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ABSTRACT 
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This dissertation is aimed to determine the mechanical properties at the exterior 

surface of costal cartilages (CC) and examine how they vary with the cartilage length and the 

anatomical sites of CC in the ribcage via conformal indentation testing which is built upon a 

tactile sensor for distributed-deflection detection. The sensor entails a rectangular 

Polydimethylsiloxane (PDMS) microstructure sensing-plate integrated with a 5 ×1 transducer 

array with 0.75mm spatial resolution underneath and a built-in probe of 0.5mm×5mm×3mm 

above. By pressing the sensor against the exterior surface of a CC tissue with a pre-defined 

indentation pattern, the sensor conforms to the curved tissue surface via the built-in probe first, 

and then the mechanical properties of the tissue translate to the spatially distributed deflection in 

the sensor and register as resistance changes by the transducer array. As a load-bearing and non-

stop deforming tissue from respiration, the mechanical properties of CC are critical for 

maintaining their structural health and delivering their function. CC have been used as a viable 

source of graft tissue for many autologous therapies and as a cell source for engineered articular 

cartilage (AC) due to its abundance and surgical accessibility. However, the mechanical 

properties of CC are not well understood yet. Chest wall deformities, such as Pectus Carinatum 

(PC), are known to arise from the disorder of CC, but their pathogenesis remains unknown and 

their surgical outcomes are unpredictable. The mechanical properties of the CC exterior surface 

influence diffusion of oxygen and nutrients and thus are intrinsic to maintaining their structural 



 

characteristics. However, very limited knowledge exists on the mechanical properties of 

peripheral CC due to their highly irregular geometries. In this dissertation, a novel testing 

method, conformal indentation, was used to measure the mechanical properties at the CC curved 

exterior surface, where the structural integrity of CC is retained.  

Conformal indentation was conducted at the anterior/posterior surfaces of whole 

porcine 5
th

 -12
th

 CC segments and the anterior/posterior surfaces and the superior/inferior 

borders of five human PC CC segments from the 7
th

 ~10
th

 ribs along the cartilage length to 

record their time-dependent response to a multi-step indentation-relaxation testing protocol. The 

instant indentation modulus and normalized relaxation of the CC segments were derived from 

the recorded data to quantify their elasticity and viscosity, respectively. The instant indentation 

modulus at the porcine CC and PC CC exterior surface are in the range of 130kPa ~500kPa and 

98kPa~1173kPa, respectively, which are well below their counterpart at the CC transverse cross-

sections. The normalized relaxation at the CC exterior surface is relatively high with low applied 

stress but becomes constant with high applied stress. The constant normalized relaxation at the 

porcine and PC CC exterior surfaces are in the range of 25%~40% and 5%~25%, respectively. 

The human CC have higher elasticity and lower viscosity than the porcine CC. Overall, the 

measured mechanical properties of CC vary with their anatomical sites and thus indicate the 

adaptation of CC to their local biomechanical environment in the ribcage. 
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CHAPTER 1  

INTRODUCTION 

1.1. Biological Background 

1.1.1. Biological Significance 

CC are bars of hyaline cartilage that serve to extend the ribs forward, contribute to the 

elasticity of the wall of the thorax (Figure 1.1), articulate the anterior end of the ribs with the 

sternum (for ribs 1-7 in human, 1-8 in porcine) or costal arch (for ribs 8-12 in human, 9-13 in 

porcine) [1, 2], and protect the lungs and heart while respiration. As a load-bearing and non-stop 

deforming tissue from respiration, CC exhibit inherently heterogeneous mechanical properties at 

the microscopic-level, due to their heterogeneous anatomical microstructures [1, 3-6]. Thus, the 

mechanical properties of CC are critical for maintaining their structural health and delivering 

their function [7]. It has been well established that a change in the heterogeneous mechanical 

properties of CC may indicate the effects of disease on them [8, 9]. As such, acquiring the 

heterogeneous mechanical properties of cartilage tissues could not only aid in better revealing 

their physiological process and functionality, but also further assist in the analysis of tissue 

diseases, as well as their origin and progression[10]. Moreover, in cell-based tissue engineering, 

measuring the heterogeneous mechanical properties of cell-seeded engineering scaffolds allows 

quantifying the effect of specific growth factors on the distinguishing functions of the varying 

heterogeneous structures of such scaffolds at different growth stages and consequently their 

integrated mechanical function as a whole, and ultimately aids in regenerating CC tissue 

constructs with characteristics similar to native CC tissues for restoring physiological 

function[11]. 
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(a) 

 

(b) 

Figure 1.1 The structure of thoracic cage: (a) in porcine[12]; (b) in human [13]. 
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The structural characteristics of CC have been studied at the tissue-level, 

ultrastructural-level and molecular-level: content/organization of collagen and aggrecan, key 

regulators (Small Leucine Rich Proteoglycans SLRPs; e.g., biglycan and decorin) in collagen 

fibrillogenesis and organization, gene expressions, collagen fibril size/shape, and chondrocytes. 

Now, the basic structural characteristics of healthy CC are well established. In contrast to AC, 

CC are densely populated with chondrocytes. Like AC, CC contain high amounts of collagen and 

aggrecan in the Extracellular Matrix (ECM), but does not form layered structures as AC does. 

Instead, the collagen fibers in the ECM appear to form “straw-like” structures running 

longitudinally along the cartilage length, most likely for bearing low-tensile loading from 

respiration. Since decorin binds to and holds together individual collagen fibers, high levels of 

decorin expression in CC are likely associated with the large tubular structures (from the straw-

like structure) running through the cartilage length.  

For better serving as grafts and helping with tissue reconstruction, it is desirable to 

study the structural-function relations of CC, by analyzing their heterogeneous mechanical 

properties. As shown in Figure 1.2, CC experience low-tensile loading along the cartilage length 

for thoracic expansion and contraction, and low-compressive loading at their exterior surface 

along the transverse direction so as to obtain oxygen and exchange nutrient and waste for growth 

and assembly from a perichondrium. As such, the mechanical properties of CC at their exterior 

surface are intrinsic to maintaining their structural characteristics. Meanwhile, with the aid of 

compressive loading at the CC exterior surface, diffusion of oxygen and nutrients from the 

perichondrium can only penetrate a very short distance into CC and therefore the CC interior 

region lacks oxygen and nutrients and becomes hypoxic. Higher levels of aggrecan in the interior 

region over the peripheral region likely arise from the gradient of oxygen from peripheral to 
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interior, because aggrecan is more highly expressed under hypoxia. As such, the peripheral 

region differs in structure and functions from the interior region, and the mechanical properties at 

the CC exterior surface influence diffusion of oxygen and nutrients and thus are intrinsic to 

maintaining their structural characteristics. 

 

(a) 

 

(b) 

Figure 1.2 Basic biomechanical environment of CC in the ribcage (a) along the cartilage length 

and (b) transverse cross-section. 

1.1.2. Clinical Significance 

Owing to its abundance and surgical accessibility, CC are used as graft tissue in 

autologous therapies, such as craniofacial surgeries and tracheoplasty, and cosmetic surgeries, 
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and as a cell source for engineered AC. Chest wall deformities of the sunken chest (pectus 

excavatum, PE) and the pigeon chest (PC), an incidence of 6/1000 to 0.97/1000 live births[14], 

are known to arise from the disorder of CC. Basically, PE is a prominent posterior intrusion of 

the anterior thorax wall caused when the sternum, lower CC, and the third to seventh ribs are 

abnormally pushed inward. It represents 90% of all chest deformity cases [15, 16], usually 

evident at birth or not developed until puberty and can be mild or severe if left untreated, 

including the derivation of cardiopulmonary function and spine deformities[15, 17]. In contrast, 

PC is an anterior intrusion of the posterior thorax wall caused when the sternum,  the lower CC, 

and the second to ninth ribs are pushed outward and has not attracted as much interest from 

clinicians, pediatricians, orthopedists, and pediatric surgeons, and not even from thoracic 

surgeons, as has PE.  Moreover, the impacts of thoracic deformities on patients are not only 

physiological, but also psychological [18]. Thus, in the past decades, the clinical research 

emphasizes more on the improvement of surgery operations to help with the patients and obtain 

excellent achievements [19]. For instance, one common minimal invasive technique for 

correction of PE is passing a pectus bar behind the sternum and then turning it over for pushing 

the chest forward. Figure 1.3 shows the proper technique for fixation of the pectus bar against the 

lateral chest wall musculature. However, compared to the significant achievements of operation, 

the exact cause of CC deformity still has not been well understood. Basically, the main leading 

hypothesis for the pathogenesis is a biomechanical weakness caused by a developmental disorder 

[15, 17] which may be caused by the insufficiency of collagen and PGs [4]. Therefore, in order 

to reveal the exact cause of CC deformity, it is reasonable to analyze and compare the 

heterogeneous mechanical properties and biological structure of the CC from the patients with 

abnormal CC deformity, such as PC patients. 
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Figure 1.3 Illustration of the pectus bar passed behind the sternum before and after it is turned 

over. The insert shows the proper technique for fixation of the pectus bar against the lateral chest 

wall musculature[20].  

1.2. Experimental Studies of Costal Cartilage 

CC function as a low-friction, wear-resistant, load-bearing tissue. The mechanical 

properties of normal (developing or mature), diseased, and repaired CC are very important 

indicators of their level of structure and function for restoration and replacement of themselves 

and designing and fabrication of implants. Thus, some of the major methods used to assess the 

mechanical properties of CC are discussed in this section. The conventional modes of testing at a 

macroscopic-level for cartilage mechanical properties include compression, tensile, flexure and 

macro-scale indentation. As compared to multiple choice of the testing at macroscopic-level at 

microscopic-level, the most common method for testing cartilage mechanical properties is 

nanoindentation. 
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A typical mechanical test of CC requires mechanical test instrumentation, or a 

mechanical spectrometer, that applies displacement (or load) and measures the load (or 

displacement) response over time. Data should be stored for later reduction and analysis. Data 

storage typically consists of the conversion of analog signals, such as voltages from a load cell or 

displacement transducer, to digital format by an analog-to-digital converter (A/D converter). 

During this process, the recorded signal may be erroneous if the sampling rate is not high enough. 

As such, in practice, sampling rates of two to five times the minimum sampling interval (half of 

the highest frequency) are used. Meanwhile, for measurements intended to reflect cartilage in its 

normal state, a physiological solution is typically used, and testing samples under conditions that 

cause evaporation and dehydration, or conversely, swelling, should be avoided. Thus, the 

conventional mechanical measurements of CC should be conducted with the samples bathed in a 

defined solution, such as Phosphate-buffered saline (PBS) supplemented with proteinase 

inhibitors at physiological pH. Such inhibitors retard the breakdown of cell and matrix 

components by enzymes that may be active or become activated during the course of the testing 

procedure. 

1.2.1. Compression Tests 

A common method to assess the compressive properties of cartilage is compression 

tests including the uniaxial confined and unconfined test. Particularly, unconfined compression 

test is most adopted for characterizing the CC. In the meantime, compression tests require large 

enough tissue for making the test samples. In the uniaxial confined compression test, typically, 

cartilage is compressed in a radially confined chamber, usually with a solid impermeable bottom 

surface and a water permeable porous loading platen covering the top surface as shown in Figure 

1.4 [21]. Relative motion between the platen and bottom surface causes fluid movement, ideally 
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only through the porous platen, with resultant intratissue dynamics being in one dimension. 

