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ABSTRACT 

Celiac disease (CD) is a chronic immune-mediated disease of the small intestine caused 

by the ingestion of gluten. Gluten presents to the intestine largely intact where it is deamidated 

by Transglutaminase-2 (TG2), increasing affinity for Human Leukocyte Antigen DQ2 (HLA-

DQ2) and forming a complex that elicits an inflammatory response ultimately leading to villous 

atrophy. The only current treatment is strict adherence to a gluten-free diet, though TG2 

inhibition is an attractive therapy due its central role in CD pathogenesis. Cocoa contains 

procyanidin-B2, theobromine and caffeine and may be capable of inhibiting TG2-induced 

intestinal inflammation and reduce CD symptoms. Procyanidin-B2 rich cocoa extracts reduced 

TG2 levels by up to 77% in vitro using Caco-2 cells. Significant TG2 inhibition was seen when 

cocoa extracts contained at least 8.5 µM procyanidin-B2 (p<0.05). Other CD inflammatory 

biomarkers including COX-2 and IL-15 were also significantly decreased in the presence of 

cocoa extracts. Serum cytokines IL-6, IL-8 and IL-1β are commonly used to monitor CD and 

were analyzed using ELISA to confirm the inhibition of inflammatory biomarkers. This study 

shows promising results for use of a bioactive-rich cocoa product as a dietary inhibitor of TG2 

that can be used with wheat-based products as an alternative therapy in CD.
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CHAPTER 1: INTRODUCTION 

Celiac Disease (CD) is a chronic immune-mediated disease of the small intestine 

precipitated by the ingestion of gluten in genetically susceptible individuals. Gluten is the protein 

component of wheat, rye and barley and formed by the combination of glutenin and gliadin in an 

aqueous mixture. It provides functionality to wheat-based baked goods by trapping air bubbles 

and giving the desirable lift and height found in these products. In CD patients deamidated 

gliadin, rich in glutamine and proline peptides, is responsible for the inflammation. The only 

current treatment of CD is a strict, lifelong adherence to a gluten-free diet that includes 

avoidance of all types of wheat. However, the low availability and high costs of a gluten-free diet 

may affect CD patient compliance, which stresses the need for additional therapeutic options.  In 

addition, the consumer-perceived health advantages of gluten-free foods pose a challenge to the 

wheat-based products industry. 

 Food products or beverages capable of inhibiting immunotoxic gluten peptide-induced 

inflammation in small intestinal epithelium could mitigate gluten toxicity. A safe treatment like a 

cocoa product to reduce inflammation in individuals suffering from active or inactive CD would 

be welcome. Procyanidin trimers and tetramers have shown binding affinity for gliadin peptides 

and can be an effective therapy in CD, although no other studies investigate the inhibitory action 

of procyanidins on TG2 (Dias and others 2015). Caffeine and theobromine are also present in 

cocoa, and have been linked to reduced TG2 levels and expression of inflammatory cytokines 

(Cho and others 2012; Sarria and others 2015). This study will discuss these potential dietary 

inhibitors of TG2 that could be used with wheat-based products as therapy for CD.  
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This proof-of-concept study will determine whether cocoa standardized to its 

proanthocyanidin-B2 content can reduce TG2-induced inflammation in an established in vitro 

model of CD. Specifically, our aims were to: 

1) Determine the concentration of procyanidin-B2 and other bioactive compounds 

(caffeine and theobromine) in cocoa by liquid chromatography with diode array 

detector. 

2) Determine the proliferation of Caco-2 cells in the presence of procyanidin-B2 and 

bioactive compounds extracted from cocoa.  

3) Determine the efficacy of cocoa extracts on inhibiting TG2 levels in Caco-2 cells.  

4) Determine the effect of cocoa extracts on other biomarkers of inflammation in CD 

including IL-15 and COX-2, and the serum cytokines IL-6, IL-8 and IL-1β. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Celiac Disease 

Celiac Disease (CD) is a chronic immune-mediated disease of the small intestine 

precipitated by the ingestion of gluten in genetically susceptible individuals. Ingestion of gluten 

for those with CD causes flattening of the intestinal villi and results in variable degrees of 

intestinal damage, which leads to manifestation of gastrointestinal symptoms. Although 

epidemiological studies in the United States and Europe show the prevalence to be only 0.5-1% 

of the population there is evidence that the prevalence is increasing (Lohi and others 2007). 

Identification of the link between gluten exposure and CD was discovered by the Dutch 

physician Dicke in the 1940’s and the first diagnostic criteria was published in 1969 in the 

European Society of Pediatric Gastroenterology and Nutrition (Evan and Sanders 2012), which 

involved the observance of improvement of intestinal villous structure while on a gluten-free diet 

(GFD) and relapse when gluten was introduced. 

The gastrointestinal issues that occur from ingesting gluten may present in a variety of 

symptoms, including some extraintestinal manifestations. Both children and adults with CD are 

prone to these issues, and up to one-third of patients experience persistent symptoms (Evan and 

Sanders 2012). While many studies have found different prevalence of these symptoms, the 

common manifestations of the disease are the same (Table 2.1). The type and prevalence of the 

common symptoms may be explained by differences among populations and access to gluten-

free foods. Extraintestinal symptoms such as peripheral neuropathy, migraines, gastroesophageal 

reflux and low bone density are also seen in CD patients (Lebwohl and others 2012). Those with 

positive serology for Human Leukocyte Antigen-DQ2 (HLA-DQ2) also have a genetic 
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predisposition to other autoimmune diseases including Type 1 diabetes, autoimmune thyroiditis 

and multiple sclerosis (MS) (Ventura and others 1999). 

Table 2.1: Common symptoms seen in Celiac Disease  
 % Children % Adults 
Diarrhea 9-55 47-76 
Abdominal pain 12-33 28-83 
Abdominal bloating 12-29 26 
Anemia 2-19 38-51 
Weight loss 13-26* 34-69 
*Failure to thrive 
Cranney and others (2007), Reilly and others (2011), Telega and others 
(2008), Vivas and others (2008), Schuppan and Zimmer (2013) 
 

Today, biopsies of the duodenum are used to confirm a CD diagnosis, in which 

destruction of the villi is observed when gluten is ingested (Figure 2.1). Serological testing can 

also be done to confirm results from a biopsy, although variable serology without intestinal 

enteropathy excludes a CD diagnosis. Figure 2.2 is a summarization of the Mayo Clinic Celiac 

Disease Diagnostic Testing Algorithm (2015). Serological testing is typically done first because 

it is a less invasive test than the duodenal biopsy, and normal values practically rule out CD. The 

serology is tested for elevations of anti-gliadin antibodies (AGAs) such as Immunoglobin A 

(IgA), tissue Transglutaminase (tTG), and endomysial antibody (EMA).  

 
Figure 2.1: Normal duodenal biopsy (top) compared to Celiac Disease biopsy with flattening of 
the villi (bottom). Celiac Disease Foundation (2015) 
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Total IgA count was originally thought to be the best serological test for CD, but recent 

research points to tTG and EMA as better tests due to their high sensitivity and specificity 

(Lebwohl and others 2012; Evan and Sanders 2012; Ludvigsson and others 2013). If tTG and 

EMA levels are elevated (positive CD serology), a duodenal biopsy is used to confirm the 

diagnosis (Figure 2.2). The typical endoscopic findings include atrophy of the villi (flattening, as 

seen in Figure 2.1), scalloping and/or fissures and decreased folds in the duodenum (Lebwohl 

and others 2012). The procedure is invasive and some physicians recommend that four or more 

duodenal specimens should be taken before a CD diagnosis can be confirmed, which is why 

serology is normally done first. Negative values point towards a different disorder unless the 

patient is considered high risk (has a family history or is experiencing symptoms with gluten 

ingestion). If a duodenal biopsy comes back negative after positive serology, genetic testing for 

HLA-DQ2 is useful because 95% of those with CD carry this gene (Kaukinen and others 2002).   

	
  
Figure 2.2: Serological testing for Celiac Disease 
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Because of the complexity surrounding this disease, experts in CD diagnosis have 

defined 15 terms known as the Oslo definitions (Ludvigsson and others 2013). With these 

definitions the results of serological testing, duodenal biopsies, and symptoms manifested can be 

used to categorize a patient’s CD into many definitions including Classical, Asymptomatic CD, 

Non-classical, Potential, Subclinical, Symptomatic, Genetically at risk, etc. Although absence of 

intestinal enteropathy (negative biopsy) excludes a CD diagnosis, there are diagnoses such as 

non-celiac gluten sensitivity and gluten-related disorder. While this diagnosis may not be as 

severe as CD, adoption of a gluten-free diet is suggested to prevent any symptoms from 

occurring.  	
  

2.2 Gluten-Induced Inflammation in Celiac Disease 

Gluten is the protein component of wheat, rye and barley and it is formed by the 

combination of glutenin and gliadin in an aqueous solution. It provides functionality to baked 

goods by trapping air bubbles and giving the desirable lift and height found in these products. In 

CD patients deamidated gliadin, rich in glutamine and proline peptides, is responsible for the 

inflammation. Gluten is quite resistant to digestion in the stomach even in those without CD, 

therefore it presents to the intestine largely intact. The digestion of gluten and following 

inflammatory response is demonstrated in Figure 2.3.  

Gastrointestinal hydrolysis of gluten produces the gliadin peptide sequences 31-43 and 

57-68 (referred to as p31-43, p57-68), which are responsible for the synergism of innate and 

adaptive immunological response seen in CD (Caputo and others 2012). The innate immune 

response to gliadin is marked by an increase production of IL-15, Cylcooxygenase-2 (COX-2) 

and Transglutaminase-2 (TG2) in enterocytes within three hours of contact. TG2 is a calcium-

dependent enzyme and is activated by an increase in intracellular calcium, which occurs when 
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gliadin peptides present to intestinal cells. Wheat gliadin is a preferred substrate for TG2 because 

it contains many glutamine residues capable for modification (Ciccocioppo and others 2005).  

