
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lpde20

Communications in Partial Differential Equations

ISSN: 0360-5302 (Print) 1532-4133 (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

A new discrete monotonicity formula with
application to a two-phase free boundary problem
in dimension two

Serena Dipierro & Aram L. Karakhanyan

To cite this article: Serena Dipierro & Aram L. Karakhanyan (2018) A new discrete monotonicity
formula with application to a two-phase free boundary problem in dimension two, Communications
in Partial Differential Equations, 43:7, 1073-1101, DOI: 10.1080/03605302.2018.1499776

To link to this article:  https://doi.org/10.1080/03605302.2018.1499776

Published with license by Taylor & Francis ©
Serena Dipierro and Aram L. Karakhanyan

Published online: 09 Feb 2019.

Submit your article to this journal 

Article views: 263

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2018.1499776
https://doi.org/10.1080/03605302.2018.1499776
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2018.1499776
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2018.1499776
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2018.1499776&domain=pdf&date_stamp=2019-02-09
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2018.1499776&domain=pdf&date_stamp=2019-02-09


A new discrete monotonicity formula with application to a
two-phase free boundary problem in dimension two

Serena Dipierroa and Aram L. Karakhanyanb

aDepartment of Mathematics and Statistics, University of Western Australia, Crawley, WA, Australia;
bMaxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh,
Edinburgh, UK

ABSTRACT
We continue the analysis of the two-phase free boundary problems
initiated by ourselves, studying where we studied the linear growth
of minimizers in a Bernoulli-type free boundary problem at the non-
flat points and the related regularity of free boundary. There, among
other things, we also defined the functional

up r; u; x0ð Þ ¼ 1
r4

ð
Br x0ð Þ

jruþ xð Þjp
jx� x0jN�2 dx

ð
Br x0ð Þ

jru� xð Þjp
jx� x0jN�2 dx;

where x0 is a free boundary point, i.e. x0 2 @fu> 0g and u is a min-
imizer of the functional

J uð Þ :¼
ð
X
jrujp þ kpþ v u> 0f g þ kp� v u�0f g;

for some bounded smooth domain X � R
N and positive constants

k6 with K :¼ kpþ�kp� > 0.
Here we show upðr; u; x0Þ in discrete monotone at non-flat points x0,
when N¼ 2 and p is sufficiently close to 2, and then establish the
linear growth of u. A new feature of our approach is the anisotropic
scaling argument discussed in Section 4.
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1. Introduction

Let X � R
2 be a bounded planar domain such that any function in the Sobolev space

W1;pðXÞ has well-defined trace and p 2 ð2; 2þ eÞ, for a small, fixed e> 0. Assume that
u is a local minimizer of

J uð Þ :¼
ð
X
jrujp þ kpþ v u> 0f g þ kp� v u�0f g; u�g 2 W1;p

0 Xð Þ; (1.1)

where kþ and k� are positive constants such that kpþ�kp�> 0, and g 2 W1;pðXÞ is a prescribed
boundary datum. In what follows, vU denotes the characteristic function of the set U � R

2.
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The variational problem for the functional (1.1) is called the Bernoulli-type free
boundary problem and it models a number of interesting phenomena, notably planar
cavitational flow of one or two perfect fluids (see [1, Chapter 9.11]), the equilibrium
configuration for heat or electrostatic energy optimization in higher dimensions (e.g.
heat flow with power Fourier law) and the dynamics of non-Newtonian fluids when
the velocity obeys the power law v ¼ rwjrwj1s�1, where w is a stream function.
Notice that s¼ 1 corresponds to the Newtonian fluids, and s is a physical parameter,
see [2].
For p¼ 2, both the one-phase and two-phase problems have been extensively studied

for variational [3] as well as viscosity solutions [4]. There is a significant difference
between the one-phase and two-phase problems stipulated by a sign change of u across
the free boundary. The main and only known method for proving the optimal regularity
for the two-phase problem is based on the monotonicity formula of Alt et al. [3] given
by

u r; x0ð Þ ¼ 1
r4

ð
Br x0ð Þ

jruþ xð Þj2
jx � x0jN�2 dx

ð
Br x0ð Þ

jru� xð Þj2
jx� x0jN�2 dx; (1.2)

where r> 0 and x0 2 @fu> 0g. It is well-known that if u is a minimizer of (1.1) and
uþ :¼ maxf0; ug and u� :¼ �minf0; ug, then uðr; x0Þ is a non-decreasing function of
r. The monotonicity of u, combined with the C0 > 0 and Q3

2R
, for x0 2 @fu> 0g, gives

uniform local upper linear bound for u, see [3].
The key ingredient in the proof of the monotonicity formula in [3] is the following

geometric property of the eigenvalues of the Laplace-Beltrami operator on the unit
sphere @B1: let c1; c2 be the characteristic numbers corresponding to two complemen-
tary domains C1;C2 on @B1, that is

ci ci þ N�2ð Þ :¼ inf
v2W1;2

0 Cið Þ

Ð
Ci
jrhvj2Ð
Ci
v2

; i ¼ 1; 2;

then

c1 þ c2 � 2 (1.3)

and the equality holds if and only if C1;C2 are two complementary hemispheres, see [4,
Chapter 12].
If N¼ 2 then ci is the square root of the eigenvalue of the Laplace-Beltrami operator

corresponding to the portion Ci of the unit circle.
In Section 7, we present some results related to the characteristic numbers and the

eigenvalues of the p-Laplace-Beltrami operator for p 6¼ 2.
There are fewer results established for the two-phase problem when p 6¼ 2. A partial

result on the optimal regularity of u is given in [5] under a smallness assumption on
the Lebesgue density of the set fu � 0g, and recently it has been extended to a more
general class of functionals in [6].
Our paper contributes in the direction of optimal regularity and monotonicity for-

mula techniques for a class of two-phase nonlinear problems. More precisely, we
show that in two spatial dimensions, N¼ 2 (and for p sufficiently close to 2) the
functional
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up r; u; x0ð Þ :¼ 1
r4

ð
Br x0ð Þ

jruþjp
ð
Br x0ð Þ

jru�jp (1.4)

is discrete monotone (see Theorem 2.1 for the precise statement). Here r> 0 is small
and x0 2 C :¼ @fu> 0g, being C the free boundary. Consequently, we prove that up is
bounded if the free boundary is not flat at x0.
The discrete monotone quantity up has wider applications. For instance, for the vis-

cosity solutions of the two-phase problem with the p-Laplacian, for p close to 2 and
N¼ 2, we can show that at the non-flat points x0 of the free boundary the function up

is bounded, which in turn implies that the solution u has linear growth at x0. Another
closely related result, which is of independent interest, is the analog of the relation of
the characteristic numbers for the p-Laplace-Beltrami operators for N¼ 2 and p> 2,
namely we have the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 k1 p�1ð Þ þ 2�p
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 k2 p�1ð Þ þ 2�p
� �q

� 2;

see the forthcoming Theorem 2.4.
In fact, we establish a dichotomy for up: either the free boundary in the ball Brðx0Þ is

contained between two parallel planes which are hr apart, or up is discrete monotone.
Moreover, if h is sufficiently small then the free boundary is C1;a smooth near x0, see
the forthcoming Theorem 6.5.
For this, we introduce a suitable notion of flatness for the free boundary points char-

acterizing the flat points. It follows from the results of [7, 8] that at such points the free
boundary must be regular provided that u is also a viscosity solution in the sense of
Definition 6.1, see also the discussion in Section 6. The fact that the minimizers of J are
also viscosity solutions has been established in [9].
On the other hand, at non-flat points, we prove that up is discrete monotone and we

deduce from this the linear growth of u near these points.
In the subsequent section, we present our main results. A detailed plan about the

organization of the paper will then be presented at the end of Section 2.

2. Main results

In this section, we formulate our main results. We will denote by C :¼ @fu> 0g the
free boundary. Fix x0 2 C and h> 0, and consider the slab

S h; x0; �ð Þ :¼ x 2 R
n : �h< x�x0ð Þ � � < h

� �
(2.1)

where � is a unit vector. Let hminðx0; r; �Þ be the minimal height of the slab in the unit
direction � containing the free boundary in Brðx0Þ, i.e.

hmin x0; r; �ð Þ :¼ inf h : @ u> 0f g \ Br x0ð Þ � S h; x0; �ð Þ \ Br x0ð Þ
� �

: (2.2)

If we set

h x0; rð Þ :¼ inf
�2Sn

hmin x0; r; �ð Þ (2.3)

then hðx0; rÞ is non-decreasing in r.
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Theorem to follow deals with the points where the free boundary is not suffi-
ciently flat.