Since the stiffness of the platen is high compared with the tissue, and the fluid is virtually 

incompressible, the major mechanism by which the tissue deforms is by exudation of the fluid 

through the surface that is in contact with the porous platen. In the unconfined compression test, 

a cartilage sample is placed between two flat, impermeable platens that are ideally rigid and 

frictionless as depicted in Figure 1.5. The sample is compressed and allowed to expand laterally 

in the radial direction. Since the resulting motion is both axial and radial, more complex 

theoretical models are needed.  

Moreover, the compression test can be performed with control of either load, F, or 

displacement, u. Under load control, the tissue undergoes creep displacement, gradually 

achieving equilibrium. Under displacement, the load dissipates over time (stress–relaxation), also 

leading to equilibrium [21]. The modulus of the tissue can be computed from equilibrium values. 

From time-varying displacement and load, the permeability of the tissue can be determined by 

fitting the data to a theoretical model. There are certain advantages to performing a test in 

displacement control rather than load control. Displacement control allows testing a sample from 

a true “zero” displacement, which is straightforward to determine. In contrast, load control 

typically requires the application of a nonzero load (and displacement) to initiate a test, and this 

alteration of sample thickness needs to be considered in reducing data to structural or material 

properties. Often in load control, only the change in sample thickness relative to an initial state is 

measured, with the initial state assumed to represent the free swelling state. However, tare loads 

can impart significant distortion to the tissue and make this assumption erroneous. 
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Figure 1.4 Schematic of confined compression testing apparatus[21]. 

  

Figure 1.5 Schematic of unconfined compression testing apparatus[21]. 

Jiexiong Feng et al.[17] applied uniaxial unconfined compression test in the direction 

parallel to the cartilage surface on fourteen samples of the 6
th

 PE CC (aged from 3 to 6 years; 

mean, 4.2 years) and ten samples of the healthy CC (aged from 3 to 6 years; mean, 4.4 years) 

which are trimmed to 3cm ×0.8cm cylinder shape and stored in Ringer’s solution at 4℃ for 2 

hours before testing. The test was carried out on a material testing machine (Shimadzu Model 

AG-10TA, Tokyo, Japan) with the cross-head set to move at 5 mm min
-1 . During the test, the 

specimen was kept in buffered saline, and the environmental temperature was maintained at 

25°C. By transforming the relation curve of load-deformation to the relation curve of stress-

strain relation, Jiexiong Feng’s group found that the average compression strength of healthy CC 

is 8.29±0.23MPa, which is significantly higher than the 1.33±0.22MPa in PE CC.  
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W. Grellmann et al[22] punched out cylinder shape CC samples from the 6
th

 and 9
th

 

ribs (both male and female, age 37-86 years) with both a length and a diameter of 6mm. The 

production of the plane-parallel test specimen was carried out using a friction sawing device of 

Exact Norderstedt under permanent cooling with Ringer’s solution. The test is carried out in a 

Zweick universal testing machine. These samples were fixed between rigid high stiffness plates, 

and the lower plate was raised at a rate of 1 mm min
 -1

 to produce a compression load. As a 

result, the measured modulus of elasticity in compression is extremely high, 103.4±30.1 MPa. 

The measured compression strength is 7.6±1.8 MPa. 

1.2.2. Tensile Tests 

Tensile tests performed on CC are using either a commercial or customized test system. 

Furthermore, for better holding in the fixture, all CC are cut into strip or dumbbell shapes. Like 

the compression test, the tensile test also requires large enough tissue for test specimen 

fabrication. When performing a mechanical test in tension, a cartilage sample is typically 

extended at a constant dynamic rate of extension (Figure 1.6(a)), or it can be extended 

sequentially by small displacements and allowed to relax to equilibrium states. CC exhibit stress-

relaxation behavior when tested in tension (Figure 1.6(b)). This behavior has been described by 

the quasi-linear viscoelastic theory. When cartilage is loaded rapidly, the flow of interstitial fluid, 

which is dependent on cartilage permeability, can contribute to cartilage resistance to that load. 

Dynamic tensile experiments can yield stiffness values that are dependent on the interstitial fluid 

flow, and use of these load values can lead to high estimates of intrinsic equilibrium tensile 

properties. Dynamic tensile experiments are convenient for assessing tissue strength and stiffness, 

whereas equilibrium tensile tests give measurements allowing assessment of the elastic tensile 

material properties. For example, human AC from the femoral condyles can exhibit a ramp 
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modulus of 200 MPa and withstand a stress of 30 MPa before failing. In contrast, at equilibrium, 

the same tissue exhibits an intrinsic tensile modulus of 5 MPa [26]. These values are site- and 

depth-dependent and can vary depending on the structure and content of collagen and 

proteoglycans in the ECM. However, for cases in which the cartilage has been eroded, with 

disruption of cartilage integrity or exposure of bone, a tensile test may not be suitable.  

            

                                    (a)                                                          (b) 

Figure 1.6(a) Dumbbell-shaped specimen used in a tensile test is extended at a constant rate 

while the load is measured. (b) Equilibrium and dynamic tensile testing. Force and displacement 

are normalized to cross-sectional area and gage length at 0% strain, respectively, to give stress 

and strain. The strength, or failure stress, and failure strain is obtained from the dynamic stress–
strain data. The ramp modulus is calculated as the slope of the best-fit line between 25 and 75% 

of the maximum stress. The equilibrium tensile modulus can be obtained from the best-fit line 

between the three equilibrium data points [26]. 

Bi-yun Guo et al.[3] tested the healthy human CC samples with different age and 

gender on an Instron materials testing machine. During the measurement, the CC samples were 

cut into dumbbell-like shape with a 10-15mm length, a minimum 1.5-3mm width or cylinder 

shape with a 30mm length and 0.8mm radius, and fixed on two self-made clamps. The clamp on 

the bottom end was fixed on a fastened lower grip while the clamp on the top end could move at 

a specified speed in the vertical direction (Figure 1.7). The forces in the tensile strength, stress-

strain relationship, stress relaxation, and creep characteristics testing were measured using a 

100N sensor and the displacement was controlled by the testing machine. The experiment was 
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performed at room temperature, with an ultrasound moistener to keep the specimen moist. Bi-

yun Guo et al. found the tensile strength of female children, female adolescent, female adult, 

male children, male adolescent and male adult were 5.96±0.38, 7.20±0.70, 4.27±0.41, 4.60±0.56, 

5.31±0.33 and 4.30±0.59 MPa, respectively, which indicated that the children group has the 

highest tensile strength in both male and female groups. The adolescent group has the lowest 

strength, which could be a reason that the bigger distortion happened after using the adolescent 

CC in the auricular reconstruction operation, as compared to using children’s CC. Moreover, the 

male group relaxed and crept more than that of the female group in all three age groups. Thus, 

the recorded results show the biomechanical properties of CC are donor age and gender related. 

 

Figure 1.7 Schematic of tension test apparatus [3]. 

Jiexiong Feng’s group[17] applied the uniaxial tensile test in the direction parallel to 

the cartilage surface on fourteen samples of the sixth PE CC (aged from 3 to 6 years; mean, 4.2 

years) and ten samples of the healthy CC (aged from 3 to 6 years; mean, 4.4 years) which are 

trimmed to 3cm ×0.8cm cylinder shape and stored in Ringer’s solution at  4℃ for 2 hours before 

testing. The test was carried out on a material testing machine (Shimadzu Model AG-10TA, 
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Tokyo, Japan) with the cross-head set to move at 5 mm min
-1

. The specimen was kept in 

buffered saline, and the environmental temperature was maintained at 25°C. By transforming the 

relation curve of load-deformation to the relation curve of stress-strain relation, Jiexiong Feng’s 

group found that the average tensile strength of healthy CC is 2.27±0.23MPa, while the average 

tensile strength of PE CC is only 1.52±0.37MPa. The test result shows that PE CC has less 

tensile strength as compared with healthy CC. 

1.2.3. Flexure Test 

Flexure tests are generally used to determine the flexural modulus or flexural strength 

of CC.  Flexural strength is defined as the maximum stress at the outermost fiber on either the 

compression or tension side of the specimen. Flexural modulus is calculated from the slope of 

the stress vs. strain deflection curve. These two values can be used to evaluate the CC ability to 

withstand flexure or bending forces.  

In flexure tests, CC are laid horizontally over two points of contact (lower support 

span) and then a force is applied to the top of the material through either one or two points of 

contact (upper loading span) until the sample fails. As such, the two most common types of 

flexure tests are three-point and four-point flexure bending tests. A three-point bend test as 

illustrated in Figure 1.8 (a) consists of the sample placed horizontally upon two points and the 

force applied to the top of the sample through a single point so that the sample is bent in the 

shape of a “V”. A four-point bend test as in Figure 1.8 (b) is roughly the same except that instead 

of the force applied through a single point on top it is applied through two points so that the 

sample experiences contact at four different points and is bent more in the shape of a “U”.  

Unlike a compression test or tensile test, a flexure test does not measure fundamental material 

properties. When a specimen is placed under flexural loading all three fundamental stresses are 
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present, tensile, compressive, and shear,  so the flexural properties of a specimen are the result of 

the combined effect of all three stresses as well as (though to a lesser extent) the geometry of the 

specimen and the rate the load is applied. Usually, a flexure test is more affordable than a tensile 

test and test results are slightly different. A three-point flexural bending test is typically adopted 

for the testing of CC, since it is more suitable for testing smaller samples[22].  

Jiexiong Feng’s group[17] applied a flexure test in the direction perpendicular to the 

cartilage surface on ten samples of the sixth PE CC (aged from 3 to 6 years; mean, 4.2 years) and 

eight samples of the healthy CC (aged from 3 to 6 years; mean, 4.4 years) which are trimmed to 

3cm ×0.8cm cylinder shape and stored in Ringer’s solution at 4℃ for 2 hours before testing. The 

test was carried out on a material testing machine (Shimadzu Model AG-10TA, Tokyo, Japan) 

with the cross-head set to move at 5 mm min
-1

. During the test, the specimen was kept in 

buffered saline, and the environmental temperature was maintained at 25°C. By transforming the 

relation curve of load-deformation to the relation curve of stress-strain relation, their group found 

that the average flexure strength of healthy CC and PE CC are 7.64±1.88MPa and 4.13±1.22MPa, 

respectively. Additionally, the time of damage in the PE CC group is 30 seconds, and shorter 

than 38 seconds as measured in the healthy CC group. 

 

(a) 
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(b) 

Figure 1.8 Experimental setup for (a) three-point bend test [23] ; (b) four-point ben test[24]. 

 

W. Grellmann et al[22] separated the cylinder shape CC samples from the 6
th

 and 9
th

 

ribs (both male and female, age 37-86 years) with both a length and diameter of 6mm. The 

production of the plane-parallel test specimen was carried out using a friction sawing device of 

Exact Norderstedt under permanent cooling with Ringer’s solution. In Zweick universal testing 

machine, the test was carried out using the three-point loading arrangement as showed in Figure 

1.9. The deflection rate at the center loading point was controlled by the cross head movement, 

which was set at 1mm min
-1

. The measured bending modulus and strength are 8.8±2.9 MPa and 

24.3 ± 12.2 MPa, respectively.  

