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ABSTRACT

TWO ESSAYS ON INVESTOR SENTIMENT AND
THE PROFITABILITY OF CONTRARIAN AND MOMENTUM STRATEGIES

Changmei Zhang
Old Dominion University, 2010

Director: Dr. Licheng Sun

This dissertation, by employing different trading strategies, addresses the trading

profitability issue in a broad scope of different markets.

In the equity market, I construct a group of BUY-SELL portfolios based on prior

stock returns, and find that contrarian and momentum strategies are both significantly

profitable. Investor sentiment, in addition to firm-specific risks, provides behavioral

explanations to the profitability. Three popular sentiment measures are used for the

purpose of study: two reduced-formed sentiment indexes that are constructed by Baker

and Wurgler (2006) and the survey-based University of Michigan Consumer Sentiment

Index. Several interesting findings are revealed: 1) extreme sentiment levels (either

optimistic or pessimistic) tend to be followed by higher contrarian profits; 2) momentum

profits appear to be negatively related with the lagged average 6-month sentiment levels;

3) former loser stocks are more important in determining the average contrarian profits,

while momentum profits largely result from former winner stocks. The results are robust

for all three sentiment proxies, and are consistent with the core implications of behavioral

models. Specifically, contrarian profits are consistent with the overreaction hypothesis,

and momentum profits can be explained by investor overconfidence and self-attribution.



In the foreign exchange market, I employ a different Weighted Relative Strength

Strategy (a.k.a. WRSS). The WRSS strategies uncover similar profitability: eighteen

among sixty-four basic strategies generate significant trading profits, and all of them are

momentum. Contrarian profits mostly emerge in the second subperiod from 1999-2007,

but none of them is statistically significant. Due to the difficulty of generalizing investor

sentiment in the global context, the underlying autocorrelation structure of currency

returns and the cross sectional dispersion in mean returns of individual currencies are

responsible for the abnormal returns. It is found that the time serial predictability plays a

critical role in determining trading profits and accounting for market inefficiency. The

profits remain significant even when transaction costs come into effect.
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TWO ESSAYS ON INVESTOR SENTIMENT AND THE PROFITABILITY OF

CONTRARIAN AND MOMENTUM STRATEGIES

INTRODUCTION

Many studies have documented that certain stock selection strategies can generate

significant abnormal returns. The most famous ones are contrarian strategies (De Bondt

and Thaler, 1985) and momentum strategies (Jegadeesh and Titman, 1993). De Bondt

and Thaler (1985) find that stocks with extreme capital losses in the past (so-called

"losers") will outperform those with extreme capital gains (so-called "winners") in the

future 3-5 years. On the other hand, Jegadeesh and Titman (1993) suggest that stocks that

perform the best (worst) over a 3 to 12 month period tend to continue to perform well

(poorly) over the subsequent 3 to 12 months.

These financial anomalies, in general, cannot be explained by traditional asset

pricing theories that are built upon the Efficient Market Hypothesis (EMH). According to

the EMH, investors are assumed to be rational and follow the Bayes' rule to react to new

information. Any mispricing should be corrected promptly so that there is no chance for

excess returns.

Kahneman and Tversky (1979, 1982), the founders of behavioral finance, provide

a different perspective on the anomalies. Their prospect theory challenges the underlying

assumptions of the Efficient Market Hypothesis. They argue that people seem to make

predictions based upon a simple matching rule: "The predicted value is selected so that

the standing of the case in the distribution of outcomes matches its standing in the

distribution of impressions (Kahneman and Tversky, 1982, 416)." In other words, to react
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to new available information, investors tend to put more weight on the most recent

information and less on the prior data.

Based on Kahneman and Tversky's proposition, many behavioral theories have

emerged since late 1990's. The limit of arbitrage is one of the most prominent. In this

theory, Shleifer and Vishny (1997) suggest that the irrationality of investors causes

mispricing and generates arbitrage profits in the market. However, due to transaction

costs and/or the noise trader risk1, arbitrageurs fail to correct the mispricing. Therefore

abnormal returns become possible.

Other researchers build their theories upon investors' psychological biases.

Several behavioral models fall into this category. Lakonishok, Shleifer and Vishny (1994)

stand by their extrapolation theory. They believe that value strategies yield higher returns

because typical investors extrapolate past performance too far into the future. To be

specific, when average investors believe that the underperforming stocks (value stocks)

will continue performing poorly in the future, speculators who employ contrarian

strategies can earn extra profits because they are the only ones who buy the soon-to-be-

corrected underpriced stocks.

Barberis, Shleifer and Vishny (1998) present a parsimonious model of investor

sentiment based on representativeness and conservatism. The two psychological biases

mislead investors to translate market information into irrational beliefs. For instance, if

investors receive a series of positive (negative) shocks, they believe that a higher (lower)

return will follow. Actually, the upcoming shock is random. The noisy information

1 As opposed to rational arbitrageurs, noise traders have irrational beliefs on stock prices. They work
against the arbitrageurs and cause the prices to diverge further away from the fundamental values.
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processing causes underreaction and/or overreaction and therefore generates abnormal

returns.

Hong and Stein (1999) divide the spectrum of investors into two types:

newswatchers and momentum traders. They assume that both agents are partially rational.

Newswatchers observe private information and slowly incorporate it into prices, causing

underreaction in the short run. Momentum traders, on the other hand, try to capture the

underreaction and chase the price drifts to make profits, leading to overreaction in the

long run.

Daniel, Hirshleifer and Subramanyam (1998) suggest that investors tend to

overreact to private information signals. Even after public information signals arrive, the

self-attributed investors only partially correct their misjudgment. Especially, if their

initial judgment is confirmed by the investment outcome, they become more confident

and the overreaction phase will last longer. Overall, the reaction pattern is consistent with

short-run positive autocorrelation and long-run negative autocorrelation.

In spite of their success in explaining the financial anomalies, behavioral models

that rely on specific biases in individual investor psychology are often difficult to

generalize. Fama (1998) points out that, not surprisingly, behavioral models work well on

the anomalies they are designed to explain, but the real test is how well they can explain

the big picture. Baker and Wurgler (2007) also realize that "real investors and markets

are too complicated to be neatly summarized by a few selected biases and trading

frictions." Instead they suggest that researchers focus on the measurement of reduced
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form, aggregate investor sentiment and trace its effects on market returns and individuals

stocks.

Many candidates fall into the view of behavioral finance as being the

representative of aggregate investor sentiment. Two categories of proxies are drawn from

the literature: analytical indexes and survey-based indexes.

A. Analytical sentiment indexes. This group of proxies tends to capture the

individual investor psychology from their trading behavior and their reaction to events.

a. Individual trading. Odean (1998), based upon a study of more than 10,000

randomly selected individual accounts, finds that investors are overconfident and they

tend to trade excessively. More recently, Kaniel, Saar, and Titman (2005) suggest that

individuals trade as if they are contrarians. The stocks that contrarian traders buy

constantly show positive excess returns in the future. Therefore, net individual buying

will predict a lower market return in the following months and vice versa.

b. Liquidity. Captured by the market turnover rate, liquidity is a reliable

predictor of market returns. High liquidity implies that the market is full of irrational

investors and that stocks prices tend to be overvalued. As a result, high turnover rate is

more likely to lead to low future returns. Baker and Stein (2004) provide support to this

argument. They find that conservative investors underreact to the information in the order

flows and thereby they trade more frequently, adding liquidity to the market.

c. IPO volume and first-day IPO returns. IPO volume is said to be extremely

sensitive to investor sentiment. Investment bankers speak of "windows of opportunity"

for an IPO that capriciously opens and closes. An IPO's underpriced offer is also an
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unsolved puzzle. Investor sentiment might be the only reasonable explanation we know

so far, in so much as average first-day IPO returns are highly correlated with the IPO

volume, and that the latter is negatively related with future market returns.

d. Close-end fund discount. Similar to the IPO's trading volume, the close-

end fund discount is widely accepted as a sentiment index. Lee, Shleifer, and Thaler

(1991) and Neal and Wheatley (1998) both document that the discount increases when

investors are bearish. Qiu and Welch (2005), however, point out that CEFD is not highly

correlated with the consumer confidence index, a historically reliable proxy for investor

sentiment. Their study casts doubts on the issue of whether CEFD has the ability to

explain a variety of financial puzzles.

e. Dividend premium. This proxy is created by Baker and Wurgler (2004) in

their catering model. This premium reflects investor sentiment in terms of investors'

demand for dividends. Specifically, Baker and Wurgler (2004) assume that management

tends to rationally cater the time-varying investor demand by paying dividends when

investors prefer payers, and not paying when investors prefer non-payers.

B. Survey-based consumer confidence indexes. These indexes survey a large

number of individual investors, and report their reaction to the macroeconomic situation

and/or the capital market situation. Two consumer confidence measures are prominent:

the Michigan Consumer Confidence Index and the Conference Board Consumer

Confidence Index.
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a. The University of Michigan Consumer Sentiment Index. This index is run

by the Michigan Consumer Research Center. It focuses on the individual's economic

conditions, and has become a major determinant of consumer confidence since 1958.

b. The Conference Board Consumer Confidence Index. This index is run by

Greenwich, CT based NFO Research Inc. on the behalf of Conference Board. It mainly

focuses on macroeconomic conditions (Qiu and Welch, 2005).

c. Other well-known survey-based sentiment indexes include UBS/Gallup

Index of Investor Optimism, AAII (American Association of Individual Investors) Index,

and VIX (The Market Implied Volatility Index). Each has its own strength and weakness

in nature. UBS/Gallup conducts interviews among (random) investors with more than

$10,000 in wealth, and therefore filters out relatively poor investors. AAII Index collects

responses from registered members only, and therefore it is subject to potential self-

selecting biases. The Market Implied Volatility Index (VIX) measures the implied

volatility of options on the S&P 100 stock index. It is a relatively unbiased index and

often called the "investor fear gauge". But VIX's short history since 1990 has limited

power to represent investor sentiment in the long run.

Although none of the above-mentioned sentiment indexes is uniquely reliable,

when aggregated, these proxies lead to a similar pattern of sentiment variation over time,

which can help make predictions about patterns in market-wide investor sentiment and

stock prices.

A breakthrough is provided by Baker and Wurgler (2006), in which they combine

six principal proxies and create a reduced form of aggregate investor sentiment. Thanks
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to their ingenious work, I am able to directly test the relationship between investor

sentiment and the profitability ofvarious trading strategies. More importantly, this should

help clarify the on-going debate among financial economists regarding the exact sources

of momentum and contrarian profits.

Besides the financial anomalies found in the equity market, trading profitability is

also observed in other capital markets such as the currency market. Sweeney (1986) finds

that, using filter rules, investors can earn abnormal profits when trading from a risk-free

Dollar asset to a risk-free Deutsche Mark asset. Kho (1996) also reports significant

excess returns to the buy-and-hold strategy. Okunev and White (2003) re-examine

momentum profits and find that the well-documented profitability holds for currencies

throughout 1990's. Bianchi et al. (2004) report similar results using a sample of G7

countries.

However, in the context of the global economy, it is difficult to summarize

investor sentiment into one single proxy. Instead, the fundamental characteristics such as

the autocorrelation structure for currency returns and the cross sectional dispersion across

currencies are plausible explanations for the trading profits.

In the literature, it is well-documented that the time serial autocorrelation in

currency returns plays an important role in generating abnormal returns. Prior studies that

employ either filter rules or moving average rules almost exclusively rely on the belief

that the autocorrelation is the determinant of currency trading profits (Sweeney, 1986;

Okunev and White, 2003; Bianchi et al., 2004). Taylor (1992) explicitly suggests that the

exchange rates do not follow random walks but possess some degree of serial correlation.
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Okune and White (2003) also find abnormal returns from the autocorrelation structure of

currency returns.

In contrast, Conrad and Kaul (1998), Lehmann (1990), and Lo and MacKinlay

(1990) argue that trading profitability should be explained by both the time serial

component and the cross sectional mean return dispersion component. To understand the

underlying principle, Conrad and Kaul (1998) suggest considering a benchmark return-

generating process that follows a random walk:

RiM = µ? + ZiM, i = 1,2, ... N, (1)

where

E[£iMÌ = 0 Vi, k and ?[e?£(?)e,·,£_?(&)] = 0 V ij,k.

Also by construction,

Cov[RiM,Rj,t-M] = o vi,y,fc.

As suggested above, there should be no time serial autocorrelation or mean return

dispersion in the benchmark model. Therefore, all profit potentials should be ruled out.

However, when combined with the Weighted Relative Strength Strategy, the return-

generating process shows that momentum (contrarian) strategies can still be profitable

even under the assumption of random walks. In this case, even though the autocorrelation

has been completely removed, trading profits are solely determined by the cross-sectional

difference in mean returns.
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Take momentum strategies as an example. When investors buy winners and sell

losers, they are taking long positions in high mean-return assets and short positions in

low mean-return assets simultaneously. Even when the market is following a random

walk, meaning there are no abnormal returns generated from the autocorrelation, the

dispersion in mean returns still contribute positive excess returns to momentum strategies.

As reported in Conrad and Kaul (1998): "... the role of s2[µ(&)] has a small effect on

profits to trading strategies that use weekly returns."

Inspired by Conrad and Kaul (1998), I conduct a decomposition of the currency

trading profits (Lehmann, 1990; Lo and MacKinlay, 1990; Conrad and Kaul, 1998). This

exercise not only provides insight into the components of trading profits, but also sheds

light on the candidate explanations for market inefficiency.

The remainder of this dissertation is organized as follows. In the second section, I

focus on the relationship between investor sentiment and trading profits in the equity

market. In the third section I switch attention to the foreign exchange market, in which I

re-examine the trading profitability, and investigate the potential sources of market

inefficiency. The last section concludes and provides suggestions for future study on this

subject.
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SENTIMENT, CONTRARIAN, AND MOMENTUM PROFITS

I. Purpose of Study

For almost two decades, some simple trading strategies where portfolio holdings

are based upon past relative return strength have drawn much interest in the literature.