Theorem 2.1. Let N¼ 2 and u be a local minimizer of the functional J defined in (1.1).
Then, there exist tame constants p0 > 2; r0 > 0 and h0> 0 such that if

2< p< p0 and r< r0 (2.4)

thentheinequality h x0; rð Þ � h0r; for x0 2 C \ B3r; (2.5)

implies that

up r; u; x0ð Þ � up 3r; u; x0ð Þ; (2.6)

where h(x, r) is defined by (2.3) and up by (1.4). Moreover, p0 does not depend on u.
Theorem 2.1 says that if at the level r the free boundary is not sufficiently flat then

the up energy at the level r is controlled by the same energy at the tripled level 3r.
It is worthwhile to point out that in the proof of Theorem 2.1, we use a compactness

argument based on an anisotropic scaling in order to assure the non-degeneracy of an
appropriately scaled function, thus avoiding the use of the knowledge of the linear
growth from [9]. In the proof of Theorem 2.1, the only places where we use that u is a
minimizer is Step 2, Cases (2b) and (2b2), where we utilize the continuity of u.
Therefore, we have the following:

Corollary 2.2. Let N¼ 2 and let u be a continuous viscosity solution in the sense of
Definition 6.1. Then, the conclusion of Theorem 2.1 remains true.

As another consequence, we have:

Theorem 2.3. Let u be a local minimizer of the functional J defined in (1.1), and let x0 2
C be a non-flat point of the free boundary, i.e. for any r< r0 and for p 2 ð2; p0Þ, we have
that hðx0; rÞ � h0r, where r0 and p0 are as in Theorem 2.1.
Then, u has linear growth near x0.
Observe that we always have that uþ and u– have comparable rates of growth from

the free boundary, thanks to Corollary 3.4, i.e.

1
r

ð
6
Brðx0Þ

uþ�
ð
6
Brðx0Þ

u�:

In order to conclude that each of these terms is bounded we apply Theorem 2.1 to infer
that the product 1

r2
Ð
6
Brðx0Þu

þ Ð6
Brðx0Þu

� is also bounded. This is where up enters into the
game and provides the necessary bound, see Section 5.

Finally, we state our main estimate for the characteristic numbers of the p-Laplace-
Beltrami operator which is of independent interest:

Theorem 2.4. Let k1 be the solution of

� d
dh

k2u2 þ u2
h

� �p�2
2 uh

n o
¼ k k p�1ð Þ þ 2�p
� �

k2u2 þ u2
h

� �p�2
2 u in S1;

u hð Þ ¼ 0 on @S1;

8<:
for S1 :¼ ð0;xÞ, and k2 for the complementary arc S2 :¼ ðx; 2pÞ. Then
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 k1 p� 1ð Þ þ 2� p
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 k2 p� 1ð Þ þ 2� p
� �q

� 2: (2.7)

Furthermore equality holds if and only if k1 ¼ k2 ¼ 1, i.e. for half circles S ¼ ð0; pÞ.
Outline
In Section 3, we collect some basic material that we will use throughout the paper.

We also show a coherence result (see Proposition 3.1, P.4) by using a different strategy
with respect to the case p¼ 2 (see [3]), that we think has an independent interest.
Sections 4 and 5 are devoted to the proofs of Theorems 2.1 and 2.3.
tIn Section 6, we discuss the fact that any minimizer of the functional in (1.1) is also a

viscosity solution, according to Definition 6.1. This, together with the notion of slab flat-
ness, will allow us to apply the regularity theory developed in [7, 8] for viscosity solutions.
Finally, in Section 7 we recall some results concerning the relation between the char-

acteristic numbers corresponding to two complementary cones for p 6¼ 2 and prove
Theorem 2.4.
Notations
C;C0;CN ; ::: generic constants,
�U closure of a set U,
@U boundary of a set U,
BrðxÞ;Br ball centered at x with radius r> 0, Br :¼ Brð0Þ,
C the free boundary@fu> 0g,
C6B1 \ @fu6 > 0g,Ð
mean value integral,

xN volume of unit ball,
kðuÞkpþ vfu> 0g þ kp� vfu�0g,
K ¼ kpþ�kp� Bernoulli constant.

3. Technicalities

In this section, we gather some basic facts that we shall use in the forthcoming sections.
One of the important results to be proved is the coherence estimate (3.1). For p¼ 2 this
estimate was showed in [3] (see Theorem 4.1 there), and the proof uses the Poisson rep-
resentation formula, that we do not have for p 6¼ 2. However, a combination of the
methods from [3, 10] and [11] will give the result.

3.1. Some basic properties of the local minimizers of J

In the proposition to follow all claims are valid in any dimension.

Proposition 3.1. Let u 2 W1;pðXÞ be a local minimizer of J with kpþ � kp�> 0. Then
P.1 Dpu6 � 0 in the sense of distributions and Dpu ¼ 0 in fu> 0g [ fu< 0g,
P.2there is c0 > 0 such that if

limsup
r!0

jBr x0ð Þ \ u< 0f gj
jBr x0ð Þj � c0; x0 2 C;

then u has linear growth near x0 depending only on 1
c0
times some tame constant,
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P.3ru 2 Lq locally, for any finite q> 1, and u is locally log-Lipschitz continuous,
P.4for any D�X there exist �r > 0 and C> 0 depending on p; supjuj; distðD; @XÞ such

that for any x0 2 C \ B1 �����
ð
6
@Br x0ð Þ

u

����� � Cr; for any r � �r: (3.1)

Remark 3.2. Note that P.4 in Proposition 3.1 says that either both 1
r

Ð
6
@Brðx0Þu

þ and
1
r

Ð
6
@Brðx0Þu

� go to þ1 as r ! 0 or they both remain bounded.

Remark 3.3. We stress on the fact that the results in Proposition 3.1 hold in
any dimension.

Proof. P.1 follows from a standard comparison of u and uþ eu for a suitable smooth
compactly supported function u, and the proof of P.2 can be found in [5].
Now we focus on the proofs of P.3 and P.4. For this, we observe that it is enough to

show that

locally ru 2 BMO: (3.2)

Indeed, if this is true then ru 2 Lq locally, for any 1< q< þ1. Moreover, the log-
Lipschitz estimate follows from [12], Theorem 3. This proves P.3.
Also, u is continuous and

lim
r!0

ð
6
@Br x0ð Þ

u ¼ 0 for anyx0 2 C:

Now, we notice that, for e> 0,����� 1
eN�1

ð
Be xð Þ

ru xð Þ � x�x0
jx � x0j dx

����� ¼
����� 1
eN�1

ð
Be xð Þ

ru xð Þ �
ð
6
Be xð Þ

ru

 !
� x�x0
jx� x0j dx

�����
� e

1
eN

ð
Be xð Þ

jru xð Þ �
ð
6
Be xð Þ

ruj dx
 !

! 0;

as e ! 0, thanks to the BMO estimate in (3.2). Thus
1

rN�1

ð
@Br xð Þ

u ¼
ðr
0

d
dt

ð
@B1

u x0 þ txð Þ dH1

 !
dt

¼
ðr
0

1
tN�1

ð
@Bt

ru x0 þ �ð Þ � � dH1 dt ¼

¼
ðr
0

1
tN�1

d
dt

ð
Bt x0ð Þ

ru xð Þ � x�x0
jx � x0j dx

 !
dt ¼

¼ 1
rN�1

ð
Br x0ð Þ

ru xð Þ x�x0
jx � x0j dxþ N�1ð Þ

ðr
0

1
tN

ð
Bt x0ð Þ

ru xð Þ x�x0
jx� x0j dx dt

¼ 1
rN�1

ð
Br x0ð Þ

ru xð Þ �
ð
6
Br x0ð Þ

ru

" #
x�x0
jx� x0j dx

þ N�1ð Þ Ð r
0

1
tN

ð
Bt x0ð Þ

ru xð Þ �
ð
6
Bt x0ð Þ

ru

" #
x�x0
jx� x0j dx dt:

Therefore, the BMO estimate in (3.2) yields
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����� 1
rN�1

ð
@Br xð Þ

u

����� � 3rjjrujjBMO;

which gives the desired result in P.4.
Hence, it remains to show (3.2), that is locally ru 2 BMO. In order to prove it, fix

R � r> 0 and let v be the solution of Dpv ¼ 0 in B2Rðx0Þ and v¼ u on @B2Rðx0Þ. If fol-
lows from [13, p. 100] that ð

