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ABSTRACT

Wedevelopa large-scale regularity theoryofhigherorder fordivergence-
form elliptic equations with heterogeneous coe�cient �elds a in the
context of stochastic homogenization. The large-scale regularity of
a-harmonic functions is encoded by Liouville principles: The space of
a-harmonic functions that grow at most like a polynomial of degree k

has the same dimension as in the constant-coe�cient case. This result
can be seen as the qualitative side of a large-scaleCk,α-regularity theory,
which in the present work is developed in the form of a corresponding

C
k,α-“excess decay” estimate: For a given a-harmonic function u on

a ball BR, its energy distance on some ball Br to the above space of
a-harmonic functions that grow at most like a polynomial of degree k

has the natural decay in the radius r above someminimal radius r0.
Though motivated by stochastic homogenization, the contribution
of this paper is of purely deterministic nature: We work under the
assumption that for the given realization a of the coe�cient �eld,
the couple (φ, σ) of scalar and vector potentials of the harmonic
coordinates, where φ is the usual corrector, grows sublinearly in amildly
quanti�ed way. We then construct “kth-order correctors” and thereby
the space of a-harmonic functions that growatmost like a polynomial of
degree k, establish the above excess decay, and then the corresponding
Liouville principle.
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1. Introduction

Weare interested in the regularity of harmonic functions u associatedwith a uniformly elliptic

coe�cient �eld a in d space dimensions (by which we understand a tensor �eld satisfying

λ|ξ |2 ≤ ξ · aξ and |aξ | ≤ |ξ | for some λ > 0 and any ξ ∈ R
d) via the divergence-form

equation

− ∇ · a∇u = 0. (1)

Without continuity assumptions, the local regularity of (weak �nite-energy) solutions can be

rather low, in particular in case of systems (see e.g., [18, Example 3] for the scalar case and

[9, Section 9.1.1] for De Giorgi’s celebrated counterexample in the systems case). Because

of their homogeneity, the same examples show that even when the coe�cients are uniformly

locally smooth, the large-scalebehavior of a-harmonic functions can be very di�erent from the

constant coe�cient, i.e, Euclidean case; see e.g., Proposition 21 in the appendix below. Large-

scale regularity is most compactly encoded in a Liouville statement of the following form: The
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space of a-harmonic functions u of growth not larger than |x|k has the same dimension as in

the constant-coe�cient case, where the space is spanned by spherical harmonics up to order

k. Because of the above-mentioned counterexamples, such Liouville statements may fail for

uniformly elliptic coe�cient �elds: For example, in the case of systems, there are nonconstant

harmonic maps that decay to zero at in�nity.

The question whether this situation generically improves for certain ensembles of coef-
�cient �elds, namely, stationary and ergodic ensembles as in stochastic homogenization,

seems to have �rst been phrased and partially answered by Benjamini et al. [6, Chapter

6 and Theorem 3] in the context of random walks in random environments: Under the

mere assumption of ergodicity and stationarity, sublinearly growing a-harmonic functions

are almost surely constant. The argument is limited to the scalar case but can deal with

nonuniformly elliptic cases as percolation.

Motivated by error estimates in stochastic homogenization, the topic of a regularity theory

for random elliptic operators was independently addressed in a more quantitative way by

Marahrens and Otto [14]. In Corollary 4 of that paper, for any α < 1, a large-scale C0,α-inner

regularity estimate for a-harmonic functions has been established, with a random constant of

�nite algebraic moments—however under stronger assumptions on the ergodicity, namely, a

�nite spectral gap w. r. t. Glauber dynamics in the case of a discrete medium.

A major step forward constitutes the work of Armstrong and Smart [3], where the above

result was improved to a large-scaleC0,1-inner regularity estimate even in case of (symmetric)

systems, by showing that the approach of Avellaneda and Lin [5] for obtaining (large-scale)

regularity of a-harmonic maps, which itself is based on a Campanato-type iteration, can be

extended from periodic to random coe�cient �elds. Under a strong assumption of ergodicity,

namely, that of a �nite range of dependence, optimal exponential moments for the random

constant are obtained.

This work motivated the paper of Gloria et al. [11], which in turn is the basis for the

present paper. In that work, another tool from periodic homogenization, namely, the vector
potential σ for the harmonic coordinates (next to the well-known scalar potential φ, also

called the corrector), was transferred to the random case, see (7) and (8) for the characterizing

properties. This allowed to establish a C1,α-Liouville theorem, meaning that the space of sub-

quadratically growing a-harmonic functions is almost surely spanned by the constants and

the d a-harmonic coordinates xi + φi. This holds even for nonsymmetric systems and was

shown under the mere assumptions of stationarity and ergodicity. More precisely, it relied on

the almost sure sublinear growth of the couple (φ, σ) of correctors in the sense of

lim
r→∞

εr = 0, (2)

where

εr := sup
R≥r

1

R

(
−
∫

BR

|φ|2 + |σ |2 dx
)1/2

. (3)

This sublinear growth (2) was shown to hold under the assumptions of stationarity and qual-

itative ergodicity. In a second step, large-scale C1,α-inner regularity estimates for a-harmonic

functions were obtained, where the random constant satis�es a stretched exponential bound

under mild decay assumptions on the spatial covariance of a. In a later version of [11], the

optimal stochastic moments for the random constant were obtained.
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In the context of nonlinear elliptic systems in divergence form, the result of Armstrong

and Smart [3] on the large-scale C0,1-estimate was generalized by Armstrong and Mourrat

[2] to nonsymmetric coe�cients and well beyond �nite range, further con�rming that the

random large-scale regularity theory holds under just a mild quanti�cation of ergodicity, like

expressed by standard mixing conditions.

In the present work, we go beyond C1,α and establish a large-scale Ck,α-theory in the

form of a corresponding excess decay and Liouville result, see Theorem 3 and Corollary

4. This li�s the result of Avellaneda and Lin [5] from the periodic to the random case. To

streamline presentation, we �rst establish the C2,α-versions of our theorems, see Theorem 7

and Corollary 8.

Let us clearly state that the contribution of this paper is exclusively on the deterministic

side. The large-scale regularity is obtained under the assumption that the given realization

a of the coe�cient �eld is such that the corresponding corrector couple (φ, σ) satis�es the

following slight quanti�cation of (2), namely,

lim
r→∞

ε2,r = 0 (4)

with

ε2,r :=
∞∑

m=0

min{1, 2m+1/r}ε2m . (5)

Note that (4) is equivalent to
∑∞

m=0 ε2m < ∞.

In a recent preprint by the authors of the present paper [8], it is shown that (4) holds for

almost every realization a in case of a stationary ensemble of coe�cient �elds under mild

quanti�cation of ergodicity in the form of an assumption on a mild decay of correlations of a:
More precisely, given a stationary centered tensor-valued Gaussian random �eld ã onR

d and

a bounded Lipschitz map 8 : Rd×d → R
d×d taking values in the set of λ-uniformly elliptic

tensors, the coe�cient �eld

a := 8(ã)

almost surely admits correctors with the property (4) assuming just decay of correlations in

the sense

|〈ã(x)ã(y)〉| ≤ C|x − y|−β

for someC > 0 and someβ ∈ (0, c(d, λ)) (where 〈·〉 denotes the expectation).Note that under
the assumption of a spectral gap for the ensemble, as far as the corrector φ is concerned (but

not the “vector potential” σ ), an estimate like (4) could also be deduced to hold almost surely

from [12, Proposition 2], modulo the passage from a discrete to a continuum medium.

The key building block for this large-scaleCk,α-theory is the space of a-harmonic functions

that grow atmost like a polynomial of degree k at in�nity. Proposition 2 andCorollary 4 imply

that under our assumption (4) this space has the same dimension as in the Euclidean case—

e.g., for k = 2 the space of a-harmonic functions that grow atmost quadratically is spanned by

1+d+ d(d+1)
2 −1maps – , which partially answers the question by Benjamini et al. [6, Chapter

6]. The kth-order excess (11), by the decay of which we encode the Ck,α-theory, measures the

distance to this space in terms of the averaged squared gradient. As our construction shows,

there is a one-to-one correspondence between the asymptotic behavior of functions in this
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space and ahom-harmonic polynomials of degree k. However, there is no natural one-to-one

correspondence between elements of this space and kth-order ahom-harmonic polynomials.

In a recent preprint by Armstrong, Kuusi, and Mourrat published a�er our present work,

a higher-order regularity result related to our present results is obtained [1], however, under

a much stronger assumption on the decorrelation of coe�cient �elds (namely, �nite range of

dependence).

Before stating our results, let us recall the de�nition of the correctors (φ, σ). The corrector

φi satis�es the equation:

− ∇ · a(ei + ∇φi) = 0. (6)

The �ux correction qij is de�ned as:

qi := a(ei + ∇φi)− ahomei (7)

where ahom is the homogenized tensor, i.e., ahomei is the expectation of a(ei + ∇φi). In our

analysis, we will only use that ahom is some constant elliptic coe�cient. We introduce the

corresponding vector potential σijk (antisymmetric in its last two indices) by requiring that

∇ · σij = qij. (8)

For the actual construction of a σ with stationary gradient, we refer to [11]; in this note, we

just use the property (8). In the context of periodic homogenization, both the scalar and the

vector potentials φ and σ may be chosen to be periodic. In stochastic homogenization, one

cannot always expect to have a stationary (φ, σ) (for instance in d ≤ 2 even in case of �nite

range of dependence) but, as mentioned above, we expect sublinear growth in the sense of (4)

under mild ergodicity assumptions.

Finally, let us give a brief historical overview on stochastic homogenization of elliptic

PDEs. The qualitative theory of stochastic homogenization was initiated by Kozlov [13] and

Papanicolaou andVaradhan [17]; the �rst (nonoptimal) quantitative estimate—derived under

the assumption of �nite range of dependence—is due to Yurinskĭı [19]. Naddaf and Spencer

introduced spectral gap inequalities to quantify ergodicity in stochastic homogenization [16].

Gloria and Otto [12] were the �rst to obtain optimal estimates on the size of the homogeniza-

tion error in the linear elliptic case, though with nonoptimal stochastic integrability. Optimal

stochastic integrability—however, with nonoptimal estimates on the size of the error—was

obtained by Armstrong and Smart [3]. Finally, recently optimal error estimates with optimal

stochastic integrability were established by Gloria and Otto [10] and Armstrong et al. [1].

For a more probabilistic viewpoint of stochastic homogenization of linear elliptic equations,

see [15]. In the case of fully nonlinear elliptic equations, a logarithmic rate of convergence

has been established by Ca�arelli and Souganidis [7] under a very weak assumption on

decorrelation; Armstrong and Smart [4] have obtained a power-law rate of convergence in

the case of �nite range of dependence.

Notation. Throughout the paper, we use the Einstein summation convention, i.e., we

implicitly take the sum over an index whenever this index occurs twice. For example, bi∂iv is

an alternative notation for (b · ∇)v and bi∇vi is an alternative notation for
∑d

i=1 bi∇vi.
By C, we denote a generic constant whose value may be di�erent in each appearance of

the expression C; similarly, by e.g., C(d, λ), we denote a generic constant depending only on
d and λ whose value again may be di�erent for every use of the expression C(d, λ).

By E := {E ∈ R
d×d : (Eij+Eji)(ahom)ij = 0}, we denote the space of matrices Eij for which

Eijxixj is an ahom-harmonic second-order polynomial.
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The notation P (or P(x)) generally refers to a polynomial. By Pk, we denote the space

of homogeneous polynomials of degree k. By Pk
ahom

, we denote the space of homogeneous

polynomials of degree k which are ahom-harmonic. On the space Pk, we introduce the norm

||P|| := supx∈B1 |P(x)|; note that any other norm on this �nite-dimensional space would do

as well, since we do not care for C(k)-constants.

2. Main results

The proof of our large-scale Ck,α regularity theory relies in an essential way on the

existence of kth-order correctors for the homogenization problem, which enable us to

correct ahom-harmonic polynomials of degree k by adding a small (in the L2-sense)
perturbation.

The ansatz for the deformation of an ahom-harmonic polynomialP, homogeneous of degree

k (i.e., P ∈ Pk
ahom

), into an a-harmonic function uwith the same growth behavior is motivated

by homogenization:We consider P as the “homogenized solution of the problem solved by u,”
so that we think in terms of the two-scale expansion u ≈ P + φk∂kP and have that the error

ψP := u − (P + φk∂kP) satis�es −∇ · a∇ψP = ∇ · ((φka − σk)∇∂kP). To construct u, we
reverse the logic and �rst construct a solution ψP to the above elliptic equation and then set

u := P + φk∂kP + ψP.

Theorem 1 (Existence of higher-order “correctors for polynomials”). Let d ≥ 2, k ≥ 2, and
suppose that the corrector φ and the �ux-correction potential σ satisfy the growth assumption
(4). Let r0 be large enough so that ε2,r0 ≤ ε0 holds [the existence of such r0 is ensured by (4)],
where ε0 = ε0(d, k, λ) > 0 is a constant de�ned in the proof below. Given any P ∈ Pk, there
exists a “corrector for polynomials” ψP satisfying

− ∇ · a∇ψP = ∇ · ((φia − σi)∇∂iP) (9)

as well as

sup
R≥r

1

Rk−1

(
−
∫

BR

|∇ψP|2 dx
)1/2

≤ C(d, k, λ)||P||ε2,r (10)

for any r ≥ r0. Moreover, ψP depends linearly on P.

