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ABSTRACT
Transgenic Bt-cotton produces Bt-toxins (Cry proteins) which may accumulate and persist in soil 
due to their binding ability on soil components. In the present study, the potential impacts of Bt- 
and non-Bt genotypes of cotton on soil microbial activity, substrate use efficiency, viable microbial 
population counts, and nutrient dynamics were studied. Two transgenic Bt-cotton genotypes (CIM-
602 CIM-599) expressing cry1 Ac gene and two non-Bt cotton genotypes (CIM-573 and CIM-591) were 
used to evaluate their impact on biological and chemical properties of soil across the four locations 
in Punjab. Field trials were conducted at four locations (Central Cotton Research Institute-Multan, 
Naseer Pur, Kot Lal Shah, and Cotton Research Station-Bahawalpur) of different agro-ecological 
zones of Punjab. Rhizosphere soil samples were collected by following standard procedure 
from these selected locations. Results reveled that Bt-cotton had no adverse effect on microbial 
population (viable counts) and enzymatic activity of rhizosphere soil. Bacterial population was 
more in Bt-cotton rhizosphere than that of non-Bt cotton rhizosphere at all locations. Phosphatase, 
dehydrogenase, and oxidative metabolism of rhizosphere soil were more in Bt-cotton genotypes 
compared with non-Bt cotton genotypes. Cation exchange capacity, total nitrogen, extractable 
phosphorous, extractable potassium, active carbon, Fe and Zn contents were higher in rhizosphere 
of Bt-cotton genotypes compared with non-Bt cotton genotypes. It can be concluded from present 
study that the cultivation of Bt-cotton expressing cry1 Ac had apparently no negative effect on 
metabolic, microbiological activities, and nutrient dynamics of soils. Further work is needed to 
investigate the potential impacts of Bt-cotton on ecology of soil-dwelling insects and invertebrates 
before its recommendation for extensive cultivation.

Introduction

Cotton (Gossypium hirsutum L.) is an important fiber crop 
bearing different biotic and abiotic stresses. Severe attack 
of sucking and chewing pests on crop leads to intensive 
use of pesticides (Benedict & Altman, 2001; James, 2002) 
that ultimately cause several health and environmental 
issues. Different strategies are being adopted to reduce the 
heavy reliance on pesticides, among them development 
of transgenic crops executes as the promising technology 
for this. Due to promising effect of transgenic technology 
on pest suppression, the cultivated area under Bt cotton 
in Pakistan has been increased to more than 90% in last 
few years (Sabir et al., 2011). Instead of benefits offered by 
transgenic plants, the cultivation of Bt corn engineered 
with 176 events may also have sublethal effects on bio-
diversity and non-target organisms (Zangerl et al., 2001). 
The soil micro-organisms are tightly related to status of 
the soil ecosystem, and considered as sensitive indicators 
reflecting the changes in rhizosphere (Hartmann et al., 
2014). Root exudates composition depends on cultivar, 

plant species, and physiological status of the plant (Saxena 
et al., 2002). The diverse microbial communities sustain 
their growth in close proximity to the plant roots using 
decomposed organic matter and root exudates. Plant 
genetic transformation can alter rhizosphere chemistry 
(Gasson, 2000; Kowalchuk et al., 2003; Lynch et al., 2004) 
that can also cause distinct changes in root exudates and 
root structural properties (Velmourougane & Sahu, 2013).

Commercial cultivation of Bt-cotton and their remains 
after harvest may lead to addition and persistence of Cry 
proteins in rhizosphere (Stotzky, 2004). Karuri et al. (2013) 
reported that Cry1Ac protein from Bt-cotton was present 
in soil up to 30 days from the first detection at 150DAS 
(days after sowing). Bt-toxins remain protected from 
decomposition by soil micro-organism when adsorbed 
on clay particles, humic components, and organic mineral 
complexes (Tapp et al., 1995). The Cry proteins are pro-
duced in plants by expression of Cry gene persisting in the 
soil (Muchaonyerwa et al., 2004) and Cry1Ac protein in Bt 
cotton has been shown to remain in soil up to 140 days  

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

KEYWORDS
Bt-cotton; Bt-toxin; 
ecology; phosphatase; 
dehydrogenase; rhizosphere

ARTICLE HISTORY
Received 23 November 2015  
Revised 31 March 2016 
Accepted 5 April 2016

CONTACT  Hafiz Naeem Asghar   naeemasghar@yahoo.com

 OPEN ACCESS

CLASSIFICATION
Agronomy & Crop Ecology

http://creativecommons.org/licenses/by/4.0/
mailto:naeemasghar@yahoo.com
http://www.tandfonline.com


Plant Production Science    459

biochemical attributes and stored at 4 °C for 7 days before 
analysis. However, soil samples were quickly processed for 
enzymatic analysis within 3–4 days of collection (Mina & 
Chaudhary, 2012).