 

Figure 1.9 Measuring arrangement of three-point bend flexure test for determination of bending 

properties in W. Grellmann’s group [22]. 
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In Rani Roy’s group[25], they also used a three-point bend test for characterizing the 

bending behavior of porcine CC. The CC samples were harvested from 4-8 week old porcine 

within 1 hour of sacrifice, cut into strips (20mm × 4mm×1mm) with perichondrium being 

removed, and stored frozen at -20 ℃ until testing. During the three-point bend test as illustrated 

in Figure 1.10, the load and displacement were measured throughout testing. Porcine CC strips 

were placed on grips that were 5 mm apart and the load applicator was located above the center 

of the strip. Data was sampled every 0.5s with a right deflection of 0.02
 
mms-1

 and a load 

resolution of 10mN. During testing, cartilage strips were kept hydrated with PBS solution. 

Frozen tissue also was tested in comparison to fresh tissue with no difference found in the 

modulus. A mathematical model was adapted from the large-deflection plate theory to evaluate 

the elastic properties of CC. The calculated bending modulus of CC is 7.06 MPa.  

 

Figure 1.10 Depiction of three-point bend setup in Rani Roy’s paper [25]. Samples were tested in 

three-point bending where the thickness was measured for each sample. The samples were 

placed between two grips a distance, ranging from 0.5–1.0 cm apart. Deflections were applied 

and resultant loads were measured. 
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1.2.4. Macro-scale Indentation Tests  

A macro-scale indentation test as shown in Figure 1.11 (a) is performed on cartilage 

tissue by compressing a surface of cartilage using a rigid (relative to cartilage) object of known 

size, shape, and boundary conditions (permeability and friction), and then measuring load, 

displacement, and time. The test patterns are shown in Figure 1.11 (b). It is usually implemented 

via a custom displacement-controlled indentation instrument (CDI). The indenter tip size (i.e., 

diameter) is typically smaller than the cartilage thickness in order to minimize the effect of the 

rigid underlying material (bones, holding plates) on the stiffness measurement. The macro-scale 

indentation testing has been widely used for characterizing the health and function of cartilage 

because of the relative ease of the experimental setup as well as the availability of classical and 

more recent mathematical solutions for estimating biomechanical properties of cartilage from 

indentation test results. 

 

                          (a)                                                     (b) 

Figure 1.11 (a) Cross-section schematic of indentation testing using a sphere-ended tip r and a 

displacement-controlled protocol (b) Applied displacement or resultant load are illustrated[26]. 

Macro-scale indentation testing is now extensively employed for examining the 

mechanical behavior of healthy CC midsubstance [1, 4, 27] at its cross-sections. All indentation 
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tests carried out on CC in the literature requires the CC to be deconstructed and cut into slices (6-

10mm) for learning the cartilage midsubstance feature. Moreover, for CC characterization, the 

sphere tips were always chosen during the measurement (2-3.15mm radius) to indent on the 

specimen surface to a certain penetration depth (<10% of the specimen thickness) with ramp-up 

time (0.5-2.125s) and was held for 10 times longer than the ramp-up time (2min). Data of a 

representative CC indentation load-time relaxation response is recorded and sampled at 100Hz-

150Hz [4]. 

Anthony Lau et.al [1]uses a CDI to test 11 fresh human CC, both males and females, 

with an age range of 23-77 years. Samples were thawed and CC cross sections approximately 6 

mm thick were prepared from the second, third and fourth left ribs (Figure 1.12 (a)). Indentation 

tests were performed on the midsubstance of the CC cross sections (Figure 1.12 (b)). The 

spherical indenter tip used by Anthony Lau et.al was machined from stainless steel to a diameter 

of 3.15 mm and mounted on a CDI. The input indentation test parameters were a target peak 

displacement of 0.425 mm (7% of tissue thickness), which gives a contact radius of 

approximately 0.82 mm (substantially smaller than the cartilage sample size). The target rise 

time was 2.125 s and the peak displacement was held for 2 min for load-relaxation. Depending 

on the amount of available tissue, 11–25 individual indentation tests were performed per ribcage 

specimen for a total of 188 individual tests. During the test, CC were soaked in 0.9% saline 

solution. Averaged over the entire study, the current result found a similar modulus for adult 

human CC (5.2 MPa) as was found for young porcine cartilage as mentioned in some previous 

studies, which calculated the three-point bending modulus (7.1 MPa)[17, 25] for 4–8 week old 

porcine cartilage samples. Their own previous study obtained the modulus results for time-zero 

was slightly smaller but comparable (5.3 MPa)[28]. These reported CC values in the range 5–7 
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MPa are found in all cases. Furthermore, the changes in proteoglycan solubility and water 

content of the tissue appear consistent with a greater mechanical stiffness of CC[1]. 

  

                                                      (a)                                                                    (b)  

Figure 1.12 (a) A schematic illustration of CC cross section preparation. Multiple cross sections 

were cut in the cartilage between the sternum and rib bone, using a parallel-blade device such 

that each section was separated by a thin slice of discarded tissue. (b) A section of CC during the 

indentation test. Cartilage is held by a custom holder inside a Petri dish filled with 0.9% saline 

solution[1]. 

In Jason Forman’s group[27], five whole healthy CC segments were harvested from 

the 4
th

 ribs of human cadavers with perichondrium being removed. Each CC segment was 

separated into 3-4 cross-sectional test samples (each approximately 6 mm thick). Each of these 

samples was potted in a plastic dish with Fast Cast
®
, with the cross-sectional surface to be 

indented facing upwards (Figure 1.13 (a)). Prior to testing, each of the samples was soaked in a 

bath of physiologic saline at body temperature for approximately 30 min. After placing the CC 

disks on the testing stage of CDI, the indenter tip (2mm diameter sphere) moved at 

approximately 0.5mms-1
 (attaining this velocity prior to contact with specimen, so as to reduce 

inertial effects) till penetration into the cartilage to a depth of approximately 0.25mm 

(approximately 4% of the sample thickness) (Figure 1.13 (b)). At this small relative depth of 

penetration, the tests can be regarded (and analyzed) to be an indentation into an infinite half-

space. The average measured instantaneous elastic moduli of all the healthy human CC ranged 
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from 8.7 to 12.6MPa.   

 

                            (a)                                                                              (b) 

Figure 1.13 Pictures of indentation testing: (a) a cross-sectional CC specimen prepared and 

potted in fast-cast; (b) a specimen being subjected to an indentation test[27]. 

The CC segments used by JM Mattice and his group[28] were harvested from 

immature female porcine with age 28 days to 132 days. Each CC segment was further cut into 5-

mm-thick cross-sectional slices. Each prepared specimen was allowed to equilibrate in a 

physiological saline bath at room temperature (25 °C) prior to testing. The CC test was indented 

by a 3.15-mm-diameter spherical indenter tip in a customized CDI instrument as shown in Figure 

1.14. Indentation tests were conducted in physiological saline at room temperature. CC 

indentation tests were performed at three different peak displacement levels (0.225, 0.325, 

0.425mm) at a fixed rise time of 1.84±0.1s for all three displacement levels and with a 120s hold 

time at peak displacement. The force-time data for each displacement level were used for 

analysis. As a result, the measured instant indentation modulus is 5.3MPa, respectively.  
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Figure 1.14 Schematic illustration of the CDI instrument used for experiments in JM Mattice’s 
study [20]. 

M.L. Oyen et al [29] carried out macro-scale indentation measurement on human CC. 

Human CC were obtained from the fifth rib of two female subjects at age 32 and 71, store frozen 

and thawed prior to testing. In indentation test, the CC were cross-sectioned into sections with 5 

mm thickness as illustrated in Figure 1.15. Prior the testing, the prepared human CC were 

equilibrated and tested in a physiological saline at room temperature (~25 ℃). In the indentation 

test, a spherical steel indenter tip with a diameter of 3.15mm was used to indent the CC samples 

to 0.4 mm peak displacement with a rise time of 2.1 seconds and hold time of 120 seconds. The 

obtained 5th human CC modulus is 10 MPa. 
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Figure 1.15 Schematic illustration of the CC indentation testing procedure developed in M.L. 

Oyen’s work[29]. CC are sectioned and cross-sections are indented in the cartilage mid-

substance using a CDI instrument. 

1.2.5. Nanoindentation tests 

Nanoindentation, also named as instrumented or depth-sensing indentation, typically 

implicates by AFM or nanoindenters to induce local surface deformation by controlling load to 

the surface. Take the commercial nanoindenter system as shown in Figure 1.16 (a) for example, 

during the measurement, the tip of a nanoindenter system with a three-plate capacitor for 

displacement (1 nm to 20 µm) sensing is mounted directly onto the middle plate of the capacitor. 

While a load (1 µN to 500 mN) is applied to move the tip into the specimen and monitored by 

electrostatic force generation, magnetic coils, or expansion of a piezoelectric element, the 

displacement is directly captured through capacitance or inductance[30].  Figure 1.16 (b) 

illustrates the interaction between the tip and the specimen during the indentation process. 

Meanwhile, rested on the continuously monitored data of load and displacement during the 

indentation process, a load-displacement curve can be extracted which is similar to the one 

shown in Figure 1.17 [30]. 
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(a) 

 

(b) 

Figure 1.16 (a) Schematic of a nanoindenter system; (b) the indentation process Pmax=maximum 

load, hmax=penetration depth, hc=contact depth (the height of the contact between the tip and the 

sample); hf=final depth; S= unloading stiffness. [30] 

 

Figure 1.17 Schematic of a typical load-displacement curve [30] . 

Force (F) 

Fmax 

hmax 

hc hf 
Displacement (h) 



24 

Because of its millimeter-sized probes, nanoindentation can be used for the 

characterization of cartilage and other soft tissues. For instance, when the nanoindentation is 

implied by AFM, a 1-10μm radius of the probe tip can be chosen for CC characterization with a 

ramp up time 10-25s and a holding time 125s which is 10 times longer as claimed in traditional 

indentation tests. Currently, a large portion of the biomaterial nanoindentation literature focuses 

on the measurement of material properties such as Young’s modulus or elastic modulus [7, 31], 

and indentation hardness (H)[32] from nanoindentation data. Data of a representative CC 

nanoindentation load-time relaxation response is recorded and sampled at 100Hz-150Hz as well 

as the traditional indentation tests[4]. 

S. Tripathy and E. J. Berger [4] filled up the blank of AFM data on CC in the literature. 

In their study, AFM indentations using spherical beaded tips of radii 1, 5 and 10μm were 

performed on the medial surface of healthy human CC (third rib from male cadavers with ages 

54, 62 and 31 years) to isolate the mechanical properties. Thus, each specimen was cut into 7-

10mm thick disks as shown in Figure 1.18. The indentation depth cannot be accurately controlled 

in the AFM test, so the maximum penetration depth was approximately maintained. The 

maximum depth was always much below the limit (10% of the sample thickness). The relaxation 

time was more than 10 times the ramp time. The overall length of each indentation was between 

10 and 25 s. For some tests longer hold time of about 100–125 s was used. About 25–30 min was 

allowed before the indentations for the cantilevers to thermally equilibrate to the surrounding 

fluid medium. Indentations were performed at about 400–500 different sites on each cross 

section. Indentations were performed at about 400–500 different sites on each cross section. 