B2R x0ð Þ
jr u�vð Þjp � CRN ;

for some tame constant C> 0. Notice that, by H€older inequality,ð
B2R x0ð Þ

jr u�vð Þj2 � CRN ; (3.3)

up to renaming C.
Now, we denote by

ruð Þx0;q :¼
ð
6
Bq x0ð Þ

ru;

and we observe that, using H€older inequality,ð
Br x0ð Þ

j rvð Þx0;r� ruð Þx0;rj2 ¼
ð
Br x0ð Þ

j
ð
6
Br x0ð Þ

rv�ru

 !
j2

¼ jBr x0ð Þjj
ð
6
Br x0ð Þ

rv�ru

 !
j2

�
ð
Br x0ð Þ

jrv�ruj2:

(3.4)

Furthermore, we have the following Campanato growth type estimate (see [10, Theorem
5.1]) ð

Br x0ð Þ
jrv� rvð Þx0;Rj2�

r
R

� 	Nþa ð
BR x0ð Þ

jrv� rvð Þx0;Rj2; (3.5)

where the symbol � means that the inequality is true up to a positive tame constant.
Therefore, using (3.3), (3.4) and (3.5), we haveð

Br x0ð Þ
jru� ruð Þx0;rj2�

ð
Br x0ð Þ

jru�rvj2 þ
ð
Br x0ð Þ

jrv� rvð Þx0;rj2

þ
ð
Br x0ð Þ

j rvð Þx0;r� ruð Þx0;rj2

�

ð
Br x0ð Þ

jru�rvj2 þ
ð
Br x0ð Þ

jrv� rvð Þx0;rj2

�

ð
Br x0ð Þ

jru�rvj2 þ r
R

� 	Nþa ð
BR x0ð Þ

jrv� rvð Þx0;Rj2
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�

ð
Br x0ð Þ

jru�rvj2

þ r
R

� 	Nþa ð
BR x0ð Þ

jrv�ruj2 þ
ð
BR x0ð Þ

jru� ruð Þx0;Rj2
" #

þ r
R

� 	Nþa ð
BR x0ð Þ

j ruð Þx0;R� rvð Þx0;Rj2

�

ð
Br x0ð Þ

jru�rvj2

þ r
R

� 	Nþa ð
BR x0ð Þ

jrv�ruj2 þ
ð
BR x0ð Þ

jru� ruð Þx0;Rj2
" #

�

ð
BR x0ð Þ

jru�rvj2 þ r
R

� 	Nþa ð
BR x0ð Þ

jru� ruð Þx0;Rj2

� Rð ÞN þ r
R

� 	Nþa ð
BR x0ð Þ

jru� ruð Þx0;Rj2:

Now, we define

w rð Þ :¼ sup
t�r

ð
Bt x0ð Þ

jru� ruð Þx0;tj2:

It follows from [10] that

w rð Þ � A
r
R

� 	Nþa

w Rð Þ þ BRN

for some positive constants A, B and a. Applying Lemma 2.1 from [11, Chapter 3] we
conclude that there exist c> 0 and R0 > 0 such that

w rð Þ � crN
w Rð Þ
RN

þ B

� 	
for all r � R � R0, and hence ð

Br x0ð Þ
jru� ruð Þx0;rj2 � CrN

for some tame constant C> 0. This shows that ru is locally BMO and concludes the
proof of (3.2). The proof of Proposition 3.1 is then complete. w

As a consequence, we have:

Corollary 3.4. Let u 2 W1;pðXÞ be a local minimizer of J. Then for any subdomain D�X
there is a constant C> 0 depending on p; supjuj and distðD; @XÞ such that
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�����
ð
6
Br x0ð Þ

u

����� � Cr for any x0 2 @ u> 0f g and r> 0 such that Br x0ð Þ � D: (3.6)

3.2. A remark on the form of the functional

We can write the functional in (1.1) as

J uð Þ ¼
ð
X
jrujp þ Kv u> 0f g þ kp�jXj;

with K :¼ kpþ�kp� > 0. Notice that the last term does not affect the minimization prob-
lem, and so if u is a minimizer for J, then it is also a minimizer for

eJ uð Þ :¼
ð
X
jrujp þ Kv u> 0f g: (3.7)

Observe that the free boundary @fu> 0g \ @fu � 0g for the minimizer u of J coincides
with @fu> 0g if K> 0, see e.g. Section 3.4 in [9].

3.3. Alt-Caffarelli-Friedman monotonicity formula

Here we recall a result obtained in [14], see in particular Lemmata 2.2 and 2.3 there.

Theorem 3.5. Let p¼ 2 and u6 be two continuous subharmonic functions with disjoint
supports in B1 such that u6ð0Þ ¼ 0.
Then we have that

u0
2 r; u; x0ð Þ � 2

r
u2 r; u; x0ð Þ c Cþð Þ þ c C�ð Þ�2

� �
;

where u2 has been introduced in (1.4) and

c C6ð Þ c C6ð Þ þ N � 2ð Þ ¼ inf
v2W1;2

0 C6ð Þ

Ð
C6
jrhvj2Ð
C6
v2

:

Furthermore, let cðrÞ :¼ cðCþÞ þ cðC�Þ� 2. Then cðrÞ � 0 for all small r. Moreover
the strict inequality holds unless C�

6 are both half-spheres. In particular if any of the C�
6

digresses from being a half-spherical cap by an area-size of e, say, then

c rð Þ>Ce2;

for some C> 0. Here E� stands for the spherical symmetrization of E.
We will use here only the two-dimensional version of Theorem 3.5.

3.4. Some estimates for capacity

In this section, we gather some well-known facts about the capacity on the plane and
the one-dimensional Hausdorff measure. So, we fix N¼ 2 and, for q> 0, we define
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H1
q Eð Þ :¼ inf

X
i

ri; (3.8)

where the infimum is taken over all the coverings of E � R
2 by countably many balls of

radii ri � q. Clearly H1
qðEÞ is a decreasing function of q, hence if H1ðEÞ :¼

limq!0 H1
qðEÞ exists then it is called the one-dimensional Hausdorff measure of E. It is

also useful to define the set function H1
1 called the Hausdorff content.

Throughout this paper the C1;‘ capacity, defined in [15, p. 20], is denoted by cap‘.
Let cap‘ðE;QÞ be the ‘ capacity of E � Q where Q � R

2 is a square and 1<‘< 2.
We have the following lower estimate for the capacity in terms of the Hausdorff con-

tent, see e.g. Corollary 5.1.14, inequality (5.1.3) in [15]:

cap‘ E;Qð Þ � cap‘ E;R2
� �

� A H1
1 Eð Þ� �2�‘

(3.9)

for a tame constant A> 0.
It is convenient to formulate a version of (3.9) replacing the Hausdorff content with

the measure H1. For this, let E :¼ @fv> 0g, for some continuous function v 2 CðQÞ
such that @fv> 0g is connected, the center of the square Q belongs to @fv> 0g and
@fv> 0g \ @Q 6¼ Ø. If ‘0 is a line passing though the center of Q and a point on

@fv> 0g \ @Q then the H1 measure of the projection of @fv> 0g on ‘0 is at least diamQ
2
ffiffi
2

p .

Let r> 0 be such that H1ðEÞ>r. Observe that there is q0 > 0 such that
P

i ri � r if
ri � q0, for all coverings of E by countably many balls of radii ri � q0. Moreover, for all

the other coverings we have that
P

i ri �
P½ r

2q0
	

i¼1 q0 � r
4. Thus, choosing r :¼ 1

2H1ðEÞ, we
get from (3.9)

cap‘ E;Qð Þ � cap‘ E;R2
� �

� A
H1 Eð Þ

8

� 	2�‘

: (3.10)

We will also need another lower estimate for the capacity, see e.g. [16, p. 5]:

cap‘ E;R2
� �

� AjEj1�‘
2; (3.11)

where jEj is the Lebesgue measure on the plane.
Finally, we state the Poincar�e inequality for v 2 W1;‘: there is a tame constant c> 0

such that ð
D
jvj‘ � c

cap‘ v ¼ 0f g;Dð Þ
ð
D
jrvj‘; (3.12)

where D is a ball or a square, see [16, p. 15–16].

3.5. Gehring’s lemma

Here we recall the Gehring’s result on the higher integrability, see [11, Proposition 1.1,
p. 122].