These return-based trading strategies can generally be classified into two categories: (a)

the contrarian strategy that buys past losers and sells past winners; and (b) the momentum

strategy that buys past winners and sells past losers. It is well known that contrarian

strategies work in the short horizon from one week to one month, and momentum

strategies generate positive returns in a longer horizon ranging from three to twelve

months .

This dissertation first explores the relationship between investor sentiment,

contrarian, and momentum trading profits. The profitability of these return-based trading

strategies appears at odds with the traditional finance paradigm that is built upon the

pivotal assumptions of rational investors and efficient markets. Research activities in this

area have largely followed two paths. On one hand, some researchers attempt to reconcile

investor rationality with the profitability of return-based trading strategies. For example,

Lo and MacKinlay (1990) argue that the lead-lag effect between large and small stocks

could be an important source of contrarian profits. Conrad and Kaul (1998) note that

momentum strategy could potentially be consistent with rational asset pricing models if it

takes long positions in high-mean-return stocks and short positions in low-mean-return

stocks. On the other hand, many studies have endeavored to provide some interesting

2 DeBondt and Thaler (1985) document that contrarian strategies are also profitable in the long run (i.e.
three to five years). In this disseratation, we do not focus on this type of long-run contrarian profits and
leave it for future research.
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alternative explanations that are based on investor psychology and behavioral biases. For

instance, Lehmann (1990), and Jegadeesh and Titman (1995) show that contrarian profits

are likely induced by investors' overreaction to news. In the momentum literature,

Barberis, Shleifer and Vishny (1998) discuss how conservatism bias might cause

investors to underreact to information, which in turn gives rise to momentum profits.

Daniel, Hirshleifer and Subrahmanyam (1998) show that self-attribution bias can induce

overconfidence and consequently push stock prices to deviate from their fundamental

values. In the model of Hong and Stein (1999), momentum stems from the gradual

diffusion of information and hence underreaction to news.

In spite of their apparent success in explaining certain asset pricing anomalies,

behavioral models that rely on specific biases in individual investor psychology are often

difficult to generalize. Fama (1998) argues that, not surprisingly, behavioral models work

well on the anomalies they are designed to explain, but the real test is how well they can

explain the big picture. Baker and Wurgler (2007) point out that "real investors and

markets are too complicated to be neatly summarized by a few selected biases and trading

frictions." Instead they suggest that researchers focus on the measurement of reduced

form, aggregate investor sentiment and tracing its effects on market returns and

individuals stocks. Baker and Wurgler (2006) theorize that investor sentiment has cross-

sectional effects when arbitrage constraints vary across stocks. They show that when

sentiment is low (high), subsequent returns are relatively high (low) for small stocks,

young stocks, high volatility stocks, and distressed stocks. Lemmon and Portniaguina

(2006) also explore the time-series relationship between sentiment and the small-stock

premium and find that consumer confidence can forecast small stock returns.
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This dissertation is interested in the relationship between investor sentiment and

returns to both short-term contrarian and long-term momentum trading strategies. The

reasons are twofold.

First, unlike prior studies that almost exclusively focus on either a market index or

decile portfolios sorted by size and/or book market ratio, this study extends the literature

by exploring the relationship between sentiment and returns to contrarian and momentum

trading strategies. Such a relationship should deepen the understanding of the interaction

between sentiment and the limits of arbitrage, two pillars of behavioral finance.

To illustrate, consider the results from Hong, Lim, and Stein (2000).They find that

stocks with low analyst coverage earn higher momentum profits because these stocks are

more difficult to arbitrage. Baker and Wurgler (2006, 2007) also suggest that the

(mis)valuation of stocks is more likely to be influenced by investor sentiment. In general,

when investor sentiment drifts toward extreme levels, profiles of stocks that contribute to

contrarian or momentum profits (namely small stocks, young stocks, highly volatility

stocks, extreme growth stocks, and distressed stocks) appear to match stocks that are hard

to arbitrage.

These observations confirm my intuition that there should be a linkage between

investor sentiment and the profitability of contrarian and momentum strategies. To clarify

the relationship, I suppose investors are subject to sentimental biases. The biases lead to

irrational investment activities such as overbuying in an up-swing sentiment state and/or

overselling in a down-swing sentiment state, and therefore cause stock mispricing. If the
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mispricing cannot be immediately corrected due to the limits of arbitrage, contrarian and

momentum strategies are most likely to generate significant profits.

Second, Baker and Wurgler (2007) point out that none of the empirical results that

are built upon specific sentiment proxies (such as close-end fund discount, IPO volume

and price, new stock issues and dividend premium) is uniquely reliable. However, when

aggregated, these proxies lead to a similar reduced form of sentiment variation over time,

which help make predictions about patterns in market-wide investor sentiment and stock

prices. Thus by studying the relationship between the waves of sentiment and the

profitability of contrarian and momentum strategies, I am able to directly test the core

implications of behavioral hypotheses. This should shed light on the on-going debate

among financial economists regarding the exact sources of momentum and contrarian

profits.

To be specific, in the context of contrarian strategies, if the hypothesis that

investor overreaction is the main source of contrarian profits is true, there should be a

causal relationship between the degree of investor pessimism or optimism and subsequent

contrarian profits. For example, if investors are extremely pessimistic (optimistic) in

month t — 1, they tend to overreact to news and engage irrational activities such as

overselling (overbuying), causing stocks to be undervalued (overvalued). With the

presence of limits of arbitrage, the mispricing cannot be corrected promptly. Therefore,

when in month t investor sentiment swings back to the mean, a contrarian strategy that

buys losers and sells winners will appear to be profitable.
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Likewise, speaking of momentum strategies, when investor sentiment is at

extreme levels, investors who are subject to overconfidence and/or self-attribution biases

tend to extrapolate their current beliefs too far into the future. Their (mis)valuation of

stocks is likely to lead to lower returns in the long run. In contrast, staying in a modest

sentiment state helps investors make rational decisions. As a result, a momentum strategy

that buys winners (i.e. high mean-return stocks) and sells losers (i.e. low mean-return

stocks) is likely to be profitable in the long term. Thus, one should expect to see higher

momentum profits following a relatively mild level of investor sentiment.

Overall, investor sentiment should be the primary explanation for both contrarian

and momentum profits. To test on the hypotheses, I construct a one-month-ranking-and-

one-month-holding buy-losers-and-sell-winners strategy for contrarian profits, and a six-

month-ranking-and-six-month-holding buy-winners-and-sell-losers strategy for

momentum profits. Investor sentiment is indexed as 1 and 0 to capture extreme and

modest levels respectively. Both the lagged level of investor sentiment and changes in the

sentiment states are used to evaluate their effect on contrarian and momentum profits.

Three proxies of investor sentiment are used for the purpose of study: two reduced-

formed sentiment indexes that are constructed by Baker and Wurgler (2006) and the

survey-based University of Michigan Consumer Sentiment Index. The results point to

several interesting findings.

First, there is a clear pattern between investor sentiment and contrarian profits.

When lagged investor sentiment is at extreme levels (either optimistic or pessimistic),

subsequent contrarian profits are approximately twice as high as the case when prior

sentiment levels are modest. The difference in the mean profits is statistically significant.
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Also, contrarian profits are high when investor sentiment shifts from extreme to modest

levels. These results are robust for all three sentiment proxies, and are consistent with the

overreaction hypothesis.

Second, contrarian profits are mostly generated from buying former loser stocks

but not from selling former winner stocks. It is found that loser portfolios provide larger

and more significant returns to the contrarian profits, whereas the contributions of winner

portfolios are not statistically different from zero. This suggests that the loser and winner

stocks have asymmetrical responses to the extreme sentiment levels, providing further

support to the overreaction hypothesis.

Third, momentum profits appear to be negatively related with the lagged average

6-month sentiment levels. In other words, the extreme sentiment levels are expected to be

followed by lower subsequent momentum profits. This finding helps clarify the core

implications of several behavioral models, such as investor overconfidence and self-

attribution. The expected relationship persists even after controlling for three Fama-

French factors.

Fourth, in contrast to contrarian profits, momentum profits largely result from

buying and holding past winners for the long run. Selling former loser stocks only makes

marginal contribution. The evidence is particularly strong under the bullish sentiment

reading. Again, this can be explained by the theory that winner and loser stocks respond

to extreme sentiment levels asymmetrically.

II. Analysis of the Data

A. Sentiment
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This dissertation relies on two popular measures for investor sentiment. The first

measure is the sentiment index constructed by Baker and Wurgler (2006). This index

(henceforth BWl) is based on the common variation in six underlying proxies for

sentiment: the closed-end fund discount (CEFD), NYSE share turnover (TURN), the

number of IPOs (NIPO), the average first-day returns on IPOs (RIPO), the equity share in

new issues (S), and the dividend premium (Pd-nd)- The index is constructed by applying

principal component analysis of the six proxies and its final form is as follows:

SENTIMENT = -0.241CEFDt + 0.242TURN^1 + 0.2S3NIPOt

+0.257/MP(V1 + 0.112St - 0.283 PtDSxND

To isolate the effect of business cycles, Baker and Wurgler also put forward

another sentiment index (henceforth BW2), which by construction is orthogonal to

various macroeconomic variables. Specifically, Baker and Wurgler regress each of the

six raw proxies on growth in industrial production, growth in consumer durables,

nondurables, and services, and a dummy variable for NBER recessions. The residuals

from these regressions are then used to form the index BW2. Both BWl and BW2 are

available in monthly frequencies from January 1966 to December 2007 .

The second sentiment measure is the University of Michigan Consumer

Confidence Index (henceforth UM), a monthly survey index run by the Michigan

Consumer Research Center. This index is calculated based on survey questions that poll

respondents' current and expected future personal financial situations, business

conditions, and intent to purchase major household items. Although the survey questions

are not directly related to financial markets, Qiu and Welch (2006) find that this index

3 1 would like to thank Jeffrey Wurgler for providing the data on his web site.
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has a strong correlation with a more direct (but unfortunately much shorter) proxy for

investor sentiment from UBS/Gallup. Furthermore, both Qiu and Welch (2006) and

Lemmon and Portniaguina (2006) show that UM can forecast small stock returns. Prior to

1978, the index is available only in quarterly frequency. Starting from January 1978 UM

is released on a monthly basis. To be consistent with B Wl and BW2, 1 focus on the

monthly UM data, which are obtained from FRED database at St. Louis Federal Reserve

Bank web site.

Table 1 reports the summary statistics for all three investor sentiment proxies.

Note that by construction BWl and BW2 are mean zero with unit variance. Interestingly,

whereas the correlation between BWl and BW2 is very high (0.94), the correlation

between UM ana the two Baker-Wurgler sentiment proxies is quite low (0.23 for BWl

and 0.06 for BW2 respectively). This result is consistent with the findings in Qiu and

Welch (2006), and it suggests that UM probably captures some unique aspects of

investors' sentiment that are absent from the two Baker-Wurgler sentiment proxies. All

three sentiment proxies are plotted in Figure 1 as well.

[Insert Table 1 here]

[Insert Figure 1 here]

B. Contrarian and Momentum Profits

Contrarian trading strategies usually have shorter holding periods, typically

ranging from one week to a few weeks. Lehmann (1990) examines the profitability of

contrarian strategies using weekly stock returns data. Jegadeesh (1990) finds that the

same strategy works on monthly data as well. In this dissertation, I construct short-term
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contrarian strategies based on one-month-ranking and one-month-holding. Each month

the portfolio is rebalanced by buying the top 10% loser stocks and selling the bottom 10%

winner stocks based on the ranking from the previous month.

Momentum strategies, on the other hand, have longer holding periods, ranging

from three to twelve months (Jegadeesh and Titman, 1993, 2001). The relatively longer-

term momentum strategies are constructed based on six-month-ranking and six-month-

holding. The portfolio buys the top 10% winner stocks and sells the bottom 10% loser

stocks. This equally-weighted decile portfolio approach is comparable to the one used in

Jegadeesh and Titman (1993). Following the convention in the literature, I also skip one

month between the ranking and holding period to minimize microstructure issues related

to illiquid stocks.

To synchronize with the sentiment data, I focus on monthly returns of all the

stocks listed in the NYSE and AMEX from January 1966 to December 2007. The stock

return data are obtained from the Center for Research in Security Prices database (CRSP).

The use of monthly data also helps alleviate market microstructure related issues.

III. Sentiment and Contrarian Strategy Profits

Throughout this dissertation I rely on a critical assumption that investor sentiment

can influence investors' buying- and selling-decisions. If this assumption is valid, I

expect investor sentiment to be correlated with profits in contrarian and momentum

strategies. Specifically, if investors are excessively optimistic (pessimistic), sentiment-

driven buying (selling) forces could push stock prices go above (below) their

fundamental values. A contrarian strategy that buys past losers and sells past winners will
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therefore be profitable. With the presence of limits of arbitrage, the profitability will

remain until the (mis)valuation is subsequently corrected when sentiment swings back to

the mean.

This explanation appears to be consistent with the overreaction hypothesis put

forward by Lehmann (1990), among others, regarding the sources of contrarian profits.

Hence I expect to see a positive relationship between extreme levels of investor sentiment

and subsequent contrarian profits. In other words, when investors are overly optimistic or

pessimistic in month t, the contrarian profits in month t + 1 should be higher, and vice

versa. To test this hypothesis, I use an indicator variable I1 to define extreme and modest

sentiment levels at time t. It=\ if the current sentiment reading is extreme (larger than

75th percentile or less than 25th percentile), and It = 0 if the sentiment reading is modest

(larger than 25th percentile but less than 75th percentile).

The evidence from Table 2 is consistent with the overreaction hypothesis.

[Insert Table 2 here]

First, the full sample results in Panel A show that unconditionally, short-term

contrarian profits are statistically and economically significant. The average monthly

return is 1 .95% with a ¿-statistic of 8.03.