After plugging in the collected data into their model, the mean Young’s modulus of CC was 

found to be about 2.17, 4.11 and 5.49MPa for three CC samples. As compared with the elastic 
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modulus values of AC found in the literature using AFM indentation (0.027 and 2.6MPa for 

porcine, 0.045 and 0.481MPa for bovine and 2.34 for rabbit)[33-36], they suggested that the CC 

is stiffer than the AC. In their study, the average elastic moduli (over all the cross sections) of 

human CC were 2.17 ± 1.32, 4.11 ± 1.87 and 5.49± 2.41MPa for each of the samples. Overall a 

range of 1–10MPa was obtained. Furthermore, a large variation of modulus was observed over 

the tissue. Also, the modulus values decreased with distance from the costochondral junction[4]. 

 

Figure 1.18 Sections of the CC. C1 is closest to the costochondral joint and C5 is the farthest. The 

modulus decreased from C1 to C5[4].  

In Shikha Gupta’s study[37], porcine CC were chosen as a test material since, like 

other types of hyaline cartilage; it exhibits the nonlinear viscoelastic response and is uniformly 

heterogeneous. Three young porcine whole spare ribs were obtained from a local abattoir within 

24 h of sacrifice. The third and fourth costal ribs were dissected from the sternum of each slab 

and cut into multiple samples. From each rib (n=5) one specimen, approximately 3 mm thick, 

was cored for nanoindentation and snap frozen in optimal cutting temperature solution. Since 

nanoindentation depths are less than 5 μm, experimental load–displacement curves are sensitive 

to surface asperities and roughness. To minimize errors from asperities, the top and bottom 

surfaces of the PC CC samples were cryomicrotomed prior to testing to ensure a smooth 

indentation surface. Before the test, frozen samples were first brought to room temperature by 

thawing in air. The optimal cutting temperature solution was removed by repeated rinsing with 
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PBS for approximately 30 min. During experimentation, all samples were placed in a Petri dish 

and immersed in room temperature PBS supplemented with protease inhibitors (5 mM 

benzamide-HCL and 10 mM N-ethylmaleimide) to prevent autolytic activity during 

experimentation. All indents were performed using a Hysitron TriboIndenter (Hysitron, 

Minneapolis, MN) in displacement controlled feedback mode. Indents were taken with a 100 μm 

radius of curvature conospherical diamond indenter. To facilitate testing in fluid, as shown in 

Figure 1.19, the diamond tip was attached to a 5 mm long titanium shaft. Indents were performed 

on 11 to 12 different positions on each of the 5 samples. The indenter displacement was linearly 

ramped to a maximum penetration depth of either 2.0 μm or 3.1 μm at a displacement rate of 

either 0.2 μms-1
 or 2 μms-1

, followed by a 150s hold period at the maximum penetration depth, 

and withdrawn at a rate of 0.2 μms-1
. A total of 44–48 indents were performed on each specimen. 

 

Figure 1.19 Schematic of the experimental setup for nanoindentation of porcine CC [37]. 

Shikha Gupta’s group [37] found when the loading and initial relaxation response is at 

0.2 μms-1
 indentation rate. The total load relaxes by 17.3% within 30s of the hold time. However, 

when the loading and initial relaxation is at 2 μms-1
, the total load relaxes by 29.5% with 20s of 

the hold time. Overall, for the 3.1 μm indentation depth, the relaxation in the load is 15.8%±2.6% 

Initial contact point
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and 28.74%±2.9% (mean ± S.D.) for the 0.2 μms-1
 and 2 μms-1

 displacement rates, respectively 

and 18.6%±3.1% and 32.1%±4.3% for the 2.0 μm depth. For all indents, an increase of 20%–22% 

in the maximum load is observed with an order of magnitude increase in the indenter 

displacement rate. Moreover, Young’s modulus of all fives samples for the 0.2 μms-1
 and 3.1μm 

indentation depth is 1.65±0.45MPa. 

1.3. Motivation 

CC are bars of hyaline cartilage that connect the ribs to the sternum for providing the 

structural strength and flexibility of the thoracic cage.  Owing to its abundance and surgical 

accessibility, CC are used as graft tissue in autologous therapies, such as craniofacial surgeries 

and tracheoplasty, and cosmetic surgeries, and as a cell source for engineered AC. Two most 

common types of chest wall deformity, sunken chest (PE) and pigeon chest (PC) are known to 

arise from the disorder of CC. The biological composition and structure of healthy and PE/PC 

CC are now well known, but the structural analyses at the tissue-level, ultrastructural-level, and 

molecular-level have all failed to identify significant differences between healthy and diseased 

CC. 

As a load-bearing and nonstop-deforming tissue from respiration, the mechanical 

properties of CC are critical for maintaining their structural health and delivering their 

physiological function. According to the biological background, the peripheral region differs in 

structure and functions from the interior region, and the mechanical properties at the CC exterior 

surface influence diffusion of oxygen and nutrients and thus are intrinsic to maintaining their 

structural characteristics. However, very limited knowledge exists on the mechanical properties 

of peripheral CC, due to their highly irregular geometries. To date, to obtain regular geometries 

for measurement, CC were cut into strips along the cartilage length and disks along the 
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transverse direction. CC strips were measured using uniaxial tension/compression [3, 17, 22, 25] 

flexural testing [17, 22]. CC disks were measured on the cleaved transverse cross-section using 

rigid spherical indenters [1, 4, 27, 28, 37]. These pioneering studies have established that 

mechanical properties of human CC vary along their length [4] and show a link with aging and 

gender[1, 3]. Only one study examined the mechanical behavior of human PE CC and found a 

weakened biomechanical stability of PE CC as compared with control CC[17]. To the best 

knowledge of the authors, no mechanical studies on human PC CC have yet been reported in the 

literature. However, the peripheral region is removed in CC strips and thus their measured results 

do not reveal the mechanical properties of CC in its peripheral region; indentation on the cleaved 

transverse cross-section of CC disks does not examine the mechanical properties of CC at their 

exterior surface. The CC retain a heterogeneous structure at transverse cross-section and a curved 

centerline along their length, so any variation in strip and disk preparation (e.g., sample axis not 

aligned with the cartilage centerline) will translate to significant measurement errors. The curved 

exterior surface of CC rules out using indentation via rigid indenters for their measurement, 

simply because non-conformity of a rigid indenter to the curved surface causes a varying 

constant contact area during indentation, which yields significant errors in the measured 

mechanical properties of CC [38, 39]. Moreover, the nanoindentation technique is even lacking 

the effect of physiological loading. 

1.4. Objective  

This dissertation is aimed to determine the mechanical properties at the exterior 

surface of CC and examine how they vary with the cartilage length and the anatomical sites of 

CC in the ribcage via conformal indentation testing which is employed by a tactile sensor for 

distributed-deflection detection. By using this novel testing method, CC experiences compressive 
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loading at its exterior surface in vivo and retains its structural integrity.  

1.5. Dissertation Layout 

Chapter Two presents the polymer-based microfluidic resistive tactile sensor without a 

built-in probe employed in this study for detecting distributed normal loads. The working 

principle, fabrication protocols, and its performance characterization are presented in detail. 

Technical issues associated with the sensor are also discussed.  

Chapter Three introduces a built-in probe to the current polymer-based microfluidic 

resistive tactile sensor and investigated the feasibility of using this sensor with the built-in probe 

for conformal mechanical measurements of CC at its exterior surface. The theoretical model, 

qualitative analysis, numerical study, performance characterization, and data analysis method are 

presented, respectively. 

Chapter Four presents the implementation of using the sensor with a built-in probe to 

measure the mechanical properties at the exterior surface of porcine CC. The measured results 

are presented and compared with those in the literature. The relation between the measured 

mechanical properties and the anatomical sites of CC in the ribcage is discussed as well.  

Chapter Five presents the implementation of using the sensor with a built-in probe to 

measure the mechanical properties at the exterior surface of human PC CC. The testing results 

are not only compared with those in the literature but also compared the measured results of 

porcine CC in Chapter Four.  

Finally, Chapter Six discusses the advantages and drawbacks of using the sensor with 

a built-in probe to test the mechanical properties of CC at its exterior surface and proposes future 

work that can be built upon this dissertation.  
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CHAPTER 2  

A POLYMER-BASED TACTILE SENSOR WITH A BUILT-IN PROBE 

FOR DISTRIBUTED-DEFLECTION DETECTION 

This chapter depicts a previous designed polymer-based microfluidic resistive tactile 

sensor without a built-in probe employed in this study for detecting distributed normal loads. The 

core of the sensor is a polymer rectangular microstructure embedded with distributed resistive 

transducers underneath. Together with five electrode pairs, one body of electrolyte in the 

microchannel functions as five distributed resistive transducers. The microstructure converts 

distributed normal loads to continuous deflection, which register as discrete resistance changes at 

the locations of the distributed transducers. Since the detailed design, fabrication, and 

characterization process of the sensor have been presented in the previous work [40-42]. A brief 

description of the sensor is given in this chapter for completeness. Following is the working 

principle, fabrication details, sensor characterization, and technical issues associated with this 

tactile sensor before adding a built-in probe are elaborated in the rest of the chapter. Due to the 

study duration of this dissertation, three sensors with identical design are used. The sensor used 

in this measurement is labeled as sensor A.  

2.1. Work Principle 

Figure 2.1 shows the basic configuration of the polymer-based microfluidic resistive 

tactile sensor for distributed-deflection detection. The tactile sensor consists of a rectangular 

polymer microstructure embedded with an electrolyte-filled microchannel and five electrode 

pairs distributed along the microchannel length. Together with the electrode pairs, one body of 

electrolyte in the microchannel functions as five distributed resistive transducers. Each 

transducer can record the resistance of the portion of an electrolyte between the two opposing 
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electrodes across the microchannel width. The reservoirs at each end of the microchannel are 

utilized to fill the microchannel with an electrolyte and provide a conduit for electrolyte to flow 

in/out during the sensor operation. Thus, adding the reservoirs not only completely confines 

electrolyte within the sensor, but also allows electrolyte to freely flow during the sensor 

operation. PDMS is chosen as the structural material, due to its low elastic modulus and great 

fabrication simplicity. The ionic liquid 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA) 

with a 98% concentration is selected as the electrolyte filling in the microchannel for its stability, 

low volatility, and a relatively high conductivity compared to its counterparts, which are NaCl 

and KCl solutions, used in previous research [40-42]. 

 

Figure 2.1 Schematic of the experimental setup for nanoindentation of porcine costal cartilage. 

To better illustrate how controlled displacement is converted to recordable resistance 

changes at the transducer locations, the rationale of the tactile sensor is demonstrated in Figure 

2.2. While the microstructure converts continuous distributed loads to continuous deflection 

along its length (y-axis), the distributed transducers translate the continuous deflection to discrete 

resistance changes at specific locations along the microstructure length. To avoid spillover of the 

electrolyte during the sensor operation, two reservoirs are sealed by PDMS after electrolyte 

injection. The key parameters and their values of the tactile sensor in this work are labeled in 

Figure 2.3 and listed in Table 2.1 respectively. 