Proposition 3.6. Let Q be a square and r> q � 1. Suppose that f 2 LrðQÞ; g 2 LqðQÞ
are nonnegative, and that
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ð
6

QR x0ð Þ

gq � b
ð
6

Q2R x0ð Þ

g

0@ 1Aq

þ
ð
6

Q2R x0ð Þ

f q þ h
ð
6

Q2R x0ð Þ

gq (3.13)

for each x0 2 Q and each R<minf12 distðx0; @QÞ;R0g, where R0, b and h are constants
with b> 1, R0 > 0 and 0 � h< 1.
Then there exist �> 0 and c> 0 such that g 2 LplocðQÞ for p 2 ½q; qþ �Þ andð

6
QR

gp
0@ 1A1

p

� c
ð
6
Q2R

gq
0@ 1A1

q

þ
ð
6
Q2R

f pdx

0@ 1A1
p

8><>:
9>=>;; (3.14)

for any R<R0 such that Q2R � Q, where c and � are positive constants depending on
b; h; q and r.

4. Proof of Theorem 2.1

4.1. Step 0: Heuristic discussion

We will prove Theorem 2.1 using a contradiction argument. That is, we assume that
there exist pj ! 2, with pj > 2, minimizers Uj, xj 2 Cj and rj ! 0, as j ! þ1, such that
hðxj; rjÞ> h0 rj and

upj rj;Uj; xjð Þ>upj 3rj;Uj; xjð Þ: (4.1)

We set

S6j :¼
ð
6
B3rj xjð Þ

jrU6
j yð Þjpj dy

 !1pj

; (4.2)

and introduce the scaled functions

u6j xð Þ :¼
U6

j xj þ rjxð Þ
rj S6j

: (4.3)

By construction we have

jjru6j jjLpj B3ð Þ ¼ 32pj � 3: (4.4)

Hence, from (4.1) we deduce that

upj 1; uj; 0ð Þ>upj 3; uj; 0ð Þ ¼ 1; (4.5)

or equivalently ð
B1

jruþj jpj
ð
B1

jru�j jpj > 1: (4.6)

Thanks to the uniform bound (4.4) we can extract a subsequence fu6jmg that weakly
converges to some u60 2 W1;2ðB1Þ. Consequently, from the semicontinuity of the
Dirichlet’s integral we have that
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limupj 1; uj; 0ð Þ � limupj 3; uj; 0ð Þ � u2 3; u0; 0ð Þ: (4.7)

In order to handle the limit on the left hand side we need strong convergence of ru6j
in, say, L2ðB1Þ (e.g. it will suffice to have uniform higher integrability of frujg, for
instance jrujj 2 LqðB1Þ for some fixed q> 2, which we will prove using Gehring’s
lemma). Suppose for a moment that this is true, then passing to the limit in (4.7) we
infer the inequality

u2 1; u0; 0ð Þ � u2 3; u0; 0ð Þ: (4.8)

Note that thanks to the uniform convergence uj ! u0, as j ! þ1, (due to the uniform
estimate jrujj 2 Lqloc, with q> 2, and the Sobolev embedding), we obtain that (2.5)
translates to

h 0; 1ð Þ � h0: (4.9)

Furthermore, from P.1 in Proposition 3.1 we have that Dpju
6
j � 0, and this translates to

Du60 � 0 in view of the W1;q estimate for q> 2.
If both functions u60 do not vanish (i.e. both uþj and u�j are non-degenerate) then u60

are admissible functions in Theorem 3.5, and we infer from (4.8) that u0 ¼ uþ0 �u�0 is a
two-plane solution in B3 n B1. Consequently, employing some standard unique continu-
ation results for harmonic functions we shall conclude that u0 is a two-plane solution in
B3 which, however, will be in contradiction with (4.9) and the proof will follow.
Now we begin with the actual proof of Theorem 2.1. It is convenient to split the

proof into a number of steps, which in combination shall yield the proof of Theorem
2.1. In Step 1 below, we prove that the scaled functions, defined in (4.3), remain uni-
formly non-degenerate in L2ðB2Þ. Step 2, which is the most technical one, takes care of
the higher integrability of the gradient of the scaled functions ruj, allowing us to pass
to the limit in (4.7). To do so we employ Gehring’s Lemma (recall Proposition 3.6) and
the Caccioppoli’s inequality. One more technical issue that arises here is to establish a
Poincar�e type estimate for the scaled functions u60 . In Step 3 and Step 4, we perform a
gap filling argument based on some ideas from the unique continuation theory, allowing
us to extend the linearity of u0 from B3 n B1 into B1.

4.2. Step 1: Non-degeneracy

In order to take the limit of the scaled functions u6j as j ! þ1 (recall (4.3)), we need
to ensure that both uþj and u�j do not vanish identically. Lemma to follow provides a
lower bound in term of Lp integrals.

Lemma 4.1. Let u6j be as in (4.3). Then, there exists C0> 0 independent of j such thatð
B2

juþj jpj
ð
B2

ju�j jpj � C0:

Proof. From the scaling properties of the operator Dp it follows that uþj is pj-subhar-
monic in B3. Therefore, we have that, for any w 2 C1

0ðB3Þ, with w � 0,
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ð
B3

jruþj jpj�2ruþj � rw � 0: (4.10)

Now, we consider a cutoff function g 2 C1ðB3Þ such that g � 0; g 
 0 in B3 n B2 and
g 
 1 in B1, and we take w :¼ uþj gpj in (4.10). We obtainð

B3

jruþj jpjgpj þ pj

ð
B3

jruþj jpj�2uþj gpj�1ruþj � rg � 0;

which implies, using H€older’s inequality,ð
B3

jruþj jpjgpj � pj

ð
B3

jruþj jpj�1gpj�1

 �

uþj jrgj

 �

� pj

ð
B3

jruþj jpjgpj
� 	pj�1

pj
ð
B3

juþj jpj jrgjpj
� 	 1

pj

:

This gives that ð
B3

jruþj jpjgpj � p
pj
j

ð
B3

juþj jpj jrgjpj :

Therefore, recalling the properties of g, we obtain thatð
B1

jruþj jpj �
ð
B3

jruþj jpjgpj � p
pj
j

ð
B3

juþj jpj jrgjpj � C p
pj
j

ð
B2

juþj jpj ; (4.11)

for some C> 0 independent of j.
Notice that a similar result holds if we substitute uþj with u�j in the previous compu-

tations. Namely, ð
B1

jru�j jpj � C p
pj
j

ð
B2

ju�j jpj :

Combining this and (4.11) and using (4.6), we getð
B2

juþj jpj
ð
B2

ju�j jpj �
1

C2 p
2pj
j

ð
B1

jruþj jpj
ð
B1

jru�j jpj

>
1

C2 p
pj
j

� C0;

for a suitable C0> 0 independent of j (recall that 2< pj < p0). This concludes the proof
of Lemma 4.1. w

4.3. Step 2: Higher integrability

The next result is based on Gerhing’s Lemma (see [11 p. 122] and Proposition 3.6 here)
and allows us to obtain higher integrability of ru6j and thus to justify the passage to
the limit and infer (4.8).

Lemma 4.2. Let u6j be as in (4.3). Then there exist q> 2 and C> 0 independent of j
such that
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jjru6j jjLq B1ð Þ � C:

Proof. We first claim that there exists a universal constant �C> 0 such that, for any
square Q2R � B3 (with R> 1) there holdsð

6
QR

jru6j j2
� 	12

� �C
ð
6
Q2R

jru6j j‘
� 	1‘

; (4.12)

for any fixed ‘ satisfying p02<‘< 2 (recall that p0 is the constant in (2.4)). However,
one may also take ‘ :¼ 3

2, since here it is only important to have ‘ 2 ð1; 2Þ, i.e. the lower
order norm controls the higher one.
We show (4.12) only for uþj , since the proof for u�j is analogous. We denote by

‘j :¼
2pj

2þ pj
; (4.13)

that is pj is the Sobolev exponent corresponding to ‘j. Notice that 1<‘j < p02, therefore,
if ‘> p02 then ‘> ‘j. Also, ‘j ! 1 as j ! þ1.
So we fix ‘ independent of j such that p02<‘< 2 and consider three possibilities:
Case (1): Q2R \ @fuþj ¼ 0g 6¼ Ø and cap‘ðfuþj ¼ 0g;Q2RÞ � dR2�‘, for any j, for

some d> 0 independent of j,
Case (2): Q2R \ @fuþj ¼ 0g 6¼ Ø but the capacity cap‘ðfuþj ¼ 0g;Q2RÞ is small,
Case (3): Q2R \ @fuþj ¼ 0g ¼ Ø.
Case (1): We use the fact that uþj is p-subharmonic in B3R (recall P.1 in Proposition

