Communications in Partial Differential Equations

ISSN: 0360-5302 (Print) 1532-4133 (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

Taylor & Francis

Taylor &Francis Group

Inverse source problem for a system of wave
equations on a Lorentzian manifold

Hiroshi Takase

To cite this article: Hiroshi Takase (2020) Inverse source problem for a system of wave equations

on a Lorentzian manifold, Communications in Partial Differential Equations, 45:10, 1414-1434, DOI:

10.1080/03605302.2020.1774897
To link to this article: https://doi.org/10.1080/03605302.2020.1774897

© 2020 The Author(s). Published with
license by Taylor and Francis Group, LLC

@ Published online: 24 Jun 2020.

N
G/ Submit your article to this journal &

||I| Article views: 552

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2020.1774897
https://doi.org/10.1080/03605302.2020.1774897
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2020.1774897
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2020.1774897
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2020.1774897&domain=pdf&date_stamp=2020-06-24
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2020.1774897&domain=pdf&date_stamp=2020-06-24

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Tavlor & F .
2020, VOL. 45, NO. 10, 1414-1434 e aylor & kFrancis

https://doi.org/10.1080/03605302.2020.1774897 Taylor & Francis Group

8 OPEN ACCESS ‘ W) Check for updates

Inverse source problem for a system of wave equations
on a Lorentzian manifold

Hiroshi Takase

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

ABSTRACT ARTICLE HISTORY
A system of wave equations on a Lorentzian manifold, the coeffi- Received 14 March 2019
cients of which depend on time relates to the Einstein equation in Accepted 15 May 2020
general relativity. We consider inverse source problem for the system
in this paper. Having established the Carleman estimate with a
second large parameter for the Laplace-Beltrami operator on a ) >
. ! N N i source problems; Lorentzian
Lorentzian manifold under assumptions independent of a choice of manifolds; wave equation
local coordinates on a suitable weight function, we consider its with time-dependent
application to the inverse source problem for the system and prove coefficients
local Holder stability.

KEYWORDS
Carleman estimate; inverse

2010 MATHEMATICS
SUBJECT
CLASSIFICATION

35R30; 58J45; 53C50; 35L05

1. Introduction and main result

Let T>0, n € N, and M be a compact oriented n-dimensional smooth manifold with
boundary. We set L := [—T,T] x M and let (L, g) be a Lorentzian manifold with metric
¢ having signature (—, +,...,+) such that the submanifolds M’ := {t} x M are space-
like for all t € [~T,T] and 9, := 2 is timelike. The Lorentzian metric is a symmetric
non-degenerate covariant 2-tensor field such that for every point p € L, there is a basis
€, ..., en for TpL such that g(e,, e,) are the components of the standard Minkowski met-
ric diag(—1,1,...,1). In this paper, we consider an intermediate boundary value problem

of a system for a function h: L — R’ with ¢ € N,
Ph :=gh +a(t,x)h = H(t,x) in L,
h=0yh=0 on M° = {0} x M, (1.1)
h=0 on Xy :=[-T,T] x I'y.

Here let the coefficient a be an ¢ x ¢ matrix-valued function on L and the source term
H be an ¢ vector-valued function on L. Let 7y : L — [T, T] be the projection and Vr,

Vg

——0%___ denotes the future directed unit timelike
lg(Vmo, V)|

be the gradient of 1, N := —
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vector field such that for all p € M' and X € Tth,g(Np, 1.X) =0, where 1 : M'—L is
the embedding. We note, in this paper, that summations with respect to Greek indices
range from 0 to n, whereas those for Roman indices range from 1 to n. Furthermore,
[ is defined by [, := ¢"(9,0, — I'},0,) for functions on L, where (g"”) is the matrix
inverse to (gy,), which are components of the metric ¢ = g, dx" ® dx”, and I} is the
Christoffel symbol of the Levi-Civita connection defined by

L
rfw = Egp (8/4gya + al/gau - aag/w)-

I'; C OM denotes a given open submanifold.

The equation in (1.1) relates to general relativity. Because this type of equation having
the same principal term is derived from the Einstein equation by choosing a special
coordinate system or a suitable gauge function (e.g., [1, Chapter 18.8], [2, Chapter
II1.11], [3, Part III], [4, 5, Chapter 33]) and then by the linearization of the Einstein
equation, we reduce it to the system having the form (1.1). Interested readers are
referred to Taylor [1], Choquet-Bruhat [2], and Ringstrom [3] for a direct derivation of
the equation having the same form (1.1).

We assume the source term H is written by H(t,x) = S(t,x)f(x), where S is an ¢ x £
matrix-valued function on L and fis an ¢ vector-valued function on M. The main focus
of this paper is the inverse source problem to determine f from the partial boundary
data of the solution: 8N8;\flh|2] for k=0, 1, 2, where Oy denotes the normal derivative