PDMS sealing

Electrolyte-filled 

Microchannel 

Reservoir

Pyrex

Electrodes

Contact pad

x

z

0

y
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Figure 2.2 Working principle of the tactile sensor. 

 

  (a)  

                                                

(b) 

Figure 2.3 Key design parameters of the polymer-based microfluidic tactile sensor: (a) top view; 

(b) side view. 

 

Table 2.1 Key design parameters of the polymer-based microfluidic tactile sensor. 

Key parameters Values Symbol  
Microchannel cross-section 0.5mm×80µm wE×hE 

Microchannel length 12mm LE 

Reservoir radius 1.5mm RE 

Spatial resolution of transducers 0.75mm dE 

Microstructure thickness 1mm hs 

Microstructure Elasticity 700kPa Es 

 

Input: Displacement, zin

Output 1: Continuous Distributed loads  Q

(Equilibrium Overall load, F(t))

Continuous Deflection: zs

R1 R2 R3 R4 R5
Output 2: Resistance Change

z

0 y

4dEdE wE
RE

LE

x

0 y

hs

z

0 x

hE
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The electrodes on one side are connected to a function generator, while the electrodes 

on the other side are connected to the circuits that amplify the signals and convert them to DC 

output. The sensor essentially has both a capacitive and a resistive nature. The capacitive nature 

is mainly from the double layer effect formed by the electrode-electrolyte interface. However, 

with the highly conductive electrolyte EMIDCA, the entire sensor can be treated as resistive 

dominant when the passing signal is at high frequencies (>100 kHz), since at high frequencies 

the capacitor is treated as a wire [41, 43-45]. In addition, DC voltage will cause severe 

electrolysis and damage the deposited electrodes. In this work, the voltage of the AC signal is 

kept around 120 mV, since low voltage magnitude helps prevent the hydrolysis of the electrolyte. 

Each opposing pair of electrodes can record the voltage on the electrolyte portion at its 

corresponding location. Deflection of the PDMS structure causes a corresponding resistance 

change of the electrolyte in the microchannel and is recorded as a change in the output DC 

voltage. A sensor characterization has to be carried out for obtaining the relation between the 

voltage output and the mechanical input before conducting any measurement on material 

samples. Once this relation is established, the deformation of the PDMS microstructure at the 

locations of the transducers can be deduced from the change in the voltage output. A 

simultaneous spatial measurement thus becomes feasible. 

The mechanical input for sensor characterization is applied by a rigid cylindrical probe 

with a diameter of 0.8mm and length of 6mm, as can be seen in Figure 2.4. The cylindrical probe 

is aligned along the microchannel length and provides a regional deformation above the 

microchannel, leaving the rest of the sensor or the rest region of the material, under test 

minimally affected by the applied load. However, due to the cylindrical shape, misalignment of 

the probe about its own axis is alleviated.  
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Figure 2.4 Key dimensions of a rigid cylindrical probe for sensor characterization. 

2.2. Fabrication Process 

A standard two-mask fabrication process as shown in Figure 2.5 for the sensor, one 

mask is for patterning electrodes on a Pyrex slide and the other one is for forming SU8 mold and 

translates to PDMS microstructure later by soft lithography. The main steps for this two-mask 

fabrication process can be summarized as: photolithography and sputtering for electronics 

pattern, soft lithography for PDMS microstructure and bonding. Before the main steps, all the 

Pyrex slides used in the fabrication process should be first cleaned by Potassium hydroxide 

(KOH) and acetone bath in an ultrasonic cleaner for 10min, respectively, and then rinsed with 

isopropyl alcohol and DI water, and dried with Nitrogen gas later on. 

            

(a)                                                                   (b) 

Figure 2.5 Mask design for (a) the microchannel and (b) the patterned electrodes. 

2.2.1. Photolithography and sputtering for electrodes pattern 

First of all, the electrodes with the desired pattern are in AutoCad® and later were 

Probe Holder

Sensor
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printed on a polyester film as a transparent region, as illustrated in Figure 2.5 (a). Please note, the 

undesired region remains black. Then, as illustrated in Figure 2.6, after pre-baking the clean 

Pyrex for 3-5 minutes at 90℃, the photoresist material S1800 or S1805 is spin coated on the 

Pyrex side, at 500 rpm for 10 seconds and 2000 rpm for 30 seconds and dehydrated on a hot 

plate at 90℃ for another 1 minute.  S1800 and S1805 are positive photoresistive material that 

eventually leaves the part not exposed to UV light on the Pyrex slide. Thus, following the soft 

bake, the Pyrex slide covered with the electrodes mask is placed under an Exoteric 405 nm h-line 

UV Flood Source and exposed to h-line UV with exposure intensity of 11.74mW/cm
2
 for 5 

seconds.  In the successive step, the coated Pyrex is developed in MF-24 till the pattern is neat 

and clear, rinsed in Di water, and dried with Nitrogen gas later on. Then the developed Pyrex is 

placed in a sputter coater (300TD, Electron Microscopy Sciences) for depositing 10 nm Cr and 

100 nm Au and soaked in an ultrasonic acetone bath for undesired Au/Cr removal, which is also 

called a lift-up process. After an indispensable cleaning process, including isopropyl alcohol 

rinsing, Di water rinsing and Nitrogen gas dry, Pyrex with patterned electrodes is finally 

obtained. 

 

                          (a)                                  (b)  

 

(c) 

(a)

Clean Pyrex

(b)

Photoresist Spin Coating

Coating UV Light Patterning with Mask 1
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(d)                                (e) 

 

(f)                                    (g) 

Figure 2.6 Fabrication process for patterning electrodes on Pyrex substrate: (a) Pyrex cleaning; 

(b) Photoresist spin coating; (c) UV light patterning with Mask 1; (d) Pyrex with patterned 

photoresist; (e) Photoresist development in MF-24; (f) Au/Cr deposition; (g) Succeed electrodes.   

2.2.2. Soft lithography for PDMS microstructure 

The PDMS microstructure is fabricated by a soft lithography process. First, to make 

the mold for the microchannel, a photoresist material SU-8 50 is first spin-coated to a Pyrex slide 

to form a uniform thin layer. SU-8 is a commonly used epoxy-based negative photoresist that can 

be used to pattern high aspect ratio structures. It can be spun over a thickness ranging from 

below 1 µm to more than 300 µm before proceeding to photolithography.  After pouring SU-8 on 

the Pyrex slide, it is followed by a five-second spin coating at 500 rpm and a 30-second spin 

coating at 1500 rpm. Then, the slide is baked at 65°C for 10 minutes and 95°C for 30 minutes. 

After that, the Pyrex slide with an 80μm thick SU-8 layer is ready for exposure.  

By using the similar photolithography process as Au/Cr electrodes, the Pyrex slide 

with SU-8 is then brought to an ultraviolet (UV) light with the microchannel mask mounted 

(Figure 2.5 (b)) on it. Since SU-8 is a negative photoresist material, the part exposed to the UV 

light is left on the Pyrex slide. In this case, an i-line Karl Suss MJB3 mask aligner is applied to 

expose the slide for 8 seconds at the exposure intensity of 30mWcm
-2

 and ensure the exposure 

energy at 240mJcm
-2

 for 80μm thick SU-8 layer. This is followed by a 1 minute post-exposure 

(a)

Patterned Photoresist

) (b)

Photoresist development 

in MF-24

(b)

ent Au/Cr Deposition Patterned Au/Cr Electrodes
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bake(PEB) #1 at 65°C, a 10 minute PEB #2 at 95°C, and a 5-minute development by an SU-8 

developer. Then, the Pyrex slide with the SU-8 mold is cleaned with isopropyl alcohol and DI 

water. After drying the slide, the SU-8 mold with the pattern of an 80μm thick microchannel is 

ready to use, as shown in Figure 2.7. Figure 2.7 clarifies a soft lithography fabrication process 

used to form the PDMS microstructure in this study. Basically, a 1:10 ratio of curing agent to 

PDMS elastomer is poured over the SU8 mold and cured to form the PDMS microstructure for 

24 hours at room temperature on the optical table to ensure an even thickness. The thickness of 

the PDMS microstructure is adjusted by the amount of mixture being poured into the mold. The 

cured PDMS microstructure is peeled off from the SU8 mold. A needle with an inner diameter of 

1mm is used to punch a hole into each reservoir for injecting electrolyte into the microchannel 

later on.  

 

                    (a)                               (b)                                 (c)                                   (d) 

Figure 2.7 Soft lithography on PDMS microstructure: (a) SU8 mold creation by microchannel 

shape mask; (b) PDMS microstructure formation; (c) PDMS microstructure detach; (d) Holes 

punching. 

 

2.2.3. Bonding 

First of all, to ensure the efficiency of oxygen plasma deposition, both Pyrex with 

patterned electrodes and PDMS microstructure need to be soaked and cleaned by an ethanol bath 

in ultrasonic for 10 minutes, and rinsed by Di water. After the essential drying method by 

SU8 mold 

creation(Mask2)
PDMS 

microstructure 

formation

PDMS 

microstructure 

detach

Holes punching
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Nitrogen gas, both electrodes Pyrex and PDMS layer are dehydrated at 130 °C for 5 minutes 

with both electrodes side and microchannel side facing upwards. Then, after oxygen plasma 

treatment on both electrodes side and microchannel side, the two layers are aligned and bonded 

under an optical microscope. Finally, 1-ethyl-3-methylimidazolium tricyanomethanide (EMIM 

TCM) is used as the electrolyte for the sensor and is injected into the microchannel via a syringe. 

Furthermore, to avoid electrolyte spillover during the sensor operation, one drop of 1:10 PDMS 

mixture is placed on the top of each reservoir to cover the pouched hole. Electrical connection is 

made to the sensor by gluing wires to the Au/Cr contact pads with conductive epoxy (8331, 

RoHS compliant). The final finished tactile sensor is shown in Figure 2.8.  

 

Figure 2.8 Fabricated microfluidic tactile sensor with electrolyte in the microchannel. The 

transducers are labeled by numbers. 

2.3. Performance Characterization 

Two types of sensor performance tests are carried out on this tactile sensor. One 

measurement is characterized by a rigid cylindrical probe aligned along the microchannel to 

press against the top of the PDMS structure which is above the microchannel. Another one is 

carried out on the exterior surface of a human PC CC to see the feasibility of extracting the 

mechanical properties of the CC. The detail experiment setup, method, data analysis method, and 

corresponding results are presented below. Due to the study duration of this dissertation, three 

sensors with identical design are used. The sensor used in this measurement is labeled as  

1 2 3 4 5
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sensor #A.  

2.3.1. Experiment method of the sensor characterization with a rigid probe 

2.3.1.1.Experiment setup 

The experimental setup is illustrated in Figure 2.9. The tactile sensor is fixed on a 

printed circuit board (PCB) and is bonded with wires for electrical connection. Then, the PCB 

with a wire-bonded sensor is mounted on a 5-axis manipulator located on an optical table. A 

function generator is used to apply an AC voltage to the inputs of the transducers of the sensor 

and the output of each transducer is connected to its own dedicated electronics on a PCB for 

converting an AC current from a transducer to a DC voltage signal, which feeds in a DAQ 

board(NI  PCIe-6363) and is further recorded by a custom LabVIEW program.  