Our ψP indeed enable us—in conjunction with the �rst-order correctors φi—to correct

ahom-harmonic kth-order polynomials.

Proposition 2. Let d ≥ 2, k ≥ 2, and let P ∈ Pk
ahom

. Suppose that ψP satis�es (9). We then
have

−∇ · a∇(P + φi∂iP + ψP) = 0.

Let us now state our Ck,α large-scale regularity result.

Theorem 3 (Ck,α large-scale excess-decay estimate). Let d ≥ 2, k ≥ 2, and suppose that (4)
holds. Let u be an a-harmonic function. LetψP ≡ 0 for linear polynomials P (in order to simplify
notation) and let ψP be the functions constructed in Theorem 1 for higher-order polynomials.
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Consider the kth-order excess

Exck(r) := inf
Pκ∈Pκ

ahom

−
∫

Br

∣∣∣∣∣∇u − ∇
k∑

κ=1

(Pκ + φi∂iPκ + ψPκ )

∣∣∣∣∣

2

dx. (11)

Let 0 < α < 1 and let r0 be large enough so that ε2,r0 ≤ ε0 holds (the existence of such r0 is
ensured by (4)), where ε0 = ε0(d, k, λ,α) > 0 is a constant de�ned in the proof below. Then for
all r,R ≥ r0 with r < R the Ck,α excess-decay estimate

Exck(r) ≤ C(d, k, λ,α)
( r
R

)2(k−1)+2α
Exck(R) (12)

is satis�ed.

Our large-scale Ck+1,α excess-decay estimate entails the following kth-order Liouville

principle.

Corollary 4 (kth-order Liouville principle). Let d ≥ 2, k ≥ 2, and suppose that the assumption
(4) is satis�ed. Then the following property holds: Any a-harmonic function u satisfying the
growth condition

lim inf
r→∞

1

rk

(
−
∫

Br

|u|2 dx

)1/2

= 0 (13)

is of the form

u = a + bi(xi + φi)+
k∑

κ=2

(Pκ + φi∂iPκ + ψPκ )

with some a ∈ R, b ∈ R
d, and Pκ ∈ Pκahom

for 2 ≤ κ ≤ k (i.e., Pκ is a homogeneous
ahom-harmonic polynomial of degree κ). Here, the ψP denote the higher-order correctors whose
existence is guaranteed by Theorem 1.

In particular, the space of all a-harmonic functions satisfying (13) has the same dimension
as if a was replaced by a constant coe�cient, say ahom.

Note that the de�ning Eq. (9) and the growth condition

lim
r→∞

1

rk

(
−
∫

Br
|ψP|2 dx

)1/2

= 0

together determine the corrector of order k only up to a-harmonic “polynomials” of order

k− 1: The �rst-order corrector φi is determined only up to an additive constant; the second-

order corrector ψP (for a quadratic polynomial P) is determined only up to corrected a�ne

functions of the form x 7→ ξ · (x+φ)+ cwith ξ ∈ R
d and c ∈ R, and so on. Let us denote by

P̃k
a the space of solutions to the problem −∇ · a∇v = 0 which satisfy the growth condition

lim
r→∞

1

rk+1

(
−
∫

Br
|v|2 dx

)1/2

= 0.



1114 J. FISCHER AND F. OTTO

With this notation, our higher-order correctors yield a canonical isomorphism of the quotient

spaces

P̃
k
ahom

/P̃k−1
ahom

∼= P̃
k
a/P̃

k−1
a

de�ned by:

[P] 7→ [P + φ · ∇P + ψP]

for any P ∈ Pk
ahom

. Note that this isomorphism is independent of the particular choice of the

correctors φ and ψP.

The basic strategy of the proof of Theorems 1 and 3 is as follows:

• First, under the assumption that we already have constructed an appropriate kth-order
corrector on a ball BR, we show a Ck,α excess-decay estimate on large scales within this

ball for a-harmonic functions (Lemma 14). This result directly implies Theorem 3 as soon

as we have proven the existence of a corrector on R
d (i.e., as soon as we have established

Theorem 1). The basic idea for this �rst part of the proof is a standard approach from

regularity theory:We transfer the regularity properties of the constant-coe�cient equation

−∇ · ahom∇uhom = 0 to the equation −∇ · a∇u = 0. To accomplish this, we employ an

error estimate for the homogenization error.

• Our Ck,α estimate implies a Ck−1,1 theory for a-harmonic functions on balls BR, provided
that we have already constructed an appropriate kth-order corrector on BR. This is done in
Lemma 17.

• At last, we are able to build our corrector, starting from small balls and iteratively doubling

the size of our balls: We decompose the right-hand side of Eq. (9) into contributions from

dyadic annulli. In each step, we add the contribution from the next larger scale ξ
2mr0
P

determined as the Lax–Milgram solution to the problem

−∇ · a∇ξ 2
mr0

P = ∇ · (χB2m+1r0
−B2mr0

(φia − σi)∇∂iP),

to the corrector on the old scale ψ
2mr0
P . At this point, we make use of the Ck−1,1 theory to

show that a�er possibly subtracting an appropriate k−1-th order a-harmonic “polynomial,”

the new contribution ξ
2mr0
P displays kth-order decay in the interior {|x| < 2mr0}, down to

the ball {|x| < r0}. This ensures that on a ball of a given �xed size r with r < 2mr0, the
contribution from the next larger scale does not destroy the smallness of the corrector.

We are therefore able to construct the corrector on the next larger scale ψ
2m+1r0
P as the

sum of the corrector on the old scale ψ
2mr0
P and the new contribution ξ

2mr0
P minus the

aforementioned a-harmonic “polynomial.” This iterative enlargement is carried out in

Lemma 18 and �nally enables us to prove Theorem 1.

• The kth-order Liouville principle stated inCorollary 4 is an easy consequence of ourCk+1,α

large-scale excess-decay estimate.

3. A C2,α large-scale regularity theory for homogeneous elliptic equations with

random coe�cients

For the reader’s convenience, we shall �rst provide a proof for theC2,α case of our theorems, as

in this case, the proofs are less technical while already containing the key ideas. In particular,

the overall structure of our proofs is the same as in theCk,α case. Sincewe shall use a somewhat
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simpli�ed notation in theC2,α case, let us reformulate theC2,α case of our theorems using this

notation.

Theorem 5 (Existence of second-order correctors). Let d ≥ 2 and suppose that the corrector
φ and the �ux-correction potential σ satisfy the growth assumption (4). Let r0 be large enough
so that ε2,r0 ≤ ε0 holds [the existence of such r0 is ensured by (4)], where ε0 = ε0(d, λ) > 0 is a
constant de�ned in the proof below. Given any E ∈ R

d×d, there exists a second-order corrector
ψE satisfying

− ∇ · a∇ψE = Eij∇ · [σij + σji + a(φiej + φjei)] (14)

as well as

sup
R≥r

1

R

(
−
∫

BR

|∇ψE|2 dx
)1/2

≤ C(d, λ)|E|ε2,r

for any r ≥ r0. Moreover, the corrector ∇ψE depends linearly on E.

Due to the linear dependence of ψE on E, below we shall also write Eijψij in place of ψE.

Note that our second-order correctors indeed enable us—in conjunction with the �rst-

order correctors φi—to correct ahom-harmonic second-order polynomials.

Proposition 6. Let d ≥ 2 and let E ∈ E (i.e., assume that the polynomial Eijxixj is ahom-
harmonic). Suppose that ψE satis�es (14). We then have

−∇ · a∇Eij(xixj + xiφj + φixj + ψij) = 0.

Our C2,α large-scale regularity theorem reads as follows.

Theorem 7 (C2,α large-scale excess-decay estimate). Let d ≥ 2 and suppose that (4) holds. Let
u be an a-harmonic function. Let ψE be the second-order corrector constructed in Theorem 5.
Consider the second-order excess

Exc2(r) := inf
b∈Rd ,E∈E

−
∫

Br

∣∣∇u − ∇
(
bi(xi + φi)+ Eij(xixj + xiφj + φixj + ψij)

)∣∣2 dx. (15)

Let 0 < α < 1 and let r0 be large enough so that ε2,r0 ≤ ε0 holds [the existence of such r0 is
ensured by (4)], where ε0 = ε0(d, λ,α) > 0 is a constant de�ned in the proof below. Then for
all r,R ≥ r0 with r < R the C2,α excess-decay estimate

Exc2(r) ≤ C(d, λ,α)
( r
R

)2+2α
Exc2(R) (16)

is satis�ed.

Our large-scale excess-decay estimate entails the following C2,α Liouville principle.

Corollary 8 (C2,α Liouville principle). Let d ≥ 2 and suppose that the assumption (4) is
satis�ed. Then the following property holds: Any a-harmonic function u satisfying the growth
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condition

lim inf
r→∞

1

r2+α

(
−
∫

Br

|u|2 dx

)1/2

= 0

for some α ∈ (0, 1) is of the form

u = a + bi(xi + φi)+ Eij(xixj + xiφj + φixj + ψij)

with some a ∈ R, b ∈ R
d, and E ∈ E (i.e., some E ∈ R

d×d for which Eijxixj is an ahom-harmonic
polynomial).

Let us start with the proof of Proposition 6, which only requires a simple computation.

Proof of Proposition 6. Making use of the fact that Eij((ahom)ij + (ahom)ji) = 0 (in the third

step below), we compute

Eij∇ · (σij + σji)+ Eij∇ · a(φiej + φjei)

(8)= Eijqij + Eijqji + Eij∇ · a(φiej + φjei)

(7)= Eij(ajk((Id)ik + ∂kφi)− (ahom)ji)+ Eij(aik((Id)jk + ∂kφj)− (ahom)ij)

+ Eij∇ · a(φiej + φjei)

= Eij(ajk(∂kxi + ∂kφi)+ aik(∂kxj + ∂kφj))

+ Eij∇ · a(φi∇xj + φj∇xi)

= Eij(a∇(xi + φi) · ∇xj + a∇(xj + φj) · ∇xi)+ Eij∇ · a(φi∇xj + φj∇xi)

(6)= Eij∇ · (xja∇(xi + φi)+ xia∇(xj + φj))+ Eij∇ · a(φi∇xj + φj∇xi).

We therefore obtain

Eij∇ · (σij + σji)+ Eij∇ · a(φiej + eiφj)

= Eij∇ · a∇(xixj + xiφj + φixj),

which together with (14) implies our proposition.

3.1. The C2,α excess-decay estimate

To establish our C2,α excess-decay estimate, we make use of the following lemma, which

essentially generalizes Theorem 7 to correctors which are only available on balls BR.

Lemma9. Let d ≥ 2. For any E ∈ E , denote by ψ̃E a solution to the equation of the second-order
corrector (14) on the ball BR (without boundary conditions); assume that ψ̃E depends linearly
on E. Set

εψ̃ ,r,R := sup
r≤ρ≤R

ρ−1

(
max

E∈E ,|E|=1
−
∫

Bρ
|∇ψ̃E|2 dx

)1/2

. (17)
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For an a-harmonic function u in BR, consider the second-order excess

Ẽxc2(r) := inf
b∈Rd ,E∈E

−
∫

Br

∣∣∣∇u − ∇
(
bi(xi + φi)+ Eij(xixj + xiφj + φixj + ψ̃ij)

)∣∣∣
2
dx. (18)

For any 0 < α < 1, there exists a constant εmin > 0 depending only on d, λ, and α such that
the following assertion holds:

Suppose that r0 > 0 satis�es εr0+εψ̃ ,r0,R ≤ εmin. Then for all r ∈ [r0,R] the C2,α excess-decay
estimate

Ẽxc2(r) ≤ C(d, λ,α)
( r
R

)2+2α
Ẽxc2(R) (19)

is satis�ed.
Note that the in�mum in (18) is actually attained, as the average integral in the de�nition

of Ẽxc2(ρ) is a quadratic functional of b and E. Denote by bρ,min and Eρ,min a corresponding
optimal choice of b and E in (18). We then have the estimates

R2|Er,min − ER,min|2 + |br,min − bR,min|2 ≤ C(d, λ,α)Ẽxc2(R) (20)

and

R2|Er,min|2 + |br,min|2 ≤ C(d, λ,α)−
∫

BR

|∇u|2 dx. (21)

Proof of Theorem 7. Theorem 7 obviously follows from Lemma 9 by setting ψ̃E := ψE, with

ψE being the second-order corrector whose existence is guaranteed by Theorem 5.

The following lemma is essentially a special case of our C2,α large-scale excess-decay

estimate Lemma 9; it entails the general case of Lemma 9 (see below).