Soil microbiological analysis

Bacteria were isolated from rhizosphere samples by dilu-
tion plate technique. Glucose peptone agar medium 
(GPAM) was used as the growth medium for bacteria 
(Wollum, 1982). Inoculated plates were incubated at 
28 ± 1 °C for 72 h. Colony forming units (CFU) per gram 
of soil were calculated (Mafham et al., 2002). Microbial 
respiration of rhizospheric soil was measured as in vitro 
static CO2 evolution. The CO2 evolution was measured by 
acid–base titration and expressed as mg CO2–C kg−1 d−1 
(Stotzky, 1965).

Phosphatase activity (alkaline) in the rhizosphere was 
evaluated as proposed by Tabatabai and Bremner (1969). 
Alkaline phosphatase catalyzes the hydrolysis of p-Nitro-
phenyl phosphate (pNPP) to p-Nitrophenol. pNPP is color-
less but p-Nitrophenol has a strong absorbance at 405 nm. 
The rate of increased absorbance at 405 nm is proportional 
to the enzyme activity. Dehydrogenase activity was deter-
mined as described by Min et al. (2001). For this purpose, a 
sample of 5 g field-moist soil (collected from rhizosphere) 
was incubated for 12 h at 37 °C in 5 mL triphenyl tetra-
zolium chloride (TTC) solution (5 g TTC in 0.2 M Tris–HCl 
buffer, pH 7.4). Two drops of concentrated sulfuric acid 
were added immediately after the incubation to termi-
nate the reaction. Then samples were blended with 5 mL 
of toluene and shaken for 30 min at 250 rpm, followed by 
centrifugation at 4500 rpm for 5 min to extract Triphenyl 
formazon (TPF). The optical density of the supernatant 
was measured at 492 nm using a spectrophotometer. Soil 
dehydrogenase activity was expressed as μg TPF g−1 soil.

Cation exchange capacity (CEC) was evaluated as pro-
posed by US, Salinity Lab. Staff (1954). Soil organic mat-
ter contents were determined by adopting the method 
as described by Moodie et al. (1965). Total carbohydrates 
in soil were determined following the methodology of 
Safarik and Santruckova (1992). While nitrogen was esti-
mated as described by Jackson (1962), total and extracta-
ble phosphorus by Olsen and Sommers (1982), extractable 
potassium by Carson (1980), and DTPA extraction method 
for Extractable Iron and Zinc developed by Lindsay and 
Norvell (1978).

Statistical analysis

Multivariate procedures (SAS Institute, 2008) were used 
for data analysis and appropriate interpretation of results. 
These procedures provide the most up-to-date capabilities 

(Palm et al., 1996). The variability in degradation times 
for Cry protein could be caused by different types of crop 
plants, type of Cry proteins, and ecological factors (temper-
ature, nutrients, soil pH, types, and amount of clay minerals 
and organic matter in soil) (Stotzky, 2004).

The exudates of Bt-cotton influence the rhizospheric 
microflora and enzymatic activities occurring in rhizos-
phere (Singh et al., 2013). These changes may be transient 
depending upon soil type, crop stage, as well as environ-
mental conditions (Velmourougane & Sahu, 2013). In 
Pakistan, previously no study has been conducted with 
primary objective to investigate the effects of growing 
Bt-cotton on soil microbiological and chemical attributes. 
Possible risks, if any, attached with growing Bt-cotton 
demand a comprehensive study to find out the microbi-
ological or chemical changes in rhizosphere of Bt-cotton. 
Keeping in view the above facts that genetic makeup and 
varietal difference may contribute to modify the rhizos-
phere microbial community and different biochemical 
transformations, the present study was conducted to 
evaluate the potential role of two local Bt-cotton geno-
types and counterpart (two non-Bt cotton genotypes) on 
selected microbiological and chemical attributes at differ-
ent locations of Punjab, Pakistan.

