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Inverse source problem for a system of wave equations
on a Lorentzian manifold

Hiroshi Takase

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

ABSTRACT
A system of wave equations on a Lorentzian manifold, the coeffi-
cients of which depend on time relates to the Einstein equation in
general relativity. We consider inverse source problem for the system
in this paper. Having established the Carleman estimate with a
second large parameter for the Laplace–Beltrami operator on a
Lorentzian manifold under assumptions independent of a choice of
local coordinates on a suitable weight function, we consider its
application to the inverse source problem for the system and prove
local H€older stability.
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1. Introduction and main result

Let T> 0, n 2 N, and M be a compact oriented n-dimensional smooth manifold with
boundary. We set L :¼ ½�T,T� �M and let (L, g) be a Lorentzian manifold with metric
g having signature ð�, þ , :::,þÞ such that the submanifolds Mt :¼ ftg �M are space-

like for all t 2 ½�T,T� and @t :¼ @
@t is timelike. The Lorentzian metric is a symmetric

non-degenerate covariant 2-tensor field such that for every point p 2 L, there is a basis
e0, :::, en for TpL such that gðel, e�Þ are the components of the standard Minkowski met-
ric diagð�1, 1, :::, 1Þ: In this paper, we consider an intermediate boundary value problem

of a system for a function h : L ! R
‘ with ‘ 2 N,

Ph :¼ wghþ aðt, xÞh ¼ Hðt, xÞ in L,

h ¼ @N̂ h ¼ 0 on M0 ¼ f0g �M,

h ¼ 0 on R1 :¼ �T,T½ � � C1:

8><
>: (1.1)

Here let the coefficient a be an ‘� ‘ matrix-valued function on L and the source term
H be an ‘ vector-valued function on L. Let p0 : L ! ½�T,T� be the projection and rp0

be the gradient of p0. N̂ :¼ � rp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðrp0,rp0Þj

p denotes the future directed unit timelike
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vector field such that for all p 2 Mt and X 2 TpMt , gðN̂ p, i�XÞ ¼ 0, where i : Mt,!L is
the embedding. We note, in this paper, that summations with respect to Greek indices
range from 0 to n, whereas those for Roman indices range from 1 to n. Furthermore,
wg is defined by wg :¼ gl�ð@l@� � Cq

l�@qÞ for functions on L, where ðgl�Þ is the matrix

inverse to ðgl�Þ, which are components of the metric g ¼ gl�dxl � dx� , and Cq
l� is the

Christoffel symbol of the Levi-Civita connection defined by

Cq
l� :¼

1
2
gqr @lg�r þ @�grl � @rgl�ð Þ:

C1 � @M denotes a given open submanifold.
The equation in (1.1) relates to general relativity. Because this type of equation having

the same principal term is derived from the Einstein equation by choosing a special
coordinate system or a suitable gauge function (e.g., [1, Chapter 18.8], [2, Chapter
III.11], [3, Part III], [4, 5, Chapter 33]) and then by the linearization of the Einstein
equation, we reduce it to the system having the form (1.1). Interested readers are
referred to Taylor [1], Choquet-Bruhat [2], and Ringstr€om [3] for a direct derivation of
the equation having the same form (1.1).
We assume the source term H is written by Hðt, xÞ ¼ Sðt, xÞf ðxÞ, where S is an ‘� ‘

matrix-valued function on L and f is an ‘ vector-valued function on M. The main focus
of this paper is the inverse source problem to determine f from the partial boundary

data of the solution: @N@k
N̂
hjR1

for k¼ 0, 1, 2, where @N denotes the normal derivative

with respect to the metric g. We prove the uniqueness and stability for the local inverse
source problem. The argument is based on the Carleman estimate, which was intro-
duced by Carleman in [6], and the Bukhgeim–Klibanov method in [7]. The Carleman
estimate was first invented to prove the unique continuation property for elliptic opera-
tors for which the coefficients are not necessarily real analytic. Using the Carleman esti-
mate, Bukhgeim and Klibanov proved global uniqueness results for multidimensional
coefficient inverse problems. This methodology is widely applicable to not only elliptic
equations but also various partial differential equations provided that we can prove the
Carleman estimate for the operators we are considering. For hyperbolic equations,
Baudouin, De Buhan, and Ervedoza [8] proved the global Carleman estimate for wave
equations and considered its applications to controllability, inverse problems, and
reconstructions. Imanuvilov and Yamamoto [9] proved the global Lipschitz stability for
wave equations by interior observations near the boundary. Bellassoued and Yamamoto
[10, 11] considered both local and global inverse source problems, and coefficient
inverse problems for wave equations on a compact Riemannian manifold. Jiang, Liu,
and Yamamoto [12] considered the local inverse source problems for wave equations,
the coefficients of which depend on time t in the Euclidean space under the assumption
that the Carleman estimate for such operators exists. In this paper, we prove also the
Carleman estimate for the Laplace–Beltrami operator. For time-independent wave equa-
tion, to apply the Carleman estimate to consider the inverse source problem, we extend
the solution to negative time intervals. However, when the coefficients depend on time,
there is a difficulty in extending the solution to negative time intervals when trying to
apply the Carleman estimate. For instance, an even extension of the solution with
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respect to time t no longer satisfies the equation. Hence, we consider the equation in
½�T,T� from the beginning.
Because Bellassoued and Yamamoto [11] dealt with the wave equation on a compact

Riemannian manifold, we prove the Carleman estimate on a Lorentzian manifold with
the help of their tools. Indeed, the assumptions on a weight function (A.1) and (A.2) in
the next section are generalizations of the situation for a Riemannian manifold.
To describe our main result, we define the Sobolev space on manifolds, which should

be defined so as not to depend on a choice of coordinate systems in general.

Definition 1.1. Let M be a compact oriented n-dimensional smooth manifold, and
fðUi, xiÞgi be a coordinate system. Assume fvigi is a finite partition of unity subordinate

to the covering such that suppvi � Ui: Given u 2 C1ðM;R‘Þ and integer k, define

jjujjHkðM;R‘Þ :¼
X
i

X
jaj�k

ð
xiðUiÞ

ðvij@auj2Þ 	 x�1
i dx1i 
 
 
 dxni

 !1
2

,

where @a signifies differentiation with respect to xi.