 

Figure 2.9  Experiment setup for sensor without a built-in probe characterization. 

To exert a distributed displacement on the sensor, a rigid cylinder probe with 0.4 mm 

in radius and 6mm in length and a six-axis force/torque sensor (Nano17, ATI Industrial 

Automation) are incorporated together with a micropositioner. The six-axis force/torque sensor 

here is to record the overall force/torque experienced by our tactile sensor. The cylinder probe is 

utilized to exert precisely controlled indentation depths on the top of the tactile sensor. The 5-

Load Cell: F

Sensor

Sensor Holder

5-axis Manipulator

Optical Table

vac(ω)
Function Generator

Output : zs

Cylindrical Probe

Micropositioner (Input: zin)
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axis manipulator is used to better align the cylinder probe in parallel to the sample surface so that 

the sample experiences the same indentation depth from the probe at the locations of all the 

transducers. 

Prior to the testing of the sensor, the probe is manually aligned to the top of the 

microchannel. The 5-axis manipulator is then manually adjusted to better align to probe in 

parallel with the microchannel length. Afterward, the probe moves against the sensor with a pre-

defined displacement pattern. The outputs of the sensor and the readout of the load cell are 

recorded. Note that the change of a transducer is calculated as the difference between its 

resistance measured at a displacement input and the initial resistance, which is measured right 

after the probe being aligned but prior to a displacement input. 

2.3.1.2.Experiment method 

Step 1: Determination of the contact point of the probe with sensor top 

The probe is brought down to a visible distance above the sensor top. Then, the probe 

is brought down by an interval of 10m using the micropositioner at a time until a noticeable 

change in the readout of the load cell is observed and recorded in a LabVIEW program. 

Afterwards, the probe is moved back by 10m. At this point, the probe is assumed to be in 

contact with the top of the sensor, while not deforming the sensor. Thus, there might be a gap of 

~10m between the probe and the sensor top.  

Step 2: Indentation measurement 

By using the micropositioner, the probe exerts an indentation step, zstep=20m, on the 

sensor top above the microchannel at a ramp speed of 1mms-1
. At the instant the probe reaches 

its final location, the readout of the load cell is recorded. The holds time, thold, is 5s for the 

indentation. This hold time, thold, allows the microstructure to relax to a great extent [46]. The 
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readout of the load cell is recorded again at the end of the thold=5s hold time. The DC outputs of 

the sensor corresponding to the start and end of the 5s hold time are also recorded (note: the 

readout of the load cell and the DC voltage outputs of the sensor are recorded with a sampling 

rate of 500Hz for the entire hold time.  However, only the values at the start and the end of the 5s 

hold time are used for data analysis later on). Then, the probe is brought down to exert another 

indentation of 20m (zstep=20m) on the microchannel top at the same ramp speed as before. 

After the same parameters are recorded at the start and end of the same 5s hold time, the probe is 

brought back to the contact point at the same speed. This procedure is repeated for 20 times with 

an indentation depth increment of 20m each time until the final indentation depth reaches 

400m. Therefore, multiple F-zin data points at the start and end of a 5s hold time, respectively, 

at different indentation depths are recorded for this sensor characterization.  

The indentation pattern is illustrated in a schematic as Figure 2.10. In brief, the 

indentation step, zstep, final indentation depth, holds time, thold, and ramp speed are 20m, 400m, 

5s, 1mms-1
, respectively. This indentation measurement is repeated three times for error 

elimination.  

 

Figure 2.10  Key parameters for the patterns of indentation depth in sensor characterization. 
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A human PC CC is chosen to fulfill this measurement and label as CC#1. This human 

CC was obtained from the ribs of the lower thoracic region of a 17 yr-old male patient at 

Children’s Hospital of The King’s Daughters (CHKD), Norfolk, VA. Prior to removal of the 

cartilage tissues, patient consent was obtained with full IRB approval.  Figure 2.11 shows the 

CC#1 from a 17yr-old male patient. This sample was measured after being stored at -20℃ for 

some time, because the testing setup was not ready at the time it was removed from the patient. 

The indentation measurement is carried out once at both anterior and posterior surface. 

  

Figure 2.11  Pictures of human PC CC#1 sample with measured locations. (Black blocks and 

arrows on the cross sections of the samples indicate the locations of the probe in measurement; 

and left side: toward the rib, right side: toward the sternum) 

2.3.2.2.Experiment setup 

Figure 2.12 depicts the experimental setup for characterizing the sensor performance 

on CC measurement. The whole experimental setup is implemented on an optical table. During 
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probe holder, which is connected to a 3 degree of freedom (DOF) micro-positioner. Electrical 
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soaked in the PBS solution for keeping it in an aqueous condition during the operation. 

Afterwards, the sensor is manually brought right above a CC segment. The 5-axial manipulator is 

utilized to better align the microchannel of the sensor in parallel to the specimen surface so that 

the specimen experiences the same pre-defined displacement at the locations of all the 

transducers. The sensor can exert precisely-controlled displacements along the z-axis on a 

specimen through the micro-positioner. The 6-axis load cell here is optional and is used for the 

overall load verification. 

 

Figure 2.12  Experiment setup for sensor performance on CC measurement. 

2.3.2.3.Experiment method 
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CC specimen.  

Step 2: Indentation measurement 

The indentation pattern can also be presented by Figure 2.10. In brief, the sensor is 

brought down an incremental indentation depth of zstep=100m from the contact point each time 

with a ramp speed of 1 mms-1
 and a thold=20s hold time until reaching the final indentation depth 

of zin=1mm. The corresponding sensor deflections at each indentation depth are acquired by the 

sensor via the LabVIEW program.   

CC #1 was measured three times with a 30min recovery time in between. The first 

measurement on both locations differed dramatically from the following two measurements, 

indicating that a CC tissue in vitro loses capability of full recovery. Similar observations were 

also reported in the literature [47].As such, the measured results of the first measurement was 

adopted. 

2.3.3. Theoretical Analysis 

From a mechanical perspective, the force exerted on the polymer structure causes 

deflection as clarified in Figure 2.2. The force and sensor deflection relation can be expressed 

using a linear expression: 

ss zkF                                                                                         (2.1) 

where ks means the sensor stiffness, and zs represents the displacement applied by a probe on the 

top surface of the sensor. In the later analysis, zs should equal to the indentation depth zin. 

From an electrical perspective, the circuits include a demodulation stage and a 

transimpedance amplifier. The AC signal from the sensor output can be amplified and converted 

to a steady DC output, which can be calculated as: 
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In the Equation 2.2, Vpp represents the peak to peak value of the AC voltage that is 

applied to this sensor; RF is the feedback resistor with a known resistance value, 25 kΩ in this 

study. Ri(zs) is the resistance value of the i
th 

transducer. The circuit diagram and the derivation of 

Equation 2.2 are presented in Appendix. The peak to peak value of the AC voltage, Vpp is pre-set 

as 120mV.  The DC voltage output is recorded by the LabVIEW program. As such, the 

resistance value of the i
th 

transducer Ri(zs) can be derived as 
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                                                                               (2.3) 

Thus, in response to the distributed deflections of the microstructure, the resistance 

change, Ri, of the i
th

 transducer array is:  

    iisiisi RzRzR 0                                                                       (2.4)
 

where R0i denotes the initial resistance of the i
th

 transducer after a probe is aligned on the sensor 

but prior to a measurement.  

Since the resistance change of i
th

 transducer pairs, Ri(zs-i), is obtained as the function 

of the top deflection of the sensor zs-i which equals to the indentation displacement zin in the 

sensor characterization with a rigid probe. However, in the sensor characterization on CC 

measurement, the relation between the indentation displacement zin and the top deflection of the 

sensor zs is expressed as 

tsin zzz                                                                            (2.5) 
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where zt denotes as the tissue deflection in the CC measurement. The relation between resistance 

change, Ri(zs-i) and the top deflection of the sensor, zs-i, can be extracted by the sensor 

characterization by a rigid probe. The indentation depth, zin follows a pre-defined pattern. As 

such, after an evaluation of the resistance change value, Ri (zs-i) in the CC measurement, the top 

deflection of the sensor, zs-i can be monitored and considered as known. The corresponding tissue 

deflection in CC measurement can be calculated by the difference of indentation depth and top 

deflection of the sensor: 

sint zzz                                                                            (2.6) 

2.3.4. Results 

2.3.4.1.Results of the sensor characterization with a rigid probe 

As shown in Figure 2.13, the sensor exhibits a linear load-deflection relation and thus, 

is capable of capturing the indentation behavior. Here, F means the force exerted on the polymer 

structure; ks is the sensor stiffness; zs is the top deflection of the tactile sensor. The three repeated 

indentation measurements show almost the same trend which indicates the robust feature of the 

sensor and can be used over a long-duration with almost no change in mechanical behavior. 

Additionally, the sensor stiffness, ks equals to 1720 Nm-1
. 

Figure 2.14 depicts the relation between the resistance change, R and top deflection 

of the tactile sensor, zs. The average value of the resistance change, R and the sensor deflection 

zs of three identical measurements are used for extracting their relation in Figure 2.14. The 

standard deviation indicates the variation of the value of resistance change among the three 

measurements. As can be seen, the standard deviation is very small and further proves the robust 

feature of this sensor. Additionally, it shows the resistance change slightly varies among the 

transducers, owing this to fabrication variation and probe misalignment problems as discussed in 
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the Section 2.4. The slope of R~ z s relations in  Figure 2.14 are  375 kΩm-1, 770 kΩm-1
, 1052 

kΩm-1, 932 kΩm-1
 and 1095 kΩm-1

, respectively. 

 

Figure 2.13  Force-deflection relation of the tactile sensor characterization with a rigid probe. 

Measurement represents the three repeated indentation measurement. 

 

Figure 2.14  Relation of average resistance change R and average top deflection of the tactile 

sensor, zs of three identical measurements. (1-5: sensor deflections at transducer 1-5). The 

standard deviation denotes to the robust feature of the tactile sensor. 

2.3.4.2. Results of the sensor performance characterization by CC measurement 

Figure 2.15 illustrates the spatially distributed sensor deflection as a function of 

indentation depth of CC #1 at its anterior and posterior surfaces from their first measurements. 
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The sensor deflection varies dramatically among the locations of the transducers; the sensor 

deflection abruptly varies with the indentation depth; and the relaxed sensor deflection does not 

follow the instant sensor deflection at some transducers. This is believed to arise from the fact 

that, other than the sensing-plate, the surrounding region of the microstructure comes in contact 

with the cartilage exterior surface, causing a random change in contact area and lateral force on 

the sensing-plate over the indentation depth range. As shown in Figs. 3(a), the CC specimen 

possesses not only curved shape but also extrusions at its exterior surface. The severity of 

raggedness in the measured deflection-depth (zs-zin) relation indicates the interference of 

extrusions in these measurements and sensor limit of capturing the true mechanical properties of 

CC with curved surface. 