Materials and methods

Experimental site and sampling

This field experiment was conducted in the kharif season 
of the year 2013. Two well-known Bt-cotton varieties (CIM-
602 and CIM-599) Bollgard-I and non-Bt varieties (CIM-591 
and CIM-573), were evaluated with a randomized com-
plete block design in triplicates at four different locations 
in cotton belt districts of Punjab (Central Cotton Research 
Institute-Multan (30°12′N, 71°28′E, alt. 123  m), Mouza 
Naseer Pur-Shujababad (29°53′N, 71°18′E, alt. 152 m), Kot 
Lal Shah-Lodhran (29°32′N, 71°38′E, alt. 111 m), and Cotton 
Research Station-Bahawalpur (29°24′N, 71°41′E, alt. 252 m). 
Four districts were selected to eliminate the transient 
effects of physicochemical properties of soil and environ-
mental conditions. Soil fertility status was analyzed and 
recommended doses of fertilizer were applied i.e. N, P2O5 
and K2O 161, 58 and 50 kg/acre respectively. Soil samples 
were collected from the rhizosphere of the Bt and non-Bt 
cotton at peak flowering stage (70 DAS). Bed furrow plant-
ing technique was adopted with planting geometry (P × P 
′1, R × R ′2.5) and plot size 30 × 10 ft. The representative 
2–3 cotton plants were carefully uprooted from the each 
plot and soil adhering to the roots was separated and com-
posite sample stored in sealable plastic bags. The samples 
were passed through 2  mm sieve and processed in the 
laboratory for the determination of microbiological and 
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for repeated measures of analysis of variance and analysis 
of covariance to separate simple and interactive effects 
of predictor variables on dependent variables using the 
Tukey’s post hoc test. Data were transformed to detect 
the response of independent variables on dependent 
variables.

Results and discussion

Impact of Bt-cotton on soil culturable microbial 
population

Bacterial population was higher in Bt-cotton rhizosphere 
compared with non-Bt varieties (Figure 1). Maximum bac-
terial population observed in rhizosphere of CIM-599, a 
Bt-genotype at Naseer Pur as well as CRS-BWP, while min-
imum population was observed in non-Bt variety CIM-573 
at CRS-BWP. The increase in microbial population indicates 

no adverse effects of growing Bt-cotton on soil microbial 
community and their activity. The differences in the bac-
terial population of Bt and non-Bt cotton varieties might 
be attributed to variations in root exudates quantity, com-
position, and root characteristics. Brusetti et al. (2005), Hu 
et al. (2009), and Saxena and Stotzky (2001) reported no 
difference in the bacterial populations of rhizosphere of 
both Bt and non-Bt cotton cultivars. But Yan et al. (2007) 
stated that the root exudates of Bt-cotton strongly affect 
the structure of bacterial populations in the rhizosphere. 
Petras and Casida (1985) revealed that Bt crops increase in 
the microbial community structure as the bacteria, actin-
omycetes, fungi, and nematodes use the crystal protein 
as substrate, when Bacillus thuringiensis subsp. kurstaki 
was added to the soil. Similarly, Donegan et al. (1995) 
reported a transient increase in the culturable bacteria 
population and fungi as a result of soil incorporation of 

Figure 1. Bacterial population (CFU log10 g−1 of soil) at four locations.
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Bt-variety showed maximum microbial activity of 32.18 mg 
CO2–C/kg/d at CRS-BWP. Minimum microbial activity 
24.48 mg CO2–C/kg/d found in non-Bt variety CIM-591 at 
CCRI-Multan. Improvement in microbial growth and activ-
ity might be correlated with the higher soil respiration.

Impact of Bt-cotton on soil dehydrogenase and 
phosphatase activities

Both Bt-varieties (CIM-602, CIM-599) had more dehy-
drogenase activity in rhizosphere ranging from 20.70 
to 22.55 μg TPF g−1 h−1 than non-Bt varieties (Figure 3). 
Maximum dehydrogenase activity (22.55 μg TPF g−1 h−1) 
was recorded in Bt-variety CIM-602 at CCRI-Multan, while 
minimum (20.70 μg TPF g−1 h−1) was exhibited by non-Bt 
variety CIM-591 at Kot Lal Shah.

