
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=yisr20

Interdisciplinary Science Reviews

ISSN: 0308-0188 (Print) 1743-2790 (Online) Journal homepage: https://www.tandfonline.com/loi/yisr20

‘Software and Scholarship’ — Editorial

Tara Andrews

To cite this article: Tara Andrews (2015) ‘Software and Scholarship’ — Editorial, Interdisciplinary
Science Reviews, 40:4, 342-348, DOI: 10.1080/03080188.2016.1165456

To link to this article: https://doi.org/10.1080/03080188.2016.1165456

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 07 Jun 2016.

Submit your article to this journal

Article views: 450

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=yisr20
https://www.tandfonline.com/loi/yisr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03080188.2016.1165456
https://doi.org/10.1080/03080188.2016.1165456
https://www.tandfonline.com/action/authorSubmission?journalCode=yisr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=yisr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03080188.2016.1165456
https://www.tandfonline.com/doi/mlt/10.1080/03080188.2016.1165456
http://crossmark.crossref.org/dialog/?doi=10.1080/03080188.2016.1165456&domain=pdf&date_stamp=2016-06-07
http://crossmark.crossref.org/dialog/?doi=10.1080/03080188.2016.1165456&domain=pdf&date_stamp=2016-06-07

‘Software and Scholarship’ — Editorial
Tara Andrews

The thematic focus of this issue is to examine what happens where software and
scholarship meet, with particular reference to digital work in the humanities.
Despite the some seven decades of its existence, Digital Humanities continues to
struggle with the implications, in the academic ecosystem, of its position between
engineering and art. The parallel drawn here between software and engineering
on the one hand will be less controversial than the one between scholarship and
art on the other — to what extent should these really be cast as parallel? Mathe-
maticians are scholars, and physicists; so too are philosophers, theologians,
biologists, and historians. Each of these fields tends to evoke a very different
perception of the balance between logic and intuition, however; some are per-
ceived as pursuing a form of unambiguous truth within the systems they inhabit,
others as pursuing a more pluralistic understanding. Although the lines between
disciplines are so often more arbitrary than real, and it is difficult to draw a firm
distinction that will satisfy both the mathematicians and the philosophers, the
label of ‘scholar’ seems to be something that scientists are keen to avoid.1

For indeed the divide between ‘science’ and ‘humanities’ is not as sharp as is
often assumed in discussion. The supposed clarity of difference is exacerbated in
the Anglophone world where vocabulary sharpens the division, and both words
are needed, in opposition to each other, to translate the sense of the German
‘Wissenschaft’ and its cognates in other languages. Perhaps due to the feeling —
endemic among scholars in the humanities — that their disciplines are often
compared against the sciences and found to be wanting, or the pronounced focus
of policymakers on ‘STEM’ subjects that bring with them an apparent devaluing
of humanities subjects, or simply a sense that scientific truth is not a thing that
ought to be sought after in English departments, quite a bit of reflection has
occurred throughout the humanities about the proper function of what is now
usually termed ‘digital humanities’ with respect to the wider humanities, and in
particular whether the adoption of the quantitative and somewhat empirically
natured digital methods will bring more of the STEM-like respect that is perceived
to be lacking among policymakers and the public.
And yet this sort of soul-searching in the humanities tends to elide the issues,

discussion, and debates that have indeed cropped up in fields considered by most
to be ‘pure science’, such as physics and biology, and it leaves aside a discussion of
why and how computation has been adopted in such an evidently smooth tra-
jectory by fields that belong unarguably to humanities departments, such as

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No.4, December 2015, 342–348

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, trans-
formed, or built upon in any way.