Lemma10. Let d ≥ 2 and let R, r > 0 satisfy r < R/4 and εR ≤ 1. For any E ∈ E , denote by ψ̃E

a solution to the equation of the second-order corrector (14) on the ball BR (without boundary
conditions); assume that ψ̃E depends linearly on E. For an a-harmonic function u in BR, consider
again the second-order excess (18). Then the excess on the smaller ball Br is estimated in terms
of the excess on the larger ball BR and our quantities εR and ∇ψ̃E: We have

Ẽxc2(r) ≤ C(d, λ)

[( r
R

)4
+
(
ε
2/(d+1)2

R + R−2 max
E∈E ,|E|=1

−
∫

BR

|∇ψ̃E|2 dx
)( r

R

)−d
]

× Ẽxc2(R).

Before proving Lemma 10, we would like to show how it implies Lemma 9.

Proof of Lemma 9. First choose 0 < θ ≤ 1/4 so small that the strict inequality C(d, λ)θ4 <
θ2+2α is satis�ed (with C(d, λ) being the constant from Lemma 10). Then, choose the

threshold εmin for εr0 + εψ̃ ,r0,R
so small that the estimate

C(d, λ)
[
θ4 +

(
ε
2/(d+1)2

r0 + ε2
ψ̃ ,r0,R

)
θ−d

]
≤ θ2+2α

holds.
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Let M be the largest integer for which θMR ≥ r holds. Applying Lemma 10 inductively

with Rm := θm−1R, rm := θmR for 1 ≤ m ≤ M, we infer

Ẽxc2(θ
MR) ≤ (θ2+2α)MẼxc2(R).

Since we have trivially

Ẽxc2(r) ≤
(

r

rM

)−d

Ẽxc2(rM)

and since by de�nition of M, we have r > θrM and thus θM < θ−1 r
R [where we recall θ =

θ(d, λ,α)], we infer

Ẽxc2(r) ≤ C(d, λ,α)
( r
R

)2+2α
Ẽxc2(R).

It remains to show the estimates for |br,min−bR,min| and |Er,min−ER,min| as well as the bounds
for |br,min| and |Er,min|. To do so, let us �rst estimate the di�erences |bRm,min − brm,min| and
|ERm,min − Erm,min|. We have the estimate

−
∫

Brm

∣∣∇(bRm,min
i − brm,min

i )(xi + φi)

+ ∇(ERm,min
ij − Erm,min

ij )(xixj + xiφj + φixj + ψ̃ij)
∣∣2 dx

≤ 2 −
∫

Brm

∣∣∣∇u − ∇brm,min
i (xi + φi)− ∇Erm,min

ij (xixj + xiφj + φixj + ψ̃ij)

∣∣∣
2
dx

+ 2 −
∫

Brm

∣∣∣∇u − ∇bRm,min
i (xi + φi)− ∇ERm,min

ij (xixj + xiφj + φixj + ψ̃ij)

∣∣∣
2
dx

≤ 2Ẽxc2(rm)+ 2

(
Rm
rm

)d

Ẽxc2(Rm)

≤ C(d, λ,α)
( rm
R

)2+2α
Ẽxc2(R)+ C(d, λ,α)θ−d

(
Rm
R

)2+2α

Ẽxc2(R)

≤ C(d, λ,α)
( rm
R

)2
(θ2α)mẼxc2(R).

From Lemma 11 below, we thus obtain

|bRm,min − brm,min| + R|ERm,min − Erm,min| ≤ C(d, λ,α)(θα)m
√
Ẽxc2(R).

Note that a similar estimate for the last increment |brM ,min − br,min| + R|ErM ,min − Er,min|
can be derived analogously. Taking the sum with respect tom and recalling that R1 = R and

rm = Rm+1, we �nally deduce

|bR,min − br,min| + R|ER,min − Er,min| ≤ C(d, λ,α)
M∑

m=0

(θα)m
√
Ẽxc2(R)

≤ C(d, λ,α)
√
Ẽxc2(R).

It only remains to establish the last estimate for |br,min| and |Er,min|. By the previous estimate,

it is su�cient to prove the corresponding bound for bR,min and ER,min. This in turn is a
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consequence of the inequality

−
∫

BR

∣∣∣∇bR,min
i (xi + φi)+ ∇ER,min

ij (xixj + xiφj + φixj + ψ̃ij)

∣∣∣
2
dx

≤ 2Ẽxc2(R)+ 2 −
∫

BR

|∇u|2 dx ≤ 4 −
∫

BR

|∇u|2 dx

together with Lemma 11 below.

The following lemma quanti�es the linear independence of the corrected polynomials xi+
φi, Eij(xixj + xiφj + φixj + ψ̃ij); it is needed in the previous proof.

Lemma 11. Suppose that for every E ∈ E \ {0}, the functions φ and ψ̃E satisfy

ρ−2 −
∫

Bρ
|φ|2 dx + ρ−2|E|−2 −

∫

Bρ
|∇ψ̃E|2 dx ≤ ε20 ,

where ε0 = ε0(d) is to be de�ned in the proof below. Then for any b ∈ R
d and any E ∈ E , we

have the estimate

|b|2 + ρ2|E|2 ≤ C(d)−
∫

Bρ
|∇bi(xi + φi)+ ∇Eij(xixj + xiφj + φixj + ψ̃ij)|2 dx. (22)

Proof. Poincaré’s inequality (with zero mean) and the triangle inequality imply
(

−
∫

Bρ
|∇bi(xi + φi)+ ∇Eij(xixj + xiφj + φixj + ψ̃ij)|2 dx

)1/2

≥
1

C(d)

1

ρ
inf
a∈R

(
−
∫

Bρ
|bi(xi + φi)+ Eij(xixj + xiφj + φixj + ψ̃ij)− a|2 dx

)1/2

≥
1

C(d)

1

ρ

[
inf
a∈R

(
−
∫

Bρ
|bixi + Eijxixj − a|2 dx

)1/2

− inf
a∈R

(
−
∫

Bρ
|biφi + Eij(xiφj + φixj + ψ̃ij)− a|2 dx

)1/2 ]
.

On the one hand, by transversality of constant, linear, and quadratic functions, we have

1

ρ
inf
a∈R

(
−
∫

Bρ
|bixi + Eijxixj − a|2 dx

)1/2

≥
1

C(d)
(|b| + ρ|E|).

On the other hand, we have by the triangle inequality and Poincaré’s inequality,

1

ρ
inf
a∈R

(
−
∫

Bρ
|biφi + Eij(xiφj + φixj + ψ̃ij)− a|2 dx

)1/2

≤ C(d)


(|b| + ρ|E|)

1

ρ

(
−
∫

Bρ
|φ|2 dx

)1/2

+ ρ|E|
1

ρ
max

Ẽ∈E ,|̃E|=1

(
−
∫

Bρ
|∇ψẼ|

2 dx

)1/2

 .
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Putting these estimates together, by boundedness of the integrals in the previous line by ε20ρ
2

our assertion is established.

Proof of Lemma 10. In the proof of the lemma, we may assume that

Ẽxc2(R) = −
∫

BR
|∇u|2 dx. (23)

To see this, recall that the in�mum in the de�nition of Ẽxc2(R) is actually attained. Denote
the corresponding choices of b and E by bmin and Emin. Replacing u by u − bmin

i (xi + φi) −
Emin
ij (xixj + xiφj + φixj + ψ̃ij), we see that we may indeed assume (23): The new function is

also a-harmonic due to (6) and Proposition 6.

We then apply Lemma 20 below to our function u. This yields an ahom-harmonic function

uhom close to u which in particular satis�es

−
∫

BR/2

|∇uhom|2 dx ≤ C(d, λ)−
∫

BR

|∇u|2 dx.

By inner regularity theory for elliptic equations with constant coe�cients, the ahom-harmonic

function uhom satis�es

|∇uhom(0)| + R sup
BR/4

|∇2uhom| + R2 sup
BR/4

|∇3uhom|

≤ C(d, λ)

(
−
∫

BR/2

|∇uhom|2 dx
)1/2

≤ C(d, λ)

(
−
∫

BR

|∇u|2 dx
)1/2

.

Let us de�ne

bR,Taylor := ∇uhom(0),

ER,Taylor := ∇2uhom(0).

Since −∇ · ahom∇uhom = 0 holds, we infer E
R,Taylor
ij (ahom)ij = 0 and therefore ER,Taylor ∈ E

(note that E
R,Taylor
ij = E

R,Taylor
ji ). By Taylor’s expansion of ∇uhom around x = 0, we deduce for

any x ∈ BR/4 the bound
∣∣∣∣∇uhom(x)− bR,Taylor −

1

2
E
R,Taylor
ij (xjei + xiej)

∣∣∣∣ ≤ |x|2 sup
BR/4

|∇3uhom|.

Making use of the identity

(Id + (∇φ)t)∇uhom − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj)

)

+
1

2
E
R,Taylor
ij (φjei + φiej)

= (Id + (∇φ)t)
(

∇uhom(x)− bR,Taylor −
1

2
E
R,Taylor
ij (xjei + xiej)

)
,
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the previous estimate yields in connection with the bound for |∇3uhom| and r < R/4

−
∫

Br

∣∣∣∣(Id + (∇φ)t)∇uhom − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj)

)

+
1

2
E
R,Taylor
ij (φjei + φiej)

∣∣∣∣
2

dx

≤ C(d, λ)
( r
R

)4
−
∫

BR

|∇u|2 dx × −
∫

Br
|Id + (∇φ)t|2 dx.

By the Caccioppoli inequality for the a-harmonic function xi + φi (6), we have

−
∫

Br
|Id + (∇φ)t|2 dx ≤

C(d, λ)

r2
−
∫

B2r
|x + φ|2 dx ≤ C(d, λ)(1 + ε22r). (24)

The approximation property of uhom + φi∂iuhom in BR/2 from Lemma 20 below implies

−
∫

Br
|∇u − ∇(uhom + φi∂iuhom)|2 dx ≤ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx.

Combining the last three estimates and the equality

∇u − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj + ψ̃ij)

)

=
[
(Id + (∇φ)t)∇uhom − ∇

(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj)

)

+
1

2
E
R,Taylor
ij (φjei + φiej)

]
−

1

2
E
R,Taylor
ij (φjei + φiej + ∇ψ̃ij)

+
[
∇u − ∇(uhom + φi∂iuhom)

]
+ φi∇∂iuhom,

we infer

−
∫

Br

∣∣∣∣∇u − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj + ψ̃ij)

) ∣∣∣∣
2

dx

≤ 4 −
∫

Br

∣∣∣∣(Id + (∇φ)t)∇uhom − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj)

)

+
1

2
E
R,Taylor
ij (φjei + φiej)

∣∣∣∣
2

dx

+ 4 −
∫

Br

∣∣∣∣
1

2
E
R,Taylor
ij (φjei + φiej + ∇ψ̃ij)

∣∣∣∣
2

dx

+ 4 −
∫

Br
|∇u − ∇(uhom + φi∂iuhom)|2 dx

+ 4 −
∫

Br
|φi∇∂iuhom|2 dx

≤ C(d, λ)
( r
R

)4 (
1 + ε2r

)
−
∫

BR

|∇u|2 dx

+ C(d)|ER,Taylor|2
(
r2ε2r + max

E∈E ,|E|=1
−
∫

Br
|∇ψ̃E|2 dx

)
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+ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx

+ C(d)r2ε2r sup
BR/4

|∇2uhom|2.

This �nally yields in connection with the above bounds on ∇2uhom in BR/4 (recall that

ER,Taylor = ∇2uhom(0))

−
∫

Br

∣∣∣∣∇u − ∇
(
b
R,Taylor
i (xi + φi)+

1

2
E
R,Taylor
ij (xixj + xiφj + φixj + ψ̃ij)

) ∣∣∣∣
2

dx

≤ C(d, λ)
( r
R

)4 (
1 + ε2r

)
−
∫

BR

|∇u|2 dx

+ C(d, λ)R−2 −
∫

BR

|∇u|2 dx
(
r2ε2r + max

E∈E ,|E|=1
−
∫

Br
|∇ψ̃E|2 dx

)

+ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx

+ C(d, λ)r2ε2rR
−2 −
∫

BR

|∇u|2 dx

≤ C(d, λ)

[( r
R

)4
+
(
ε
2/(d+1)2

R + R−2 max
E∈E ,|E|=1

−
∫

BR

|∇ψ̃E|2 dx
)( r

R

)−d
]

× −
∫

BR

|∇u|2 dx,

where in the last step we have used the inequality ε2r ≤
(R
r

)d
ε2R ≤

(R
r

)d
ε
2/(d+1)2

R . The new

bound directly implies the desired estimate.

3.2. The C1,1 excess-decay estimate

We now show how our C2,α excess-decay estimate for the second-order excess Ẽxc2 from

Lemma 9 entails a C1,1 excess-decay estimate for the �rst-order excess Exc.

