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ABSTRACT 

THREE ESSAYS ON INDIVIDUAL CURRENCY TRADERS 

Boris Sebastian Abbey 

Old Dominion University, 2011 

Director: Dr. John A. Doukas 

This dissertation examines the performance, skill and trading characteristics of 

individual currency traders by examining daily returns and transaction data for 428 

individual currency traders from 2005 to 2009. Additionally, we examine whether 

technical trading strategies are profitable for individual currency traders. 

The first essay examines the performance and trading characteristics of individual 

currency traders. Examination of daily returns for 428 accounts from March 2004 to 

September 2009 shows traders are able to earn positive excess returns, even after 

accounting for transaction costs. Additionally, the results reveal that day traders not only 

trade more frequently than non-day traders, but also outperform them based on raw, 

passive benchmarks and on a risk-adjusted return basis. Furthermore, sorts on trade 

activity, measured as the mean number of trades per day per account, and account 

turnover, show a positive association between performance and trade activity. 

Robustness checks of gross performance and trade activity, proxied by mean number of 

trades per day, are similar when analyzing a second data set that consists of 74 accounts 

from July 2010 to August 2011. Consistent with the prediction of the calibration theory 

the results also show that the more traders trade, the more feedback they receive, which, 

in turn, decreases their overconfidence and increases performance. 



The second essay examines whether individual currency traders are skilled. 

Unlike previous studies that examine the predictability of R2 for professional investors, 

who actively manage their portfolios and do not follow benchmarks, and find that R can 

predict future performance, this study reveals just the opposite: R does not predict future 

performance for individual currency traders. Despite the lack of predictive power of R , 

we report that individual currency traders are skilled. The R measure lacks predictive 

power because R is not persistent, which is because individual currency traders change 

their trading styles over time, while earning positive and persistent alphas. Our analysis 

of trade activity, drawdown, and market timing provides additional support that 

individual currency traders possess trading skills. Top traders also have the ability to 

mitigate downside losses, and a sizable percentage of them can time currency market 

factors. We find that 68.78 percent of trades executed by the top traders are profitable net 

of transaction costs, and profits do not arise from chance. 

The third essay investigates whether technical currency trading is profitable. The 

results show that the use of technical analysis by individual currency traders is negatively 

associated with performance. Further, the technical trading model developed here 

adequately describes the cross-section of returns for individual currency traders. This 

result arises because individual currency traders use well-known technical indicators to 

trade currencies. This implies that such currency traders suffer from reduced 

performance. 



This dissertation is dedicated to my grandmother for instilling in me that hard work can 

overcome a lack of talent. 
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CHAPTER I 

INTRODUCTION 

In recent years trading volume of foreign exchange has increased significantly 

and it is believed the retail spot foreign exchange market is the fastest growing segment 

of retail trading (Luke, 2005). The growth of this market has raised awareness of 

currencies as an investment class amongst professional hedge funds and individual 

investors (Luke, 205; Pojarliev and Levich, 2008). Conventional theories hold that 

currency markets are efficient and the alpha generating abilities of currency traders 

should arise due to pure luck (Meese and Rogoff, 1983; Rogoff, 2002). However, many 

studies have revealed that technical trading strategies can generate positive abnormal 

returns in the currency markets (Sweeny, 1986; Schulmeister, 1988; Levich and Thomas, 

1993; Menkhoff and Schlumberger, 1995; Neely, Weller, and Dittmar, 1997; Chang and 

Osier, 1999; Gencay, 1999; Gencay, Dacarogna, Olsen, and Pictet, 2003; Neely and 

Weller, 2003). Other studies analyzing the returns of professional currency traders 

demonstrate that some professional currency managers have alpha generating abilities 

(Pojarliev and Levich, 2008). Collectively, these studies imply that currency markets are 

not efficient and some currency managers possess skill. 

Despite the studies that have shown technical trading rules and professional 

currency managers can earn positive abnormal returns not one study has examined the 

performance and trading characteristics of individual currency traders. Studies that have 

examined individual equity traders have shown that individual investors cannot beat the 

market. Poor performance arises because individual investors are overconfident and 
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trade excessively (Odean, 1999; Barber and Odean, 2000). On the other hand, studies 

examining high-frequency traders have shown that these traders possess skill and are able 

to generate positive returns (by Jordan and Diltz, 2003; Garvey and Murphy, 2005). One 

possible explanation for the superior performance of day traders is that high-frequency 

traders are continually receiving feedback on their performance and this influences their 

trading behavior (Russo and Shoemaker 1992; Skata, 2008). Feedback trading posits that 

if day traders do well they will increase their trading and thus earn greater profits. 

The major innovation of this dissertation is that it allows us to investigate the skill 

and trading characteristics of individual currency traders by examining transaction data 

and daily return data for 428 individual currency trader accounts from 2004 to 2009. Our 

unique database contains both high-frequency and short-term traders so it allows us to 

examine the differences in performance between each group to determine whether 

feedback is positively associated with performance and whether individual currency 

traders are able to generate positive abnormal returns. 

In addition to analyzing the performance of individual currency traders we also 

investigate the source of their skill by extending studies of professional equity and 

currency managers. Studies of professional fund managers report that actively managed 

mutual and hedge funds earn superior abnormal returns over funds that closely track 

benchmarks (Pojarliev and Levich, 2008; Titman and Tiu, 2008; Sun, Wang, and Zheng, 

2009; Amihud and Goyenko, 2010). Furthermore, professional currency managers have 

the ability to time the currency markets and performance is positively associated with 

loss mitigation, proxied by drawdown (Melvin and Shand, 2011). Once again a 
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shortcoming of this literature stream is that not one study has examined individual 

currency trader active management prowess, timing skills, or loss mitigation abilities. 

In summary, an investigation of individual currency trader trading abilities and 

trading characteristics will provide a rich insight as to why the retail spot industry is 

experiencing exponential growth and whether individual investors should add currencies 

to their investment portfolio. 
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CHAPTER 2 

DO INDIVIDUAL CURRENCY TRADERS MAKE MONEY? 

2.1 INTRODUCTION 

Foreign exchange as an investment class for individual investors has grown 

rapidly over the past decade, as currency instruments once available only to large 

financial institutions have become widely available to individuals. However, government 

regulators are greatly concerned that individual currency traders have been losing 

significant amounts of money (Commodities Futures Trading Commission, 2010). This 

concern arises because leverage at some currency brokers is as high as 400:1. Such 

leverage creates an environment where investors can gain, and lose, significant amounts 

of capital. 

No empirical studies, however, have analyzed the performance of individual 

currency traders. The primary objective of this paper is to examine the performance of 

these traders. Previous research reveals that currency returns are unpredictable, 

supporting the efficient market theory (Meese and Rogoff, 1983; Rogoff, 2002), which 

states that the expected returns of individual currency traders should be zero. Other 

studies, however, show that simple technical trading strategies applied to currency 

markets can result in abnormal returns and imply currency markets are not efficient 

(Sweeny, 1986; Schulmeister, 1988; Levich and Thomas, 1993; Menkhoff and 

Schlumberger, 1995; Neely, Weller, and Dittmar, 1997; Chang and Osier, 1999; Gencay, 

1999; Gencay, Dacarogna, Olsen, and Pictet, 2003; Neely and Weller, 2003). 
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Although many studies examine the profitability of currency trading strategies, 

few study the returns of currency traders. Pojarliev and Levich (2008) examine the 

performance of currency hedge funds and find that such funds, on average, are unable to 

earn positive alpha, although approximately 24 percent of the currency managers have 

alpha generating skill, which suggests they are able to exploit market inefficiencies. It is 

unknown whether individual currency traders, however, are able to earn positive returns. 

This paper addresses this issue by examining two data sets, one which contains 

transaction data, net daily returns and gross daily returns, and a second data set that 

contains mean gross daily returns. We analyze the first data set by using three 

performance metrics: raw returns, a passive benchmark model, and alpha from the four-

factor currency model of Pojarliev and Levich (2008). We perform robustness checks of 

gross performance with the second data set. 

In addition, this paper analyzes the trading characteristics of high-frequency 

currency traders. The theoretical stream of behavioral finance reveals that individual 

equity investors tend to be overconfident, which can lead to excessive trading and 

underperformance (Odean, 1999; Barber and Odean, 2000, Barber, Lee, Liu, and Odean, 

2004; Barber, Lee, Liu, and Odean, 2006). On the other hand, studies by Jordan and 

Diltz (2003) and Garvey and Murphy (2005) examine the performance of high-frequency 

equity traders and show that investors can earn profits despite trading frequently. 

This study's second major contribution is to show that high-frequency traders can 

earn positive excess returns. To investigate this issue we examine the performance of 

high-frequency currency traders (day traders) and non-day traders. We also examine 

trade activity proxied by the mean number of roundtrips per day and account turnover 
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and their association with performance. This approach is taken because the 

psychological literature reveals that overconfidence can increase or decrease over time, 

based upon the level of feedback received (Russo and Shoemaker, 1992; Skata, 2008). 

Feedback can decrease overconfidence and thus increase one's ability to determine 

probabilistic outcomes (Russo and Shoemaker 1992; Skata, 2008). 

The results in this paper differ from those of studies examining buy-and-hold 

equity investors, because high-frequency traders, unlike buy-and hold traders, receive 

daily feedback on the profitability of numerous trades, which, in turn, increases their 

degree of calibration. Buy-and-hold investors may not receive feedback on their trades 

for weeks or months, thus keeping their overconfidence high for long periods. For high-

frequency traders, constant feedback can decrease the level of overconfidence and thus 

increase their level of calibration, implying a positive association between trading activity 

and performance. 

Our analysis reveals that the average trader is able to earn positive and 

statistically significant net and gross returns when using raw returns and a passive 

benchmark model. Alpha returns from the four-factor currency model are also positive 

and significant for gross returns, but net returns are statistically insignificant. 

Furthermore, analysis of a second data set, which consists of gross returns, yields similar 

results. Overall, our results show that some individual currency traders realize abnormal 

returns, even when accounting for transaction costs. 

Our analysis of trading characteristics supports the contention that the currency 

traders analyzed are well-calibrated individuals, but any resulting benefit is eroded by 

transaction costs. More specifically, day traders outperform non-day traders on a gross 
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return basis, but the difference in net performance is insignificant. Additionally, sorting 

on trading activity proxied by the mean number of roundtrip transactions per account per 

day and on turnover also supports the calibration hypothesis. Finally, our analysis of a 

second data set yields similar results when examining trade activity, proxied by the mean 

number of trades per day, which provides additional support for calibration theory. 

This paper contributes to the individual investor performance debate by revealing 

that not all traders are overconfident to the point where they reduce their performance: 

Some are well calibrated, which permits them to increase their trading activity, in turn 

increasing their performance on a gross basis. Approximately 25 percent of traders in 

this sample earn positive alphas, revealing that currency trading can still be profitable for 

some individuals, even after accounting for transaction costs. 

The remainder of this essay is organized as follows. Section 2.2 provides a brief 

overview of the related literature and hypothesis development. Section 2.3 discusses the 

methodology, and Section 2.4 reports the empirical results. Section 2.5 presents a brief 

summary and concluding remarks. 

2.2 HYPOTHESIS DEVELOPMENT 

This essay applies two theoretical frameworks: efficient market theory, to 

examine performance, and the behavioral finance theory of overconfidence and 

calibration, to investigate trading characteristics. 

2.2.1 Efficient Market Theory and Technical Currency Trading Strategies 

Currency markets are generally believed to be efficient, although many studies 

have shown otherwise. For example, Meese and Rogoff (1983) examine currency returns 
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and discover that random walk models outperform forecasting models, and a follow-up 

study by Rogoff (2002) provides similar arguments, revealing unpredictable currency 

returns and zero expected returns. Other authors refute the efficiency of currency 

markets by demonstrating the profitability of trend-following models (Sweeny, 1986; 

Levich and Thomas, 1993; Neely, Weller, and Dittmar, 1997). Furthermore, studies 

examining the use of daily data (Schulmeister, 1988; Menkhoff and Schlumberger, 1995; 

Chang and Osier, 1999; Gencay, 1999; Neely and Weller, 2003), as well as intraday data 

(Gencay, Dacarogna, Olsen, and Pictet, 2003) reveal that currency trading strategies 

remain profitable. Among the few studies that examine the performance of currency 

traders, Pojarliev and Levich (2008) investigate the returns of currency hedge funds and 

find that approximately 24 percent of individual currency managers earned positive alpha 

between 2001 and 2006, implying that currency markets may not be fully efficient and 

that some currency managers are more skilled than others at exploiting market 

inefficiencies. 

In summary, since profitable currency trading strategies reveal the inefficiency of 

currency markets, currency traders generating positive excess returns would imply the 

currency markets are not fully efficient. Conversely, if the currency markets are efficient, 

the returns of the individual currency traders analyzed should not be able to forecast 

future returns or generate abnormal returns. To investigate this issue, we examine both 

gross and net returns, using three performance measures: raw returns, a passive 

benchmark model proxied by the DBCR, and alpha from the four-factor currency model 

of Pojarliev and Levich (2008). 
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2.2.2. Overconfidence, Calibration, and Individual Investor Performance 

A review of the financial literature reveals that most individual investors trade to 

their detriment. Studies examining buy-and-hold equity investors reveal a negative 

association between overconfidence, proxied by trading activity, and performance. 

Odean (1999) examines performance for a comprehensive data set of individual 

investors: As they gain profits, overconfident traders overweight the strength of their 

private information, which leads to excessive trading and lowers performance. Gervais 

and Odean (2001) expand this theory and determine, however, that overconfidence is 

greatest in the earliest part of a trader's career, decreasing with experience. Similar to 

Odean (1999), the authors predict that increased overconfidence increases trading activity 

and reduces performance. 

Although many authors analyzing equity traders find empirical evidence to 

support the hypothesis that frequent trading reduces performance, numerous studies also 

show that high-frequency traders (day traders)—investors who open and close their 

positions within the same day—can generate profits. For example, Harris and Schultz 

(1998) analyze the day trading performance of Small Order Entry System bandits— 

individual day traders who trade frequently and hold positions for only a few minutes— 

and determine that they earn a small profit per trade. Jordan and Diltz (2003) examine a 

small sample of day traders and also find these traders can earn profits net of transaction 

costs, although small. Garvey and Murphy (2005) investigate the performance of equity 

day traders from a US direct access broker and discover that approximately 50 percent of 

the day trades in their sample were profitable, net of transaction costs. 
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Studies documenting the profits of high-frequency traders are not in line with the 

overconfidence models, in which frequent trading leads to suboptimal performance. 

Odean (1999) and Barber and Odean (2000) examine buy-and-hold investors, whose 

feedback is not as timely as that of high-frequency day traders. Psychology studies find 

that levels of overconfidence can increase or decrease over time, depending on the level 

of feedback received (Skata, 2008). Russo and Shoemaker (1992) show that, because 

they receive timely feedback, weather forecasters, racetrack bettors, and public 

accountants, for example, can correctly assess their abilities and are thus "well 

calibrated" and less overconfident. High-frequency traders are similar, in that they 

receive feedback on a frequent, daily basis, whereas buy-and-hold investors may not 

receive feedback for weeks or months. Consequently, the degree of calibration will be 

greater for high-frequency traders, who should outperform their overconfident, less-

calibrated counterparts. 

2.3. DATA AND METHODOLOGY 

The primary data set for this research comprises account data from an online 

advisory service—a website that publishes the trades of its clients—for individual retail 

spot currency traders. We refer the reader to Fonda (2010) for a detailed discussion of 

this new industry. The sample consists of 428 accounts and 79,042 roundtrip transactions 

from March 2004 to September 2009, with the 428 accounts split into 263 day traders and 

165 buy-and-hold traders (Panel A of Table 2.1). Day traders are defined as traders who, 

on average, hold their position open for less than 1,440 minutes (one day), and non-day 

traders are traders who, on average, hold their positions for more than 1,440 minutes 
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(longer than one day). The data include the individual trader's name, a unique account 

identification number, a description of the account, when the position was opened and 

closed, the open and close prices, whether the position is short or long, the number of 

contracts opened and closed, and the net profit and loss (P/L) in US dollars. Unlike 

equity brokers, retail spot currency brokers do not charge a per-contract fee or per-trade 

commission on purchases and sales, and commissions consist of only the bid-ask spread. 

To account for the bid-ask spread, the net P/L is calculated for each account with 3 pips 

(1 pip equals 0.01 percent), or $3.00, to each contract for each sale and purchase. 

Spreads on the major currencies are widely recognized to be between 2 and 3 pips 

(Archer, 2008; Sether, 2009). 

***Insert Table 2.1 about here*** 

For each account, we estimate the mean daily turnover, mean number of trades 

per day, and transaction costs per contract. We calculate daily turnover as the daily 

margin-adjusted market value of all sales for each account, divided by the daily amount 

of capital for each account. The mean daily turnover in this study is 50.76 percent (Panel 

B of Table 2.1); that is, these traders turn over all of their capital approximately every 

two days. 

We calculate trades per day as the mean number of roundtrip transactions 

executed by an account holder for one day. The mean number of trades per day is 3.31, 

above the median of 2.46, which reveals that the data are positively skewed (Panel B of 
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Table 2.1). These data, along with the turnover data, reveal that the currency traders in 

this sample are very active. 

We calculate transactions costs as the bid-ask spread for each transaction divided 

by the margin-adjusted capital required to open the position. The mean transaction cost 

is 0.89 percent (Panel B of Table 2.1), which is lower than the total commissions reported 

in previous equity analyses, as in Barber and Odean (2000), who report transaction costs 

of approximately 2 to 3 percent for equity traders. Transaction costs for currency traders 

are therefore low relative to those for equity traders. 

Panel B of Table 2.1 shows that the mean trade size is $457,161.40 for the 77,666 

transactions in the sample. With a 33:1 margin, traders therefore require an average of 

only $13,853.37 in capital for each trade. The mean price per contract is $14,171.52. 

The age of an account is calculated as the time, in calendar days, between the first 

and last trades recorded in the database. The mean account age in this sample is 86.03 

calendar days, a very short life span. One explanation for the short lives of these 

accounts is the nature of the industry: Investors can open and close an online account at 

any time, unlike professional funds, which must meet stringent listing criteria. Age 

limitation is the primary reason why this study uses daily instead of weekly or monthly 

returns. 

Panels C and D of Table 2.1 present the descriptive data for day and non-day traders, 

respectively, with the difference in means between the two groups reported in Panel E. 

The values for trade size, daily turnover, trades per day, and transaction costs for day 

traders are all larger than for non-day traders. The differences in means reported in Panel 

E of Table 2.1 show that they are statistically significant for every variable except age. 
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Day traders trade larger amounts per trade than non-day traders, turn over their capital 

more frequently, and trade more often per day than non-day traders. Frequent trading 

comes at a cost, however: Day traders' transaction costs are 0.18 percent larger than for 

non-day traders (t-statistic = 12.07), a statistically significant difference. 

2.3.1. Methodology 

2.3.1.1. Return Performance 

This analysis focuses primarily on the performance of currency traders, both gross 

and net of transaction costs. The first performance measurement is the raw daily return 

of each account in the sample from 2004 through 2009, where the P/L for each 

transaction for each account is summed for each day of trading. The daily gross returns 

for account i for day t (Rf™
ss

) are equal to the difference between the end-of-day capital 

for account / on day t + 1 (/Q,t+i) and the starting capital, Kit. The gross daily portfolio 

return for each account is 

RGTOSS = ^ £ £ 1 _ 1 ( 1 ) 

K
i,t 

In addition to daily gross raw returns, daily net raw returns (i?^t
et) are calculated 

in a similar manner, where Etc, is the sum of transaction costs, calculated as $3 US Dollar 

for each transaction executed on day t: 

RNet= y t t + i - s t c ( , t _ x 

K
i,t 

We then aggregate returns into equally weighted portfolios and estimate their 

gross and net returns as 

REWt
GR0SS

=— 2 and REWt
NET = — S i?ffT (3) 

n
i.t

 n
i,t 
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2.3.1.2. Return Performance 

This paper uses two measures of risk-adjusted performance: the four-factor 

currency model and a passive benchmark model proxied by the Deutsch Bank Currency 

Return Index (DBCR), an investible index that consists of a basket of currencies and 

represents a passive strategy currency traders can utilize to manage their money. We 

calculate the mean daily index-adjusted abnormal return of each account by subtracting 

the return of the DBCR from the daily return earned by individual investors' equally 

weighted portfolios. Next, we apply the four-factor model of Pojarliev and Levich 

(2008), with a carry factor (Carryu) measured by the Deutsche Bank (DB) G10 Currency 

Harvest, a momentum-following factor (Momit) measured by the DB FX Momentum, a 

value factor (Valueu) measured by the DB FX Purchasing Power Parity (PPP), and a 

volatility factor (Volit) measured by the DB FX Volatility Index. Carry trades consist of 

borrowing a currency with a low interest rate and investing in a high interest rate one; 

trend following consists of following patterns or reversals; value factors are used when 

traders seek to identify over- or undervalued currencies; and volatility is used because 

currency traders have been found to trade on currency volatility. 

We then estimate alpha by regressing the daily net and gross returns earned by 

individual investors on the four factors: 

REWt
Gross/Net

 - Rft 

= a + PuCarrytt + (32iMomit + f33iValueit + ^iVolit + st (4) 

where excess returns are the daily returns of an equally weighted portfolio on day t less 

the daily returns on the one-month London Interbank Offered Rate (REW; t
r o s s ' e — 
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Rft) and the coefficient P measures the sensitivity of currency traders' returns to the four 

factors. 

2.4. EMPIRICAL RESULTS 

2.4.1. Full Sample Results 

The performance of currency traders is examined with the full-sample results of 

equally weighted portfolios, using the three measures of performance—raw returns, a 

passive benchmark model, and four-factor alphas—for all data from March 2004 through 

September 2009. Panel A of Table 2.2 presents these results on both a gross and a net 

basis. Traders can earn positive and significant gross returns across all three performance 

measures. The average account earns a raw gross return of 0.51 percent per day that is 

statistically significant (t-statistic = 9.25). The results for the DBCR passive benchmark 

strategy are similar, at 0.50 percent per day, and also statistically significant (t-statistic = 

8.88). The four-factor alpha is much lower, at 0.05 percent, and reliably different from 

zero (t-statistic = 7.15). On average, currency traders can earn sizable profits before 

transaction costs. 

After commissions, however, the results change: Raw returns and passive 

benchmark returns are 0.17 percent and 0.16 percent per day, respectively, both 

significantly different from zero. Conversely, after adjusting for the risk factors of the 

four-factor model, investors earn a positive daily net return of 0.05 percent that is 

insignificant (t-statistic = 0.91). These results indicate a substantial decrease in all three 

performance measures when transaction costs are taken into account. 
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Pojarliev and Levich (2008) provide similar results when accounting for the risk 

factors in currency hedge funds. The average excess return in the Barclays Currency 

Traders Index earned 25 excess basis points per month between 1990 and 2006. When 

Pojarliev and Levich (2008) account for the four factors, risk-adjusted excess returns 

become negative (-9 basis points per month) and insignificant. Their results are similar 

to ours, in that the average currency trader is unable to earn statistically significant alpha. 

***Insert Table 2.2 about here*** 

Previous studies have examined the returns of currency traders and find 

significant variations in the cross section of returns (Pojarliev and Levich, 2008). To gain 

further insight into the performance of these traders, a cross-sectional analysis of 

performance is undertaken. 

We proceed as follows. Returns are examined on quartiles sorted on performance 

and ranked by the statistical significance of alpha, the intercept from the four-factor 

currency model. Ranks on passive benchmark returns provide quantitatively similar 

results. Panel B of Table 2.2 presents the three performance measures—raw returns, the 

passive benchmark model, and alpha—ranked by performance. Each quartile contains 

107 accounts, with quartile 1 (Ql) containing the top performers and quartile 4 (Q4) 

containing the worst. 

The results in Panel B of Table 2.2 reveal significant cross-sectional variation in 

returns. The top quartile of traders, Ql, earns a gross daily raw return of 1.04 percent per 

day (t-statistic = 15.25), and Q2 and Q3 also earn positive daily gross raw returns of 0.77 
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percent (t-statistic = 7.02) and 0.4 percent, respectively (t-statistic = 3.59). However, 

performance is negative in the worst-performing group, Q4, which earns a -0.25 percent 

raw gross return per day (t-statistic = -3.38). The results remain similar for gross results 

for the passive benchmark strategy and alpha from the four-factor currency model. 

Overall, the results reveal that, on average, the majority of currency traders earn positive 

returns on a raw, passive benchmark and risk-adjusted basis, and the results are 

statistically significant. 