with respect to the metric g We prove the uniqueness and stability for the local inverse
source problem. The argument is based on the Carleman estimate, which was intro-
duced by Carleman in [6], and the Bukhgeim-Klibanov method in [7]. The Carleman
estimate was first invented to prove the unique continuation property for elliptic opera-
tors for which the coefficients are not necessarily real analytic. Using the Carleman esti-
mate, Bukhgeim and Klibanov proved global uniqueness results for multidimensional
coefficient inverse problems. This methodology is widely applicable to not only elliptic
equations but also various partial differential equations provided that we can prove the
Carleman estimate for the operators we are considering. For hyperbolic equations,
Baudouin, De Buhan, and Ervedoza [8] proved the global Carleman estimate for wave
equations and considered its applications to controllability, inverse problems, and
reconstructions. Imanuvilov and Yamamoto [9] proved the global Lipschitz stability for
wave equations by interior observations near the boundary. Bellassoued and Yamamoto
[10, 11] considered both local and global inverse source problems, and coefficient
inverse problems for wave equations on a compact Riemannian manifold. Jiang, Liu,
and Yamamoto [12] considered the local inverse source problems for wave equations,
the coefficients of which depend on time ¢ in the Euclidean space under the assumption
that the Carleman estimate for such operators exists. In this paper, we prove also the
Carleman estimate for the Laplace-Beltrami operator. For time-independent wave equa-
tion, to apply the Carleman estimate to consider the inverse source problem, we extend
the solution to negative time intervals. However, when the coefficients depend on time,
there is a difficulty in extending the solution to negative time intervals when trying to
apply the Carleman estimate. For instance, an even extension of the solution with
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respect to time t no longer satisfies the equation. Hence, we consider the equation in
[T, T] from the beginning.

Because Bellassoued and Yamamoto [11] dealt with the wave equation on a compact
Riemannian manifold, we prove the Carleman estimate on a Lorentzian manifold with
the help of their tools. Indeed, the assumptions on a weight function (A.1) and (A.2) in
the next section are generalizations of the situation for a Riemannian manifold.

To describe our main result, we define the Sobolev space on manifolds, which should
be defined so as not to depend on a choice of coordinate systems in general.

Definition 1.1. Let M be a compact oriented n-dimensional smooth manifold, and
{(Ui.x;)}; be a coordinate system. Assume {y;}, is a finite partition of unity subordinate

to the covering such that suppy; C U;. Given u € C°(M;R’) and integer k, define

||”HHk(M;R”) = (Z Z L(U)(Xi

i o<k

1 1

O"ul*) o x; dx - - dx”) ,

where 0 signifies differentiation with respect to x;.

The inner product can be also defined in the same way. By taking the completion of
the smooth functions, one obtains a real Hilbert space. Note that different partitions of
unity and coordinates yield equivalent norms. (e.g., Ringstrom [3, Section 15])
Although our integrations and derivatives on compact manifolds should be written
using a partition of unity and local coordinates, we omit these representations through-
out this paper to avoid notational complexity.

Let1: M' := {t} x M—L be the embedding and g, := 1*g be the induced metric on M’ by
the embedding 1. We assume throughout that the Lorentzian metric g is smooth on L such
that M' is spacelike, i.e., g, is Riemannian metric on M, and 9, is timelike, i.e., g0, 0r) <.

N :=— % denotes the future directed unit timelike vector field such that for all p €
gV T, Vo

M'and X € T,M', g(N » 1:X) = 0. We assume the coefficient has enough regularity,
a € W (=T, T; L (M; R™)).

Let M, := {x € M|}(0,x) > €} be a level set of \, where V is the weight function satis-
fying assumptions (A.1) and (A.2) to be stated in the next section. We are ready to
describe the main result of this paper.

Theorem 1.2. Let £ € N, T> 0, M be a compact oriented n-dimensional smooth manifold
with boundary, and L := [T, T] x M. Let g be a smooth Lorentzian metric on L such
that M' is spacelike and O, is timelike. Assume H(t,x) = S(t,x)f(x), (A.1), (A.2), (3.2)
and (3.3). Furthermore, assume that there exists a unique solution h to (1.1) in the class

2
he N HYN-T,T; H(M; R")).
k=0

Then, there exists € > 0 such that for any € € (€., €"), there exist constants C> 0 and
0 € (0,1) such that

1l ey < CD + CFD,

where €, > 0 is the number in (3.3),
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2
= fllzure) + Z||h||H3—k(_T,T;Hk(M;R‘<‘))’
k=0

2
k
= ZHaNaNhHL%T, T;L2(I';RY))?
k=0

and N denotes the outer unit normal vector field to X, := [T, T| x T';.

(A.1) and (A.2) are the assumptions on a weight function needed for the Carleman
estimate. (3.2) and (3.3) are the respective assumptions on the source and coefficient
terms, and on a given submanifold I';. Details of these assumptions are explained in
subsequent sections.

2. Carleman estimate
Let us fix a local coordinate (x!,...,x") on M and then, obtain a local coordinate (x° =
t,x',..,x") on L such that
g=—dt®dt+ gdx' @ dx.
We call the local coordinate semigeodesic coordinate in this paper. Henceforth, if we

write statements using a local coordinate, the coordinate is always taken by the semigeo-
desic coordinate, unless specified otherwise.

Remark 2.1. There exists the semigeodesic coordinate locally. (e.g., Remark 5.1 in [2, I])
Indeed, for a local coordinate (y°(t),y',...,y") near (t,x) € L, there exists a change of the
coordinate into the semigeodesic coordinate (x° = t,x',....x") if and only if an inverse
transform exists. Then, the components g, of the metric g represented by (t,x%, ..., x")

satisfy
g;o = gi: ( 8jo ddyto + gik 85?) =1,..,n,
2
so=en() + 20 8y
Go L +gu 2 =0 for j=1,.,n and goo<dd_yf)2 T
equivalent to

—1 -1

a)/y (dyo ) 8}/1/ <d)/0 )

y—— = —50 — 5 = VU, .., < = — v > — Uy ees Tl
8 ot R\ dt H=0om ot g V= 0on

which is locally solvable as an initial problem of a first-order system since g% < 0 by
our assumption that J; is timelike and Lemma 8.5 in [3].