Lemma 12. Let d ≥ 2 and R > 0. For any E ∈ E , denote by ψ̃E a solution to the equation of
the second-order corrector (14) on the ball BR (without boundary conditions); assume that ψ̃E

depends linearly on E. There exists a constant εmin > 0 depending only on d and λ such that the
following assertion holds:

Suppose r0 ∈ (0,R] is so large that εr0 ≤ εmin and

sup
r0≤ρ≤R

ρ−1

(
max

E∈E ,|E|=1
−
∫

Bρ
|∇ψ̃E|2 dx

)1/2

≤ εmin

hold. Let u be an a-harmonic function on BR. Then there exists bR ∈ R
d for which the estimate

−
∫

Br
|∇u − ∇bRi (xi + φi)|2 dx ≤ C(d, λ)

( r
R

)2
−
∫

BR

|∇u|2 dx
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holds for any r ∈ [r0,R]. Furthermore, bR depends linearly on u and satis�es

|bR|2 ≤ C(d, λ)−
∫

BR

|∇u|2 dx.

Proof. In Lemma 9, �x α := 1/2. We then easily verify that Lemma 9 is applicable in our

situation. Set bR := br0,min and ER := Er0,min; this implies that bR depends linearly on u. The
estimate (21) takes the form

R2|ER|2 + |bR|2 ≤ C(d, λ)−
∫

BR

|∇u|2 dx.

Furthermore, applying Lemma 9 with r0 playing the role of r and r playing the role of R, we
deduce from (20)

r2|ER − Er,min|2 + |bR − br,min|2 ≤ C(d, λ)Ẽxc2(r)
(19)
≤ C(d, λ)

( r
R

)2+2α
Ẽxc2(R) ≤ C(d, λ)

( r
R

)2+2α
−
∫

BR

|∇u|2 dx.

We now estimate

−
∫

Br
|∇u − ∇bRi (xi + φi)|2 dx

≤ 3 −
∫

Br

∣∣∣∇u − ∇br,min
i (xi + φi)− ∇Er,min

ij (xixj + xiφj + φixj + ψ̃ij)

∣∣∣
2
dx

+ 3 −
∫

Br

∣∣∣∇Er,min
ij (xixj + xiφj + φixj + ψ̃ij)

∣∣∣
2
dx

+ 3 −
∫

Br
|(br,min

i − bRi )∇(xi + φi)|2 dx

≤ 3Ẽxc2(r)

+ C(d)|Er,min|2
(

−
∫

Br
|φ|2 + r2|Id + (∇φ)t|2 dx + max

E∈E ,|E|=1
−
∫

Br
|∇ψ̃E|2 dx

)

+ 3|br,min − bR|2 −
∫

Br
|Id + (∇φ)t|2 dx

(19,24)
≤ C(d, λ)

( r
R

)2+2α
Ẽxc2(R)+ C(d, λ)|Er,min|2r2(ε2r + (1 + ε22r)+ ε2

ψ̃ ,r0,R
)

+ C(d, λ)|br,min − bR|2(1 + ε22r)

≤ C(d, λ)
( r
R

)2+2α
Ẽxc2(R)+ C(d, λ)|Er,min|2r2 + C(d, λ)|br,min − bR|2.

In conjunction with the two previous estimates, we infer

−
∫

Br
|∇u − ∇bRi (xi + φi)|2 dx

≤ C(d, λ)

[( r
R

)2+2α
+
(( r

R

)2
+
( r
R

)2+2α
)

+
( r
R

)2+2α
]

−
∫

BR

|∇u|2 dx.

Our lemma is therefore established.
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3.3. Construction of second-order correctors

Using theC1,1 theory established in the previous subsection, we now proceed to the construc-

tion of our second-order corrector. The following lemma provides the inductive step; starting

from a function which acts as a corrector on a ball BR, we construct a function acting as a

corrector on the ball B2R.

Lemma 13. Let d ≥ 2 and let r0 > 0 satisfy the estimate ε2,r0 ≤ ε0, where ε0 = ε0(d, λ) is to
be chosen in the proof below. Then the following implication holds:

Let R = 2Mr0 for some M ∈ N0. Suppose that for every E ∈ R
d×d we have a solution ψR

E to
the equation

−∇ · a∇ψR
E = Eij∇ · χBR[σij + σji + a(φiej + φjei)]

subject to the growth condition

r−1

(
−
∫

Br
|∇ψR

E |2 dx
)1/2

≤ C1(d, λ)|E|
M∑

m=0

min{1, 2mr0/r}ε2mr0

for all r ≥ r0, where C1(d, λ) is a su�ciently large constant to be chosen in the proof below.
Assume furthermore that ψR

E depends linearly on E.
Then for every E ∈ R

d×d there exists a solution ψ2R
E to the equation

−∇ · a∇ψ2R
E = Eij∇ · [χB2R(σij + σji + a(φiej + φjei))]

subject to the growth condition

r−1

(
−
∫

Br
|∇ψ2R

E |2 dx
)1/2

≤ C1(d, λ)|E|
M+1∑

m=0

min{1, 2mr0/r}ε2mr0

for all r ≥ r0. Furthermore, ψ2R
E depends linearly on E and we have

r−1
(
−
∫
Br

|∇ψ2R
E − ∇ψR

E |2 dx
)1/2

≤ C1(d, λ)|E|ε2M+1r0 .

Proof. To establish the lemma, we �rst note that the assumptions of the lemma ensure that

the C1,1 excess-decay lemma (Lemma 12) is applicable on BR with ψ̃E := ψR
E . To see this, we

estimate for any r ∈ [r0,R]

r−1

(
−
∫

Br
|∇ψR

E |2 dx
)1/2

≤ C1(d, λ)|E|ε2,r0 ≤ C1(d, λ)|E|ε0.

By choosing ε0 > 0 small enough depending only on d and λ and C1 (which is to be chosen

at the end of this proof), we can ensure that the assumption of Lemma 12 regarding smallness

of εψ̃ ,r0,R is satis�ed.

Let now ξRE be the weak solution on R
d with square-integrable gradient, which is unique

up to additive constants and whose existence follows from the Lax–Milgram theorem, to the

problem

−∇ · a∇ξRE = Eij∇ · χB2R−BR(σij + σji)+ Eij∇ · χB2R−BRa(φiej + φjei).
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Obviously, ∇ξRE depends linearly on E; a�er �xing the additive constant, for e.g., by requiring∫
B1
ξRE dx = 0, ξRE itself depends linearly on E. Furthermore, we have the bound

∫

Rd
|∇ξRE |2 dx ≤ C(λ)|E|2

∫

Rd
χB2R−BR |σ |2 + χB2R−BR |φ|2 dx

and therefore ∫

Rd
|∇ξRE |2 dx ≤ C(λ)|E|2R2+dε22R. (25)

As ξRE is a-harmonic in BR, Lemma 12 now implies the existence of some bRE ∈ R
d for which

the estimates

|bRE|2 ≤ C(d, λ)−
∫

BR

|∇ξRE |2 dx ≤ C(d, λ)|E|2R2ε22R (26)

and

−
∫

Br
|∇ξRE − ∇(bRE)i(xi + φi)|2 dx ≤ C(d, λ)

( r
R

)2
−
∫

BR

|∇ξRE |2 dx

≤ C(d, λ)|E|2r2ε22R
hold for all r ∈ [r0,R] and which linearly depends on E.

Furthermore, we have for r > R

−
∫

Br
|∇ξRE − ∇(bRE)i(xi + φi)|2 dx

(24)
≤ C(d, λ)

(
r−d

∫

Br
|∇ξRE |2 dx + |bRE|2(1 + ε22r)

)

(25,26)
≤ C(d, λ)|E|2R2

((
R

r

)d

+ 1 + ε22r

)
ε22R

≤ C(d, λ)|E|2R2ε22R.

The combination of both r-ranges yields

1

r

(
−
∫

Br
|∇ξRE − ∇(bRE)i(xi + φi)|2 dx

)1/2

≤ C(d, λ)|E|min{1, 2R/r}ε2R. (27)

In total, we see that

ψ2R
E := ψR

E + ξRE − (bRE)i(xi + φi)

is the desired function (note in particular that the last term is a-harmonic), provided we

choose C1 to be the constant appearing in (27).

We now establish existence of second-order correctors by means of the previous lemma.

Proof of Theorem 5. We just need to construct an “initial” second-order correctorψ
r0
E subject

to the properties of Lemma 13; then Lemma 13 yields a sequence (ψ
2mr0
E )m which is a Cauchy

sequence inH1(BR) for everyR > 0 due to the last estimate in the lemma and our assumption

(4) which implies summability of ε2mr0 . Thus, the limit ψE satis�es the Eq. (14) in the whole
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space, depends linearly on E, and satis�es the estimate

r−1

(
−
∫

Br
|∇ψE|2 dx

)1/2

≤ C1(d, λ)|E|
∞∑

m=0

min{1, 2mr0/r}ε2mr0

for any r ≥ r0.
To construct ψ

r0
E , just use Lax–Milgram to �nd the solution ψ

r0
E on R

d with square-

integrable gradient (unique up to an additive constant) to the equation

−∇ · a∇ψ r0
E = Eij∇ · [χBr0 (σij + σji + a(φiej + φjei))].

Obviously, a�er �xing the additive constant appropriatelyψ
r0
E depends linearly on E. Further-

more, we have the energy estimate
∫

Rd
|∇ψ r0

E |2 dx ≤ C(λ)|E|2
∫

Rd
|χBr0σ |2 + |χBr0aφ|2 dx,

i.e., for any r ≥ r0
∫

Br
|∇ψ r0

E |2 dx ≤ C(d, λ)|E|2
∫

Br0

|φ|2 + |σ |2 dx

and therefore

−
∫

Br
|∇ψ r0

E |2 dx ≤ C(d, λ)|E|2r−dε2r0r
2+d
0

≤ C(d, λ)|E|2r2min{1, (r0/r)2}ε2r0 .

We note that this provides the starting point for Lemma 13, possibly a�er enlarging the

constant C1 in the statement thereof.

3.4. Proof of the C2,α Liouville principle

The C2,α Liouville principle (Corollary 8) is an easy consequence of our large-scale excess-

decay estimate (Theorem 7).

Proof of Corollary 8. Let α ∈ (0, 1) be such that

lim
R→∞

1

R2+α

(
−
∫

BR

|u|2 dx

)1/2

= 0

holds. By the Caccioppoli estimate, we deduce

lim
R→∞

1

R1+α

(
−
∫

BR

|∇u|2 dx

)1/2

= 0.

Fix r ≥ r0. The excess-decay estimate from Theorem 7 yields together with the trivial bound

Exc2(R) ≤ −
∫
BR

|∇u|2 dx that

Exc2(r) ≤ C(d, λ,α)
( r
R

)2+2α
Exc2(R)

≤ C(d, λ,α)r2+2α

(
1

R1+α

(
−
∫

BR

|∇u|2 dx
)1/2

)2

.
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Passing to the limit R → ∞, we deduce that

Exc2(r) = 0

holds for every r ≥ r0. Therefore, on every Br with r ≥ r0, ∇u can be represented exactly as
the derivative of a corrected polynomial of second order (since the in�mum in the de�nition

of Exc2 is actually attained, as noted at the beginning of the proof of Lemma 10), i.e., we have

∇u = ∇bri (xi + φi)+ ∇Erij(xixj + xiφj + φixj + ψij)

in Br for some br ∈ R
d and some Er ∈ E . It is not di�cult to show that for r large enough,

the br and Er are actually independent of r and de�ne some common b ∈ R
d and E ∈ E :

For example, one may use Lemma 9 to compare the br, Er for two di�erent radii r1, r2 ≥ r0;
the estimate for |br1 − br2 | and |Er1 − Er2 | then contains the factor Exc2(max(r1, r2)) and is

therefore zero. Moreover, the gradient ∇u determines the function u itself up to a constant,

i.e., we have

u = a + bi(xi + φi)+ Eij(xixj + xiφj + φixj + ψij)

for some a ∈ R, some b ∈ R
d, and some E ∈ E ⊂ R

d×d.

4. A Ck,α large-scale regularity theory for elliptic equations with random

coe�cients

We now generalize our proofs from the C2,α case in order to correct polynomials of order k
and obtain our Ck,α large-scale regularity theory. We proceed by induction in k.

To establish our Ck,α regularity theory, let us �rst show Proposition 2, which – like the

proof of Proposition 6 in the C2,α case – only requires a simple computation.

Proof of Proposition 2. Making use of the fact that we have (ahom)ij∂i∂jP = 0 (in the third step

below), we obtain

−∇ · (σi∇∂iP)
= (∇ · σi) · ∇∂iP
(8)= qi · ∇∂iP
(7)= a(ei + ∇φi) · ∇∂iP
(6)= ∇ · (∂iP a(ei + ∇φi)).

This yields

∇ · ((φia − σi)∇∂iP)
= ∇ · a(φi∇∂iP + ∂iPei + ∂iP∇φi)
= ∇ · a∇(P + φi∂iP),

which together with (9) implies our proposition.