Second, when conditioning on lagged investor sentiment proxies, contrarian

profits exhibit patterns that are consistent with the overreaction hypothesis. For example,

when BWl in the prior month is above the 75th percentile or below the 25th percentile (/,.;

= 1, i.e. investor sentiment is in an extreme level), the average contrarian profit in the

following month is about 2.72% with a ¿-statistic of 6.96. In contrast, when the lagged
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BWl proxy is between 25th and 75th percentiles (/,./ = 0), the average contrarian profit

shrinks to approximately 1.18%. The results are similar when using the BW2 sentiment

proxy. The average monthly profit is 2.61% conditional on an extreme sentiment reading,

and 1.29% conditional on a modest reading. The results based on the UM proxy are also

very similar (1 .78% vs. 1.10%). I formally test if the conditional mean profits are

statistically different when sentiment is in either extreme or modest setting. I find that the

p-values of the spreads are statistically significant at 1% level for all three sentiment

proxies.

Third, I consider separately the impact of loser and winner portfolios on the

contrarian profits under either bullish or bearish sentiments. It is found that contrarian

profits are mostly generated by buying former loser stocks but not by selling former

winner stocks.

In Panel B of Table 2, 1 define bearish sentiment as the case when the sentiment

indexes are below 25th percentile and bullish sentiment as the case when the indexes are

above 75th percentile. The unconditional mean return for loser stocks is about 2.21% and

appears much larger than that of winner stocks (0.25%). When conditional on bearish or

bullish lagged investor sentiment, the results are even more striking - the average returns

on loser portfolios are much stronger than those of winner portfolios. For example, when

BWl is bullish, buying loser stocks generates an average profit of 1.81% to contrarian

strategies, in contrast to the profit of 0.08% from selling winner stocks. When BWl is

bearish, the loser portfolio brings in a profit of 4.13%, whereas the winner portfolio earns

positive returns. Since contrarian strategies take short positions on winners, this subtracts

away 0.58% from the profits. The patterns are also true for BW2 and UM proxies.
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This suggests that loser and winner stocks have asymmetrical responses to the

extreme sentiment levels. When investors are overly pessimistic or optimistic, they are

particularly sensitive to bad news. As a result of overreaction, they tend to oversell loser

stocks. In the short run, the overselling leads to stock undervaluation and creates chances

for contrarian profits in the following period. On the other hand, average investors have

less incentive to keep buying winner stocks even with the presence of good news. Thus,

the overvaluation of winner stocks is likely to be smaller than the undervaluation of loser

stocks in terms of magnitude. Therefore, it is expected that, following a bullish or bearish

month, buying the past losers will generate higher contrarian profits than selling the past

winners.

If sentiment has a contemporaneous effect on investment decisions, then it is

reasonable to assume that there should be a relationship between changes in investor

sentiment (from the ranking period to the holding period) and contrarian profits.

Specifically, if sentiment level is extreme in month t - 1 and swings back to a modest

level in the following month t, according to the overreaction hypothesis, this shift in

sentiment should be accompanied by a relatively higher contrarian profit, and vice versa.

It can be seen that the first order difference of the dummy variable /,, A/t = /t — /^1 ,

should be negatively correlated to contrarian profits. To illustrate, AI¡ = -1 means that

investor sentiment shifts from a state of extreme optimism or pessimism to a state of

relatively mild emotions. Contrarian profits should be higher since the sentiment-driven

undervalued/overvalued stocks tend to revert back to mean in this case. Likewise AIt = 1

indicates that investor sentiment has gone wild, and therefore contrarian profits should be

low or even negative. AI1 = 0 means there is no discernable change in investor sentiment.
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The contrarian profits associated with the three different values of AI1 are reported

in Table 3.

[Insert Table 3 here]

First of all, I find that the relationship between AIt and contrarian profits is

consistent with the prediction from the overreaction hypothesis. It is particularly

noticeable in the case of UM. Profits are at their highest level when ?/, = -1, and lowest

when AIt=I. The difference of the mean profits for the two cases where ?/, = -1 and AI1

= 1 is statistically significant at 1% level with a i-statistic of 4.65. Unfortunately, BWl

and BW2 proxies only provide limited support to the findings of UM because too many

observations fall into the group of AI1 = 0 (e.g. BWl has 470 observations for AI1 = O and

W2 has 450).

Second, Panel B of Table 3 examines the relationship between the mean returns of

winner and loser portfolios and changes in investor sentiment in the following four cases.

Case 1 : Sentiment is bullish (greater than 75th percentile) in both month t-\ and month t.

Case 2: Sentiment is bullish (greater than 75th percentile) in month M and but not bullish

(less than 75th percentile) in month t. Case 3 : Sentiment is bearish (less than 25th

percentile) in both month t-\ and month t. Case 4: Sentiment is bearish (less than 25*

percentile) in month M but not bearish (greater than 25th percentile) in month 1. 1 find

that the returns of loser portfolios appear to be bigger and more significant than that of

winner portfolios, especially in Case 3. In terms of contrarian profits, the loser minus

winner spread also appears to be the biggest in Case 3. This suggests that contrarian

strategies work better when investors are generally bearish, which provides further
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evidence to support the overreaction hypothesis. Results from Case 1 and Case 2 are

harder to interpret due to the limited number of observations.

Finally I investigate the relationship between contrarian profits and investor

sentiment in a regression setting. I consider the following regression models:

CPt = ß0 + M-i + ß2RMt + ß3SMBt + ß4HMLt + et, (2)

CPt = ß0+ ß^Mt + ß2RMt + ß3SMBt + ß4HMLt + et, (3)

where CPt denotes contrarian profits at time t, It.¡, as defined earlier, is a dummy

variable to capture extreme and modest sentiment levels, and AIt = /t — /^1 measures

the change in sentiment. RM1, SMB1, and HML1 are three Fama-French factors4. 1 run

these regressions using all three sentiment proxies: BWl, BW2, and UM.

[Insert Table 4 here]

Panel A of Table 4 reports the regression results from Equation (2). As expected,

the estimated coefficients for /,.; are positive, which suggests that higher lagged investor

sentiment level will increase subsequent contrarian profits. Moreover they are statistically

significant for BWl and BW2, with or without Fama-French factors. The coefficient of

UM proxy shows weak significance. Among the results, the lagged sentiment based on

BWl appears most significant with a ¿-statistic of 3.19.

Panel B of Table 4 reports the regression results from Equation (3). In this case,

the estimated coefficients for AIt, changes in sentiment, are always negative, which is

4 1 would like to thank Ken French for making the data available on his website.
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consistent with the overreaction hypothesis explained earlier. However, none of them are

significant.

By using the dummy variable It, I could have potentially lost some useful

information. Thus I also consider an alternative continuous variable Dt = |5f — µ5|,

where S1 is the sentiment value at time t and //is the sample mean of sentiment proxies.

Dt is a measure of distance between the sentiment reading at t and its mean value. A large

D1 indicates a relatively extreme level of sentiment. Likewise, I also define the change in

Dt, ADt = Dt — D^1. Panel C and Panel D report the results for the following regressions.

CPt = ß0 + P1D^1 + ß2RMt + ß3SMBt + ßAHMLt + et, (4)

CPt = ß0 + ß^Dt + ß2RMt + ß3SMBt + ß^HMLt + et, (5)

where I simply replace /,_/ and AI1 with Dt.i and ADt respectively. The results from

Panel C are consistent with the results from Panel A. There is a positive relationship

between contrarian profits and Dt.¡, which is supportive of the overreaction story. The

estimated coefficients of A-; are significant for BWl and BW2 but not UM. Like Panel B,

Panel D shows a negative but insignificant relationship between AD, and contrarian

profits.

Overall, the collective evidence supports the notion that contrarian profits are

linked to investor sentiment. When lagged sentiment proxies are at extreme (modest)

levels, subsequent contrarian profits are higher (lower). In addition, when investor

sentiment swings from extreme to modest levels, contrarian profits tend to be bigger, and

vice versa.
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IV. Sentiment and Momentum Strategy Profits

If profits to momentum trading strategies are results of investor psychological

biases, as many behavioral models have suggested, one of the core implications is that

investor sentiment should be related to momentum profits. To date, however, very few

papers have directly addressed this linkage. Cooper et al. (2004) conjecture that investor

optimism will be higher following periods of market gains as investors in general hold

long positions in stocks. They define market states according to the overall market return

during the past one to three years. If past market return is positive, then the market is in

an "up" state, and vice versa for a "down" state. It is found that positive momentum

profits tend to follow exclusively an "up" state, which is consistent with the theory of

Daniel, Hirshleifer and Subrahmanyam (1998). In an "up" market state, investor

optimism is high and consequently investor overconfidence can exacerbate the self-

attribution bias. While Cooper et al. (2004) provide some very interesting empirical

results, the use of market state as a measure of investor sentiment is non-standard. In fact,

the market state is not a direct measure of investor sentiment. In particular, while market

state may be a necessary condition for investor overconfidence, it is not sufficient. For

example, an alternative explanation for the "market state" phenomenon could be the

changes in real macroeconomic activities or business cycle regimes, where positive

momentum profits also follow an "up" market state. In my view, a less ambiguous way to

test the core implications is to directly examine the linkage between investor sentiment

and momentum profits.

Similar to the previous section, I focus on three sentiment proxies: BWl, BW2,

and UM. Since the momentum strategies are constructed with a six-month-ranking and a
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six-month-holding method, I use a sentiment dummy variable /t6 to capture the average

sentiment level over the six-month period. /^ = I if the average 6-month sentiment

reading is extreme (larger than the 75th percentile or less than the 25th percentile), and

¡t = 0 if the average 6-month sentiment reading is modest (larger than the 25 percentile

but less than the 75th percentile).

[Insert Table 5 here]

Panel A of Table 5 reports the average monthly returns as momentum trading

profits. The unconditional full sample profit is 0.91% with a i-statistic of 3.38, and the

skip-one-month return is even larger and more significant (1.14% with a i-statistic of

4.57). These results are comparable to other momentum studies.

When conditional on investor sentiment, there shows a negative relationship

between momentum profits and average investor sentiment over the 6-month ranking

period. To illustrate, when /^1 = 1, namely the lagged 6-month sentiment reading is

extreme, the subsequent momentum profits are lower and less significant than in the case

where /^1 = 0. For example, when the lagged BW2 reading is extreme, the average

momentum profit is only 0.43% and insignificant. In contrast, with a modest reading,

BW2 reports a higher and significant profit of 1.40% {t = 4.33). The difference of the

mean profits is significant at 10% level. The results of BWl and UM are similar but the

differences in mean returns are insignificant.

These findings can be explained by investor overconfidence and self-attribution

bias. To be specific, when investors are in extreme sentiment levels, they tend to be

overconfident in making investment decisions. Even after the public information arrives,
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they only partially correct their misjudgment. Especially when the investment outcome

confirms their initial judgment, they become more confident and harder to correct. These

biased behaviors will result in lower returns in the long run. On the other hand, when the

sentiment state is modest, it helps investors make rational decisions. Therefore it is more

likely to see a higher momentum profits following a modest sentiment level in the long

term. In short, the psychological explanation provides support to the hypothesis that the

momentum profits are negatively related with the lagged investor sentiment.

In Panel B of Table 5 I examine separately the average returns to loser and winner

portfolios under lagged bullish (sentiment indexes above 75th percentile) or bearish

(sentiment indexes below 25th percentile) readings. The unconditional average 6-month

momentum profit for winner stocks is 1 .64% and significant (t = 6.01), higher than that

of loser stocks (0.73% and t = 1 .84). When conditioning on the sentiment proxies, I find

that the momentum profits largely result from buying former winner stocks, and that

selling former loser stocks only makes marginal contribution. The evidence is particularly

strong under the bullish sentiment setting: the winner minus loser spread in the case of

bullish reading is much larger than the case of bearish reading.

Again, this provides support to the story that winner and loser stocks respond to

extreme sentiment levels differently. Specifically, over the long run, the overreaction that

generates short-term contrarian profits slowly fades away. Investors return to their

rationality and expect to buy high mean-return stocks (i.e. winners) and sell low mean-

return stocks (i.e. losers). Winner stocks therefore become more popular than loser stocks.

As a result, they tend to be overvalued, which creates the opportunity for profitable
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momentum strategies in the following period. Thus, past winner stocks seem to be more

important in determining the momentum profits in a long run.

In Table 6 I look at the change in investor sentiment from the ranking period to

the holding period. Alf = if - /^L1 is defined as the first order difference of if. Note

that in this case M is the 6-month ranking period and t is the 6-month holding period.

Alf = 1 indicates that investor sentiment is at modest levels during the ranking period and

at extreme levels during the holding period. In other words, sentiment is swinging to the

extremes. Likewise, Alf = -1 means that average investor sentiment has waned from the

ranking period to the holding period. Alf = 0 shows no discernable change in investor

sentiment.

[Insert Table 6 here]

The results in Panel A of Table 6 reveal several findings. First, momentum profits

are much higher when investor sentiment shins from extreme to modest (i.e. Alf = —1).

In fact, momentum profits when Alf = -1 more than double the profits when Alf = 0.

This is consistent for all three sentiment proxies. Second, the difference of mean profits

between Alf = — 1 and Alf = 1 is weakly significant for B Wl but insignificant for BW2

and UM. These findings suggest that the prior extreme sentiment levels are associated

with higher subsequent momentum profits. However, this is inconsistent with my

prediction.

Panel B of Table 6 reports the mean returns of loser and winner portfolios in the

following four cases. Case 1 : Sentiment is bullish (greater than 75th percentile) in both

month t-\ and month t. Case 2: Sentiment is bullish (greater than 75th percentile) in
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month t-\ and but not bullish (less than 75th percentile) in month t. Case 3: Sentiment is

bearish (less than 25th percentile) in both month M and month t. Case 4: Sentiment is

bearish (less than 25th percentile) in month M but not bearish (greater than 25th percentile)

in month t. In contrast to the results of contrarian profits, I find that the returns of winner

portfolios are bigger and more significant than that of loser portfolios in most scenarios.