Although the gross performance results reveal that currency traders in this sample 

are able to earn positive returns, the results show that transaction costs significantly 

reduce performance. All three performance measures indicate that the top 107 traders in 

Ql earn positive and statistically significant returns, with net raw returns, passive 

benchmark returns, and alpha of 0.71 percent, 0.70 percent, and 0.59 percent per day, 

respectively, all statistically significant. Currency traders in Q2 earn a statistically 

significant positive net raw return of 0.28 percent (t-statistic = 3.12) and a net DBCR 

passive benchmark return of 0.27 percent (t-statistic = 2.98); the four-factor alpha is 

positive at 0.17 and significant at the 10 percent level of confidence (t-statistic = 1.88). 

Finally, the returns of the worst-performing traders in Q4 reveal that they all earn 

negative returns, and these results are statistically significant. The bottom quartile reports 

a net raw return of -0.57 percent (t-statistic = -6.66), a passive benchmark return of -0.58 

percent (t-statistic = -6.71), and a four-factor alpha of-0.69 percent (t-statistic = -7.97). 

The cross-sectional results of the individual currency traders are somewhat similar 

to those of the professional currency managers analyzed by Pojarliev and Levich (2008), 

but there are sizable differences in performance. In their analysis of currency hedge 
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funds, Pojarliev and Levich (2008) find that approximately 24 percent of professional 

currency managers are able to earn positive and significant alpha, even though the 

average manager cannot beat the benchmark. In this paper, 107 out of 428 individual 

currency traders, or 25 percent, are able to beat the benchmark and earn 0.59 percent in 

risk-adjusted excess returns per day (approximately 12.39 percent per month, assuming 

21 trading days per month). The average of the top professional currency traders in 

Pojarliev and Levich (2008) earned 104 basis points per month (1.04 percent per month). 

In summary, on average, the traders in this sample earn positive net and 

benchmark-adjusted returns, even after accounting for transactions costs, while alpha is 

also positive yet insignificant. The performance of these currency traders does not 

support the efficient market hypothesis (Meese and Rogoff, 1983; Rogoff, 2002) but 

suggests that currency markets are likely inefficient due to the profitability of technical 

trading strategies (Schulmeister, 1988; Menkhoff and Schlumberger, 1995; Chang and 

Osier, 1999; Gencay, 1999; Neely and Weller, 2003). 

This paper's findings are similar to those of Pojarliev and Levich (2008), where 

the average currency manager is unable to generate positive and significant alpha but 

approximately 24 percent of professional currency managers are able to earn significant 

and positive risk-adjusted excess returns. In our sample, approximately 107 individual 

currency traders (25 percent) remain profitable after accounting for the risk factors of the 

four-factor currency model. 

It is very important to take into consideration transaction costs when measuring 

the performance of currency traders. As shown in Table 2.1, the total transaction costs 

consist of only the bid-ask spread, which represents approximately 0.89 percent of the 
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cost of a transaction, but, as shown in Table 2.2, transaction costs can significantly reduce 

performance. A remarkable result of our study is that, even after accounting for 

transaction costs, 25 percent of individual currency traders still earn positive alpha. It is 

also worth noting that the top individual currency traders in this sample outperform the 

currency hedge fund managers analyzed by Pojarliev and Levich (2008) by 

approximately 11.35 percent per month on a risk-adjusted basis. This implies that top-

performing individual currency traders may possess more skill trading currencies than 

professionally managed currency hedge funds. 

2.4.2. Day Traders versus Non-Day Traders 

After dividing the sample into day traders and non-day traders, we calculate for 

each account holder both the net and gross returns and compute the raw, passive 

benchmark, and four-factor alpha for both day traders and non-day traders, both gross 

and net of transaction costs. Finally, we calculate t-statistics to determine the 

significance of the differences between day traders and non-day traders. 

Panels A and B of Table 2.3 present the results for the three performance 

measures for both day traders and non-day traders. Day traders earn a raw gross (net) 

return of 0.071 percent (0.26 percent) per day that is statistically significant (t-statistic = 

11.05 and 2.17). The results are similar for the DBCR passive benchmark model. 

Individual currency traders beat the DBCR and still earn a positive and statistically gross 

(net) return of 0.70 percent (0.26 percent) per day. The four-factor alpha for day traders 

is positive for both gross (0.59 percent) and net (0.15 percent) daily returns, but this is not 

different from zero once transactions costs are taken into account (t-statistic = 1.19). 
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The results for non-day traders in Panel B of Table 2.3 reveal a similar pattern for 

gross performance measures, but none of the results are statistically significant on a net 

basis. Non-day traders earn a gross raw daily return of 0.40 percent (t-statistic = 6.28). 

The raw net return is much lower, at 0.11 percent, and not significant (t-statistic = 1.61). 

The same pattern emerges for the DBCR passive benchmark model. The gross daily 

return on the passive benchmark strategy for buy-and-hold currency traders is 0.70 

percent (t-statistic = 10.8), reduced to 0.26 percent per day on a net basis (t-statistic = 

0.26). 

***Insert Table 2.3 about here*** 

The mean differences between day traders and non-day traders are reported in 

Panel C of Table 2.3. Comparing the results of the day traders in Panel A and the non-

day traders in Panel B shows that currency day traders, as a group, are able to earn larger 

returns in all three performance measures than non-day traders. Day traders' gross 

returns exceed non-day traders' returns by 0.31 percent for raw returns (t-statistic = 3.44), 

0.32 percent for the passive benchmark (t-statistic = 3.44), and 0.31 percent for alpha (t-

statistic = 8.81), with all three differences being statistically significant. These 

differences remain positive when accounting for transactions costs, but the results 

become statistically insignificant. Day trader net returns exceed non-day trader returns 

by 0.15 percent for raw returns (t-statistic = 1.25), 0.16 percent for the passive benchmark 

(t-statistic = 1.23), and 0.16 percent for alpha (t-statistic = 0.63). 

The gross return results are consistent with the calibration hypothesis, which 

predicts that traders who receive more timely feedback will be better calibrated than 
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traders who receive less timely feedback, with a higher degree of calibration decreasing 

overconfidence and thus improving performance. However, when transaction costs are 

accounted for, while day traders still outperform non-day traders, the differences are no 

longer significant, weakening the calibration hypothesis. This finding suggests that, in 

the context of currency trading, a higher degree of calibration can improve gross 

performance, but transaction costs erode any resulting benefits. 

2.4.3. Trading Activity Proxied by Turnover 

We next examine accounts sorted on turnover to test the sensitivity of our results. 

Previous studies analyzing long-term investors in equities have used turnover as a proxy 

for trading activity, finding a negative association between trading activity and 

performance (Odean, 1999; Barber and Odean, 2000). We calculate turnover as the mean 

margin-adjusted market value of all contracts closed per day, divided by the amount of 

capital in the account that day. Turnover is calculated for each account, and the accounts 

placed in quartiles, with quartile 1 (Ql) containing accounts with the highest turnover and 

quartile 4 (Q4) containing those with the lowest turnover. Each quartile contains 107 

accounts. 

Table 2.4 presents the results of our performance measures for both gross and net 

returns. The results of the performance measures calculated with gross returns reveal the 

same pattern for day traders as for non-day traders: The lowest-turnover group, Q4, with 

a turnover of 9.6 percent per day, has the lowest returns, which increase linearly to the 

top quartile Ql, where turnover is a sizeable 146.96 percent per day. All three 

performance measures follow this linear pattern. Regarding raw returns, we find that the 

least active traders earn a statistically significant (t-statistic = 4.52) 0.22 percent per day, 
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which increases to 0.90 percent per day for the most active quartile of traders, in Ql. 

Similar results are shown for the passive benchmark strategy and the four-factor alpha. 

Overall, the evidence supports that currency traders in this sample are highly calibrated. 

However, the evidence also indicates that transaction costs render performance 

insignificant for the most active traders in this sample. Net raw returns are 0.18 percent 

(t-statistic = 0.81), the passive benchmark net returns are 0.017 percent (t-statistic = 

0.77), and alpha is 0.07 percent (t-statistic = 0.30), and all are insignificant for the most 

active traders in Ql. The linear pattern observed with gross returns, where the least 

active traders have the lowest returns and the most active traders have the highest (across 

all three performance metrics), is not present. When accounting for transaction costs, net 

raw, benchmark, and alpha increase from Q4 (the least active traders) to Q2, yet Ql 

returns for all three performance metrics are lower than Q2 returns. The difference in 

means between Ql and Q2 is insignificant (t-statistic=0.89), which reveals that, even 

after accounting for transaction costs, there is no difference between the most active 

traders, in Ql, and the second most active traders, in Q2. 

***Insert Table 2.4 about here*** 

Overall, the results of gross and net performance with sorts on turnover are 

similar to those for the analysis of day traders and non-day traders in Table 2.3. The 

calibration hypothesis is supported by gross return measures, yet any performance 

increase is rendered statistically insignificant after taking transactions costs into 

consideration. In summary, the turnover results reveal that the performance differences 
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between quartiles are economically and statistically significant for gross returns, but 

insignificant for net returns. Increased trading thus reduces performance, but not to the 

extent where investors recognize a loss. This result differs from that of Odean (1999), 

who analyzes individual equity traders and reports that their annual return was 

approximately 6.5 percent lower than the return on the market. This underperformance 

results from overconfidence, which leads to excessive trading. The results here show 

that, although transaction costs arising from high-frequency trading erode performance, 

75 percent of the traders, when sorted on turnover, are able to beat the DBCR. 

Furthermore, 25 percent of the traders in the second most active quartile are able to earn 

positive and significant risk-adjusted excess returns. Overall, these findings demonstrate 

that, unlike the equity traders analyzed by Odean (1999), many high-frequency currency 

traders can beat the benchmark, even after accounting for transaction costs. 

2.4.4. Trading Activity Measured by the Mean Number of Trades per Day 

We examine the sensitivity of our turnover results in an alternative specification, 

by sorting accounts on trading activity proxied by the mean number of roundtrip 

transactions executed by each account holder per day. As before, each quartile contains 

107 accounts. If the results from our previous analysis hold, we expect the most active 

traders, ranked by mean trades per day, to perform better than less active traders. 

Table 2.5 reports the gross performance results and reveals a linear association 

between performance and trade activity, a pattern also observed for gross returns when 

sorted on turnover (Table 2.4). The least active traders execute 1.42 trades per day, on 

average, with the lowest performance earning 0.39 percent for raw returns, 0.38 percent 

for the passive benchmark strategy, and 0.26 percent in alpha. Even for the least active 
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traders, all the gross returns are statistically significant. Another remarkable observation 

is that returns increase across all performance measures as trade frequency increases. 

Raw returns increase from 0.39 percent for the least active traders in Q4 to 0.83 percent 

in Ql for the most active traders. This pattern is also present for the passive benchmark 

and four-factor alpha performance measures. Similar to the results for turnover presented 

in Table 2.5, the gross results imply a positive association between feedback, proxied by 

the mean number of trades per day, and performance. Since traders receive positive 

(negative) feedback via winning (losing) trades, trade activity increases (decreases), 

which leads to improved (lowered) performance. 

***Insert Table 2.5 about here*** 

The net performance results, however, differ from the gross performance results. 

After accounting for transaction costs, the most active traders in Ql, who trade on 

average 6.64 times per day, perform better across all three performance measures than all 

other quartiles of traders. The net raw returns for the top quartile, Ql, are 0.49 percent 

per day and statistically significant, exceeding the least active quartile, Ql, by 0.34 

percent per day, although this difference is not significant. Currency traders in Ql 

outperform the least active traders in Q4 by 0.24 percent for raw returns, 0.33 percent for 

the passive benchmark, and 0.035 percent for alpha, but these are all insignificant and 

show that there is no benefit to increased trading, after accounting for transactions costs. 

Overall, the gross results support the calibration hypothesis, while the net results 

show that being well calibrated does not result in increased performance. These results 
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reflect the day trader/non-day trader distinction reported in Table 2.3 and sorts on 

turnover results presented in Table 2.4 above. Traders who trade the most, outperform 

the least active traders in both gross and net returns, but only the difference in gross 

returns is significant. This implies there is limited benefit in being calibrated within the 

context of individual high-frequency currency traders. As currency traders increase 

(decrease) their trading activity, their performance increases (decreases), implying that 

feedback does play a role in currency trading, although transaction costs cancel out the 

majority of its benefits. It is important to note that although transaction costs deteriorate 

performance, a sizable percentage of high-frequency traders are still able to earn positive 

and significant benchmark-adjusted returns and alpha. This finding contradicts previous 

studies of equity traders, which show increased trading results in underperformance 

relative to the benchmark index (Odean, 1999; Barber and Odean 2000). 

2.4.5. Trading Activity Measured by the Mean Number of Trades per Day 

The performance results from the main data set, presented in Panel B of Table 

2.2, show that the top quartile of individual currency traders have alpha generating 

abilities, earning a statistically significant 0.59 percent per day (t-statistic=4.86). 

Additionally, our examination of trading characteristics shows that individual currency 

traders increase (decrease) trading based on the level of positive (negative) feedback 

received and outperform those who trade less frequently. These results are consistent 

with the calibration theory which predicts that individual currency traders who trade more 

frequently will outperform those who trade less frequently. 

To test the robustness of the results we analyze a second data set which comprises 

account data from an additional online advisory service. This sample consists of 74 
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accounts from July 2010 to August 2011. The data include the account holder's name, 

the mean monthly gross return, the total number of trades, and the age of the account in 

weeks. To provide results comparable to those presented based on our primary data set 

we compute the mean daily gross return by dividing the mean monthly gross return by 20 

(assuming 20 trading days per month) and calculate mean trades per day by dividing the 

total number of trades by the age of the account measured in days. Although the second 

data set does not contain transaction data, an analysis of the mean daily gross return 

provides insight into the performance of these traders. Furthermore, the mean number of 

trades per day allows us to test the calibration hypothesis, which predicts that individual 

currency traders who trade more frequently will outperform those who trade less 

frequently. One limitation of the secondary data set is that account holders who close 

their accounts are not included in the data set. This creates survivorship bias. 

Consequently, it is quite possible that the performance and mean age may be higher in the 

secondary data set since underperformers are removed. We address these concerns with 

the analysis of the data below. We present descriptive statistics, performance results, and 

feedback trading results in Table 2.6. 

Panel A of Table 2.6 reports descriptive statistics of gross returns, trade activity 

and the age of all 74 accounts. The mean daily gross return is 0.357 percent with the top 

quartile (bottom) quartile earning a gross return of 0.648 (0.005) percent per day, 

respectively. These results are similar to the results of our primary data set reported in 

Panel B of Table 2.2 which display cross-sectional variation in performance. Panel B of 

Table 2.2 reveals that the top performers (Ql) in our primary data set earn a gross return 

of 1.04 percent per day and the worst performers (Q4) earn a gross return of-0.25 percent 
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per day. It is notable that the worst performers in the second data set (.005 percent per 

day) outperform the worst traders in the primary data set (-0.25 percent per day) by 0.255 

percent per day. A likely explanation for this is survivorship bias since the secondary data 

set does not contain closed accounts. Two other noteworthy observations are mean trades 

per day and the age of accounts. The mean number of trades per day for the second data 

set is 2.35 and the mean age of accounts is 201.30 days. The mean number of trades 

reveals that the individual currency traders in the secondary set are active traders but not 

as active as the traders in the primary data set where the mean trades per day is 3.31 (see 

Panel B of Table 1). A striking difference between the two data sets is the age of the 

accounts. As shown in Panel B of Table 2.1, the mean age for currency traders in the 

primary data set is 81.92 days. However, Panel A of Table 2.6 reports that the mean age 

for currency traders in the second data set is 201.30 days. A likely explanation for the 

age difference is that poor performing traders close their accounts and bias the results in 

the second data set. 

***Insert Table 2.6 about here*** 

We next examine the performance of the second data set by sorting 

accountholders into textiles and report the results in Panel B of Table 2.6. Textiles are 

used due to the number of observations. Quartile ranks provide similar results. The 

results presented in Panel B of Table 2.6 reveal that the top performing currency traders 

outperform the worst performing currency traders by 1.44 percent per day and it is 

significant (t-statistic=8.37). These results are similar to the primary data set in Table 2.2 

where the difference between the top and worst performers is 1.29 percent per day and 
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significant (t-statistic=8.63). Consequently, both data sets show that the top performers 

earn positive gross returns and the difference between the best and worst performers is 

significant. 

Our final robustness check tests the feedback hypothesis which predicts a positive 

association between trade activity and performance. We test this by sorting the 

secondary data set by trade activity, proxied by mean trades per day. Accounts are 

ranked by mean trades per day and then divided into three groups. This is similar to the 

primary data set analysis performed in Table 2.5 where we report the most active traders, 

proxied by mean trades per day, outperform the least active traders per day by 0.4359 

percent per day and the difference is significant (t-statistic=3.43). 

Panel B of Table 2.6 reports the results of sorts on trade activity for the second 

data set. The most active traders (Tl) trade, on average, 4.873 times per day and earn a 

mean gross return of 0.628 per day. The least active traders (T3) trade, on average, 0.554 

times per day and earn a gross return of 0.063 percent per day. The feedback hypothesis, 

which predicts that the difference in gross performance between the most active (Tl) and 

least active traders (T3) will be positive is borne out in the data. Specifically, the most 

active traders outperform the least active by 0.57 percent per day and the difference is 

significant (t-statistic=3.45). This result is similar to all of the previous analyses 

performed on the primary data set which shows feedback can affect trading performance. 

Calibration theory predicts that as traders receive positive (negative) feedback through 

winning (losing) trades they will increase (decrease) trading. Overall, the results of both 

data sets not only show that some individual currency traders are able to earn positive 
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gross returns, but also there is a positive association between trade activity and gross 

performance. 

2.5. CONCLUDING REMARKS 

This paper examines the daily returns of individual currency traders by analyzing 

their performance within the context of market efficiency, which predicts that their 

realized excess returns should be zero. Additionally, it examines the calibration 

hypothesis, which predicts a positive association between trade activity and performance. 

If traders receive timely feedback, their overconfidence will decrease and they will 

become better calibrated. 

We examine daily raw returns, returns in excess of a passive benchmark model, 

and alpha from the four-factor currency model, as well as the cross section of returns by 

sorting on performance. Our results show that individual currency traders are able to 

earn positive and statistically significant raw, benchmark-adjusted, and alpha returns. 

Furthermore, there are notable differences in the cross section: Approximately 50 

percent of traders are able to earn positive and statistically significant benchmark-

adjusted returns, and 25 percent earn statistically significant alpha. These results imply 

that currency markets are not efficient. 

To test the calibration hypothesis, we first categorize the sample into day traders 

and non-day traders. Day traders outperform non-day traders on all three of our gross 

and net return performance measures. Second, this study tests the calibration hypothesis 

by ranking accounts by trading activity proxied by the mean number of trades executed 

by each account per day. The results for day traders/non-day traders, turnover, and mean 
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number of trades per day were uniform and reveal that the difference in gross 

performance between the most active and least active traders is positive and statistically 

significant, whereas the difference in net returns is not significant. These results imply 

there is only a limited benefit to being calibrated. Although gross return results reveal 

that if traders are receiving positive (negative) feedback, they increase (decrease) their 

trading frequency, net performance differences are insignificant and reveal that traders 

are not better off increasing their trading activity when accounting for transaction costs. 

To test the robustness of our results we analyze a second data source and find 

similar patterns in terms of performance and trading characteristics. The top currency 

performers are able to earn positive gross returns and the difference in performance 

between the best and worst traders is significant. Furthermore, we examine whether 

trading activity, proxied by mean trades per day, is positively associated with 

performance and find that the most active traders in our second data set outperform the 

least active traders consistent with the prediction of the calibration theory. 

Our analysis of trading characteristics reveals that not all trading has a negative 

effect on performance. Although previous studies have determined a negative association 

between trading activity and performance, they examine long-term buy-and-hold equity 

investors. A possible explanation for the difference in this paper's results is that the 

traders in this sample receive constant feedback, which lowers overconfidence, and 

highly calibrated traders increase trading based upon positive feedback, increasing 

performance. 

Although the results reveal no significant difference in net performance when 

sorting on trading activity, a sizable percentage of currency traders are able to earn 
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positive net benchmark adjusted returns and alpha. These results contradict previous 

studies of equity traders, which show that individual investors are overconfident and 

unable to beat a benchmark index (Odean, 1999; Barber and Odean, 2000). 
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CHAPTER 3 

ARE INDIVIDUAL CURRENCY TRADERS SKILLED? 

3.1. INTRODUCTION 

Interest among professional hedge funds, individual investors, and government 

regulators in currency trading as an investment class has been growing over the past 

decade (Luke, 2005; Pojarliev and Levich, 2008; Commodities and Futures Trading 

Commission, 2010; King and Rime, 2010). Retail foreign exchange average daily 

turnover by households and non-bank institutions is estimated to be approximately $150 

billion and total foreign exchange daily turnover increased by 75 percent from 2002 to 

2007 (King and Rime, 2010). Despite the growth of the retail foreign exchange market, 

little is known about the trading skills of individual currency traders. This may be largely 

attributed to the lack of data. 

A vital research question that arises is whether individual currency traders have 

superior trading skills. We address this issue by analyzing a unique database of 428 

individual spot currency traders over a five-year period ending in 2009 by investigating 

whether performance, modeled as alpha from a factor model, can be predicted by active 

management, proxied by R2. Additionally, we examine transaction data to determine 

whether profits arise due to skill or luck, and drawdown performance to determine 

whether individual currency traders have skill at moderating losses, and apply the Melvin 

and Shand (2011) timing model to detect whether these traders possess skill in terms of 

timing Pojarliev and Levich's (2008) currency model factors. 
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Investigating the trading abilities of these traders is a critical inquiry, because spot 

currency contracts trade on a 50:1 margin in the United States and up to a 400:1 margin 

in offshore markets. Individual investors trading highly levered instruments can be 

exposed to excessive risk, which can lead to financial ruin. Consequently, government 

regulators have recently raised concerns that individual currency traders may be using too 

much margin and exposing themselves to excessive risk (Commodities and Futures 

Trading Commission, 2010). An examination of individual currency traders' skill is also 

important because the retail spot currency market is said to be the fastest growing 

segment of the global currency market and thousands of individual investors now actively 

trade foreign exchange (Luke, 2005). If individual currency traders possess skill at 

generating profits, it would provide one explanation why the retail spot foreign exchange 

market has attracted individual investors and continues to grow. Finally, it is important 

to investigate the trading abilities of individual currency traders, because studies 

•y 

examining the association between R and alpha have only focused on professionals, 

specifically, hedge funds, mutual funds, and professional currency managers (Pojarliev 

and Levich, 2008; Titman and Tiu, 2008; Sun, Wang, and Zheng, 2009; Amihud and 

Goyenko, 2010). It is an unanswered question whether individual currency trader's 

selective management can result in superior performance. 

Our analysis of skill builds on and extends that of Fama (1972), who states that a 

fund's excess performance, a gauge of how well a fund performs relative to a naive 

portfolio, can arise from selectivity, or active management. Funds that closely track 
'y 

benchmarks, however, are less selective and will naturally have an R , the coefficient of 

determination from a factor model, value close to unity (Amihud and Goyenko, 2010). 
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Actively managed funds that deviate from a benchmark index have low R2 values and, if 

the fund manager possesses skill, will outperform the benchmark. This implies an 

inverse association between R2 and performance. 

Empirical studies that examine the association between R2 and the contemporary 

performance of professional traders confirm a negative association between R2 and 

performance, supporting the argument that professional fund managers possess skill 

(Pojarliev and Levich, 2008; Titman and Tiu, 2008; Sun, Wang, and Zheng, 2009). In a 

recent study analyzing mutual fund data, Amihud and Goyenko (2010) propose that the 

R2 value from a multifactor model can predict future fund performance, modeled as alpha 

from a multifactor model. The authors also find that active management, proxied by 

lagged R2, is negatively associated with future fund performance. In contrast, numerous 

studies of individual equity investors illustrate that individual equity traders are 

overconfident, trade excessively, and underperform relative to the market index (Odean, 

1999; Barber and Odean, 2000; Barber and Odean, 2001). For example, Odean (1999) 

finds that individual equity investors at a discount brokerage would have performed 

better had they followed the market index, which implies that R2 is positively associated 

with performance, contrary to the findings of Amihud and Goyenko (2010). 

Following a similar approach to that of Amihud and Goyenko (2010), we regress 

lagged R2 on future alpha to determine whether the individual currency traders in this 

sample are skilled. Our results are summarized as follows. Our analysis reveals that R2 

has no significant predictive power on individual currency trader performance. Our 

results remain robust to quartile ranks of performance, modeled as alpha from the four-

factor currency model, and trade activity, proxied by account turnover, which implies that 
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the performance of individual currency traders is not enhanced if it deviates from the 

four-factor currency benchmarks. Our analysis of the predictive power of R also implies 

that individual currency traders lack skill. 