  

Figure 2.3: Gluten digestion in individuals with Celiac Disease (Sollid and Khosla 2011) 

	
  
TG2 deamidates gliadin peptides and forms immunotoxic peptides that have a high 

affinity for HLA-DQ2. This post-translational modification of gliadin by TG2 therefore plays a 

central role in the pathogenesis of CD, because the formation of the HLA-DQ2 and deamidated 

gliadin complex is largely responsible for the inflammation in CD. The binding of HLA-DQ2 

and deamidated gliadin elicits a response from T-cells causing increased production of 

Interferon-gamma (IFN-γ), which triggers immunoregulatory activities including production of 

Tumor Necrosis Factor (TNF-α) and interleukin-15 (IL-15) (Ludvigsson and others 2013). 

Nuclear Factor κβ (NF-κβ) and cyclooxygenase (COX-2) are also up-regulated in CD 

(Fernandez-Jimenez and others 2013; Vincentini and others 2015). Elevated levels of the 

inflammatory cytokines IL-6, IL-1β and IL-8 have been found in the serum of CD patients 
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(Cinova and others 2007). Production of these inflammatory biomarkers stems from the action of 

TG2 and is primarily responsible for the destruction of the intestinal mucosa, causing the major 

symptoms of CD.  

2.3 Treatments of Celiac Disease 

 Celiac Disease can be diagnosed at any age, and early diagnosis is crucial because 

untreated CD worsens over time and will significantly impact quality of life. Left untreated, the 

risk for other long-term health disorders increases. These disorders include anemia, osteoporosis, 

lactose intolerance, gastrointestinal disorders, nutrient deficiency and other autoimmune 

disorders previously mentioned (Type I diabetes, thyroiditis, MS). The later in life a CD 

diagnosis occurs, the increased chance a patient has of developing another one of these disorders 

(Ventura and others 1999). For some patients even 50 mg of gluten a day can cause symptoms to 

occur, and with the wide range of applications of gluten in food, beverages and cosmetics 

accidental ingestion is not uncommon (Catassi and others 2007). This makes treatment extremely 

vital once a diagnosis is confirmed, although a gluten-free diet is the only current effective 

treatment. Other experimental treatments are being investigated including oral enzyme therapy, 

tight junction enhancement, and transglutaminase inhibition, which have shown promising 

effects in early stages of research (Sollid and Khosla 2011).  

2.3.1 Gluten-Free Diet 

The only current treatment of CD is a strict, lifelong adherence to a gluten-free diet 

(GFD) that includes avoidance of all types of wheat, rye, and barley. Following this diet involves 

consuming naturally gluten-free foods such as fruit, vegetables, meat/poultry, beans/legumes, 

and dairy (if not lactose intolerant). There are also naturally gluten-free grains that can be 

incorporated into a GFD including rice, potato, buckwheat, cassava, and others. The GF market 
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is growing and as a result commercially GF substitutes for common items like bread, cereals, 

soup/sauces and frozen foods are easier to find than in previous decades. Seventy percent of 

patients with the classic symptoms of CD improve within two weeks after initiation of a gluten-

free diet, and patient serology can normalize within 3-12 months (Schuppan and Zimmer 2013). 

This diet can also protect against the extraintestinal manifestations previously described, so 

although it is the only treatment option for this disease it is effective.  

In addition to accidental ingestion of gluten, compliance to a GFD is a major issue for 

those with CD. Especially in children, who may not enjoy the taste of GF foods and are more 

tempted to try gluten-containing foods, compliance is highly variable at around 45% to 81% 

(Hill and others 2005). Even in adults compliance is low and ranges from 40-60% (Sugai and 

others 2010; Vahedi and others 2003). GF foods generally have poor palatability and availability 

compared to gluten containing foods, which is why transgression from a GFD commonly occurs.  

In most categories for GF foods (cereal, breads, pasta, etc.) CD patients reported being little or 

only moderately satisfied with taste (do Nascimento and others 2015). 

Strictly following a GFD can have significant impacts on general well being for those 

with CD. Food choice is restricted and with fear of accidental gluten consumption, daily 

activities are affected and social events like dining out are restricted as well. Thirty percent of 

CD patients reported that they sometimes consume gluten to feel “normal” or to satisfy cravings 

(do Nascimento and others 2015). This diet does show improvement to quality of life and is 

protective against the major symptoms but the issues of taste, compliance and lower availability 

decrease its effectiveness as a treatment for CD.  
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2.3.2 Experimental Treatments  

 Although a GFD is proven to be an effective therapy to CD, according to research 5-10% 

of CD patients do not respond to a GFD (Silvester and Rashid 2007). The other issues associated 

with a GFD of compliance and decreased quality of life (related to general well being) increase 

the need for additional therapeutic options. Furthermore, there is a large economic burden 

associated with a GFD (discussed later). This literature review presents several of the alternative 

therapies to a GFD that have reached clinical trials including oral enzyme therapy and tight 

junction enhancers as well as TG2 inhibition. It is important to note that other research into 

treatment exists, including HLA-DQ2-blockers, gluten-sequestering polymers, gluten tolerization 

and anti-CD antibodies (Sollid and Khosla 2011). For those suffering from CD, these therapies 

could significantly improve quality of life. In some cases several of these therapies could work 

together to ensure that if gluten is consumed (whether intentionally or not) it will not produce the 

inflammatory response that causes symptoms to manifest and destruction of the intestinal villi.  

2.3.2.1 Oral Enzyme Therapy 

 Oral enzyme therapy in the form of glutenases has been the first alternative therapy in 

CD to reach clinical trials (Table 2.2). The theory is that these glutenases are able to digest 

gluten into non-toxic peptides in the stomach, which will prevent the gliadin peptides from 

reaching the intestine and triggering the inflammatory response typically seen in CD. Glutenases 

are protease enzymes and are derived from bacteria, fungi or cereals. The fungi Aspergillus 

niger, derived from germinating barley produces a prolyl endoprotease and has been investigated 

in several studies as AN-PEP and AnP2. ALV003 is a combination of a cysteine endoprotease 

(EP-B2) and a Sphingomonas capsulate bacterium.  



 11 

Glutenases appear to be safe in CD patients and several promising results in clinical trials 

have been shown (Table 2.2). The main issue that these clinical trials encounter is the dose 

dependency of the glutenases and how much gluten it is able to breakdown. In order for this to 

be an effective therapy there must be clear guidelines on how they can be used, but in any case 

the results show that they can prevent enteropathy from occurring if a small amount of gluten 

(~50-900 mg) is ingested.  

 

2.3.2.2 Tight Junction Enhancers 

 Tight junctions (TJs) control intestinal permeability and are regulated by both 

endogenous and exogenous stimuli. CD patients have altered TJ morphology and increased 

permeability, as gluten triggers the opening of TJs resulting in the increased presence of 

immunotoxic peptides to intestinal lamina propia. TJ enhancers would reduce transport of gluten 

through the intestine thus preserving tight junction structure and preventing symptoms from 

occurring. Larazotide acetate is a TJ regulator peptide that inhibits disassembly and dysfunction 

of TJ epithelial cells. This peptide has been investigated with success in clinical trials, showing 

Table 2.2: Studies on the effects of glutenases as therapy in Celiac Disease 
Enzyme 

investigated 
Results from studies and clinical trials 

ALV003 No significant deterioration of intestinal villi using 900 mg ALV003. 
N=20 (Lahdeaho and others 2014) 
 
300 mg ALV003 eliminated 88% of digested gluten. N=8, P=.0009 
(Siegel and others 2012) 

AN-PEP AN-PEP with 50 g gluten led to complete disappearance of T-cell 
stimulatory peptides in vitro (Mitea and others 2008) 
 
No overall changes in degree of mucosal damages or serology in CD 
patients fed AN-PEP containing topping vs. control. N=16 (Tack and 
others 2013) 

AnP2 A protease:substrate ratio 1:64 was effective at completely degrading 
gluten in vitro (Toft-Hansen and others 2014) 
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no difference in serology between those with CD on a gluten challenge with larazotide acetate 

and the control group (Leffler and others 2012; Kelly and others 2013). 

Symptom severity was also shown to be significantly lower, as determined by a GSRS 

score (Gastrointestinal Symptom Rating Scale), a widely used questionnaire in CD research. 

In a 2015 phase II clinical trial by Leffler and others, CD patients given 0.5 mg larazotide acetate 

(referred to as AT-001) three times per day improved the symptoms of CD patients who 

experience persistent symptoms while following a GFD (n=340). The extraintestinal symptoms 

such as migraines and tiredness also improved, which shows that this treatment could 

significantly improve quality of life for CD patients. Overall efficacy and risk/benefit ratio need 

to be fully assessed for larazotide acetate before it can be an approved therapy, but these results 

show great potential.  

2.3.2.3 Transglutaminase-2 Inhibition 

 As previously described TG2 plays a crucial role in the pathogenesis of CD, therefore 

preventing TG2 activation may reduce the effects of gliadin-induced inflammation. TG enzymes 

are implicated in several disorders and not just CD, including neurodegenerative disorders such 

as Alzheimer’s, Huntington’s and Parkinson’s diseases as well as pathogenesis for cancer 

metastasis, liver injury and immune system damage (Ozaki and others 2010). The wide variety of 

disorders implicated by TG enzymes makes the discovery of TG inhibitors extremely important 

to disease prevention and/or treatment. Inhibitors of TG2 function at the active site and are either 

reversible or irreversible.  