Let /€N, T>0, M be a compact oriented n-dimensional smooth manifold with
boundary, and L := [T, T] x M. Let g be a smooth Lorentzian metric on L such that
M is spacelike and 9, is timelike. In this section, we consider the Carleman estimate for
the operator P,
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Ph:=gh +a(t,x)h
= ¢"(8,0, — rfwap)h + a(t, x)h.

Let the coefficient a has enough regularity,
a € W»® (=T, T; L™ (M;R™)).

To establish the Carleman estimate for the above operator P, we consider first of all
Carleman estimate for the Laplace-Beltrami operator for R-valued functions

O = 8"(9u0, — rfuﬂp)

on an # + 1-dimensional Lorentzian manifold L. The following method is based on the
works by Bellassoued and Yamamoto [10, 11]. Note that angled bracket (-,-) denotes
the inner product with respect to the metric g ie, (X,Y) :=¢(X,Y) = g, X"Y" for
X,YeT,Land p€ L. Let ng : L — [T, T] and 7; : L — M be the projections, and dz?
and g, be the respective induced squared line element and Riemannian metric by the
canonical embeddings [-T,T]—L and M'—>L. Vu = V= Viul = g"d,u>

xH xH

denotes the gradient of a function u with respect to the metric g.

(A.1) The Hessian of yy with respect to g satisfies
Jdicy > 0,3k, > 0s.t. Vp € L,VX € TyL,
V2Y(X, X) > —2i2d7* ((dmo) X, (dmo)X) + 2K18,((dm1) X, (dmp)X)
with

(A.2) Y has no critical points on L, i.e.,
min g, ((dn;)V, (dny ) Vi) > 0,
L

and

W (0,x) > Y(t,x) a.e. (£,x) € L.

Remark 2.2. These assumptions (A.1) and (A.2) are independent of a choice of local
coordinates by their definitions. When we write X = Xﬂa_(zu € T,L by taking the semi-
geodesic coordinate, we obtain the representations

d7* ((dm)X, (dmo)X) = |X°” := —goo(X°)* = (X°),

&((drn)X, (dm)X) = |X]” := g X'X (: Zg,-jxfxf)
=

Example 2.3. We compare these assumptions (A.1) and (A.2) with those used in con-
sidering the wave equation on a compact n-dimensional smooth Riemannian manifold
(M, g) by Bellassoued and Yamamoto [10, 11]. We take as a function ¥,

Yt x) == y(x) —1at?,  (t,x) € [-T,T] x M,
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where k, > 0 is a constant and , is a positive smooth function in M. In this case, our
considering Lorentzian metric has the form g = —dt ® dt + g and g, = g holds. The
assumptions regarding the operator —9? + A,, where A_ is the Laplace-Beltrami oper-
ator with respect to the metric g, are the following (B.1) and (B.2).

(B.1) The Hessian of i/, with respect to g satisfies
Ji; >0 s.t. Vp e M,VX € T,M,

V2ho(X, X) > 21| X[,

where [X| = (g,X'X’)? with

(B.2) g has no critical points on M,
min |V | > 0.
M 14

Clearly, if assumptions (B.1) and (B.2) hold, then our assumptions (A.1) and (A.2)
hold. Indeed, for p € L and X € T,L, if (B.1) holds, then we have

Vélp(X,X) = —215,d7*((dmo) X, (dmo)X) + Vglpo((dnl)X, (dm1)X)
> —216,d7*((dmo) X, (dmo)X) + 218 ((dm)) X, (dmy)X)
with
1<t
K2
Furthermore, having obtained
& ((drn) Vi, (dr) Vi) = g(V o, V,g) > 0,
we find (A.2) holds.
Let us define the weight function using v,
o(t,x) == PUACN (t,x) € L,
where y > 0 is a parameter. For notational simplicity, we set
a(t,x) :=syp(t,x), (t,x) €L,

where s >0 is a parameter. We set £ := [—T, T] x OM. Before describing the Carleman
estimate, we define a quantity independent of a choice of local coordinates.

Definition 2.4. Let Vu be the gradient of u € C*°(L) and define the quantity independ-
ent of a choice of local coordinates

E(u) := dv*((dno)Vu, (dmo) Vu) + g,((dm)) Vu, (dr) V).

Remark 2.5. In the same way as Remark 2.2, the quantity has the representation,
E(u) = [Voul* +|Vul?,

where V%u is a component of the gradient Vu = V”u%.
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Lemma 2.6. Assume (A.1) and (A.2). Then, there exists a constant y, > 0 such that for
any y > v,, there exist constants s, = s.(y) and C> 0 such that

J o (E(u) + o’ |u*) o, < CJ | gul o + CJ e’ |Onul’ g
L L z

holds for all s > s, and u € C*(L) satisfying u=0Oyu=0 on M~T and u=0 on X.
Onu = (Vu,N) = Nu, where N is the outer unit normal vector filed to OL with respect
to the metric g&. w; and s denote the respective volume elements of L and X.

The proof of Lemma 2.6 is presented in Appendix.