Despite the lack of predictability of R2, we find that individual currency traders 

are skilled. Amihud and Goyenko (2010) test the persistence of R2 and state that 

performance should be stronger if a fund's strategy with respect to selectivity is stable. 

Consequently, we examine the persistence of performance and of R to determine 

whether affects the outcome of our analysis. When we analyze the full sample, our 

results reveal that performance is marginally persistent and selectivity is persistent. 

However, when we analyze currency traders with greater longevity, for example, those 

who keep their accounts open for more than 80 days, performance is significantly 

persistent for the top quartile of traders, yet selectivity is not persistent. This persistence 

of performance reveals that certain currency traders are adept traders; however, the lack 

of persistence of R2 reveals that these skilled traders change their strategies over time. 

Our analysis of performance and selectivity stability suggests that individual currency 

traders can earn significant, stable alphas over the life of their accounts, but they change 

their trading strategies, which may mean that R possesses no predictive power. This 

provides one explanation why R2 does not predict performance for individual currency 

traders in this sample. 

This result is also supported by studies that have shown currency trading 

strategies can become crowded, causing a once profitable strategy to become unprofitable 

(Baillie and Change, 2010; Pojarliev and Levich, 2010b). Pojarliev and Levich (2010b) 

analyze crowded trades in currency markets. The authors discover an inverse association 
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between style crowdedness and future performance. For example, the carry trade may be 

profitable in one period, but as more traders flock to the same strategy, future 

performance is reduced. Currency managers, who change their strategies over time, for 

example, no longer utilizing the carry trade when it becomes unprofitable, may earn 

higher returns than currency traders who stay with the same strategy. Our results of R 

instability and persistent performance support the argument that currency traders who 

change their strategies over time may outperform their peers who do not adapt to the 

market. 

Our analysis of trade activity, drawdown performance, and market timing 

provides supplemental support that the individual currency traders in this sample possess 

exceptional trading skills. We report that 68.78 percent of trades executed by the top 

traders in this sample are profitable net of transaction costs and profits do not arise from 

chance. Furthermore, the top traders have lower drawdown than the worst-performing 

traders, although this difference is not statistically significant. Finally, our results from 

Melvin and Shand's (2011) timing model reveal that some traders in this sample have the 

ability to time the factors of the Pojarliev-Levich (2008) four-factor currency model. For 

example, 21.03 percent of the individual traders possess the skill to time the carry trade. 

These findings are consistent with the results presented in the first essay that imply 

individual currency traders are skilled, that is, top traders are able to earn a positive and 

significant alpha of 0.59 percent per day. 

Overall, the current study contributes to the literature by providing additional 

evidence that individual currency traders are adroit. This is a significant contribution, 

because the majority of studies analyzing individual investors determine that individual 
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equity traders lack skill trading equities and underperform relative to the market (Odean, 

1999; Barber and Odean, 2000; Barber and Odean, 2001). This study also provides some 

insights as to why the retail spot foreign exchange market is one of the fastest growing 

markets for individual investors. As shown in the first essay, not only are individual 

currency traders capable of earning positive excess returns, but also, as shown in this 

study, performance arises due to skill and not luck. The second major contribution of this 

study is that it reveals that R2 may not be a good proxy for performance for all types of 

traders, specifically individual currency traders. Our results imply investors can change 

their trading styles over time while maintaining exceptional performance, and this 

undermines the basic premise of using R to predict performance. This reveals that using 

R2 may not always be an accurate proxy for skill and runs contrary to previous studies 

that have found an inverse association between performance and R (Pojarliev and 

Levich, 2008; Titman and Tiu, 2008; Sun, Wang, and Zheng, 2009; Amihud and 

Goyenko, 2010). 

The rest of the essay is organized as follows. Section 3.2 provides a literature 

review and develops the main hypothesis. Section 3.3 describes the methodology used 

and the performance measures of alpha and the information ratio (IR). Section 3.4 

examines the entire sample to determine whether R is a determinant of future 

performance and section 3.5 concludes. 

3.2. HYPOTHESIS DEVELOPMENT 

The financial literature has extensively analyzed investor performance. A recent 

trend in empirical analysis is to examine the R2 of returns on systematic factors as a 
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determinant of performance. The R value determines a portfolio's diversification, and 1 

- R2 gauges the weight, relative to the variance of an investment, of idiosyncratic risk; 

thus 1 - R2 estimates the selectivity of an investment strategy (Amihud and Goyenko, 

2010). Framing performance relative to a benchmark, or a naive portfolio, Fama (1972) 

states that portfolio performance may be due to active management. Funds that naively 

follow a benchmark will earn returns similar to those of the benchmark. However, 

managers who are selective in managing their portfolios will earn returns unlike those of 

the benchmark and, if skilled, in excess of them. Analyzing R can provide some insights 

into a portfolio manager's trading style. A high R reveals that the fund is tracking a 

broader benchmark index, and therefore its performance relative to the benchmark will be 

low. When managers actively manage their funds, R2 is low, which should relate to 

increased performance if the managers possess skill. 

Empirical studies confirm the importance of R in evaluating performance. 

Pojarliev and Levich (2008) examine currency hedge funds and determine that R2 is 

inversely associated with fund performance. Titman and Tiu (2008) find that hedge fund 

performance increases when funds employ strategies that hedge less frequently against 

benchmarks. Sun, Wang, and Zheng (2009) define 1 - R2 as the hedge fund 

distinctiveness index and demonstrate that R is inversely related to fund performance. 

•y 

Amihud and Goyenko (2010) propose that R can predict future fund performance. 

Analyzing mutual fund return data from the Center for Research in Security Prices, the 

authors confirm that R predicts future performance when performance is modeled as the 

alpha from a multifactor model. These results suggest that fund selectivity, or active 

management, proxied by R2, is negatively associated with fund performance. 
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While all these studies are very insightful about the performance of professional 

fund managers, no study has examined the association between future individual investor 

performance and lagged R2. This study is therefore the first to examine the predictability 

of R2 for individual investors and, more specifically, individual currency traders. 

The first two studies to address individual investor performance are those of 

Schlarbaum, Lewellen, and Lease (1978a, b), who analyze the performance of clients at 

full-service brokerage firms in the 1960's and 1970's. Both studies reveal that individual 

investors possess skill in selecting stocks. Other studies examining individual investors, 

however, show the opposite. Odean (1999) analyzes the trades of 10,000 individuals at 

discount brokerage firms from 1987 to 1993 and determines that these investors trade too 

often and consequently earn lower returns. Barber and Odean (2000) analyze the 

portfolio performances of 66,465 households with accounts at a discount brokerage firm 

from 1991 to 1996. They find that the average investor does not beat the market and that 

the higher the portfolio turnover, the lower the net return due to transaction costs. In a 

subsequent study investigating a similar sample, Barber and Odean (2001) document that 

women outperform men because men are overconfident and trade excessively. Glaser 

(2003) examines a sample of 3,000 online broker investors over a 51-month period and 

reports that online investors trade frequently, with a median turnover of approximately 30 

percent per month and trading activity concentrated in technology, Internet, and software 

stocks. Additionally, the author shows that investor stock portfolio value is negatively 

related to turnover. Coval, Hirshleifer, and Shumway (2005) analyze 115,856 accounts 

from a discount brokerage and find that the top 10 percent of traders earn excess returns 
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of 12 and 15 basis points per day, yet the overall majority of traders do not earn positive 

excess returns. 

The sample analyzed in this essay consists of individual currency traders. A 

review of the currency trading literature reveals that few studies examine traders' alpha-

generating abilities. For example, Pojarliev and Levich (2008) investigate the returns of 

professional currency managers and develop a four-factor model that uses proxies for 

trading strategies as their independent variables. Their model does an exceptional job of 

explaining the cross section of returns for professional currency managers, and their 

results are similar to those of the studies mentioned above. Specifically, their findings 

show that some professional currency managers earn positive and significant alphas, and 

that currency managers who follow the benchmarks are less likely to earn positive 

abnormal returns. 

In summary, the research clearly shows that individual investors on average trade 

excessively and do not perform well relative to the market index and thus lack skill, while 

certain professional fund managers possess skill and are able to earn positive abnormal 

returns. In the context of selectivity, or active portfolio management, individual investor 

studies infer that active management by individuals reduces performance, contrary to the 

results of numerous studies on professional investors (Titman and Tiu, 2008; Sun, Wang, 

and Zheng, 2009; Amihud and Goyenko, 2010). Consequently, active management by 

individual investors may not result in a negative association between R and 

performance. 

The main objective of this essay is to test whether individual currency traders are 

skilled. To test this empirically, we examine whether individual currency trader 
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performance, measured by the alpha of the Pojarliev-Levich (2008) four-factor currency 

model, can be predicted by active management, proxied by R2. If active management 

results in greater future performance, we expect a negative association between lagged R 

and future performance. We refer to this as the skilled investor hypothesis. Melvin and 

Shand (2011), however, argue that, unlike equity markets, currency markets have no 

established market portfolio, buy-and-hold portfolios do not exist due to the long/short 

characteristic of currency trading, and alternative methods of construction of the factors 

may lead to different results. Therefore, the lack of a currency market portfolio and, as a 

result, the possible limitations associated with the four-factor currency model of Pojarliev 

and Levich (2008) may influence our results. For this reason, in Section 6, we perform 

two robustness tests. First, we estimate Pojarliev and Levich's (2008) four-factor model 

for all 428 individual accounts to determine whether the four-factor model provides 

sufficient explanatory power for the returns of individual currency traders. Second, we 

estimate an alternative currency specification model using the Deutsche Bank Currency 

Return Index (DBCR) as our explanatory variable. 

To further examine the skill of individual currency traders, we perform three 

additional analyses. First, we examine transaction data to determine whether profits arise 

from skill or luck by investigating whether the percentage of winning traders is 

statistically significant. Second, we examine the skill of loss mitigation by examining 

drawdown performance. Third, we apply the timing model of Melvin and Shand (2011) 

and investigate whether individual currency traders can time the Pojarliev-Levich (2008) 

currency model factors. 
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3.3. DATA AND METHODOLOGY 

3.3.1. Performance measures 

To assess the performance of individual currency traders, two performance 

metrics are utilized. First, the Pojarliev-Levich (2008) four-factor currency model is 

applied and is defined in equation (1): 

Ri.t ~ Rft = a + PuCarryit + p2iMomit + /33iValueit + (J4iVolit + et (1) 

Excess return is defined as the return for account i on day t (Riit) less the daily 

return on the one-month London Interbank Offered Rate (Rft)- The coefficient P 

measures the sensitivity of the currency traders' returns to systematic risk factors. The 

four factors are the carry factor {Carryit), measured by the Deutsche Bank (DB) G10 

Currency Harvest; the momentum-following factor (Momit) , measured by the DB FX 

Momentum; the value factor (Valueit), measured by the DB FX purchasing power 

parity (PPP); and the volatility factor (Volit) , measured by the DB FX Volatility Index. 

Carry trades consist of borrowing a low interest rate currency and investing in a high 

interest rate currency. Carry trade risk arises when a high interest rate currency 

depreciates more than the interest rate differential between the low and high interest rate 

currencies. Trend following consists of following patterns or reversals. Trend-following 

risks arise from reversals of the trend, misidentified patterns, and excessive trading costs 

arising from entering and exiting trades while attempting to catch the trend. The value 

factor is used when traders seek to identify over- and undervalued currencies. Value 

risks arise when PPP does not revert to parity over time or when currency values 

overshoot parity. Volatility risk is inherent in any open position held by the currency 

trader. 
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The second performance measure used in our analysis is IR, which measures the 

extent of an individual currency trader's excess performance relative to idiosyncratic risk: 

IRj = - ^ - (2) 
J RMSEj

 v J 

where a, is from the four-factor model and RMSEj is the squared root of the mean-

squared errors, or residuals (Jsjt), from equation (1) from time period t to t + n. We use 

IR because currency traders can have a high alpha, representing superior performance, yet 

risky strategies can also increase the probability of failure. Scaling performance by 

idiosyncratic risk is important in this study because spot currency traders trade 

instruments with a significant amount of inherent risk. This risk arises from the 33:1 

margin utilized by the traders in this sample. Brown et al. (1992) state that IR also helps 

mitigate survivability bias, which can arise in this sample due to individual currencies 

being exposed to this risk, which can increase the probability of failure. Additionally, 

this study utilizes IR as a performance metric, because it is used when investigating the 

returns of professional fund managers (Brands, Brown, and Gallagher, 2006; Kacperczyk, 

Sialm, and Zheng, 2005) and currency traders (Pojarliev and Levich, 2008). In addition, 

Titman and Tiu (2008) examine hedge funds and determine that funds with a low R2 have 

higher IR values, and Amihud and Goyenko (2010) find that lagged R predicts future 

performance proxied by IR for professional fund managers. 

3.3.2. Predicting performance methodology 

The skilled investor hypothesis states that future performance, as measured by 

alpha and IR, can be predicted from the logarithmic transformation of R (TR ) from the 

previous time period, where TR
2
 = log(—7==). To test whether lagged R predicts 

future performance, we take the following steps. 
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First, the daily return data for each account are divided into two time periods, t - n 

to t - 1 (the first time period) and t to t + n (the second time period), where n is the total 

daily return data for each account (total number of observations used in each regression), 

which varies by account. The split of the time series is its midpoint. The minimum 

number of daily returns for each account in the sample is 28, which allows for 14 

observations each time period. The low number of observations is of concern, so we 

perform robustness checks and eliminate all accounts with fewer than 80 observations, 

leaving 40 observations each period, with quantitatively similar results. 

Second, we use Pojarliev and Levich's (2008) four-factor model by regressing the 

daily net excess return earned by currency traders on the four factors in model (1) for 

both the first and second time periods. 

Third, we estimate equation (3), where alpha is the dependent variable, and 

equation (4), where IR is the dependent variable, to determine whether lagged TRft_n is a 

determinant of future performance: 

alphaiit+n = a + px{TR%t_n + p2iTurnoveri + /33ialphaiit_n + st (3) 

Iht+n = a+ pltTRft_n + n2iTurnoveri + (S3ialphaiit-n + et (4) 

where alphait+n is the risk-adjusted return for account i obtained from model (1) for the 

second time period; IRi>t+n
 ls the IR for account i obtained from model (1) for the second 

1 The split of the time series of returns is arbitrary. One limitation of the data in this sample is that account 
holders do not keep their accounts open for long periods of time. The mean age, defined as the time in days 
between the first and last trades executed by the account holder, of an account is only 81.92 days (see Table 
1 below), which is due to the nature of the industry: Currency traders who post their data online have no 
barriers to entry and exit and can open and close their accounts with ease, unlike professional managers, 
who must meet stringent Securities and Exchange Commission requirements. Consequently, setting a 
uniform number of observations for each regression is not possible because, unlike mutual funds, which 
have years of daily returns, observations are limited to the short account lives. Age is not included as a 
control variable in equations (3) and (4), because there is no significant variation in the distribution to 
provide explanatory power. To test the sensitivity of our results, we performed all analyses in this paper 
using age as a control variable, and the results remained quantitatively similar. Furthermore, age provided 
no explanatory power in every specification. 
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time period; TRft_nis the logarithmic transformation of lagged R2 obtained from model 

(1) for the first time period; and Turnover^ is the turnover for account i, defined as the 

mean of the daily margin-adjusted market value of currency contracts divided by the 

daily capital amount and lagged alphait_n. The control variables Turnover, which 

captures the frequency of trading activity, and lagged alpha, which captures performance 

persistence and may reflect currency trading skill, are commonly employed in studies that 

examine professional fund performance (Cremers and Petajisto, 2009; Amihud and 

Goyenko, 2010) and individual investors (Odean, 1999; Barber and Odean, 2000). For 

example, Odean (1999) and Barber and Odean (2000) examine individual investors and 

discover that turnover is inversely associated with performance for buy-and-hold equity 

traders. Conversely, in our first essay we report that turnover is positively associated 

with performance for high-frequency currency traders. The positive association arises 

due to frequent feedback received by high-frequency traders. As traders receive positive 

feedback, by earning profits on their trades, they increase trading, thus increasing 

performance. Since we analyze the same sample in this essay as in the first essay, it is 

hypothesized that feedback, proxied by turnover, will have a positive association with 

performance. 

3.3.2. Data and Sample Selection 

The primary data set for this research consists of the daily returns from an online 

advisory service that records data for individual investors that trade spot currencies. An 

online advisory service is a financial innovation where individual investors post their 

trading activity online for other investors to view (Fonda, 2010). Fonda (2010) reports 

that online advisor websites such as Covestor and ka-Ching have thousands of 
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subscribers, and users who visit the online advisory website can use posted transaction 

data to manage their own trading accounts. Advisory service websites also contain 

discussion forums where investors can share strategies, discuss the markets, and provide 

critical feedback. Furthermore, these websites contain charts of daily returns and 

performance metrics such as the Sharpe ratio and account rankings, so traders can gauge 

their performance relative to their peers. This creates an environment where individual 

currency traders not only attempt to earn abnormal returns but also compete against their 

peers. The most unique aspect of this industry is that, unlike professionally managed 

funds, which are not required to disclose trading activity, online advisory websites are 

completely transparent. This, in turn, provides a very detailed database of transaction 

data, including each individual trader's name, a unique account identification number, a 

description of the account, when the position was opened and closed, the open and close 

prices, whether the position was short or long, the number of contracts opened and 

closed, and the net profit and loss in US dollars. The sample consists of 428 accounts 

from March 2004 to September 2009. These data are supplemented with data for the 

four-factor currency model, obtained from the DB's online database of investable indices, 

the DBIQ. 

Table 3.1 provides summary statistics for the accounts. Panel A presents the 

descriptive statistics for the dependent and independent variables and Panel B shows their 

correlation coefficients. Panel A of Table 3.1 reveals that the alpha from the four-factor 

model for the currency traders in this sample is negative (-0.183 percent per day), which 

means that the average trader in this sample loses money. Furthermore, the distribution 

of alpha is right skewed, showing that alpha is concentrated on negative returns. The 
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result that the currency traders in this sample are not producing positive excess returns is 

also supported by a mean IR of -0.08. The distribution of IR is more symmetric than that 

of alpha and negative, which reveals that accounting for risk, as measured by the root 

mean squared error in the IR formula, normalizes the performance of the individual 

currency traders in this sample. It is notable that the mean R2 for the estimation period t 

- n to t - 1 is 0.192, which demonstrates that approximately 19.2 percent of the risk-

adjusted returns of this sample are explained by the four-factor model. This value for R2 

shows that the currency traders in this sample actively manage their portfolios by 

tracking benchmark portfolios less closely, indicating greater selectivity. 

The correlation coefficient of 0.926, as shown in Panel B of Table 3.1, displays 

the strong association expected between R and TR , the logistic transformation of R . 

The only other notable association is between IR and alpha, with a correlation coefficient 

of 0.581. This result is not surprising, since both variables are the primary proxies for 

performance and alpha is in the numerator of the formula for IR in equation (2). 

***Insert Table 3.1 about here*** 

3.4 EMPIRICAL RESULTS 

The analysis now focuses on the association between investor performance and 

R2. To examine this relation, we regress the estimated alpha from equation (1) and IR 

from equation (2) on the fund's lagged TR , as shown in equations (3) and (4). 
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3.4.1. Fund alpha performance 

The central prediction under the skilled investor hypothesis is that future alphas 

will have a negative association with lagged R2. Table 3.2 presents the results of the 

regression of alpha and 77? on 77? and the control variables Turnover and lagged alpha. 

These equations are estimated for the entire sample of 428 accounts from March 2004 to 

September 2009. 

***Insert Table 3.2 about here*** 

The results in Table 3.2 show that R is not a strong predictor of alpha, which is 

inconsistent with the skilled investor hypothesis. In Panel A of Table 3.2, the results for 

equation (3), where alpha is the dependent variable, show that the coefficient of 77? is -

0.011 (t-statistic = -0.06) for specification (1), which contains all of the control variables. 

Specification (2), which has 77?2 as the sole explanatory variable, has a coefficient of 

0.022 (t-statistic = 0.13). Both are statistically insignificant. This result is consistent 

with previous studies that analyze the performance of individual investors and imply that 

following benchmarks leads to increased performance (Odean, 1999; Barber and Odean, 

2000). Furthermore, the results are inconsistent with Amihud and Goyenko (2010), who 

find that 77?2 is a predictor of future performance for professional mutual fund investors, 

and do not support the hypothesis that the future performance of individual investors is a 

function of lagged R . It is notable that the coefficient for lagged alpha is 0.132 and 

significant (t-statistic = 1.96), which reveals that performance is persistent when the full 

sample is analyzed, and this implies these traders have skill. The coefficient for Turnover 

is 0.002 and significant (t-statistic = 2.07), which reveals that performance increases as 
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turnover increases. This result is similar to those presented in the first essay that supports 

feedback trading: As traders receive more positive feedback via winning trades, they 

increase their trading activity, which in turn increases performance. 

We run two additional regressions, employing equation (4) with IR as the 

dependent variable. Panel B of Table 3.2 presents the results for specification (1) with IR 

as the dependent variable and Turnover and lagged alpha as controls, and specification 

(2) with TR
2 as the sole explanatory variable. The results in Panel B of Table 3.2 are 

similar to those in Panel A of Table 2, which uses alpha as the dependent variable. Here 

TR
2 has a negative coefficient, -0.026, that is statistically insignificant (t-statistic = -1.24). 

This result does not support the skilled investor hypothesis, which states that R is a 

predictor of future performance. Furthermore, this result is confirmed by specification 

(2), where the coefficient for TR
2 is -0.028 and also not reliably different from zero (t-

statistic = -1.32). Thus far, R2 does not predict future performance for the individual 

currency traders in this sample. It is also notable that the coefficient of 0.00 for Turnover 

is not significant when IR is the dependent variable (t-statistic = -0.670). This reveals 

that when accounting for idiosyncratic risk, performance is not positively associated with 

trading activity. Consequently, although performance modeled as alpha may increase as 

turnover increases, these traders encounter more risk when Turnover increases. 

Overall, these results are consistent with the individual investment stream of 

research that documents that individual investors who actively manage their portfolios 

and deviate from the benchmarks hurt their performance (Odean, 1999; Barber and 

Odean, 2000; Glaser, 2003; Coval, Hirshleifer, and Shumway, 2005). Hence, our results 
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thus far imply that individual currency traders would have better performance if they 

followed the factors of the currency model and they lack skill as proxied by R2. 

3.4.2. Modeling on performance sorts 

Next we test the sensitivity of our results on performance sorts based on the 

significance of alphas from the four-factor currency model. This is mainly motivated by 

two reasons: First, previous studies examining the performance of professional currency 

traders show that there is variation in the cross section of performance and that R is 

inversely associated with performance (Pojarliev and Levich, 2008, 2010a). The second 

reason stems from the results of the first essay, which indicate that there is cross-sectional 

variation in the performance of individual currency traders. 

We replicate the previous regression analysis by sorting the sample into quartile 

ranks on alpha significance. One explanation for the lack of support for the skilled 

investor hypothesis is that the currency traders in this sample all underperform. As 

shown in Table 3.1, the average currency trader earns an alpha of-0.183 percent per day. 

If, in the aggregate, currency traders underperform, the results will be biased toward 

rejecting the skilled investor hypothesis. If low-performing currency traders bias the 

results, the worst-performing currency traders should have the same results as before, an 

insignificant coefficient for TR
2
. This would provide additional evidence against the 

skilled investor hypothesis. Conversely, it is possible that the currency traders in the top-

performing quartile are skilled (as shown in the first essay), and thus their success is due 

to active management. If so, there should be a negative and statistically significant 

association between R2 and future performance for the top currency traders in this 

sample. 
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We next form quartile performance ranks as follows. Alpha is estimated using 

equation (1), and all 428 accounts are ranked by their alpha significance. Currency 

traders are then categorized into four portfolios based on their alpha t-statistic rank, 

where each portfolio contains 107 accounts. Similar to the previous analysis, we then 

estimate regressions for each portfolio with the logarithmic transformation of R as the 

independent variable (TR
2
) and alpha in equation (3) and IR in equation (4) as the 

dependent variables. Table 3.3 presents the results. Quartile 1 contains the best-

performing currency traders and quartile 4 contains the worst-performing ones. Quintile 

and decile sorts provide similar results. 

***Insert Table 3.3 about here*** 

A notable observation in Panel A of Table 3.3 is that the coefficient for TR
2 is 

statistically insignificant in every quartile, providing additional support that active 

management by individual currency traders is not associated with future performance. 

