

To derive this energy estimate, we would like to show that v is approximately a-harmonic.
We first compute using the fact that u and x; + ¢; are a-harmonic (6)

—V.aVy

==V -aVu+ V.- (1 =naVupe, + V - ale; + Voi)ndiunom + V - ¢;aV (n0ittnom)

6
QY- (1~ maVisnom + ale; + V) - Vdittpom) + V - $iaV (7itthom)

=V - (1 —n)(@a— apom) Vithom + (ale; + Vi) — apomei) - V(10ithom)
+ V- ¢iaV (n0itthom)»
where in the last step, we have used the ay,,,-harmonicity of uj,,, in the form of equality
—V - (1 — 0)ahomVUnom — Anomei - V(dittnom) = 0. Taking into account the formula a(e; +
Vi) — apomei = V - 0; (7) and (8) and the fact that
(V- 0i) - Vw = 9oy djw = O (0jjx0jw) = —k(opkjdjw) = —V - (0;Vw)

holds for any function w by skew-symmetry of o;, we may rewrite the right-hand side in
divergence form:

=V .-aVv =V - (1 —=n)(a— apom)Vipem + V - (dia — 0;) V(n0ittpom).
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Testing the weak formulation of this equation with v (recall that v = 0 on dBg’) and using the
ellipticity of a, we deduce using Young’s inequality and the properties of n

/ |Vv|? dx
By

<C) |11 = n)(@— anom) Vithom|* + |pia — ;> IV (dittnom) |* dx
BR/

<C@A) | 11— n*Vupom|* dx
BR/

+CMA{/<wﬁ+wﬂxwm%VWWP+wﬂv%mm%dx
BR’

< C(d, ) |V ttom|* dx

By—By_,

1
+C(d,2) sup (3meﬁ+w%mm)/ 61> + |o | dx.

Bpr_ 0/2 By
Since our function upey, is apem-harmonic, we have the regularity estimates

1 C(d, )
sup (_2|v”hom|2 + |v2“hom|2> = — Sup f |Vuhom|2 dx,
1% YEBR_p/2 Y Boj2(y)

BR’—p/Z
2/p
/ IV tinom Ip dx < C(d,») / |anuhom|2 ds,
% 3BR/

where p := 2d/(d — 1): The first estimate is a standard constant coeflicient interior regularity
estimate (which is a consequence example of an iterative application of Theorem 4.9 in [9]
and the Sobolev embedding). The second estimate follows by combining 1) the existence of
an extension # of up,, subject to the estimate || Vul|rrp,) < C(d)| [V 14 o] 1238y and 2)
the Calderon-Zygmund estimate on Bg/, which reads |[|Vw|[1p(8,) < C(d, 1)||Vul|1e(B,,) for
any solution w € H'(Bg) withw — u € Hé (Br') to the equation —V - gy, Vw = 0. For the
latter estimate, see Theorem 7.1 in [9].

Using these regularity estimates, the equality V**up,,, = V™ on 9By as well as the
obvious inequality

2 2R/ 4 2
sup [Vipom|“ dx < | — [Vpom!” dx,
YEBR _p/2 Y Bpj2(y) p B
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we inferby p < R'/4and3R/4 <R <R

2/p
/ IVv|2dx < C(d,1)|Br —BR/_p|1_2/P / IV tipom|P dx
BR/ BR’_BR’—
/

d+2
1
+C(d, 1) — <—) ][ |Vuhom|2dx-<R/>d]1 612 + 0| dx
R*\p By By

P

(44 _
< C(d,)\,)pl/dR/(d 1)/d/ |Vtanu|2 dS
0Bpr

R/ d+2
+ C(d, Med (—) / |Vu|* dx
Y By

43 1/d
(E) C(d, 1) (%) / |Vu|2 dx
Br

R/ d+2
+ C(d, )L)zslz2 (—) / |Vul|? dx.
o By

2
We optimize in p by choosing p := }18}2{1/ @D g

admissible in the sense of p < %R’ ). This yields

/ (Vo2 dx < C(d, )2/ @ /
By B

which together with the estimate 3R/4 < R* < Rand n = 1 in Bg/, proves the desired
approximation result. O

(which thanks to the assumption eg < 1is

IVul?dx+ | |Vul? dx)
Br

R/

Appendix B. Failure of Liouville principle for smooth uniformly elliptic coeffi-
cient fields

We now provide the argument that smoothness of a uniformly elliptic coefficient field does not
prevent Liouville’s theorem from failing: Even for smooth uniformly elliptic coeflicient fields,
sublinearly growing harmonic functions are not necessarily constant, implying a failure even
of the zeroth-order Liouville theorem.