Proposition 2.7. Assume (A.1) and (A.2). Then, there exists a constant y, > 0 such that
for any y > y,, there exist constants s, = s.(y) and C> 0 such that

¢
ZJ 00 (E(hy) + *hu|*) 0o < CJ & |Phf o + CJ &*?a|onh|’ ws
m=1JL L =

holds for all s > s, and h € C*(L;R") satisfying h = Oyh =0 on M*" and h=0 on X.
Oxh := (Vh,N) = Nh, where N is the outer unit normal vector field to OL.

Proof. With the help of Lemma 2.6, Proposition 2.7 is obtained by addition and absorp-
tion by choosing s > 0 large enough. O

3 Proof of Theorem 1.2
3.1. Preliminary

Let T>0, M be a compact oriented n-dimensional smooth manifold with boundary,
L:=[-T,T] x M, and M" := {t} x M. Let (L, g) be a smooth Lorentzian manifold such
that M" is spacelike and 9 is timelike with respect to the metric g. Let us fix the semigeode-

sic coordinate (x° = £,x',...,x"). We remark that in such a coordinate, we find N = &,
VTL()
lg(Vmo, Vo)

p €M and X € T,M',g(N,,1.X) = 0, where 1 : M'—L is the embedding. We consider
Ph = g" (0,0, — I'N,,0,)h + a(t,x)h = S(t,x)f (x) in L,
h=0h=0 on MY, (3.1)
h=0 on Xy :=[-T,T| x I'y.

where N := — is the future directed unit timelike vector field such that for all

I') C OM is an open submanifold. We assume
a € W2(=T, T; L (M; R™)),
S € W2(=T, T; L*(M; R™)),
Jmg > 0 s.t. detS(0,-) > mg a.e. on M,
f e 2(M;R").

(3.2)
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This type of inverse source problem having a time-dependent principal part was studied
by Jiang, Liu, and Yamamoto [12] for a hyperbolic equation. Furthermore, we assume a
unique weak solution A exists to (3.1) in the class

2
he kﬂ H*% (=T, T; H*(M;R")).
=0

We define the level set L. of y for € > 0 by
Le .= {(t,x) € L|Y(t,x) > €}
and
M, = {x € M|y(0,x) > €}.
In regard to a relation between the observation boundary %, and the level set L., we
assume that
Je, > 0s.t. @ # L, NOL C X;. (3.3)

On considering the inverse source problem of (3.1) as an application to the Carleman
estimate Proposition 2.7, we need a relation in regard to energies.

Lemma 3.1. Let E be the quantity defined in Definition 2.4. For all u € C>(L), the identity
E(u) = 0]’ + g 0udu
holds by the semigeodesic coordinate.

Proof. We note here that summations with respect to Greek indices range from 0 to n,
whereas those for Roman indices range from 1 to n. We take the semigeodesic coordin-
ate system.

E(u) = —goo(§™'0uu)* + gij(g" 0uut) (¢ Oyu1)
= |6tu|2 +gijgi"(8pu)gjq(8qu).

With the help of the semigeodesic coordinate, it follows that g;j =gl forall<ij<n.
We then obtain by the above formulation,

E(u) = |0ul* + ¢10;ud,u.
|

Proposition 3.2. Assume (A.1) and (A.2). Then, there exists a constant y, > 0 such that
for any y > y,, there exist constants s, = s.(y) and C> 0 such that

4
ZJ €25§00’(|8¢hm|2 +gijaihmajhm + 62|hm’2>wL
L

m=1
< CJ e*?|Ph* oy + CJ e*?g|Onh|* ws
L z
holds for all s>s, and he (Vi_ H**(—T, T; H\(M;R")) satisfying h = Oyh =0 on
M*T and h=0 on X.

Proof. We apply Lemma 3.1 to Proposition 2.7 to complete the proof. O
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Moreover, in the proof of Theorem 1.2, we shall use the next lemma. Lemma 3.3
plays an important role when we prove inverse source problems with time-dependent
coefficients, which was introduced in [12]. Its proof is also presented in Appendix.

Lemma 3.3. Assume (A.1) and (A.2). Let 1 : M'—L be the embedding, N be the future
directed unit timelike vector field such that Vp € M',VX € Tth,g(Np, 1.X) =0, and Ay
be the Laplace-Beltrami operator with respect to the iniduced metric g, = 1°g. Assume
a€ W»>(=T,T;L®(M)) and P =, + a-. There exist constants s, > 0 and C> 0 such
that

1
J | Ag vy, < CJ > <— |04, Pv[* + |Pv|2>wL + Ce“ &2
L L s

holds for all s > s, and v € miZOHZ’*k(—T, T; HY(M)) satisfying v = Oyv = 0%v =0 on
M=T and v=0 on X. Note that

1
£ = 3 10h05 o rann
k=0

To prove Lemma 3.3, we use the global elliptic estimate Lemma 3.4. (e.g., [13, 14]
and [15]) Its proof is also presented in Appendix.

Lemma 3.4. Let M be a compact oriented n-dimensional smooth manifold with boundary
and A be an elliptic differential operator on M. Then, there exists a constant C> 0 such
that

¥lqany < C(11AV L) + 1Y 120 )

holds for all v € Hy(M) satisfying Av € L*(M).