The inner product can be also defined in the same way. By taking the completion of
the smooth functions, one obtains a real Hilbert space. Note that different partitions of
unity and coordinates yield equivalent norms. (e.g., Ringstr€om [3, Section 15])
Although our integrations and derivatives on compact manifolds should be written
using a partition of unity and local coordinates, we omit these representations through-
out this paper to avoid notational complexity.
Let i : Mt :¼ ftg �M,!L be the embedding and g[ :¼ i�g be the induced metric onMt by

the embedding i. We assume throughout that the Lorentzian metric g is smooth on L such
that Mt is spacelike, i.e., g[ is Riemannian metric on Mt, and @t is timelike, i.e., gð@t , @tÞ < 0:

N̂ :¼ � rp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðrp0,rp0Þj

p denotes the future directed unit timelike vector field such that for all p 2
Mt andX 2 TpMt , gðN̂ p, i�XÞ ¼ 0:We assume the coefficient has enough regularity,

a 2 W2,1ð�T,T; L1ðM;R‘�‘ÞÞ:
Let M� :¼ fx 2 Mjwð0, xÞ > �g be a level set of w, where w is the weight function satis-
fying assumptions (A.1) and (A.2) to be stated in the next section. We are ready to
describe the main result of this paper.

Theorem 1.2. Let ‘ 2 N, T> 0, M be a compact oriented n-dimensional smooth manifold
with boundary, and L :¼ ½�T,T� �M. Let g be a smooth Lorentzian metric on L such
that Mt is spacelike and @t is timelike. Assume Hðt, xÞ ¼ Sðt, xÞf ðxÞ, (A.1), (A.2), (3.2)
and (3.3). Furthermore, assume that there exists a unique solution h to (1.1) in the class

h 2 \2
k¼0

H4�kð�T,T;HkðM;R‘ÞÞ:

Then, there exists �� > 0 such that for any � 2 ð��, ��Þ, there exist constants C> 0 and
h 2 ð0, 1Þ such that

jjf jjL2ðM�;R
‘Þ � CDþ CF 1�hDh,

where �� � 0 is the number in (3.3),
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F : ¼ jjf jjL2ðM;R‘Þ þ
X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ,

D : ¼
X2
k¼0

jj@N@k
N̂ hjjL2ð�T,T;L2ðC1;R

‘ÞÞ,

and N denotes the outer unit normal vector field to R1 :¼ ½�T,T� � C1:

(A.1) and (A.2) are the assumptions on a weight function needed for the Carleman
estimate. (3.2) and (3.3) are the respective assumptions on the source and coefficient
terms, and on a given submanifold C1: Details of these assumptions are explained in
subsequent sections.

2. Carleman estimate

Let us fix a local coordinate ðx1, :::, xnÞ on M and then, obtain a local coordinate ðx0 ¼
t, x1, :::, xnÞ on L such that

g ¼ �dt � dt þ gijdx
i � dxj:

We call the local coordinate semigeodesic coordinate in this paper. Henceforth, if we
write statements using a local coordinate, the coordinate is always taken by the semigeo-
desic coordinate, unless specified otherwise.

Remark 2.1. There exists the semigeodesic coordinate locally. (e.g., Remark 5.1 in [2, I])
Indeed, for a local coordinate ðy0ðtÞ, y1, :::, ynÞ near ðt, xÞ 2 L, there exists a change of the
coordinate into the semigeodesic coordinate ðx0 ¼ t, x1, :::, xnÞ if and only if an inverse
transform exists. Then, the components g0l� of the metric g represented by ðt, x1, :::, xnÞ
satisfy

g0i0 ¼
@yj

@xi
gj0

dy0

dt
þ gjk

@yk

@t

� �
, i ¼ 1, :::, n,

g000 ¼ g00
dy0

dt

� �2

þ 2g0j
dy0

dt
@yj

@t
þ gjk

@yj

@t
@yk

@t
:

gj0
dy0

dt þ gjk
@yk

@t ¼ 0 for j ¼ 1, :::, n and g00
dy0

dt

� �2
þ 2g0j

dy0

dt
@yj

@t þ gjk
@yj

@t
@yk

@t ¼ �1 are

equivalent to

gl�
@y�

@t
¼ �d0l

dy0

dt

� ��1

, l ¼ 0, :::, n() @y�

@t
¼ �g0�

dy0

dt

� ��1

, � ¼ 0, :::, n,

which is locally solvable as an initial problem of a first-order system since g00 < 0 by
our assumption that @t is timelike and Lemma 8.5 in [3].

Let ‘ 2 N, T> 0, M be a compact oriented n-dimensional smooth manifold with
boundary, and L :¼ ½�T,T� �M: Let g be a smooth Lorentzian metric on L such that
Mt is spacelike and @t is timelike. In this section, we consider the Carleman estimate for
the operator P,
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Ph : ¼ wghþ aðt, xÞh
¼ gl�ð@l@� � Cq

l�@qÞhþ aðt, xÞh:
Let the coefficient a has enough regularity,

a 2 W2,1ð�T,T; L1ðM;R‘�‘ÞÞ:
To establish the Carleman estimate for the above operator P, we consider first of all
Carleman estimate for the Laplace–Beltrami operator for R-valued functions

wg ¼ gl�ð@l@� � Cq
l�@qÞ

on an nþ 1-dimensional Lorentzian manifold L. The following method is based on the
works by Bellassoued and Yamamoto [10, 11]. Note that angled bracket h
, 
i denotes
the inner product with respect to the metric g, i.e., hX,Yi :¼ gðX,YÞ ¼ gl�XlY� for
X,Y 2 TpL and p 2 L: Let p0 : L ! ½�T,T� and p1 : L ! M be the projections, and ds2

and g[ be the respective induced squared line element and Riemannian metric by the
canonical embeddings ½�T,T�,!L and Mt,!L: ru ¼ rgu ¼ rlu @

@xl ¼ gl�@�u @
@xl

denotes the gradient of a function u with respect to the metric g.