DOI 10.1080/03080188.2016.1165456

http://orcid.org/0000-0001-6930-3470
http://creativecommons.org/licenses/by-nc-nd/4.0/

linguistics and archaeology, as well as many fields in that middle ground between
humanities and science known as the social sciences.
What is often not acknowledged is that even in the so-called hard sciences, the

use of computers was (and is) a gradual phenomenon, often marked by heated
methodological debate among its practitioners. Galison (1992) provides an
admirable case study for physics, a field that is considered bymost to be one of the
paragons of ‘big data’-enabled computation-heavy sciences. He describes the
enthusiasm that took hold in the 1950s for experiments in particle physics that
required some capability for processing images in bulk; laboratories that wished
to do this sort of research must have either an ever-expanding army of skilled lab
technicians to examine the photos and select those that were ‘interesting’, or else
some sort of machine that could do this selection automatically. This quickly led to
a split over which methodology was more appropriate — an ‘interactive’
approach in which the work of the machine was monitored and channelled by a
human, or a ‘segregated’ approach in which humans did the necessary prepara-
tory work before leaving the ultimate detection of interesting patterns to the
machine. At issue for these communities of physicists was a question that is very
familiar in the humanities today: is it better to rely on human intuition, with its
specialised capability for pattern recognition, for the detection of scientifically
interesting phenomena, or does the logical rigour of a machine free from the
effects of confirmation bias produce better results?
Perhaps the most striking feature of Galison’s study was the strong parallels

that can be drawn between the experiences of particle physicists and those of
practitioners who use computational methods in the humanities; here I will take
philology, a field with which I am perhaps the most familiar, as an example. As a
field, philology is a very instructive example of how a tension can crop up
between logic and intuition when computational methods are applied to research.
Different practitioners will describe their work in different ways — a classical
philologist will describe the purpose of her work very differently than a modern
textual scholar, both in terms of the working methods and of the expected scho-
larly outcome. Nevertheless the commonality could be expressed thus: philolo-
gists are trying to make a maximum of sense out of the texts with which they
work, be they second- or third-century fragments of the Bible, medieval trans-
lations of animal fables, or successive drafts of a nineteenth-century classic.
‘Sense’ is a broad word, however. It appeals both to our reason and our

emotions; it relies on deduction and interpretation in equal measure. Therein lies
the great challenge of philology in the digital age: suddenly we have a plethora of
possibilities to create tools that support our deductive capacities. As a result a
great number of tools, techniques, and methods have sprung up around digital
philology. In many ways the computer is an indispensable aid to the work of
comparing, reconciling, and producing new versions of texts, but the degree to
which philology is a computationally tractable task remains open to fierce debate,
and so the different tools and methods have different balances between the
rational and the interpretative, between quantification and qualitative work. The
less rigorously deterministic art of interpretation is not directly supported in this
world of computer tools. Semantic meaning is usually not an inherent part of the

‘SOFTWARE AND SCHOLARSHIP’ — EDITORIAL 343

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

computational model; although many tools do allow room for expressions of this
meaning, to be retained and displayed to the human user, it tends to be difficult or
impossible to capture that meaning in a way that lends itself to any sort of pro-
grammatic analysis.
Thus a divide has sprung up among philologists, very similar to the one

Galison has described in particle physics. On one side, the process is thoroughly
interactive. The machine is merely a sort of repository of raw information, to be
examined by the scholar when necessary, and a useful means to prepare the result
of the scholar’s work for publication. Software packages such as Classical Text
Editor and the erstwhile COLLATE bear witness to this approach: the job of the
computer in these cases is to keep a record of the textual facts, and to allow the
scholar to arrange these facts, interactively, in a form familiar enough that the use
of the computer is more of a convenient filing system than a methodological
departure. On the other end of the spectrum are tools such as CollateX for textual
collation, or statistical methods for the construction of a stemma (that is, a graph
of the copying history of the manuscripts of a text) that have a significant overlap
with evolutionary biology and historical linguistics. In these latter cases the work
is much less interactive; rather, the data are fed to computer algorithms whose
purpose is not to organise, but to analyse it. The mark of success of these algor-
ithms, in the eyes of their creators and users, is the extent to which their results are
accepted by scholars without interaction, and with minimal alteration.
The question, as it is normally presented in discussions among philologists, is