3.2. Proof of Theorem 1.2

Proof of Theorem 1.2. Let €, > 0 be the number in (3.3). We introduce a cutoff function y,

x@x»_{; e,
for sufficiently small € > €. so that
@ # L NOL(C Zy).
Let us fix the semigeodesic coordinate (x° = t,x',...,x"). In such a coordinate, we find

N = 9,. For fixed i=0, 1, 2, we set new functions v\ := ydih. We calculate Pv(?),

Pv®) = yPO?h + 2(Vy, VO?h) + O2ho,y  in L,
v@ = 9@ =0 on M*T,
w2 =0 on X =[-T,T] x OM.
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Then, we apply Proposition 3.2 to v?) to obtain
¢

ZJ 250 (sE( @ )+s3|v£§)|2)wL
m=1JL
< CJ e*? |y (PO*h) Py + CJ e*?12(Vy, VOZh) + OFhoe | or (3.4)
L L
+ Cecsj |(9Nv(2)|2wz.
%

In regard to the first summand on the right-hand side of (3.4), taking
1(PO?h)
= y02Sf — 02¢" 0,0, (xh) — O*a(yh) — 20,g" 0,0, (3 O¢h) — 20,a(y0:h)

+20(8"T,)0, (x0h) + 07 (¢ T7,) 0y (xh) + [20:8" 0O,k + 08" (8,0, 1)

+ 40" 91(0,0th) + 208" (0,0, 1) Oth — 07 (8" T}, (Dp 1)k — 200(8"T,) (0, ) Osh]

uv

into account, and with supp 0%y C L. \ L, for |o|>1, we apply Lemma 3.4, and then
Lemma 3.3 to obtain

| elatporhy o

L
~y ! (i) (i) (i)

<C J eV, dt—i—J =P (PEWD) + s v )
;’; Nemllieandt + | e SEW,) + v o

1
+ CLeZS(PVZCUL + CeZQSZ| Id |?{2*"(7T, T;HF(M;R"))
k=0

<CZZJ 29(|Ag VI P + LEGD) + 9 oo,

i=0 m=1

* CJ e|f oo + CeZQSZ”h”?fH(—T, THY (MR))
k=0

1

ZJ M( 0,(PY D)2 4 5| Pyl \)m

i=0
1
+ CJ o + CeZGZSZ| Id |}2f-12*’<(7T, THk(MRY) T Ce“D?,
L k=0

where ¢; := €'/ for j € {2,3}. Furthermore, in regard to the first and second summands
on the right-hand side of the above estimate, and because we have

PO = ySf + (28" 010, h + Cgh]»

O (PV) = 40,Sf + 0, ySf + 0, [Zg’“’aﬂxayh + Dg){h]>
D = 20,Sf — 9" 0,0, + 0, (g T%,) 9V — Bav'® + [0,g" (8,0, %)
+ 208" (0ux) (k) + 28" 0,70, 0k + g x0th — B, (8" T%,) (8, 2)h),

and
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Ay (PvV)
= 2OSf + 01 0,Sf — 07" 0,0, — BFav'®) + 9} (g T, ) O,V
— 018" 0,0, (Dryh + V) — Bra(Dryh + V) + Bi(gT0,) 0, (Duxth + V)
+ O [&g“”(aﬂ&,x)h +20,8" (0ux) (O,h) + 28" 0,70, 0th + Dy Oth — Oy (g””rzy)(ap;{)h],

we obtain

1
ZJ 25"’( |8, (Pv))|* + 5| Pyl |>coL
=0

1

(3.5)

< CJ z“”lf! wp + Cs’e 252‘Z||h||§{3,k(7t T:HK(M;R')) + Ce“D2.
k=0

Indeed, in regard to the first and second summands on the left-hand side of (3.5), we
have

1

25| PV )Py, < CJ se”?|f P, + Cse**> |1hl k1, 1opsk

JL k=0

0 ou(pr) Pdon < €[ SlPon + e kzsznhnmk 1, raR))

uL

e*?s| vV ey
Ji

¢ T
< CJ se®?|f P + CZS <J ||e“"v£2>||ip(M)dt + J e*?(SE(WY) + s4|v,(f1))|2)wL>
L - L

m=1

1
+ CS@ZEZSZ| bl |k 1, 7 )

¢
< CJ se®?|f o + CZJ se®? <AgbV£2)|2 +SPE(W9) + s4|v5,?)|2) o
L m=17L

1
+ C5€26252| Pl o -, Tome ity
k=0

gcJ sezwlf|2wL+cJ 0 (10,(PYO) + 52 PvO Py
L

1
+ CSEZEZSZHhHHH(fT, T gty + CECD

S CJ ZS(p[fl () + C52 ZQSZHhHHsz(,T) T;Hk(M;Ré)) + CeCSDZ,
k=0

where we used Lemma 3.4 and Lemma 3.3, and
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1
J e»? ~10,(PvV) Py,
L N

<],

&’ |f o +CZZ (J IIeS‘”VEi)IIEz(M)dtJrJ & (SE(vy)) + s' vy ) L>

i=0 m=

c 2
n 5 ezest| |h| |H3’k(*T’ T;HK(M;R'))
k=0

<],

P, +CZZJ (A VP + PEWD) + s 0oy

i=0 m=

C i
+ =@ |l lgpos o, raonr)

1
!
LS

k=0

1
1 , .
ezs(plﬂzwL + C;:O:Lequ)(s_z |at(pv(z))|2 + |PV(1)|2)60L

C 2
+ ;ezmkz:y Il -t (1, mip ey + CE“D

1
<c j s |f P, + cj 710, (P ooy
L L

2
+ CSCZQSZ”hHHyk(_T) T;Hk(M;RA‘)) + C6C5D2>

k=0

where we used Lemma 3.4 and Lemma 3.3 again. Taking s > 0 sufficiently large yields