(A.1) The Hessian of w with respect to g satisfies

9j1 > 0, 9j2 > 0 s:t: 8p 2 L, 8X 2 TpL,

r2wðX,XÞ � �2j2ds2 ðdp0ÞX, ðdp0ÞXð Þ þ 2j1g[ ðdp1ÞX, ðdp1ÞXð Þ
with

1 <
j1
j2

:

(A.2) w has no critical points on L, i.e.,

min
L

g[ ðdp1Þrw, ðdp1Þrwð Þ > 0,

and

wð0, xÞ > wðt, xÞ a:e: ðt, xÞ 2 L:

Remark 2.2. These assumptions (A.1) and (A.2) are independent of a choice of local
coordinates by their definitions. When we write X ¼ Xl @

@xl 2 TpL by taking the semi-
geodesic coordinate, we obtain the representations

ds2 ðdp0ÞX, ðdp0ÞXð Þ ¼ jX0j2 :¼ �g00ðX0Þ2 ¼ ðX0Þ2,

g[ ðdp1ÞX, ðdp1ÞXð Þ ¼ jXj2 :¼ gijX
iXj ¼

Xn
i, j¼1

gijX
iXj

 !
:

Example 2.3. We compare these assumptions (A.1) and (A.2) with those used in con-
sidering the wave equation on a compact n-dimensional smooth Riemannian manifold
ðM, �gÞ by Bellassoued and Yamamoto [10, 11]. We take as a function w,

wðt, xÞ :¼ w0ðxÞ � j2t
2, ðt, xÞ 2 �T,T½ � �M,
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where j2 > 0 is a constant and w0 is a positive smooth function in M. In this case, our
considering Lorentzian metric has the form g ¼ �dt � dt þ �g and g[ ¼ �g holds. The
assumptions regarding the operator �@2

t þ D�g , where D�g is the Laplace–Beltrami oper-

ator with respect to the metric �g , are the following (B.1) and (B.2).

(B.1) The Hessian of w0 with respect to �g satisfies
9j1 > 0 s:t: 8p 2 M, 8�X 2 TpM,

r2
�gw0ð�X , �XÞ � 2j1j�X j2�g ,

where j�X j
�g
:¼ ð�g ij�Xi�XjÞ12 with

1 <
j1
j2

:

(B.2) w0 has no critical points on M,

min
M

jr�gw0j�g > 0:

Clearly, if assumptions (B.1) and (B.2) hold, then our assumptions (A.1) and (A.2)
hold. Indeed, for p 2 L and X 2 TpL, if (B.1) holds, then we have

r2
gwðX,XÞ ¼ �2j2ds

2ððdp0ÞX, ðdp0ÞXÞ þ r2
�gw0ððdp1ÞX, ðdp1ÞXÞ

� �2j2ds
2ððdp0ÞX, ðdp0ÞXÞ þ 2j1�gððdp1ÞX, ðdp1ÞXÞ

with

1 <
j1
j2

:

Furthermore, having obtained

g[ððdp1Þrw, ðdp1ÞrwÞ ¼ �gðr�gw0,r�gw0Þ > 0,

we find (A.2) holds.

Let us define the weight function using w,

uðt, xÞ :¼ ecwðt, xÞ, ðt, xÞ 2 L,

where c > 0 is a parameter. For notational simplicity, we set

rðt, xÞ :¼ scuðt, xÞ, ðt, xÞ 2 L,

where s> 0 is a parameter. We set R :¼ ½�T,T� � @M: Before describing the Carleman
estimate, we define a quantity independent of a choice of local coordinates.

Definition 2.4. Let ru be the gradient of u 2 C1ðLÞ and define the quantity independ-
ent of a choice of local coordinates

EðuÞ :¼ ds2 ðdp0Þru, ðdp0Þruð Þ þ g[ ðdp1Þru, ðdp1Þruð Þ:

Remark 2.5. In the same way as Remark 2.2, the quantity has the representation,

EðuÞ ¼ jr0uj2 þ jruj2,
where r0u is a component of the gradient ru ¼ rlu @

@xl :
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Lemma 2.6. Assume (A.1) and (A.2). Then, there exists a constant c� > 0 such that for
any c > c�, there exist constants s� ¼ s�ðcÞ and C> 0 such thatð

L
e2sur EðuÞ þ r2juj2

� �
xL � C

ð
L
e2sujwguj2xL þ C

ð
R
e2surj@Nuj2xR

holds for all s > s� and u 2 C1ðLÞ satisfying u ¼ @Nu ¼ 0 on M6T and u¼ 0 on R.
@Nu :¼ hru,Ni ¼ Nu, where N is the outer unit normal vector filed to @L with respect
to the metric g. xL and xR denote the respective volume elements of L and R.

The proof of Lemma 2.6 is presented in Appendix.

Proposition 2.7. Assume (A.1) and (A.2). Then, there exists a constant c� > 0 such that
for any c > c�, there exist constants s� ¼ s�ðcÞ and C> 0 such that

X‘
m¼1

ð
L
e2sur EðhmÞ þ r2jhmj2

� �
xL � C

ð
L
e2sujPhj2xL þ C

ð
R
e2surj@Nhj2xR

holds for all s > s� and h 2 C1ðL;R‘Þ satisfying h ¼ @Nh ¼ 0 on M6T and h¼ 0 on R.
@Nh :¼ hrh,Ni ¼ Nh, where N is the outer unit normal vector field to @L:

Proof. With the help of Lemma 2.6, Proposition 2.7 is obtained by addition and absorp-
tion by choosing s> 0 large enough. w

3 Proof of Theorem 1.2

3.1. Preliminary

Let T> 0, M be a compact oriented n-dimensional smooth manifold with boundary,
L :¼ ½�T,T� �M, and Mt :¼ ftg �M. Let (L, g) be a smooth Lorentzian manifold such
thatMt is spacelike and @t is timelike with respect to the metric g. Let us fix the semigeode-

sic coordinate ðx0 ¼ t, x1, :::, xnÞ. We remark that in such a coordinate, we find N̂ ¼ @t,

where N̂ :¼ � rp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðrp0,rp0Þj

p is the future directed unit timelike vector field such that for all

p 2 Mt and X 2 TpMt, gðN̂ p, i�XÞ ¼ 0, where i : Mt,!L is the embedding. We consider

Ph ¼ gl�ð@l@� � Cq
l�@qÞhþ aðt, xÞh ¼ Sðt, xÞf ðxÞ in L,

h ¼ @th ¼ 0 on M0,

h ¼ 0 on R1 :¼ �T,T½ � � C1:

8><
>: (3.1)

C1 � @M is an open submanifold. We assume

a 2 W2,1ð�T,T; L1ðM;R‘�‘ÞÞ,
S 2 W2,1ð�T,T; L1ðM;R‘�‘ÞÞ,
9m0 > 0 s:t: detSð0, 
Þ � m0 a:e: on M,

f 2 L2ðM;R‘Þ:

8>>>><
>>>>:

(3.2)
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This type of inverse source problem having a time-dependent principal part was studied
by Jiang, Liu, and Yamamoto [12] for a hyperbolic equation. Furthermore, we assume a
unique weak solution h exists to (3.1) in the class

h 2 \2
k¼0

H4�kð�T,T;HkðM;R‘ÞÞ:

We define the level set L� of w for � � 0 by

L� :¼ fðt, xÞ 2 Ljwðt, xÞ > �g
and

M� :¼ fx 2 Mjwð0, xÞ > �g:
In regard to a relation between the observation boundary R1 and the level set Le, we
assume that

9�� � 0 s:t: Ø 6¼ L�� \ @L � R1: (3.3)

On considering the inverse source problem of (3.1) as an application to the Carleman
estimate Proposition 2.7, we need a relation in regard to energies.