one of the extent to which human judgment is an indispensable part of scholar-
ship, or alternatively to which human bias can lead scholars into error. Is the
computer a ‘dumbmachine’ that cannot be involved in questions of judgment and
interpretation, or is it an impartial aggregator of evidence that cannot be easily led
into confirmation bias? Here the debate touches uncomfortably on the pressure
felt within the humanities to be ‘more like science’ — more quantifiable, more
reproducible, more falsifiable, more logically rigorous.
But the humanities have a troubled history with empiricism, not helped by the

fact that empiricism and positivism are easily conflated. A few years ago I was
speaking to a respected scholar of pre-Islamic Arab history, who much to my
surprise began to lament the drive toward formalisation and scientific method in
history. The trouble, he declared, was that just about anything can be ‘proven’ by
marshalling the correct evidence and ignoring what does not fit, and this ‘scien-
tific method’ as he understood it was simply a process of legitimation of an
argument that made it difficult, rhetorically, to refute.
While this scholar did not fully grasp the principle of falsification that underlies

a correct application of the scientific method, his experience of scholarly argu-
ments that draw on the rhetoric of scientific method to produce positivistic
arguments that are anything but testable is perfectly real. I myself have seen
several examples of this sort of misguided empiricism, with its roots in a posi-
tivistic view of history. The debate between positivism and historicism and the
development of modern critical theory has been a particular mark of twentieth
century historical studies, but to work the scientific method into these debates is
indeed problematic. The canonical scientific method, with its emphasis on data

344 TARA ANDREWS

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

collection and its presumption that an experiment can be constructed that will
clearly confirm or falsify any given hypothesis, is often a poor fit for fields within
the humanities that rely on incomplete data and evidence that is open to
interpretation, such as history, or that work entirely in the realm of intellectual
creativity and hermeneutics, such as philosophy or literature. The advantage of a
critical theoretical approach in these fields is that it provides a framework for a
logical rigour that lends substance to argument, without relying for its function on
the production of evidence that may well never have existed.
Into this environment comes computational method and the digital humanities,

along with the pressure for the somewhat subjective and introspective humanities
to become ‘more like science’ — more quantifiable, more reproducible, more
amenable to a cost-benefit analysis for any particular avenue of inquiry. Many
modern scholars are concerned about the perception that their discipline and its
methods are seen as out-dated and superfluous to the modern global society and
economy; it is very easy to see how their suspicion is easily aroused against digital
methods as a neat solution to this credibility problem. Is this influx of digital
method and excitement about ‘big data’ simply positivism in a new form? The
question is asked repeatedly in venues such as the Humanist mailing list: how,
precisely, do computational methods add value to the humanistic process of
rhetorical reasoning, productive theory, critical interpretation, and hermeneutics?
Despite the doubt and suspicion, and despite the serious practical difficulties of

using computational methods in the humanities (such as the questions of access,
preservation, and sustainability) it is much easier to imagine that computational
methods will become mainstream than that they will be abandoned. Although
some information and interpretation is easily lost when a hand-annotated copy of
a particular edition of a novel is reduced to a digital transcription, philologists will
go on workingwith digital surrogates of texts. Although it is extremely difficult to
create a computer-based visualisation of a phenomenon in the humanities
without falling into the trap of artificial precision and misguided normativity (c.f.
Drucker 2011), visualisation has proven to be far too useful a tool for humanists of
all stripes to investigate a collection of data and look for patterns. The allure of
statistical methods to discover patterns in an increasingly large corpus of digitised
text, records, and other artefacts is irresistible, even as the statistical methods tend
to expect us to treat as anomalous any data that does not conform to a neat pre-
defined pattern.
In all of these cases we are, implicitly or explicitly, constructing models of our

objects of study; all such models contain a certain amount of domain knowledge,
and all of our computational tools operate on the basis of that domain knowledge.
These facts, self-evident though they are, directly give rise to perhaps the two
most pressing concerns of scholars in the humanities when faced with digital
methods. First, the black box question: can we truly know what models,
assumptions, and inferences are made within the source code of a particular
software tool? If so, how? If not, how can we justify a blind use of it? Second, the
question that has led finally to the theme of this special issue: how do we evaluate
what contribution to scholarship has been made by the creator of that tool?