Transglutaminase-2 inhibitors have not yet reached clinical trials and are still in the 

discovery phase, though proof-of-concept studies have shown promising results in vitro and ex 

vivo. Several identified TG2 inhibitors include disulfide compounds such as cystamine and 
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cysteamine, α,β unsaturated amides found in the piperine family (Marrano and others 2001; 

Ozaki and others; Pardin and others 2008). TG2 active site inhibitors R281 and R283 reduced 

gliadin-induced inflammation ex vivo as evidenced by the number of proliferating enterocytes in 

crypts and decreased levels of the biomarker IL-15 (Rauhvirta and others 2013). It is important 

to note that TG2 does have function in apoptosis and wound healing (through activity in blood 

clotting pathway) and before a TG2 inhibition therapy in CD could be approved it would have to 

be localized to the small intestine. 

2.4 Economic Burden of a Gluten-Free Diet 

In the United States (US), the availability of gluten-free foods is limited because not all 

grocery stores carry these products. In a survey about the perception of GF foods, the majority 

(54%) of CD patients stated having some difficulty in finding GF foods. Multiple studies have 

found that GF foods are more expensive on average than similar products that contain gluten. In 

the US and Canada, GF foods were found to be 2-3 times more expensive, whereas in the United 

Kingdom (UK) prices of GF foods were 5 times more expensive than their gluten counterparts 

(Lee and others 2007; do Nascimento and others 2015; Burden and others 2015). While GF are 

more available on-line and in health food stores, these options are also more expensive than 

regular supermarkets (Singh and Whelan 2011). The economic burden is therefore not only 

associated with higher cost of GF foods compared to gluten-containing foods, but the fact that 

availability is low in typical supermarkets and require CD patients to shop at more expensive 

markets.  

Besides the actual price and availability of GF foods, there are other factors that 

contribute to the economic burden of a GF diet. As stated earlier, following a GFD means 

consuming more naturally gluten-free products such as fruits, vegetables and meats, which are 
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also foods that are associated with a high cost diet due to their perishability (Drewnowski and 

others 2004). Additionally, a GFD can be nutritionally deficient in terms of certain vitamins and 

fiber, which may require supplementation of nutrients for CD patients and contribute to the high 

cost of this diet. For example iron, calcium and vitamin D supplements are commonly prescribed 

for children with CD (Kapur and others 2003, Malterre 2009). Gluten free products are low in 

folate and other B-vitamins, and CD patients have shown to be nutritionally deficient in these 

vitamins, putting them at risk for other health disorders to arise, especially cardiovascular events, 

which may also contribute to the burden associated with a GFD due to increased health costs 

(Bituh and others 2011; Hallert and others 2002).  

A GFD includes great dietary restriction, which as stated earlier affects quality of life and 

general well being, and because of this CD patients on a GFD are more likely to suffer from 

depression and anxiety (Addolorato and others 1996; Fera and others 2003). While psychological 

support counseling has shown to reduce depression and improve GFD compliance, this can add 

to the costs of treating this disease (Addolorato and others 2004). Family therapy has often been 

suggested for parents with children who suffer from CD due to the financial stressors of a GFD 

and the need for parents to monitor compliance by choosing specific foods (Flamez and others 

2014). Nutritional counseling at diagnosis is common as well, since changing to a GFD requires 

many adjustments and monitoring of dietary intake. The counseling and therapy associated with 

CD is therefore an often-unforeseen burden that affects an individual both financially and 

mentally. 

The U.S. gluten-free market is growing and was expected to reach $15.6 billion in 2013 

(Mintel Group 2013). The increase in this market is detrimental to the wheat-based products 

industry and consumers who cannot afford this diet. In 2014 a new US Food and Drug 
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Administration (FDA) rule took effect for foods labeled “gluten-free” and under this new rule a 

gluten-free claim can be applied to products that do not contain grains with gluten and products 

that do not inherently contain gluten (such as meats or dairy) (Grossman 2014). While this is 

useful to prevent accidental ingestion of gluten, the increased labeling may affect consumer 

perceptions of gluten-containing foods. Consumers who do not have CD believe that avoiding 

gluten products can be a way to achieve weight loss and that gluten-free foods are healthier than 

their gluten counterparts (Dunn and others 2014). These health claims are unsubstantiated, but 

this perception could greatly affect the wheat industry. 

 In a recent survey of 365 individuals with CD, 66% were interested in medication to 

treat their disease rather than a GFD, especially those with a lower quality of life and those who 

stated they frequently dine out (Tennyson and others 2013). The large economic burden of a 

GFD decreases its effectiveness as a therapy for CD, and research into alternative treatments is 

growing in recent years. Food products or beverages capable of inhibiting immunotoxic gluten-

induced inflammation in small intestinal epithelium could mitigate gluten toxicity. A safe 

treatment to reduce inflammation in individuals suffering from active or inactive CD would be 

welcome and could have significant impacts on quality of life and general well being for those 

with the disease. 

2.5 Potential of Cocoa as an Alternative Therapy in CD 

Recent research has shown that cocoa and chocolate consumption is linked to several 

health benefits (Buijsse and others 2010; Monagas and others 2009). The benefits involve 

reduction of inflammatory responses due to the presence of bioactive polyphenols (including 

flavanols like catechins and procyanidins). Studies have shown that cocoa products are capable 

of reducing levels of IL-1β, IL-6 and IL-8 whose role in CD disease has previously been 
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described (Sarria and others 2014). While the investigated health benefits have been linked to 

primarily cardiovascular events (lowering blood pressure and increasing HDL cholesterol), there 

is potential for these bioactive compounds to reduce the immunological response in CD.  

Cocoa contains procyanidins, caffeine and theobromine, all of which are capable of 

reducing TG2-induced inflammation. Concentrating and extracting these compounds from cocoa 

powder may exhibit a synergistic effect on the inhibition. Theobromine typically has the highest 

concentration in cocoa, followed by procyanidins and caffeine, although it is not as water-soluble 

(Ortega and others 2010; Sarria and others 2015). This study will discuss these dietary inhibitors 

of inflammation in CD, including TG2 inhibition as well as other CD biomarkers. The result is a 

potential alternative to a GFD that can be used with wheat-based products as therapy for CD. 

The gain to consumers and the wheat-based and cocoa industry will be significant. 

2.5.1 Procyanidins 

Procyanidin trimers and tetramers have shown binding affinity for gliadin peptides and 

can be an effective therapy in CD (Dias and others 2015). This quenching of gliadin peptides 

forms a stable complex that could block the immunological response that occurs in the intestine 

in CD. Procyanidin dimers are stable during gastric transit and reach the small intestine 

unchanged. In humans, these dimers appear in plasma 2-3 hours after digestion and intestinal 

bioavailability is not thought to be a limiting factor of their potential benefits (Rios and others 

2002). This compound is not toxic and cross Caco-2 cells (an in vitro model of the intestine) by 

paracellular transport (Deprez and others 2001; Kosinska and Andlauer 2012) and therefore 

reaches the intestine unmodified (Sano and others 2003).  

The presence of 10 hydroxyl groups on procyanidin molecules (Figure 2.5) confers 

substantial chelating activity to compete with TG2 for available calcium. Increased intracellular 
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calcium levels is a key event in the inflammatory pathway, not only activating TG2 but also up-

regulating inflammatory cytokines produced by T-cells (Parekh and Putney Jr. 2005). 

Concentrations of procyanidin-B2 as low as 10 nM have been shown to modulate calcium levels, 

and this inhibition of calcium levels increases in a concentration-dependent manner (Verstraeten 

and others 2008). In a model of CD, procyanidin-B2 may penetrate Caco-2 cells before gliadin 

peptides and inhibit TG2 levels.  

 

 
Figure 2.4: Structure of procyanidin-B2  

	
  
Procyanidins in cocoa are responsible for inhibition of digestive enzymes (Gu and others 

2011), though their effects on TG2 have not been investigated. If effective, by reducing the 

levels of TG2, gliadin will not be deamidated into immunotoxic peptides that bind with HLA-

DQ2. Additionally, the affinity that procyanidin trimers and tetramers (which are also present in 

cocoa) have for gliadin give products rich in procyanidins great potential as an alternative 

therapy to a GF diet. Cocoa is an example of a product that is rich in procyanidins and could 

protect against the inflammatory response in CD. To the date of this research, the efficacy of 

procyanidin dimers from cocoa as inhibitors of TG2 and other biomarkers in CD has not yet been 

investigated. 
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2.5.2 Caffeine and Theobromine 

Caffeine, which is present in cocoa, has also been shown to reduce TG2 activity when 

studied in vitro (Cho and others 2012; Sarria and others 2015). The mechanism of TG2 inhibition 

is caffeine’s role in regulation of intracellular calcium and inhibition of phosphodiesterases  

(Johnson and others 2012). Phosphodiesterases are part of a pathway that induces TG2 

activation; therefore inhibiting these molecules may have potential to inhibit TG2 in CD. 

Structurally, theobromine and caffeine are very similar (Figure 2.6). Like caffeine, theobromine 

is a phosphodiesterase inhibitor and is also involved in the regulation of NF-κβ (Sugimoto and 

others 2014). Despite these similarities theobromine is shown to be more stable during gastric 

transit and is excreted in its unmodified form, while caffeine is more likely to be metabolized to 

other constituents (Martinez-Pinilla and others 2015). Theobromine is also the compound in 

cocoa that has been associated with reduction of several inflammatory cytokines, including IL-

1β, IL-6, and IL-8 (Sarria and others 2015). Together with procyanidins, there is great potential 

for these compounds to inhibit inflammation in CD.  