 

 (a)                                                (b) 

Figure 2.15. The spatially distributed sensor deflection, zs as a function of indentation depth zin 

on CC #1 using the tactile sensor (solid line: instant values; dashed line: relaxed values) (a) 

anterior surface (b) posterior surface (1-5: sensor deflections at transducer 1-5) 
 

2.4. Technical Issues Encountered 

Three technical issues associated with the tactile sensor itself and the performance 

characterization are discussed in this section, including fabrication variation, probe misalignment, 

and the curved surface of CC specimen. 
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Fabrication variations are other issues that affect the sensor performance. The main 

leading reasons of fabrication variation are the microchannel height and the electrodes 

resistances.  Since the microchannel height has the smallest dimension among all the key design 

parameters of the sensor, a slight non-uniformity of the microchannel height could significantly 

affect the voltage output from the sensor. As demonstrated in the fabrication process (Section 

2.2.2), the microchannel height is determined by the thickness of the SU-8 mold via a soft 

lithography process. It is impossible to maintain the SU-8 height perfect uniformity without 

slight variations. Moreover, the detach process of PDMS microstructure would also cause the 

variation of microchannel height. Another reason is resistance variation among the patterned 

electrodes, since it is inevitable that the photolithography and sputtering process would cause the 

thickness of the Au/Cr electrodes layer has some variations. 

2.4.2. Probe misalignment 

Misalignment of the probe will bring in an initial uneven microchannel top 

deformation and affects the voltage output of the sensor. There are three types of misalignment 

existing in this one-dimension microfluidic tactile sensor, including z-direction misalignment, x-

y in plane misalignment, and axial misalignment. The rigid probe is a cylindrical size which will 

not affect the voltage output about the y-axis (axial misalignment) as clarified in Figure 2.16. 

The other two types of misalignment play a critical role in affecting the voltage output of the 

sensor. 

Figure 2.17 schematically illustrates the z-direction misalignment of the probe. In this 

case, the probe is well aligned along the microchannel length (y-axis). However, the probe tilts 

towards on end of the microchannel on the z-direction, which leads the top of the microchannel 

to have non-uniform deflections. Luckily, z-direction misalignment can be detected by observing 
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the increasing or decreasing trend of voltage output and the transducers’ responding sequence. 

 

Figure 2.16. Schematic of the misalignment about the x-axis. (x-z side view) 

 

 

Figure 2.17. Schematic of the z-direction misalignment. (y-z side view) 

 

Figure 2.18 demonstrates the x-y in-plane misalignment.  In this case, the probe does 

not perfectly cover the microchannel top, and rotates about the z-axis by several degrees. The 

effect of the x-y in-plane misalignment is similar to the z-direction misalignment and will cause 

the non-uniformity deformation of the microchannel, which will further cause the variations in 

the voltage outputs among the transducers. This type of misalignment can lead to the increasing 

or decreasing trend of voltage output as well, but the response time of the transducers should be 

the same. 
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Figure 2.18. Schematic of the x-y in-plane misalignment. (x-y top view) 

2.4.3. Curved surface of CC specimen 

The interaction between the tactile sensor and a curved tissue surface is depicted in 

Figure 2.19. Since the sensing-plate and its surrounding region of the microstructure are on the 

same plane, the surrounding region will interfere with the interaction between the sensing-plate 

and the tissue. For instance, any relatively large extrusions and curved shape at the cartilage 

exterior surface may interact with the surrounding region of the microstructure, thus either 

preventing full contact of the sensing-plate with the tissue surface or causing lateral loading to 

the sensing-plate. Such non-full contact of the sensor with a tissue surface and lateral loading 

introduces significant errors in the measured results, as will be seen later on. 
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Figure 2.19. Interaction between the tactile sensor and a CC tissue at its exterior surface. (dashed 

line: before indentation; solid line: after indentation) 

2.5. Discussion 

In this section, sensor configuration, rationale, fabrication critical and performance 

characterization are discussed, together with the encountered technical issues.  To address the 

voltage output variations caused by fabrication variation or probe misalignment, the resistance 

change from each transducer is suggested to introduce for replacing the use of direct voltage 

output in the data analysis. Although, the types of misalignment can be distinguished by the 

increasing or decreasing trend of the voltage output and the response time of the transducers, for 

further reducing the effect of misalignment, the average of sensor deflection, zs-i at each 

transducer can be adopted. As such, the voltage output variation caused by the misalignment can 

be canceled out, and further optimize the value of sensor deflection. Moreover, from the results 

of sensor characterization with a rigid probe, linear relations and high robust features are 

observed in both the force-deflection relation and resistance change-deflection relation. Thus, 
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despite the inconsistency in the initial voltage values caused by the misalignment of probe or 

fabrication variations, the sensor is still able to detect the change in the input. As a result, the 

voltage change or resistance change from each transducer and its slope should be used in the 

later calculation. 

However, the effect of the CC specimen with a curved surface will require further 

investigation. A built-in probe is suggested to add on the top of the tactile sensor to optimize the 

sensor-tissue interaction region, avoid surface extrusions, achieve conformity of the curved 

tissue surface during measurement and ease the data interpretation for deriving the mechanical 

properties of a soft tissue for the recorded data. 

2.6. Conclusion 

This chapter depicts a previous designed polymer-based microfluidic resistive tactile 

sensor without a built-in probe employed in this study for detecting distributed normal loads. The 

theoretical models for the microfluidic device from both the mechanical and electrical 

perspectives are presented, which are the basis for the further analysis on the indentation-

relaxation testing with the incorporation of the sensor. The fabrication process for the polymer-

based microfluidic resistive tactile sensor provides a low cost and simple manufacturing solution. 

The performance characteristics of this tactile sensor were evaluated by two experimental studies. 

By the experimental study on sensor performance characterization via a rigid probe, the sensor 

stiffness was obtained by the force-deflection relation. The relation between the pre-defined 

indentation displacement and the resistance change of the tactile sensor was also built and used 

to extract the mechanical properties of soft tissues with a flat surface in our previous study. In the 

experimental study on sensor performance in CC measurement at its exterior surface, the severity 

of raggedness in the measured deflection-depth (zs-zin) relation indicates the interference of 
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extrusions in these measurements and sensor limit of capturing the true mechanical properties of 

CC with a curved surface. 

According to the three repeated sensor characterization measurements, the sensor 

shows its robust feature and can be used over a long-duration with consistent mechanical 

behavior. However, both the probe misalignment issues and the sensor limit capability of 

capturing the mechanical behavior of CC with curved surface introduces significant errors to the 

measured results or even fails to detect the true mechanical properties of soft tissues. As such, 

the sensor design needs to be improved in the future for providing a better solution to these two 

main technical issues. 

In sum, the polymer-based microfluidic tactile sensor without a built-in probe is 

introduced in this chapter. The working principle, fabrication protocols, theoretical model, sensor 

performance characterization, and technical issues encountered in the experimental 

characterization are thoroughly discussed. 
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CHAPTER 3  

NUMERICAL AND EXPERIMENTAL STUDY ON A BUILT-IN PROBE 

ON THE TACTILE SENSOR FOR CURVED SURFACE 

The objective of this chapter is to investigate the feasibility of a tactile sensor with a 

built-in probe for mechanical measurements of CC at its exterior surface. In chapter 2, it 

demonstrates a  tactile sensor without a built-in probe and successfully characterized its 

performance by a rigid cylindrical probe which is capable of measuring mechanical properties of 

soft tissues with a flat surface in our previous study[48]. However, the sensor fails to measure the 

mechanical properties of CC at its exterior surface, due to its nonconformity to the curved tissue 

surface. In this chapter, a built-in probe is added to the top of the sensor to conform to the curved 

tissue surface in measurement, so that the curved tissue surface does not distort the measured 

mechanical properties of CC. Although flexible tactile sensors have been proposed for 

mechanical measurement of soft tissues with a curved surface and two flexible tactile sensors 

have recently been demonstrated for great conformity to curved tissue surface [49, 50], 

mechanical measurements of soft tissues with curved surface using such sensors have not been 

reported in the literature. This chapter is the first of its kind to achieve conformal mechanical 

measurements of soft tissues with a curved surface using a tactile sensor and measure the 

mechanical properties of CC at its exterior surface. The sensor used in this chapter is sensor B.         

3.1. Configuration and Rationale  

Based on the tactile sensor described in Chapter 2, a built-in probe is added to the top 

of the PDMS microstructure and coincides with the transducer array and has an in-plane 

dimension of 0.5mm5mm as illustrated in Figure 3.1. Since the probe and the transducer array 

share the same width, the probe-tissue interaction is confined to the top of the transducer array, 
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thus avoiding the interference from the interaction between the tissue and the rest region of the 

microstructure surrounding the probe in mechanical measurement. As such, the distributed 

deflection acting on the top of the built-in probe causes geometrical changes in the transducer 

array and registers as resistance changes by the transducers at their locations.  The built-in probe 

can be added to the sensor by pouring a mixture of 10:1 (Base: Curing agent) PDMS material 

into the mold for the probe. The key dimensions and their values of the tactile sensor are 

summarized in Table 2.1 located in Section 2.1. 

 

(a) 

 

(b) 

Figure 3.1. Schematics of a tactile sensor with a built-in probe: (a) 3D configuration; (b) Top 

view with key dimensions. 
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CC possess an extremely irregular geometry and are thus chosen as the example of a 

soft tissue with a curved surface for analysis. Figure 2.19 in Section 2.4.3 already depicts the 

interaction between a CC tissue and the tactile sensor without a built-in probe. Owing to the 

curved tissue surface, the rest region of the microstructure surrounding the transducer array 

interferes with the interaction between the portion of the microstructure above the transducer 

array and the tissue region underneath, which prevents the sensor from capturing the true 

mechanical properties of the tissue region underneath the transducer array.  After adding a built-

in probe on the top of PDMS microstructure, the interaction between CC and the sensor with a 

built-in probe is presented in Figure 3.2  providing the comparison with the tissue-sensor 

interaction without a built-in probe in Figure 2.19. Figure 3.2 shows that such interference has 

been avoided after attaching a built-in probe to the top of the microstructure. Meanwhile, as 

compared with the sensor-tissue interaction in Figure 2.19, the probe-tissue interaction in Figure 

3.2 is confined to a very small region. Thus, the curved tissue surface in the probe-tissue 

interaction can be treated as a flat surface. As long as a full contact between the probe and the 

tissue region is maintained in a measurement, the true mechanical properties of the tissue region 

can be manifested in the sensor outputs. In addition, since the built-in probe is attached right on 

the portion of microstructure which is above the microchannel, the probe top deformation could 

be directly transferred to the microchannel top deflection and prevent the inference of the 

surrounding area of the microchannel to alleviate the effect of x-y in-plane misalignment. 
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Figure 3.2. Interaction between the tactile sensor with a built-in probe and a CC tissue at its 

exterior surface. (dashed line: before indentation; solid line: after indentation) 

Figure 3.3 (a) illustrates the rationale for mechanical measurement of a CC tissue with 

a curved surface using the sensor with a built-in probe. After being aligned with the tissue 

surface, the sensor is pressed against the tissue with a pre-defined indentation depth input, zin. 