This again suggests that winner portfolios are the major determinant to momentum profits.

Among all results, the winner minus loser spread is more substantial in Case 1 and 2.

In Table 7 I run the following two regressions.

MPt = ß0 + ßJti + ß2RMt + ß3SMBt + ß4HMLt + et, (6)

MP1 = ßo + ß???? + ß2RMt + ß3SMBt + ß4HMLt + et, (7)

where MPt denotes momentum profits at time t, lf_x and AI¡ are the same as

previously defined. RM1, SMBt, and HMLt are three Fama-French factors.

[Insert Table 7 here]

In Panel A, the estimated coefficients OfJfL1 show expected negative signs. This

suggests that the lagged extreme sentiment readings are associated with lower subsequent

momentum profits. However, none of the estimates are statistically significant. In Panel

B, the changes in sentiment (AJf) also report expected negative signs, but again, the

results are not significant. In Panel C and D I replace /^L1 and A/t6 with D^1 and AD¿,

where Df = |5t6 — µ5| and 5t6 is the sentiment value at time t and µ5 is the sample mean.

The results are similar to those of Panel A and B. Overall, the regression results suggest

that there is a negative relationship between the lagged extreme sentiment levels and
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momentum profits. In other words, one should expect to see an extreme sentiment

reading followed by lower subsequent momentum profits. Unfortunately, the findings

lack statistical significance.

V. Further Discussion

Investor sentiment is an important cornerstone of behavioral finance. Many

studies in the literature focus on the relationship between investor sentiment, market

index, and a few size or book market ratio sorted portfolios. Very few have formally

explored the relationship between investor sentiment and return-based portfolio trading

strategies. However, understanding this relationship is important because it provides a

refutable hypothesis for many theoretical models that are built upon investors' behavioral

biases.

In this study, I find that both contrarian and momentum strategies are strongly

influenced by investor sentiment. It helps deepen the understanding of the core

implications in many behavioral models, and also provides indirect support to rational

based explanations as offered by Johnson (2004) and Liu and Zhang (2008).
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THE PROFITABILITY OF MOMENTUM AND CONTRARIAN STRATEGIES IN

THE FOREIGN EXCHANGE MARKET

I. Background of Study

Abnormal trading profits have been documented in the equity market for years.

Similar evidence is also found in the foreign exchange market. For example, Sweeney

(1986), using filter rules, finds that investors can earn abnormal profits when trading

from a risk-free Dollar asset to a risk-free Deutsche Mark asset. Kho (1996) also reports

significant excess returns to the buy-and-hold strategy. Okunev and White (2003) re-

examine momentum profits and find that the well-documented profitability holds for

currencies throughout 1990's. Bianchi et al. (2004) report similar results using a sample

of G7 countries.

These findings cast doubt on the Efficient Market Hypothesis (Fama, 1970) and

raise the question of what has caused these financial anomalies. According to the EMH,

prices follow a random walk. Therefore no abnormal profits should exist in the market.

However, in reality, two underlying assumptions of the EMH are evidently violated: 1)

arbitrageurs fail to correct the mispricing promptly because of transaction costs and/or

noise trading; and 2) investors hold heterogeneous beliefs on equity prices (Barberis &

Thaler, 2003; Shleifer & Vishny, 1997; De Long et al., 1990a).

In fact, it is found that the foreign exchange rates do not truly reflect all the

currently available information on domestic and international economic and political

environments (Fama, 1965). Instead the exchange rates possess some degree of serial
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correlation (Taylor, 1992). Okune and White (2003) also suggest that the abnormal

returns result from the autocorrelation structure of currency returns.

In this section, I re-examine the profitability of various trading strategies in the

foreign exchange market, and investigate the sources of trading profits. The results also

clarify the underlying attributes to market inefficiency.

Weekly currency returns are used for the purpose of the study. The literature

largely relies on either daily or monthly returns for convenience of data availability.

However, daily data contain a large amount of trading noise. Monthly data seem to be

more informative but rather impractical in the real world. To reconcile the difficulty of

obtaining sufficient information and avoiding unnecessary noise, I construct a series of

weekly currency returns. Seven exchange rates are examined. They are the rates of G7

countries (namely, Canada, France, Germany, Italy, Japan, the U.K., and the U.S.) and

the European Union. U.S. dollars are used as the base currency. The full sample period

ranges from January 1st, 1971 to December 31st, 2007, and is divided into two subperiods:

the pre-Euro subperiod (1/1/1971 - 12/31/1998) and the post-Euro subperiod (1/1/1999 -

12/31/2007).

Momentum and contrarian trading strategies are both constructed using a past-

performance-based Weighted Relative Strength Strategy (a.k.a. WRSS, Lehmann, 1990;

Lo and MacKinlay, 1990; Conrad and Kaul, 1998). This method builds zero-cost long-

short portfolios by buying winners and selling losers (momentum) or buying losers and

selling winners (contrarian) based on their past performance. Average portfolio profits

are calculated as trading profits.
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Several interesting findings are revealed. First, it shows that momentum strategies

are dominantly profitable in the foreign exchange market. Among sixty-four formed

strategies, eighteen are significantly profitable and all of them are momentums.

Contrarian profits mostly emerge in the second subperiod, but none are statistically

significant. The results appear to be stronger when using the interest-adjusted returns.

Second, among the profitable momentum strategies, eight are o«e-week-ranking-

and-£-week-holding strategies, and ten are Â;-week-ranking-and-&-week-holding strategies.

The latter reports lower but more significant profits. This implies that longer ranking

period eliminates noisy information and therefore provides more reliable trading profits.

Third, based on the o«e-week-ranking-and-£-week-holding method, I conduct a

decomposition analysis of the trading profits. It is found that both the autocorrelation

structure for currency returns and the cross sectional dispersion in mean returns of

individual currencies are responsible for the abnormal returns. More importantly, the

autocorrelation accounts for majority part of the profits. It is also the determining factor

for market inefficiency.

Fourth and lastly, the trading profits remain significant even when transaction

costs come into effect. Transaction cost in this case is defined as the sum of commissions

and bid-ask spreads. It is shown that on average, the break-even transaction costs are

twice as big as the trading profits. In other words, a one-way transaction cost c = 0.0001

(or a round-trip c = 0.0002) does not rule out the profitability in currency trading.

This study extends the literature in several ways. First, unlike most prior studies

that almost exclusively use filter rules or moving average rules to explore the currency
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trading profits (Sweeney, 1986; Okunev and White, 2003; Bianchi et al., 2004), I employ

a different Weighted Relative Strength Strategy. By using the WRSS method, I do not

presume that the excess returns are solely generated from the autocorrelation in currency

returns. Instead, I test the impact of both autocorrelation and cross-sectional difference in

mean returns on trading profits.

Second, the WRSS construction also enables a further decomposition analysis

(Lehmann, 1990; Lo and MacKinlay, 1990; Conrad and Kaul, 1998). This exercise not

only provides insight into the components of trading profits, but also sheds light on the

candidate explanations for market inefficiency. To preview the results, the time-series

autocorrelation makes approximately a 90% contribution to the abnormal returns in most

cases. Thus it is safe to suggest that autocorrelation is the determining source of market

inefficiency.

Third, weekly returns are more appropriate for the purpose of the study than

monthly or daily returns. Monthly evaluation seems to be more informative, but it is

impractical in reality. According to Taylor and Allen (1992), in which they survey on

chief foreign exchange dealers, about 90% of respondents report that their trading rules

are evaluated in the horizons ranging from intraday to one week. Daily returns, on the

other hand, contain too much noise from massive transactions. Moreover, prior studies

show that the use of moving average rules or filter rules on a daily basis often suffers

from the limited number of selected trading rules (Okunev and White, 2003). Weekly

returns not only provide a substantial number of observations to form trading strategies

(N= 1931), but also minimize unnecessary noise. It is believed the best proxy of currency

returns for the study topic of trading profitability.
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II. Data Description

Seven major exchange rates are studied in this dissertation, including the rates of

G7 countries (namely Canada, France, Germany, Italy, Japan, the United Kingdom, and

the United States) and the European Union. U.S. dollars are used as the base currency.

The exchange rates of the Canadian Dollar, Deutsche Mark, Japanese Yen, Pound

Sterling and Euro are obtained from the Federal Reserve Bank of St. Louis. The rates of

French Franc and Italian Lira are downloaded from the International Monetary Fund

(IMF) archives.

The sample period ranges from January 1st, 1971 to December 31st, 2007, and

consists of a total of 193 1 trading weeks. Choosing the specific period is based on two

considerations. First, the world-wide fixed exchange rate regime (a.k.a. the Bretton

Woods System) was removed in 1971. Since then foreign currencies were no longer

directly correlated with gold and/or Dollars. Foreign governments had the freedom to

choose their own exchange rate systems, and most of them settled with floating exchange

rate regimes. This provides substantial liquidity to the global currency market and makes

this study possible. Second, choosing December 2007 as the end of the sample period is

intended to minimize the disturbing impact of the 2008-2009 U.S. financial turmoil on

the global economy and the foreign exchange market.

As we all know, the European Union launched the Euro as a "single currency" for

all European Union Member States on January 1st, 1999. Due to the major effect of this

event, I divide the sample into two subperiods: the pre-Euro era from January 1971 to

December 1998, and the post-Euro era from January 1999 to December 2007. The Euro
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is excluded in the first subperiod, and the Deutsche Mark, French Franc, and Italian Lira

are substituted by the Euro in the second subperiod.

The continuously compounded weekly returns are computed based on daily

exchange rates from Wednesday to Wednesday. Whenever the daily rate is missing on

Wednesday, it is replaced with Tuesday rates. The replacement ensures the construction

of a continuous weekly return data set.

Another interest-adjusted weekly return series is constructed based on the covered

interest rate parity. Choosing the risk free rates is the key in this exercise. For Canada,

France, Germany, the U.S., and the U.K., I use three-month government bond interest

rates as their risk-free rates. For France, Italy, and Japan, since their short-term

government bond rates are not available, I use comparable alternatives as their risk-free

rates: three-month interbank interest rates for Italy and the European Union, and bank

discount rates for Japan. All interest rates are obtained from the Standard & Poor DRI

database.

A. Returns

The base currency returns from week t-\ to t are computed as follows:

Rt = ^-I, (8)

where Rt is the weekly return, St is the spot exchange rate at week t, and S1^1 is

the spot rate at week t-\. All exchange rates are the ratio of foreign currencies to the U.S.

Dollar.



37

The interest-adjusted currency returns are also computed. The rationale is based

on the covered interest rate parity. To understand the relationship, consider investors that

borrow money from foreign countries and invest in the United States, or vice versa, they

would actually experience these returns. The interest-adjusted returns from week M to t

are as follows:

% = ?- - I* (9)

where

Ft-i = St-iExp [(r - Ty)J

RIt is the interest-adjusted return, r is the domestic interest rate, ?y is the foreign

interest rate, Ft-.x is the forward rate in week t-\, and t is the current week.

Approximately, the equation can be written as follows:

%=^(j/-rd)+^--l. (10)
where RIt is again the interest-adjusted return, — (ry - rd) is the weekly interest

rate differential between the U.S. (i.e. domestic country) and foreign countries, and
ç

—— 1 is the currency return shown in Equation (8).

B. Summary statistics

Table 8 reports the summary statistics of the base returns and the interest-adjusted

returns for the full sample period.
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[Insert Table 8 here]

Panel A is for the base returns. It is noticeable that Italy experiences the greatest

depreciation across the sample period. The Italian Lira has a mean return of 6.21%. In

contrast, Japan and the European Union experience the greatest appreciation. The mean

returns of Japanese Yen and the Euro are -2.49% and -1.54%, respectively.

The first-order autocorrelation is positive and significant for all currency returns.

This indicates strong linear dependence among returns over time. In other words, positive

(negative) changes in returns are expected to be followed by positive (negative) changes.

The Jarque-Bera tests are highly rejected for all currencies, meaning that returns are not

normally distributed. Therefore, the independently identically distribution assumption is

not plausible in this analysis.

Panel B reports the interest-adjusted returns. The results are similar: the Japanese

Yen experiences the greatest appreciation (-7.43%), while the Italian Lira has the greatest

depreciation (16.44%). The first order autocorrelation is significantly positive, and the

normality hypothesis is rejected in all cases.

It is noticed that most interest-adjusted returns are larger in magnitude than the

base returns. Moreover, five out of seven interest-adjusted returns are significantly

different from zero (the exceptions are the Euro and the Deutsche Mark), whereas in the

case of base returns, only the Italian Lira has significant non-zero mean returns. The fact

that most of currencies have zero mean return in base version but non-zero mean return in

interest-adjusted version implies a violation of the interest rate parity. In theory, the gain

(loss) of currency appreciation (depreciation) should be compensated by the interest rate



39

differentials. For example, the profits of holding the appreciated Japanese Yen should be

offset by the negative interest rate differentials between Japan and the U.S. Similarly, the

loss of investing in the depreciated Italian Lira is supposed to be offset by the positive

interest rate differentials between Italy and the U.S. However, the evidence in Table 8

suggests that the interest rate parity does not hold for most currencies. In other words,

arbitrageurs fail to correct the mispricing in currency transactions, leaving room for

trading profits.

III. Trading Strategies and Trading Profits

In this section, momentum (contrarian) strategies are constructed as zero-cost

portfolios that buy winners and sell losers (buy losers and sells winner) based on their

past performance. This approach is also known as Weighted Relative Strength Strategy

(a.k.a. WRSS, Lehmann, 1990; Lo and MacKinlay, 1990; Conrad and Kaul, 1998).