Lemma 3.1. Let E be the quantity defined in Definition 2.4. For all u 2 C1ðLÞ, the identity
EðuÞ ¼ j@tuj2 þ gij@iu@ju

holds by the semigeodesic coordinate.

Proof. We note here that summations with respect to Greek indices range from 0 to n,
whereas those for Roman indices range from 1 to n. We take the semigeodesic coordin-
ate system.

EðuÞ ¼ �g00ðg0l@luÞ2 þ gijðgil@luÞðgj�@�uÞ
¼ j@tuj2 þ gijg

ipð@puÞgjqð@quÞ:

With the help of the semigeodesic coordinate, it follows that gij[ ¼ gij for all 1 � i, j � n:
We then obtain by the above formulation,

EðuÞ ¼ j@tuj2 þ gjq@ju@qu:
w

Proposition 3.2. Assume (A.1) and (A.2). Then, there exists a constant c� > 0 such that
for any c > c�, there exist constants s� ¼ s�ðcÞ and C> 0 such that

X‘
m¼1

ð
L
e2surðj@thmj2 þ gij@ihm@jhm þ r2jhmj2ÞxL

� C
ð
L
e2sujPhj2xL þ C

ð
R
e2surj@Nhj2xR

holds for all s > s� and h 2 \2
k¼0H

2�kð�T,T;HkðM;R‘ÞÞ satisfying h ¼ @Nh ¼ 0 on
M6T and h¼ 0 on R.

Proof. We apply Lemma 3.1 to Proposition 2.7 to complete the proof. w
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Moreover, in the proof of Theorem 1.2, we shall use the next lemma. Lemma 3.3
plays an important role when we prove inverse source problems with time-dependent
coefficients, which was introduced in [12]. Its proof is also presented in Appendix.

Lemma 3.3. Assume (A.1) and (A.2). Let i : Mt,!L be the embedding, N̂ be the future

directed unit timelike vector field such that 8p 2 Mt , 8X 2 TpMt , gðN̂ p, i�XÞ ¼ 0, and Dg[

be the Laplace–Beltrami operator with respect to the iniduced metric g[ ¼ i�g. Assume
a 2 W2,1ð�T,T; L1ðMÞÞ and P ¼ wg þ a
. There exist constants s� > 0 and C> 0 such
that ð

L
e2sujDg[vj2xL � C

ð
L
e2su

1
s
j@N̂ Pvj2 þ jPvj2

� �
xL þ CeCsE2

holds for all s > s� and v 2 \2
k¼0H

3�kð�T,T;HkðMÞÞ satisfying v ¼ @Nv ¼ @2
Nv ¼ 0 on

M6T and v¼ 0 on R. Note that

E :¼
X1
k¼0

jj@N@k
N̂ vjjL2ð�T,T;L2ð@MÞÞ:

To prove Lemma 3.3, we use the global elliptic estimate Lemma 3.4. (e.g., [13, 14]
and [15]) Its proof is also presented in Appendix.

Lemma 3.4. Let M be a compact oriented n-dimensional smooth manifold with boundary
and A be an elliptic differential operator on M. Then, there exists a constant C> 0 such
that

jjvjjH2ðMÞ � C jjAvjjL2ðMÞ þ jjvjjL2ðMÞ
� �

holds for all v 2 H1
0ðMÞ satisfying Av 2 L2ðMÞ:

3.2. Proof of Theorem 1.2

Proof of Theorem 1.2. Let �� � 0 be the number in (3.3). We introduce a cutoff function v,

vðt, xÞ :¼ 1 in L2�,
0 in L n L�

	

for sufficiently small � > �� so that

Ø 6¼ L3� \ @Lð� R1Þ:
Let us fix the semigeodesic coordinate ðx0 ¼ t, x1, :::, xnÞ: In such a coordinate, we find

N̂ ¼ @t: For fixed i¼ 0, 1, 2, we set new functions vðiÞ :¼ v@i
th: We calculate Pvð2Þ,

Pvð2Þ ¼ vP@2
t hþ 2hrv,r@2

t hi þ @2
t hwgv in L,

vð2Þ ¼ @tvð2Þ ¼ 0 on M6T ,
vð2Þ ¼ 0 on R ¼ �T,T½ � � @M:

8><
>:
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Then, we apply Proposition 3.2 to vð2Þ to obtain

X‘
m¼1

ð
L
e2su sEðvð2Þm Þ þ s3jvð2Þm j2
� �

xL

� C
ð
L
e2sujvðP@2

t hÞj2xL þ C
ð
L
e2suj2hrv,r@2

t hi þ @2
t hwgvj2xL

þ CeCs
ð
R1

j@Nvð2Þj2xR:

(3.4)

In regard to the first summand on the right-hand side of (3.4), taking

vðP@2
t hÞ

¼ v@2
t Sf � @2

t g
l�@l@�ðvhÞ � @2

t aðvhÞ � 2@tgl�@l@�ðv@thÞ � 2@taðv@thÞ
þ 2@tðgl�Cq

l�Þ@qðv@thÞ þ @2
t ðgl�Cq

l�Þ@qðvhÞ þ ½2@2
t g

l�@lv@�hþ @2
t g

l�ð@l@�vÞh
þ 4@tgl�@lvð@�@thÞ þ 2@tgl�ð@l@�vÞ@th� @2

t ðgl�Cq
l�Þð@qvÞh� 2@tðgl�Cq

l�Þð@qvÞ@th�

into account, and with supp @av � L� n L2� for ja j �1, we apply Lemma 3.4, and then
Lemma 3.3 to obtainð

L
e2sujvðP@2

t hÞj2xL

� C
X1
i¼0

X‘
m¼1

ðT
�T

jjesuvðiÞm jj2H2ðMÞdt þ
ð
L
e2suðs2EðvðiÞm Þ þ s4jvðiÞm j2ÞxL

 !