1
[ iayfo,
L N

2
< CJ se*?|fop + CS@ZQSZ”I’IHI_p—k(fT) T RY) T Ce“D?.
L k=0 o

Hence, we finally obtain (3.5). Then, applying (3.5) to (3.4) yields

4

ZJ e*? (SE(V,%)) + 52 |2> oL
L

m=l . (3.6)
< cJ S| Por + CPE* Y |hl[f kst azey) + CeCD
L k=0
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Then, using (3.6), we have

11207700, )8(0, ) 1172 aaery < Clle?® IV (0, )] 172 ey

0
cJ T% (JMezs‘p(t’x>|v(2>(t, x)|2cuM) dt

1 3.7
CJ eZS(p <_ |atv(2) |2 + S|V(2) 2> oy ( )
L N

2
< CJ ez“”lflzwL + CEZGZSZ| d |?{3*’<(7T, THMRY)) T Ce“D”.
L k=0

IN

Hence, using (3.7), we have

J 0|y < CJ 2009 15(0, x) P S(0, %) Poms
My, M

(3.8)

2
< CJ e*?|f Py + Ce2‘252||h||§{3,k(4, rar R’ + Ce“D?.
L k=0 '

Moreover, we establish

J e’ V|2CUL
L

T T
< cJ <J ezs“’[ﬂzcoM) dt + cJ <J ezwmsz) dt
-T sz -T M\MZf

T
< CJM equ)(O,x)[ﬂZ (J Te—ZS(qa(O,x)—(p(t,x))dt) oy + Ce2€25|[f||i2(M;R/")

€

IN

o(l)J 2?02y + CeZEZSWHiZ(M;R’)
MZE ’

as s — oo by our assumption (A.2) and the Lebesgue dominated convergence theorem.
Applying this inequality to (3.8) yields

2
JM X000 Py < CePe <|V||iz<M;Ré) + Z ||h||?{3*k(—T, T;HWM;R‘))) + Ce“D?
2 k=0

for sufficiently large s > s,.. We note that

J, eeirpon = |
Mo

ezsw(o,x)msz > 62(35|V||1%2(M35:R[)'
M;, ’

Hence, we have

2
1, ey < G207 (lfllizW;R[) L[ T;Hk(M;Rf)J + CeSD,
k=0

ie.,

||f||L2(M3E;]R[) < Ce 5721 F + Ce“D, (3.9)
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for all s > s.. By replacing C by Ce®, the above estimate holds for all s>0. When
D> F, (3.9) implies

|[f||L2(M3E-_R[) < Ce“D.

Moreover, when D < F, we choose s >0 to minimize the right-hand side of (3.9) such
that
eCsD — e—(q—q)s;g-,
ie.,
L 1
s=——log —.
C + €3 — € g D

We then have
1|2y ey < 2CF' 0D,

where
€3 — €

=——¢c(0,1).
C+63—62 ( )

Hence, there exist constants C>0 and 6 € (0,1) such that
lls oy ) < €D+ D)
holds. D
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A. Appendix

A1. Proof of Lemma 2.6

For the proof of Lemma 2.6, we need the Gauss formula for Lorentzian manifolds. We say the
boundary JL is spacelike (timelike) if the induced metric to OL is Riemannian (Lorentzian). Let
N be the outward pointing unit normal vector field to OL. If 9L is spacelike, (N, N) = —1; other-
wise, (N,N) = 1. We refer to Lemma 10.8 in Ringstrom [3]. Note that X is timelike.

Lemma 4.1 . Let (L, g) be an n—+ I-dimensional compact oriented Lorentzian manifold with
boundary. Assume that the boundary is spacelike or timelike and let X be a smooth vector field.
Then if N denotes the outer unit normal to OL, it follows that

LdivaL = L 21)\(111:]!; WL

Proof of Lemma 2.6. First, note that

Vo =7V, D0 =000 + (VY Vi),
V29(Vz, Vz) = 79(VA(Vz, Vz) + 7[(Vz, Vi) *).

We introduce a new function and operator

z:=e%u, Pyz:=e"Ty(e*'z).

A lengthy calculation yields

Pz =,z — 25(V 9, Vz) + s (V, Vo) z — 5,07,
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which decomposes Pz into Pz and P; z,
Pfz =2+ s (Vo,Vo)z,
P;z:= -25(V@,Vz) — s,z

Note Piz = Ptz + P, z. Because we wish to make a lower bound of ||P5z||iz(L>, we calculate the
L? inner product of P}z and P; z,

(P{2, P 2) ) = J

Dz - (=25(V, Vz) ) +J g2 * (=S pz) o
L L

+j (Y, Vo)z- (~25(Vg, V))oop + JL52<w, Vo)z - (—sg02)on

k=1

Let N be the outer unit normal vector field to OL. We remark that z = dyz = Vz =0 on M*T.
Integration by parts yields

(Vz,N)
I = 2 > > - 2 > ¢
= s(V(Vo,Vz),Vz)or LL $ NN (Vo,Vz)owy
= | 2sV?0(Vz, Vz)or + J s(Vo,V(Vz,Vz))op — J 25(Vz,N)(Vo,Vz)ws
L L p>

= | 2sV%p(Vz, Vz)wp — J

s, 9(Vz, Vz)oo, — J 25(Vz,N)(Vo,Vz)ws
L L b

+ J s(Vo,N)(Vz,Vz)ws,
b

where we have used the identity
2(V(V,Vz),Vz) =2V ,(V,@V"z)V/z
=2(V,V,0)V'2V 2+ 2V, 0(V,V'2)Viz
=2V?9(Vz,Vz) + V, V" (V*2V ,2)
=2V?0(Vz,Vz) + (Vo,V(Vz, Vz)).