Specifically, the past performance is computed relative to the market performance

of an equal-weighted portfolio that contains all N currencies during the time interval

{t — 1, t}. A currency that outperforms the market portfolio will be labeled as a "winner",

whereas a currency that underperforms the market portfolio will be labeled as a "loser."

A momentum (contrarian) strategy is designed to buy winner (loser) currencies at time t

based on their performance in {t — 1, t}, and hold them until time t + 1.

To follow the convention of return-based trading strategies, I define the time

interval {t - 1, t} as ranking period, and {t, t + 1} as holding period. By construction,

the ranking and holding periods can have equal or unequal length. In this exercise, I use

both to test the trading profitability. The strategies with unequal ranking and holding
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periods are designed based on one week performance (i.e. {t — 1, t} = 1) and held for k

weeks (i.e. {t, t + 1} = 1, 2, 3, 4, 8, 13, 26, and 52 weeks). The strategies with equal

ranking and holding periods are constructed based on the average £-week performance

(i.e. {t - 1, t} = 1, 2, 3, 4, 8, 13, 26, and 52 weeks) and held for a matching ¿-week (i.e.

{t, t + 1} = 1, 2, 3, 4, 8, 13, 26, and 52 weeks). A total of thirty-two basic strategies are

implemented with the unequal ranking-holding design, sixteen for base returns, and

sixteen for interest-adjusted returns. Similarly, another thirty-two strategies are

constructed using the equal ranking-holding design.

The average returns of the performance-based portfolios are calculated as trading

profits. The expected profits are the sum of the product of the return of each currency at

time t + 1 and the weight wit(k~) that is put on each currency. Specifically, the weights

are computed as follows:

wit(k) = ±i[Kit(fc) - RmMl (H)

where wit(k) denotes the faction of the portfolio devoted to currency /' at time t,

Rit(k) is the return on currency / at time t, t = 1 , 2, 3 . . .N, Rmt(k) is the mean return of

the equal-weighted portfolio of all N currencies (Rmt = ~S?=? Rit)> ^d ^ is me length of

time interval {t, t + 1}.

The expected profits are then calculated as follows:

N

Kt+M =^wit(k)Riit+1. (12)
i=l
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where 7rt+1(/c) denotes the dollar profits and /?¿t+i(fc) is the return on currency i

at time t + 1. Note that the dollar profits can be arbitrarily scaled by any number. The

positive or negative sign of nt+1(k) refers to a momentum or contrarian strategy.

Inherently, the gain (loss) of a momentum strategy is equivalent to the loss (gain) of a

contrarian strategy. This feature allows me to rely on the sign and statistical significance

of the average nt+1(k) rather than the numeric figures.

The expression of dollar profits essentially captures the universal nature of all

trading strategies. First, the positive or negative sign preceding the weights reflects an

investor's belief. If the investor believes in price reversal and follows a contrarian

strategy, a negative weight will be assigned to the strategies; if he believes in price

continuation and follows a momentum strategy, a positive weight will be assigned to the

strategies.

Second, the past performance of a currency relative to the market performance (i.e.

the average return of all N currencies) is supposed to be informative about the future

pattern in returns. In other words, no matter if a strategy is contrarian or momentum, its

success is based on the time-series behavior of currency returns.

Third, by construction, the dollar weights in Equation (11) lead to an arbitrage

(zero-cost) portfolio. The investment in dollars is given by

N

It(k)=^\wit(k)\, (13)
E = I

where long and short (currencies) are completely offset as follows:
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N

Y" wit(k) = 0 Vk

Finally, and most importantly, this method allows me to decompose the trading

profits into two components: the time serial autocorrelation of currency returns and the

cross sectional difference in mean returns of individual currencies.

Table 9 reports the expected trading profits. Panel A shows the results for pre-

Euro subperiod (1971-1998), and Panel B shows the results for post-Euro subperiod

(1999-2007).

[Insert Table 9 here]

Many interesting results are found in Table 9. In Panel A, based on one week

performance and held for k weeks (k = 1, 2, 3, 4, 8, 13, 26, and 52 weeks), momentum

strategies appear to be dominantly profitable. Among thirty-two strategies, eight are

statistically significant and all of them are momentum. The significant profits hold up to

13 weeks. The profits from interest-adjusted returns are higher and more significant.

The highest profit is found with the interest-adjusted returns based on a l-on-3

ranking-holding strategy in the pre-Euro subperiod. The profit is $3.55 for a one-million-

dollar contract. Given the huge trading volume, high margin level, and large trade unit of

currency contracts, this figure can lead to a reasonable return in the currency market. For

example, when buying a typical $125,000 EUR futures contract, if an investor is allowed

to use 5% margin (i.e. he only pays $6,250 of his own money for the full contract and

loans the rest of 95% from banks or brokers), he will be able to ensure himself an

approximate 0.01% monthly return.
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Another observation from the Panel A is the profitable momentum strategies only

emerge in the first subperiod. With fewer currencies and shorter sample period, the same

strategies turn to be contrarian and insignificant in the second subperiod. The pattern is

consistent for both base returns and interest-adjusted returns.

In Panel B, the trading strategies are constructed based on £-week ranking and

held for another k weeks (Jc = 1, 2, 3, 4, 8, 13, 26, 52 weeks). More strategies (ten out of

thirty-two) appear to be significantly profitable, but the magnitude of profits becomes

smaller. Again, the second subperiod only reports insignificant contrarian profits due to

the limited sample size. Most momentum profits can hold up to 13 weeks.

Overall, the results suggest that 1) momentum strategies are more likely to be

profitable in the foreign exchange market, while contrarian strategies play little role in

generating abnormal returns; 2) base returns and interest-adjusted returns report similar

patterns of profitability, but profits are higher and more significant when conditional on

the interest rate differentials; 3) the past-performance-based strategies are likely to

generate significant profits in the short- to medium-run, and the trading profits can hold

up to 13 weeks.

IV. Sources of the Trading Profits

The above findings provide supportive evidence to my hypothesis that the

Efficient Market Hypothesis is violated in the foreign exchange market. To further

understand the sources of market inefficiency, I conduct a decomposition based on the

trading profits. Due to the limitation of the strategy construction, I can only decompose

the o«e-week-ranking-and-Ä:-week-holding strategies. Two components are found to be
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responsible for the abnormal returns: the time series autocorrelation of currency returns

and the cross sectional variation in mean returns.

The decomposition of the expected profits is computed as follows below (Conrad

and Kaul, 1998; Lehmann, 1990; Lo and MacKinlay, 1990). Note that a key assumption

is that both the mean return of each individual currency and the mean return of the market

portfolio must be time invariant.

N

E[nt+1(.k)] = -Cov[Rmit+í(k),Rmt(k)] +-^Cov[/?u+1(/c),i?it(/c)]
¿=1

N

+ ^L"¿t(fc)-Mrm(fc)]2
¿=1

= -Ck + Ok + a2[ß(k)]

= Pik) + s2[µ(/0] (14)

where P(k) = —Ck + 0k is the predictability - profitability index, µ^??) is the

unconditional mean return of currency /', and ^m¿(/c) = ???=? VitW is the unconditional

mean return of the equal-weighted market portfolio at time t.

Equation (14) shows that the total expected profits result from two parts: the time-

series predictability in currency returns, P(Ji), and the cross-sectional variance in mean

returns, a2[ß(k)]. The former consists of two components: Ck is the negative of Mi-order

autocovariance of the equal-weighted market portfolio return, and 0k is the average Mi-

order autocovariance of all jV currencies. More specifically,
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N

Ck = RmJ+MRmM - PlM - ^[VlW«¡t(fc) - PÌt W] (15)
£ = 1

N

Ok = ^^[ßi,t+i(fe)fii£(fc) - PÌt W] (16)
¿=i

and

N

s2[µ?] = jiYlfiiM - ßmMY- (17)
¿=i

Again, the key in this decomposition is to assume that individual currency returns

are mean stationary, so that each individual currency has a constant mean return of ßit (Zc).

The mean return of the market portfolio (i.e. the portfolio that contains all N currencies),

fimtik), by definition is also mean stationary.

Table 10 reports the decomposition results for base returns. Panel A shows the

first subperiod (1971-1998) and Panel B shows the second subperiod (1999-2007). The

first striking finding is that the contribution of s2 [µ (Zc)] to the profits is not constantly

equal to 100%. This implies that currency returns do not follow a random walk.

Therefore, the Efficient Market Hypothesis is evidently violated in the foreign exchange

market.

To understand the rationale, consider a benchmark return-generating process

(Conrad and Kaul, 1998). Assume that all currency returns follow a random walk:

RiM = HM + e??? = 1,2, -?, (18)

where
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E[eit(k)] = O Vi, A: and £[%(&)£,-,;_!(£)] = O V i,j,k.

Also by construction,

Cov[Rit(k), i?y,t-i(/c)] = 0 Vi,j,k.

Therefore, there is no time serial autocorrelation of currency returns or mean

return dispersion across different currencies when a random walk prevails. All profit

potentials should be ruled out. However, when combined with Equation (14), momentum

(contrarian) strategies can still be profitable. In this case, P(k) is equal to zero under the

assumption of random walks, and the expected profits are exclusively determined by the

cross-sectional dispersion, s2[µ(&)]. More specifically,

w

E[nt+1(k)] = ^jMtM - µ™(/0]2 = s2[µ^)], (19)
To illustrate, take momentum strategies as example. When investors buy winners

and simultaneously sell losers, they are longing high mean-return assets and shorting low

mean-return assets. Even when the market follows a random walk, meaning there is no

profits from autocorrelation, the discrepancy in mean returns can still generate positive

excess returns to momentum strategies.

However, the decomposition result in Table 1 0 shows that the cross-sectional

variation does not fully explain the expected profits. Interestingly, the autocorrelation

structure accounts for majority part of trading profits and thus market inefficiency. In

most cases, the contribution of P(/c) exceeds 90%. Some are even greater than 100%

because of the reversed effect of mean return variance. The results suggest that the



trading profitability is primarily determined by the time-series pattern in returns. This

finding is in line with Conrad and Kaul (1998): "... the role of s2[µ(?)} has a small

effect on profits to trading strategies."

The results of interest-adjusted returns (Table 1 1) are similar and the reverse

effect of mean return variance is even stronger. Again, the time serial predictability

dominates the trading profits, while the cross-sectional mean returns variance makes

marginal contribution. In general, the findings are consistent with Okunev and White

(2003) and Bianchi et al. (2004).

V. Transaction Costs Consideration

It is argued that transaction costs can virtually eliminate any profit potential from

trading strategies. Conrad, Gultekin, and Kaul (1997) suggest that a typical 0.2% level of

transaction costs is enough to remove any extra profit in the stock market. In the foreign

exchange market, Neely and Weiler (1999) find that there will be no positive excess

returns once a reasonable transaction cost (e.g. one-way transaction cost c = 0.0001 or

0.0002) is taken into account on a daily basis. In this section, I examine the effect of

transaction costs on the trading profits.

Transaction costs in the over-the-counter foreign exchange market are far less

explicit than in the equity or commodity market. Most of the time, currency traders place

their orders through a broker, who in turn routes the orders to a market maker (dealer) or

an exchange where the orders are actually executed. Within the process, two parties

charge fees: the broker charges a commission, and the market maker who executes the

orders on the exchange charges a spread. The spread is always a round-trip transaction
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cost. For instance, assume that a dealer has a EUR/USD spread of 1.2173/75 quoted from

a bank. If the dealer widens the spread to 1.2170/78 for his customers, he has marked up

the spread by 0.0003 on each side. The spread accounts for a major part of transaction

costs in the currency market.

Following the framework of Lehmann (1990), I calculate the transaction costs per

currency per week as

tc = 2c\wit- wu_i|, (20)

where c is the one-way transaction cost per dollar transaction (c = 0.0001), wit is

the number of dollars invested in currency i at time t, and w¿t_i is the number of dollars

invested in currency /' at time t-\. Using the multiplier 2 preceding c is because the

transaction cost in the foreign exchange market is usually a round-trip cost.

The break-even percentage of transaction costs is computed by dividing the total

average profits by the respective transaction costs. The results are reported in the leftmost

columns in Table 10 and Table 1 1. In most cases, the percentages of transaction costs that

are required to eliminate the profits are twice as big as the profit figures. Sometime the

coverage extends to 5 or 6 times bigger.

The results are plausible in reality. Typically, a large institutional trader faces a 2

to 3 basis points spread charge per one-way in currency trading (Neely and Weiler, 1999)

In addition to the spread, a commission fee of 1 to 2 basis points per transaction would be

a reasonable charge. In total the transaction costs will be no more than 5 basis points per

transaction one-way. If the institutional trader implements the trading strategies specified
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earlier, by holding the portfolio for a certain period of time {k = 1, 2, 3, 4, 8, 13, 26, and

52 weeks), he is entitled to a one-time round-trip transaction cost for each currency. The

sum of transaction costs for holding all N currencies is still not large enough to eliminate

the trading profitability. It is theoretically possible because the designated trading

strategies commit merely one transaction for each currency, and fewer transactions help

the strategies remain profitable. Overall, the results suggest that the trading profits cannot

be ruled out by transaction costs.
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CONCLUSIONS

This dissertation, by employing different trading strategies, addresses the trading

profitability issue in a broad scope of different markets. In the equity market, I construct

a group of decile portfolios that buy (sell) the top 10% winner stocks and sell (buy) the

bottom 10% loser stocks based on their prior returns. The former is known as momentum

strategies, and the latter is known as contrarian strategies. In the foreign exchange market,

I employ a different past-performance-based Weighted Relative Strength Strategy. In this

method, the winners and losers are determined by their weights relative to the market

performance of an equal-weighted market portfolio, and trading profits are computed as

the sum of the product of the weights and future returns.

Both methods reveal significant trading profits in respective markets. By trading

the BUY-SELL decile portfolios, I find that both contrarian and momentum strategies are

significantly profitable. Unconditionally, the contrarian strategies report a 1 .95% monthly

return (t = 8.03), and the momentum strategies have a monthly return of 0.91% (t = 3.38).