In present study, microbe-dependent phosphatase 
activity significantly increased in rhizosphere of Bt-varieties 

Bt-cotton (Gossypium hirsutum L.) leaves expressing cry1Ac 
protein. Using the Biolog system (Biolog, Hayward, CA), 
the Bt cotton had no oppositional effect on the richness 
and diversity of soil microbial community compared to 
near-isogenic non-Bt-cotton (Shen et al., 2006; Zhang 
et al., 2013). Similarly, Hu et al. (2013) and Li et al. (2011) 
revealed no adverse effects on soil microbial population 
due to transgenic Bt crops and reduction in rhizobacte-
rial community structure is possibly due to climatic factors 
rather than the presence of the Bt gene but no variation 
was observed in the microbial diversity between non-
Bt and Bt maize utilizing the next generation sequence 
(Barriuso et al., 2012).

Impact of Bt cotton on soil microbial activity

The rhizosphere of Bt-varieties had more microbial activ-
ity as compared to non-Bt varieties (Figure 2). CIM-602 

Figure 2. Microbial activity (mg CO2-C/kg/d) at four locations.
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be due to the increase in microbial biomass, because 
alkaline phosphatase is associated with micro-organisms, 
while the acid phosphatase is predominantly due to plants 
(Kebrabadi et al., 2014). Sarkar et al. (2009) demonstrated 
that the growth of Bt-cotton had positive impact on most 
of the microbial and biochemical indicators, as microbial 
biomass carbon, microbial biomass nitrogen, microbial 
biomass phosphorous, and a range of soil enzyme activ-
ities, Sun et al. (2007) also reported that Bt-cotton plant 
material had positive effect on acid and alkaline phos-
phatase activities and alkaline activity was much higher 
than acid phosphatase activity.

Impact of Bt-cotton on soil nutrient dynamics

Maximum contents of total carbohydrates (406.8 mg kg−1) 
were observed in CIM-599 (Bt) at CRS-BWP. Minimum 

as compared to non-Bt varieties (Figure 4). The maximum 
phosphatase activity of 184.08 μg p-Nitrophenol g−1 h−1 
was observed in CIM-602 (Bt-Cotton) at CCRI-Multan, while 
lowest activity of 178.51 μg p-Nitrophenol g−1 h−1 was seen 
in non-Bt rhizosphere of CIM-591.

The higher soil enzyme activities might be due to more 
organic matter contents, microbial activity, and available 
nutrients compared to non-Bt (Dick & Tabatabai, 1992; He 
et al., 2007; Singh et al., 2013). Bt-toxin had no adverse 
effect on dehydrogenase activity in soil (Singh et al., 2013). 
More dehydrogenase activity in Bt-cotton rhizosphere in 
contrast to non-Bt rhizosphere could be attributed to the 
presence of higher bacterial biomass. Dehydrogenase 
activity is also often used as an alternative to substrate-in-
duced respiration and has been found to be correlated 
with microbial activity (Chaperon & Sauve, 2007; Kraigher 
et al., 2006). Higher alkaline phosphatase activity might 

Figure 3. Dehydrogenase activity (μg TPF g−1 h−1) at four locations.
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Bt-genotype CIM-599, while minimum (1.87 mg kg−1) was 
found at location of CRS-BWP in non-Bt variety CIM-591.

Bt-rhizosphere had higher N contents with respect to 
non-Bt at all locations except CCRI-Multan. Maximum con-
tents of nitrogen (0.138%) were observed in rhizosphere of 
CIM-602 (Bt) at location CRS-BWP, while minimum (0.088%) 
N contents found at location CCRI-Multan in rhizosphere 
of CIM-591 (non-Bt) (Table 1). Bt-genotypes had high N 
contents as compared to non-Bt genotypes.

Non-Bt varieties had higher total phosphorous contents 
in cotton rhizosphere with respect to Bt-varieties while 
all varieties showed statistically similar results at Naseer 
Pur (Table 1). Highest total phosphorous contents were 
recorded in CIM-591 (non-Bt) followed by CIM-573 (non-Bt) 
at Naseer Pur. Lowest phosphorous contents observed as 
422.5 mg kg−1 in Bt variety CIM-602 at Kot Lal Shah.