Furthermore, the sign of the coefficient changes across rankings: positive for quartiles 1 

and 4 but negative in quartiles 2 and 3. This result indicates there is no discernable 

pattern between lagged R and future performance when sorting on currency trader 

performance. Thus, underperformance is not biasing the results. 

Panel B of Table 3.3, which displays the results of equation (4), where IR is the 

dependent variable, provides additional evidence against the skilled investor hypothesis. 

The coefficient for TR
2 in quartile 1 (best performers) through quartile 3 is positive and 

statistically insignificant. Furthermore, there is no reliable pattern moving from quartile 
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1 to quartile 4. If underperformance is driving the insignificant coefficient for TR in the 

full-sample analysis, then in the cross section the lowest-performing currency traders 

would have an insignificant coefficient for TR
2
, while the top-performing traders would 

have a negative and statistically significant coefficient for TR
2
. This is not, however, 

borne out in the data. It is also notable that the coefficient of TR
2 in quartile 4 is -0.80 

and significant (t-statistic = -2.00). This result is supportive of the skilled investor 

hypothesis, but is significant only for the worst-performing currency traders, who do not 

possess skill. The lack of skill of the traders in quartile 4 is also supported by the 

statistically significant negative coefficient of-0.052 for lagged alpha (t-statistic = -2.21). 

This reveals that a trader who earns a positive alpha of 1 percent in the first period will 

earn a negative -0.52 percent in the next period, implying unstable performance. 

Consequently, despite the sole significant coefficient for TR
2 in quartile 4, the results do 

not collectively support the skilled investor hypothesis. 

3.4.2. Modeling on turnover and trade activity sorts 

Previous studies show that individual investors trade frequently and that this hurts 

their performance (Odean, 1999; Barber and Odean, 2000; Coval, Hirshleifer, and 

Shumway, 2005). It is possible that there is variation in the cross section when currency 

trader accounts are sorted on trade activity. The skilled investor hypothesis predicts that 

the most active traders will have superior return performance relative to their peers who 

are less active in managing their currency portfolios. This hypothesizes that the 

coefficient for TR
2 will be negative and statistically significant for the most active 

currency traders in this sample. 
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To test whether trade activity has any association with the predictive ability of R2, 

we first calculate trade activity, utilizing daily data. Trade activity is proxied by (i) the 

mean number of roundtrip trades executed for each account per day and (ii) account 

turnover, calculated as the mean of the daily margin-adjusted market value of roundtrip 

transactions per day divided by the daily amount of capital. Next we divide the accounts 

into quartiles, with quartile 1 containing the most active traders and quartile 4 containing 

the least active traders. Each quartile contains 107 accounts. Finally, for each quartile 

we regress TR
2 and the control variables on the two performance measures, alpha in 

equation (3) and IR in equation (4). Table 3.4 presents the results for sorts on trade 

activity proxied by the mean number of roundtrip transactions per day, and Table 3.5 

presents the results for quartile sorts on turnover. 

3.4.2.1. Modeling on trade activity proxied by mean trades per day 

Panel A of Table 3.4 presents the results for equation (3), where alpha is the 

dependent variable, and Panel B presents the results for equation (4), where IR is the 

dependent variable. Overall, the results support the previous analyses that reject the 

skilled investor hypothesis. A review of quartiles 1 through 4 in Panel A of Table 3.4 

reveals that TR
2 has no predictive ability for alpha. All of the coefficients for TR

2 are 

insignificant. An interesting observation is that TR
2 appears to follow a linear pattern 

when we sort on trade activity. The least active traders in quartile 4 have the lowest 

(negative) TR
2 coefficient, which increases up to quartile 1, where it is positive. 

Although the coefficients are statistically insignificant, this linear pattern reveals that as 

traders become more active, the closer R moves to unity, increasing performance. 

Similar to the results of Odean (1999), who analyzes the performance of equity investors, 
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this finding provides additional support that individual traders can increase their 

performance if they simply follow the benchmarks. 

Another remarkable observation in Panel A of Table 3.4 is that turnover is 

statistically significant for all four quartiles. The economic significance of quartile 1 is 

particularly remarkable: A 1 percent increase in trade activity increases alpha by 0.015 

percent per day (t-statistic = 8.32). This reveals that certain traders are skilled in one 

aspect and can increase performance by increasing the number of trades per day. This 

result is similar to those of the first essay, which shows that individual currency traders 

respond to feedback. Furthermore, the coefficient for trade activity is positive, meaning 

that the traders in this quartile can increase performance by actively managing their 

portfolios, but instead they increase performance by following strategies that closely 

track the benchmarks, which in turn increases R . This is why 77? is positive (although 

insignificant). 

***Insert Table 3.4 about here*** 

The results in Panel B of Table 3.4 for equation (4) with 77? as the dependent 

variable also indicate that 77?2 has no predictive ability for future performance. None of 

the coefficients for 77?2 are reliably different from zero. It also appears that there is no 

strong linear relation between 77? and 77?, unlike the results presented in Panel A of 

Table 3.4 when alpha is the dependent variable. 

The only coefficient that is statistically significant is the lagged alpha in quartile 

4, which contains the least active traders. The economic significance of the coefficient 
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for the lagged alpha, -0.065 (t-statistic = -3.10), demonstrates that if a trader has a 

negative (positive) alpha of 1 percent per day in the first period, that trader will have a 

positive (negative) alpha of 0.065 percent per day in the next time period. This reveals 

that the performance of the least active traders is not persistent, and this result is similar 

to those reported in Table 3.3, which presents performance sorts. 

A noteworthy observation when comparing the results of Panels A and B in Table 

3.4 is that Turnover is statistically significant for all four specifications when alpha is the 

dependent variable, as shown in Panel A, yet it is insignificant when IR is the dependent 

variable, as shown in Panel B. A likely explanation for this is that IR, which accounts for 

the idiosyncratic risk (the squared root of the variance), reduces the explanatory power of 

Turnover. Thus, as traders increase Turnover, proxied by the mean number of roundtrip 

transactions per day, performance is not increased, because these traders are exposing 

themselves to more risk. This implies that these traders may be taking excessive risks, 

which deteriorates future performance. This result is not surprising, since the traders in 

this sample are trading currency spot contracts on margin. 

3.4.2.2. Modeling on trade activity proxied by turnover 

To test the sensitivity of our results on trade activity proxied by mean trades per 

day, we next examine accounts sorted on Turnover, calculated as the daily mean value of 

the margin-adjusted market value of all roundtrip transactions per day divided by the 

daily amount of capital. This is done because turnover is used in previous studies that 

examine investor performance, which show a negative association between turnover and 

individual equity investor performance (Odean, 1999, Barber and Odean, 2001; Barber et 

al., 2005). Quartile sorts are created in the same manner as trade activity, proxied by the 
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mean number of roundtrip transactions, as presented in Table 3.4. Quartile 1 contains the 

most active traders and quartile 4 contains the least active. Table 3.5 presents the results 

for turnover ranks. 

Panel A of Table 3.5 contains the regression results from equation (3), where 

alpha is the dependent variable. The results are similar to ours when turnover is proxied 

by the mean number of roundtrips per day reported in Table 3.4. None of the coefficients 

for TR
2 are reliably different from zero. The only significant coefficients are for 

Turnover and lagged alpha. The coefficient for Turnover in quartile 1 is 0.008 and 

significant (t-statistic = 3.10). Currency traders who increase their turnover by 1 percent 

can increase alpha by 0.008 percent per day. This supports the calibration hypothesis 

from our first essay, that is, traders who receive timely feedback on their performance 

will increase their trading, which in turn increases their performance. It is also notable 

that the coefficient for lagged alpha is 0.185 (t-statistic = 2.29) for quartile 3 and 0.587 (t-

statistic = 7.23) for quartile 4. The alpha coefficient remains positive for quartiles 1 and 

2 but is not statistically significant. This reveals that the performance is persistent only 

for the two least active quartiles of traders when ranked on turnover. 

***Insert Table 3.5 about here*** 

Panel B of Table 3.5 contains the regression results where IR is the dependent 

variable. Similar to the results for alpha in Panel A of Table 3.5, the results for IR 

provide additional evidence against the skilled investor hypothesis. None of the 

coefficients for TR
2 are reliably different from zero. The only other significant 
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coefficient is for lagged alpha in quartile 4, indicating that the least active traders have 

persistent performance in this case. The lagged alpha has a coefficient of 0.359 and is 

statistically significant (t-statistic = 6.14). This implies that underperforming currency 

traders continue to underperform. 

Overall, the results, regardless of specification, uniformly show that the lagged 

logarithmic transformation of R fails to predict performance in the next period, revealing 

that currency traders cannot outperform mimicking portfolio benchmarks. Individual 

investors may be active traders, but active management of their currency accounts does 

not necessarily lead to superior performance. 

3.4.2. Robustness checks with R as the explanatory variable and accounts with R < 

0.05 removed 

We now perform two robustness checks to ensure the uniformity of our results. 

First, following Amihud and Goyenko (2010), we replicate the previous analysis by 

estimating equations (3) and (4) with R2 instead of its logarithmic transformation (TR
2
). 

Second, we truncate the sample and remove 69 accounts with a four-factor R < 0.05, 

leaving 359 accounts from the full sample of 428 accounts. This step is carried out 

because Amihud and Goyenko (2010) state that very low R2 values can signify that 

investors are using alternative or outlier strategies, which can bias the results. Panel A of 

Table 3.6 presents the results of equations (3) and (4) with R as an explanatory variable, 

and Panel B presents the results when accounts with R < 0.05 are removed. 

The results in Table 3.6 do not support the skilled investor hypothesis. The 

coefficient for R2 in Panel A is 0.044 (t-statistic = 0.07) for equation (3), where alpha is 

the dependent variable, and the coefficient for R is -0.096 (t-statistic = -1.22) for 
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equation (4), where IR is the dependent variable. Neither coefficient is reliably different 

from zero, indicating that R2 does not predict future performance. 

***Insert Table 3.6 about here*** 

Panel B of Table 3.6, for accounts with R < 0.05 removed from the sample, 

reports results similar to those of all of our previous analyses, which uniformly reveal 

that R2 has no explanatory power for future performance. The coefficient for TR for the 

alpha specification is a positive 0.034 and statistically insignificant (t-statistic=0.13). The 

result for the IR specification shows a coefficient of -0.019 for TR
2
, which is also not 

reliably different from zero (t-statistic = -0.59). Overall, the results demonstrate that 

individual investors who deviate from the benchmarks do not have superior alpha-

generating abilities. This result remains the same when R is used as an explanatory 

variable and when accounts with R2 < 0.05 are removed. 

3.4.3. The persistence of performance and selectivity 

We now examine the persistence of performance and selectivity to gain additional 

insights into why certain individual currency managers can earn significant alphas, as 

reported in the first essay and which implies they have skill, yet R does not predict 

performance, which infers managers lack proficiency in trading currencies. Amihud and 

Goyenko (2010) test the persistence of R2 and state that performance should be stronger 

if a fund's strategy with respect to selectivity is stable and persistent. If individual 

currency traders possess skill, then we hypothesize that lagged alphas should be 

positively associated with future alphas. Similarly, if currency traders are skilled and 
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have persistent performance, active management, proxied by R , should also be stable 

and persistent. 

To test whether there is a positive association between lagged and future 

performance and lagged and future R2, we estimate equation (1), the four-factor currency 

model, for each time period, similar to our previous analysis. Once we obtain the alphas 

and R values from each period, we regress alpha and R from the second time period on 

lagged alpha and R2 values, respectively. Similar to our quartile performance sorts 

presented in Table 3.3, we form quartile portfolios with ranks based on alpha 

significance. Each quartile contains 107 accounts. If the currency traders in this sample 

lack skill, we hypothesize that the coefficients for lagged alpha and lagged R will be 

insignificant for all quartiles. However, if the top-ranked traders in quartile 1 do possess 

skill, as shown in the first essay, the coefficients for lagged alpha and lagged R2 will be 

positive and significant. 

In addition to examining persistence for the full sample, we also examine 

persistence for all accounts with over 80 days of return data. This is done because one 

limitation of the data is the short account life span. As reported in Table 3.1, the mean 

account age is 81.921 days. Removing all accounts with fewer than 80 days of daily 

return data helps mitigate biases due to short life span. For robustness controls, we also 

perform the analysis with 90-, 100-, and 120-day cutoffs, with quantitatively similar 

results. 

Panel A of Table 3.7 reports the full-sample results for the persistence of 

performance and active management, proxied by R2, and Panel B reports the results when 

accounts with fewer than 80 days of daily return data are removed. 
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***Insert Table 3.7 about here*** 

The results of the persistence of alpha reveal no persistence across performance-

sorted quartiles. It is notable that the coefficients for lagged alpha and lagged R2 are 

insignificant in quartile 1 (the top performers). As reported in our first essay, this group 

of traders is able to earn positive and significant alphas. Here we report that their 

performance is marginally persistent at the 11 percent level of confidence (t-statistic = 

1.63). It is important to note that selectivity, proxied by R2, is significantly persistent for 

three out of four quartiles. These results can help explain why R2 has no predictive 

power for future performance. Although for the full sample selectivity can remain stable 

over the two time periods, alpha is not persistent. Thus, a low (high) R2 in one period 

may not be associated with a high (low) alpha in the next period because performance 

changes over time across performance quartiles. 

It is also important to emphasize that the traders in this sample have a limited 

number of daily return data (as shown by the account age in Table 3.1), unlike the mutual 

fund data analyzed by Amihud and Goyenko (2010), which have hundreds of 

observations for each account. The low number of daily observations can bias the results. 

Thus, we report the results for the persistence regressions in Panel B of Table 3.7, where 

we remove all accounts with fewer than 80 days of daily return data. 

For the top performers in quartile 1, the coefficient for lagged alpha is 1.185 and 

significant (t-statistic = 4.51). This augments the results from our first essay, which 

reports that the top 25 percent of traders earned a significant alpha of 0.59 percent per 
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day, by showing that the ability to generate positive alphas is persistent, at least for the 

top quartile of account holders who have longevity over 80 days. Another remarkable 

observation is that R2 does not remain significant when accounts under 80 days old are 

removed. In fact, all coefficients are insignificant, revealing that the individual currency 

traders in this sample change their strategies over time. This result also provides more 

support for why R2 does not predict future performance. Amihud and Goyenko (2010) 

emphasize that performance should be stronger if selectivity is stable and persistent. 

However, we witness the opposite here, where performance is stronger for the top traders 

in this sample yet selectivity is not persistent. This finding reveals that it is possible to 

earn positive and significant alphas with a strategy that is not stable over time, which 

undermines the basic premise of using R as a predictor of performance. 

The lack of persistence of selectivity and the persistent performance of top-

performing account holders with longevity over 80 days can be explained by studies that 

have examined popular currency trading styles. Recent empirical research reveals that 

currency trading strategies can become crowded, causing profitable strategies to become 

unprofitable, and this implies that a stable R2 will not lead to superior performance 

(Pojarliev and Levich, 2008; Baillie and Change, 2010). Pojarliev and Levich (2010b) 

analyze how carry trades can become crowded, which leads to deterioration in 

performance, and discover an inverse association between style crowdedness and future 

performance for the carry trade. This implies that currency traders who change their 

strategies over time may have higher returns than currency managers who follow the 

same strategy. 
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3.4.4. Skill measured by the percentage of winning trades and drawdowns 

We next determine whether the traders in this sample possess skill by conducting 

two alternative tests. Our analysis so far has revealed that R does not predict future 

performance for individual currency traders. This implies that currency traders who 

deviate from the benchmarks described by the currency model of Pojarliev and Levich 

(2008) do not increase their performance, and hence the evidence seems to suggest that 

they are not skilled traders. On the other hand, our analysis also shows that the top-

performing currency traders have superior alpha-generating abilities, implying they have 

skill, and their performance is persistent, which reveals that their ability to generate 

positive abnormal returns remains stable over time. To examine the skill of these traders 

in a more direct fashion, we first examine individual transactions to determine whether 

their performance is determined by skill or luck and then examine drawdown to find out 

whether individual currency traders possess skill in moderating losses. 

To determine whether individual currency traders are skilled, we examine the 

percentage of winning trades for each account and then determine whether this 

percentage is statistically different from chance (a 50 percent win percentage). We start 

by counting the number of winning and losing trades for each account, where winning 

trades are defined as trades with a net profit greater than zero and losing trades are those 

with a net loss equal to or less than zero. The percentage of winning trades is the number 

of winning trades divided by the total number of trades per account. We then examine 

the full sample and performance-ranked quartiles (similar to our performance-based sorts 

above), with each quartile containing 107 accounts. The null hypothesis is that the 

percentage of winning trades will not be statistically different from chance (50 percent). 
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We estimate t-statistics to determine the statistical significance. Table 3.8 presents the 

results of the analysis of individual trades. 

***Insert Table 3.8 about here*** 

Panel A of Table 3.8 reports the full-sample results and shows that, on average, 

currency traders have winning trades 53.97 percent of the time, which is reliably different 

from 50 percent (t-statistic = 53.97). This supports the argument that the traders in this 

sample possess skill. 

Panel B of Table 3.8 reports the results for the quartile performance sorts. 

Quartile 1, which contains the top-performing currency traders, shows that this group 

earns a profit on 66.78 percent of their trades, which is significantly different from 50 

percent (t-statistic = 9.65). Quartile 2 traders earn a profit on 58.50 percent of their trades 

(t-statistic = 4.64). Quartile 3 traders have winning trades 48.33 percent of the time, 

which is not statistically different from 50 percent. Finally, the lowest-performing 

currency traders in quartile 4 are not skillful. They earn a profit, on average, on 42.26 

percent of their trades, and this is significant (t-statistic = 4.50). 

Next we examine skill by focusing on drawdowns. This test is expected to reveal 

the extent individual currency traders are able to moderate their losses. If top traders are 

skilled, it is expected they will mitigate their losses and thus have a lower drawdown than 

the worst-performing traders. To address this issue, we define drawdown as the 

maximum daily loss, proxied by the daily percentage return, for an individual currency 

trader. The evidence from our drawdown analysis will also permit us to compare our 
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findings with those of Melvin and Shand (2011), who examine drawdown performance 

for professional currency traders and find that some professional currency traders are 

adept at moderating losses. Table 3.9 presents the results: Panel A reports the full-

sample results for all 428 account and quartile rankings based on the significance of alpha 

from the Pojarliev-Levich (2008) four-factor currency model. Panel B presents the 

results for account holders with age over 80 days with similar rankings on performance. 

We also report the difference in means between the top performers in Ql and the worst 

performers in Q4 for both the full sample and the age-truncated sample. 

For the full sample of 428 accounts, the evidence reveals that the full-sample 

mean drawdown is -16.81 percent. The quartile ranks of the full sample show that the top 

performers have a mean daily drawdown of -16.07 percent. This is lower than the worst 

performers in Q4, who have a mean daily drawdown of -19.15 percent, and also lower 

than Q3 traders, who have a mean daily drawdown of -16.84 percent. It is notable that 

Q2, which contains the second highest group of performers, has a lower drawdown, -

15.19 percent, than the top performers. Although the top performers in Ql have a 

drawdown that is 3.08 percent lower than the worst-performing traders in Q4, the 

difference is not statistically significant (t-statistic = 1.29). 

***Insert Table 3.9 about here*** 

Panel B of Table 3.9 reports the results for the truncated sample, where we 

remove currency account holders with account lives under 80 days. This is done because 

it was noted above that the performance of the top traders with lives greater than 80 days 
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had persistent performance. The persistence of performance may result from the traders' 

ability to mitigate downside losses. Panel B of Table 3.9 reveals that the top quartile of 

traders does have the lowest drawdown of -16.02 percent, and there is a linear trend 

moving from the top performers in Ql to the worst performers in Q4. Drawdown 

decreases as performance increases, and this implies skill. Despite this increase, the 

difference between Ql and Q4 is 3.89 percent, still insignificant (t-statistic = 1.08). 

In summary, the analysis of individual currency trades shows that a sizable 

percentage of traders in this sample are able to beat the odds and earn a profit on their 

trades, significantly different from pure chance. This implies these traders possess skill. 

Furthermore, the analysis of drawdown reveals that the top-performing traders have a 

better ability to mitigate downside losses than the worst-performing traders (i.e., they 

have lower drawdown than the worst-performing traders), yet the difference is not 

significant. These results, in conjunction with the results of the persistence of alpha 

presented in Table 3.7, demonstrate that approximately 25 percent of the traders in this 

sample are able to earn significant and stable abnormal returns, and not due to luck. 

3.4.5. Skill measured by timing ability 

Melvin and Shand (2011) argue that the ability of currency traders to time their 

exposure to systematic factors is an important contribution to performance. The authors 

examine the returns of professional currency traders and find there is some evidence of 

timing ability among professional currency managers. Specifically, they show that out of 

the 42 currency managers analyzed, 13 timed the carry trade, five timed the PPP, and 

nine timed momentum factors. 
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Our final inquiry of skill, then, explores the ability of individual currency traders 

to time the Pojarliev-Levich (2008) currency factors. Consequently, if the individual 

currency traders in our sample possess skill, they should also exhibit timing abilities. 

Following Melvin and Shand (2011), we test the timing abilities of the individual 

currency traders by estimating the following equation: 

rj,t = aj + Y.Uht[ht\ht > 0] + Y?i=iYi,t[ht\Pi,t < 0] (5) 

where r is the return of individual currency trader j at time t, F is the return associated 

with factor i, and the factors are decomposed into positive and negative return 

observations. Individual currency trader timing ability is inferred from whether traders 

load positive (negatively) on the factors when factor returns are positive (negative). We 

estimate this regression for all 428 accounts. For the sake of brevity, and since our main 

inquiry is whether the coefficients are significant, we report a summary of all significant 

coefficients (at the 5 percent level of significance) in Table 3.10. The full sample result 

for all 428 accounts is available from the author. 

The results of the timing model, reported in Table 3.10, support that some traders 

in this sample possess skill at timing the Pojarliev-Levich (2008) factors. We first focus 

on the coefficients associated when the carry trade has a positive return (CarryPos). As 

can be seen, 36 individual currency traders (8.41 percent) timed the carry trade. This 

implies that 36 traders have skill at timing the carry trade when the carry trade earns a 

positive daily return. A total of 54 individual currency traders have significant 

coefficients when the carry factor earns negative returns (CarryNeg), suggesting that a 

sizable percentage, 12.62 percent of all individual traders, have the ability to successfully 

time the carry trade when it earns negative returns. 
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The last column of Table 3.10 reports the percentage of coefficients that is 

significant for each Pojarliev-Levich (2008) factor. The coefficient with the lowest total 

percentage of significance is negative momentum (MomNeg), at 7.71, which implies that 

33 out of 428 accounts were able to time momentum. The coefficient CarryNeg has the 

highest percentage, at 12.62 percent. It is interesting to note that Melvin and Shand 

(2011) report that five out of 42 (approximately 11.9 percent) of professional currency 

traders successfully timed the PPP (referred to the value trade in this essay), 13 timed the 

carry (30.95 percent), and nine timed momentum (21.4 percent). Here we report that 

approximately 17.29 percent of the individual traders successfully timed the value trade 

(ValuePos and ValueNeg), 17.52 percent timed momentum, and 21.03 percent timed 

carry. Although a direct comparison between the professional traders in the study of 

Melvin and Shand (2011) and our sample warrants caution, our results suggest that 

individual currency traders have somewhat similar timing ability skills to those of 

professional currency traders. 

***Insert Table 3.10 about here*** 

3.4.6. Discussion 

The results of the analysis of spot currency trades and the persistence of alpha are 

not supported by the results of the predictability of R regressions. One possible reason 

for this discrepancy is the relevance of the currency model of Pojarliev and Levich (2008) 

in the context of individual spot currency traders. In a recent study, Melvin and Shand 

(2011) examine the limitations of the four-factor currency model. They note that, unlike 

equity markets, currency markets have no established market portfolio, buy-and-hold 
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portfolios do not exist due to the long/short characteristic of currency trading, and 

alternative methods of construction of the factors can lead to different results. In the 

context of this essay, the threshold issue thus becomes whether the four-factor currency 

model is appropriate for the analysis of individual spot currency traders. Pojarliev and 

Levich (2008, 2010a) show that the four-factor model does an exceptional job of 

explaining the returns of professional currency managers. This demonstrates that 

professional currency traders are utilizing trading strategies that mimic the factors, 

namely, the carry, value, and momentum trades. However, the individual currency 

traders in this sample are high-frequency spot traders, and they may not be utilizing 

trading strategies based on carry, value, or momentum benchmarks. It is possible the 

four-factor currency model does not provide sufficient explanatory power for the returns 

of individual currency traders. Furthermore, an alternative specification of the currency 

factor model may lead to different results (Melvin and Shand, 2011). 