3.1) to deduce that, for any w 2 C1
0ðB3RÞ, with w � 0, we haveð

B3R

jruþj jpj�2ruþj � rw � 0: (4.14)

Now we take a cutoff function g 2 C1ðB3RÞ such that g � 0, g 
 1 in QR, g 
 0 out-
side Q2R and jrgj � C

R for some C> 0. Then, we choose w :¼ uþj gpj in (4.14) and we
obtain that ð

B3R

jruþj jpjgpj þ pj

ð
B3R

jruþj jpj�2uþj gpj�1ruþj � rg � 0:

After applying H€older’s inequality, this yieldsð
B3R

jruþj jpjgpj � p
pj
j

ð
B3R

juþj jpj jrgjpj :

Therefore, recalling the properties of g, we haveð
QR

jruþj jpj �
Cpj p

pj
j

Rpj

ð
Q2R

juþj jpj ;

which implies that

Rpj

Cpj p
pj
j

ð
6
QR

jruþj jpj � 22
ð
6
Q2R

juþj jpj : (4.15)
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Rescaling uþj and setting

vþj xð Þ :¼ uþj Rxð Þ; (4.16)

we observe that pj is the Sobolev exponent corresponding to ‘j, see (4.13), hence the
Sobolev embedding gives thatð

Q2

jvþj jpj
� 	1pj

� C
ð
Q2

jvþj j‘j þ jrvþj j‘j
� 	1‘j

� C
ð
Q2

jvþj j‘ þ jrvþj j‘
� 	1‘

; (4.17)

for some C> 0 (recall that ‘> ‘j). Furthermore, using the scaling properties of the
‘�capacity and applying the Poincar�e inequality (3.12), we getð

Q2

jvþj j‘
� 	1‘

� c

cap‘ vþj ¼ 0
n o

;Q2


 � !1‘
ð
Q2

jrvþj j‘
� 	1‘

� c0

ð
Q2

jrvþj j‘
� 	1‘

; (4.18)

where c0 is a positive constant independent of j.
Now, putting together (4.17) and (4.18), we obtain thatð

Q2

jvþj jpj
� 	1pj

� C 1þ c0ð Þ
ð
Q2

jrvþj j‘
� 	1‘

: (4.19)

Now we observe that, by (4.16) and by making the change of variable y¼Rx, we have
that ð

Q2

jvþj xð Þjpj dx ¼
ð
Q2

juþj Rxð Þjpj dx

¼ R�2
ð
Q2R

juþj yð Þjpj dy ¼ 22
ð
Q2R

juþj yð Þjpj dy:
(4.20)

Moreover, from (4.16) we deduce that

rvþj xð Þ ¼ R ruþj Rxð Þ;
which impliesð

Q2

jrvþj xð Þj‘ dx ¼ R‘

ð
Q2

jruþj Rxð Þj‘ dx

¼ R‘�2
ð
Q2R

jruþj yð Þj‘ dy ¼ 22 R‘

ð
Q2R

jruþj yð Þj‘:
(4.21)

Plugging (4.20) and (4.21) into (4.19), we get

22pj
ð
6
Q2R

juþj jpj
� 	1pj

� C 1þ c0ð Þ 22‘ R
ð
6
Q2R

jruþj j‘
� 	1‘

:

From this and (4.15), we obtain

R
C pj

ð
6
QR

jruþj jpj
� 	1pj

� 22pj
ð
6
Q2R

juþj jpj
� 	1pj

� C 1þ c0ð Þ 22‘ R
ð
6
Q2R

jruþj j‘
� 	1‘

;
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or equivalently ð
6
QR

jruþj jpj
� 	1pj

� C
ð
6
Q2R

jruþj j‘
� 	1‘

;

up to renaming constants.
Now, since pj > 2, for any fixed ‘ such that p02<‘< 2 we haveð

6
QR

jruþj j2
� 	12

� C
ð
6
QR

jruþj jpj
� 	1pj

� C
ð
6
Q2R

jruþj j‘
� 	1‘

;

which establishes (4.12) in the Case (1).
Case (2): Suppose that cap‘ðfuþj ¼ 0g;Q2RÞ< dR2�‘. We take the square Q3

2R
and we

consider two subcases:
Case (2a): Q3

2R
\ fuþj ¼ 0g ¼ Ø,

Case (2b): Q3
2R
\ fuþj ¼ 0g 6¼ Ø.

In Case (2a), thanks to P.1 in Proposition 3.1 we have that uþj is pj-harmonic in Q3
2R
,

and so ð
Q3
2R

jruþj jpj�2ruþj � rw ¼ 0; (4.22)

for any w 2 C1
0ðQ3

2R
Þ. Now we take a cutoff function g 2 C1ðB3Þ such that g � 0, g 
 1

in QR, g 
 0 outside Q3
2R

and jrgj � CR for some positive C. We also set

�uþ
j :¼ 3

2
R

� 	�2 ð
Q3
2R

uþj xð Þ dx:

Therefore, taking w :¼ ðuþj ��uþ
j Þg in (4.22), we obtain thatð

Q3
2R

jruþj jpj þ pj

ð
Q3
2R

jruþj jpj�2 uþj ��uþ
j


 �
gpj�1ruþj � rg ¼ 0:

So, by H€older’s inequality,ð
Q3
2R

jruþj jpjgpj � p
pj
j

ð
Q3
2R

juþj ��uþ
j jpj jrgjpj ;

which implies that ð
QR

jruþj jpj �
Cpj p

pj
j

Rpj

ð
Q3
2R

juþj ��uþ
j jpj ;

thanks to the properties of g. Thus

Rpj

Cpj p
pj
j

ð
6
QR

jruþj jpj �
3
2

� 	2 ð
6
Q3
2R

juþj ��uþ
j jpj : (4.23)

Now we rescale uþj in the following way: we set vþj ðxÞ :¼ uþj ðRxÞ and
�vþj :¼ 4

9

Ð
Q3
2

vþj ðxÞ dx. Notice that
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�vþj ¼ 2
3

� 	2 ð
Q3
2

uþj Rxð Þ dx ¼ 2
3R

� 	2 ð
Q3
2R

uþj yð Þ dy ¼ �uþ
j : (4.24)

From the Sobolev embedding and Poincar�e’s inequality we getÐ
Q3
2

jvþj � �vþj jpj

 �1pj � C

Ð
Q3
2

jvþj � �vþj j‘j þ jrvþj j‘j
� 	1‘j

� C
Ð
Q3
2

jvþj � �vþj j‘ þ jrvþj j‘
� 	1‘

� C
Ð
Q3
2

jrvþj j‘
� 	1‘

;

(4.25)

where ‘j is given by (4.13), p02<‘< 2, and the constant C> 0 may vary from line to
line but it is independent of j (recall (2.5)).
Using the change of variable y¼Rx and (4.24), we have thatð

Q3
2

jvþj xð Þ��vþj jpj dx ¼
ð
Q3
2

juþj Rxð Þ��vþj jpj dx

¼ R�2
ð
Q3
2R

juþj yð Þ��uþ
j jpj dy ¼

3
2

� 	2

x2

ð
6
Q3
2R

juþj yð Þ��uþ
j jpj dy:

Similarly, one can check thatð
Q3
2

jrvþj j‘ ¼
3
2

� 	2

R‘x2

ð
6
Q3
2R

jruþj j‘:

Inserting the last two formulas into (4.25) we obtain that

3
2

� 	2=pj ð
6
Q3
2R

juþj � �uþ
j jpj

 !1=pj

� C
3
2

� 	2=‘

R
ð
6
Q3
2R

jruþj j‘
 !1=‘

;

which, together with (4.23), implies that

Figure 1. The two subcases of Case 2b.
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ð
6
QR

jruþj jpj
� 	1pj

� C pj
3
2

� 	2‘ ð
6
Q3
2R

jruþj j‘
 !1‘

� C
ð
6
Q3
2R

jruþj j‘
 !1‘

;

up to renaming C. Notice that C is independent on j, thanks to (2.4) and the fact that
‘< 2. Thus ð

6
QR

jruþj jpj
� 	1pj

� C
ð
6
Q2R

jruþj j‘
� 	1‘

:

This, together with the fact that pj > 2, implies (4.12) for any p02<‘< 2. This finishes
Case 2a).
Now we suppose that Case (2b) holds true. Since the ‘-capacity of fuþj ¼ 0g in Q2R

is small relative to R2�‘, it cannot happen that Q3
2R
� fuþj ¼ 0g, otherwise we would

have a uniform bound from below for the capacity (see e.g. [16] or the estimate (3.11)).
Therefore, there exists a point q 2 @fuþj > 0g \ Q3

2R
. Let Cþ

j :¼ @fuþj > 0g and K �
fuþj ¼ 0g be the component of fuþj ¼ 0g such that q 2 @K.
Suppose first that K is the unique component of fuþj ¼ 0g such that K \ Q3

2R
6¼ Ø.