Extractable-P contents were higher in Bt-varieties at all 
four locations compared with non-Bt varieties (Table 1). P 
contents ranged from 9.28 to 15.50 mg kg−1 and maximum 

contents of 304.8 mg kg−1 were analyzed at CCRI-Multan 
in CIM-573 (non-Bt). Bt-genotypes had maximum total 
carbohydrates contents among all genotypes (Table 1).

Bt-varieties (CIM-602, CIM-599) showed significantly 
higher CEC as compared to non-Bt varieties (Table 1). 
Maximum CEC 4.2 (C molc kg−1) was found in Bt-variety 
CIM-602 at CRS-BWP while minimum 2.5 C molc kg−1 CEC 
was observed in CIM-591 at Kot Lal Shah as well as Naseer 
Pur.

At Naseer Pur, the maximum DTPA-Zn contents 
(1.57 mg kg−1) were perceived in CIM-602 (Bt) rhizosphere, 
while minimum value of DTPA-Zn contents 1.01 mg kg−1 
were observed in non-Bt variety (CIM-573) at CCRI-Multan. 
Zn contents remained in range of 1.01–1.57 at all location 
in all genotypes (Table 1).

Rhizosphere of Bt-varieties had high DTPA-Fe (mg kg−1) 
contents with respect to non-Bt (Table 1). DTPA-Fe ranged 
from 1.87 to 2.55  mg  kg−1 at all locations. Maximum 
2.55 mg kg−1 was observed at Naseer Pur in rhizosphere of 

Figure 4. Phosphatase activity (μg p-Nitrophenol g−1 h−1) at four locations.
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nutrients by affecting the decomposition which ultimately 
affects the biogeochemical cycles (Mina et al., 2008).

Phosphorus availability in soil is generally influenced 
at the main interaction zone between the plant and soil 
biota near the root surface in the rhizosphere (Saleem 
et al., 2011). The increase in extractable phosphorous in 
the rhizosphere of Bt might be due to higher microbial 
population having more phosphatase activity as com-
pared to non-Bt. Both plant roots and soil micro-organ-
isms could increase the soil phosphorous availability 
through root exudates containing organic acids, H+ ions, 
sugars, and phosphatases that facilitates the solubiliza-
tion and desorption of mineral phosphorous (Ryan et 
al., 2001). Alterations in the composition and quantity of 
root exudates through the introduction of new genetic 
traits affect the processes such as mineral phosphorous 
or fixed phosphorous solubilization, availability of phos-
phorous through changes in the activity of rhizosphere 
micro-organisms (Shen et al., 2006). Changes in Bt-cotton 
rhizospheric conditions such as more phosphatase activ-
ity (Mina & Chaudhar, 2012) might result in enhanced 
phosphorous availability. Bt-genotypes showed more 
response to phosphorous contents as the total phos-
phorous contents observed low in Bt-rhizosphere. These 
results are consistent with phosphorous availability in the 
rhizosphere of transgenic alfalfa which might be attrib-
uted to high release of citrate, oxalate, malate, succinate, 
and acetate type root exudates (Tesfaye et al., 2001). 
Exogenous application and organic acid exudation from 
roots improve phosphorous availability in Bt-rhizosphere 
(Bucio et al., 2000; Koyama et al., 2000). Citrate and oxa-
late appeared to be the most efficient components of 
root exudates with respect to mobilization of phospho-
rous from those soils which are low in readily available 

value 15.50 mg kg−1 was observed in Bt-variety CIM-599 at 
location CRS-BWP. The minimum P contents (9.28 mg kg−1) 
were found in CIM-573 (non-Bt) at CCRI-Multan.

At locations of CCRI-Multan and CRS-BWP extractable-K 
was increased in Bt-varieties compared to non-Bt varieties 
(Table 1). Bt-genotypes had maximum potassium contents 
at all locations, while it was minimum at Naseer Pur in CIM-
591 (Non-Bt genotype).

Maximum organic matter was observed in Bt-varieties 
rhizosphere as compared to non-Bt varieties (Table 1). 
Rhizosphere of CIM-599 presented maximum organic 
matter (1.57%) at Kot Lal Shah, while minimum (0.48%) 
was found where non-Bt CIM-591 was grown Naseer Pur.