To investigate these issues, we perform two additional tests. First, we estimate 

four-factor regressions in equation (1) on all individual 428 accounts to determine 

whether the four-factor model provides sufficient explanatory power for the returns of 

individual currency traders. Second, we estimate an alternative specification of equation 

(1), using the Deutsche Bank Currency Return Index (DBCR) as our explanatory 

variable. 

We now summarize our findings of equation (1) on 428 individual accounts. Due 

to the breadth of the results, we present a summary of the full sample results below. 

Regression results for all 428 accounts are available from the author. The most salient 

observation is that the mean R2 is 0.11 (standard deviation = 0.10), which reveals that the 
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four-factor model explains approximately 11 percent of the returns of the high-frequency 

9 9 

traders. This R value is low, but a closer examination reveals that R ranges from a 

minimum of 0.001 to 0.59, which indicates that some individual spot currency traders 

utilize the carry, value, and momentum trades, since the model explains a significant 

portion of the return distribution for some individual currency traders in this sample. The 

issue of low R values is addressed in Table 3.6, where all accounts with an R below 

0.05 are removed. As reported in Table 3.6, the results remain quantitatively similar to 

those of our full-sample regressions. Thus, it seems unlikely that a low coefficient of 

determination will bias this study's results. 

Next we test the sensitivity of the results to an alternative benchmark. To do so, 

we execute equation (1) with the DBCR as the sole explanatory variable. The DBCR is 

an investable index that consists of currencies and represents a passive benchmark that 

currency traders can utilize to manage their funds. We repeat the analysis above and, for 

the sake of brevity, only present the full-sample results for equations (3) and (4) in Table 

3.11. All the results remain quantitatively similar to those reported earlier when the 

DBCR is the sole risk factor. 

Table 3.11 presents the results of equations (3) and (4) that test whether the 
9 • * 9 

logarithmic transformation of R predicts performance. The primary result is that 77? is 

insignificant for both specifications. This result is similar to those of all the previous 

analyses using the four-factor currency model. Lagged R does not predict future 

performance for the individual currency traders in this sample. It is also notable that 

lagged alpha is positive and significant for both the alpha and 77? specifications, which 
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reveals that performance is persistent. This implies that, on average, the currency traders 

in this sample have stable returns and are adept at trading spot currencies. 

***Insert Table 3.11 about here*** 

A secondary issue that can affect the results is account holder longevity. Table 3.1 

reports that the mean age for each account is 81.92 days. One explanation for the short 

lives of currency traders is that this group of traders posts their trades online, where there 

are no barriers to entry or exit. Account holders can open and close their accounts with 

ease and migrate from one website to another. There is no way to track why currency 

traders leave the platform, and we are unable to report on their performance once their 

results are no longer in the database. To test the robustness of our results, we remove all 

accounts with fewer than 80 days of daily return data, and the results remain similar to 

the full-sample results. Consequently, the age of the accounts does not seem to bias the 

results presented in this essay, although an examination of other samples of individual 

currency traders who post their results online will provide future insight into their 

performance and trading characteristics. To date, no other such data source is available 

to this author. 

3.5. CONCLUDING REMARKS 

This essay tests whether individual currency traders are skilled. We do this by 

examining whether the future performance of individual currency traders is predicted by 

R2, as obtained from the Pojarliev-Levich (2008) four-factor model. Prior research 
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shows that a lower R2 value is a measure of active management, or fund selectivity, 

revealing that fund managers do not passively follow the benchmark index. The R2 value 

is negatively associated with future fund performance in professionally managed mutual 

funds, as measured by fund alpha and the fund IR. 

Previous studies are limited in that they focus on one segment of investors: 

professional investors, namely, hedge funds and mutual funds. This study fills a gap in 

the literature by analyzing individual investor currency traders. Using a unique database 

of daily return data for individual currency traders, we show that R2 does not predict 

future performance for all types of currency investors. These results remain robust to 

sorts on performance, turnover, and trade activity. Individual currency traders actively 

manage their accounts, yet, unlike for professional fund managers, R provides no 

predictive power for future performance. 

To examine this finding in more detail, we examine the persistence of 

performance and active management. We discover that when we truncate the sample by 

removing all accounts with fewer than 80 days of return data, performance is 

significantly persistent but selectivity is not stable. Consequently, although alpha is 

stable over time, implying that these traders possess skill, R changes, and thus there is no 

strong association between the variables, and this is a likely explanation why R does not 

predict future performance. 

Finally, we investigate skill by examining transaction data, drawdown, and timing 

ability. We find that approximately 50 percent of the individual currency traders in this 

sample are able to earn a net profit on their trades due to skill and not luck. Additionally, 

top-performing currency traders have lower drawdown than the worst-performing traders, 
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although the difference is not considerably dramatic. Individual currency traders also 

appear to have skill in timing currency factors. Interestingly, in comparison to the 

evidence of Melvin and Shand (2011), our results further suggest that individual currency 

traders have somewhat similar timing ability skills to those of professional currency 

traders. Overall, the results reveal that, despite R possessing no predictable power for 

currency traders, a sizable percentage of currency traders do possess skill at trading 

currencies. 

This study has broad implications for future research on trader performance. 

Studies using R2 as a predictor of performance should recognize that utilizing R2 as a 

determinant of performance may not apply to all samples of traders. Analysts and 

investors using R2 for fund selection and evaluation purposes must be aware that R does 

not always provide an accurate assessment of future performance. As shown in previous 

studies, a low R2 can be construed to mean that investors actively manage their funds by 

not following established benchmarks, which can lead to future positive performance. 

Conversely, as shown in this study, a low R can reveal that investors actively manage 

their funds, but this does not necessarily lead to a negative association between R and 

performance, because the traders change their strategies over time. 
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CHAPTER 4 

IS TECHNICAL ANALYSIS PROFITABLE FOR INDIVIDUAL CURRENCY 

TRADERS? 

4.1. INTRODUCTION 

It is widely recognized that technical analysis is a popular tool used by individual 

investors and currency traders (Taylor and Allen, 1992; Cheung and Chinn, 2001; Park 

and Irwin, 2004). In 1978, J. Wells Wilder published New Concepts in Technical Trading 

Systems, widely considered the definitive work on technical analysis. The use of technical 

analysis has since flourished, fostering an entirely new industry. For example, trade 

publications such as The Technical Analysis of Stocks and Commodities, popular trading 

websites, and virtually every security trading software platform has technical indicators. 

Numerous academic studies have shown that technical trading strategies can generate 

abnormal returns (Sweeny, 1986; Levich and Thomas, 1993; Cheung and Wong, 1997; 

Neely, 1997; Acar and Lequeux, 2001; Lee, Pan and Liu, 2001; Okunev and White, 

2003), yet not one of these studies analyzed the returns of professional or individual 

traders, these studies simply examine the performance of technical trading rules applied 

to currency rates. Consequently, it remains unclear whether the popular technical 

indicators such as the Relative Strength Index (RSI), Bollinger Bands (BB), Moving 

Average Convergence Divergence (MACD) and 8 and 18-day moving average crossover 

(MA) produce positive abnormal returns for individual currency traders. 

This essay addresses whether the use of technical analysis is positively associated 

with the performance of individual currency traders. To examine this issue, we develop a 
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factor model that consists of currency indices constructed for technical analysis. 

Specifically, we employ the four most popular technical trading indicators identified by 

Wilder (1978) and used in the TradeStation version 9.0 trading software platform, which 

is recognized as one of the most popular trading platforms used by frequent traders 

(Stocks and Commodities, 2010; Carey, 2011). We then examine a proprietary database 

of 428 individual currency traders over the period March 2004 to September 2009 to 

determine whether the use of technical analysis, proxied by R2 from our technical trading 

model, is positively associated with performance, modeled as alpha. Determining 

whether technical individual currency traders use popular technical indicators, and 

whether the use of these indicators is profitable, provides much needed insight into the 

source of profits and losses for individual currency traders. In our first two essays we 

reveal that individual currency traders are skilled. Specifically, we report the top quartile 

of individual currency traders earn positive abnormal returns of 0.59 percent per day. In 

our second essay we reveal that performance is significantly persistent for the top quartile 

of traders with account lives over 80 days and some individual currency traders have the 

ability to time the currency markets. Despite documenting the superior alpha generating 

abilities of these traders, the source of their skill is unknown. Investigating whether 

technical analysis is positively associated with performance will reveal if technical 

analysis is the source of individual currency trader profits or losses. This study is also 

motivated by previous studies that have found technical trading strategies can produce 

abnormal returns yet none of these studies examined the returns of individual currency 

traders. For example, Sweeny (1986) applies filter rules to nine currencies, Cheung and 

Wong (1997) analyze the profitability of filter rules on Asian currencies and Levich and 
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Thomas (1993) examine filter rules and moving averages on five currency futures 

markets. Analyzing the returns of individual currency traders allows us to overcome the 

shortcomings (i.e., data-snooping, ex post selection of trading rules, and difficulties in 

estimating transaction costs (Park and Irwin, 2004)) of previous technical analysis 

studies. Examining the association between net returns and technical analysis provides an 

accurate assessment of the profitability of technical analysis that is not plagued by the 

limitations of previous studies. 

To examine the cross-section of individual currency trader returns we develop a 

factor model with explanatory variables derived from four technical indicators, the 

Relative Strength Index, Bollinger Bands, Moving Average Convergence Divergence, 

and 8 and 18-day moving average crossover. The theoretical foundation of our model 

derives from Anson (2008), who posits that different types of beta exist. Beta can exist as 

a risk factor, under the traditional capital asset pricing model (CAPM), or it can consist of 

other factors in the market, for example, exposure to bonds, credit, or commodities. 

Extending the Anson (2008) beta logic, we develop a "technical currency model" that 

uses four popular technical indicators to create investable currency indices. Our approach 

is similar to that of Pojarliev and Levich (2008) who analyze the performance of currency 

hedge funds and set forth a factor model with factors that mimic common trading styles 

used by professional currency managers. If individual currency traders use technical 

analysis, factors constructed from technical indicators should provide explanatory power 

with respect to the cross-section of returns. To test the explanatory power of the technical 

currency model, we estimate regressions on both equal-weighted portfolios and on 

individual-account net returns for all 428 accounts in the sample. 
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We next investigate the association between technical analysis and performance. 

To examine this relationship, we regress the R2 of the technical currency model, our 

proxy for the utilization of technical analysis, on the alpha of the technical currency 

model, our proxy for performance. A high (low) R indicates a high (low) use of 

technical analysis. If technical analysis is positively associated with performance, we 

expect a positive relationship R and alpha. 

Our results are summarized as follows. The technical currency model provides 

little explanatory power when analyzing equally-weighted portfolios net returns. A likely 

explanation for the low explanatory power of the model is that equally-weighted 

portfolios mask the idiosyncratic trading styles of individual currency traders. However, 

the technical currency model satisfactorily explains the cross-section of returns when 

analyzing daily net returns of individual currency trader accounts. Our regressions of 

individual account holder returns indicate that approximately 20 percent of the 

coefficients for the technical currency model are statistically significant which reveals 

that individual currency traders in this sample utilize common technical indicators to 

trade spot currencies. Finally, our analysis of the association between the use of technical 

analysis and performance reveals that the use of well-known technical indicators is 

negatively associated with performance. This implies that currency traders who use the 

technical indicators employed in this study underperform relative to their peers who do 

not use these technical indicators. 

Our primary contribution is that we provide an explanation for the source of 

profits and losses of individual currency traders. Our results reveal that the use of popular 

technical indicators is detrimental to performance implying that individual currency 
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investors who seek superior performance may need to avoid the technical indicators 

examined in this essay. This is significant because a majority of currency traders use 

technical analysis (Taylor and Allen, 1992; Cheung and Chinn, 2001; Park and Irwin, 

2004) and our results imply that traders who do use popular indicators may hurt their 

performance. Additionally, the evidence reveals that there are other factors present in 

currency markets that can be used to explain the cross-section of returns for individual 

currency traders. Pojarliev and Levich (2008) develop a four-factor currency model that 

does an exceptional job of analyzing the returns of professional currency managers. 

However, Melvin and Shand (2011) reexamine the four-factor currency model and show 

that the construction of factors can change the results. This arises because of the unique 

characteristics of the currency markets: there is no buy-and-hold portfolio, no market 

portfolio, and currency trading involves both short and long positions. The gist of their 

article is that there is no generic trading strategy in the foreign exchange market and this 

implies that there are other factors that can explain the cross-section of returns for 

currency traders. Our results support the contention that other currency trading strategies, 

namely four popular technical indicators, can provide explanatory power for the returns 

of currency traders. Finally, we contribute to the literature a possible explanation for the 

lack of performance of other individual investors. Published studies of equity investors 

reveal that individual investors underperform relative to the market (Odean, 1999; Barber 

and Odean, 2000) yet none of these studies examined whether technical analysis was a 

source of the profits or losses of individual equity traders. One possible explanation for 

the underperformance of individual investor equity traders may be the use of technical 

analysis. 
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The rest of the essay is organized as follows. In Section 4.2, we present a brief 

overview of the related literature and hypothesis development. Data and methodology are 

discussed in Section 4.3, and we report our empirical results in Section 4.4. Finally, 

Section 4.5 sets forth a brief summary and our concluding remarks. 

4.2. HYPOTHESIS DEVELOPMENT 

The theoretical foundation of our work derives from Anson (2008), who states 

that there exist different types of beta. Beta can be a risk factor under the traditional 

CAPM, or it can consist of other factors, for example, factors that mimic trading styles 

utilized by traders. Pojarliev and Levich (2008) apply the Anson (2008) theoretical 

framework to currency returns and develop a four-factor currency model. These factors 

consist of trading strategies used by professional currency managers, namely the carry, 

momentum, value trades and volatility. Applying the same logic as in Pojarliev and 

Levich (2008), it is arguable that other trading methodologies could also be used to 

construct factors to analyze the returns of currency traders. 

Numerous studies examine the role of technical trading methodologies, also 

known as technical analysis, in the currency markets. Levich and Thomas (1993) and 

Acar and Lequeux (2001), show that trend-following strategies can lead to profits. 

Further, Okunev and White (2003) analyze moving averages and find similar results. 

Other studies go beyond simple trading strategies and find that advanced technical 

strategies can lead to positive abnormal returns. Sweeny (1986) examines nine currencies 

from 1973 to 1980 and shows that profits generated from these strategies generate 

statistically significant profits. Cheung and Wong (1997) apply filter rules to Asian 



79 

currencies and find that filter rules can earn positive returns. Lee, Pan, and Liu (2001) 

examine technical trading rules applied to nine Asian currencies and finds abnormal 

returns only for the Taiwan Dollar. 

In addition to studies that examine the profitability of technical trading strategies, 

it is well established that individual currency traders use technical analysis (Taylor and 

Allen, 1992; Cheung and Chinn, 2001; Park and Irwin, 2004). Selecting technical trading 

indicators with which to analyze individual currency trader returns is not a 

straightforward task. Despite the existence of thousands of technical indicators, some are 

broadly recognized and used by individual traders. We select the four most popular 

technical trading indicators identified by Wilder (1978) and used in the TradeStation 

version 9.0 trading software platform, which is recognized as one of the most popular 

trading platforms used by frequent traders (Stocks and Commodities, 2010; Carey, 2011). 

We hypothesize, then, that if traders use these technical indicators, our technical currency 

model will have explanatory power with respect to individual currency trader returns. 

Further, if technical analysis, based on the four most popular technical trading factors, 

produces positive excess returns, we conclude that the use of technical analysis is 

positively associated with performance. 

4.3. DATA AND METHODOLOGY 

4.3.1. Data Description 

We use two data sources in this essay. The primary data set is daily net returns 

from a proprietary online advisory service that records data for individual retail spot 

currency traders. The sample consists of 428 accounts and 33,952 daily net returns for the 
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period March 2004 to September 2009. An online advisory service is defined as a website 

that publishes the trades of its clients for other individuals to view. Registered users of 

these sites can view the trades that individual investors post and can use these trades to 

manage their own money (Fonda, 2010). Online advisory services provide a rich 

database of transaction data that include the individual trader's name, a unique account 

identification number, a description of the account, when the position was opened and 

closed, the open and close prices, whether the position is short or long, the number of 

contracts opened and closed, and the net profit and loss (P/L) in US dollars. To construct 

our factor model, we obtain daily currency return data from TradeStation Securities. 

4.3.2. Methodology 

Our primary four-factor technical currency model is defined as: 

REWfi.
et
 -Rft= cc+ /?!iBBIndeXit + /?2jMAIndexit + 

/?3jMACDIndexit + /?4iRSIIndexit + st (1) 

where REW^t
et
 — Rft is the daily, equal-weighted net return less the daily risk-free rate, 

proxied by daily return for the one-month London Interbank Offered Rate. The 

explanatory variables consist of the daily returns of variable-weighted investible indices, 

calculated by using four well-known technical indicators (defined below) on a variable 

weighted currency index. 

To proceed, first we define the four technical indicators, then we define the 

variable weighted currency index, and finally we apply the technical indicators to the 

variable weighted currency index to obtain four indices used to calculate daily returns for 

the factors of the technical currency model. 
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4.3.2.1. Definitions of Technical Indicators. 

We first identify and define the technical indicators of model (1). The first 

technical indicator is Bollinger bands, BB, defined as: 

MA = ^ ^ (2) 

UpperBB = MA + 2 J ( p ^ ) 2 (3) 

LowerBB = MA - 2 J ( P t""^ ) 2 (4) 

where MA is the moving average of the price of currency Pt. Bollinger bands are a set of 

three curves, the MA, upper band (UpperBB) and lower band (LowerBB) drawn in 

relation to currency rates; the middle band is a measure of the intermediate-term trend, 

which serves as the base for the upper band and the lower bands. The interval between 

the upper and lower bands and the middle band is determined by volatility, which is two-

times the standard deviation of the average, or middle band (MA). The BB identifies 

when traders purchase (short) currencies that have moved below (above) two-standard 

deviations from the current trend and are trading volatile currency price movements. 

The second indicator is the 8- and 18-day simple moving average (MA) 

crossover, defined above in equation (2). Equation (3) is calculated for both the 8- and 

18-day simple moving averages and buy (sell) signals are generated when the 8-day MA 

moves over (under) the 18-day simple MA. The MA is a common technical indicator to 

determine short-term trends. 

The third indicator is the Moving Average Convergence Divergence (MACD), 

defined as: 

MACD = XAVG1 - XAVG2 (5) 
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XAVG1 = P t_! + ^ + x (Pt - P t_! ) (6) 

XAVG2 = Pt_t + ± + x (Pt - Pt_t ) (7) 

where XAVG1 and XAVG2 are the exponential moving averages for a currency 

where Ptis the price for the currency. The MACD is an indicator that identifies long-term 

trends and momentum through the difference and the average of 12- and 24-day 

exponential moving averages. 

The final factor is the Relative Strength Index (RSI), defined as: 

R5/
 =

 10
° " 1-%'Ss!,*

 (8) 

where G (L), is the average dollar gain (loss) of a currency measured over a 14 day 

period. The RSI is a technical indicator that compares the magnitude of recent gains to 

recent losses in an attempt to determine whether currencies are overbought and oversold. 

4.3.2.1. Definition of Weighted Currency Indices and Construction of 

Independent Variables. 

To construct the four technical indices of our technical currency model (1), we 

proceed as follows. First we create a weighted currency portfolio consisting of the top 

five currencies traded by individual currency traders, as reported in Table 4.1. The 

weighted currency portfolio consists of the following currency pairs and weights: 

EURUSD (30 percent), GBPJPY (28 percent), GBPUSD (14 percent), USDJPY (14 

percent), and USDCHF (14 percent). 

Second, we calculate the four technical indicator indices, using the four technical 

indicators defined in equations (2) to (8), as follows: for the Bollinger Band Index 

(BBIndex) a trader enters a long position when the closing price of the weighted currency 

portfolio crosses above the lower Bollinger band and sells short when the closing price 
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crosses beneath the upper Bollinger band. Bollinger bands are volatility bands placed 

above and below the 20-day moving average and traders who utilize Bollinger bands to 

trade are attempting to profit from volatile currency movements. 

For the 8-day and 18-day Moving Average Index (MAIndex) a trader goes long 

(buys) on a currency when the 8-day moving average crosses over the 18-day moving 

average and goes short (sells) when the 8-day moving average crosses under the 18-day 

moving average. Traders who utilize moving averages obtain profits by going long when 

the trend is moving up and shorting when the short-term trend is moving down. 

For the Moving Average Convergence Divergence Index (MACDIndex) a trader 

enters a long position when the MACD difference (calculated using the 12- and 24-day 

exponential moving averages) crosses over zero and establishes a short position when the 

MACD difference crosses below zero. Traders that utilize the MACD difference are 

capitalizing on the strength of momentum to generate profits. Momentum of the 

intermediate trends is strongest when the difference between the 12- and 24-day 

exponential moving averages is greatest. Traders will enter long positions when 

momentum is moving up (MACD difference > 0) and short when momentum is moving 

down (MACD difference < 0). 

According to the Relative Strength Index (RSIIndex) strategy, a trader goes long 

the weighted currency index when the RSI technical indicator reaches 30, then sells short 

when the RSI technical indicator reaches 70. An RSI value of 70 (30) indicates to a 

trader that the currency is currently overbought (oversold) and a trader will then enter a 

short (long) position anticipating that the currency rate will move down (up) in the future. 

Our final step requires computing daily returns for each technical indicator index. 
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4.3.3. Data Description 

Table 4.1 reports the types of currency pairs traded in our sample, the total 

number of roundtrip trades, and the percentage of trades for each pair. It is notable that 

the top currency pair traded is the EURUSD. 17,199 roundtrip transactions of the 

EURUSD, or approximately 21.76 percent of all trades, are executed in the sample 

period, March 2004 to September 2009. Individual currency traders trade a variety of the 

28 currency pairs listed. The top five contracts traded account for approximately 50 

percent of all contracts traded. 

***Insert Table 4.1 about here*** 

Table 4.2 shows the mean, median, maximum, and minimum standard deviation, 

and skewness of the equal-weighted portfolio excess net returns and the technical 

indicator indices. The data reveal that currency traders in this sample earn positive, equal-

weighted excess net returns of 0.0576 percent per day. The most remarkable observation 

from Table 4.2 is the high skewness of the equal-weighted portfolio daily net returns. 

This reveals that individual currency traders, on average, sustain frequent small losses 

while earning fewer, yet significantly large gains. The remainder of Table 4.2 reports data 

for the technical indicator indices. The most notable observation is that individual 

currency traders are able to beat the technical indices. The index with the highest return is 

the MAIndex, which earned an average of 0.0192 percent per day. Furthermore, it is 

surprising that both the MACDIndex and the MAIndex earned positive returns over the 
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2004-2009 period. This reveals that two out of four simple trading strategies based on 

technical indicators are profitable on a gross return basis. 

***Insert Table 4.2 about here*** 

Panel B of Table 4.2 reports correlation coefficients for the dependent and 

independent variables. The highest association arises between the MAIndex and the 

BBIndex, with a correlation coefficient of -0.5861. This reveals that the technical 

indicator Bollinger bands may be a good hedge against moving-average strategies. It is 

notable that all correlation coefficients for the net daily excess returns are low, which 

shows that there is little association between the equal-weighted excess returns and 

technical currency indices. 

4.4. EMPIRICAL RESULTS 

4.4.1. Full-Sample Results based on the Technical Currency Model 

Table 4.3 reports regression results for all relevant specifications of the technical 

currency model. The most notable observation is that alpha is insignificant in all 

specifications. Specification 7, which contains all four technical indices, produces an 

alpha of 0.0528 and it is insignificant (t-statistic = 0.83). This result is similar to the full-

sample equally-weighted portfolio results of our first essay (see Table 4.2 Panel A) where 

we report alpha from the Pojarliev and Levich (2008) four-factor currency model is 0.05 

percent and insignificant (t-statistic = 0.91). The highest alpha of 0.574 is found in 

specification 3 which contains the MACDIndex, which measures momentum, as the sole 
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explanatory yet it is insignificant (t-statistic = 0.90). It is important to note that in 

specifications 1 through 4, which contain technical indices as the sole explanatory 

variable, only the BBIndex (specification 1) and the RSIIndex (specification 4) are 

statistically significant. The BBIndex identifies when traders purchase (short) currencies 

with volatile exchange rate movements that have moved below (above) two-standard 

deviations from the current trend. The significant BBIndex coefficient of -0.1525 (t-

statistic = -2.27) in specification 1 implies that individual currency traders realize 

negative (positive) returns when the BBIndex increases (decreases). The BBIndex is our 

proxy for volatile currency rate movements and traders enter a long (short) position when 

volatility moves currency rates two-standard deviations below (above) the 20-day moving 

average. The negative and significant coefficient reveals that individual currency trader 

returns are diminished when traders enter short (long) positions when the BBIndex 

increases (decreases). This implies that when volatility drives currency rates up or down 

individual currency traders should not trade against these volatile movements. The 

RSIIndex coefficient of-0.1705 (t-statistic = -2.54) in specification 4 is also significant. 