	
  
Figure 2.5: Structure of caffeine and theobromine (Martinez-Pinilla and others 2015) 

	
  
2.6 The Caco-2 Cell Line in Celiac Disease Research 

 The Caco-2 cell line (Cancer coli-2) is derived from colon carcinoma though upon 

reaching confluence, differentiates spontaneously (Fogh and others 1977). The differentiated 

cells express functional and morphological properties of intestinal enterocytes, including a brush 

border with microvilli and small intestinal enzymes. Because of this, Caco-2 cell line is the most 
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extensively used in vitro model in CD research because of its consistency of the epithelial layer 

of the intestine in those affected with the disease. Studying effects of a food bioactive through in 

vivo models can be difficult, especially when dealing with a disease that has such severe side 

effects. For early stages of CD research there are several proposed methods in addition to Caco-2 

cells including animal models, ex vivo and other in vitro cultures, each with its own advantages 

and limitations depending on the purpose of the research. 

Investigating novel therapies in CD requires a reliable model of gluten-induced 

inflammation leading to the villous atrophy that is characteristic of the disease. Creating an 

animal model is difficult because the animals typically used in research (mice for example) do 

not express the HLA-DQ2 gene and do not produce celiac-type antibodies (de Kauwe and others 

2009; Smart and others 1992). Animal models are typically an expensive option, and while 

researchers can introduce these genes into an animal model, it is not a guarantee that it will 

produce all the elements seen in CD. Because of this ex vivo and in vitro options may be more 

appropriate models to research. 

 Ex vivo cultures come from small-intestinal mucosal biopsies from CD patients. This 

method enables researchers to study the variety of inflammatory biomarkers that elevate from 

gluten ingestion, and for this reason is mainly used to investigate the pathogenesis of CD 

(Lindfors and others 2012). While this model has potential for studying the efficacy of novel 

treatments, most of the research using ex vivo cultures has been geared towards analyzing 

pathogenesis. CD patient-derived T-cell lines can also be used, although intestinal T-cells do not 

always recognize gluten peptides, which is a limiting factor when investigating gluten-induced 

inflammation. Another limitation to ex vivo cultures is the low throughput, since this cell line 

depends on biopsies from patients and can be hard to obtain. 
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Two in vitro epithelial cell culture models are commonly used in CD research are T84 

cells and Caco-2 cells. Like the ex vivo models, T84 cells are used to study disease pathogenesis. 

While they are derived from colonic origin, T84 cells exhibit similar intracellular junctions of 

intestinal cells and are therefore useful to study things like gluten permeability and toxicity 

(Madara and others 1987). Either gliadin, IFN-γ or TNF-α can be used in Caco-2 cells to induce 

expression of other biomarkers seen in CD (Perry and others 1999; Ciccocioppo and others 

2006). It is used more extensively than T84 cells in CD research, notably for testing of novel 

treatments; therefore its use is more appropriate to proof-of-concept studies (Lindfors and others 

2012).  

The disadvantages of the Caco-2 cell line are due to the fact that it cannot reproduce all 

the characteristics of a human intestinal epithelium, which is not unexpected for in vitro models. 

Human intestinal cells contain multiple cell types while Caco-2 cells only express enterocytes. 

Transport of lipophilic molecules may be decreased since Caco-2 cells do not contain a mucus 

layer with bile acids as human intestinal cells do (Lea 2015). While Caco-2 cells are appropriate 

for CD research it is important to acknowledge these limitations, since data from in vitro studies 

does not equal a direct correlation to what will occur in vivo.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Natural Cocoa 

 To carry out this research, natural cocoa powder was generously donated from Mars 

Chocolate North America, Inc. (Hackettstown, NJ). This was a natural process cocoa powder, 

meaning that its acids had not been stripped as is done in Dutch-processed cocoa (alkaline 

treated).  

3.2 Extraction of Procyanidin-B2 

Procyanidin-B2-rich cocoa extracts were obtained by dissolving the natural cocoa powder 

in deionized water in a 1:4 ratio. The extracts were centrifuged and the supernatants were 

collected, followed by removing the water through lyophilization. To get a more concentrated 

stock this process was repeated.  

To remove impurities such as sugars and organic acids that may be present in cocoa 

powder, procyanidins were extracted using a method outlined by Counet and others (2004), 

using an acetone:water:acetic acid solvent (70:28:2). The solvent was removed via rotary 

evaporation and the stock was lyophilized again. 

3.3 UHPLC Analysis of Cocoa Extracts 

 Ultra High Performance Liquid Chromatography (UHPLC) was performed with a 

ThermoScientific Ultimate 3000 (Waltham, MA), which is equipped with a binary gradient 

pump, sample injector, a column oven and a photodiode array detector. The equipment was run 

under the following conditions: HSS C18 Column (100Å, 1.8 µm, 2.1 mm X 50 mm), HSS C18 

SB VanGuard Pre-column (100Å, 1.8 µm, 2.1 mm X 5 mm) (Waters Corporation, Milford, MA) 

was used with a flow rate of 0.3 mL/min. Chromeleon™ 7.2 Chromatography Data System 

(CDS) software (ThermoScientific, Waltham, MA) was used to measure and identify each peak 
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by its specific retention time. Procyanidin extracts were diluted 1:20 with water. Injections of 2.5 

µL were used and the oven was held at a temperature of 25°C.  

 The protocol was adapted from Cooper and others (2007) that involved UPLC analysis of 

major cocoa polyphenols in chocolate. The binary system phases were (A) water/THF/TFA 

(98:2:0.1 v/v/v) and (B) acetonitrile with 0.1% TFA. The two minute gradient was as follows: 

0.0-0.2 min, 90-87% A; 0.2-0.75 min, 87-85% A; 0.75-0.775 min, 85-0% A; 0.775-1.25 min, 0% 

A linear; 1.25-1.275, 0-90% A; 1.275-2 min, 90% A re-equilibration time. The standards and 

cocoa extracts were analyzed at 280 nm wavelength. 

 Procyanidin-B2 standard was purchased from ChromaDex (Irvine, CA) and the standards 

of theobromine and caffeine from Sigma-Aldrich (Bellefonte, PA), were used to construct 

standard curves for analysis. The concentrations of procyanidin-B2, caffeine and theobromine in 

the cocoa extracts were identified by comparing the retention times of their peak with that of 

standards. A linear response was obtained for procyanidin-B2 in the concentration ranges of 25-

1000 µg/mL and caffeine and theobromine in the concentration ranges of 50-500 and 50-1000 

µg/mL, respectively. The results report the standard curve analysis and chromatogram of the 

cocoa extracts.  

3.4 Cell Proliferation Assay 

Caco-2 cells (103 per well) were seeded on 96-well plates and incubated with culture 

medium combined with cocoa extracts containing different concentrations of procyanidin-B2 

between 10 nM and 500 µM. The highest concentrations of nontoxic procyanidin-B2 were used 

for subsequent experiments. 
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3.4.1 MTS Cell Proliferation Assay 

 Cells were incubated for 2, 6 and 24 h at 37°C in an incubator with 5% CO2. After 

incubation cells were washed and incubated for 4 h with a solution of PMS (phenazine 

methosulfate) and a tetrazolium compound (MTS) according to the protocol provided by the 

supplier CellTiter 96 Aqueous One solution (Promega, Madison, WI). Cells bioreduce MTS into 

a formazan product and the absorbance was read at 490 nm using a BioRad Model 680 

microplate reader (Hercules, CA). The quantity of formazan product is directly proportional to 

the number of living cells in culture and was used to compare cell proliferation versus 

concentrations of procyanidin-B2. The cell proliferation assay was performed in triplicate and 

results were presented as a percentage of the control.  

3.5 Cell Cultures 

 The Caco-2 cell line was used as a model of human intestinal epithelial cell. Caco-2 

cells (ATCC, Manassas, VA) were grown in 75 cm2 Dulbecco's Modified Eagle's Medium 

(DMEM) (GIBCO, Grand Island, NY), 10% fetal calf serum (GIBCO), 100 units/mL penicillin 

streptomycin (GIBCO), and 2 mM L-glutamine (GIBCO). Caco-2 cells (2 x 105 per well) were 

incubated at 37°C in a humidified atmosphere containing 5% CO2. Upon reaching 80% 

confluence, cells in the logarithmic phase were subcultured weekly at a split ratio of 1:3 by 

trypsinization.  

To determine the efficacy of procyanidin-B2’s ability to inhibit TG2 along with the 

synergism between procyanidin-B2, caffeine and theobromine Caco-2 cells were seeded into cell 

culture plates for 72 h and incubated with the nontoxic concentrations of procyanidin-B2 

standardized cocoa extracts and either 10 ng/mL Interferon-γ (IFN) or 20 µg/mL α-gliadin (31-

43) to stimulate the inflammatory process. IFN and gliadin treated Caco-2 cells were also 



 24 

incubated with caffeine (50 and 500 µM) and theobromine (50 and 500 µM) to better observe the 

effect of these compounds alone. 

Various concentrations of cysteamine (Sigma-Aldrich, Bellefonte, PA) were included in 

cell cultures to compare the effects of the cocoa extracts versus a known inhibitor of TG2. IFN-γ 

was purchased from ThermoScientific (Waltham, MA) and α-gliadin (p31-43) from AnaSpec 

(Fremont, CA). After 72 h, supernatants were separated from the adhering Caco-2 cells for 

analysis of inflammatory cytokines through ELISA. Cell homogenates (cytoplasmic protein 

fraction) for analysis of TG2 and COX-2 through Western Blot were prepared through cell lysis. 

3.6 Western Blot Analysis of TG2 and COX-2 

 Cells were washed with Phosphate Buffered Saline (PBS) and collected by scraping in 50 

µL of hypotonic buffer (10 mmol/L HEPES pH 7.9, 1.5 mmol/L MgCl2, 10 mmol/L KCl, 0.2 

mmol/L PMSF, 0.5 mmol/L DTT, 5 mmol/L NaF, 1 mmol/L Na3VO4). The mixture was 

vortexed for 10 s and incubated for 30 min on ice, then centrifuged at 14,000 x g for 15 min and 

the supernatant was retained as cytoplasmic extracts.  