The WRSS strategies uncover similar profitability in the foreign exchange market.

Eighteen out of a total of sixty-four basic strategies generate significant trading profits,

and all of them are momentum.

Further efforts are made to investigate the sources of the profitability. In the

equity market, there shows a clear pattern between investor sentiment and trading profits.

Three popular investor sentiment proxies are used to test the relationship: 1) a reduced-

formed sentiment index BWl that is constructed by Baker and Wurgler (2006); 2) a



51

similar but orthogonized index BW2; and 3) the survey-based University of Michigan

Consumer Confidence Index UM.

Several findings are revealed on the relationship between investor sentiment and

trading profits. First, the extreme sentiment levels (either optimistic or pessimistic) tend

to be followed by higher contrarian profits. Specifically, when the previous sentiment is

at extreme levels, subsequent contrarian profits are approximately twice as high as the

case where prior sentiment levels are modest. The difference in the mean profits is

statistically significant. Also, contrarian profits are high when investor sentiment shifts

from extreme to modest levels. These results are robust for all three sentiment proxies,

and are consistent with the overreaction hypothesis.

Second, the past loser stocks are more important in determining the average

contrarian profits. It is found that loser portfolios contribute significant returns to the

contrarian profits, whereas winner portfolio returns are not statistically different from

zero. This suggests that loser and winner stocks have asymmetrical responses to the

extreme sentiment levels. It provides further support to the overreaction hypothesis.

Third, in terms of momentum strategies, the profits appear to be negatively related

with the lagged average 6-month sentiment levels. In other words, the extreme sentiment

levels are expected to be followed by lower subsequent momentum profits. The negative

relationship between the extreme sentiment levels and momentum profits persists even

after controlling for Fama-French factors. This finding helps clarify the core implications

of several behavioral models, such as investor overconfidence and self-attribution bias.
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Fourth and lastly, in contrast to contrarian profits, momentum profits largely

result from buying former winner stocks. Selling former loser stocks only makes

marginal contribution. The evidence is particularly strong under the bullish sentiment

reading. Again, this can be explained by the theory that loser and winner stocks respond

asymmetrically to the extreme sentiment levels.

Although investor sentiment seems to be a reliable explanation for the abnormal

trading profits, it only works well in the domestic environment. In the context of global

economy, it is difficult to summarize an index to represent the general sentiment among

investors across the world. Therefore, in the context of currency transactions, it is more

plausible to investigate the sources of trading profits based on the underlying

characteristics of currency returns.

In the foreign exchange market, I look into two possible candidate explanations

for the trading profitability: the autocorrelation structure of currency returns and the cross

sectional difference in mean returns of individual currencies.

Some interesting results are discovered. First, it is shown that momentum

strategies are dominantly profitable in the foreign exchange market. Among sixty-four

formed strategies, eighteen are significantly profitable and all of them are momentum.

Contrarian profits mostly appear in the post-Euro era (1999-2007), but none of them are

statistically significant. When using the interest-adjusted returns, more momentum

strategies turn out to be profitable and the momentum profits can hold up to 13 weeks.

Second, after decomposing the trading profits, I find that both the autocorrelation

structure for the currency returns and the cross-sectional difference in mean returns are
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responsible for the abnormal returns. Moreover, the autocorrelation accounts for the

majority part of the profits. Therefore, it is safe to suggest that the time serial

autocorrelation is the determining source for market inefficiency.

Third and lastly, the profits remain significant even when transaction costs come

into effect. Transaction cost in this case is defined as the sum of commissions and bid-ask

spreads. It is shown that on average, the break-even transaction costs are twice as big as

the trading profits. A one-way transaction cost c = 0.0001 (or a round-trip c = 0.0002)

does not cancel out the profitability.

Overall, the empirical findings in both the stock market and the foreign exchange

market suggest that 1) by following certain trading rules, investors can indeed achieve

abnormal returns; 2) investor sentiment, in addition to firm-specific risks, provides

behavioral explanations to the profitability in the equity market; 3) due to the difficulty of

generalizing investor sentiment in the global context, the underlying autocorrelation

structure of currency returns and the cross sectional dispersion in mean returns of

individual currencies are responsible to for the trading profits in the foreign exchange

market. More importantly, the time serial autocorrelation plays a critical role in

determining trading profits and accounting for market inefficiency.
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Table 1 Summary Statistics: Sentiment Proxies

Panel A reports the summary statistics for three sentiment proxies. BWl stands for a
sentiment index compiled by Baker and Wurgler (2006). BW2 is similar to BWl but is
orthogonal to macroeconomic variables. Both are standardized to have unit mean and
standard deviation. UM is the University of Michigan Consumer Sentiment Index. BWl
and BW2 range from January 1966 to December 2007. UM ranges from January 1978 to
December 2007. Panel B reports the correlation matrix of the three sentiment proxies.

Panel A: Summary Statistics

N Mean StdDev Min Max

BWl 504 ÔÏX) LÖÖ -2.50 2.33
BWl 504 0.00 1.00 -2.39 2.93

UM 360 88.00 12.07 51.70 112.00

Panel B: Correlation Matrix

BWl B~W2 UM
_

0.94261 1

0.23417 0.06124 1
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Table 2 Sentiment and Contrarian Profits

Panel A reports the contrarian profits conditioning on three sentiment proxies. BWl
stands for a sentiment index compiled by Baker and Wurgler (2006). BW2 is similar to
BWl but is orthogonal to macroeconomic variables. UM is the University of Michigan
Consumer Sentiment Index. BWl and BW2 range from January 1966 to December 2007.

UM is from January 1978 to December 2007. Contrarian strategies are constructed by
buying past loser stocks and selling past winner stocks based on owe-month lagged
returns and held for another month (Jegadeesh and Titman, 1993). Average monthly

returns are reported as trading profits. Skip-one-month results are also included. The
conditional profits are reported in the cases where lagged sentiment levels are either
extreme or modest. Specifically, It.¡ = 1 when the lagged sentiment reading is extreme
(above 75th percentile or below 25th percentile); /,_/ = 0 when the lagged sentiment
reading is modest (between 25th percentile and 75th percentile). The t-statistics of the
mean contrarian profit spread between extreme and modest investor sentiment levels are
reported. Panel B reports the returns on winner and loser portfolios conditional on
whether lagged sentiment values are bullish (larger than 75th percentile) or bearish (less
than 25th percentile). The ¿-statistics are reported in the parentheses.
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Panel A: Sentiment and Contrarian Profits

Ranking-Holding: 1-on-l Skip-one-month

Full Sample N p N p
503 0.0195 502 -0.0016

(8.03) (-0.82)

Sentiment ir Spread Ar SpreadN p N p
Proxies t-stat t-stat

?p? I,.! = 1 252 0.0272 251 -0.0025
(6.96) (-0.87)

3.02 -0.49
I,.j = 0 251 0.0118 251 -0.0006

(4.21) (0.26)

BW2 /,.7 = 1 252 0.0261 251 -0.0010

(6.52) (-0.32) 0.30
2.60

/,./ = 0 251 0.0129 251 -0.0021

(4.80) (-1.00)

UM It.i = l 179 0.0178 179 0.0006

(3.87) (0.16)
2.69 1.06

Ui = O 180 0.0110 180 -0.0027

(4.04) (-1.19)
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Table 2 (Continued)

Panel B: Sentiment and Winner and Loser Portfolio Returns

Full Sample Bullish Sentiment Bearish Sentiment
Loser 0.0221

(5.74)
Winner 0.0025

(0.95)
Sentiment Proxies Bullish Sentiment Bearish Sentiment

~BW1 Loser 0.0181 0.0413

(2.35) (4.44)
Winner -0.0008 0.0058

(-0.16) (0.93)
BW2 Loser 0.0176 0.0420

(2.21) (4.50)
Winner -0.0021 0.0094

(-0.40) (1.53)
UM Loser 0.0127 0.0329

(1.40) (3.28)
Winner 0.0007 0.0092

(0.14) (1.28)
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Table 3 Contrarian Profits and Changes in Sentiment

Panel A reports the average contrarian profits conditional on the changes in investor
sentiment. A dummy variable /, is used to define the sentiment reading. I1 = 1 if
sentiment reading is larger than 75th percentile or less than 25th percentile. /, = 0 if
sentiment reading is between 25th percentile and 75th percentile. AIt = lt — It_x is the
first order difference of // . AIt = 1 when investor sentiment swings up to extremes, and

AIt = -\ when investor sentiment swings back to modest. AI1 = 0 means there is no

discernable change in investor sentiment. BWl, BW2, and UM axe. three sentiment proxies.
Average monthly returns are reported as trading profits when AI1 = -1 , 0, and 1 . The t-
statistics of the mean contrarian profit spread between AIt = -1 and ?/, = 1 are also
reported. The rightmost columns are skip-one-month results. Panel B presents the mean
returns of losers and winners portfolios in the following four cases. Case 1 : Sentiment is
bullish (greater than 75th percentile) in both month t-\ and month t. Case 2: Sentiment is
bullish (greater than 75th percentile) in month t-\ and but not bullish (less than 75th
percentile) in month t. Case 3: Sentiment is bearish (less than 25th percentile) in both
month t-\ and month t. Case 4: Sentiment is bearish (less than 25th percentile) in month t-
1 but not bearish (greater than 25th percentile) in month t. The /-statistics are reported in
the parentheses.
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Panel A: Changes in Sentiment and Contrarian Profits

Ranking-Holding: 1-on-l Skip-one-month

Sentiment „ Spread ?G SpreadN p N p
Proxies t-stat t-stat

BWl AI, = -I 17 0.0140 17 0.0040

(1.65) (0.51)
M = O 470 0.0204 469 -0.0019

1.06 0.21
(7.95) (-0.94)

M=I 16 0.0009 16 0.0012

(0.10) (0.10)

BW2 AI1 = A 27 0.0162 27 0.0034

(1.19) (0.39)

M = O 450 0.0203 449 -0.0016
0.44 0.85

(7.93) (-0.79)

M=I 26 0.0100 26 -0.0064

(1.34) (-0.84)

UM AI1 = -1 34 0.0197 34 0.0094

(1.37) (0.71)

M = O 290 0.0139 290 -0.0028
4.65 0.90

(5.10) (-1.23)

M=I 35 0.0125 35 0.0030

(1.91) (0.63)
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Panel B: Changes in Sentiment and Winner and Loser Portfolio Returns
Sentiment Proxies Case 1 Case 2 Case 3 Case 4

~BW1 Loser 0.0188 0.0075 0.0411 0.0439

(2.33) (0.33) (4.15) (2.06)
Winner -0.0012 0.0047 0.0047 0.0199

(-0.23) (0.28) (0.71) (1.44)
BW2 Loser 0.0173 0.0200 0.0409 0.0523

(2.00) (1.04) (4.16) (1.67)
Winner -0.0039 0.0124 0.0074 0.0268

(-0.70) (0.85) (1.10) (2.26)
UM Loser 0.0071 0.0299 0.0283 0.0626

(0.80) (1.20) (2.53) (3.31)
Winner -0.0016 0.0078 0.0033 0.0471

(-0.24) (1.06) (0.43) (3.16)
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Table 4 Contrarian Profits, Sentiment, and Fama-French Factors

Panel A reports the results from the following OLS regression:

CPt = ß0 + /J1Zt-! + ß2RMt + ß3SMBt + ß±HMLt + et.

Panel B reports the results from the following OLS regression:

CPt = ß0 + ß1Mt + ß2RMt + ß3SMBt + ß^HMLt + et.

CP, denotes contrarian profits at time t based on o«e-month lagged returns and held for
one month. /,.; is a dummy variable. /,.; = 1 if the sentiment reading is above 75th
percentile or below 25th percentile; It.¡ = O if the sentiment reading is between 25th
percentile and 75th percentile. AIt = It — lt-X measures the change in sentiment. RMt,
SMB1, and HML1 are the Fama-French factors. I use three sentiment proxies, BWl, BW2,

and UMto calculate It.¡ and AI1. In Panel C and Panel D, I rerun the same regressions

except that I replace Ui and M with Dt-i and OD,, where Dt = |Sf - µ5| and 5*' is the
sentiment value at time t and µe is the sample mean. The i-statistics are reported in the
parentheses.
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Panel A: Lagged Sentiment Levels
Sentiment Proxies ßo ßl

BWl

BW2

UM

0.01182

(3.47)
0.01053

(3.34)
0.01289

(3.77)
0.01181

(3.72)
0.01096

(2.92)
0.00930

(2.58)

0.01537

(3.19)
0.01320

(2.95)
0.01324

(2.74)
0.01050

(2.34)
0.00680

(1.28)
0.00720

(1.44)

0.00238

(4.29)

0.00243

(4.35)

0.00194

(2.95)

0.00536

(7.44)

0.00535

(7.38)

0.00414

(4.91)

0.00136

(1.61)

0.00147

(1.74)

-0.00005

(-0.05)
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Panel B: Changes in Sentiment
Sentiment Proxies ßo ßi

BWl

BW2

UM

0.01951

(8.02)
0.01696

(7.38)
0.01952

(8.02)
0.01696

(7.38)
0.01435

(5.39)
0.01289

(4.93)

-0.00616

(-0.65)
-0.00037

(-0.04)
-0.00311

(-0.41)
-0.00179

(-0.26)
-0.00357

(-0.59)
-0.00231

(-0.40)

0.00240

(4.26)

0.00239

(4.26)

0.00197

(2.98)

0.00554

(7.64)

0.00554

(7.65)

0.00408

(4.83)

0.00168

(1.99)

0.00169

(2.00)

-0.00006

(-0.06)
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Panel C: Lagged Sentiment Levels Based on Deviation from the Mean
Sentiment Proxies ßo ßi