Currency traders go long when the RSI technical indicator reaches 30 (indicating 

oversold conditions), and sell short when the RSI technical indicator reaches 70 

(indicating overbought conditions). The negative coefficient for the RSIIndex, reveals 

that currency traders who buy (short) oversold (overbought) currencies realize negative 

returns. This also implies that if the RSI reaches 30 or 70 currency traders should not 

trade against the trend and this implication is similar to the results for the BBIndex 

discussed above. 
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***Insert Table 4.3 about here*** 

The contention that trend following would result in a positive association with 

returns is further supported, albeit weakly, in specification 2 which contains the 8- and 

18- day moving average crossover (MAIndex). Traders who use moving average 

crossovers realize profits following the short-term trend by going long when the trend is 

moving up and shorting when the short-term trend is moving down. The coefficient for 

the MAIndex in specification 2 is 0.1437 yet marginally significant (t-statistic = 1.55). 

This implies that individual currency traders who enter long (short) positions when the 

MAIndex is increasing (decreasing) will realize positive, although insignificant, returns. 

It is notable that specification 7, which contains all four indices, provides little 

explanatory power and only one coefficient, the RSIindex of -0.1297, is marginally 

significant at the 10 percent level of confidence (t-statistic = -1.66). Additionally, the 

coefficient of determination is low for all specifications and it only explains 0.0069 

percent of the return distribution when all four indices are used in specification 7. This 

suggests that the technical currency model provides very little explanatory power when 

analyzing equally-weighted indices of individual currency traders returns. One factor 

that could affect the results is that individual currency traders in this sample are high-

frequency traders. We report in our first essay that the individual currency traders in this 

sample turnover 50.76 percent of their account each day and execute 3.31 trades per day. 

Additionally, we identified that out of 428 accounts, 165 are day traders (traders who on 

average open and close their positions during the same trading day) and 263 are non-day 

traders (traders who on average open and close their positions longer than one trading 
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day). Consequently, analyzing equally-weighted portfolios of daily net returns may mask 

the idiosyncratic trading characteristics of these traders. To address the low explanatory 

power of the full-sample equally-weighted portfolio results presented in Table 4.3 we 

perform two additional tests. First, we analyze in section 4.4.3 individual accounts using 

the technical currency model and report the results in Table 4.5. Second, we divide the 

sample into day traders and non-day traders and analyze individual accounts in section 

4.4.4 using the technical currency model and report the results in Table 4.6. 

4.4.2. Day Trader and Non-Day Trader Results for Technical Currency Model 

Next we examine the explanatory power of the technical currency model by 

dividing the sample into day traders and non-day traders. This is necessary because in 

our first essay we tested the feedback hypothesis, which predicts day traders will 

outperform non-day traders because they receive constant feedback on their trading. 

Traders who receive positive (negative) feedback by winning (losing) trades will increase 

(decrease) their trading activity and consequently increase (decrease) their performance. 

We discovered in our first essay day traders outperformed non-day traders which 

supports feedback trading. Thus, in this essay, we predict that day traders will 

outperform non-day traders when applying the technical currency model. A second 

reason to analyze the cross-section is because day traders may employ high-frequency 

strategies that may not be captured using daily returns. This could bias the results of the 

model; specifically, it could be one reason why the coefficient of determination is low, as 

shown in the full-sample results presented in Table 4.3 above. If trading frequency is 

biasing the results of the model then we expect the explanatory power to increase for 

non-day traders. 
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We proceed as follows. We define day traders as traders who, on average, open 

and close their positions within one trading day, and non-day traders as traders who, on 

average, open and close positions over a period longer than one trading day. We identify 

165 day traders and 263 non-day traders in the sample, then calculate equal-weighted 

portfolio returns for both groups and estimate model (1). 

Table 4.4 presents the technical currency model results with day traders in Panel 

A and non-day traders in Panel B. The main observation from these results is that none 

of the coefficients for the day traders in Panel A is statistically significant. It is also 

noteworthy to point out that the R2 for day traders, as shown in Panel A, is very low, 

revealing that the technical currency model explains a small portion of returns for day 

traders when modeling on equal-weighted portfolio net returns. This shows that either 

day traders are not using any of the technical indicators employed as benchmarks, or that 

in the aggregate, the factors are unable to accurately explain the cross-section of returns 

for day traders because such traders utilize high-frequency trading styles that cannot be 

captured by daily returns. To address this issue, we divide individual accounts into day 

traders and non-day traders and estimate regressions on individual accounts and report 

the results in Table 4.7 of section 4.4.3 below. 

We next discuss the results for non-day traders in Panel B of Table 4.4. The most 

important observation for the non-day trader results is that the explanatory power of the 

model increases which supports our contention that day traders may be employing 

strategies that are difficult to capture with the technical currency model. First, the R for 

non-day traders in Panel B increases to 0.0134, significantly higher than the coefficient of 

determination of 0.0015 for the day traders reported in Panel A. Another significant 
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observation is that the coefficient of the RSIIndex for non-day traders is -0.1721 and 

significant at the 1 percent level of significance (t-statistic = -2.41). This suggests that 

non-day traders use contrarian strategies that focus on shorting oversold currencies and 

going long overbought currencies. In summary, the results indicate that the technical 

currency model explains a small portion of equal-weighted returns of individual currency 

traders. However, it has more explanatory power for currency traders that hold their 

positions open longer, on average, than one day. 

Finally, the alpha difference between the two types of currency traders indicates 

that day traders outperform non-day traders by 0.1566 percent per day and this is 

significant (t-statistic = 2.37). This provides support for the feedback hypothesis which 

predicts that traders who receive more frequent positive feedback will increase trading 

and thus perform better than traders who do not receive timely feedback. Day traders 

outperforming non-day traders is also supported by our first easy where we documented 

similar results when analyzing raw returns, a passive benchmark model and alpha from 

the Pojarliev and Levich (2008) four-factor currency model. 

***Insert table 4.4 about here*** 

4.4.3. Regression Results for Individual Trader Accounts 

The results of the analysis of equal-weighted portfolios of net returns reveal that 

the technical currency model provides little explanatory power for individual currency 

traders and that it provides more explanatory power for non-day traders than for day 

traders. One possible explanation for the low explanatory power is that equally-weighted 
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portfolios mask the idiosyncratic trading styles of these currency traders. To test the 

sensitivity of our results we next analyze the net returns of all 428 individual accounts in 

the sample. This is necessary because analyzing returns of individual accounts and 

examining the significance of the coefficients provides a more accurate description of 

what technical trading method each individual accountholder is using to trade currencies. 

The proposed analysis is consistent with the approach followed by Pojarliev and Levich 

(2008), who examine professional currency traders and discover significant variation in 

the cross-section. 

To analyze the net returns of individual accounts, we estimate equation (1), the 

technical currency model for all 428 individual accounts using daily net returns. Due to 

the large volume of these results, available upon request, we present a summary of the 

statistically significant positive and negative coefficients (at the 10 percent level of 

significance) and coefficient of determination in Table 4.5. 

We first address the significance of alpha. Panel A of Table 4.5 reports the 

significant positive and negative alphas for the technical currency model and reveals that 

22 out of 428 currency traders (approximately 5.14 percent) are able to earn positive and 

significant alphas. However, the Panel A of Table 4.5 also reveals that 45 of 428 

accounts earn negative and significant alphas. This reveals that there is cross-sectional 

variation in the performance of these traders. This result is similar to the results of our 

first essay where the top quartile of individual currency traders earns a positive alpha of 

.59 percent per day while the bottom quartile experiences a loss of-0.69 percent per day. 

We next examine the coefficients, the four technical indices, of the technical currency 

model. The MAIndex coefficient is significant for 86 out of 428 accounts (20.09 percent). 
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The 35 (8.18 percent) positive coefficients reveal that individual currency traders utilize 

short-term, trend-following strategies and trade in the same direction as the current trend. 

The 51 (11.92 percent) negative coefficients for the MAIndex reveal that some traders are 

contrarians and bet against the current trend. A similar pattern is found in the remainder 

of the coefficients for the technical indicator indexes. The MACDIndex is significant for 

88 accounts (20.56 percent). 57 individual currency traders (13.32 percent) load 

positively and significant on the MACDIndex and 31 (7.24 percent) load negatively on 

the MACDIndex which implies that more individual currency traders trade with 

momentum rather than trade against it. The BBIndex is significant for 98 accounts 

(22.9 percent) with 44 accounts (10.28 percent) having positive exposure to the BBIndex 

and 54 accounts (12.62 percent) having negative exposure. It is also notable that overall 

the BBIndex has the largest number of significant coefficients. This not only implies 

that Bollinger bands are a popular technical indicator but also shows individual currency 

traders trade volatile currency movements, for example they short (buy) when currency 

pairs move two or more standard deviations from the current trend. 

Our final factor, the RSIIndex is significant for 86 accounts (20.09 percent). 40 

individual currency traders (9.35 percent) have positive exposure to the RSIIndex while 

46 (10.75 percent) have negative exposure. The RSIIndex measures when currency pairs 

have become overbought (oversold). Traders go long (short) when the RSI indicator 

reaches 30 (70) as each value indicates oversold (overbought) conditions. Overall, 

approximately 20 percent of the coefficients for the RSIIndex are significant and this 

implies that not only is the RSI a popular technical indicator but also individual currency 

traders utilize technical trading strategies that exploit overbought and oversold currency 
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rate movements. These traders may expect to earn profits when currency rates revert to 

the mean by shorting (buying) when currency rates move too high (low). 

We next examine R2 of the technical currency model. Panel B of Table 4.5 

reports the coefficients of determination for the full sample (428 accounts), for accounts 

with positive alpha (190 accounts) and accounts with negative alpha (238 accounts). We 

divide the sample by positive and negative alpha because if technical analysis has a 

negative association with performance, R , our proxy for the use of technical analysis, 

should be negatively associated with performance. Thus, we expect accounts with 

negative alpha to have a higher coefficient of determination relative to accounts with 

positive alpha. The first column in Panel B of Table 4.5 reveals that for the full-sample 

of 428 accounts the mean R is 0.12. R ranges from a minimum of 0.0008 to a 

maximum of 0.71. This indicates that there is significant cross-sectional variation of 

explanatory power of the technical currency model. A closer look at the variation shows 

that R2 ranges from 0.039, for the lower quartile, to 0.165, for the upper quartile (each 

quartile contains 107 accounts). These results imply that some traders, namely the 107 

account holders in the lower quartile, may not use the technical indicators we employ in 

the technical currency model. However, the upper quartile R of 0.165 reveals that some 

traders may be using the technical trading strategies identified in this essay to trade 

currencies. 

The final two rows in Panel B of Table 4.5 reports the coefficient of 

determination for the 190 individual currency traders that have positive alpha and the 238 

individual currency traders that have negative alpha. The results reveal there is little 

difference between both groups. The mean R is 0.13 for account holders with positive 
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alpha and 0.12 for negative alpha. Furthermore, the lower quartile for positive (negative) 

alpha is 0.038 (0.039) which reveals there is little difference between individual currency 

traders when dividing them by positive and negative alphas. The results are similar for 

the upper quartile where positive (negative) alphas have R2 of 0.173 (0.162) respectively. 

These results do not provide preliminary support for the contention that there is a 

negative association between performance, proxied by alpha, and the use of technical 

analysis, proxied by R2 from the technical currency model. However, the results of Panel 

A in Table 4.5, which reported the number of significant coefficients for the technical 

currency model, and the coefficients of determination presented in Panel B, both reveal 

that individual currency traders do utilize common technical indicators to trade 

currencies. Approximately 20 percent of the coefficients of the technical currency model 

are statistically significant and our results for R reveal that the technical currency model 

explains, on average, 12 percent of the return distribution of individual currency traders 

when modeling on net returns for individual accounts. This is a sizable improvement 

from the equal-weighted portfolios we analyzed previously in Tables 4.3 and 4.4 which 

revealed that the technical currency model doesn't do a satisfactory job of explaining the 

net returns of equally-weighted portfolios. 

***Insert Table 4.5 about here*** 

4.4.4. Individual Account Analysis for Day Traders and Non-Day Traders 

We next examine the explanatory power of the technical currency model for 

individual accounts by dividing the sample into day traders and non-day traders. This is 
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necessary because we reported that the technical currency model provides more 

explanatory power for non-day traders than for day traders in Table 4.4 of Section 4.4.2. 

Thus, it is expected that for individual accounts, non-day traders should have more 

statistically significant coefficients and, on average, higher R2. We repeat the same 

analysis presented in Table 4.5 and report the results in Table 4.6. 

Panel A (B) of Table 4.6 reports the results of significant coefficients (at the 10 

percent level) and the coefficient of determination for the 165 day (263 non-day) traders. 

As expected, the technical currency model explains a smaller portion of returns for day 

traders than the full-sample results presented in Table 4.5 above. For the day trader 

sample in Panel A, alpha has 20 significant coefficients, 5 positive and 15 negative, 

respectively and this reveals in Panel A that a very small percentage (1.17 percent) of 

individual day traders earn positive and significant alpha. The same low percentage rate 

is seen with the significance of the coefficients of the technical indices. The results for 

the day-traders in Panel A reveal that the MAIndex has 29 out of 428 significant 

coefficients (6.78 percent); the MACDIndex has 24 (5.61 percent), the BBIndex has 30 

(7.01 percent), and the RSIIndex has 23 (5.37 percent). The most likely explanation for 

these results is that daily returns of the technical indices are not fully capable of capturing 

a significant portion of the technical trading styles used by some high frequency day 

traders, or day traders are utilizing other technical trading rules. The mean coefficient of 

determination reported in Panel A for day traders is 0.09 and varies from a minimum of 

0.001 to a maximum of 0.54. This indicates that, on average, the technical currency 

model explains approximately 9 percent of the net returns of day traders. It is also 

notable that the upper quartile of day traders has a mean R of 0.12. This suggests that 
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approximately 12 percent of the return distribution for day traders is explained by the 

technical currency model. In summary, the results for day traders in Panel A 

demonstrates that the technical currency model provides some explanatory power for the 

individual currency day traders analyzed in this sample. This is a remarkable 

improvement when compared to the equally-weighted portfolio results for day traders 

presented in Panel A of Table 4.4 above which reported a R of .0015 and no significant 

coefficients. 

***Insert Table 4.6 about here*** 

We now turn to Panel B of Table 4.6 which reports the statistically significant 

coefficients and R2 for non-day traders. The most important observation that emerges 

from these results is that the model provides greater explanatory power for traders who 

hold their positions open, on average, for longer than one day. There are 17 (3.97 

percent) non-day traders that realize significant positive abnormal returns. The 

MAIndex, which proxies for trading strategies that follow the short-term trend, has 57 

(13.32 percent) significant coefficients. The 24 (33) significant positive (negative) 

coefficients imply that approximately 5.61 percent (7.71 percent) of the individual 

currency traders in this sample realize positive (negative) returns following (not 

following) the short-term trend. The MACDIndex has 64 (14.95 percent) significant 

coefficients. The MACD technical indicator is a proxy for momentum and the 42 (22) 

positive (negative) significant coefficients reveal that approximately 14.95 of all 

individual currency traders in this sample utilize strategies that attempt to exploit 
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momentum in currency pairs. The BBIndex which goes long (short) when volatility 

moves currency pairs two standard deviations below (above) the current trend reveals that 

68 (15.89 percent) of the individual currency traders use strategies that exploit volatile 

currency movements. The BBIndex also has the largest number of significant positive 

and negative coefficients and this reveals that trading volatile currency movements is a 

popular strategy amongst individual currency traders. Finally, the RSIIndex has 63 (14.72 

percent) significant coefficients. The RSI technical indicator identifies overbought 

(oversold) conditions and the 31 positive (32 negative) coefficients imply that individual 

currency traders attempt to both short and purchase currencies when currency pairs are 

overbought or undersold. 

We next focus on the R2 estimates for non-day traders. The R2 for non-day 

traders reported in Panel B of Table 4.6 is also greater than the corresponding value for 

•y 

day traders presented in Panel A. The mean R is 0.15, with a minimum of 0.0008 and a 

maximum of 0.71. This result is not surprising, since currency traders that hold their 

positions open for periods longer than one day utilize technical indicators over a multi-

day basis, and the factors of the technical currency model, which makes use of daily 
'y 

returns, capture this. The lowest and highest quartiles of R also reveal that there is 

substantial variation in the use of technical analysis. The lowest quartile (R = 0.051) and 

the highest quartile (R2 = 0.20) highlight that although the bottom 107 accounts may not 
'y 

use popular technical indicators 107 traders with the highest R have approximately 20 

percent of their return distribution explained by the technical currency model. 

Overall, the results for both day traders and non-day traders suggest that 

individual currency traders utilize trading strategies that mimic the four technical indices 
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of model (1). This implies that individual currency traders and in particular non-day 

traders use well-known technical indicators to trade currencies. This evidence is 

supportive of previous studies that document currency traders use technical analysis to 

trade currencies (Taylor and Allen, 1992; Cheung and Chinn, 2001). Moreover, this result 

is significant because it reveals that there are other factors in the currency markets that 

can explain the returns of currency traders. This finding is not surprising because there is 

ultimately no uniform strategy in the currency markets (Melvin and Shand, 2011). 

Although the Pojarliev and Levich (2008) four-factor model uses proxies for well-known 

strategies used by professional currency managers, namely the carry, momentum, and 

purchasing-power-parity trades, Melvin and Shand (2001) show that currency markets 

are unique, in that, there is no uniform market portfolio. This is mainly due to the 

long/short nature of currency trading and the lack of a buy-and-hold strategy. 

Consequently, as shown here, other factors exist than the ones identified by Pojarliev and 

Levich (2008). Pojarliev and Levich (2008) also report that for the returns of 

professional currency managers, some factor model results have a low R2, which implies 

that factors other than carry, momentum, and purchasing power parity exist. One possible 

explanation for this result is that professional currency traders may employ some form of 

technical analysis as we have documented for individual currency traders. 

4.4.4. The Association between Technical Analysis and Performance 

Our final inquiry asks whether the use of technical analysis is positively 

associated with performance. We examine the association between technical analysis and 

performance because we reveal in our first two essays that individual currency traders 

possess skill. In our first essay we show that the top quartile of currency individual 
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currency traders earn positive abnormal excess returns of 0.59 percent per day and in our 

second essay we revealed that the performance of the top quartile of individual currency 

traders with account ages over 80 days have persistent performance. By examining the 

association between popular technical indicators and performance we can shed light on 

the source of profits and losses for individual currency traders. 

Furthermore, this inquiry is necessary because published studies show that 

technical trading styles can lead to abnormal returns (Sweeny, 1986; Levich and Thomas, 

1993; Cheung and Wong, 1997; Neely, 1997; Acar and Lequeux, 2001; Lee, Pan and Liu, 

2001; Okunev and White, 2003) yet no study has examined whether popular trading 

indicators can produce abnormal returns for individual currency traders. Finally, since 

we have shown that popular technical indicators can explain a portion of the returns of 

individual currency traders when examining individual accounts, we can now test 

whether there is a positive or negative association between the use of technical analysis 

and performance. 

To determine whether there is an inverse association between the use of technical 

analysis (beta) and performance (alpha), we follow a similar approach to Pojarliev and 

Levich (2008) who examine the performance of professional currency managers. The 

authors develop a four-factor currency model that consists of factors that proxy for well-

know technical trading strategies used by professional currency traders. The empirical 

approach the authors take is as follows. First, they estimate four-factor model regressions 

on individual accounts and obtain alpha and R from these regressions. Second, the 

authors regress alpha on R2. Pojarliev and Levich (2008) find an inverse association 

between R2 (i.e., reliance on commonly used strategies) and alpha which implies that 
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professional currency managers with the best performance do not follow strategies 

commonly used by other professional currency managers. Following the Pojarliev and 

Levich (2008) approach is to estimate the following model (9) as: 

alphcti = a + P-uRf + et (9) 

Alpha and R2 values are obtained from estimating the technical currency model in 

model (1) from regressions on 428 individual accounts. A high (low) R2 implies that the 

currency trader is actively (not actively) using technical indicators. Once we obtain R 

and alpha estimates from model (1) we then estimate model (9) for the entire sample of 

428 accounts. Since we have already demonstrated a variation between day traders and 

non-day traders, we also examine the cross-section of returns by double-ranking accounts 

by day trader and non-day trader, and on performance measured by the statistical 

significance of alpha. 

Table 4.7, Panel A presents the full-sample results of model (9), and Panel B 

presents the results of the double ranks of day trader/non-day traders and performance. 

Panel A shows that the coefficient for R2 is 0.0543 and statistically insignificant (t-

statistic = 0.11). This demonstrates that there is no association between the use of 

technical analysis and performance for the full sample. This result is similar to our full-

sample result presented in Table 4.5, Panel B where we divide individual accounts by 

positive and negative alpha and then examined R . We report in Panel B, Table 4.5 there 

is little difference between the R2 of positive and negative alpha accountholders. 

We next examine model (9) by double-sorting the sample by performance and 

day/non-day traders and report the results in Table 4.7, Panel B. The most notable result 

in Panel B is that the coefficients for the worst-performing currency traders in quartile 4 
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are both negative and significant. The coefficient of R for day traders is -2.004 (t-

statistic = -1.97) and for non-day traders it is -1.23 (t-statistic = -1.71); both coefficients 

are significant. A high (low) R2 implies that the currency trader is actively (not actively) 

using technical indicators. The negative and significant coefficients for the worst 

performing individual currency traders imply the use of technical analysis (high R2) is 

negatively associated with performance (low alpha). 

A notable observation is that a linear pattern seems to prevail across both day and 

non-day traders when moving from the worst to best performing individual currency 

traders. The coefficient for the worst-performing day traders and non-day traders is 

negative and significant and it increases in value and becomes positive (yet insignificant) 

for both groups in quartile 1 (the best performers). This pattern suggests that as individual 

currency traders rely less on well-known technical indicators (low R2), performance 

increases (high alpha). These results run contrary to studies that show that the use of 

technical indicators is profitable (Sweeny, 1986; Levich and Thomas, 1993; Cheung and 

Wong, 1997; Neely, 1997; Acar and Lequeux, 2001; Lee, Pan and Liu, 2001; Okunev 

and White, 2003). Furthermore, our result for the worst performing individual currency 

traders in quartile 4, which show a negative and statistically significant coefficient for R2, 

is similar to Pojarliev and Levich (2008), who find an inverse association between R2 and 

alpha for professional currency managers when applying their four-factor currency 

model. The authors show that there is a trade-off between beta and alpha. Professional 

currency managers who follow common trading styles like momentum, value and carry 

trades have high coefficients of determination, yet they underperform (have lower alphas) 

relative to currency managers that do not follow common trading styles utilized by 
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professional currency managers. Our result is significant because the MACD, MA, RSI 

and Bollinger band indicators are widely used and well established in the individual 

investment community. Our result implies that the use of these indicators is detrimental 

to performance. 

Overall, the results of model (9), which regresses alpha from the technical 

currency model on R2, imply that individual currency traders, who rely on well-known 

technical indicators to make trading decisions, end up realizing losses. The results of the 

technical analysis augment our previous research by providing further insight on the 

source of profits and losses for individual currency traders. We report in our first essay 

that the top quartile (best performing) individual currency traders earn positive and 

significant abnormal returns of 0.59 percent per day while the bottom quartile (worst 

performing) lose -0.69 percent per day. Additionally, we reveal in our second essay that 

performance is significantly persistent for the top quartile of traders with account lives 

over 80 days. In this essay we show that the best performing currency traders do not use 

well-known technical indicators while the worst performing currency traders rely on 

well-known technical indicators. Collectively, these results imply that individual 

currency traders who do not employ well-known technical indicators outperform their 

peers who use popular technical strategies to trade spot currency pairs. 

***Insert Table 4.7 about here** 
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4.5. CONCLUDING REMARKS 

This essay examines whether individual currency traders use well-known 

technical indicators to trade currencies, and whether technical analysis is positively 

associated with performance. We develop a technical currency model that consists of 

indices based on four well known technical trading rules. The results of equal-weighted 

portfolio daily net returns and of individual account daily net returns show that the 

technical currency model provides little explanatory power for the net returns of equally-

weighted portfolios. When we divide the sample into day traders and non-day traders we 

find that the technical currency model provides greater explanatory power for non-day 

traders, who hold their trades open, on average, for longer than one day. However, our 

results improve considerably when we analyze individual accounts. Our full-sample and 

cross-sectional analysis of individual currency accounts reveals that the technical 

currency model provides sufficient explanatory power for the net returns of individual 

currency traders. These results imply that individual currency traders employ well-known 

technical indicators to trade currencies. 