þ C
ð
L
e2sujf j2xL þ Ce2�2s

X1
k¼0

jjhjj2H2�kð�T,T;HkðM;R‘ÞÞ

� C
X1
i¼0

X‘
m¼1

ð
L
e2suðjDg[v

ðiÞ
m j2 þ s2EðvðiÞm Þ þ s4jvðiÞm j2ÞxL

þ C
ð
L
e2sujf j2xL þ Ce2�2s

X1
k¼0

jjhjj2H2�kð�T,T;HkðM;R‘ÞÞ

� C
X1
i¼0

ð
L
e2su

1
s
j@tðPvðiÞÞj2 þ sjPvðiÞj2

� �
xL

þ C
ð
L
e2sujf j2xL þ Ce2�2s

X1
k¼0

jjhjj2H2�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2,

where �j :¼ ec
j� for j 2 f2, 3g: Furthermore, in regard to the first and second summands
on the right-hand side of the above estimate, and because we have

Pvð0Þ ¼ vSf þ 2gl�@lv@�hþ wgvh

 �

,

@tðPvð0ÞÞ ¼ v@tSf þ @tvSf þ @t 2gl�@lv@�hþ wgvh

 �

,

Pvð1Þ ¼ v@tSf � @tgl�@l@�vð0Þ þ @tðgl�Cq
l�Þ@qvð0Þ � @tavð0Þ þ ½@tgl�ð@l@�vÞh

þ 2@tgl�ð@lvÞð@�hÞ þ 2gl�@lv@�@thþ wgv@th� @tðgl�Cq
l�Þð@qvÞh�,

and
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@tðPvð1ÞÞ
¼ v@2

t Sf þ @tv@tSf � @2
t g

l�@l@�vð0Þ � @2
t av

ð0Þ þ @2
t ðgl�Cq

l�Þ@qvð0Þ
� @tgl�@l@�ð@tvhþ vð1ÞÞ � @tað@tvhþ vð1ÞÞ þ @tðgl�Cq

l�Þ@qð@tvhþ vð1ÞÞ
þ @t @tgl�ð@l@�vÞhþ 2@tgl�ð@lvÞð@�hÞ þ 2gl�@lv@�@thþ wgv@th� @tðgl�Cq

l�Þð@qvÞh

 �

,

we obtain

X1
i¼0

ð
L
e2su

1
s
j@tðPvðiÞÞj2 þ sjPvðiÞj2

� �
xL

� C
ð
L
s2e2sujf j2xL þ Cs2e2�2s

X2
k¼0

jjhjj2H3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2:

(3.5)

Indeed, in regard to the first and second summands on the left-hand side of (3.5), we
have

ð
L
e2susjPvð0Þj2xL � C

ð
L
se2sujf j2xL þ Cse2�2s

X1
k¼0

jjhjjH1�kð�T,T;HkðM;R‘ÞÞ,

ð
L
e2su

1
s
j@tðPvð0ÞÞj2dxL � C

ð
L

1
s
e2sujf j2xL þ C

s
e2�2s

X1
k¼0

jjhjjH2�kð�T,T;HkðM;R‘ÞÞ,ð
L
e2susjPvð1Þj2xL

� C
ð
L
se2sujf j2xL þ C

X‘
m¼1

s
ðT
�T

jjesuvð0Þm jj2H2ðMÞdt þ
ð
L
e2suðs2Eðvð0Þm Þ þ s4jvð0Þm j2ÞxL

 !

þ Cse2�2s
X1
k¼0

jjhjjH2�kð�T,T;HkðM;R‘ÞÞ

� C
ð
L
se2sujf j2xL þ C

X‘
m¼1

ð
L
se2su

�
jDg[v

ð0Þ
m j2 þ s2Eðvð0Þm Þ þ s4jvð0Þm j2

�
xL

þ Cse2�2s
X1
k¼0

jjhjjH2�kð�T,T;HkðM;R‘ÞÞ

� C
ð
L
se2sujf j2xL þ C

ð
L
e2suðj@tðPvð0ÞÞj2 þ s2jPvð0Þj2ÞxL

þ Cse2�2s
X1
k¼0

jjhjjH2�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2

� C
ð
L
s2e2sujf j2xL þ Cs2e2�2s

X1
k¼0

jjhjjH2�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2,

where we used Lemma 3.4 and Lemma 3.3, and
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ð
L
e2su

1
s
j@tðPvð1ÞÞj2xL

� C
ð
L

1
s
e2sujf j2xL þ C

X1
i¼0

X‘
m¼1

1
s

ðT
�T

jjesuvðiÞm jj2H2ðMÞdt þ
ð
L
e2suðs2EðvðiÞm Þ þ s4jvðiÞm j2ÞxL

 !

þ C
s
e2�2s

X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ

� C
ð
L

1
s
e2sujf j2xL þ C

X1
i¼0

X‘
m¼1

ð
L

1
s
e2suðjDg[v

ðiÞ
m j2 þ s2EðvðiÞm Þ þ s4jvðiÞm j2ÞxL

þ C
s
e2�2s

X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ

� C
ð
L

1
s
e2sujf j2xL þ C

X1
i¼0

ð
L
e2su
� 1
s2
j@tðPvðiÞÞj2 þ jPvðiÞj2

�
xL

þ C
s
e2�2s

X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2

� C
ð
L
se2sujf j2xL þ C

ð
L

1
s2
e2suj@tðPvð1ÞÞj2xL

þ Cse2�2s
X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2,

where we used Lemma 3.4 and Lemma 3.3 again. Taking s> 0 sufficiently large yieldsð
L
e2su

1
s
j@tðPvð1ÞÞj2xL

� C
ð
L
se2sujf j2xL þ Cse2�2s

X2
k¼0

jjhjjH3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2:

Hence, we finally obtain (3.5). Then, applying (3.5) to (3.4) yields

X‘
m¼1

ð
L
e2su sEðvð2Þm Þ þ s3jvð2Þm j2
� �

xL

� C
ð
L
s2e2sujf j2xL þ Cs2e2�2s

X2
k¼0

jjhjj2H3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2:

(3.6)