BWl

BW2

UM

0.00744

(2.01)
0.00476

(1.39)
0.01047

(2.89)
0.00860

(2.56)
0.00944

(2.17)
0.00872

(2.11)

0.01613

(4.32)
0.01647

(4.78)
0.01244

(3.40)
0.01166

(3.43)
0.00051

(1.42)
0.00044

(1.30)

0.00257

(4.68)

0.00252

(4.55)

0.00191

(2.90)

0.00536

(7.54)

0.00534

(7.40)

0.00408

(4.84)

0.00134

(1.62)

0.00143

(1.71)

-0.00012

(-0.12)



Table 4 (Continued)

69

Panel D: Changes in Sentiment Based on Deviation from the Mean

Sentiment Proxies ßo ßi ß*

BWl

BW2

UM

0.01958

(8.06)
0.01710

(7.45)
0.01962

(8.06)
0.01709

(7.45)
0.01434

(5.38)
0.01281

(4.90)

-0.02792

(-1.38)
-0.01586

(-0.84)
-0.00998

(-0.79)
-0.00949

(-0.82)
0.00018

(0.26)
0.00062

(0.90)

0.00231

(4.09)

0.00235

(4.20)

0.00204

(3.07)

0.00564

(7.78)

0.00564

(7.78)

0.00411

(4.87)

0.00171

(2.03)

0.00172

(2.04)

-0.00003

(-0.03)
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Table 5 Sentiment and Momentum Profits

Panel A reports average 6-month momentum profits conditioning on three sentiment
proxies. BWl stands for a sentiment index compiled by Baker and Wurgler (2006). BW2
is similar to BWl but is orthogonal to macroeconomic variables. UM is the University of
Michigan Consumer Sentiment Index. BWl and BW2 range from January 1966 to
December 2007. UM is from January 1978 to December 2007. Momentum strategies are

constructed by buying past winner stocks and selling past loser stocks based on m-month
lagged returns and held for another six months (Jegadeesh and Titman, 1993). Average
monthly returns are reported as trading profits. Skip-one-month results are also included.
The conditional profits are reported in the cases where lagged sentiment levels are either
extreme or modest. Specifically, /^L1 = I when lagged 6-month average sentiment
reading is extreme (above 75th percentile or below 25th percentile); /^1= 0 when lagged
6-month average sentiment reading is modest (between 25th percentile and 75l
percentile). The ¿-statistics of the difference in the means of momentum profits under
extreme and modest investor sentiment readings are also reported. Panel B reports the

returns on winner and loser portfolios conditional on whether lagged 6-month average
sentiment values are bullish (larger than 75th percentile) or bearish (less than 25
percentile). The ¿-statistics are reported in the parentheses.
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Panel A: Sentiment and Momentum Profits

Ranking-Holding: 6-on-6 Skip-one-month
Full Sample N p N p

498 0.0091 497 0.0114

(3.38) (4.57)

Sentiment ir Spread ?, SpreadN p N p
Proxies t-stat t-stat

~BW1 lt-x = 1 249 0.0078 248~ 0.0102
(1.89) (2.72)

-0.47 -0.47
It-I = O 249 0.0104 249 0.0126

(3.00) (3.82)

BW2 /t6-i = l 249 0.0043 248 0.0065
(0.99) (1.65)

-1.79 -1.93
If-I = O 249 0.0140 249 0.0162

(4.33) (5.37)

UM /í6-i = 1 176 0.0095 176 0.0124
(1.78) (2.51)

-0.47 -0.12
It-I = O 178 0.0123 178 0.0129

(4.18) (4.45)
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Table 5 (Continued)

Panel B: Sentiment and Winner and Loser Portfolio Returns

Full Sample Bullish Sentiment Bearish Sentiment
Winner 0.0164

(6.01)
Loser 0.0073

(1.84)

Sentiment Proxies Bullish Sentiment Bearish Sentiment

B~W1 Winner 0.0164 0.0214

(3.05) (3.49)
Loser 0.0025 0.0197

(0.30) (2.22)
BW2 Winner 0.0110 0.0222

(2.01) (3.72)
Loser -0.0006 0.0253

(-0.07) (2.73)
UM Winner 0.0142 0.0275

(2.49) (3.64)
Loser -0.0018 0.0245

(-0.20) (2.37)
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Table 6 Momentum Profits and Changes in Sentiment

Panel A reports the average momentum profits conditional on the changes in investor
sentiment. A dummy variable if is used to define the sentiment reading, if = 1 if average
6-month sentiment reading is larger than 75th percentile or less than 25th percentile. /^ = O
if average 6-month sentiment reading is between 25th percentile and 75l percentile.
Alf = It ~ ^t-I is me iirst 0G^6G difference of if. Note that M is the 6-month ranking
period and t is the 6-month holding period. Alf = 1 when investor sentiment swings up to
extremes, and Alf = -1 when investor sentiment swings back to modest. Alf = 0 means
there is no discernable change in investor sentiment. BWl, BW2, and t/Mare three

sentiment proxies. Average monthly returns are reported as trading profits when Alf = -1,
0, and 1. The ¿-statistics of the mean contrarian profit spread between Alf = -1 and Alf =
1 are also reported. The rightmost columns are skip-one-month results. Panel B presents
the mean returns of losers and winners portfolios in the following four cases. Case 1 :

Sentiment is bullish (greater than 75th percentile) in both month M and month t. Case 2:
Sentiment is bullish (greater than 75th percentile) in month M and but not bullish (less
than 75th percentile) in month t. Case 3: Sentiment is bearish (less than 25th percentile) in
both month M and month t. Case 4: Sentiment is bearish (less than 25th percentile) in
month t-\ but not bearish (greater than 25th percentile) in month t. The ¿-statistics are
reported in the parentheses.
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Panel A: Changes in Sentiment and Momentum Profits

Ranking-Holding: 6-on-6 Skip-one-month

Sentiment „r Spread ,r SpreadN p N p
Proxies t-stat t-stat

~BW1 Mf = -1 U 0.0241 ? 0.0249
(2.17) (2.15)

?/,6 = 0 477 0.0093 476 0.0116
1.94 1.81

(3.35) (4.57)

Mf = 1 10 -0.0156 10 -0.0151
(-0.84) (-0.74)

BW2 Mf = -1 10 0.0246 10 0.0259
(2.56) (2.74)

Mf = O 479 0.0089 478 0.0111
1.37 0.90

(3.20) (4.30)

Mf = 1 9 0.0033 9 0.0125
(0.26) (1.03)

UM Mf = -1 11 0.0193 11 0.0198
(2.21) (2.56)

Mf = 0 332 0.0104 332 0.0122
0.13 0.12

(3.26) (4.07)

Mf = I 11 0.0165 11 0.0169
(1.51) (1.58)
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Panel B: Changes in Sentiment and Winner and Loser Portfolio Returns
Sentiment Proxies Case 1 Case 2 Case 3 Case 4

BWl Winner 0.0170 0.0051 0.0210 0.0311

(3.10) (0.17) (3.38) (0.78)
Loser 0.0036 -0.0195 0.0202 0.0077

(0.42) (-0.57) (2.20) (0.34)
BW2 Winner 0.0105 0.0236 0.0228 0.0079

(1.90) (0.62) (3.68) (1.01)
Loser 0.0003 -0.0212 0.0263 0.0033

(0.03) (-0.61) (2.72) (0.20)
UM Winner 0.0133 0.0249 0.0263 0.0517

(2.21) (1.43) (3.34) (5.68)
Loser -0.0015 -0.0060 0.0231 0.0527

(-0.15) (-0.36) (2.15) (2.47)
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Table 7 Momentum Profits, Sentiment, and Fama-French Factors

Panel A reports the results from the following OLS regression:

MPt = ß0 + /Vt6-i + ß2RMt + ß3SMBt + ß^HMLt + et.

Panel B reports the results from the following OLS regression:

MPt = ß0 + ßxMt + ß2RMt + ß3SMBt + ß4HMLt + et.

MPt denotes momentum profits at time t based on s/x-month lagged returns and held for
six months. Zf-1 is a dummy variable. /^1= 1 if the sentiment reading is above 75th
percentile or below 25th percentile; ZfL1= O if the sentiment reading is between 25th
percentile and 75th percentile. AZt6 = Zt6 — Z^L1 measures the change in sentiment. RMt,
SMBh and HML1 are the Fama-French factors. I use three sentiment proxies, BWl, BW2,

and UM to calculate Z^1 and Alf. In Panel C and Panel D, I rerun the same regressions
except that I replace Zf^and Alf with D^and ADf, where Df = |5t6 - µ5| and Sf is the
sentiment value at time t and µ$ is the sample mean. The ¿-statistics are reported in the
parentheses.
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Panel A: Lagged Sentiment Levels

Sentiment Proxies ßo ß2

BWl

BW2

UM

0.01041

(2.73)
0.01072

(2.98)
0.01397

(3.67)
0.01421

(3.96)
0.01225

(2.86)
0.01316

(3.10)

-0.00258

(-0.48)
0.00345

(0.68)
-0.00970

(-1.80)
-0.00365

(-0.72)
-0.00273

(-0.45)
-0.00189

(-0.32)

-0.00182

(-2.90)

-0.00186

(-2.95)

-0.00118

(-1.52)

-0.00637

(-7.72)

-0.00619

(-7.51)

-0.00371

(-3.70)

-0.00360

(-3.79)

-0.00348

(-3.65)

-0.00122

(-1.03)
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Panel B: Changes in Sentiment
Sentiment Proxies ßo ßi

BWl

BW2

UM

0.00908

(3.37)
0.01232

(4.77)
0.00909

(3.37)
0.01239

(4.79)
0.01090

(3.59)
0.01226

(3.96)

-0.01958

(-1.49)
-0.01606

(-1.31)
-0.01093

(-0.79)
-0.01002

(-0.78)
-0.00142

(-0.12)
-0.00339

(-0.28)

-0.00182

(-2.89)

-0.00186

(-2.96)

-0.00120

(-1.54)

-0.00627

(-7.70)

-0.00626

(-7.69)

-0.00373

(-3.72)

-0.00345

(-3.62)

-0.00352

(-3.71)

-0.00128

(-1.08)
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Panel C: Lagged Sentiment Levels Based on Deviation from the Mean
Sentiment Proxies ßo ßx ßs

BWl

BW2

UM

0.01404

(3.35)
0.01550

(3.93)
0.01430

(3.52)
0.01507

(3.92)
0.01090

(2.19)
0.01164

(2.37)

-0.00656

(-1.53)
-0.00414

(-1.03)
-0.00713

(-1.70)
-0.00368

(-0.93)
0.00000

(0.00)
0.00007

(0.16)

-0.00188

(-2.98)

-0.00188

(-2.98)

-0.00620

(-7.57)

-0.00618

(-7.51)

-0.00347

(-3.64)

-0.00347

(-3.64)

-0.00120 -0.00372 -0.00125

(-1.54) (-3.71) (-1.06)



Table 7 (Continued)

80

Panel D: Changes in Sentiment Based on Deviation from the Mean
Sentiment Proxies ßo ßi

BWl

BW2

UM

0.00915

(3.38)
0.01244

(4.79)
0.00910

(3.36)
0.01240

(4.78)
0.01090

(3.59)
0.01224

(3.96)

0.01294

(0.34)
-0.00080

(-0.02)
-0.01071

(-0.33)
-0.01225

(-0.41)
-0.00040

(-0.17)
-0.00061

(-0.26)

-0.00184

(-2.92)

-0.00185

(-2.93)

-0.00119

(-1.53)

-0.00628

(-7.70)

-0.00628

(-7.70)

-0.00372

(-3.72)

-0.00355

(-3.73)

-0.00353

(-3.72)

-0.00124

(-1.05)
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Table 8 Summary Statistics of Currency Returns

This table reports the weekly currency returns that are continuously compounded from

Wednesday to Wednesday based on daily exchange rates. Seven returns are reported.

They are for G7 countries (namely, Canada, France, Germany, Italy, Japan, the U.K., and

the U.S.) and the European Union. U.S. dollars are used as the base currency. The sample

period ranges from January 1st, 1971 to December 31st, 2007. Panel A shows the
c

descriptive statistics of the base returns. The base returns are computed as Rt = —-— 1.
St-1

Panel B shows the descriptive statistics of the interest-adjusted returns. The interest-

adjusted returns are computed as Rj t = — (rf — rd) + —-— 1. The Jarque-Bera test of
' 52 St_i

normality is computed based on skewness and excess kurtosis with Chi-square distributed

with two degrees of freedom.