4.1. The Ck,α excess-decay estimate

To establish our Ck,α excess-decay estimate, we make use of the following lemma, which

essentially generalizes Theorem 3 to correctors that are only available on balls BR.
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Lemma 14. Let d ≥ 2 and k ≥ 2. Suppose that Theorem 1 holds for orders 2, . . . , k−1, and set
ψP ≡ 0 for �rst-order polynomials P to simplify notation. For any P ∈ Pk

ahom
, denote by ψ̃P a

solution to the Eq. (9) on the ball BR (without boundary conditions); assume that the ψ̃P depend
linearly on P. Set

εψ̃ ,r,R := sup
r≤ρ≤R

ρ−(k−1)

(
max

P∈Pk
ahom

,||P||=1
−
∫

Bρ
|∇ψ̃P|2 dx

)1/2

. (28)

For an a-harmonic function u in BR, consider the kth-order excess

Ẽxck(r) := inf
Pκ∈Pκ

ahom

−
∫

Br

∣∣∣∣∇u−∇
( k−1∑

κ=1

(Pκ +φi∂iPκ +ψPκ )+(Pk+φi∂iPk+ ψ̃Pk)
)∣∣∣∣
2

dx. (29)

For any 0 < α < 1, there exists a constant εmin > 0 depending only on d, k, λ, and α such
that the following assertion holds:

Suppose that r0 > 0 satis�es ε2,r0 + εψ̃ ,r0,R
≤ εmin. Then for all r ∈ [r0,R] the Ck,α excess-

decay estimate

Ẽxck(r) ≤ C(d, k, λ,α)
( r
R

)2(k−1)+2α
Ẽxck(R) (30)

is satis�ed.
Note that the in�mum in (29) is actually attained, as the average integral in the de�nition of

Ẽxc2(ρ) is a quadratic functional of Pκ . Denote by P
ρ,min
κ a corresponding optimal choice of Pκ

in (29). We then have the estimates:

k∑

κ=1

R2(κ−1)||Pr,min
κ − PR,min

κ ||2 ≤ C(d, k, λ,α)Ẽxck(R) (31)

and

k∑

κ=1

R2(κ−1)||Pr,min
κ ||2 ≤ C(d, k, λ,α)−

∫

BR

|∇u|2 dx. (32)

Proof of Theorem 3. Once we have shown Theorem 1, Theorem 3 obviously follows from

Lemma 14 by setting ψ̃Pk := ψPk , with ψPk being the kth-order corrector whose existence
is established in Theorem 1.

The following lemma is essentially a special case of our Ck,α large-scale excess-decay

estimate Lemma 14; it entails the general case of Lemma 14 (see below).

Lemma 15. Let d ≥ 2, k ≥ 2, and let R, r > 0 satisfy r < R/4 and ε2,R ≤ ε0(d, k − 1, λ),
with ε0(d, k − 1, λ) being the constant from Theorem 1 for the orders 2, . . . , k − 1. Assume
that Theorem 1 holds for orders 2, . . . , k − 1, and let ψP ≡ 0 for linear polynomials P in order
to simplify notation. For any P ∈ Pk

ahom
, denote by ψ̃P a solution to the Eq. (9) on the ball

BR (without boundary conditions); assume that ψ̃P depends linearly on P. For an a-harmonic
function u on BR, consider again the kth-order excess (29). Then the excess on the smaller ball
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Br is estimated in terms of the excess on the larger ball BR and our quantities ε2,R and ∇ψ̃P: We
have

Ẽxck(r) ≤ C(d, k, λ)Ẽxck(R)

×
[ ( r

R

)2k
+
(
ε
2/(d+1)2

2,R + R−2(k−1) max
P∈Pk

ahom
,||P||=1

−
∫

BR

|∇ψ̃P|2 dx
)( r

R

)−d
]
.

Before proving Lemma 15, we would like to show how it implies Lemma 14.

Proof of Lemma 14. First choose 0 < θ ≤ 1/4 so small that the strict inequality

C(d, k, λ)θ2k < θ2(k−1)+2α is satis�ed (with C(d, k, λ) being the constant from Lemma 15).

Then, choose the threshold εmin for ε2,r0 + εψ̃ ,r0,R
so small that the estimate

C(d, k, λ)
[
θ2k +

(
ε
2/(d+1)2

2,r0 + ε2
ψ̃ ,r0,R

)
θ−d

]
≤ θ2(k−1)+2α

holds.

Let M be the largest integer for which θMR ≥ r holds. Applying Lemma 15 inductively

with Rm := θm−1R, rm := θmR for 1 ≤ m ≤ M, we infer

Ẽxck(θ
MR) ≤ (θ2(k−1)+2α)MẼxck(R).

Since we have trivially

Ẽxck(r) ≤
(

r

rM

)−d

Ẽxck(rM)

and since by de�nition of M, we have r > θrM and thus θM < θ−1 r
R [where we recall θ =

θ(d, k, λ,α)], we infer

Ẽxck(r) ≤ C(d, k, λ,α)
( r
R

)2(k−1)+2α
Ẽxck(R).

It remains to show the estimates for ||Pr,min
κ − PR,min

κ || as well as the bounds for ||Pr,min
κ ||. To

do so, let us �rst estimate the di�erences ||PRm,min
κ − Prm,min

κ || of two successive polynomials.

We have the estimate

−
∫

Brm

∣∣∣∣∇
k−1∑

κ=1

(
PRm,min
κ − Prm,min

κ + φi∂i(P
Rm,min
κ − Prm,min

κ )+ ψPRm ,min
κ −Prm ,min

κ

)

+ ∇
(
PRm,min
k − Prm,min

k + φi∂i(P
Rm,min
k − Prm,min

k )+ ψ̃PRm ,min
k −Prm ,min

k

)∣∣∣∣
2

dx

≤ 2 −
∫

Brm

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
Prm,min
κ + φi∂iP

rm,min
κ + ψPrm ,min

κ

)

− ∇
(
Prm,min
k + φi∂iP

rm,min
k + ψ̃Prm ,min

k

)∣∣∣∣
2

dx

+ 2 −
∫

Brm

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
PRm,min
κ + φi∂iP

Rm,min
κ + ψPRm ,min

κ

)

− ∇
(
PRm,min
k + φi∂iP

Rm,min
k + ψ̃PRm ,min

k

)∣∣∣∣
2

dx
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≤ 2Ẽxck(rm)+ 2

(
Rm
rm

)d

Ẽxck(Rm)

≤ C(d, k, λ,α)
( rm
R

)2(k−1)+2α
Ẽxck(R)+ C(d, k, λ,α)θ−d

(
Rm
R

)2(k−1)+2α

Ẽxck(R)

≤ C(d, k, λ,α)
( rm
R

)2(k−1)
(θ2α)mẼxck(R).

From Lemma 16 below, we thus obtain

k∑

κ=1

Rκ−1||PRm,min
κ − Prm,min

κ || ≤ C(d, k, λ,α)(θα)m
√
Ẽxck(R).

A similar estimate for the last increment
∑k
κ=1 R

κ−1||PrM ,min
κ − Pr,min

κ || can be derived

analogously. Taking the sum with respect tom and recalling that R1 = R and rm = Rm+1, we

�nally deduce

k∑

κ=1

Rκ−1||PR,min
κ − Pr,min

κ || ≤ C(d, k, λ,α)
M∑

m=1

(θα)m
√
Ẽxck(R)

≤ C(d, k, λ,α)
√
Ẽxck(R).

It only remains to establish the last estimate for ||Pr,min
κ ||. By the previous estimate, it is

su�cient to prove the corresponding bound for ||PR,min
κ ||. This in turn is a consequence of

the obvious inequality

−
∫

BR

∣∣∣∣∇
k−1∑

κ=1

(
PR,min
κ + φi∂iP

R,min
κ + ψPR,min

κ

)

+ ∇
(
PR,min
k + φi∂iP

R,min
k + ψ̃PR,min

k

)∣∣∣∣
2

dx

≤ 2Ẽxck(R)+ 2 −
∫

BR

|∇u|2 dx ≤ 4 −
∫

BR

|∇u|2 dx

in conjunction with Lemma 16 below.

The following lemma quanti�es the linear independence of the corrected polynomialsPκ+
φi∂iPκ + ψPκ (with 1 ≤ κ ≤ k); it is needed for the previous proof.

Lemma 16. Suppose that the functions φ and ψ̃Pκ (2 ≤ κ ≤ k) satisfy

ρ−2 −
∫

Bρ
|φ|2 dx +

k∑

κ=2

ρ−2(κ−1) max
P∈Pκ

ahom
,||P||=1

||P||−2 −
∫

Bρ
|∇ψ̃P|2 dx ≤ ε20 ,

where ε0 = ε0(d, k) is to be de�ned in the proof below. Set ψ̃P ≡ 0 for linear polynomials P in
order to simplify notation. Then for any Pκ ∈ Pκahom

(1 ≤ κ ≤ k), we have the estimate

k∑

κ=1

ρ2(κ−1)||Pκ ||2 ≤ C(d, k)−
∫

Bρ

∣∣∣∣∇
k∑

κ=1

(Pκ + φi∂iPκ + ψ̃Pκ )

∣∣∣∣
2

dx. (33)
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Proof. Poincaré’s inequality (with zero mean) and the triangle inequality imply

(
−
∫

Bρ

∣∣∣∣∇
k∑

κ=1

(Pκ + φi∂iPκ + ψ̃Pκ )

∣∣∣∣
2

dx

)1/2

≥
1

C(d)

1

ρ
inf
a∈R

(
−
∫

Bρ

∣∣∣∣
k∑

κ=1

(Pκ + φi∂iPκ + ψ̃Pκ )− a

∣∣∣∣
2

dx

)1/2

≥
1

C(d)

1

ρ

[
inf
a∈R

(
−
∫

Bρ

∣∣∣∣
k∑

κ=1

Pκ − a

∣∣∣∣
2

dx

)1/2

− inf
a∈R

(
−
∫

Bρ

∣∣∣∣
k∑

κ=1

(φi∂iPκ + ψ̃Pκ )− a

∣∣∣∣
2

dx

)1/2 ]
.

On the one hand, by transversality of constant, linear, homogeneous second-order, …, and

homogeneous kth-order polynomials, we have

1

ρ
inf
a∈R

(
−
∫

Bρ

∣∣∣∣
k∑

κ=1

Pκ − a

∣∣∣∣
2

dx

)1/2

≥
1

C(d, k)

k∑

κ=1

ρκ−1||Pκ ||.

On the other hand, we have by the triangle inequality and Poincaré’s inequality,

1

ρ
inf
a∈R

(
−
∫

Bρ

∣∣∣∣
k∑

κ=1

(φi∂iPκ + ψ̃Pκ )− a

∣∣∣∣
2

dx

)1/2

≤ C(d, k)

[( k∑

κ=1

ρκ−1||Pκ ||
)
1

ρ

(
−
∫

Bρ
|φ|2 dx

)1/2

+
k∑

κ=2

ρκ−1||Pκ ||
1

ρκ−1
max

P∈Pκ ,||P||=1

(
−
∫

Bρ
|∇ψ̃P|2 dx

)1/2 ]
.

Putting these estimates together, by boundedness of the integrals in the previous line by

ε20ρ
2(κ−1), our assertion is established.

Proof of Lemma 15. In the proof of the lemma, we may assume that

Ẽxck(R) = −
∫

BR

|∇u|2 dx. (34)

To see this, recall that the in�mum in the de�nition of Ẽxck(R) is actually attained. Denote the

corresponding choices of Pκ by Pmin
κ . Replacing u by u −

∑k−1
κ=1(P

min
κ + φi∂iPmin

κ + ψPmin
κ
)−

(Pmin
k + φi∂iPmin

k + ψ̃Pmin
k
), we see that we may indeed assume (34): The new function is also

a-harmonic due to (6) and Proposition 2.

We then apply Lemma 20 below to our function u. This yields an ahom-harmonic function

uhom close to u which in particular satis�es

−
∫

BR/2

|∇uhom|2 dx ≤ C(d, λ)−
∫

BR

|∇u|2 dx.
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By inner regularity theory for elliptic equations with constant coe�cients, the ahom-harmonic

function uhom satis�es

|∇uhom(0)| + R sup
BR/4

|∇2uhom| +
k∑

κ=2

Rκ sup
BR/4

|∇κ+1uhom|

≤ C(d, k, λ)

(
−
∫

BR/2

|∇uhom|2 dx
)1/2

≤ C(d, k, λ)

(
−
∫

BR

|∇u|2 dx
)1/2

. (35)

Let P
R,Taylor
κ (for 1 ≤ κ ≤ k) be the term of order κ in the Taylor expansion of uhom at x0 = 0.

We now show (for κ ≥ 2, as for κ = 1 this assertion is trivial) that P
R,Taylor
κ ∈ Pκahom

. The

term-wise Hessian of the Taylor series of uhom yields the Taylor series of ∇2uhom. We now

know that ahom : ∇2uhom = 0; thus, the Taylor series of ahom : ∇2uhom is identically zero and

by equating the coe�cients, we deduce ahom : ∇2P
R,Taylor
κ = 0 for 2 ≤ κ ≤ k.

As the term-wise derivative of the Taylor series of uhom yields the Taylor series of ∇uhom,
we obtain by the standard error estimate for the Taylor expansion of ∇uhom at x0 = 0 for any

x ∈ BR/4 the estimate

∣∣∣∣∇uhom(x)−
k∑

κ=1

∇P
R,Taylor
κ (x)

∣∣∣∣ ≤ |x|k sup
BR/4

|∇k+1uhom|.