(4.1)

Furthermore, we obtain

Vz,N
(Voo V(12 yoog — jaLs%mgmm

L= JLSDg(P<VZ> Vz)or + JL w,

l
2
= J s, 9(Vz, Vz)oor — J %D§(P|Z|2wL — J s(Vz, N)O, pzos +J %(Vgg(p, N)|z|*ws,
L L > b
L= | £(90.90) (Vo V(iR
= J SV((Ve, Vo) Vo)lzlw, — J S (Vo, Vo) (Vo,N) |z ws,
L z

I, = —J s (Vo, qu}ggq)|z|2(uL.
L
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We remark that the integrand of the first summand of I; means
V((Ve,Vo)Vo) = V.((Vo, Vo) Vig).

Hence, we have

4
Zlk = j 2sV2p(Vz, Vz)wp + J (—%[@qo +V((V,Vo)Ve) — s*(Vo, V(p)ng)) |z
k=1 L L

- J 2s(Vz,N)(Vp,Vz)ws + J s(Vo,NY(Vz,Vz)os — J s(Vz, N)Oppzos
b3 b3 b3

S
+ |5 (Ve N or - [ £(90.90) (Vo Wlef o
z z

=: First + Zeroth + B,
(4.2)

where we define

First : = J 2sV2(Vz, Vz)or,
L

Zeroth : = J

L

N
<— Emgq) +5V((Ve, Vp)Vo) —5*(Vo, V</>>Dg<p> |z,

B:= —J 25(Vz,N)(Vo,Vz)os +J s(Vo,N)(Vz,Vz)ws —J s(Vz, N)Og pzws
> b b

S
+J 5 (Voo )2 oox — J S (Vo, Vo) (Ve,N) |z ws.
> >

In regard to the First, from our assumption (A.1), we obtain

First = J 25V2(p(Vz, Vz)wy
L
_ J 26(VAY(V2, V2) + 7 (Vz, Vi) oo
L

> —4K2J J|V°z|2wL + 4K1J G|Vz|2wL,
L L
where we remark that ¢ := sy@. Therefore, we need the second estimate,

(Pyz.02)p2) = J 2 - (02)or + J s> (Vo,Vo)z - (6z)wy
L L

$
=—| a(Vz,V2)oo, — %(Vq), V(|z[*))or —l—J s*a(Vo, Vo) |zl oL
L L

L
(Vz,N)

+1 o

Joo  (N,N)

K10%)8

=—| o(Vz,Vz)or, + <%Dg(p +s*a(Ve, V(p)) 1z wp + J o(Vz,N)zws
L L z

s
—| Z(ve.N)[ePox
s 2
s
= J a|V°z|2cuL — J J|Vz|2wL +J <Eymgq) + 520<V¢,Vg0>> |z|2coL
L L L

+J (Vz,N)zws — J ﬂ<V(/),N>|z|2coz
> 2

=: First, + Zeroth, + B>,
(4.3)
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where we define

First, : = | a|V°z[ oy, J o|Vz| oy,
Jr L

Zerothy : = (%ng) +50(Vo, V@) |2,
L

By: = | oV N)zos j 7 (Vo.N) [l ws.
) 2

We remark that the last equality is obtained by the fact that for all p € L and X € T,L,
(X, X) = —dr*((dm)X, (dmo)X) + g((dm)X, (dm1)X)
= —|X°P + X’
holds. Multiplying (4.3) by 46 for é > 0 to be determined later and adding it to (4.2) yield

ZIk +44(P!z, 02) 2y = 4(6 — KZ)J a|Vz oy + 4(x, — 5)J o|Vz|*wr
L

L
+ Zeroth + 46Zeroth, + B + 4015,.

From our assumption (A.1), there exists > 0 such that

5—K2>0,
—0>0.

Next, we consider the zeroth-order terms Zeroth + 46Zeroth,.

Zeroth = ) (— %mgq) +5°V((Vo,Vo)Ve) -5 (Vo, V@>Dg<p> ke

J

= | 269 [(Vy, V)| + 268>V (V, Vi) + O(sy* )] |z eor
L

> | [26%91(V V)P +20° (<202 VW[ + 201 [V ) + O(s7*0) ]2l ooy

J

as y — oo, where the second equality holds by (4.1). Indeed, we obtain from (4.1)

V({(Vo,Vo)Ve) — (Vo,Vo)g,e = (V(Ve, Vo), Vo)
=2V?0(Ve, Vo)

=2(y9)> (V2Y(Vh, Vi) + 7 [(Vih, V) ).