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1425



Then, using (3.6), we have

jjesuð0, 
Þvð0, 
ÞSð0, 
Þf jj2L2ðM;R‘Þ � Cjjesuð0, 
Þvð2Þð0, 
Þjj2L2ðM;R‘Þ

¼ C
ð0
�T

d
dt

ð
M
e2suðt, xÞjvð2Þðt, xÞj2xM

� �
dt

� C
ð
L
e2su

1
s
j@tvð2Þj2 þ sjvð2Þj2

� �
xL

� C
ð
L
e2sujf j2xL þ Ce2�2s

X2
k¼0

jjhjj2H3�kð�T,T;HkðM;R‘ÞÞ þ CeCsD2:

(3.7)

Hence, using (3.7), we haveð
M2�

e2suð0, xÞjf j2xM � C
ð
M
e2suð0, xÞjvð0, xÞj2jSð0, xÞf j2xM

� C
ð
L
e2sujf j2xL þ Ce2�2s

X2
k¼0

jjhjj2H3�kð�T,T;HkðMÞ;R‘Þ þ CeCsD2:

(3.8)

Moreover, we establishð
L
e2sujf j2xL

� C
ðT
�T

ð
M2�

e2sujf j2xM

� �
dt þ C

ðT
�T

ð
MnM2�

e2sujf j2xM

 !
dt

� C
ð
M2�

e2suð0, xÞjf j2
ðT
�T

e�2sðuð0, xÞ�uðt, xÞÞdt

 !
xM þ Ce2�2sjjf jj2L2ðM;R‘Þ

� oð1Þ
ð
M2�

e2suð0, xÞjf j2xM þ Ce2�2sjjf jj2L2ðM;R‘Þ

as s ! 1 by our assumption (A.2) and the Lebesgue dominated convergence theorem.
Applying this inequality to (3.8) yieldsð

M2�

e2suð0, xÞjf j2xM � Ce2�2s jjf jj2L2ðM;R‘Þ þ
X2
k¼0

jjhjj2H3�kð�T,T;HkðM;R‘ÞÞ

 !
þ CeCsD2

for sufficiently large s > s�: We note thatð
M2�

e2suð0, xÞjf j2xM �
ð
M3�

e2suð0, xÞjf j2xM � e2�3sjjf jj2L2ðM3�;R
‘Þ:

Hence, we have

jjf jj2L2ðM3�;R
‘Þ � Ce�2ð�3��2Þs jjf jj2L2ðM;R‘Þ þ

X2
k¼0

jjhjj2H3�kð�T,T;HkðM;R‘ÞÞ

 !
þ CeCsD2,

i.e.,

jjf jjL2ðM3�;R
‘Þ � Ce�ð�3��2ÞsF þ CeCsD, (3.9)
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for all s > s�: By replacing C by CeCs� , the above estimate holds for all s> 0. When
D � F , (3.9) implies

jjf jjL2ðM3�;R
‘Þ � CeCsD:

Moreover, when D < F , we choose s> 0 to minimize the right-hand side of (3.9) such
that

eCsD ¼ e�ð�3��2ÞsF ,

i.e.,

s ¼ 1
C þ �3 � �2

log
F
D :

We then have

jjf jjL2ðM3�;R
‘Þ � 2CF 1�hDh,

where

h :¼ �3 � �2
C þ �3 � �2

2 ð0, 1Þ:

Hence, there exist constants C> 0 and h 2 ð0, 1Þ such that

jjf jjL2ðM3�;R
‘Þ � CðD þ F 1�hDhÞ

holds. w
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A. Appendix

A1. Proof of Lemma 2.6

For the proof of Lemma 2.6, we need the Gauss formula for Lorentzian manifolds. We say the
boundary @L is spacelike (timelike) if the induced metric to @L is Riemannian (Lorentzian). Let
N be the outward pointing unit normal vector field to @L: If @L is spacelike, hN,Ni ¼ �1; other-
wise, hN,Ni ¼ 1: We refer to Lemma 10.8 in Ringstr€om [3]. Note that R is timelike.

Lemma 4.1 . Let (L, g) be an nþ 1-dimensional compact oriented Lorentzian manifold with
boundary. Assume that the boundary is spacelike or timelike and let X be a smooth vector field.
Then if N denotes the outer unit normal to @L, it follows thatð

L
divXxL ¼

ð
@L

hX,Ni
hN,Nix@L:

Proof of Lemma 2.6. First, note that

ru ¼ curw, wgu ¼ cuðwgwþ chrw,rwiÞ,
r2uðrz,rzÞ ¼ cuðr2wðrz,rzÞ þ cjhrz,rwij2Þ:

We introduce a new function and operator

z :¼ esuu, Psz :¼ esuwgðe�suzÞ:
A lengthy calculation yields

Psz ¼ wgz � 2shru,rzi þ s2hru,ruiz � swguz,
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which decomposes Psz into Pþs z and P�
s z,

Pþ
s z :¼ wgz þ s2hru,ruiz,

P�
s z :¼ �2shru,rzi � swguz:

	

Note Psz ¼ Pþs z þ P�s z: Because we wish to make a lower bound of jjPszjj2L2ðLÞ, we calculate the
L2 inner product of Pþs z and P�s z,

ðPþ
s z,P

�
s zÞL2ðLÞ ¼

ð
L
wgz 
 ð�2shru,rziÞxL þ

ð
L
wgz 
 ð�swguzÞxL

þ
ð
L
s2hru,ruiz 
 ð�2shru,rziÞxL þ

ð
L
s2hru,ruiz 
 ð�swguzÞxL

¼:
X4
k¼1

Ik:

Let N be the outer unit normal vector field to @L: We remark that z ¼ @Nz ¼ rz ¼ 0 on M6T:
Integration by parts yields

I1 ¼
ð
L
2shrhru,rzi,rzixL �

ð
@L
2s
hrz,Ni
hN,Ni hru,rzix@L

¼
ð
L
2sr2uðrz,rzÞxL þ

ð
L
shru,rhrz,rziixL �

ð
R
2shrz,Nihru,rzixR

¼
ð
L
2sr2uðrz,rzÞxL �

ð
L
swguhrz,rzixL �

ð
R
2shrz,Nihru,rzixR

þ
ð
R
shru,Nihrz,rzixR,

where we have used the identity

2hrhru,rzi,rzi ¼ 2rlðr�ur�zÞrlz

¼ 2ðrlr�uÞr�zrlz þ 2r�uðrlr�zÞrlz

¼ 2r2uðrz,rzÞ þ r�ur�ðrlzrlzÞ
¼ 2r2uðrz,rzÞ þ hru,rhrz,rzii:

(4.1)