Making use of the identity

(Id + (∇φ)t)∇uhom − ∇
k∑

κ=1

(P
R,Taylor
κ + φi∂iP

R,Taylor
κ )

+
k∑

κ=2

φi∇∂iP
R,Taylor
κ

= (Id + (∇φ)t)
(

∇uhom(x)−
k∑

κ=1

∇P
R,Taylor
κ (x)

)
,

the previous estimate yields in connection with the bound for |∇k+1uhom| and r < R/4

−
∫

Br

∣∣∣∣(Id + (∇φ)t)∇uhom − ∇
k∑

κ=1

(P
R,Taylor
κ + φi∂iP

R,Taylor
κ )

+
k∑

κ=2

φi∇∂iP
R,Taylor
κ

∣∣∣∣
2

dx

≤ C(d, k, λ)
( r
R

)2k
−
∫

BR

|∇u|2 dx × −
∫

Br
|Id + (∇φ)t|2 dx.

By the Caccioppoli inequality for the a-harmonic function xi + φi (6), we have

−
∫

Br
|Id + (∇φ)t|2 dx ≤

C(d, λ)

r2
−
∫

B2r
|x + φ|2 dx ≤ C(d, λ)(1 + ε22r). (36)
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The approximation property of uhom + φi∂iuhom in BR/2 from Lemma 20 below implies

−
∫

Br
|∇u − ∇(uhom + φi∂iuhom)|2 dx ≤ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx.

Combining the last three estimates and the equality

∇u − ∇
k−1∑

κ=1

(
P
R,Taylor
κ + φi∂iP

R,Taylor
κ + ψ

P
R,Taylor
κ

)

− ∇
(
P
R,Taylor
k + φi∂iP

R,Taylor
k + ψ̃

P
R,Taylor
k

)

=
[
(Id + (∇φ)t)∇uhom − ∇

k∑

κ=1

(
P
R,Taylor
κ + φi∂iP

R,Taylor
κ

)

+
k∑

κ=2

φi∇∂iP
R,Taylor
κ

]
−

k∑

κ=2

φi∇∂iP
R,Taylor
κ −

k−1∑

κ=2

∇ψ
P
R,Taylor
κ

− ∇ψ̃
P
R,Taylor
k

+
[
∇u − ∇(uhom + φi∂iuhom)

]
+ φi∇∂iuhom,

we infer

−
∫

Br

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
P
R,Taylor
κ + φi∂iP

R,Taylor
κ + ψ

P
R,Taylor
κ

)

− ∇
(
P
R,Taylor
k + φi∂iP

R,Taylor
k + ψ̃

P
R,Taylor
k

)∣∣∣∣
2

dx

≤ 6 −
∫

Br

∣∣∣∣(Id + (∇φ)t)∇uhom − ∇
k∑

κ=1

(
P
R,Taylor
κ + φi∂iP

R,Taylor
κ

)

+
k∑

κ=2

φi∇∂iP
R,Taylor
κ

∣∣∣∣
2

dx

+ C(k)−
∫

Br

k∑

κ=2

|∇2P
R,Taylor
κ |2|φ|2 dx

+ C(k)−
∫

Br

k−1∑

κ=2

∣∣∇ψR,Taylor
Pκ

∣∣2 dx

+ 6 −
∫

Br

∣∣∇ψ̃
P
R,Taylor
k

∣∣2 dx

+ 6 −
∫

Br
|∇u − ∇(uhom + φi∂iuhom)|2 dx

+ 6 −
∫

Br
|φi∇∂iuhom|2 dx

≤ C(d, k, λ)
( r
R

)2k (
1 + ε2r

)
−
∫

BR

|∇u|2 dx
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+ C(d, k)
k∑

κ=2

r2(κ−1)||PR,Taylorκ ||2ε2r

+ C(d, k)
k−1∑

κ=2

||PR,Taylorκ ||2 max
P∈Pκ

||P||−2 −
∫

Br
|∇ψP|2 dx

+ C(d, k)||PR,Taylork ||2 max
P∈Pk

ahom

||P||−2 −
∫

Br
|∇ψ̃P|2 dx

+ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx

+ C(d)r2ε2r sup
BR/4

|∇2uhom|2.

This �nally yields in connection with the bounds on∇κuhom in BR/4 (35) which in particular

imply ||PR,Taylorκ || ≤ C(d, k, λ)R1−κ
(
−
∫
BR

|∇u|2 dx
)1/2

−
∫

Br

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
P
R,Taylor
κ + φi∂iP

R,Taylor
κ + ψ

P
R,Taylor
κ

)

− ∇
(
P
R,Taylor
k + φi∂iP

R,Taylor
k + ψ̃

P
R,Taylor
k

)∣∣∣∣
2

dx

≤ C(d, k, λ)
( r
R

)2k (
1 + ε2r

)
−
∫

BR

|∇u|2 dx

+ C(d, k, λ)ε2r

k∑

κ=2

( r
R

)2(κ−1)
−
∫

BR

|∇u|2 dx

+ C(d, k, λ)−
∫

BR

|∇u|2 dx
k−1∑

κ=2

R−2(κ−1) max
P∈Pκ

||P||−2 −
∫

Br
|∇ψP|2 dx

+ C(d, k, λ)−
∫

BR
|∇u|2 dx × R−2(k−1) max

P∈Pk
ahom

||P||−2 −
∫

Br
|∇ψ̃P|2 dx

+ C(d, λ)ε2/(d+1)2

R

( r
R

)−d
−
∫

BR

|∇u|2 dx

+ C(d, λ)r2ε2rR
−2 −
∫

BR

|∇u|2 dx

≤ C(d, k, λ)−
∫

BR

|∇u|2 dx
[ ( r

R

)2k

+
(
ε
2/(d+1)2

2,R + R−2(k−1) max
P∈Pk

ahom
,||P||=1

−
∫

BR

|∇ψ̃P|2 dx
)( r

R

)−d
]
,

where in the last step, we have used the inequality ε2r ≤
(R
r

)d
ε2R ≤

(R
r

)d
ε
2/(d+1)2

R and εR ≤
ε2,R as well as (10) for 2 ≤ κ ≤ k− 1. Our new estimate now implies the desired bound.
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4.2. The Ck−1,1 excess-decay estimate

Like in the C2,α case, we now show how the Ck,α excess-decay estimate for the kth-order
excess Ẽxck (in Lemma 14) entails a Ck−1,1 excess-decay estimate for the (k − 1)th-order

excess Exck−1.

Lemma 17. Let d ≥ 2, k ≥ 2, and R > 0. Assume that Theorem 1 holds for the orders
2, . . . , k − 1, and let ψP ≡ 0 for linear polynomials P in order to simplify notation. For any
P ∈ Pk

ahom
, denote by ψ̃P a solution to the Eq. (9) on the ball BR (without boundary conditions);

assume that the ψ̃P depend linearly on P. Then there exists a constant εmin > 0 depending only
on d, k, and λ such that the following assertion holds:

Suppose r0 ∈ (0,R] is so large that ε2,r0 ≤ εmin and

sup
r0≤ρ≤R

ρ−(k−1)

(
max

P∈Pk
ahom

,||P||=1
−
∫

Bρ
|∇ψ̃P|2 dx

)1/2

≤ εmin

hold. Let u be an a-harmonic function on BR. Then there exists PRκ ∈ Pκahom
(1 ≤ κ ≤ k − 1)

for which the estimate

−
∫

Br

∣∣∣∣∣∇u − ∇
k−1∑

κ=1

(
PRκ + φi∂iP

R
κ + ψPRκ

)∣∣∣∣∣

2

dx ≤ C(d, k, λ)
( r
R

)2(k−1)
−
∫

BR

|∇u|2 dx

holds for any r ∈ [r0,R]. Furthermore, the PRκ depend linearly on u and satisfy

k−1∑

κ=1

R2(κ−1)||PRκ ||2 ≤ C(d, k, λ)−
∫

BR

|∇u|2 dx.

Proof. In Lemma 14, �x α := 1/2. We then easily verify that Lemma 14 is applicable in our

situation. Set PRκ := Pr0,min
κ ; this implies that the PRκ depend linearly on u. The estimate (32)

takes the form:

k∑

κ=1

R2(κ−1)||PRκ ||2 ≤ C(d, k, λ)−
∫

BR

|∇u|2 dx.

Furthermore, applying Lemma 14 with r0 playing the role of r and r playing the role of R, we
deduce from (31)

k∑

κ=1

r2(κ−1)||PRκ − Pr,min
κ ||2 ≤ C(d, k, λ)Ẽxck(r)

(30)
≤ C(d, k, λ)

( r
R

)2(k−1)+2α
Ẽxck(R)

≤ C(d, k, λ)
( r
R

)2(k−1)+2α
−
∫

BR

|∇u|2 dx.
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We now estimate

−
∫

Br

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
PRκ + φi∂iP

R
κ + ψPRκ

) ∣∣∣∣
2

dx

≤ 3 −
∫

Br

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
Pr,min
κ + φi∂iP

r,min
κ + ψPr,min

κ

)

− ∇
(
Pr,min
k + φi∂iP

r,min
k + ψ̃Pr,min

k

)∣∣∣∣
2

dx

+ 3 −
∫

Br

∣∣∣∇
(
Pr,min
k + φi∂iP

r,min
k + ψ̃Pr,min

k

)∣∣∣
2
dx

+ 3 −
∫

Br

∣∣∣∣∇
k−1∑

κ=1

(
Pr,min
κ − PRκ + φi∂i(P

r,min
κ − PRκ )+ ψPr,min

κ −PRκ

)∣∣∣∣
2

dx

≤ 3Ẽxck(r)

+ C(d, k)||Pr,min
k ||2r2(k−2)

(
−
∫

Br
|φ|2 + r2|Id + (∇φ)t|2 dx

+ r−2(k−2) max
P∈Pk

ahom
,||P||=1

−
∫

Br
|∇ψ̃P|2 dx

)

+ C(d, k)
k−1∑

κ=1

r2(κ−1)||Pr,min
κ − PRκ ||2 −

∫

Br
|Id + (∇φ)t|2 dx

+ C(d, k)
k−1∑

κ=2

||Pr,min
κ − PRκ ||2 max

P∈Pκ
ahom

,||P||=1
−
∫

Br
r2(κ−2)|φ|2 + |∇ψP|2 dx

(10,30,36)
≤ C(d, k, λ)

( r
R

)2(k−1)+2α
Ẽxck(R)

+ C(d, k, λ)||Pr,min
k ||2r2(k−1)(ε2r + (1 + ε22r)+ ε2

ψ̃ ,r0,R
)

+ C(d, k, λ)
k−1∑

κ=1

r2(κ−1)||Pr,min
κ − PRκ ||2(1 + ε22r)

+ C(d, k, λ)
k−1∑

κ=2

r2(κ−1)||Pr,min
κ − PRκ ||2(ε2r + ε22,r)

≤ C(d, k, λ)
( r
R

)2(k−1)+2α
Ẽxck(R)+ C(d, k, λ)||Pr,min

k ||2r2(k−1)

+ C(d, k, λ)
k−1∑

κ=1

r2(κ−1)||Pr,min
κ − PRκ ||2.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1137

In conjunction with the two previous estimates, we infer

−
∫

Br

∣∣∣∣∇u − ∇
k−1∑

κ=1

(
PRκ + φi∂iP

R
κ + ψPRκ

) ∣∣∣∣
2

dx

≤ C(d, k, λ)

[ ( r
R

)2(k−1)+2α
+
(( r

R

)2(k−1)
+
( r
R

)2(k−1)+2α
)

+
( r
R

)2(k−1)+2α
]

× −
∫

BR

|∇u|2 dx.

Our lemma is therefore established.

4.3. Construction of correctors of order k

Using the Ck−1,1 theory established in the previous subsection, we now proceed to the

construction of our kth-order corrector. The following lemma provides the inductive step;

starting from a function which acts as a kth-order corrector on a ball BR, we construct a

function acting as a kth-order corrector on the ball B2R.

Lemma 18. Let d ≥ 2, k ≥ 2, and assume that Theorem 1 holds for the orders 2, . . . , k− 1. Let
r0 > 0 satisfy the estimate ε2,r0 ≤ ε0, where ε0 = ε0(d, k, λ) is to be chosen in the proof below.
Then the following implication holds:

Let R = 2Mr0 for some M ∈ N0. Suppose that for every P ∈ Pk, we have a solution ψR
P to

the equation

−∇ · a∇ψR
P = ∇ · (χBR(φia − σi)∇∂iP)

subject to the growth condition

r−(k−1)

(
−
∫

Br
|∇ψR

P |2 dx
)1/2

≤ C1(d, k, λ)||P||
M∑

m=0

min{1, 2mr0/r}ε2mr0

for all r ≥ r0, where C1(d, k, λ) is a su�ciently large constant to be chosen in the proof below.
Assume furthermore that ψR

P depends linearly on P.
Then for every P ∈ Pk there exists a solution ψ2R

P to the equation

−∇ · a∇ψ2R
P = ∇ · (χB2R(φia − σi)∇∂iP)

subject to the growth condition

r−(k−1)

(
−
∫

Br
|∇ψ2R

P |2 dx
)1/2

≤ C1(d, k, λ)||P||
M+1∑

m=0

min{1, 2mr0/r}ε2mr0

for all r ≥ r0. Furthermore, ψ2R
P depends linearly on P and we have

r−(k−1)

(
−
∫

Br
|∇ψ2R

P − ∇ψR
P |2 dx

)1/2

≤ C1(d, k, λ)||P||ε2M+1r0 .