We also examine the association between technical analysis and performance by 

regressing R2 from the technical currency model on alpha from the technical currency 

model. Our evidence shows that the use of well-known technical indicators is negatively 

associated with performance. Sorts on performance reveal that the worst-performing 

traders have a significant and negative association between performance and the use of 

technical analysis. This implies that currency traders who use technical indicators 

underperform when compared to their peers who rely on other trading strategies. 
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A major implication of this study is that individual currency traders, who depend 

on well-known technical indicators to make trading decisions, end up realizing losses. 

Consequently, future studies of individual currency traders, and quite possibly, individual 

investor equity traders, should take into account the use of technical analysis when 

analyzing the performance of individual investors. Another implication of our study is 

that future research should examine the association between technical analysis and the 

returns of professional currency traders. Pojarliev and Levich (2008) report low R for 

some traders in their sample, which implies that a few professional currency managers do 

not use strategies that mimic the authors' factors, namely the carry, momentum, and 

value trades. One question that remains unanswered is whether technical indicators can 

explain the cross-section of returns for professional currency managers. 
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CHAPTER 5 

CONCLUSIONS 

This dissertation examines the performance, skill, and trading characteristics of 

individual currency traders. We analyze both the net and gross daily returns and 

transaction data for 428 individual currency traders from 2005 to 2009. Additionally, we 

examine whether technical trading strategies are profitable for individual currency traders 

by developing a factor model that consists of indices constructed by four popular 

technical trading strategies. 

The first essay examines the performance and trading characteristics of individual 

currency traders by analyzing net and gross raw returns, along with a passive benchmark 

strategy and the alpha from Pojarliev and Levich's (2008) four-factor currency model. 

We show traders are able to earn positive excess returns before and after accounting for 

transaction costs. Additionally, we divide the sample into day traders and non-day 

traders and discover day traders outperform non-day traders on a raw return, passive 

benchmark and on a risk-adjusted return basis. The results are robust to alternative 

specifications of trade activity, measured as the mean number of trades per day per 

account, and account turnover. These results support feedback trading, which holds that 

the more traders trade, the more feedback they receive, which, in turn, decreases their 

overconfidence and increases performance. 

The second essay examines whether individual currency traders are skilled by 

examining the association between R from the four-factor currency model and alpha 

from the four-factor currency model. Contrary to previous studies of professional fund 

managers that find a positive association between R and performance, our study 
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determines R2 does not predict future performance for individual currency traders. The 

R measure lacks predictive power because R is not persistent, since individual currency 

traders change their trading styles over time. Although R is not persistent, we determine 

individual currency traders are able to earn positive and persistent alphas. To further 

investigate the skill of these traders, we also examine trade activity, drawdown, and 

market timing. Our analysis of trade activity, drawdown, and market timing provides 

additional support that individual currency traders possess trading skills. The best-

performing individual currency traders can mitigate downside losses, and a sizable 

percentage of them can time currency market factors. Finally, we examine transaction 

data to determine whether winning trades arise due to luck or skill. We find that 68.78 

percent of trades by the top traders are profitable net of transaction costs, revealing that 

profits do not arise due to luck. 

The third essay investigates whether technical currency trading is profitable. The 

results show that the use of technical analysis by individual currency traders is negatively 

associated with performance. Furthermore, the technical trading model developed here 

adequately describes the cross section of returns for individual currency traders. This 

result arises because individual currency traders use well-known technical indicators to 

trade currencies. This implies that currency traders who utilize common technical trading 

strategies will reduce their performance. 
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Table 2.1. Descriptive Statistics of Account Holders, Trade Activity, and Returns. 

This table reports summary statistics for 428 individual currency traders at a proprietary online advisory 
service from March 2004 to September 2009. Daily turnover is calculated as the market value of all sales 
for account i on day t divided by the amount of capital in that account on that day. Trades per day for 
each account are calculated by dividing the total number of trades executed by account;' over its account 
life, divided by the life of account i measured in days. Transaction costs are calculated as 3 pips ($3) per 
contract for each opened and closed transaction, divided by the margin-adjusted amount of capital needed 
to open a position. Age is calculated as the time between the first and last trades recorded in the database. 
The margin used by traders in this sample is 33:1. The t-statistics are in parentheses and significant 
values are bold; ** denotes statistical significance at the 1% level. 

A. Summary Data for Account Holders 

Accounts 

Total 
Accounts 

428 

B. Full-Sample Summary Data for Trading 

Item 

Trade Size ($) 

Price/Contract ($) 

Daily Turnover (%) 

Trades per Day 

Transaction Costs 

(%) 
Age (days) 

Mean 

457,161.40 

14,171.62 

50.76 

3.31 

0.89 

81.92 

Day 
Traders 

263 

Non-Day 
Traders 

165 

Activity Characteristics 

25th 

Percentile 

56,662.20 

9,989.90 

15.89 

1.76 

0.08 

43.00 

Median 

177,523.65 

13,422.00 

33.78 

2.46 

0.22 

64.50 

75th 

Percentile 

498,750.00 

15,997.31 

62.25 

3.71 

0.70 

96.00 

Obs. 

77,666 

77,666 

33,952 

77,666 

77,666 

428 

C. Summary Data for Day Traders 

Item 

Trade Size ($) 

Price/Contract ($) 

Daily Turnover (%) 

Trades per Day 

Transaction Costs 

(%) 
Age (days) 

Mean 

480,690.45 

14,311.38 

66.46 

3.68 

0.97 

78.77 

25th 

Percentile 

39,572.00 

9,993.80 

25.74 

1.79 

0.09 

40.00 

Median 

172,832.13 

13,576.78 

41.31 

2.66 

0.23 

61.00 

75th 

Percentile 

438,088.00 

15,896.96 

79.16 

4.53 

1.00 

91.00 

Obs. 

42,442 

42,442 

13,963 

42,442 

42,442 

263 
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Table 2.1. Descriptive Statistics of Account Holders, Trade Activity, and Returns 

Continued. 

D, Summary Data for Non-Day Traders 

Item Mean 

Trade Size ($) 

Price/Contract ($) 

Daily Turnover (%) 

Trades per Day 

Transaction Costs 

429,549.72 

14,003.74 

39.79 

3.08 

Age (days) 

0.79 

86.03 

25th 

Percentile 

79,837.20 

9,985.26 

11.43 

1.75 

0.08 

49.00 

Median 

180,145.13 

13,212.50 

26.71 

2.39 

0.22 

66.00 

75th 
Percentile 

500,664.47 

16,245.24 

44.91 

3.48 

0.50 

100.00 

Obs. 

35,328 

35,328 

19,989 

35,328 

35,328 

165 

E. Difference in Means Between Day Traders and Non-Day Traders 

Item 

Difference in 
Means 

Trade Size 

($) 

51,140.73 

(5.38)** 

Daily 
Turnover 

26.68 

(36.68)** 

Trades per 
Day 

0.60 

(2.03)** 

Transaction 
Costs r°/-

0.18 

(12.07)** 

Age 
(days) 

-9.00 

(-1.23) 
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Table 2.2. Full-Sample Results of the Daily Abnormal Return Measures for All 

Individual Currency Trader Accounts, 2004-2009. 

This table reports performance results for 428 individual currency traders at a proprietary online 
advisory service from March 2004 through September 2009. Performance measures are computed 
from daily gross and net returns, which are calculated from account records, and equal-weighted 
portfolios are formed with the daily return data. Net returns account for a 3-pip ($3.00) transaction 
cost applied to each round trip transaction. Panel A presents results for the gross (net) return on 
equally weighted portfolios. Raw returns are calculated as the daily returns earned in aggregate by the 
account holders. Passive benchmark returns are calculated by subtracting the daily return of the DBCR 
from the daily raw return. The four-factor alpha is the intercept from the four-factor currency model of 
Pojarliev and Levich (2008), where the excess equally weighted portfolio returns is regressed on four 
factors that mimic strategies used by professional currency traders: carry trade, momentum, PPP, and 
volatility. Excess returns are calculated by subtracting the daily LIBOR rates from the equally 
weighted portfolio return. Panel B sorts the account holders into performance quartiles. Ranks are 
calculated by four-factor alpha t-statistic rankings, with the top-performing accounts (with the highest 
alpha t-statistic) in quartile 1 and the lowest-performing currency traders in quartile 4. The t-statistics 
are in parentheses and significant values are bold; ** and * denote statistical significance at the 1% and 

5% levels, respectively. 
Gross Returns Net Returns 

Raw Passive _ ^ Raw Passive „ , 
r> *. ™,r Factor _ . „ . . Factor 
Returns BM ., . Returns BM ., . 

Alpha Alpha 

Panel A. Full-Sample Equal-Weighted Portfolio Performance Results 

0^51 05 O05 017 67l6 0.05 
(9.25)** (8.88)** (7.15)** (2.74)** (2.54)** 0.91 

Panel B. Full-Sample Equal-Weighted Portfolio Results Sorted on Performance 

Ql (top 
performers) 

Q2 

Q3 

Q4 (worst 

1.04 

(15.25)** 

0.77 

(7.02)** 
0.4 

(3.59)** 

-0.25 

1.03 

(14.8)** 

0.76 

(6.89)** 
0.4 

(3.51)** 

-0.26 

0.91 

(13.41)** 

0.65 

(5.97)** 
0.27 

(2.39)** 

-0.36 

0.71 

(5.84)** 

0.28 

(3.12)** 
0.04 

(0.32) 

-0.57 

0.7 

(5.71)** 

0.27 

(2.98)** 
0.03 

(0.27) 

-0.58 

0.59 

(4.86)** 

0.17 

(1.88) 
-0.09 

(-0.68) 

-0.69 
performers) 

(-3.38)** (-3.46)** (-4.92)** (-6.66)** (-6.71)** (-7.97)** 

Panel C. Difference in Means Between Ql and Q4 

Q 1 - Q 4 1.29 1.29 1.27 

(8.63)** (12.53)** ( 1 5 5 5 ) i A 

1.28 

(8.71)** 

1.28 

(8.63)** 

1.28 

(6.82)** 
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Table 2.3. Daily Abnormal Return Measures for Day Traders and Non-Day 

Traders, 2004-2009. 

This table reports performance results for 428 individual investor currency traders at a 
proprietary online advisory service from March 2004 through September 2009, dividing the 
sample into day traders and non-day traders. Panel A contains performance results for day 
traders, defined as currency traders who, on average, open and close their trades within one 
trading day. Panel B contains performance results for buy-and-hold investors, defined as 
currency traders who, on average, open and close their trades for longer than one trading day. 
Daily gross and net returns are calculated from account records, and equal-weighted portfolios 
are formed with the daily return data. Net returns account for a 3-pip ($3.00) transaction cost 
applied to each round trip transaction. Raw returns are calculated as the daily returns earned in 
aggregate by the account holders. Passive benchmark returns are calculated by subtracting the 
daily return of the DBCR from the daily raw return. The four-factor alpha is the intercept from 
the four-factor currency model of Pojarliev and Levich (2008), where the excess equally 
weighted portfolio returns are regressed on four factors that mimic strategies used by 
professional currency traders: carry trade, momentum, PPP, and volatility. Excess returns are 
calculated by subtracting the daily LIBOR rates from the equally weighted portfolio returns. 
The t-statistics are in parentheses and significant values are bold; ** and * denote statistical 

significance at the 1% and 5% levels, respectively. 

Gross Returns Net Returns 

Raw Passive p Raw Passive 
Returns Benchmark . . , Returns Benchmark . , , 

Alpha Alpha 
Panel A. Day Trader Equal-Weighted Portfolio Performance Results 

0.71 0.7039 0.59 0.26 0.26 

(11.05)** (10 8)** (9.H)** (2.17)** (2.08)** 

0.15 

(1.19) 

Panel B. Non-Day Traders Equal-Weighted Portfolio Performance Results 

0.40 0.3894 0.28 0.11 0.10 

(6.28)** ( 6 _ Q 1 ) ^ (4.41)** (1.80) (1.61) 

-0.01 

(-0.24) 

Panel C. Difference in Means Between Day Traders and Non-Day Traders 

0.31 

(3.44)** 

0.32 

(3.44)** 

0.31 

(8.81)** 

0.15 

(1.23) 

0.16 

(1.23) 

0.16 

(0.63) 
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Table 2.4. Full-Sample Results of the Daily Abnormal Return Measures with Sorts on 

Turnover. 

This table reports performance results for 428 individual investor currency traders at a proprietary online 
advisory service from March 2004 through September 2009, sorted on turnover. In Panel A, account 
holders are sorted into quartiles based on account turnover, defined as the mean of the margin-adjusted 
market value of all daily transactions divided by the daily amount of capital. Quartile 1 contains the 
account holders with the highest daily turnover, and quartile 4 contains those with the lowest daily 
turnover. Performance measures are computed from daily gross and net returns, which are calculated from 
account records, and equal-weighted portfolios are formed with the daily return data. Net returns account 
for a 3-pip ($3.00) transaction cost applied to each roundtrip transaction. Raw returns are calculated as the 
daily returns earned in aggregate by the account holders. Passive benchmark returns are calculated by 
subtracting the daily return of the DBCR from the daily raw return. The four-factor alpha is the intercept 
from the four-factor currency model of Pojarliev and Levich (2008), where the excess equally weighted 
portfolio returns are regressed on four factors that mimic strategies used by professional currency traders: 
carry trade, momentum, PPP, and volatility. Excess returns are calculated by subtracting the daily LIBOR 
rates from the equally weighted portfolio returns. Panel B presents the results for the differences in returns 
between the most and least active quartiles from Panel A. The t-statistics are in parentheses and significant 
values are bold; ** and * denote statistical significance at the 1% and 5% levels, respectively. 

Turnover 

(%) 

Panel A. Full-Sample 

Ql 
(High) 

Q2 

Q3 

Q4 
(Low) 

Panel B. 

Q l -
Q4 

146.96 

49.83 

26.70 

9.60 

Gross Returns 

Raw 
Returns 

Passive 
BM 

Four-
Factor 
Alpha 

: Equal-Weighted Portfolio Results Sorted 

0.90 

(6.65)** 

0.75 

(7.69)** 

0.43 

(6.57)** 

0.22 

(4.52)** 

0.89 

(6.55)** 

0.74 

(7.61)** 

0.42 

(6.26)** 

0.21 

(4.23)** 

0.77 

(5.72)** 

0.61 

(6.33)** 

0.31 

(4.81)** 

0.10 

(2.11)** 

Difference in Quartiles Ranked on Turnover 

0.68 

(4.69)** 

0.68 

(4.61)** 

0.67 

(2.26)** 

Net Returns 

Raw 
Returns 

on Turnover 

0.18 

(0.81) 

0.36 

(3.53)** 

0.17 

(2.67)** 

0.12 

(3.78)** 

0.06 

(0.27) 

Passive 
BM 

0.17 

(0.77) 

0.35 

(3.45)** 

0.16 

(2.45)** 

0.11 

(3.28)** 

0.06 

(0.27) 

Four-
Factor 
Alpha 

0.07 

(0.30) 

0.22 

(2.21)** 

0.06 

(0.86) 

0.00 

(-0.08) 

0.07 

(0.16) 
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Table 2.5. Full-Sample Results of the Daily Abnormal Return Measures with Sorts on 

Trades per Day. 

This table reports performance results for 428 individual investor currency traders at a proprietary online 
advisory service from March 2004 through September 2009, sorted on trades per day. Account holders are 
sorted into quartiles based on the mean number of trades executed for each trading day. Quartile 1 contains 
the account holders with the highest mean number of trades executed per day, and quartile 4 contains those 
with the lowest mean number of trades executed per day. Performance measures are computed from daily 
gross and net returns, which are calculated from account records, and equal-weighted portfolios are formed 
with the daily return data. Net returns account for a 3-pip ($3.00) transaction cost applied to each roundtrip 
transaction. Raw returns are calculated as the daily returns earned in aggregate by the account holders. 
Passive benchmark returns are calculated by subtracting the daily return of the DBCR from the daily raw 
return. The four-factor alpha is the intercept from the four-factor currency model of Pojarliev and Levich 
(2008), where the excess equally weighted portfolio returns are regressed on four factors that mimic 
strategies used by professional currency traders: carry trade, momentum, PPP, and volatility. Excess 
returns are calculated by subtracting the daily LIBOR rates from the equally weighted portfolio returns. The 
t-statistics are in parentheses and significant values are bold; ** and * denote statistical significance at the 
1% and 5% levels, respectively. 

Gross Returns Net Returns 
Trades 

Per 
Day 

Raw 
Returns 

Passive 
BM 

Four-
Factor 
Alpha 

Raw 
Returns 

Passive 
BM 

Four-
Factor 
Alpha 

Panel B. Full-Sample Equal-Weighted Portfolio Results Sorted on Performance 

Qi 

Q2 

Q3 

Q4 

6.64 

3.06 

2.09 

1.42 

0.8303 

(8.09)** 

0.4938 

(5.57)** 

0.3944 

(5.19)** 

0.3944 

(5.19)** 

0.8199 

(7.90)** 

0.4838 

(5.44)** 

0.4613 

(5.07)** 

0.3851 

(5.03)** 

0.71115 

(6.92)** 

0.37454 

(4.22)** 

0.34583 

(3.87)** 

0.26782 

(3.53)** 

0.4921 

(1.96)* 

0.0363 

(0.43) 

0.1018 

(1.22) 

0.1517 

(1.64) 

0.4817 

(1.91) 

0.0263 

(0.31) 

0.0911 

(1.07) 

0.1424 

(1.54) 

0.3827 

(1.52) 

-0.0820 

(-0.97) 

-0.0253 

(-0.31) 

0.0238 

(0.26) 

Panel B. Difference in Means Between Ql and Q4 

Q1-Q4 0.4359 
(3.43)** 

0.4348 
(3.38)** 

0.44333 
(2.71)** 

0.3404 
(1-29) 

0.3393 
(1-28) 

0.3588 
(0.90) 
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Table 2.6. Robustness Checks with Secondary Data Set of 74 Accounts from July 

2010 to August 2011 

This table reports summary statistics, performance results and trade activity results for 74 individual 

currency traders at a proprietary online advisory service from July 2010 to August 2011. Panel A 

reports mean daily returns, trades per day and the age of accounts. Trades per day for each account 

are calculated by dividing the total number of trades executed by account i over its account life, 

divided by the life of account i measured in days. The age of the account is measured in days. Panel 

B reports tertile sorts on gross performance and the difference in means between the top performers 

(Tl) and the worst performers (T3). Panel C reports the results of sorts on trade activity, proxied my 

mean trades per day. Account holders are sorted into tertiles based on the mean number of trades 

executed for each trading day. Tertile 1 contains the account holders with the highest mean number 

of trades executed per day, and tertile 3 contains those with the lowest mean number of trades 

executed per day. The difference in means between the most active traders (Tl) and the least active 

traders (T3) are also reported. The t-statistics are in parentheses and significant values are bold; ** 

denotes statistical significance at the 1% level. 

A Descriptive Statistics of Returns, Trade Activity and Age 

Daily Gross Return 

Trades Per day 

Age (days) 

Mean 

0 357 

2 35 

20130 

; of Accounts 

25th Percentile 

0 005 

0 64 

133 00 

Median 

0 138 

169 

171 50 

75th Percentile 

0 648 

3 14 

266 00 

Obs 

74 

74 

74 

B Full Sample Results of Gross Returns with Sorts on Trade Activity 

Tl (Best Performers) 

T2 

T3 (Worst Performers) 

Diff Ql - Q3 

Mean Gross 
Return 

1 154 

0 174 

-0 283 

144 

(8.37)** 

C Full Sample Results of Gross Returns with Sorts on 

Item 

Tl (Most Active Traders) 

T2 

T3 (Least Active Traders) 

Diff Ql - Q3 

Mean Trades 
Per Day 

4 873 

1544 

0 554 

4 32 

(7.26)** 

25th Percentile 

0 648 

0 093 

-0 276 

Trade Activity 

Mean Gross 
Return 

0 628 

0 367 

0 063 

0 57 

(3.45)** 

Median 

1 073 

0 119 

-0 125 

Obs 

25 

25 

24 

75th Percentile 

1302 

0 265 

0 003 

Obs 

25 

25 

24 
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Table 3.1. Descriptive Statistics for Dependent and Independent Variables. 

This table reports the account data for 428 accounts of retail spot foreign exchange traders. 
The sample time period is from March 2004 to September 2009. The performance measure 
alpha is the intercept from a regression of daily excess returns in Pojarliev and Levich's (2008) 

four-factor model; R is obtained from the four-factor regression and TR
2 **m 

which is the logistic transformation of R ; IR, is the information for each account and is 

calculated as IRj = 
RMSE,-

Turnover is calculated as the daily mean of the margin-adjusted 

daily market value of all roundtrip transactions divided by the daily amount of capital; and Age 

is calculated as the life span of the account, measured in days. 

A. Descriptive statistics 

Variable Mean Maximum Minimum Std Dev Skewness 

Alphat+1 

IRm 

Turnover 
Age 

R t-n 

TR,.„ 

-0.183 

-0.080 

58.278 

81.921 

0.192 

-0.884 

16.482 

0.692 

858.718 

896.000 

0.855 

0.885 

-8.209 

-1.822 

0.968 

30.000 

0.006 

-2.599 

1.921 

0.243 

80.808 

66.845 

0.150 

0.565 

3.034 

-1.286 

5.015 

5.272 

1.282 

-0.240 

B. Correlation coefficients 

Alphat+I 

IRt+i 

Turnover 
Age 

R t-n 

TRt.„ 

Alpha, 

1.000 

0.581 

0.091 

0.011 

0.007 

0.006 

IRt 

1.000 

-0.043 

0.046 

-0.064 

-0.064 

Turnover 

1.000 

-0.114 

0.080 

0.102 

Age R t-n 

•0.399 

•0.481 

1.000 

0.926 
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Table 3.2. Regression of Account 

Performance Using the Four-Factor Model 

Alpha andlR. 

This table reports the results of the four-factor model 
alpha from equation (1) and IR from equation (2) from 
regressions of daily excess returns on the factor returns. 
Alphas obtained from the four-factor model from time 
period t to t + n are regressed on the independent 
variables from time period t - n to t - 1, where t is the 
monthly return from each account. Here R2,+„ is obtained 
from the four-factor currency model and then used to 

calculate TR
2 = log — T = . The t-statistics are in 

parentheses and significant values are bold, and ** and * 
denote statistical significance at the 1 percent and 5 
percent levels, respectively. 

A. Alpha as the dependent variable 

(1) (2) 

-0.011 0.022 

(-0.06) (0.13) 

0.002 

(2.07)** 

0.132 

(1.96)* 

0.018 0.000 

B. IR as the dependent variable 

(1) (2) 

-0.026 -0.028 

(-1.24) (-1.32) 

0.000 

(-0.670) 

0.01 

(0.75) 

0.007 0.004 

Variable 

TR2
t., 

Turnover 

Alpha,.! 

R2 

TR2
M 

Turnover 

Alphas 

R2 
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This table reports the results of the four-factor model alpha from equation (1) 
and IR from equation (2) from regressions of daily excess returns on the factor 
returns. The alpha values obtained from the four-factor model from time period 
t to / + n are regressed on the independent variables from time period t - n to t -

1, where t is the monthly return from each account. Here R2
r+„ is obtained from 

the four-factor currency model and then used to calculate 77?2 = log(—^=1 

Performance quartile ranks are based on the significance of alpha t-statistics. 
Each quartile contains 107 accounts. The t-statistics are in parentheses and 
significant values are bold, and ** and * denote statistical significance at the 1 
percent and 5 percent levels, respectively. 

Variable 

TR2
t.„ 

Turnover 

Alphat.n 

R2 

(1 Best) 

0.085 

(0.22) 

-0.004 

(-0.84) 

0.054 

(0.36) 

0.008 

A. Alpha as the dependent 

(2) 

-0.231 

(-0.50) 

0.012 

(4.55)** 

-0.426 

(-0.82) 

0.181 

variable 

(3) 

-0.029 

(-0.14) 

-0.001 

(-0.42) 

1.566 

(3.57)** 

0.118 

(4 Worst) 

0.080 

(0.39) 

-0.005 

(-2.96)** 

-0.129 

(-1.03) 

0.084 

B. IR as the dependent variable 

TR2
t.n 

Turnover 

Alphas 

R2 

-0.002 

(-0.03) 

-0.001 

(-1.74) 

-0.004 

(-0.20) 

0.033 

-0.057 

(-1.56) 

0.000 

(-0.13) 

0.038 

(0.93) 

0.026 

0.022 

(0.61) 

0.000 

(0.72) 

0.210 

(2.77)** 

0.074 

-0.080 

(-2.00)** 

0.000 

(-1.43) 

-0.052 

(-2.21)** 

0.064 
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Table 3.4. TR Regressions with Sorts on Trade Activity Proxied 

by Mean Roundtrips Per Day. 