Table 8 (Continued)

82

Canada

N 1931

Mean (%) 0.70

Median (%) 0.99

Std Dev 0.0067

i-stat 0.46

Skewness 0.18

Kurtosis 3.78

Auto-

correlation

1 0.0178

2 0.0719

3 -0.0175

4 -0.0017

5 -0.0417

6 0.0294

7 0.0065

8 -0.0402

9 0.0222

10 -0.0197

Jarque-Bera 1 1 60. 1 3

(0.00)

Panel A: Ba

European
trance

Union

470 1460

-1.54 3.35

-4.78 0.00

0.0122 0.0143

-0.27 0.90

0.26 0.47

0.31 3.89

0.0121 0.0093

-0.0111 0.0311

0.0433 0.0474

0.0320 0.0116

0.0661 -0.0186

-0.0220 -0.0290

-0.0216 0.0129

-0.0151 0.0612

-0.0074 0.0080

0.0624 -0.0135

7.25 976.09

(0.03) (0.00)

Returns

Germany Italy

1461 1461

1.86 6.21

-1.77 1.46

0.0137 0.0096

0.52 2.48

0.24 1.94

3.98 20.92

0.0216 0.2051

0.0837 0.2440

0.0207 0.2269

-0.0441 0.0451

0.0256 0.0903

-0.0226 0.0385

0.0118 0.0345

0.0445 0.0510

0.0218 -0.0040

0.0483 0.0617

978.36 27572.31

(0.00) (0.00)

Japan UK

1929 1931

-2.49 3.51

2.64 -0.54

0.0134 0.0128

-0.82 1.21

-0.39 0.52

3.62 4.09

0.0509 0.0453

0.0580 0.0147

0.0492 0.0307

0.0123 0.0161

0.0175 0.0566

-0.0306 0.0038

0.0018 -0.0065

0.0148 0.0154

-0.0390 -0.0086

0.0038 -0.0086

1100.90 1433.94

(0.00) (0.00)
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Canada

N 1931

Mean (%) 3.92

Median (%) 3.58

Std Dev 0.0068

f-stat 2.55

Skewness 0.17

Kurtosis 3.83

Auto-

correlation

1 0.0189

2 0.0728

3 -0.0167

4 -0.0011

5 -0.0411

6 0.0305

7 0.0081

8 -0.0387

9 0.0236

10 -0.0184

Jarque-Bera 1 1 9 1 .70

(0.00)

Panel B: Interest-e

European
trance

Union

470 1460

-1.81 9.66

-7.09 7.11

0.0122 0.0143

-0.32 2.59

0.27 0.47

0.33 3.92

0.0079 0.0081

-0.0154 0.0301

0.0392 0.0466

0.0278 0.0111

0.0622 -0.0188

-0.0264 -0.0294

-0.02589 0.0127

-0.0193 0.0612

-0.0115 0.0081

0.0586 -0.0135

7.72 987.80

(0.02) (0.00)

usted Returns

Germany Italy

1461 1461

1.14 16.44

-0.74 11.37

0.0136 0.0096

0.32 6.54

0.24 2.03

4.04 21.40

0.0180 0.2127

0.0804 0.2511

0.0175 0.2338

-0.0473 0.0534

0.0228 0.0984

-0.0254 0.0469

0.0091 0.0432

0.0419 0.0596

0.0193 0.0054

0.04583 0.0709

1007.01 28871.4'

(0.00) (0.00)

Japan UK

1929 1931

-7.43 8.08

0.69 2.73

0.0133 0.0128

-2.45 2.78

-0.42 0.54

3.69 4.19

0.0471 0.0432

0.0540 0.0122

0.0455 0.0285

0.0087 0.0139

0.0138 0.0544

-0.0344 0.0021

-0.0020 -0.0081

0.0112 0.0139

-0.0428 -0.0099

0.0002 -0.0100

1148.63 1509.09

(0.00) (0.00)
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Table 9 Average Profits to Past Performance-Based Trading Strategies

This table reports average profits to zero-cost trading strategies that buy winners and sell

losers based on their past performance. The past performance is computed relative to the

performance of an equal-weighted index of all N currencies. Eight basic strategies are
implemented in each of the two subperiods, respectively. The first subperiod ranges from
January 1st, 1971 to December 31st, 1998, and the second subperiod ranges from January
1st, 1999 to December 31st, 2007. The dollar profits are computed as Tt1+1 (k) =

S??? wit(k)Ri/t+1 , i= 1, 2, 3, ... N, where wit(k) = ± £ [Rit(k) - Rmt(k)] denotes the
faction of the portfolio devoted to currency i at time t, R^ (k) is the return on currency i at
time t, Rmt(k) is the return on the equal-weighted portfolio of all JV currencies (Rmt =

-XjI1 Rit), and k is the length of ranking/holding time interval. The positive (negative)

sign of Ttt+1(k) refers to a momentum (contrarian) strategy. Panel A reports the trading
strategies that are constructed based on o«e-week ranking and held for k weeks (k = 1,2,

3, 4, 8, 13, 26, and 52 weeks). Panel B reports the trading strategies that are constructed

based on £-week ranking and held for another k weeks (k = 1, 2, 3, 4, 8, 13, 26, and 52

weeks). The first two columns are for base returns; the last two columns are for interest-
adjusted returns, ¿-statistics are shown in the parentheses. All profits are multiplied by
106.
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Panel A: o«e-week-ranking-and-£-week-holding Strategies

Base Returns Interest-adjusted Returns

Ranking-Holding 1971-1998 1999-2007 1971-1998 1999-2007
G? Ö24 UO 077 LÖ4

(0.16) (0.59) (0.51) (0.56)
1-2 2.96** -0.81 3.48*** -0.86

(2.23) (-0.44) (2.61) (-0.48)
1-3 3.03*** -0.84 3.55*** -0.90

(2.33) (-0.45) (2.70) (-0.48)
1-4 1.19 -1.02 1.72 -1.06

(0.99) (-0.54) (1.42) (-0.57)
1-8 2.53** -2.41 3.08*** -2.45

(2.25) (-1.46) (2.72) (-1.49)
1-13 2.95 1.11 3.52 1.07

(2.65) (0.61) (3.14) (0.59)
1-26 -0.86 0.33 -0.25 0.27

(-0.85) (0.19) (-0.25) (0.15)
1-52 -0.04 1.99 0.56 1.90

(-0.04) (1.04) (0.54) (0.99)
indicates statistical significance at the 1% level
indicates statistical significance at the 5% level
indicates statistical significance at the 10% level
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Panel B: k-week-ranking-and-A:-week-holding Strategies

Base Returns Interest-adjusted Returns

Ranking-Holding 1971-1998 1999-2007 1971-1998 1999-2007
G? Ö24 LK) 0/77 LÖ4

(0.16) (0.59) (0.51) (0.56)
2-2 2.99*" -0.83 3.51*" -0.88

(2.88) (-0.60) (3.33) (-0.65)
3-3 1.91*** -1.34 2.43*** -1.39

(2.56) (-1.15) (3.23) (-1.19)
4-4 0.69 -0.72 1.22* -0.76

(1.08) (-0.78) (1.90) (-0.81)
8-8 1.26*** 0.53 1.83*** 0.48

(2.94) (0.80) (4.17) (0.73)
13-13 0.70** -0.23 1.30*** -0.26

(2.01) (-0.41) (3.55) (-0.47)
26-26 0.12 0.06 0.73*** -0.01

(0.46) (0.18) (2.75) (-0.04)
52-52 -0.14 -0.23 0.50 -0.32

(-0.78) (-1.00) (0.58) (-1.38)
indicates statistical significance at the 1% level
indicates statistical significance at the 5% level
indicates statistical significance at the 10% level
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Table 10 Decomposition of Trading Profits: Base Returns

This table reports the components of trading profits based on base returns. All trading

strategies are constructed as zero-cost portfolios that buy winners and sell losers based on

their past performance. Each strategy has equal ranking and holding periods. The dollar

profits are computed by Ttt+1(k) = — Ck + 0k + s2[µ(^] = P(k) + s2[µ(f], where
P(k) = — Ck -I- 0k is the index of predictability-profitability, Ck is the negative of Mi-
order autocovariance of the equal-weighted market portfolio return, 0k is the average Mi-

order autocovariance of all N currencies, and s2[µ(f] is the cross-sectional variance in
mean returns. Round-trip break-even transaction costs are calculated by dividing the total

average profits by the respective transaction costs tc, where tc = 2c|wit — w, ,^1I, c =
0.0001. Panel A reports the results for the first subperiod from 1971 to 1998. Panel B

reports the results for the second subperiod from 1999 to 2007. ¿-statistics are shown in

the parentheses. All profits are multiplied by 106.
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Panel A: 1971-1998

Ranking-
Holding

E[nt+Í(k)] Ck Ok s2[µ(/?)] %P(fc) %s2[µ(/?)] BE te

1-1

1-2

1-3

1-4

1-8

1-13

1-26

1-52

0.24

(0.16)
2.96"

(2.23)
3.03

(2.33)
1.19

(0.99)
2.53"

(2.25)
2.95*"

(2.65)
-0.86

(-0.85)
-0.04

(-0.04)

-5.80

(-2.89)
-6.10

(-3.17)
-4.01

(-2.10)
-0.11

(-0.06)
-2.15

(-1.15)
-1.97

(-1.15)
1.82

(1.09)
-0.36

(-0.22)

5.94

(1.93)
8.96

(3.12)
6.93

(2.44)
1.20

(0.47)
4.58

(1.75)
4.82

(1.92)
-2.78

(-1.18)
0.21

(0.09)

3.35 0.55

8.48 1.41

0.10 57.79 41.94 6.87

1272.66)
0.10 96.52 3.42 0.56

1125.35)

0.10 96.65

1157.78)
0.10 91.50

1170.83)
0.10 95.92 4.00 0.66

1182.79)
0.10 96.56 3.43 0.57

1182.23)
0.10 111.84 -11.84 -2.04

1173.29)
0.10 344.73 -242.81 -41.49

1610.45)
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Panel B: 1999-2007

Ranking- E[jÎt+^k)] Cfc 0fe ^(fc)] o/0p(/c) o/0(T2^(/c)] BEtc
Holding

1-1 1.10 -5.59 5.74 0.62 19.90 80.02 2.15

(0.59) (-2.77) (1.84) (1636.62)
1-2 -0.81 -5.88 8.74 0.62 82.18 17.78 0.47

(-0.44) (-3.06) (3.04) (1447.91)
1-3 -0.84 -3.81 6.74 0.62 82.57 17.43 0.47

(-0.45) (-2.00) (2.36) (1489.52)
1-4 -1.02 -5.59 5.74 0.62 19.90 80.02 2.15

(-0.54) (-2.77) (1.84) (1636.62)
1-8 -2.41 -2.00 4.46 0.62 79.84 20.09 0.55

(-1.46) (-1.06) (1.69) (1521.62)
1-13 1.11 -1.84 4.74 0.62 82.41 17.57 0.48

(0.61) (-1.07) (1.89) (1520.89)
1-26 0.33 1.84 -2.71 0.62 346.26 -246.12 -6.92

(0.19) (1.10) (-1.16) (1509.40)
1-52 1.99 -0.32 0.26 0.62 -10.06 109.96 3.08

(1.04) (-0.20) (0.12) (2068.15)
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Table 11 Decomposition of Trading Profits: Interest-Adjusted Returns

This table reports the components of trading profits based on interest-adjusted returns.

All trading strategies are constructed as zero-cost portfolios that buy winners and sell

losers based on their past performance. Each strategy has equal ranking and holding

periods. The dollar profits are computed by ut+1(k) = — Ck + Ok + s2[µ(^] = P(k) +
s2[µ(^}], where P(k) = — Ck + Ok is the index of predictability-profitability, Ck is the
negative of Ath-order autocovariance of the equal-weighted market portfolio return, Ok is

the average Mi-order autocovariance of all N currencies, and s2[µ(^] is the cross-
sectional variance in mean returns. Round-trip break-even transaction costs are calculated

by dividing the total average profits by the respective transaction costs tc, where tc =

2c|wit — Wit-iJ, c = 0.0001. Panel A reports the results for the first subperiod from
1971 to 1998. Panel B reports the results for the second subperiod from 1999 to 2007. t-

statistics are shown in the parentheses. All profits are multiplied by 10 .
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Panel A: 1971-1998

*¡rÜng~ E[nt+1(k)] C* 0k s2[µ(/0] %P(fc) %s2[µ?] BE teHolding
G? 077 -1.79 Z8Ö OO 91.12 08 1.50

(0.51) (-0.82) (1.06) (99999.99)
1-2 3.48*" -1.00 0.09 0.10 112.13 -12.13 -2.08

(2.61) (-0.41) (0.03) (99999.99)
1-3 3.55"* -2.64 1.70 0.10 111.64 -11.64 -2.00

(2.70) (-1.21) (0.61) (99999.99)
1-4 1.72 0.58 -1.70 0.10 109.62 -9.62 -1.66

(1.42) (0.25) (-0.60) (99999.99)
1-8 3.08*" -0.84 -1.66 0.10 104.07 -4.07 -0.71

(2.72) (-0.34) (-0.58) (99999.99)
1-13 3.52*" 3.28 -2.27 0.10 91.19 8.81 1.49

(3.14) (1.28) (-0.76) (99999.99)
1-26 -0.25 -3.48 3.72 0.10 70.37 29.63 5.09

(-0.25) (-1.42) (1.26) (99999.99)
1-52 0.56 1.94 -0.04 0.10 95.09 4.91 0.84

(0.54) (0.81) (-0.02) (99999.99)
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Panel B: 1999-2007

Ranking- s2[>?(?:)] %P(fc) %s2[µ(/?)] BEtc
Holding

G^? L04 ?ß?" ?58 ÖTÖ7 93.56 6L44 1.58

(0.56) (-0.74) (0.98) (99999.99)
1_2 -0.86 -0.81 -0.12 0.07 107.77 -7.77 -1.94

(-0.48) (-0.34) (-0.04) (99999.99)
1_3 -0.90 -2.44 1.48 0.07 107.50 -7.50 -1.88

(-0.48) (-1.12) (0.53) (99999.99)
1_4 -1.06 0.78 -1.91 0.07 106.31 -6.31 -1.59

(-0.57) (0.33) (-0.68) (99999.99)
1_8 -2.45 -0.66 -1.86 0.07 102.74 -2.74 -0.70

(-1.49) (-0.27) (-0.65) (99999.99)
1-13 1.07 3.45 -2.45 0.07 93.70 6.30 1.55

(0.59) (1.35) (-0.83) (99999.99)
1-26 0.27 -3.33 3.53 0.07 75.43 24.57 6.15

(0.15) (-1.36) (1.20) (99999.99)
1-52 1.90 2.04 -0.21 0.07 96.46 3.54 0.89

(0.99) (0.85) (-0.08) (99999.99)
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Figure 1 Investor Sentiment Proxies

This figure plots the time series of three investor sentiment proxies. BWl (top panel) is a
sentiment index compiled by Baker and Wurgler (2006). BW2 (middle panel) is similar to
BWl but is orthogonal to macroeconomic variables. UM (bottom panel) is the University
of Michigan Consumer Sentiment Index. BWl and BW2 range from January 1966 to
December 2007. UM ranges from January 1978 to December 2007.
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