‘SOFTWARE AND SCHOLARSHIP’ — EDITORIAL 345

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

Perhaps, however, it would help to consider parallels to the traditional process
of creation, adaptation, and evaluation of knowledge and interpretation within
the humanities. Wemight imagine each field within which wework as a system of
its own, with its own axioms and emphases and consequences out of which our
interpretations are derived and our conclusions are constructed — these are the
theoretical and abstract tools of our trade. In any field, we will need some way to
evaluate the scholarly contribution of any theory that is advanced, or any claim
that is made, though these generally come in a discursive written form. Moreover,
we will have to do this without a full knowledge of the axioms and theoretical
frameworks that this scholarship might draw on. In the case of software, the
sticking point for many scholars is that they are not qualified to understand how
the programme is doing what it does, or to discover where its flawsmight be. And
yet in the case of discursive scholarship we often find ourselves needing to do that
very thing.
Any field worthy of that designation is far too vast and complex for a single

person to understand it all in both breadth and depth. An individual scholar
cannot hope to examine everything by herself, and in order to continue with her
research, whether as a historian, archaeologist, literary scholar, scholar of art,
philosopher, or anything else, she will always need to rely to some extent on
exactly the sort of conceptual ‘black boxes’ that are causing such consternation in
DH at the moment. I am a historian first and a textual scholar second, and claim
no expertise at all in the other fields; I do not have the practical capacity, for
example, to engage with the axioms and methodological theory of art history. To
what extent, then, should I be allowed to incorporate the findings and conclusions
of art historians into my own research? To what extent should an archaeologist
turn his talents to textual historical source forensics, rather than relying on the
work I have done on that topic, in order to identify and make sense of material
artifacts?
And so we come back to software systems, which have grown to be large

enough that we cannot claim fully to comprehend their entirety, and this makes
some scholars uncomfortable. There are valid reasons for discomfort, of course:
code together with its execution environment has the capability to transform itself
along the way into something unexpected, and software already has a very poor
reputation for the sort of reliability, safety, and stability that is expected in other
engineering disciplines (Leveson and Turner 1993; Bogost 2015). This nevertheless
has parallels to the situation we have always faced in any discipline that must
draw on another, or that must draw on assertions that would be impractical to
check.When a digital philologist writes a system for variant text analysis she must
take on faith that the database software works as advertised, that the XML parser
does its job properly, that the Javascript libraries for manipulating SVG will put
the correct image in the web browser. As she works with these tools to build her
own system, she will naturally have some expectations concerning the results she
will see; if the results are substantially different then she will pause and try to
bridge the gap between expectation and reality.
But here perhaps there is a difference between historical disciplines and soft-

ware. We typically understand (more or less) the conclusions of art historians or

346 TARA ANDREWS

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

archaeologists or textual scholars by reading their arguments and reflecting on
them, applying the conclusions to the mental models we have built up from our
own knowledge and experience, and considering the consequences of these
conclusions. In theory one could do the same with computer code — read it,
mentally run through the algorithms therein, understand the argument, even read
the source code for the sub-systems upon which other code depends — but in
practice no one does this for more than a very small subset of any given pro-
gramme. And no wonder — code in its static text form is not a good medium for
human-to-human communication! This is why, as any software developer well
knows, he or she will be pressured to document, document, document. By and
large it is the documentation of a programme that sets our expectations for what
the code does. Only then dowe grasp its logic and its argument, and only then can
we put it to the test. In theory a scholar could take the enormous trouble to
replicate the software-encoded scholarship, but in practice we rely on the
summary — the documentation — to set our expectations.
The other difference that arises with software comes in how we put the work to

the test. Where in the historical and philosophical disciplines we read and reflect,
using the new information as a new set of mental building blocks, in computing
one must take the ‘building block’ metaphor rather more literally. If a scholar
wishes to evaluate the code, he must try to make something with it. If the result is
unexpected, then the scholar must take a closer look at the code and the docu-
mentation, and try to work out whether the fault lies in his expectations or in the
building block itself.
Perhaps the dissonance we see surrounding the digital humanities arises