The pellet was re-suspended in 50 µL of high-salt buffer (20 mmol/L HEPES pH 7.9, 

25% glycerol, 1.5 mmol/L MgCl2, 1.2 mol/L KCl, 0.1 mmol/L EDTA, 420 mmol/L NaCl, 0.5 

mmol/L DTT, and 0.2 mmol/L PMSF) by pipetting up and down and vortexing 10 s on high 

setting. The mixture was incubated for 30 s on ice and centrifuged at 14,000 x g for 10 min (pre-

cooled at 4°C). The supernatant was retained as nuclear fractions and stored at −80°C until use. 

Total protein in cytoplasmic and nuclear fractions was determined by the Bicinchoninic Acid 

(BCA) protein assay (ThermoFisher Scientific, Waltham, MA). 

Equal amounts of protein (725 µg) of cytoplasmic protein fractions from control and 

procyanidin-B2 treated cells were mixed with LDS sample buffer (Invitrogen, Carlsbad, CA) 
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then boiled for 5 min (to denature proteins) and vortexed at a high setting. Thirty microliters of 

each sample were added in each lane of a 4-12% Bis-Tris SDS polyacrylamide gel (Invitrogen, 

Carlsbad, CA). Proteins of interest were transferred to a polyvinylidene fluoride (PVDF) 

membrane (0.4 µm pore size) (ThermoFisher Scientific, Waltham, MA), then blocked in 5% 

bovine serum albumin (BSA) in PBST (PBS with 0.1% Tween-20) for 1 h. The primary antibody 

was prepared in 5% BSA and incubated with the membrane overnight at 4°C on a shaker. The 

membrane was washed three times for 10 minutes using PBST, then incubated for one hour with 

secondary antibody and the washes were repeated.  

Visualization of the bound antibody was done in a dark room using West Pico Substrate, 

an enhanced chemiluminescent HRP-substrate (ThermoFisher Scientific, Waltham, MA) and a 

BioRad ChemiDoc MP System (Hercules, CA). After analyzing band density, membranes were 

stripped and re-probed with β-actin to serve as a loading control. Results were reported as a ratio 

of the density of each band to its β-actin for cells incubated with either gliadin or IFN and cocoa 

extracts. Caco-2 cells that were treated with Caffeine, Theobromine and Cysteamine were 

compared using this ratio and comparing it to either gliadin or IFN (relative level, %) to measure 

the percent decrease in Transglutaminase-2 after 72 h incubation.   

The primary antibodies β-actin, COX-2, and Transglutaminase-2 were purchased from 

Cell Signaling Technology (Danver, MA) and the conjugated secondary antibodies (anti-rabbit 

and anti-mouse) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  

3.7 ELISA Analysis of Inflammatory Cytokines 

 The supernatants of Caco-2 cells were collected after 72 h for analysis of inflammatory 

cytokines including Interleukin-8 (IL-8), Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and 

Interleukin-15 (IL-15). Analysis of human IL-8, IL-6 and IL-1β was done using commercial kits 
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from Peprotech (Rocky Hill, NJ). Human IL-15 ELISA kit was purchased from Affymetrix 

eBioscience (San Diego, CA).  

The absorbance of each cytokine (pg/mL) was read using a BioRad Model 680 

microplate reader (Hercules, CA). Each kit was provided with a protocol that was followed. For 

IL-15, which is not typically seen in cell supernatants, total cell lysates (50 µL) were tested. 

Samples were normalized to contain 1 mg/mL protein and incubation time was increased from 2 

h to overnight at 4°C to maximize the sensitivity. Testing each sample was done in triplicate, and 

the results are expressed as mean  ± SD of the concentration of interleukin.  

3.8 Statistical Analysis 

 Each experiment was performed at least three times. The data was expressed as the mean 

± SD and analyzed using one-way analysis of variance (ANOVA) followed with a Tukey test for 

multiple comparisons. The differences were considered significant at the P < 0.05 level. 

Statistical analysis was conducted using the Statistical Analysis Software (SAS) (version 9.4). 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 UHPLC Analysis 

 UHPLC has known advantages over other chromatographic methods, including shorter 

analysis time, higher peak efficiency and resolution. While HPLC requires between 50 and 80 

min per sample, the separation of cocoa compounds was successfully achieved in a short 2-min 

gradient. The method was similar to Cooper and others (2007) in that a C18 column with a short 

length (50 mm) was used as well as the same binary system phases (described in Chapter 3). 

However, the 8-min gradient outlined in this study was not adaptable to the cocoa extracts in our 

study, as all compounds eluted at once. Using the 2-min method not only greatly decreased 

analysis time, but it also improved separation and peak efficiency. The elution of the standards in 

the two-minute gradient can be seen in Figure 4.1. 

 
Figure 4.1: Chromatograms of the standards (1) theobromine (2) caffeine and (3) procyanidin-B2 
at 280 nm. The concentration of each analyte was 100 µg/mL. 
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4.1.1 Standard Solutions  

External standardization was performed to create standard curves for analysis (Figure 

4.2). In a study by Ortega and others (2010) analyzing polyphenols and alkaloids in cocoa, 

theobromine eluted first followed by caffeine and procyanidin-B2, which is in agreement with 

our research (Figure 4.1). Theobromine eluted at 0.590 min, while caffeine eluted at 1.507 min 

and procyanidin-B2 at 1.65 min. 

A) B) 

	
   	
  

C) 	
  

	
  

	
  

Figure 4.2: Standard curves of A) theobromine B) procyanidin-B2 and C) caffeine 

 Each standard displayed multiple peaks, which may speak to the purity of the compounds 

purchased and show that standards for UHPLC require compounds with higher purity. The peaks 

were used to construct the standard curves seen in Figure 4.2. In order to determine which peak 
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should be used for analysis, cocoa extracts were spiked with 500 µg of the standard to show 

where the compound eluted in our sample and the specific retention time using peak 

identification software (Chromeleon™ CDS software, ThermoScientific).  

4.1.2 Analysis of Cocoa Extracts 

Five distinct peaks were found in the extracts, and the compounds of interest were 

identified by spiking and comparing retention times to the standards (Figure 4.3). While catechin 

and epicatechin analysis was not included, according to other research it is likely that the large 

peak eluting after theobromine is epicatechin (Cooper and others 2007; Ortega and others 2010); 

the small peak eluting around the same time as procyanidin-B2 is likely catechin. Catechin and 

epicatechin have mostly been linked to coronary disease research by reducing LDL cholesterol 

and recycling antioxidants; therefore we did not consider these compounds relevant to our 

research in CD (Zhu and others 1999; Rice-Evans and others 1996).  

 
Figure 4.3: UHPLC analysis of cocoa extracts at 280 nm 
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The concentrations of the identified compounds, in milligram per gram of cocoa extract 

are listed in Table 4.1. As evidenced by other research, theobromine is found in higher 

concentrations in cocoa than both procyanidin-B2 and caffeine (Smit and Blackburn 2005; 

Ortega and others 2010; Sarria and others 2015). Typically caffeine and procyanidin-B2 are 

found in very low levels in cocoa (below 4 mg), although the efforts to concentrate these 

compounds through extraction and lyophilization were effective in substantially increasing their 

concentrations.  

 

 

 

 

4.2 Effect of Cocoa Extracts on Cell Proliferation 

The cocoa extracts were standardized to their concentration of procyanidin-B2 for use in 

all further analysis, since it is this compound that we were primarily interested in studying. 

Viable cells were tested using CellTiter 96 Aqueous One solution (Promega, Madison, WI). 

Cells bioreduce the MTS reagent into a formazan product and the absorbance was read at 490 

nm. The quantity of formazan product is directly proportional to the number of living cells in the 

culture. Caco-2 cells were incubated with cocoa extracts ranging from 1-50 µM for 2, 6 and 24 h. 

Cocoa extracts varying in concentration of procyanidin-B2 did not have adverse effects 

on Caco-2 cell proliferation (Figure 4.4 and Figure 4.5). Preliminary studies included 

concentrations below 1 µM but did not exhibit a decrease in TG2 levels or other CD biomarkers; 

therefore the rest of the data only reports results from concentrations of 8.5 µM and above. No 

significant differences were observed in cell proliferation for any concentration of procyanidin-

Table 4.1: Concentration of bioactive compound expressed as mg 
per g of cocoa extract found through UHPLC 

Compound of interest Concentration (mg/g) % (w/w) 
Theobromine 22.61 40.3 

Caffeine 11.20 20 
Procyanidin-B2 21.39 38.2 
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B2 (p<0.05), which has previously been reported for concentrations up to 50 µM in Caco-2 cells 

(Ramos and others 2011).  

A significant increase in cell proliferation is seen over time when Caco-2 cells were 

incubated with cocoa extracts for 24 h (Figure 4.4). This effect of cocoa extracts on Caco-2 cells 

is likely the action of procyanidin-B2 and other bioactive compounds on inhibiting apoptotic 

pathways. Procyanidin-B2 and epicatechin are capable of reducing oxidative stress that leads to 

apoptosis, which explains the increase in proliferation with higher concentrations of B2.  

	
  
Figure 4.4: Caco-2 cell proliferation during incubation with cocoa extracts standardized to 
procyanidin-B2 content. No significant differences found between concentrations. # denotes a 
significant difference over time (p<0.05) 

Their antioxidant properties have been shown to prevent cytotoxicity and have anti-

apoptopic effects in Caco-2 cells (Rodriguez-Ramiro and others 2011). As stated in the literature 

review, TG2 also plays a role in cell death, and inhibition of this enzyme from the cocoa extracts 

may also explain the increase in the number of living cells. After these low concentrations were 

studied for their inhibitory effects on TG2, an additional cell proliferation assay was conducted 
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to analyze whether higher concentrations of procyanidin-B2 exhibit greater inhibition of 

inflammatory biomarkers (Figure 4.5).  