Furthermore, we obtain

I2 ¼
ð
L
swguhrz,rzixL þ

ð
L

s
2
hrwgu,rðjzj2ÞixL �

ð
@L
s
hrz,Ni
hN,Ni wguzx@L

¼
ð
L
swguhrz,rzixL �

ð
L

s
2

w
2
gujzj2xL �

ð
R
shrz,NiwguzxR þ

ð
R

s
2
hrwgu,Nijzj2xR,

I3 ¼ �
ð
L
s3hru,ruihru,rðjzj2ÞixL

¼
ð
L
s3rðhru,ruiruÞjzj2xL �

ð
R
s3hru,ruihru,Nijzj2xR,

I4 ¼ �
ð
L
s3hru,ruiwgujzj2xL:
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We remark that the integrand of the first summand of I3 means

rðhru,ruiruÞ ¼ rlðhru,ruirluÞ:
Hence, we haveX4

k¼1

Ik ¼
ð
L
2sr2uðrz,rzÞxL þ

ð
L

� s
2

w
2
guþ s3rðhru,ruiruÞ � s3hru,ruiwgu

� �
jzj2xL

�
ð
R
2shrz,Nihru,rzixR þ

ð
R
shru,Nihrz,rzixR �

ð
R
shrz,NiwguzxR

þ
ð
R

s
2
hrwgu,Nijzj2xR �

ð
R
s3hru,ruihru,Nijzj2xR

¼: First þ Zerothþ B,
(4.2)

where we define

First : ¼
ð
L
2sr2uðrz,rzÞxL,

Zeroth : ¼
ð
L

� s
2

w
2
guþ s3rðhru,ruiruÞ � s3hru,ruiwgu

� �
jzj2xL,

B : ¼ �
ð
R
2shrz,Nihru,rzixR þ

ð
R
shru,Nihrz,rzixR �

ð
R
shrz,NiwguzxR

þ
ð
R

s
2
hrwgu,Nijzj2xR �

ð
R
s3hru,ruihru,Nijzj2xR:

In regard to the First, from our assumption (A.1), we obtain

First ¼
ð
L
2sr2uðrz,rzÞxL

¼
ð
L
2rðr2wðrz,rzÞ þ cjhrz,rwij2ÞxL

� �4j2

ð
L
rjr0zj2xL þ 4j1

ð
L
rjrzj2xL,

where we remark that r :¼ scu: Therefore, we need the second estimate,

ðPþ
s z, rzÞL2ðLÞ ¼

ð
L
wgz 
 ðrzÞxL þ

ð
L
s2hru,ruiz 
 ðrzÞxL

¼ �
ð
L
rhrz,rzixL �

ð
L

sc
2
hru,rðjzj2ÞixL þ

ð
L
s2rhru,ruijzj2xL

þ
ð
@L
r
hrz,Ni
hN,Ni zx@L

¼ �
ð
L
rhrz,rzixL þ

ð
L

sc
2

wguþ s2rhru,rui
� �

jzj2xL þ
ð
R
rhrz,NizxR

�
ð
R

sc
2
hru,Nijzj2xR

¼
ð
L
rjr0zj2xL �

ð
L
rjrzj2xL þ

ð
L

sc
2

wguþ s2rhru,rui
� �

jzj2xL

þ
ð
R
rhrz,NizxR �

ð
R

sc
2
hru,Nijzj2xR

¼: First2 þ Zeroth2 þ B2,

(4.3)
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where we define

First2 : ¼
ð
L
rjr0zj2xL �

ð
L
rjrzj2xL,

Zeroth2 : ¼
ð
L

sc
2

wguþ s2rhru,rui
� �

jzj2xL,

B2 : ¼
ð
R
rhrz,NizxR �

ð
R

sc
2
hru,Nijzj2xR:

We remark that the last equality is obtained by the fact that for all p 2 L and X 2 TpL,

hX,Xi ¼ �ds2ððdp0ÞX, ðdp0ÞXÞ þ g[ððdp1ÞX, ðdp1ÞXÞ
¼ �jX0j2 þ jXj2

holds. Multiplying (4.3) by 4d for d > 0 to be determined later and adding it to (4.2) yield

X4
k¼1

Ik þ 4dðPþ
s z,rzÞL2ðLÞ � 4ðd� j2Þ

ð
L
rjr0zj2xL þ 4ðj1 � dÞ

ð
L
rjrzj2xL

þ Zerothþ 4dZeroth2 þ B þ 4dB2:

From our assumption (A.1), there exists d > 0 such that

d� j2 > 0,
j1 � d > 0:

	

Next, we consider the zeroth-order terms Zerothþ 4dZeroth2:

Zeroth ¼
ð
L

� s
2

w
2
guþ s3rðhru,ruiruÞ � s3hru,ruiwgu

� �
jzj2xL

¼
ð
L
2r3cjhrw,rwij2 þ 2r3r2wðrw,rwÞ þ Oðsc4uÞ

 �

jzj2xL

�
ð
L
2r3cjhrw,rwij2 þ 2r3ð�2j2jr0wj2 þ 2j1jrwj2Þ þ Oðsc4uÞ

 �

jzj2xL

as c ! 1, where the second equality holds by (4.1). Indeed, we obtain from (4.1)

rðhru,ruiruÞ � hru,ruiwgu ¼ hrhru,rui,rui
¼ 2r2uðru,ruÞ
¼ 2ðcuÞ3ðr2wðrw,rwÞ þ cjhrw,rwij2Þ:

Moreover, we get

4dZeroth2 ¼
ð
L
4dr3hrw,rwi þ Oðsc3uÞÞ

 �

jzj2xL

as c ! 1: We then have
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Zerothþ 4dZeroth2

�
ð
L
½r3ð2cjhrw,rwij2 � 4j2jr0wj2 þ 4j1jrwj2 þ 4dhrw,rwiÞ þ Oðsc4uÞ�jzj2xL

¼
ð
L
½r3ð2cjhrw,rwij2 � 4j2jr0wj2 þ 4j1jrwj2 þ 8dhrw,rwi � 4dhrw,rwiÞ

þ Oðsc4uÞ�jzj2xL

¼
ð
L
½r3ð2cjhrw,rwij2 � 4j2jr0wj2 þ 4j1jrwj2 þ 8dhrw,rwi

� 4dð�jr0wj2 þ jrwj2ÞÞ þ Oðsc4uÞ�jzj2xL

¼
ð
L

�
r3
�
2cðhrw,rwi þ 2d

c
Þ2 þ 4ðd� j2Þjr0wj2 þ 4ðj1 � dÞjrwj2 � 8d2

c

�

þ Oðsc4uÞ


jzj2xL

�
ð
L

�
r3
�
4ðj1 � dÞjrwj2 � 8d2

c

�
þ Oðsc4uÞ



jzj2xL

� C
ð
L
½r3 þ Oðsc4uÞ�jzj2xL

as c ! 1: Note that we used assumptions (A.1) and (A.2). Therefore, for sufficiently large c > 0
there exists a constant C such that