Since u is a minimizer, then it is log-Lipschitz continuous, see Proposition P.3 in 3.1,
therefore uj is continuous. Hence,
Case (2b1):either @K \ @Q2R 6¼ Ø, see Figure 1A,
Case (2b2):or @K�Q2R, see Figure 1B.
In Case (2b1), that is when @K \ @Q2R 6¼ Ø, we have that

H1 @ uþj ¼ 0
n o

\ Q2R n Q3
2R


 �� 	
� R

8
; (4.26)

since uj is a continuous functions. Indeed, let n1 and n2 be the intersection points of @K
with @Q3

2R
and @Q2R, respectively, and let K0 be the orthogonal projection of s :¼

@K \ ðQ2R n Q3
2R
Þ on the line joining n1 and n2. We consider a covering of s, namely

s � [i2IBiðxiÞ, such that diamBi(xi)< e for every i 2 I. Hence, denoting by �xi; i 2 I, the
projection of xi on the line that joins n1 and n2, we find a covering for K0, that is
K0 � [i2IBið�xiÞ, with diamBi(�xi)< e. Consequently,

H1
e sð Þ � H1

e K0ð Þ ¼ inf
X
i2I

diamBi �xið Þ � R
8
; (4.27)

where the infimum is taken over all the coverings of K0 such that diamBi(�xi)< e.
Hence, sending e to zero we obtain (4.26).
We notice that (4.26) gives a lower bound of the capacity, thanks to (3.10), and so

we conclude as in Case 1).
In Case (2b2), that is when @K�Q2R, we recall Section 3.2 in order to conclude that

the free boundary is given just by @fu> 0g.
That said, we observe that if uj � 0 in K and uj � 0 outside, then actually uj 
 0

inside K, since uj¼ 0 on @K and it is pj-subharmonic inside. Thus

uj � 0 in Q3
2R
: (4.28)
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Thus, we can consider the pure one-phase minimization problem (3.7) in Q3
2R

(recall
that K> 0).
Now, if Q3

4R
is contained in the set K, then we have a uniform lower bound for the

capacity, and so we conclude as in Case 1).
Hence we suppose that Q3

4R
is not contained in K, and we take a small square cen-

tered at q, say QR
8
ðqÞ, such that QR

8
ðqÞ � Q3

4R
(see Figure 1B).

Now, recalling (4.28), we have that we can deal with a one-phase problem in the
square QR

8
ðqÞ. Since u is continuous then we have, as in the proof of (4.27), that

H1 uþj ¼ 0
n o

\ Q3
8R

qð Þ

 �

� 3R
4
;

see Figure 1B. Again this implies a lower bound for the capacity, thanks to (3.10), and
so we conclude as in Case (1).
Suppose now that there is another component K2 � fuþj ¼ 0g such that K2 \ Q3

2R
6¼

Ø (that is uj may change sign). Then, as before, either @K2 \ @Q2R 6¼ Ø or @K�Q2R. In
the first case, we obtain a lower bound for the capacity reasoning as in Case (2b1). In
the second case, we use again the maximum principle to reduce the argument to a one-
phase minimization problem and, from the density estimate for the zero set, we get a
lower bound for the capacity.
Case (3): Finally we deal with the last case, which is the easiest one. In fact, the proof

follows as in Case (2a) if we replace there Q3R
2
with Q2R.

Thus, since pj > 2, for any p02<‘< 2 we obtain the claim in (4.12) also for squares
that do not touch @fuþj ¼ 0g.
Combining all the cases treated above, we can see that for any square Q2R � B3 and

some fixed ‘ with p02<‘< 2 there exists a tame constant C> 0 such that there holdsð
6
QR

jruþj j2
� 	12

� C
ð
6
Q2R

jruþj j‘
� 	1‘

:

Therefore we can apply Gehring’s Lemma (see Proposition 3.6, and for instance [11]
for the proof) and we get that there exists q> 2 such that

jjruþj jjLq QRð Þ � C;

for a suitable C> 0. By a covering argument, this implies the desired result. w

From the uniform estimates in W1;q
loc ðB3Þ, with q> 2, and the Sobolev’s embedding

Theorem we immediately get the following:

Corollary 4.3. The functions u6j are uniformly continuous in B2.

4.4. Step 3: Linearity in B3 n B1

Thanks to Lemma 4.2 and a standard compactness argument, we conclude that

ru6j converges strongly in Lq0 B1ð Þ; for any q0 < q; with q> 2; to some ru60 :

(4.29)

Moreover, Lemma 4.1 implies that both uþ0 and u�j are non-degenerate. Therefore,
since pj ! 2 as j ! þ1, from (4.5) we deduce that
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liminf
j!1

upj 1; uj; 0ð Þ � liminf
j!1

upj 3; uj; 0ð Þ

¼ liminf
j!1

3�4
ð
B3

jruþj jpj
ð
B3

jru�j jpj

� 3�4
ð
B3

jruþ0 j2
ð
B3

jru�0 j2 
 u2 3; u0; 0ð Þ;
(4.30)

where the last line follows from the semicontinuity of the Dirichlet’s integral.
On the other hand, (4.29) implies strong convergence of the gradient in L2ðB1Þ, since

q> 2 in Lemma 4.2. Therefore

liminf
j!1

upj 1; uj; 0ð Þ ¼ liminf
j!þ1

ð
B1

jruþj jpj
ð
B1

jru�j jpj ¼
ð
B1

jruþ0 j2
ð
B1

jru�0 j2:

Hence,

u2 3; u0; 0ð Þ �
ð
B1

jruþ0 j2
ð
B1

jru�0 j2 ¼ u2 1; u0; 0ð Þ: (4.31)

Now, we observe that uþ0 and u�0 are non-negative subharmonic functions with dis-
joint supports fulfilling the conditions of Theorem 3.5, and so the monotonicity of u2

implies that

u2 1; u0; 0ð Þ � u2 3; u0; 0ð Þ:
This and (4.31) give that u2 is constant in B3 n B1. Thus, Theorem 3.5 yields that uþ0
and u�0 must be linear in B3 n B1, say, uþ0 ¼ axþ1 and u�0 ¼ bx�1 , for some a and b> 0.

4.5. Step 4: Filling in the gap

In this subsection, we want to show that uþ0 and u�0 are linear in B3, and this will give a
contradiction with (4.9). For this, we will prove that either uþ0 in fu0 > 0g or u�0 in
fu0 < 0g is harmonic, in order to employ some unique continuation result.
Let us show that

uþ0 is harmonic in u0 > 0f g (4.32)

(the proof for u�0 is analogous). We take a point x0 2 X such that u0ðx0Þ> 0, then,
thanks to the uniform convergence of uj to u0 (see Corollary 4.3), we have that
ujðx0Þ> 0 for j large enough. Therefore, Corollary 4.3 implies that there exists a small
d ¼ dðx0Þ> 0 such that uj > 0 in Bdðx0Þ, and so we can use P.1 in Proposition 3.1 to
obtain that

Dpjuj ¼ 0 in Bd x0ð Þ:
Therefore, for any w 2 C1

0 ðBdðx0ÞÞ, we have thatð
Bd x0ð Þ

jrujjpj �
ð
Bd x0ð Þ

jruj þrwjpj :

Taking the limit as j ! þ1 we have that
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ð
Bd x0ð Þ

jru0j2 �
ð
Bd x0ð Þ

jru0 þrwj2; for any w 2 C1
0 Bd x0ð Þ� �

(4.33)

(recall that u is fixed and that we have strong convergence of ruj to ru0 in L2locðB3Þ).
By a density argument, from (4.33) we getð

Bd x0ð Þ
jru0j2 �

ð
Bd x0ð Þ

jrvj2; for any v 2 W1;2 Bd x0ð Þ� �
s:t: v�u0 2 W1;2 Bd x0ð Þ� �

:

Thus, we conclude that

Du0 ¼ 0 in Bd x0ð Þ:
Since u0 is a continuous function, this implies (4.32).
From Step 3 and (4.32), and applying the Unique Continuation Theorem (see [17]),

we obtain that

uþ0 and u�0 are linear in B3: (4.34)

On the other hand, the uniform convergence of uj to u0, as j ! þ1, implies that
(4.9) holds true, and so the level sets of u0 are not flat in B1. Indeed, by the uniform
convergence, for any e> 0 there is j0 such that jCx1�uþj ðxÞj< e whenever j> j0, where
we assume that uþ0 ðxÞ ¼ Cx1 for some constant C> 0. Since @fuj > 0g is h0 thick in B1
it follows that there is yj 2 @fuj > 0g \ B1 such that yj ¼ e1h02þ tje2, for some tj 2 R,
where e1 is the unit direction of the x1-axis and e2?e1. Then we have that jC h0

2 � 0j ¼
juþ0 ðyjÞ� uþj ðyjÞj< e which is in contradiction with (4.34), and thus concludes the proof
of Theorem 2.1.