No significant differences were observed in cell proliferation for the concentrations of 

100-500 µM. Cocoa extracts with higher B2 concentrations of 750 µM and 1 mM were tested in 

vitro without performing a cell proliferation assay, though after the 72 h incubation appeared 

toxic to cells causing most cells to die and were thus excluded from analysis. 

 
Figure 4.5: Caco-2 cell proliferation during incubation with cocoa extracts of higher 
concentration procyanidin-B2. No significant differences found between concentrations (p<0.05) 

4.3 Effect of Cocoa Extracts on Transglutaminase-2 (TG2) Levels 

Transglutaminase-2 (TG2) is involved in the pathogenesis of several autoimmune and 

inflammatory disorders, making TG2 inhibition an attractive target for therapy for diseases 

including CD. CD is a combination of the innate and adaptive immune response, though the 

action of TG2 plays a larger role in the latter. TG2 deamidates gliadin peptides at specific 

glutamine residues, resulting in formation of peptides that bind with HLA-DQ2 and eliciting an 

inflammatory response from T-cells. Additionally when high levels of TG2 are present, T-cells 
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increase their reactivity to gliadin (Caccamo and others 2010). IFN-γ is the most potent inducer 

of TG2 and when released by T-cells in CD, activates the pathway that causes destruction of 

intestinal mucosa (Petersen and others 2014). The cellular level of TG2 in Caco-2 cells was 

studied by Western blotting (WB). As shown in Figure 4.6, the exposure of the cells to IFN 

resulted in a significant increase of TG2.  

A)   B2 Concentration (µM) 

 Control  IFN 1 8.5 20 50 100 500 

TG2 
 
β-actin 

 
 

B) 

 
Figure 4.6: TG2 levels in Caco-2 cells exposed to IFN (10 ng/mL) or medium alone (Control) as 
resulted by Western blotting. A) Image from WB experiment from one of three exposures. B) 
TG2 levels were measured by mean densitometric value ± standard deviation of TG2 bands, 
normalized for corresponding actin density (ratio of TG2:actin). Letters abcdef are significantly 
different (p<0.05)   

 

Cells were incubated with 10 ng/mL of IFN and treated with cocoa extracts standardized 

to their procyanidin-B2 content in concentrations ranging from 1-500 µM. As stated earlier, 

concentrations of 1 µM and below showed no decreases. Significant decreases in TG2 levels 
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were observed starting at 8.5 µM procyanidin-B2, and the greatest effects were seen at 500 µM. 

Introducing gliadin to Caco-2 cells led to an increase in TG2 levels (Figure 4.7). The gliadin 

peptide p31-43 is associated with innate immunity in CD (Jabri and others 2005). This peptide 

has a direct toxic effect on intestinal cells and has been shown to increase calcium mobilization 

leading to activation of TG2 (Caputo and others 2012).  

A)   B2 Concentration (µM) 

                Control  Gliadin  1 8.5  20   50  100 500 

TG2 
 

 
β-actin 

 
 

B) 

 
 
Figure 4.7: TG2 levels in Caco-2 cells exposed to gliadin (20 µg/mL) or medium alone (Control) 
as resulted by Western blotting. A) Image from WB experiment from one of three exposures. B) 
TG2 levels were measured by mean densitometric value ± standard deviation of TG2 bands, 
normalized for corresponding actin density (ratio of TG2:actin). Letters abcd are significantly 
different (p<0.05) 
 
 All cells were incubated with 20 µg/mL of gliadin (except for the control) and significant 

decreases in TG2 started as low as 8.5 µM procyanidin-B2. However, increasing the 

concentration of procyanidin-B2 did not show decreased TG2 levels after 20 µM. Innate and 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

 Mean	
  

TG
2 

Le
ve

l 

B2 Concentration (µM) 

Control   Gliadin     8.5          20          50   100         500 

   d 

     a   

   b 
 c    c  c    c 



 35 

adaptive immunity are thought to have a synergistic effect in the inflammatory response in CD, 

and TG2 is involved in both cases thus playing a crucial role in this disease. Cocoa extract 

standardized to procyanidin-B2 was effective at inhibiting TG2 levels as low as 8.5 µM in both 

IFN and gliadin (p31-43) treated cells. Higher concentrations of procyanidin-B2 were more 

effective in the IFN treated cells, and 500 µM exhibited the greatest TG2 inhibition. This effect 

was not seen in the gliadin treated cells, though all concentrations did significantly decrease TG2 

levels.  

4.3.1 TG2 Inhibition by Caffeine and Theobromine 

Procyanidins are exogenous antioxidants that have been known to have hormetic effects. 

This “double-edged” effect describes a compound that induces biologically opposite effects at 

different doses, most commonly a beneficial effect at low, physiological doses and pro-

inflammatory effects at high doses (Calabrese and others 2007). It is marked by the “U-shaped” 

dose-response curve seen below in Figure 4.8. Hormesis has been well documented both in vitro 

and in vivo (Bouayed and Bohn 2010; Watjen and others 2005; Omenn and others 1996; 

Podmore and others 1998).  

Physiological concentrations of procyanidin dimers in chocolate products are around 36 

µM or 0.021 mg/g as found by Cooper and others (2007). Hormesis is seen when compounds go 

above physiological concentrations, and the increase in levels of pro-inflammatory biomarkers 

seen in cocoa extracts at 50 µM procyanidin-B2 is seen repeatedly in this study and is therefore 

indicative of a hormetic effect. However at 500 µM procyanidin-B2 in cocoa extracts, there is 

again significant inhibition of inflammatory biomarkers (including TG2), which may point to a 

synergistic effect with caffeine and theobromine occurring at this concentration. 
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Figure 4.8: U-shaped dose-response curve observed in hormesis (Calabrese and Baldwin 2001) 

Caffeine and theobromine have low molecular weights compared to procyanidin-B2, 

making their physiological doses much higher. A high-phenolic chocolate product may contain 

about 1 mg/g caffeine (5 mM) and 5 mg/g theobromine (27 mM), therefore the cocoa extracts 

with higher procyanidin-B2 content are closer to the concentrations these compounds are 

normally consumed (Sarria and others 2015). 

Figure 4.9 shows the result of incubating IFN- and gliadin-treated cells with caffeine or 

theobromine alone at two different concentrations. The lower concentration (50 µM) is close to 

what would be expected with the cocoa extracts standardized to 8.5-20 µM procyanidin-B2, and 

the higher concentration (500 µM) is close to what would be seen with cocoa extracts containing 

500 µM procyanidin-B2.  

Caco-2 cells incubated with IFN showed increased TG2 inhibition with increased 

concentrations of caffeine and theobromine. As seen in the WB for TG2 with cells incubated 

with gliadin, higher concentrations of procyanidin-B2 did not show an increased effect on TG2 

inhibition, which is again demonstrated here with caffeine and theobromine. It can be concluded 
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that the hormetic effect is therefore more apparent when gliadin induces inflammation in Caco-2 

cells rather than IFN.  

At 50 µM caffeine the relative TG2 level in Caco-2 cells was 37% compared to IFN 

alone and 35% compared to gliadin alone. This means that in the presence of 50 µM caffeine, 

TG2 levels decreased 63% and 65%, respectively. At 50 µM theobromine the relative TG2 level 

was 44% compared to IFN alone and 16% compared to gliadin alone, resulting a in 56% and 

84% decrease in TG2 levels respectively. These were pure compounds and their effects were 

slightly decreased in the cocoa extracts, though the results from WB for TG2 shows that 

inhibition was still achieved and is attributed to these compounds.  

A) C50   C500  T50  T500 B) C50   C500   T50  T500	
  
TG2 

 
β-actin 	
  

TG2 
 

β-actin	
   	
  

 
Figure 4.9: TG2 inhibition by Caffeine and Theobromine as resulted by Western blotting in A) 
IFN- and B) gliadin-treated cells. TG2 levels are expressed relative to gliadin or IFN (100%). 
The figures represent mean densitometric value ± standard deviation of TG2 bands, normalized 
for corresponding actin density. Letters abcde are significantly different (p<0.05) C = Caffeine T 
= Theobromine 
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Alone, 500 µM caffeine resulted in a relative TG2 level of 32% compared to IFN alone 

and 38% compared to gliadin alone, which means that TG2 was reduced by 68% in IFN-treated 

cells and 62% in gliadin-treated cells. As seen in Figure 4.9, 500 µM theobromine alone 

exhibited 38% relative TG2 level compared to IFN alone and 53% compared to gliadin alone. 

The decreases in TG2 levels are therefore 62% and 47% in IFN- and gliadin-treated cells, 

respectively. A synergistic effect is seen when compounds increase each other’s effectiveness in 

a matrix. This can be observed in cocoa extracts containing 500 µM procyanidin-B2 where 

caffeine and theobromine are closer to their physiological concentrations. When the cocoa 

contained high concentrations of theobromine and caffeine along with procyanidin-B2, the 

reduction in relative TG2 level was greatest (Figure 4.10). This synergism of caffeine and 

theobromine explains why cocoa extracts containing 500 µM procyanidin-B2 displayed greater 

anti-inflammatory effects than lower concentrations, and the effect is seen several times 

throughout the study. 