Proposition 21. For any « € (0,1) there exists a smooth, bounded, and uniformly elliptic
symmetric coefficient field a on R? such that the following holds: There exists a smooth function
u which is a-harmonic and satisfies

1

( ][ u? dx)E ~R* forR> 1. (45)
Br

Proof. By a classical example in dimension d = 2 [18], for any exponent & € (0, 1), there
exists a uniformly elliptic, symmetric coefficient field ag of a scalar equation, and a weakly ag-
harmonic function ug (in particular, it is locally integrable and of locally integrable gradient)
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whose modulus on average grows like |x|%, for instance as expressed by:

1
(][ uf dx)” ~ R, (46)
Br
Moreover, in this example
ap and ug are homogeneous and smooth outside the origin. (47)

We now argue that this example may be post-processed to an example of an everywhere smooth
uniformly elliptic symmetric coefficient field a and a smooth a-harmonic function u such that
still (45) holds.

Indeed, because of (47), we can easily construct a uniformly elliptic coefficient field a that
agrees with ag outside of B; and is smooth. Next, we observe that (47) also implies (using
d = 2and o > 0) that Vuy is locally square integrable, so that by Riesz’ representation
theorem, there exists a weak solution of

—V.-aVw=V_-(a—ag)Vug (48)

in the sense that w and its gradient are locally integrable and that
/ |IVw|? dx < C(}). (49)

Equation (48) is made such that u = uy + w is a weak solution (i.e., locally integrable with
locally integrable gradient) of

-V .aVu =0,

and thus smooth since a is smooth by classical uniqueness and regularity results. It remains
to give the argument in favor of (45), which in view of (46) follows once we show that (49)
implies in particular for large R

( ]{3 w? dx)é = o(R%). (50)

This is a well-known argument related to “bounded mean oscillation™: By Poincaré’s estimate
with mean value zero, we have on every dyadic ball around the origin

<f (w—][ w)zdx)2 < C(d)-2" (/ |Vw|2dx>z,
Bon Byn Bon

which for d = 2 takes on the form

(][ (w —][ w)? dx)z <C (f |Vwl|? dx)z (459) C(A). (51)
Byn Byn Byn

By Jensen’s and the triangle inequality, this yields in particular |f5  wdx— JLBz wdx| < C(A)
on— n

and thus, since we may w. L. 0. g. assume f B, W dx =0, | fan wdx| < nC(}). Inserting this

back into (51) gives
1
2
<][ w? dx) < nC(n),
Bon
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i.e., (50) in the stronger form of

[SI

(][ w? dx) < C(d) logR.
Br

O
Proposition 22. There exists a smooth, bounded, and uniformly elliptic symmetric coefficient

field a on R? such that the following holds: There exists a smooth map u : R®> — R3 which is
a-harmonic and satisfies

1
(][ u? dx)2 ~R™® forR>1, (52)
Br
— 1 _ 3
where o = 5(1 ﬁ)'

Proof. By a classical example of De Giorgi in dimension d = 3 (Chapter 9.1.1, [9]), there
exists a bounded, symmetric, and uniformly elliptic coeflicient field ap which is radial and
smooth away from the origin, for which the map

X
ug(x) = [Pl (53)

with y = %(1 - \/Lﬁ) is ap-harmonic. Choose a to be a smooth, bounded, and uniformly

elliptic coeflicient field which agrees with ag outside of the unit ball B;.

We now show that the ap-harmonic map 1y may be modified to yield an a-harmonic map
u with the same decay properties on large scales. To construct the difference u — u, let w be
the Lax-Milgram solution (which is unique up to a constant) to the problem

—V.aVw =V - (a— ay)Vuyp. (54)

Since a—ay is supported in By, since a and ag are bounded, and since Vug belongs to leoc (R?),
we deduce by the standard energy estimate

/ |Vw|? dx < C/ |(a — ag)Vug|* dx < C. (55)
Poincaré’s inequality now implies for any R > 0

(55)
][ |w—][ wi*dx < CRR 4 |Vwldx<CR™' [ |Vwldx < CR™',  (56)
Br Br Br

Br
][de—]l wdx
Br Bar

We therefore deduce that the sequence JCan w dx is Cauchy: We have forany N > n > 0
m=n

][ wdx—][ wdx ][ wdx—][ wdx
Byn BN Bym Bymt1
N—1

2
< Z C2—m/2 < CZ—VI/Z.

m=n

which entails

< CR™/2,

N—-1

55
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Possibly adding a constant to w (to ensure that the limit of the above sequence is zero), we
therefore may assume that
][ wdx
Byn

In conjunction with (56), we infer for any R > 1

1/2
(][ |w|2dx) < CR7Y/2, (57)
Br

By (54), the map u := ug + w is a-harmonic. As u solves a linear elliptic system with smooth
coeflicients and belongs to H}OC(R3), u itself is smooth. Since we have o = y — 1 < %, the
estimate (57) in conjunction with (53) entails (52). ]

<272,
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