ðPþ
s z,P

�
s zÞL2ðLÞ þ 4dðPþ

s z, rzÞL2ðLÞ þ C
ð
L
Oðsc4uÞjzj2xL

� C
ð
L
rðjr0zj2 þ jrzj2 þ r2jzj2ÞxL þ B þ 4dB2

holds for all z 2 C1ðLÞ satisfying z ¼ @Nz ¼ 0 on M6T : For a sufficiently large fixed c > 0, we
choose s> 0 large enough so that

C
ð
L
rðjr0zj2 þ jrzj2 þ r2jzj2ÞxL � jjPszjj2L2ðLÞ � B � 4dB2

holds. It remains to estimate the boundary terms B þ 4dB2: Note that N on R is a spacelike unit
outer normal vector field, i.e., hN,Ni ¼ 1 holds on R. We have

� B � 4dB2 ¼
ð
R
2rhrz,Nihrw,rzixR þ

ð
R
swguhrz,NizxR

þ
ð
R
r3hrw,rwihrw,Nijzj2xR �

ð
R

s
2
hrwgu,Nijzj2xR

�
ð
R
rhrw,Nihrz,rzixR � 4d

ð
R
rhrz,NizxR þ 2d

ð
R
rchrw,Nijzj2xR

¼
ð
R
2r@Nzhrw,rzixR �

ð
R
r@Nwhrz,rzixR

¼
ð
R
r@Nwj@Nzj2xR � C

ð
R
rj@Nzj2xR,

where @Nz :¼ hrz,Ni because we can write rz ¼ hrz,NiN as z¼ 0 on R, which is proved by
taking the semigeodesic coordinate, and then
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hrw,rzi ¼ @Nw@Nz, hrz,rzi ¼ j@Nzj2
holds. Then, after some calculations, we obtain

e2sujr0uj2 ¼ ðr0z þ szr0uÞ2 � Cðjr0zj2 þ r2jzj2Þ,
e2sujruj2 ¼ gijðriz þ szriuÞðrjz þ szrjuÞ � Cðjrzj2 þ r2jzj2Þ:

Hence, we finally obtainð
L
e2surðjr0uj2 þ jruj2 þ r2juj2ÞxL � C

ð
L
e2sujwguj2xL þ C

ð
R
e2surj@Nuj2xR

for sufficiently large s> 0. The proof is completed. w

A2. Proof of Lemma 3.3

Proof of Lemma 3.3. Let us fix the semigeodesic coordinate ðx0 ¼ t, x1, :::, xnÞ: We then find
N̂ ¼ @t: For large c > 0 large, we apply Proposition 3.2 to @tv to deriveð

L
e2suj@2

t vj2xL

� C
s

ð
L
e2sujP@tvj2xL þ C

ð
R
e2suj@N@tvj2xR

� C
s

ð
L
e2suj@tPv� @tg

l�@l@�vþ @tðgl�Cq
l�Þ@qv� @tavj2xL þ C

ð
R
e2suj@N@tvj2xR

� C
s

ð
L
e2suj@tPvj2xL þ C

s

ðT
�T

jjesuvjj2H2ðMÞdt þ
ð
L
e2suðs2EðvÞ þ s4jvj2ÞxL

 !

þ C
ð
R
e2suj@N@tvj2xR

� C
s

ð
L
e2suj@tPvj2xL þ C

s

ð
L
e2su jDg[vj2 þ s2EðvÞ þ s4jvj2
� �

xL þ C
ð
R
e2suj@N@tvj2xR

� C
s

ð
L
e2suj@tPvj2xL þ C

ð
L
e2sujPvj2xL þ C

s

ð
L
e2sujDg[vj2xL

þ C
ð
R
e2suj@N@tvj2xR þ Cs

ð
R
e2suj@Nvj2xR,

where we use Lemma 3.4 to obtain the fourth inequality. Since gij@i@jv ¼ Pvþ @2
t vþ

gl�Cq
l�@qv� av and gij[ ¼ gij by the semigeodesic coordinate, we obtainð

L
e2sujDg[vj2xL � C

ð
L
e2su j@2

t vj2 þ EðvÞ þ jvj2 þ jPvj2
� �

xL

� C
ð
L
e2su

1
s
j@tPvj2 þ jPvj2

� �
xL þ C

s

ð
L
e2sujDg[vj2xL

þ C
ð
R
e2suj@N@tvj2xR þ Cs

ð
R
e2suj@Nvj2xR:

Choosing s> 0 sufficiently large, we absorb the second term on the right-hand side into the left-
hand side to obtain
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ð
L
e2sujDg[vj2xL � C

ð
L
e2su

1
s
j@tPvj2 þ jPvj2

� �
xL þ CeCsE2:

A3. Proof of Lemma 3.4

Proof of Lemma 3.4. Let fðUi , xiÞgi be a local coordinate system of M. If fvigi is a finite parti-
tion of unity subordinate to the open covering and v0i are chosen with v0i ¼ 1 in a neighborhood of
suppvi and suppv0i � Ui, then

jjðvivÞ 	 x�1
i jjH2ðUiÞ � CðjjðAðvivÞÞ 	 x�1

i jjL2ðUiÞ þ jjðvivÞ 	 x�1
i jjL2ðUiÞÞ

� Cðjjðv0iAvÞ 	 x�1
i jjL2ðUiÞ þ jjðv0ivÞ 	 x�1

i jjL2ðUiÞÞ
� CðjjðgiAvÞ 	 x�1

i jjL2ðUiÞ þ jjðgivÞ 	 x�1
i jjL2ðUiÞÞ,

where gi :¼ v0iP
i
v0i
: With 1 ¼Pi vi �

P
i v

0
i, gi is determined. Furthermore, because suppgi ¼

suppv0i � Ui, fgigi is a partition of unity subordinate to the covering fUigi: Summing up with
respect to i yields

jjvjjH2ðMÞ � C jjAvjjL2ðMÞ þ jjvjjL2ðMÞ
� �

:
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