from the sense that, as long as scholars are building software systems — making
things— they are not evaluating them or critiquing them. This corresponds to the
‘tensions between theoretical critique and productive theory’ that were observed
by Hayles (2012), writing about the relationship between the digital humanities
and the field of comparative media studies. It is, however, perhaps a false
dichotomy after all; to incorporate others’work into one’s own should necessarily
involve a certain amount of study and critique of that work.
The papers written in response to the call for this special issue look at the

relationship between software and scholarship from three valuable perspectives.
Joris van Zundert reflects on the role that authorship plays both in traditional
scholarship and in the creation of computer programmes, and how the misap-
propriation of this authorship creates grave difficulties in the evaluation of its
contribution. Rebecca Sutton Koeser writes about the dynamics of the personal
relationship between developers and researchers, and broaches some of the same
topics as Van Zundert, from a complementary perspective. Aris Xanthos dissects a
particular piece of text-research software to examine the scholarship inherent in
the tool, and in so doing provides a case study for how this task might be done.
I will end with my own reflection on this topic of evaluation. Peer review of

scholarly works of software continues to pose a particularly vexed challenge —
who is qualified to carry it out? By what criteria should they evaluate the work?
How will the reviewing process essentially function? The amount of time and
effort it takes for a peer reviewer to read a discursive journal article and think

‘SOFTWARE AND SCHOLARSHIP’ — EDITORIAL 347

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

about its implications tends to exactly fill the amount of time the reviewer has to
devote to the task. The act of making proper use of a piece of software, on the
other hand, and especially the act of incorporating it into something else being
built, has a rather higher minimum cost in terms of time and effort. The number of
people who are in a position to provide a good review of any particular piece of
scholarly software — those who actually have a use for the software (or at least
have suitable digital data on hand to experiment with) as opposed to those who
might be able to spare a little theoretical consideration but no more—will always
be rather small. Yet the alternative — to disregard the scholarly contribution of a
piece of software on the basis that it is too difficult to evaluate — is perhaps the
greatest crippling threat to the future of the digital humanities. It is my great hope
that the papers collected in this issue will prompt scientists and scholars
throughout the wider world of the digital humanities to reflect more productively
on the issue of how the authors of scholarly software can be truly and substan-
tially be given the recognition that their work deserves.

Note
1 E.g. the reference of Galison (1992, 252) to a
‘dreadful transformation from scientist to
scholar’ that has ‘frightened’ some physicists.

ORCID

Tara Andrews http://orcid.org/0000-0001-6930-3470

References
Bogost, Ian. 2015. Programmers: stop calling yourselves engineers. The Atlantic, November 5. http://www.

theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/.
Drucker, Johanna. 2011. Humanities approaches to graphical display. Digital Humanities Quarterly 5 (1).

http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html.
Galison, Peter. 1992. Fortran, physics, and human nature. In The invention of physical science, ed. Mary Jo

Nye, Joan L. Richards, and Roger H. Stuewer, 225–260. Boston Studies in the Philosophy of Science 139.
Netherlands: Springer. http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10.

Hayles, N. Katherine. 2012. How we think; the digital humanities. In How we think: digital media and con-

temporary technogenesis, 1–54. Chicago, IL: University of Chicago Press. http://www.press.uchicago.
edu/ucp/books/book/chicago/H/bo5437533.html.

Leveson, N. G., and C. S. Turner. 1993. An investigation of the therac-25 accidents. Computer 26 (7): 18–41.
doi:10.1109/MC.1993.274940.

348 TARA ANDREWS

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 40 No. 4, December 2015

http://orcid.org/0000-0001-6930-3470
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html
http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html
http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html
http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html
http://www.digitalhumanities.org/dhq/vol/5/1/000091/000091.html
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://link.springer.com/chapter/10.1007/978-94-011-2488-1_10
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html
http://www.press.uchicago.edu/ucp/books/book/chicago/H/bo5437533.html

	 Note
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.245 841.846]
>> setpagedevice