Proof. To establish the lemma, we �rst note that the assumptions of the lemma ensure that

the Ck−1,1 excess-decay lemma (Lemma 17) is applicable on BR with ψ̃P := ψR
P . To see this,
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we estimate for any r ∈ [r0,R]

r−(k−1)

(
−
∫

Br
|∇ψR

P |2 dx
)1/2

≤ C1(d, k, λ)||P||ε2,r0 ≤ C1(d, k, λ)||P||ε0.

By choosing ε0 > 0 small enough depending only on d, k, λ, and C1 (which is to be chosen at

the end of this proof), we can ensure that the assumption of Lemma 17 regarding smallness

of εψ̃ ,r0,R is satis�ed.

We now turn to the construction of ψ2R
P −ψR

P and to that purpose denote by ξRP the weak

solution on R
d with zero mean in B2R and square-integrable gradient, whose existence and

uniqueness follows by the Lax–Milgram theorem, to the problem

−∇ · a∇ξRP = ∇ · (χB2R−BR(φia − σi)∇∂iP).

Obviously, ξRP depends linearly on P. Furthermore, by ellipticity, we have the estimate

∫

Rd
|∇ξRP |2 dx ≤ C(d, λ) sup

B2R

|∇2P|
(∫

Rd
χB2R−BR(|φa|2 + |σ |2) dx

)1/2 (∫

Rd
|∇ξRP |2 dx

)1/2

which gives
(∫

Rd
|∇ξRP |2 dx

)1/2

≤ C(d, λ) sup
B2R

|∇2P|
(∫

B2R

|φ|2 + |σ |2 dx
)1/2

.

The last estimate in turn implies
∫

Rd
|∇ξRP |2 dx ≤ C(d, k, λ)||P||2R2(k−2)ε22RR

2+d. (37)

We now obtainψ2R
P −ψR

P bymodifying ξRP by an a-harmonic function of degree k−1. As ξRP is

a-harmonic in BR, Lemma 17 now implies the existence of some PRκ ,P ∈ Pκ for 1 ≤ κ ≤ k−1

which depend linearly on P and for which the estimates

||PRκ ,P||2 ≤ C(d, k, λ)R−2(κ−1) −
∫

BR

|∇ξRP |2 dx
(37)
≤ C(d, k, λ)||P||2R2(k−κ)ε22R (38)

and

−
∫

Br

∣∣∣∣∇ξRP − ∇
k−1∑

κ=1

(
PRκ ,P + φi∂iP

R
κ ,P + ψPRκ ,P

)∣∣∣∣
2

dx ≤ C(d, k, λ)
( r
R

)2(k−1)
−
∫

BR

|∇ξRP |2 dx

(37)
≤ C(d, k, λ)||P||2r2(k−1)ε22R

hold for all r ∈ [r0,R].
Furthermore, we have for r > R

−
∫

Br

∣∣∣∣∇ξRP − ∇
k−1∑

κ=1

(
PRκ ,P + φi∂iP

R
κ ,P + ψPRκ ,P

)∣∣∣∣
2

dx

(36,10)
≤ C(d, k, λ)

(
r−d

∫

Br
|∇ξRP |2 dx + ||PR1,P||2(1 + ε22r)

+
k−1∑

κ=2

r2(κ−1)||PRκ ,P||2(1 + ε22r + ε22,r)

)
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(37,38)
≤ C(d, k, λ)||P||2R2(k−1)

((
R

r

)d

+ 1 + ε22r + (1 + ε2r + ε2,r)
( r
R

)2(k−2)
)
ε22R

≤ C(d, k, λ)||P||2r2(k−2)R2ε22R.

The combination of both r-ranges yields

1

rk−1

(
−
∫

Br

∣∣∣∣∇ξRP − ∇
k−1∑

κ=1

(
PRκ ,P + φi∂iP

R
κ ,P + ψPRκ ,P

)∣∣∣∣
2

dx

)1/2

(39)

≤ C(d, k, λ)||P||min{1, 2R/r}ε2R.
In total, we see that

ψ2R
P := ψR

P + ξRP −
k−1∑

κ=1

(
PRκ ,P + φi∂iP

R
κ ,P + ψPRκ ,P

)

is the desired function (note in particular that the last term is a-harmonic), provided we

choose C1 to be the constant appearing in (39).

We now establish existence of kth-order correctors by the previous lemma.

Proof of Theorem 1. We just need to construct an “initial” kth-order corrector ψ r0
P subject

to the properties of Lemma 18; then Lemma 18 yields a sequence (ψ
2mr0
P )m which (a�er

subtracting appropriate constants) is a Cauchy sequence in H1(BR) for every R > 0 due to

the last estimate in the lemma and our assumption (4) which implies summability of ε2mr0 .

Thus, the limit ψP satis�es the Eq. (9) in the whole space, depends linearly on P, and satis�es
the estimate

r−(k−1)

(
−
∫

Br
|∇ψP|2 dx

)1/2

≤ C1(d, k, λ)||P||
∞∑

m=0

min{1, 2mr0/r}ε2mr0

≤ C1(d, k, λ)||P||ε2,r
for any r ≥ r0.

To constructψ
r0
P , we use Lax–Milgram to�nd the (unique) solutionψ

r0
P onRd with square-

integrable gradient and zero mean on Br0 to the equation:

−∇ · a∇ψ r0
P = ∇ · (χBr0 (φia − σi)∇∂iP).

Obviously, ψ
r0
P depends linearly on P. Furthermore, we have the energy estimate

∫

Rd
|∇ψ r0

P |2 dx ≤ C(d, λ) sup
Br0

|∇2P|
(∫

Rd
|χBr0aφ|2 + |χBr0σ |2 dx

)1/2 (∫

Rd
|∇ψ r0

P |2 dx
)1/2

.

We therefore get

(∫

Rd
|∇ψ r0

P |2 dx
)1/2

≤ C(d, λ) sup
Br0

|∇2P|
(∫

Br0

|φ|2 + |σ |2 dx
)1/2

.

This yields in particular for any r ≥ r0
∫

Br
|∇ψ r0

P |2 dx ≤ C(d, k, λ)||P||2r2(k−2)
0

∫

Br0

|φ|2 + |σ |2 dx
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and therefore

−
∫

Br
|∇ψ r0

P |2 dx ≤ C(d, k, λ)||P||2r−dr2(k−2)
0 ε2r0r

2+d
0

≤ C(d, k, λ)||P||2r2(k−1)min{1, (r0/r)2}ε2r0 .

We note that this provides the starting point for Lemma 18, possibly a�er enlarging the

constant C1 in the statement thereof.

4.4. Proof of the kth-order Liouville principle

Like in the C2,α case, the Ck,α Liouville principle (Lemma 19 below) is an easy consequence

of our large-scale excess-decay estimate (Theorem 3). The kth-order Liouville principle

(Corollary 4) in turn is an easy consequence of the Ck+1,α Liouville principle.

Lemma 19. Let d ≥ 2, k ≥ 2, and suppose that the assumption (4) is satis�ed. Then the
following property holds: Any a-harmonic function u satisfying the growth condition

lim inf
r→∞

1

rk+α

(
−
∫

Br

|u|2 dx

)1/2

= 0 (40)

for some α ∈ (0, 1) is of the form

u = a + bi(xi + φi)+
k∑

κ=2

(Pκ + φi∂iPκ + ψPκ )

with some a ∈ R, b ∈ R
d, and Pκ ∈ Pκahom

for 2 ≤ κ ≤ k (i.e., Pκ is a homogeneous
ahom-harmonic polynomial of degree κ). Here, the ψP denote the higher-order correctors whose
existence is guaranteed by Theorem 1.

Proof of Corollary 4. Obviously, (13) entails (40) with k + 1 in place of k and e.g., α := 1
2 . By

Lemma 19, any a-harmonic function u subject to condition (13) must be of the form:

u = a + bi(xi + φi)+
k+1∑

κ=2

(
Pκ + φi∂iPκ + ψPκ

)
, (41)

with some a ∈ R, b ∈ R
d, and Pκ ∈ Pκahom

for 2 ≤ κ ≤ k+ 1. Our stronger growth condition

(13) however shows that we have Pk+1 ≡ 0: Since the φi grow sublinearly (2) and sinceψPk+1

grows slower than a polynomial of degree k + 1 (10), we see that for large |x| the term Pk+1

would be the dominating term in (41) if it was nonzero, contradicting our growth condition

(13).

Proof of Lemma 19. Let α ∈ (0, 1) be such that

lim inf
R→∞

1

Rk+α

(
−
∫

BR

|u|2 dx

)1/2

= 0

holds. By the Caccioppoli estimate, we deduce

lim inf
R→∞

1

Rk−1+α

(
−
∫

BR

|∇u|2 dx

)1/2

= 0.
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Fix r ≥ r0. The excess-decay estimate from Theorem 3 together with the trivial bound

Exck(R) ≤ −
∫
BR

|∇u|2 dx yields

Exck(r) ≤ C(d, k, λ,α)
( r
R

)2(k−1)+2α
Exck(R)

≤ C(d, k, λ,α)r2(k−1)+2α

(
1

Rk−1+α

(
−
∫

BR

|∇u|2 dx
)1/2

)2

.

Passing to the lim inf R → ∞, we deduce that

Exck(r) = 0

holds for every r ≥ r0. Therefore, on every Br with r ≥ r0, ∇u can be represented exactly as
the derivative of a corrected polynomial of kth order (since the in�mum in the de�nition of

Exck is actually attained, as noted at the beginning of the proof of Lemma 15), i.e., we have

∇u = ∇bri (xi + φi)+ ∇
k∑

κ=2

(Prκ + φi∂iP
r
κ + ψPrκ )

in Br for some br ∈ R
d and some Prκ ∈ Pκahom

(2 ≤ κ ≤ k); recall that we have used the

conventionψP ≡ 0 for linear polynomials P. It is not di�cult to show that for r large enough,
the br and Prκ are actually independent of r and de�ne some common b ∈ R

d and Pκ ∈ Pκahom
:

For example, one may use Lemma 14 to compare the br, Prκ for two di�erent radii r1, r2 ≥ r0;
the estimate for |br1 − br2 | and ||Pr1κ − Pr2κ || then contains the factor Exck(max(r1, r2)) and is

therefore zero. Moreover, the gradient ∇u determines the function u itself up to a constant,

i.e., we have

u = a + bi(xi + φi)+
k∑

κ=2

(Pκ + φi∂iPκ + ψPκ )

for some a ∈ R, b ∈ R
d, and Pκ ∈ Pκahom

(2 ≤ κ ≤ k).
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Appendix A. Approximation of a-harmonic functions by corrected ahom-
harmonic functions

Our proofs make use of the following lemma, which is implicitly derived in the course of the

proof of Lemma 2 in [11]. For the reader’s convenience, we recall its proof here.

The lemma essentially states that an a-harmonic function u on a ball BR may be approx-

imated on the ball BR/2 up to a small error (of order ε
1/(d+1)2

R ) by an appropriate ahom-
harmonic function uhom and correcting this function uhom using the �rst-order corrector φi.

The purpose of the lemma is the same as in classical elliptic regularity theory: The function

uhom satis�es an elliptic equation with constant coe�cients, i.e., it is smooth and good

estimates for its higher derivatives are available. In our proof above, we show by the present

lemma that this high regularity of uhom transfers (in an appropriate sense) to u itself.