4.3.2 Comparison of Cocoa Extracts to Cysteamine 

There are several known inhibitors of TG2, cystamine (and its derivative, cysteamine) 

being one of the most effective. Cystamine (β,β’-diaminodietyl disulfide) inhibits TG by 

blocking this enzyme at its active site, which is a cysteine thiol residue. Gliadin peptides contain 

repetitive glutamine sequences, making them a preferred substrate for TG2, whose main function 

is to catalyze the cross-linking of glutamine residues by transferring an acyl group. This action 

creates immunotoxic gliadin peptides that bind to a lysine residue on glutamine-acceptor proteins 

such as HLA-DQ2, which as previously mentioned elicits the inflammatory response in T-cells 

in CD (Ferretti and others 2012). 
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 Cystamine is an irreversible TG inhibitor whose mechanism of action is a thiol-disulfide 

exchange that inactivates TG at its active site (a cysteinyl residue) (Jeitner and others 2005). 

While cystamine is a more potent inducer of TG2, intracellular conditions reduce cystamine to 

cysteamine (β-mercaptoethylamine) therefore it is more appropriate to study this form to ensure 

the exact concentration of the inhibitor in the cytoplasm. The inhibitory action of cysteamine on 

TG2 has been demonstrated both in vitro and in vivo (Jeon and others 2005).  

 Cysteamine was tested in concentrations of 250 µM and 500 µM for both gliadin and IFN 

treated cells and showed a decrease in levels of TG2 at both concentrations (Figure 4.10). 

Compared to gliadin (20 µg/mL) alone, incubation with 250 µM and 500 µM cysteamine resulted 

in relative TG2 levels of 49.1% and 35.9%, respectively. This means there was a 50.9% decrease 

in TG2 levels at 250 µM and a 64.1% decrease at 500 µM cysteamine.  
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Figure 4.10: Comparison of TG2 inhibition between cysteamine and procyanidin-B2 (cocoa 
extracts) as resulted by Western blotting in A) gliadin-treated cells and B) IFN-treated cells. TG2 
levels are expressed relative to gliadin or IFN (100%). The figures represent mean densitometric 
value ± standard deviation of TG2 bands, normalized for corresponding actin density. Letters 
abcd are significantly different (p<0.05) CS=Cysteamine 
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Cysteamine had even greater effects in cells induced by IFN; 250 µM expressed a relative 

TG2 level of 32.4% and 500 µM had a relative TG2 level by 25%, meaning the decreases in TG2 

level by 250 and 500 µM cysteamine were 67.6% and 75% respectively. The results of 

cysteamine were compared to the cocoa extracts by using the concentrations in both gliadin- and 

IFN-treated cells that resulted in the greatest TG2 inhibition. For gliadin-treated cells these 

concentrations were 20 µM and 500 µM procyanidin-B2, which had relative TG2 levels of 

56.6% and 54.6% respectively. Therefore compared to gliadin alone, TG2 levels decreased 

43.4% and 45.4% which was comparable to the effects of 250 µM cysteamine. In Caco-2 cells 

incubated with IFN (10 ng/mL) and cocoa extracts, TG2 inhibition was greatest at 8.5 µM and 

500 µM procyanidin-B2. Again, Figure 4.10 shows that the relative TG2 level at these 

concentrations compared to IFN alone was 55.7% and 22.8% respectively. Therefore TG2 levels 

decreased 44.3% and 77.2%, respectively with cocoa extracts compared to IFN alone. Statistical 

analysis showed that the effects of 500 µM procyanidin-B2 in the cocoa extracts were 

comparable to 500 µM cysteamine on TG2 inhibition. 

In summary, both gliadin- and IFN-induced cells that contained 500 µM procyanidin-B2 

exhibited the greatest decrease in TG2 levels for cells treated with cocoa extracts (45.4% and 

77.2%, respectively). The results from cocoa extracts at 500 µM procyanidin-B2 and was 

comparable to cysteamine, which is a known inhibitor of TG2 and decreased TG2 levels up to 

64.1% compared to gliadin alone and 75% compared to IFN alone. The cocoa extracts may 

exhibit a synergistic effect with caffeine and theobromine at this concentration, whereas lower 

concentrations may be the action of procyanidin-B2 alone. 

In CD, TG2 inhibition could reduce the inflammatory response to gliadin thus preventing 

damage to intestinal mucosa and protecting against the major symptoms. With the central role 



 41 

that TG2 plays in disease pathogenesis, these results show the potential of highly concentrated 

cocoa extracts as an alternative therapy in CD. 

4.4 Effect of Cocoa Extracts on CD Inflammatory Biomarkers  

 To further analyze the ability of cocoa extracts to attenuate gluten related toxicity in CD, 

other important markers of inflammation were also assessed. Both cyclooxygenase-2 and IL-15 

are expressed early in CD pathogenesis and therefore have crucial roles in the innate immune 

response (Capozzi and others 2013; Barone and others 2011). The pro-inflammatory actions and 

oxidative stress caused by IFN and TG2 in enterocytes also contribute to elevated levels of these 

biomarkers (Ferretti and others 2012). The role these cytokines have in CD pathogenesis is 

summarized in Figure 4.11. To further analyze the potential of cocoa as an alternative therapy in 

CD, COX-2 levels in IFN and gliadin-treated Caco-2 cells were assessed by WB and IL-15 was 

analyzed by ELISA.  

	
  
Figure 4.11: Schematic representation of CD pathogenesis (Torres and others 2015) 
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4.4.1 Cyclooxygenase-2 (COX-2)  

 The rapid enzymatic activity of COX-2 promotes inflammation through prostaglandins 

and is activated by stimuli such as gliadin. Maiuri and others (2003) demonstrated the ability of 

gliadin peptides to increase levels of COX-2 in the duodenum of CD patients, showing the role 

of this enzyme in innate immunity. The effect of IFN on COX-2 levels in Caco-2 cells captures 

the adaptive immune response (Figure 4.12). 

A)   B2 Concentration (µM) 
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Figure 4.12: COX-2 levels in Caco-2 cells exposed to IFN (10 ng/mL) or medium alone 
(Control) as resulted by Western blotting. A) Image from WB experiment from one of three 
exposures. B) COX-2 levels were measured by mean densitometric value ± standard deviation of 
COX-2 bands, normalized for corresponding actin density (ratio of COX-2:actin). Letters abcd 
are significantly different (p<0.05) 
 

IFN-treated Caco-2 cells saw a significant increase in levels of COX-2. Levels decreased 

significantly in cells with cocoa extracts containing between 50 µM-500 µM procyanidin-B2. 
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Below 50 µM was not effective at significantly decreasing levels of COX-2. Cocoa extracts 

containing the higher concentrations (100 and 500 µM procyanidin-B2) were again more 

effective at decreasing levels of an inflammatory biomarker to levels closer to the control (media 

alone). Gliadin (peptide sequence p31-43) also modulates levels of COX-2 in Caco-2 cells 

(Figure 4.13).  
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Figure 4.13: COX-2 levels in Caco-2 cells exposed to gliadin (20 µg/mL) or medium alone 
(Control) as resulted by Western blotting. A) Image from WB experiment from one of three 
exposures. B) COX-2 levels were measured by mean densitometric value ± standard deviation of 
COX-2 bands, normalized for corresponding actin density (ratio of COX-2:actin). Letters abcde 
are significantly different (p<0.05) 
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levels of COX-2 are typically tested after 24 h of treatment rather than the 72 h of incubation that 

was done for this study. Even so, COX-2 levels were still detectable and was significantly higher 

in the cells incubated with α-gliadin alone compared to the control and treatments. Treatment 

with cocoa extracts decreased levels of COX-2, and the greatest decreases were seen at the lower 

concentrations of 8.5 and 20 µM procyanidin-B2. 

4.4.2 Interleukin-15 (IL-15) 

 IL-15 is a cytokine that, like TG2, plays a central role in CD pathogenesis. While TG2 

captures the adaptive immune response in CD, IL-15 dominates innate immunity (Vincentini and 

others 2015). Rather than being secreted by cells, this cytokine is present at the cell surface and 

functions by stimulating intraepithelial lymphocytes (IELs), which are mediators of cytotoxicity 

in epithelial cells. IL-15 also induces T-cell proliferation and levels of this cytokine correlate to 

the degree of mucosal damage in CD (Di Sabatino and others 2006). When IL-15 is blocked 

cytotoxicity in Caco-2 cells is reduced, making inhibition of this cytokine an important factor to 

preventing CD inflammation.  

 IL-15 was significantly higher in cells treated with IFN alone (Figure 4.14). Incubating 

with cocoa extracts decreased levels of IL-15 similar to that seen in the control (medium alone), 

though the effect was not dependent on procyanidin-B2 concentration. The α-gliadin (p31-43) 

sequence directly induces IL-15 production and significantly increased levels of IL-15 in Caco-2 

cells compared to the control (Figure 4.15). Unlike the IFN treated cells, cocoa extracts had 

different effects with varying procyanidin-B2 concentration. Concentrations of at least 50 µM 

procyanidin-B2 were required to achieve inhibition of IL-15.  
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Figure 4.14: Levels of IL-15 in Caco-2 cells incubated with IFN (10 ng/mL) or medium alone 
(Control) as resulted by ELISA. # denotes significantly different (p<0.05)  

	
  

 

Figure 4.15: Levels of IL-15 in Caco-2 cells incubated with gliadin (20 µg/mL) or medium alone 
(Control) as resulted by ELISA. Letters abc are significantly different (p<0.05)  

	
  
Blocking expression of IL-15 could be protective against the toxicity of gliadin by 
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effective in decreasing IL-15 levels. Due to its pivotal role in CD pathogenesis, inhibiting IL-15 

as well as TG2 and COX-2 could be an effective therapy and using a safe treatment like a cocoa 

product has great potential. 

4.5 Effect of Cocoa Extracts on Serum Cytokines  

 Both gliadin and IFN are responsible for the secretion of inflammatory cytokines in CD. 