Moreover, we get
487erothy — J (466> (Y, V) + O(s7°0))] |22
L

as y — 00. We then have
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Zeroth + 46 Zeroth,
> | [ @YV V)P = 416 VO + 4ica [V + 45(Vi, Vi) + O(sy* )]zl o
L

= | [ @[V, V) > — 41| VO + 4t [V P+ 83(Vi, Vi) — 40(Vi, Vi)

L
+0(s1* o))zl o1

= J [ (29[ (Vi V) P — 41| VU + 4t [V + 85(Vip, Vi)
L

— 43(— |V + [VYI*) + O(s* )]l oo

= J [03 <2V(<Vlﬁ> Vi) +2_5)2 4 4(5 — 102) [V + 401 — )| VY|P — 8_52)
L 7 g

; ow%m} oo

-, [ <4<“1 oIVl - %) + O(sv“w)] oo

> cj [6® + O(s*0)] 2o
L

as 7 — oo. Note that we used assumptions (A.1) and (A.2). Therefore, for sufficiently large y > 0
there exists a constant C such that

(P:—Z’PS_Z)LZ(L) +46(Pz, 0Z) 1) + CJ O(sy* o)zl oy
L
> cJ o(IV2P + V2P + 0|2 + B + 458,
L

holds for all z € C*(L) satisfying z = dyz =0 on M~T. For a sufficiently large fixed y > 0, we
choose s >0 large enough so that

CJ a(|Voz]® +|Vz|* + ¢?|z)}) oy < ||P5z|]iZ(L) — B — 405,
L

holds. It remains to estimate the boundary terms B + 408B,. Note that N on X is a spacelike unit
outer normal vector field, i.e., (N,N) = 1 holds on X. We have

— B— 468, = J 20(Vz,N)(V{, Vz)os + J s, ¢(Vz, N)zwy
) )
+ | PRI Mo - | S (00N lPos
) )
- J a(Vy,N)(Vz,Vz)wy — 45J d(Vz,N)zws + 25J ay({V, N)|z|2w2
) ) )
= J 26082V, VZ2)y — J oony(Vz,Vz)wy
) b

= J 08N¢|8Nz|2wz < CJ 0|8Nz|2wz,
) b

where Oyz := (Vz,N) because we can write Vz = (Vz,N)N as z=0 on X, which is proved by
taking the semigeodesic coordinate, and then
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(V, Vz) = Oxpdnz,  (Vz,Vz) = |Onz|*
holds. Then, after some calculations, we obtain
2| Voul* = (V2 + 52V°)* < C(|V°2|* + ?|2%),
|\ Vul® = gi(V'z +52V'p)(Viz + s2Vip) < C(|Vz|* + o?|z]).
Hence, we finally obtain

J 2 (|Voul” + |Vul” + o?|ul oy < CJ ezs"’|mgu|2coL + CJ e*?g|Oyul* s
L L p>

for sufficiently large s > 0. The proof is completed. m]

A2. Proof of Lemma 3.3

Proof of Lemma 3.3. Let us fix the semigeodesic coordinate (x = t,x',...,x"). We then find
N = 0. For large y > 0 large, we apply Proposition 3.2 to 0,v to derive

J 623(p|8tzv|2wL

C
<= | ¢ |Poyv|Pwy, + CJ e*?|On O]’ 0g
S by
C
< " Lezs‘”|8th — 018" 0,0,y + 01 (g" T, 0V — dav)*wr + CLezw|0N(9tV|2wz
C 2 2 C ! 2 2 2 41,12
<< | eIy oL+ — |€7v[En dt + | €7(SE(v) +57v[)or
S SA\J-r (*1) L

+ CJ e*?|OnOv) ws
p>
C C
< ?J e*?|0,Pv|* oy, + ;J e (|Agbv|2 +s*E(v) + s4|v|2>wL + CJ e*?|OnOyv|* ws
L L b3
C C
< J e*?|0,Pv|* oy, + CJ e*?| Py + J ezs"’|Ag7v|2wL
SL L St
+ CJ ezs"’|8N(9tv|2wz + CSJ ezs"’|8Nv|2w>;,
b2 b

where we use Lemma 3.4 to obtain the fourth inequality. Since g70,0jv =Pv+ 9}v+

g1, 0,v —av and g;] = g by the semigeodesic coordinate, we obtain

| 18 vPan < c[ & (1022 + B0 + P + 12V
L L
1 C
< CJ e ( |0,Pv|* + |Pv|2> o + J | Ag v oy
L S S

+ CJ e*?| OO ws + CSJ e’ |onv’ws.
> z

Choosing s > 0 sufficiently large, we absorb the second term on the right-hand side into the left-
hand side to obtain
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1
J | Ag v ooy, < CJ e*? <— |0:Pv|* + |Pv|2> wp + Ce“Ex
L L S

A3. Proof of Lemma 3.4

Proof of Lemma 3.4. Let {(U;,x;)}; be a local coordinate system of M. If {y;}, is a finite parti-
tion of unity subordinate to the open covering and y. are chosen with y; =1 in a neighborhood of
suppy; and suppy’ C U;, then

1(x:v) Oxi_1||H2(U;) < C(||(A(zv)) o xi_1||L2(Ui) +1(xiv) Oxi_1||L2(Ui))
< C(J|(xAv) Ox;1||L2(Ui) +1(zv) Ox:1||L2(U,-))
< C(||(m;Av) Oxf1||L2(Uf) + [(n;v) Ox;1||L2(Uf))’

where 7, := zf; e With 1 =57 <> ;x> n: is determined. Furthermore, because suppn; =

suppy; C Ui,{n;}i is a partition of unity subordinate to the covering {U;};,. Summing up with
respect to i yields

Ve < C(1AV izqan + [z )
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