Lemma 20. Let R > 0 and let u be a-harmonic on BR. Suppose that εR ≤ 1 [with εR as de�ned
in (3)]. Then there exists an ahom-harmonic function uhom on BR/2 satisfying the following two
properties: First, we have the energy estimate

−
∫

BR/2

|∇uhom|2 dx ≤ C(d, λ)−
∫

BR

|∇u|2 dx. (42)

Second, the “corrected” function uhom+φi∂iuhom is a good approximation for u in the sense that

−
∫

BR/2

|∇u − ∇(uhom + φi∂iuhom)|2 dx ≤ C(d, λ)ε2/(d+1)2

R −
∫

BR
|∇u|2 dx.
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Proof. Choose some R′ ∈ [ 34R,R] for which

R′ −
∫

∂BR′
|∇u|2 dS ≤ C(d)−

∫

BR

|∇u|2 dx (43)

holds. Let uhom be the ahom-harmonic function in BR′ which coincides with u on ∂BR′ . Testing

the equation −∇ · ahom∇uhom = 0 with uhom − u (note that this test function is admissible

since we have uhom − u = 0 on ∂BR′), we infer by ellipticity of a and (in the second step)

Young’s inequality

−
∫

BR′
|∇uhom|2 dx ≤ C(λ)−

∫

BR′
|∇u||∇uhom| dx

≤
1

2
−
∫

BR′
|∇uhom|2 dx + C(λ)−

∫

BR′
|∇u|2 dx, (44)

which because of R/2 ≤ R′ ≤ R gives the desired energy estimate. It remains to establish the

approximation property of uhom + φi∂iuhom.
Denote by η0 : R → R a smooth function with η0(s) = 1 for s ≥ 1 and η0(s) = 0

for s ≤ 0. Let 0 < ρ < R/4 and set η(x) := η0(2(R′ − ρ/2 − |x|)/ρ). Note that we have
|∇η| ≤ C(d)/ρ as well as η ≡ 0 outside of BR′−ρ/2 and η ≡ 1 in BR′−ρ . Due to ρ ≤ R/4, we
also have R′ − ρ ≥ R/2. We will optimize in this “boundary layer thickness” ρ at the end of

the proof.

Let us abbreviate

v := u − uhom − ηφi∂iuhom.

where the purpose of η is to have v ≡ 0 on ∂BR′ . The desired approximation property of

uhom+φi∂iuhom as stated in the lemmawill be a consequence of an appropriate energy estimate

for v (recall that we have η ≡ 1 in BR/2 since ρ < R/4 and R′ > 3R/4).
To derive this energy estimate, we would like to show that v is approximately a-harmonic.

We �rst compute using the fact that u and xi + φi are a-harmonic (6)

− ∇ · a∇v

= −∇ · a∇u + ∇ · (1 − η)a∇uhom + ∇ · a(ei + ∇φi)η∂iuhom + ∇ · φia∇(η∂iuhom)
(6)= ∇ · (1 − η)a∇uhom + a(ei + ∇φi) · ∇(η∂iuhom)+ ∇ · φia∇(η∂iuhom)
= ∇ · (1 − η)(a − ahom)∇uhom + (a(ei + ∇φi)− ahomei) · ∇(η∂iuhom)

+ ∇ · φia∇(η∂iuhom),

where in the last step, we have used the ahom-harmonicity of uhom in the form of equality

−∇ · (1 − η)ahom∇uhom − ahomei · ∇(η∂iuhom) = 0. Taking into account the formula a(ei +
∇φi)− ahomei = ∇ · σi (7) and (8) and the fact that

(∇ · σi) · ∇w = ∂kσijk∂jw = ∂k(σijk∂jw) = −∂k(σikj∂jw) = −∇ · (σi∇w)

holds for any function w by skew-symmetry of σi, we may rewrite the right-hand side in

divergence form:

−∇ · a∇v = ∇ · (1 − η)(a − ahom)∇uhom + ∇ · (φia − σi)∇(η∂iuhom).
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Testing the weak formulation of this equation with v (recall that v ≡ 0 on ∂BR′) and using the

ellipticity of a, we deduce using Young’s inequality and the properties of η
∫

BR′
|∇v|2 dx

≤ C(λ)

∫

BR′
|(1 − η)(a − ahom)∇uhom|2 + |φia − σi|2|∇(η∂iuhom)|2 dx

≤ C(d, λ)

∫

BR′
|1 − η|2|∇uhom|2 dx

+ C(d, λ)

∫

BR′
(|φ|2 + |σ |2)(|∇η|2|∇uhom|2 + η2|∇2uhom|2) dx

≤ C(d, λ)

∫

BR′−BR′−ρ

|∇uhom|2 dx

+ C(d, λ) sup
BR′−ρ/2

(
1

ρ2
|∇uhom|2 + |∇2uhom|2

)∫

BR′
|φ|2 + |σ |2 dx.

Since our function uhom is ahom-harmonic, we have the regularity estimates

sup
BR′−ρ/2

(
1

ρ2
|∇uhom|2 + |∇2uhom|2

)
≤

C(d, λ)

ρ2
sup

y∈BR′−ρ/2

−
∫

Bρ/2(y)
|∇uhom|2 dx,

(∫

BR′
|∇uhom|p dx

)2/p

≤ C(d, λ)

∫

∂BR′
|∇tanuhom|2 dS,

where p := 2d/(d− 1): The �rst estimate is a standard constant coe�cient interior regularity

estimate (which is a consequence example of an iterative application of Theorem 4.9 in [9]

and the Sobolev embedding). The second estimate follows by combining 1) the existence of

an extension ū of uhom subject to the estimate ||∇ū||Lp(BR′ ) ≤ C(d)||∇tanuhom||L2(∂BR′ ) and 2)

the Calderon–Zygmund estimate on BR′ , which reads ||∇w||Lp(BR′ ) ≤ C(d, λ)||∇ū||Lp(BR′ ) for

any solution w ∈ H1(BR′) with w − ū ∈ H1
0(BR′) to the equation −∇ · ahom∇w = 0. For the

latter estimate, see Theorem 7.1 in [9].

Using these regularity estimates, the equality ∇tanuhom = ∇tanu on ∂BR as well as the

obvious inequality

sup
y∈BR′−ρ/2

−
∫

Bρ/2(y)
|∇uhom|2 dx ≤

(
2R′

ρ

)d

−
∫

BR′
|∇uhom|2 dx,
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we infer by ρ ≤ R′/4 and 3R/4 ≤ R′ ≤ R

∫

BR′
|∇v|2 dx ≤ C(d, λ)|BR′ − BR′−ρ |1−2/p

(∫

BR′−BR′−ρ

|∇uhom|p dx
)2/p

+ C(d, λ)
1

R′2

(
R′

ρ

)d+2

−
∫

BR′
|∇uhom|2 dx · (R′)d −

∫

BR′
|φ|2 + |σ |2 dx

(44)
≤ C(d, λ)ρ1/dR′(d−1)/d

∫

∂BR′
|∇tanu|2 dS

+ C(d, λ)ε2R

(
R′

ρ

)d+2 ∫

BR′
|∇u|2 dx

(43)
≤ C(d, λ)

( ρ
R′

)1/d ∫

BR

|∇u|2 dx

+ C(d, λ)ε2R

(
R′

ρ

)d+2 ∫

BR′
|∇u|2 dx.

We optimize in ρ by choosing ρ := 1
4ε

2d/(d+1)2

R R′ (which thanks to the assumption εR ≤ 1 is

admissible in the sense of ρ ≤ 1
4R

′). This yields

∫

BR′
|∇v|2 dx ≤ C(d, λ)ε2/(d+1)2

R

(∫

BR′
|∇u|2 dx +

∫

BR

|∇u|2 dx
)

which together with the estimate 3R/4 ≤ R′ ≤ R and η ≡ 1 in BR/2 proves the desired

approximation result.

Appendix B. Failure of Liouville principle for smooth uniformly elliptic coe�-

cient �elds

Wenowprovide the argument that smoothness of a uniformly elliptic coe�cient �eld does not

prevent Liouville’s theorem from failing: Even for smooth uniformly elliptic coe�cient �elds,

sublinearly growing harmonic functions are not necessarily constant, implying a failure even

of the zeroth-order Liouville theorem.

Proposition 21. For any α ∈ (0, 1) there exists a smooth, bounded, and uniformly elliptic
symmetric coe�cient �eld a onR2 such that the following holds: There exists a smooth function
u which is a-harmonic and satis�es

(
−
∫

BR

u2 dx
) 1

2 ∼ Rα for R ≫ 1. (45)

Proof. By a classical example in dimension d = 2 [18], for any exponent α ∈ (0, 1), there

exists a uniformly elliptic, symmetric coe�cient �eld a0 of a scalar equation, and a weakly a0-
harmonic function u0 (in particular, it is locally integrable and of locally integrable gradient)



1146 J. FISCHER AND F. OTTO

whose modulus on average grows like |x|α , for instance as expressed by:

(
−
∫

BR

u20 dx
) 1

2 ∼ Rα . (46)

Moreover, in this example

a0 and u0 are homogeneous and smooth outside the origin. (47)

Wenowargue that this examplemay be post-processed to an example of an everywhere smooth
uniformly elliptic symmetric coe�cient �eld a and a smooth a-harmonic function u such that
still (45) holds.

Indeed, because of (47), we can easily construct a uniformly elliptic coe�cient �eld a that
agrees with a0 outside of B1 and is smooth. Next, we observe that (47) also implies (using

d = 2 and α > 0) that ∇u0 is locally square integrable, so that by Riesz’ representation

theorem, there exists a weak solution of

− ∇ · a∇w = ∇ · (a − a0)∇u0 (48)

in the sense that w and its gradient are locally integrable and that
∫

|∇w|2 dx ≤ C(λ). (49)

Equation (48) is made such that u = u0 + w is a weak solution (i.e., locally integrable with

locally integrable gradient) of

−∇ · a∇u = 0,

and thus smooth since a is smooth by classical uniqueness and regularity results. It remains

to give the argument in favor of (45), which in view of (46) follows once we show that (49)

implies in particular for large R

(
−
∫

BR

w2 dx
) 1

2 = o(Rα). (50)

This is a well-known argument related to “bounded mean oscillation”: By Poincaré’s estimate

with mean value zero, we have on every dyadic ball around the origin

(∫

B2n
(w − −

∫

B2n
w)2 dx

) 1
2

≤ C(d) · 2n
(∫

B2n
|∇w|2 dx

) 1
2

,

which for d = 2 takes on the form
(

−
∫

B2n
(w − −

∫

B2n
w)2 dx

) 1
2

≤ C

(∫

B2n
|∇w|2 dx

) 1
2 (49)

≤ C(λ). (51)

By Jensen’s and the triangle inequality, this yields in particular |−
∫
B2n−1

wdx−−
∫
B2n

wdx| ≤ C(λ)

and thus, since we may w. l. o. g. assume
∫
B1
w dx = 0, | −

∫
B2n

w dx| ≤ nC(λ). Inserting this
back into (51) gives

(
−
∫

B2n
w2 dx

) 1
2

≤ nC(λ),
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i.e., (50) in the stronger form of

(
−
∫

BR

w2 dx
) 1

2 ≤ C(d) logR.

Proposition 22. There exists a smooth, bounded, and uniformly elliptic symmetric coe�cient
�eld a on R

3 such that the following holds: There exists a smooth map u : R3 → R
3 which is

a-harmonic and satis�es

(
−
∫

BR

u2 dx
) 1

2 ∼ R−α for R ≫ 1, (52)

where α = 1
2 (1 − 3√

17
).

Proof. By a classical example of De Giorgi in dimension d = 3 (Chapter 9.1.1, [9]), there

exists a bounded, symmetric, and uniformly elliptic coe�cient �eld a0 which is radial and

smooth away from the origin, for which the map

u0(x) :=
x

|x|γ
(53)

with γ := 3
2 (1 − 1√

17
) is a0-harmonic. Choose a to be a smooth, bounded, and uniformly

elliptic coe�cient �eld which agrees with a0 outside of the unit ball B1.
We now show that the a0-harmonic map u0 may be modi�ed to yield an a-harmonic map

u with the same decay properties on large scales. To construct the di�erence u − u0, let w be

the Lax–Milgram solution (which is unique up to a constant) to the problem

− ∇ · a∇w = ∇ · (a − a0)∇u0. (54)

Since a−a0 is supported in B1, since a and a0 are bounded, and since∇u0 belongs to L2loc(R
3),

we deduce by the standard energy estimate
∫

|∇w|2 dx ≤ C

∫
|(a − a0)∇u0|2 dx ≤ C. (55)

Poincaré’s inequality now implies for any R > 0

−
∫

BR

∣∣w − −
∫

BR

w
∣∣2 dx ≤ CR2 −

∫

BR

|∇w|2 dx ≤ CR−1

∫

BR

|∇w|2 dx
(55)
≤ CR−1, (56)

which entails ∣∣∣∣−
∫

BR
w dx − −

∫

B2R
w dx

∣∣∣∣ ≤ CR−1/2.

We therefore deduce that the sequence −
∫
B2n

w dx is Cauchy: We have for any N > n ≥ 0

∣∣∣∣∣−
∫

B2n
w dx − −

∫

B2N

w dx

∣∣∣∣∣ ≤
N−1∑

m=n

∣∣∣∣∣−
∫

B2m
w dx − −

∫

B2m+1

w dx

∣∣∣∣∣

≤
N−1∑

m=n

C2−m/2 ≤ C2−n/2.
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Possibly adding a constant to w (to ensure that the limit of the above sequence is zero), we

therefore may assume that
∣∣∣∣−
∫

B2n
w dx

∣∣∣∣ ≤ C2−n/2.

In conjunction with (56), we infer for any R ≥ 1

(
−
∫

BR
|w|2 dx

)1/2

≤ CR−1/2. (57)

By (54), the map u := u0 + w is a-harmonic. As u solves a linear elliptic system with smooth

coe�cients and belongs to H1
loc(R

3), u itself is smooth. Since we have α = γ − 1 < 1
2 , the

estimate (57) in conjunction with (53) entails (52).
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