This table reports the results of the four-factor model alpha from equation (1) and 
IR from equation (2) from regressions of daily excess returns on the factor returns 
with quartile ranks on trade activity. Trade activity is defined as the mean number 
of roundtrip transactions per account per day. The dependent variables are 
obtained from the four-factor model from time period t to t + n and are regressed 
on the independent variables from time period t — n to t -I, where t is the daily 
return from each account. The R2 value is obtained from the four-factor currency 

parentheses and significant values are bold, and ** and * denote statistical 
significance at the 1 percent and 5 percent levels, respectively. 

model and then used to calculate TR The t-statistics are in 

A. Alpha as the dependent variable 

Variable 

TR2,.n 

Turnover 

Alphat.n 

R2 

(1 Most) 

0.516 

(1.53) 

0.015 

(8.32)** 

-0.017 

(-0.13) 

0.409 

(2) 

0.473 

(1.70) 

-0.007 

(-2.94)** 

0.247 

(2.14)** 

0.194 

(3) 

-0.134 

(-0.63) 

-0.006 

(-2.27)** 

0.311 

(3.04)** 

0.128 

(4 Least) 

-0.347 

(-1.07) 

-0.008 

(-3.40)** 

-0.544 

(-3.49)** 

0.172 

B. IR as the dependent variable 

TR2,.n 

Turnover 

Alphat.n 

R2 

-0.041 

(-0.87) 

0.000 

(1.36) 

0.011 

(0.62) 

0.029 

0.030 

(0.77) 

0.000 

(-1.43) 

0.021 

(1.33) 

0.065 

-0.053 

(-1.43) 

-0.001 

(-1.14) 

0.033 

(1.87) 

0.065 

-0.037 

(-0.85) 

-0.001 

(-1.82) 

-0.065 

(-3.10)** 

0.102 



Table 3.5. TR Regressions with Sorts on Trading Activity 

Proxied by Turnover. 

This table reports the results of the four-factor model alpha from equation (1) 
and IR from equation (2) from regressions of daily excess returns on the factor 
returns with quartile ranks on turnover. The dependent variables are obtained 
from the four-factor model from time period t to t + n and regressed on the 
independent variables from time period t - n to t - 1, where t is the daily return 
from each account. Here R2 is obtained from the four-factor currency model 

and then used to calculate 77?2=log(—j==\. The t-statistics are in 

parentheses and significant values are bold, and ** and * denote statistical 
significance at the 1 percent and 5 percent levels, respectively. 

A. Alpha as the dependent variable 

Variable (1 Most) (2) (3) (4 Least) 
TR2 

Turnover 

Alphat.n 

R2 

-0.186 

(-0.31) 

0.008 

(3.10)** 

0.175 

(1.28) 

0.091 

0.173 

(0.49) 

0.009 

(0.44) 

0.028 

(0.18) 

0.005 

-0.020 

(-0.15) 

-0.028 

(-1.88) 

0.185 

(2.29)** 

0.072 

0.029 

(0.54) 

-0.008 

(-1.12) 

0.587 

(7.23)** 

0.337 

B. IR as the dependent variable 

TR2 

Turnover 

Alphat.n 

R2 

-0.016 

(-0.27) 

0.000 

(-0.30) 

-0.008 

(-0.57) 

0.004 

0.008 

(0.24) 

0.000 

(0.03) 

-0.011 

(-0.75) 

0.006 

-0.035 

(-1.10) 

-0.003 

(-0.91) 

0.032 

(1.66) 

0.041 

-0.037 

(-0.94) 

-0.004 

(-0.74) 

0.359 

(6.14)** 

0.275 



Table 3.6. Robustness Checks with R and the 
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Truncated Sample. 

This table reports the regressions where R2 replaces TR
2 as 

the primary independent variable in equations (3) and (4). 
Panel B presents the results of the regressions when all 
accounts with R2 < 0.05 are removed. The sample size is 
reduced from 428 accounts in Panel A to 359 accounts in 
Panel B. The t-statistics are in parentheses and significant 
values are bold, and ** and * denote statistical significance 
at the 1 percent and 5 percent levels, respectively. 

A. R as the independent variable 

Variable Dependent Variable 

R t-n 

Turnover 

Alphat.n 

R2 

Alpha 

0.044 

(0.07) 

0.002 

(2.07)* 

0.132 

(1.96)* 

0.017 

IR 

-0.096 

(-1.22) 

0.000 

(-0.71) 

0.006 

(0.69) 

0.007 

B. Accounts with R < 0.05 removed 

Dependent Variable 

TR
2
,.n 

Turnover 

Alphat.n 

R
2 

Alpha 

0.034 

0.13 

0.002 

(1.99)* 

0.096 

1.28 

0.014 

IR 

-0.019 

-0.59 

0.000 

-0.72 

0.003 

0.32 

0.003 



Table 3.7. Results for the Persistence of Performance and Active 
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Management. 

This table reports the regressions results for the persistence of performance and 
active management for 428 currency trade accounts. The left column reports the 
regression results when lagged alpha is regressed on future alpha values, and the 
right column reports the regression results when lagged R2 is regressed on future 
R2 values. Quartile portfolios are formed by ranking all 428 accounts by the 
statistical significance of alpha. Each quartile contains 107 accounts. Here t-
statistics are in parentheses and significant values are bold, and ** and * denote 
statistical significance at the 1 percent and 5 percent levels, respectively. 

A. Full sample 

Quartile Obs. Dependent Variable 

Alpha 
Persistence 

R2 

Persistence 

1 (top performers) 

2 

3 

4 (worst performers) 

107 

107 

107 

107 

B. All accounts with 

Obs. 

Lagged Alpha 

0.285 

(1.63) 

-0.001 

(-0.03) 

0.016 

(0.32) 

-0.050 

(-0.46) 

more than 80 days 

Lagged Alpha 

Lagged R2 

0.270 

(3.77)** 

0.153 

(1.61) 

0.367 

(4.03)** 

0.386 

(3.82)** 

of return data 

Lagged R2 

1 (top performers) 41 

39 

29 

4 (worst performers) 37 

1.185 

(4.51)*** 

0.046 

(0.81) 

0.017 

(0.22) 

0.213 

(0.76) 

0.032 

(0.27) 

-0.109 

(-0.69) 

0.541 

(1.38) 

-0.089 

(-0.57) 



Table 3.8. Skill Based on the Percentage of Winning Trades. 

This table reports the percentage of winning trades for all 428 accounts from 2004 
to 2009. The percentage of winning trades is calculated as the total number of 
winning trades, defined as a trade with a net profit greater than zero, divided by the 
total number of trades for each account. Panel A reports the results for the full 
sample of 428 accounts. Panel B reports the percentage of winning trades based on 
performance sorts, where quartile 1 contains the top-performing currency traders 
and quartile 4 contains the worst-performing traders. Each quartile contains 107 
accounts. Panel C reports the difference in means between quartiles 1 and 4. The t-
statistics are reported in parentheses and test whether the percentage of winning 
trades is significantly different from 50 percent. Significant values are bold and * 
denotes statistical significance at the 1 percent level. 

A. Percentage of winning trades for the full sample 

Mean 
Percentage 
of Winning 

Trades 

Full Sample 53.97 

(4.08)* 

B. Percentage of winning 

Std Dev Minimum 

20.13 4.05 

trades sorted on performance 

Maximum 

100 

Mean 

,.„.. . Std Dev Minimum Maximum 
or Winning 

Trades 
(Top performers) 

2 

3 

4 (Worst 

66.78 

(9.65)* 

58.50 

(4.64)* 

48.33 

(1.04) 

42.26 

17.99 

18.95 

16.61 

17.81 

21.36 

8.89 

11.76 

4.05 

100 

100 

88.64 

79.71 
performers) 

(4.50)* 

C. Difference in means of winning trades 

Q1-Q4 

Mean Diff. 

24.53 

(4.50)** 



Table 3.9. Drawdown Proxied by the 

Largest One-Day Percent Decline. 

This table reports drawdown for all 428 accounts from 2004 to 2009. 
Drawdown is calculated as the largest daily negative return for an individual 
currency trader. Panel A reports the results for the full sample of 428 accounts 
and for quartile ranks based on the statistical significance of alpha from the 
Pojarliev-Levich (2008) four-factor currency model, where quartile 1 contains 
the top-performing currency traders and quartile 4 contains the worst-performing 
traders. Panel B reports the results for currency traders with an account age over 
80 days (accounts of age under 80 days are removed). Both panels report the 
difference in means between the top-performing traders in quartile 1 and the 
worst-performing traders in quartile 4. The t-statistics are reported in 
parentheses. 

Panel A. Full-sample results 

Largest Daily Percentage 
Decline 

Mean Std. Dev. Obs. 

Full Sample 

Ql (top performers) 

Q2 

Q3 

Q4 (worst performers) 

DiffQl -Q4 

-16.81 

-16.07 

-15.19 

-16.84 

-19.15 

3.08 

(1.29) 

Panel B. Accounts with age over 

Age > 80 days 

Ql (top performers) 

Q2 

Q3 

Q4 (worst performers) 

-17.73 

-16.02 

-16.40 

-17.89 

-19.91 

16.45 

16.45 

15.50 

15.11 

18.48 

80 days 

16.62 

16.86 

17.88 

16.21 

16.24 

428 

107 

107 

107 

107 

146 

34 

30 

40 

42 

DiffQl -Q4 3.89 

(1.08) 



Table 3.10. Summary of Statistically Significant 
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Coefficients for the Timing Model. 

This table reports regression results based on the timing model (5) 
for all 428 accounts. The timing model is defined as r]t — a} + 
Z?=iA,t[i7.,t |fw>0] + 2?= 1y l , t [F I , t |F l i t<0], where r is the 
return of individual currency trader j at time t; F is the return 
associated with factor i, and the factors are decomposed into 
positive and negative return observations. Individual currency 
trader timing ability is inferred from trader skill to load positively 
(negatively) on the factors when factor returns are positive 
(negative). Here CarPositive (CarryNeg), ValuePos (ValueNeg), 
and MomPos (MomNeg) are the explanatory variables in the timing 
model when the daily returns for the carry (Carry), value (Value) 
and momentum (Mom) are positive (negative). These variables are 
then regressed on the daily net returns of individual currency 
traders. The number of statistically significant coefficients, at the 5 
percent level of significance, is reported below. 

Variable 

CarryPos 

CarryNeg 

ValuePos 

ValueNeg 

MomPos 

MomNeg 

Number of 
Significant 

Coefficients 

36 

54 

38 

36 

42 

33 

Percentage 

8.41% 

12.62% 

8.88% 

8.41% 

9.81% 

7.71% 



Table 3.11. Full-Sample Regression Results with 
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the DBCR as the Independent Variable. 

This table reports the regression results of equations (3) and 
(4), using the DBCR as the sole independent variable in 
equation (1). Alphas obtained from the DBCR factor model 
from time period / to t + n are regressed on the independent 
variables from time period t - n to t - 1, where t is the monthly 
return from each account. Here R2,+„ is obtained from the 
four-factor currency model and then used to calculate TR

2
 = 

log(—1=). The t-statistics are in parentheses and significant 

values are bold, and ** and * denote statistical significance at 
the 1 percent and 5 percent levels, respectively. 

Variable 

TR2 

Turnover 

Alpha,.n 

R2 

Dependent Variable 

Alpha 

0.077 

(0.94) 

0.003 

(2.59)** 

0.255 

(3.16)** 

0.017 

IR 

-0.001 

(-0.08) 

0.000 

(-1.15) 

0.020 

(2.39)** 

0.007 



Table 4.1. Frequency of Contracts Traded. 
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This table reports trading activity from 79,042 roundtrip 
transactions of 428 individual currency trader accounts 
from March 2004 to September 2009. It reports 
currency pairs, total number of roundtrip transactions, 
and total percentage of contracts traded 

Currency Pair 

EURUSD 

GBPUSD 

USDJPY 

GBPJPY 

USDCHF 

EURJPY 

USDCAD 

AUDUSD 
EURGBP 

GBPCHF 

AUDJPY 

EURCHF 

CHFJPY 

NZDUSD 

EURAUD 

EURCAD 

CADJPY 

GBPCAD 

GBPAUD 

AUDNZD 

AUDCHF 

AUDCAD 

NZDJPY 

USDSGD 

USDDKK 

GBPNZD 

USDNOK 

USDHKD 

Number of 
Contracts 

17,199 

14,835 

7,593 

7,566 

7,360 
5,724 

3,608 

3,597 

1,964 

1,369 

1,235 

1,197 

1,095 

927 

867 

768 

410 

349 

317 

254 

212 

201 

110 

110 

95 

68 

10 

2 

% 

21.76 

18.77 

9.61 

9.57 

9.31 
7.24 

4.56 

4.55 

2.48 

1.73 

1.56 

1.51 

1.39 

1.17 
1.1 

0.97 
0.52 

0.44 

0.4 

0.32 

0.27 

0.25 

0.14 

0.14 

0.12 

0.09 

0.01 

0.01 
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Table 4.2. Descriptive Statistics for Dependent and Independent Variables. 

This table reports descriptive statistics for the dependent variable and the independent variables of 
model (1). Net daily returns are obtained from account records of 428 individual currency traders 
from March 2004 to September 2009. The technical indicator indices consist of Bollinger Band Index 
(BBIndex), Moving Average Convergence Divergence Index (MACDIndex), 8- and 18-day Moving 
Average Index (MAIndex), and the Relative Strength Index (RSI). Each technical indicator index is 
calculated using a variable weighted formula consisting of the following currency pairs and 

percentage weights, 
USDCHF. 

Panel A - Descriptive 

Variable 
Net Daily Excess 
Returns 

BBIndex 

MACDIndex 

RSIIndex 

MAIndex 

30% EURUSD, 28% 

Statistics 

Mean 

0.0576 

-0.0288 

0.0019 

-0.0185 

0.0192 

Panel B - Correlation Coefficients 

Net Daily Excess 
Returns 
BBIndex 

MACDIndex 

RSIIndex 

MAIndex 

Net Daily 
Excess 
Returns 

1.000 

-0.0650 

0.0231 

-0.0729 

0.0446 

GBPJPY, 

Max 

43.1505 

8.2200 

3.5500 

8.5400 

3.2900 

BBIndex 

1.000 

-0.0444 

0.5062 

-0.5861 

14% GBPUSD, 

Min 

-12.881 

-5.1900 

-4.2700 

-5.3900 

-4.4400 

MACD 
Index 

1.000 

0.0227 

0.4273 

14% USDJPY, 

Std Dev 

2.2197 

0.9460 

0.7147 

0.9486 

0.6889 

RSIIndex 

1.000 

-0.3086 

and 14% 

Skew 

6.1793 

-0.1489 

0.1666 

-0.1328 

0.1780 

MAIndex 

1.000 
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Table 4.3. Technical Currency Model Regression Results for Equally Weighted 

Portfolios 2004-2009. 

This table reports performance results for the technical currency model for the period March 
2004-September 2009. Performance measures are computed from daily net returns, which are 
calculated from account records, and equal-weighted portfolios are formed with the daily return 
data. Alpha is the intercept from the technical currency model, where the excess equal-weighted 
portfolio return is regressed on indices constructed from technical indicators: the Bollinger Band 
Index (BBIndex), the Moving Average Index (MAIndex), the Moving Average Convergence 
Divergence Index (MACDIndex); and the Relative Strength Index (RSI). Each technical index is 
calculated using a variable-weighted formula consisting of the following currency pairs and 
percentage weights, 30% EURUSD, 28% GBPJPY, 14% GBPUSD, 14% USDJPY, and 14% 
USDCHF. Excess returns are calculated by subtracting the daily LIBOR rates from the equal-
weighted portfolio return, t-statistics are in parentheses and significant values are bold. *** 
denotes statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

Observations: 1212 

Specf. 

1 

2 

3 

4 

5 

6 

7 

Alpha 

0.0532 

(0.84) 

0.0548 

(0.86) 

0.0574 

(0.9) 

0.0544 

(0.86) 

0.053 

(0.83) 

0.0532 

(0.83) 

0.0528 

(0.83) 

BB 
Index 

-0.1525 

(-2.27)** 

-0.1389 

(-1.67) 

-0.1547 

(-1.79) 

-0.0931 

(-0.99) 

MA 
Index 

0.1437 

(1.55) 

0.0319 

(0.28) 

-0.0106 

(-0.08) 

-0.0214 

(-0.16) 

MACD 
Index 

0.0717 

(0.80) 

0.067 

(0.65) 

0.079 

(0.77) 

RSI 
Index 

-0.1705 

(-2.54)** 

-0.1297 

(-1.66)* 

R2 

0.0042 

0.002 

0.0005 

0.0053 

0.0043 

0.0046 

0.0069 



Table 4.4. Technical Currency Model Regression Results for Equal-

Weighted Portfolios of Day Traders and Non-Day Traders, 2004-2009. 

This table reports performance results for the technical currency model for the period 
March 2004-September 2009. Panel A shows the results for 165 day traders, defined as 
traders who, on average, open and close their positions within the same trading day, and 
Panel B presents the results for 263 non-day traders, defined as traders who, on average, 
open and close the same position over a period longer than one day. Performance 
measures are computed from daily net returns, which are calculated from account records, 
and equal-weighted portfolios are formed with the daily return data. Alpha is the intercept 
from the technical currency model, where the excess equal-weighted portfolio return is 
regressed on indices constructed from technical indicators: the Bollinger Band Index 
(BBIndex), the Moving Average Index (MAIndex), the Moving Average Convergence 
Divergence Index (MACDIndex); and the Relative Strength Index (RSI). Each technical 
index is calculated using a variable weighted formula consisting of the following 
currency pairs and percentage weights, 30% EURUSD, 28% GBPJPY, 14% GBPUSD, 
14% USDJPY, and 14% USDCHF. Excess returns are calculated by subtracting the daily 
LIBOR rates from the equal-weighted portfolio return, t-statistics are in parentheses and 
significant values are bold. *** denotes statistical significance at the 1% level, ** at the 
5% level, and * at the 10% level. 

Panel A. 

Alpha 

0.1389 

(1.14) 

Alpha 

Day Traders (1020 Observations) 
BB 

Index 

-0.0833 

(-0.49) 

Panel B. 

BB 
Index 

MA 

Index 

0.1579 

(0.86) 

MACD 
Index 

-0.1363 

(-0.56) 

RSI 
Index 

-0.0912 

(-0.65) 

Non-Day Traders (1212 Observations) 

MA 
Index 

MACD 
Index 

RSI 
Index 

R2 

0.0015 

R2 

-0.0177 -0.1070 0.0204 0.0115 -0.1721 0.0134 

(-0.30) (-1.24) (0.22) (0.09) (-2.41)*** 



Table 4.5. Coefficient Summary for Technical Currency Model Regressions for 

Individual Accounts. 

This table reports a summary of statistically significant coefficients, at the 10% level of significance, for 
regressions of the technical currency model in equation (1). Performance measures are computed from 
daily net returns, which are obtained from account records. Panel A reports the statistically significant 
coefficients for the full sample, and Panel B reports descriptive data for R2. 

Panel A - Statistically Significant Coefficients for Technical Currency Model 

Positive Coefficients Negative Coefficients 

Variable 

Alpha 

MAIndex 

MACDIndex 

BBIndex 

RSIIndex 

Number 
ofSig. 
Coeff. 

22 

35 

57 

44 

40 

% 

5.14% 

8.18% 

13.32% 

10.28% 

9.35% 

Number 
ofSig. 
Coeff. 

45 

51 

31 

54 

46 

% 

10.51% 

11.92% 

7.24% 

12.62% 

10.75% 

Total 
Number 
ofSig. 
Coeff. 

67 

86 

88 

98 

86 

Total % 

15.65% 

20.09% 

20.56% 

22.90% 

20.09% 

Panel B - Coefficient of Determination for Technical Currency Model 

Full Sample 
R2 

Obs. 

428 

Mean 

0.12 

Min 

0.0008 

Max 

0.71 

Lower 
Quartile 

0.039 

Upper 
Quartile 

0.165 

Positive 
Alpha R2 190 0.13 0.0008 0.71 0.038 0.173 

Negative 
Alpha R2 238 0.12 0.001 0.70 0.039 0.162 



Table 4.6. Coefficient Summary for Technical Currency Model Regressions for 

Day Traders and Non-Day Traders. 

This table reports a summary of statistically significant coefficients, at the 10% level of 
significance, for regressions of the technical currency model in equation (1) for 428 individual 
currency trader accounts for the period 2004-2009. Performance measures are computed from daily 
net returns, which are obtained from account records. Panel A reports the statistically significant 
coefficients and R2 for 165 day traders and Panel B reports the same for 263 non-day traders. 

Panel A - Day 

Variable 

Alpha 

MAIndex 

MACDIndex 

BBIndex 

RSIIndex 

Trader Statistically Significant Coefficients for Technical Currency Model 

Positive Coefficients 

Number 
ofSig. 
Coeff. 

5 

11 

15 

18 

9 

% 

1.17% 

2.57% 

3.50% 

4.21% 

2.10% 

Negative 
Coefficients 

Number 
ofSig. 
Coeff. 

15 

18 

9 

12 

14 

% 

3.50% 

4.21% 

2.10% 

2.80% 

3.27% 

Total 
Number 
ofSig. 
Coeff. 

20 

29 

24 

30 

23 

Total % 

4.67% 

6.78% 

5.61% 

7.01% 

5.37% 

Coefficient of Determination for Technical Currency Model 

Obs. Mean Min Max 
Lower 

Quartile 
Upper 

Quartile 

Rz 
165 0.09 0.001 0.544 0.039 0.12 



Table 4.6. Coefficient Summary for Technical Currency Model Regressions for 

Day Traders and Non-Day Traders Continued. 

Panel B - Non-Day Trader Statistically Significant Coefficients for Technical Currency Model 

Variable 

Alpha 

MAIndex 

MACDIndex 

BBIndex 

RSIIndex 

Positive Coefficients 

Number 
ofSig. 
Coeff 

17 

24 

42 

26 

31 

% 

3.97% 

5.61% 

9.81% 

6.07% 

7.24% 

Negative 
Coefficients 

Number 
ofSig. 
Coeff. 

30 

33 

22 

42 

32 

% 

7.01% 

7.71% 

5.14% 

9.81% 

7.48% 

Total 
Number 
ofSig. 
Coeff 

47 

57 

64 

68 

63 

Total % 

10.98% 

13.32% 

14.95% 

15.89% 

14.72% 

Coefficient of Determination for Technical Currency Model 

Obs. Mean Min Max 
Lower 

Quartile 
Upper 

Quartile 

Rz 
263 0.15 0.0008 0.71 0.051 0.2 



Table 4.7. Regression Results for Technical Analysis as a Determinant of 

Performance. 

This table reports regression results for alphaL = a + pltRf + et, where alpha and R2 are 
obtained from the technical currency model in equation (1). Panel A reports the results for the 
full sample of 407 accounts. Panel B reports the results for portfolios ranked on performance 
and 165 day traders and 263 non-day traders, t-statistics are in parentheses and significant 
values are bold. ** denotes statistical significance at the 5% level and * at the 10% level. 

Panel A. Full-Sample Results 

Coefficient 

Panel B. Quartile Ranks 

Day Traders 

R2 (explanatory 
variable) 

R2 

Observations 

Non-Day Traders 

R2 (explanatory 
variable) 

R2 

Observations 

R2 

(explanatory 
variable) 

0.0543 

(0.11) 

R2 

0.0000 

on Performance for Day Traders and Non-

1 
(best) 

1.752 

(0.30) 

0.002 

44 

1 
(best) 

2.1238 

(0.98) 

0.060 

63 

2 

-0.136 

(-0.26) 

0.002 

44 

2 

-0.2864 

(-0.96) 

0.015 

63 

Obs. 

428 

-Day Traders 

3 

-0.821 

(-1.64) 

0.073 

36 

3 

-1.5400 

(-0.57) 

0.033 

71 

4 
(worst) 

-2.004 

(-1.97)** 

0.090 

41 

4 
(worst) 

-1.2307 

(-1.71)* 

0.044 

66 
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