Cytokine profiles can vary depending on the level of enteropathy and compliance to a GFD, 

although IL-6 and IL-8 are two of the most common serum cytokines elevated in CD (Kapoor 

and others 2013). Elevated IL-1β is associated with individuals with refractory CD, or those who 

do not respond to a GFD. Positive correlations have been found between the levels of TG2 and 

serum cytokines (Manavalan and others 2010). The elevation of TG2 in response to IFN and 

gliadin has been demonstrated through Western blotting, and increased levels of IL-6, IL-8 and 

IL-1β were expected. Enzyme-linked immunosorbent assay (ELISA) analysis of serum is 

commonly done in CD diagnosis and is also used to monitor dietary compliance; in this study we 

investigated whether treatment with cocoa extracts was effective in decreasing levels of common 

CD cytokines.  

4.5.1 Interleukin-6 (IL-6) 

 The inflammatory cytokine IL-6 plays a central role in immune responses, and evidence 

of increased serum IL-6 in untreated CD has been well documented (Romaldini and others 2002, 

O’Keeffe and others 1999). It is a macrophage-derived cytokine and increases production of 

other inflammatory cytokines by up-regulating T-cell functions. Serological testing for IL-6 is a 

reliable, non-invasive measure to assess adherence to a GFD in CD, as when gluten is introduced 

into the diet there is a significant increase in the levels of IL-6. A significant correlation exists 

between IL-6 and tissue Transglutaminase (tTG) in CD patients (Kapoor and others 2013). Due 
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to this correlation the pattern seen in Western blotting for TG2 is expected to be similar to levels 

of IL-6 in Caco-2 cell supernatants in response to treatment with cocoa extracts. 

IFN significantly increased the levels of IL-6 (Figure 4.16). IFN-γ is known to greatly 

increase production of IL-6, therefore these high levels were expected (Biondillo and others 

1994).  In Caco-2 cells, cocoa extracts with concentrations containing at least 8.5 µM 

procyanidin-B2 significantly reduced levels of IL-6. The greatest decrease in IL-6 was seen in 

cells with cocoa extracts containing 500 µM procyanidin-B2, which was similar to what was 

seen in Western blotting for TG2.  

 
Figure 4.16: Levels of IL-6 in Caco-2 cells incubated with IFN (10 ng/mL) or medium alone 
(Control) as resulted by ELISA. Letters abcde are significantly different (p<0.05)  

Gliadin significantly increased levels of IL-6 in Caco-2 cells (Figure 4.17). Treatment 

with cocoa extracts does not appear to result in lower levels of IL-6, since these differences are 

not significant. Though the amount of IL-6 is much lower than those seen in the IFN-induced 

cells, these levels are closer to what is seen in literature. Newly diagnosed CD patients not on a 
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GFD have between 12-28 pg/mL IL-6, though levels are higher (80-120 pg/mL) in patients who 

follow a GFD but still experience persistent symptoms, also called refractory CD (Kapoor and 

others 2013).  

The results from IL-6 ELISA follow patterns similar to results from TG2 Western 

blotting for IFN-treated cells. This is not unexpected, as there is sufficient evidence of the 

correlation between TG2 and serum cytokines such as IL-6. Cells treated with gliadin did not 

show significant decreases of IL-6 when incubated with any concentration of procyanidin-B2. 

The findings suggest that adaptive immunity (response captured by IFN) may therefore be a 

more effective target for treatment using cocoa extracts.   

 
Figure 4.17: Levels of IL-6 in Caco-2 cells incubated with gliadin (20 µg/mL) or medium alone 
(Control) as resulted by ELISA. Letters ab are significantly different (p<0.05)  
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its common use in serological testing and diagnosis, and since IFN is a part of the adaptive 

immune response in CD the data from both gliadin and IFN treated cells are relevant.  

4.5.2 Interleukin-8 (IL-8) 

 The inflammatory cytokine IL-8 is overexpressed in response to gluten in CD patients 

and is also expressed in stressed Caco-2 cells (Hall and others 2007). Similar to IL-6, when 

serum IL-8 levels are elevated and influence the production of other inflammatory cytokines 

through modulation of T-cell functions.  

 Treating Caco-2 cells with IFN significantly increased levels of IL-8 (Figure 4.18). 

Cocoa extracts containing procyanidin-B2 decreased levels of IL-8 starting at concentrations of 

8.5 µM. Concentrations ranging from 50-500 µM were not significantly different from the 

control levels of IL-8 (pg/mL).  

 

Figure 4.18: Levels of IL-8 in Caco-2 cells incubated with IFN (10 ng/mL) or medium alone 
(Control) as resulted by ELISA. Letters abcd are significantly different (p<0.05)  
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IL-8 was elevated in higher levels in Caco-2 cell supernatants treated with gliadin (p31-

43) (Figure 4.19). Treatment with cocoa extracts decreased IL-8 levels starting at 8.5 µM 

procyanidin-B2 and the most effective treatment was 500 µM, which resulted in levels closest to 

the control. Similar to what was seen in previous experiments for the cells incubated with 

gliadin, treatment with cocoa extracts did not vary greatly among different concentrations. 

	
  

	
  
Figure 4.19:	
  Levels of IL-8 in Caco-2 cells incubated with gliadin (20 µg/mL) or medium alone 
(Control) as resulted by ELISA. Letters abc are significantly different (p<0.05) 

	
  
	
   The results from IL-8 ELISA are in agreement to the other analyses of CD biomarkers. 

Levels of IL-8 were not dependent on concentration of procyanidin-B2 in IFN-treated cells, 

though all treatments did show significant decreases. Similar to analysis of TG2 levels in gliadin-

treated Caco-2 cells, incubating with cocoa extracts still resulted in significantly decreased levels 

of the IL-8, indicating that there is some potential in modulating inflammation in innate 

immunity.  
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4.5.3 Interleukin-1β (IL-1β) 

 The cytokine IL-1β is an important mediator in intestinal inflammation and is increased 

in the serum of those with refractory CD (Andersen and others 2013; Manavalan and others 

2010). Though the cytokines IL-6 and IL-8 are more commonly used for CD diagnostic criteria, 

IL-1β has been shown to increase tight junction permeability in Caco-2 cells and cause an 

increased expression of other CD biomarkers including COX-2 (Al-Sadi and Ma 2007; Neeb and 

others 2011).  

A significant increase in the levels of IL-1β found between cells was found treated with 

IFN compared to medium alone (Figure 4.20). Cocoa extracts containing 8.5 and 50 µM B2 did 

express the highest levels for IFN-treated cells, though the concentrations are may not be 

considered elevated since these levels (up to 20 pg/mL IL-1β) have been seen control subjects 

without CD (Manavalan and others 2010). Although the levels of IL-1β were very low across all 

treatments, incubating with the higher concentrations 100 and 500 µM B2 appeared to show 

significant decreases in IL-1β compared to the other concentrations tested in cocoa extracts. 

	
  
Figure 2.20: Levels of IL-1β in Caco-2 cells incubated with IFN (10 µg/mL) or medium alone 
(Control) as resulted by ELISA. # denotes concentrations found to be significantly different 
(p<0.05)  
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Treatment with gliadin (p31-43) significantly elevated levels of IL-1β in cell supernatants 

(Figure 4.21). Decreases in IL-1β were seen in cells treated with cocoa extracts containing at 

least 8.5 µM procyanidin-B2. As stated earlier, IL-1β induces COX-2. The response to 

incubation with gliadin plus cocoa extracts shown here is similar to the pattern seen in the WB 

for COX-2 levels, with 8.5 and 20 µM procyanidin-B2 resulting in greater inhibition than higher 

concentrations. COX-2 and therefore IL-1β has a larger role in innate immunity, which can 

explain why IL-1β showed a greater response to gliadin rather than IFN. Treatment with cocoa 

extracts was able to significantly affect the inflammatory response to gliadin by decreasing levels 

of both IL-1β and COX-2, two biomarkers along with IL-15 that capture innate immunity in CD. 

	
  

Figure 4.21:	
  Levels of IL-1β in Caco-2 cells incubated with gliadin (20 µg/mL) or medium alone 
(Control) as resulted by ELISA. Letters abc are significantly different (p<0.05) 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

This research demonstrates the potential of bioactive-rich foods to inhibit TG2-induced 

inflammation in enterocytes. A treatment using highly concentrated cocoa extracts could mitigate 

gluten toxicity and reduce inflammation in CD, presenting a possible alternative to a gluten-free 

diet, which places a large economic burden on individuals with CD stressing the need for 

additional therapies. This was a proof-of-concept study that requires further investigation into its 

effects on preventing inflammation and subsequent villous atrophy in CD. 

 The major finding of this study is that cocoa extracts containing high concentrations of 

procyanidin-B2, caffeine and theobromine were able to reduce levels of CD biomarkers in 

models of both innate and adaptive immunity. Incubating Caco-2 cells with IFN-γ or α-gliadin 

increased levels of TG2 as well as two markers prominent in innate immunity IL-15 and COX-2. 

Dose dependent effects were observed, though in each case cocoa extracts containing 500 µM 

procyanidin-B2 significantly decreased levels of these biomarkers. Both gliadin- and IFN-

induced Caco-2 cells that contained 500 µM procyanidin-B2 exhibited the greatest decrease in 

TG2 levels for cells treated with cocoa extracts (45.4% and 77.2%, respectively). Reductions in 

the serum cytokines IL-6, IL-8 and IL-1β were also observed, which confirms the decreased 

levels of these biomarkers since a direct relationship exists between them.  

 The anti-inflammatory effects of cocoa extracts have been demonstrated in an in vitro 

model of CD. Studying these effects in vivo will further support the potential of these dietary 

inhibitors of TG2, an enzyme with a central role in pathogenesis of this disease.  
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