Maximum organic matter contents were observed in Bt-
rhizosphere with higher value of cation exchange capac-
ity and increased availability of nutrients. Results revealed 
that more microbial diversity and activity in Bt-rhizosphere 
instead of non-Bt rhizosphere. Transgenic Bt-crops may 
affect nutrient cycling, either through the products of 
introduced genes or modifying rhizosphere chemistry (Hu 
et al., 2013). Increase in nutrients availability might be due 
to the non-targeted physiological changes (e.g. content 
of starch, soluble N, proteins, carbohydrates, and lignin) 
and high amount of root exudates in transgenic plants 
(Motavalli et al., 2004). Genetic transformation in plants 
has been shown to cause positive changes in N content, 
C:N ratio, lignin, fructose, and carbohydrate contents. Bt 
stubble had a higher N content and lower C:N ratio and 
the differences in percent C, N, and C:N ratio between Bt 
cotton and isoline and their interactions with other envi-
ronmental factors also influence the decomposition which 
have positive impact on nutrient availability (Mahmood 
et al., 2014; Oostherius et al., 2013). The increase in lignin 
content in Bt rhizosphere might cause the slow release of 

Table 1. Chemical attributes of rhizosphere of Bt and Non-Bt Genotypes of cotton on various locations of Punjab, Pakistan.

Note. Means sharing the same letters for locations are statistically non-significant for each parameter (Tukey’s test, p < 0.05).

Location

Non-Bt Genotype Bt Genotype Non-Bt Genotype Bt Genotype Non-Bt Genotype Bt Genotype

CIM-573 CIM-591 CIM-602 CIM-599 CIM-573 CIM-591 CIM-602 CIM-599 CIM-573 CIM-591 CIM-602 CIM-599

Total Carbohydrates (mg kg−1) CEC (C molc kg−1) DTPA-Zn (mg kg−1)
CCRI-Multan 304.8 c 320.3 b 333.2 a 334.9 a 3.5 b 3.6 b 4.1 a 4.0 a 1.01 b 1.03 b 1.15 a 1.21 a
Kot Lal Shah 372.6 b 374.5 b 376.3 b 388.9 a 3.3 a 2.5 b 3.9 a 3.5 a 1.19 b 1.18 b 1.28 a 1.29 a
Naseer Pur 330.6 c 322.0 d 353.8 b 382.2 a 2.6 b 2.5 b 3.6 a 3.5 a 1.43 b 1.41 b 1.57 a 1.55 a
CRS-BWP 390.1 bc 385.1 c 394.5 b 406.8 a 3.0 c 3.0 c 4.2 a 3.4 b 0.6 c 0.66 b 1.11 a 1.08 a

DTPA-Fe (mg kg−1) Nitrogen (%) Total P (mg kg−1)
CCRI-Multan 2.35 b 2.33 b 2.49 a 2.51 a 0.09 b 0.088 b 0.122 a 0.124 a 530.25 a 525.5 a 509.0 b 504.75 b
Kot Lal Shah 2.25 b 2.23 b 2.35 a 2.38 a 0.118 b 0.111 c 0.122 b 0.132 a 455.50 a 456.5 a 422.5 b 427.75 b
Naseer Pur 2.38 b 2.37 b 2.52 a 2.55 a 0.122 ab 0.118 b 0.122 ab 0.124 a 575.50 a 581.25 a 569.5 a 565.0 a
CRS-BWP 1.89 c 1.87 c 1.98 b 2.07 a 0.116 b 0.113 b 0.138 a 0.132 a 476.75 a 471.75 a 437.0 b 434.75 b

Extractable P (mg kg−1) Extractable K (mg kg−1) Organic matter (%)
CCRI-Multan 9.28 c 9.47 b 11.45 a 11.45 a 177.66 b 176.66 b 181.66 a 181.33 a 1.01 b 1.03 b 1.16 a 1.15 a
Kot Lal Shah 12.60 d 13.48 c 13.58 b 14.55 a 213.66 c 209.33 d 222.33 a 219.33 b 1.33 b 1.31 b 1.54 a 1.57 a
Naseer Pur 9.61 b 9.52 b 10.55 a 10.48 a 119.33 c 119.00 c 123.33 b 126.00 a 0.56 b 0.48 c 0.70 a 0.74 a
CRS-BWP 14.52 c 14.54 c 15.40 b 15.50 a 189.00 b 191.00 b 205.33 a 210.00 a 1.12 b 1.07 c 1.17 a 1.07 c
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