5. Proof of Theorem 2.3

In this section we prove Theorem 2.3. For this, we recall Corollary 3.4 and we square
(3.6): we have

1
r

ð
6
Br x0ð Þ

uþ
 !2

þ 1
r

ð
6
Br x0ð Þ

u�
 !2

� C2 þ 2
r2

ð
6
Br x0ð Þ

uþ
ð
6
Br x0ð Þ

u�; (5.1)

where C> 0 is the constant appearing in Corollary 3.4.
Now we set u6r ðxÞ :¼ u6ðrxÞ. So from the H€older inequality, the Poincar�e inequality

(3.12) and (3.10), we have that, for any 1<‘< 2,ð
6
Br x0ð Þ

u6 xð Þ dx �
ð
6
Br x0ð Þ

u6ð Þ‘ xð Þ dx

 !1
‘

¼
ð
6
B1 x0ð Þ

u6r
� �‘

yð Þ dy

 !1
‘

� C1

ð
6
B1 x0ð Þ

jru6r yð Þj‘ dy

 !1
‘

¼ C1 r‘
ð
6
Br x0ð Þ

jru6j‘
 !1

‘

¼ C1 r
ð
6
Br x0ð Þ

jru6j‘
 !1

‘

;
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for some C1 > 0. However, from H€older’s inequality we have for p> 2>‘> 1ð
6
Br x0ð Þ

jru6j‘
 !1

‘

�
ð
6
Br x0ð Þ

jru6jp
 !1

p

:

Therefore

1
r

ð
6
Br x0ð Þ

uþ
 !2

þ 1
r

ð
6
Br x0ð Þ

u�
 !2

� C2 þ C2 up r; u; x0ð Þ� �1
p;

for some C2 > 0.
Let now rk :¼ 3�k0�k, for any k 2 N, where k0 is the smallest positive integer such

that 3�k0 < r0. If 3�m�1 � r � 3�m, for some m 2 N, then

up r; u; x0ð Þ � C3up 3�m; u; x0ð Þ � C3up 3�k0 ; u; x0
� �

for some C3 > 0, implying that

1
r

ð
6
Br x0ð Þ

u6
 !2

� C2 þ C4 up 3�k0 ; u; x0
� �
 �1

p
;

for suitable C4 > 0. Hence, P.4 in Proposition 3.1 and the weak maximum principle (see
Corollary 3.10 in [18]) imply the estimate supBrðx0Þ juj � Cr. This completes the proof of
Theorem 2.3.

6. Viscosity solutions

In order to apply the regularity theory for free boundary problems developed for the
viscosity solutions in [7, 8] we shall observe that any weak W1;p minimizer is also vis-
cosity solution (see Definition 2.4 in [4] for the case p¼ 2). For this, we denote by
XþðuÞ :¼ fu> 0g and X�ðuÞ :¼ fu< 0g. Moreover,

G uþ� ; u
�
�

� �
:¼ uþ�
� �p� u��ð Þp� K

p� 1

is the flux balance across the free boundary, where uþ� and u�� are the normal deriva-
tives in the inward direction to XþðuÞ and X�ðuÞ, respectively (recall that K ¼ kpþ�kp�).
We recall the definition of viscosity solutions for the case p 6¼ 2 (see Definition 4.1

in [9]).

Definition 6.1. Let X a bounded domain in R
2 and let u be a continuous function in

X. We say that u is a viscosity solution in X if

i. Dpu ¼ 0 in XþðuÞ and X�ðuÞ,
ii. along the free boundary C ¼ @fu> 0g [ @fu< 0g, u satisfies the free boundary

condition, in the sense that:
a. if at x0 2 C there exists a ball B � XþðuÞ such that B \ C ¼ fx0g and

uþ xð Þ � ahx�x0; �iþ þ o jx�x0jð Þ; for x 2 B; (6.1)

u� xð Þ � bhx�x0; �i� þ o jx�x0jð Þ; for x 2 Bc; (6.2)

1094 S. DIPIERRO AND A. L. KARAKHANYAN



for some a> 0 and b � 0, with equality along every non-tangential domain, then
the free boundary condition is satisfied

G a; bð Þ � 0;

b. if at x0 2 C there exists a ball B � X�ðuÞ such that B \ C ¼ fx0g and

u� xð Þ � bhx�x0; �i� þ o jx�x0jð Þ; for x 2 B;
uþ xð Þ � ahx�x0; �iþ þ o jx�x0jð Þ; for x 2 @B;

for some a � 0 and b> 0, with equality along every non-tangential domain, then

G a; bð Þ � 0:

With this notion of viscosity solutions, in [9] we prove the following:

Theorem 6.2. Let u 2 W1;pðXÞ be a minimizer of (1.1). Then, u is also a viscosity solu-
tion in the sense of Definition 6.1.
See Theorem 4.2 in [9] for the proof of Theorem 6.2.

We also recall the notion of ��monotonicity of a viscosity solution to our free
boundary problem.

Definition 6.3. We say that u is e-monotone if there are a unit vector e and an angle
h0 with h0 > p

4 (say) and e> 0 (small) such that, for every e0 � e,

sup
Be0 sin h0 xð Þ

u y�e0e
� � � u xð Þ: (6.3)

We define Cðh0; eÞ the cone with axis e and opening h0.

Definition 6.4. We say that u is e-monotone in the cone Cðh0; �Þ if it is e-monotone in
any direction s 2 Cðh0; eÞ.
One can interpret the ��monotonicity of u as closeness of the free boundary to a

Lipschitz graph with Lipschitz constant sufficiently close to 1 if we depart from the free
boundary in directions e at distance � and higher. The exact value of the Lipschitz con-
stant is given by ðtan h0

2 Þ�1. Then the ellipticity propagates to the free boundary via
Harnack’s inequality giving that C is Lipschitz. Furthermore, Lipschitz free boundaries
are, in fact, C1;a regular.
For p¼ 2 this theory was founded by L. Caffarelli, see [19–21]. Recently J. Lewis and

K. Nystr€om proved that this theory is valid for all p> 1, see [7, 8].
For viscosity solutions we replace the e-monotonicity with slab flatness measuring the

thickness of @fu> 0g \ BrðxÞ in terms of the quantity h(x, r) introduced in (2.3). In
other words, h(x, r) measures how close the free boundary is to a pair of parallel planes
in a ball BrðxÞ with x 2 C: Clearly, planes are Lipschitz graphs in the direction of the
normal, therefore the slab flatness of C is a particular case of ��monotonicity of u.

Hence, under h0�flatness of the free boundary we can reformulate the regularity the-
ory “flatness implies C1;a” as follows, see [7, 8]:
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Theorem 6.5. Let x0 2 @fu> 0g and r> 0 such that Brðx0Þ � X. Then there exists h> 0
such that if C \ Brðx0Þ � fx 2 R

N : �hr< ðx� x0Þ � � < hrg then C \ Br2ðx0Þ is locally
C1;a in the direction of �, for some a 2 ð0; 1Þ.

7. Geometry of eigenvalues

Here we present some results that are related to the characteristic numbers and the
eigenvalues of the p-Laplace-Beltrami operator for p 6¼ 2.

7.1. Homogeneous p-harmonic functions in complementary cones

Let us consider

up R; u1; u2; 0ð Þ :¼ 1
R4

ð
BR

jru1jp
ð
BR

jru2jp;

for given ui ¼ rki giðhÞ, with i¼ 1, 2 such that u1, u2 are p-harmonic in two complemen-
tary cones. Here r; h are the polar coordinates. We will show an estimate on the eigen-
values k1 and k2 of the p-Laplace-Beltrami operator, namely we prove thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 k1 p�1ð Þ þ 2�p
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 k2 p�1ð Þ þ 2�p
� �q

� 2; (7.1)

with equality if and only if both functions are linear
In turn, this implies that upðR; u1; u2; 0Þ is non-decreasing in R. Furthermore,

upðR; u1; u2; 0Þ is constant if and only if k1 ¼ k2 ¼ 1.

7.2. Properties of eigenvalues

In this section, we prove a relation between the eigenvalues of the p-Laplace-Beltrami
operator that correspond to two complementary cones. We begin with an existence
result of P. Tolksdorf [22, p. 780, Theorem 2.1.1, Corollary 2.1].

Theorem 7.1. Let S :¼ ð0;xÞ, with x 2 ½0; 2p	. Then there exists a solution ðk;uðhÞÞ,
with h 2 S of

� d
dh

k2u2 þ u2
h

� �p�2
2 uh

n o
¼ k k p�1ð Þ þ 2�p
� �

k2u2 þ u2
h

� �p�2
2 uinS;

u hð Þ ¼ 0 on @S;

8<: (7.2)

such that

k>max 0;
p�2
p� 1

� 

;u> 0 in S;

and u2 þ u2
h > 0 in S:

Furthermore any two solutions are constant multiples of each other.
M. Dobrowolski computed explicitly the value of k in (7.2), see [23 p. 187],

Theorem 1:
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Theorem 7.2. Let u be given by Theorem 7.1. Then

k ¼

sþ
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

q

r
; x � p;

s�
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

q

r
; p � x< 2p;

p�1
p

; x ¼ 2p;

8>>>>>>><>>>>>>>:
(7.3)

where

q :¼ x
p
� 1

� 	2

�1; (7.4)

and s :¼ q�1ð Þp�2q
2q p� 1ð Þ ¼ p�2

2 p� 1ð Þ þ
p

2 p� 1ð Þ � 1
q

� �
: (7.5)

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Without loss of generality we may assume that x � p. Next let us
notice that the eigenvalue k is determined by the size of the arc only. Hence for S2 we
have by (7.4)

q2 ¼
2p�x
p

� 1

� 	2

�1 ¼ 1� x
p

� 	2

�1:

Thus, q1 ¼ q2 ¼ q and from (7.5) we infer that s1 ¼ s2 ¼ s. In order to prove (2.7) it
is enough to check that

I þ 2
ffiffiffiffi
II

p � 4;
where I :¼ k1 k1 p�1ð Þ þ 2�p

� �þ k2 k2 p�1ð Þ þ 2�p
� �

and II :¼ k1k2 k1 p�1ð Þ þ 2�p
� �

k2 p�1ð Þ þ 2�p
� �

:
(7.6)

In order to prove this, we notice that, by (7.3),

k1 þ k2 ¼ 2s

k1k2 ¼ � 1
q

k21 þ k22 ¼ 4s2 þ 2
q

8>>>><>>>>:
which gives

I ¼ k21 þ k22
� �

p�1ð Þ þ 2�pð Þ k1 þ k2ð Þ ¼ p�1ð Þ 4s2 þ 2
q

� 	
þ 2s 2�pð Þ: (7.7)

For convenience we introduce a new quantity

t :¼ � 1
q
¼ 1

1� x
p � 1
� �2 � 1 (7.8)

and notice that, by (7.4), we have that t � 1 and, by (7.5), one has
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s ¼ 1
2 p� 1ð Þ p�2þ ptð Þ: (7.9)

Hence (7.7) can be manipulated further in the following way:

I ¼ 2 p� 1ð Þ 2s2 þ 1
q

� 	
þ s 2� pð Þ

� �
¼ 2 s 2s p� 1ð Þ þ 2� pð Þ� �þ p� 1ð Þ 1

q

� �
¼ 2 s p� 2þ ptð Þ þ 2� pð Þ� �þ p� 1ð Þ 1

q

� �
¼ 2 spt � t p� 1ð Þ½ 	
¼ 2t sp� p�1ð Þ½ 	:

Similarly, using (7.3) and (7.9) we get

II ¼ k1k2 k1 p�1ð Þ þ 2�p
� �

k2 p�1ð Þ þ 2�p
� �

¼ � 1
q

k1k2 p�1ð Þ2 þ p� 1ð Þ 2� pð Þ k1 þ k2ð Þ þ 2�pð Þ2
� �

¼ � 1
q

� 1
q

p�1ð Þ2 þ 2s p� 1ð Þ 2� pð Þ þ 2�pð Þ2
� �

¼ t t p�1ð Þ2 þ 2s p� 1ð Þ 2� pð Þ þ p�2ð Þ2
� �

¼ t t p�1ð Þ2 þ p� 2þ ptð Þ 2� pð Þ þ 2�pð Þ2
� �

¼ t t p�1ð Þ2 þ pt 2� pð Þ
� �

¼ t2:

Thus, putting together the last two formulas,

I þ 2
ffiffiffiffi
II

p ¼ 2t sp� p� 1ð Þ½ 	 þ 2t
¼ 2t sp� p� 1ð Þ þ 1½ 	
¼ 2t

p
2 p� 1ð Þ p� 2þ ptð Þ � p� 1ð Þ þ 1
� �

¼ t
p� 1

p p� 2þ ptð Þ � 2 p� 1ð Þ p� 2ð Þ½ 	

¼ t
p� 1

p2 � 2pþ p2t � 2p2 þ 6p� 4
� �

	

¼ t
p� 1

p2 t � 1ð Þ þ 4 p� 1ð Þ
� �

¼ 4t þ p2

p� 1
t t � 1ð Þ � 4 (7.10)

since t � 1 (see (7.8)), which implies (7.6) and finishes the proof of Theorem 2.4. w
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7.3. Computing the logarithmic derivative

In what follows, fixed u1 and u2, we put uðRÞ :¼ upðR; u1; u2; 0Þ. In order to prove that
u is non-decreasing in R, it is enough to prove that u0ðRÞ � 0 for R¼ 1, since u is
scale-invariant. For this, let Ji :¼

Ð
BR
jruijp. Then we have

logu Rð Þ� �0 ¼ u0 Rð Þ
u Rð Þ ¼ J01 Rð Þ

J1 Rð Þ þ
J02 Rð Þ
J2 Rð Þ�

4
R

¼
Ð
@BR

jru1jpÐ
BR
jru1jp

þ
Ð
@BR

jru2jpÐ
BR
jru2jp

� 4
R

¼ 1
R

R
Ð
@BR

jru1jpÐ
BR
jru1jp

þ R
Ð
@BR

jru2jpÐ
BR
jru2jp

� 4

 !
:

(7.11)

Next, we notice thatð
B1

jruijp ¼
ð
@B1

jruijp�2ui
@ui
@�

�
ð
@B1

jruijp�2u2i

ð
@B1

jruijp�2u2i;rad

� �1
2

; i ¼ 1; 2;
(7.12)

where ui;� ¼ ui;rad is the radial derivative (in direction of the outer unit normal � of
unit circle).
Next decomposing jruij2 into the sum of the squares of the radial and tangential

derivative, ui;h, we obtainð
@B1

jruijp ¼
ð
@B1

jruijp�2 u2i;rad þ u2i;h

 �

�

� 2
ð
@B1

jruijp�2u2i;rad

ð
@B1

jruijp�2u2i;h

� �1
2

:

(7.13)

Hence to prove that u is monotone, it is enough to check thatÐ
S1
jru1jp�2u21;hÐ

S1
jru1jp�2u21

24 351
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H u1ð Þ

þ
Ð
S2
jru2jp�2u22;hÐ

S2
jru2jp�2u22

24 351
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H u2ð Þ

�2 � 0:

Here, Si :¼ suppui \ @B1. For the solutions ðki;uiÞ of the eigenvalue problem on Si
stated in Theorem 7.1 and (2.7) we infer that Hðu1Þ þ Hðu2Þ � 2, thanks to (2.7).
Recalling the notation in (7.6) and observing that in (7.10) the equality I þ 2

ffiffiffiffi
II

p ¼ 4
holds if and only if ðt�1Þð4þ tp2

p�1Þ ¼ 0, we conclude that t¼ 1. On the other hand, the
equality holds in (2.7) if and only if t¼ 1, i.e. by (7.8) when q ¼ �1, and hence, in view
of (7.4), when x ¼ p, which corresponds to the half circle. This implies that u is non-
decreasing, and in turn shows (7.1).
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