Then, the tissue region under the probe, the probe and the portion of the microstructure above the 

transducer array all experience deflection. Owing to the deflection conformity, the indentation 

depth input, zin, should be equal to the sum of tissue deflection, zt , the probe deflection, zp, and 

the deflection of the microstructure, zs. The sum of the probe deflection, zp, and the deflection of 

the microstructure, zs can be considered as the equilibrium deflection of the sensor with a built-in 

probe, zs’. 

sptin zzzz   , 'stin zzz                                                    (3.1) 

The microstructure, the probe, and the tissue region can be treated as a lumped-model 
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with two or three springs in series as shown in Figure 3.3 (b) and (c). The reaction force, F, 

should be the same for them:  

'' sssspptt zkzkzkzkF                                        (3.2) 

where kt, kp, ks and ks’ denote the tissue stiffness, probe stiffness, sensor stiffness, and 

equilibrium stiffness of the sensor with the built-in probe, respectively. Note that the sensor 

deflection can be obtained from the transducers and therefore serve as the outputs in a 

measurement. The probe deflection is related to the sensor deflection by: 

s

p

s

p z
k

k
z                                                              (3.3) 

According to Equation 3.1 and Equation 3.3, the tissue deflection becomes: 
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zzz    , 'sint zzz                                                (3.4) 
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                                                 (b)                              (c) 

Figure 3.3. A tactile sensor with a built-in probe for measuring mechanical properties of a soft 

tissue with non-flat surface (drawn not to scale for clear illustration): (a) rationale (the 

transducers are color coded for clear illustration of resistance changes caused by sensor 

deflection), (b) three springs lumped-model and (c) two springs lumped-model (sensor with 

built-in probe is considered as one equilibrium spring )of PDMS microstructure, built-in probe 

and tissue region for the tissue-sensor interaction. 

Based on Equation 3.2 and Equation 3.4, the tissue stiffness can be expressed as: 
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In a measurement, the recorded data on the tissue region is the relation of the sensor 

deflection versus the indentation depth. Here, ẑ , 'ẑ  defines the deflection-depth slope of the 

sensor deflection (without built-in probe) versus the indentation depth and the deflection-depth 

slope of the equilibrium sensor deflection (with built-in probe) versus the indentation depth 

which are immune to the uncertainty in contact point. 

The portion of the microstructure above the transducer array undergoes flexural 

deflection in a measurement. Then, the sensor stiffness is related to the sensor design parameters 

by: 
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where A is the probe in-plane dimension; and Es and hs are the elasticity and height of the PDMS 

microstructure, respectively. The probe experiences axial loading as a block and its stiffness is 

given by: 
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where Ep and hp are the elasticity and height of the probe, respectively. The ratio of the sensor 

stiffness to the probe stiffness is defined as: 
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The tissue stiffness is related to the probe in-plane dimension by:  
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According to Equation 3.7~3.10, the design parameters of the sensor and the built-in 

probe can be adjusted for achieving the desired relations among the sensor, probe, and tissue 

stiffness, which is critical for accurate mechanical measurement of a tissue with a curved surface.  

3.2.2. Design and Qualitative Analysis of the Tactile Sensor with a Built-in Probe 

As illustrated in Figure 3.4, three sets of design parameters are involved in the 

mechanical measurement of a CC tissue with a curved surface: 

i) Tissue parameters: tissue baseline thickness, ht, tissue elasticity, Et, and the highest thickness, 

t, above the baseline thickness;   

ii) Sensor parameters: sensor stiffness, ks, and sensor linear deflection range, (0, zs_linear); 

iii)  Built-in probe parameters: probe elasticity, Ep, and probe thickness, hp. 
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The tissue parameters are the inherent characteristics of the tissue itself. The 

parameters of the sensor and the probe need to be tailored to meet the following three 

performance criteria for the tissue of interest: 

1) The indentation depth range needs to ensure that the tissue strain reaches a certain level; 

2) The probe should be conformed to the curved tissue surface in the lower indentation depth 

range so that the higher indentation depth range is utilized to acquire the mechanical 

properties of the tissue region; 

3) The sensor needs to operate in its full linear deflection range in accordance with the 

indentation depth range so as to minimize experimental errors. 

Table 3.1 summarizes the related parameters and their values used for the design of the 

sensor and the probe. The elasticity of CC, Et, is in the range of 1MPa-7MPa and its baseline 

thickness, ht, is about 10mm. The highest thickness of the tissue, t, above the baseline thickness 

is assumed to be 0.5mm. The maximum linear deflection of the sensor, zs_max, is 0.8mm. The 

sensor stiffness, ks, is 1272Nm-1
, which is obtained from the experimental characterization of the 

sensor. The probe in-plane dimension, A, is fixed at 0.5mm5mm. The probe is assumed to be 

also made of 10:1 (Base: Curing agent) PDMS and its elasticity, Ep, is the same as the PDMS 

microstructure. 

Table 3.1 The key design parameters and their values of the sensor and the built-in probe for 

mechanical measurement of costal cartilage tissues. 

Parts Parameters Values Symbols 

Tissue 

Elasticity range 1MPa-7MPa Et 

Baseline thickness 10mm ht 

Highest thickness 0.5mm t 

Maximum strain 10% εt_max 

Sensor Sensor stiffness 1272Nm-1
 ks 

Maximum linear deflection  0.8mm zs_ linear 

Built-in 
probe 

Elasticity 700kPa Ep 

In-plane dimension 0.5mm5mm A 
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Figure 3.4. Three sets of design parameters involved in mechanical measurement of a CC tissue 
with curved surface (cartilage axial direction): i) Tissue parameters: tissue baseline thickness, ht, 

tissue elasticity, Et, and the highest thickness, t, above the baseline thickness; ii) Sensor 
parameters: sensor stiffness, ks, and sensor linear deflection range, (0, zs_ linear) (Solid line: before 

indentation depth; Dash line: after indentation depth); iii) Built-in probe parameters: probe 
elasticity, Ep, and probe thickness, hp. 

The maximum tissue strain, t_max, relative to the baseline thickness in a measurement 

is assumed to be 10%. Then, the maximum tissue deflection, zt_max, becomes: 

_ max _ maxt t tz h                                                        (3.11) 

The maximum tissue deflection is 1mm. According to Equation 3.1 and 3.9, in 

response to the maximum tissue deflection, zt_max, the maximum sensor deflection, zs_max, and the 

maximum probe deflection, zp_max, are: 
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Then, based on Equation 3.1, 3.12, and 3.13, the maximum indentation depth becomes: 
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Similarly, the sensor deflection, s, and the probe deflection, p, used for 

accommodating the curved tissue surface with the highest thickness, t, above the baseline 

thickness become:   
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Then the indentation depth, in, required for tissue surface accommodation is: 
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Based on Equation 3.12~ 3.16, we analyze how to tailor the design of the sensor and 

the probe to meet the three performance criteria. In most cases, the maximum tissue deflection is 

above 1mm for achieving a relatively high tissue strain (>10%). According to Equation 3.12, 

when the sensor stiffness, ks, is the same as the tissue stiffness, kt, the maximum sensor 

deflection, zs_max, is equal to the maximum tissue deflection, zt_max. Since the microstructure in 

the sensor is only 1mm thick, the maximum linear deflection, zs_ linear, is less than 1mm (zs_ 

linear<1mm). Moreover, according to the Equation 3.15, the sensor needs to deform by a small 

amount, s, in the lower indentation depth range when the built-in probe deforms, p, to conform 

to the curved tissue surface with the highest thickness, t. In other words, the sum of the 

maximum sensor deflection, zs_max, and sensor deflection for fitting the curved surface, s, should 

be lower than its maximum linear deflection, zs_ linear (zs_max+s <zs_ linear), which is lower than 

1mm. Then, the sensor deflection is able to stay in its linear deflection range for capturing the 

true mechanical properties of the tissue. Therefore, the sensor stiffness, ks, must be lower than 

the tissue stiffness, kt (ks <kt).  
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When the sensor stiffness, ks, is lower than the tissue stiffness, kt, the maximum sensor 

deflection, zs_max, is a fraction of the maximum tissue deflection, zt_max. The ratio of the sensor 

stiffness to the tissue stiffness, kt / ks, needs to be tailored such that the maximum sensor 

deflection, zs_max, is a little bit lower than the adjusted maximum linear deflection, zs_linear-s, of 

the sensor so that the collected data is not located in a very low linear deflection range of the 

sensor.  

According to Equation 3.13, the maximum probe deflection, zp_max, is the maximum 

sensor deflection, zs_max, multiplied by the stiffness ratio, . Since the built-in probe needs to 

accommodate the highest thickness, t, on the curved tissue surface by p, the probe stiffness, kp, 

should be lower than the sensor stiffness, ks, or >1. In the meantime, the probe elasticity, Ep, 

and in-plane dimension, A, are fixed, in accordance with the material used and the dimension of 

the transducer array, respectively.  Then, according to Equation 3.8, a low probe stiffness 

translates to a high probe height, hp_buckling, which may cause buckling in the tissue-probe-sensor 

interaction. As such, the probe height, hp, is a tradeoff between accommodation of the highest 

thickness, t, on a curved tissue surface and avoidance of buckling (p <hp <hp_buckling).      

In Table 3.1, the elasticity range of CC is 1MPa-7MPa. According to Equation 3.10, 

the highest tissue stiffness is seven times the lowest tissue stiffness. Then, the sensor and the 

probe designed for measuring CC with its elasticity in the higher end will cause the collected 

data on CC with its elasticity in the lower end to be located with the lower linear deflection range 

of the sensor. This indicates that the measured results on CC with lower elasticity bear a much 

larger amount of experimental errors, as compared with its counterparts on CC with higher 

elasticity. In contrast, the sensor and the probe designed for CC with its elasticity in the lower 

end will simply fail to measure the mechanical properties of CC with its elasticity in the higher 
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end.  

Finally, the theoretical analysis on the relations of the design parameters of the sensor 

and the probe to the tissue parameters is a scaling analysis. The tissue-probe-sensor interaction in 

mechanical measurement is, by no means, simply one-dimensional. To accurately determine the 

design parameters of the sensor and the probe, a numerical analysis needs to be conducted for 

soft tissues of interest in the future.  

3.3. Performance Characterization 

3.3.1. Sample preparation 

Two human CC samples (CC#2 and CC#3) were first chosen from two PC patients at 

Children’s Hospital of The King’s Daughter’s (CHKD), Norfolk, VA for the trial proof-of-

concept test. Prior to removal of the cartilage tissues, patient consent was obtained with full IRB 

approval. Both of the samples were from ribs of the lower thoracic region. Figure 3.5 (a) and (b) 

show the two samples from different ribs of a 15yr-old male patient. These two samples were 

measured right after they were removed from the patient. Note that intercostal muscles and 

perichondrium were removed from the surface of the samples. 
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(b) 

Figure 3.5. Pictures of human PC costal cartilage samples with measured locations (a) CC #2  

(b) CC #3. (Blue color on CC #2 and CC #3 came from the marker for marking locations; black 

blocks and arrows on the cross sections of the samples indicate the locations of the probe in 

measurement; and left side: toward rib, right side: toward sternum) 

3.3.2. Testing protocol 

Figure 3.6 illustrates the experimental setup on an optical table for both performance 

characterization of the sensor and mechanical measurements of the CC samples. It is similar to 

the experimental setup up used in Section 2.3.2.  Similarly, with the probe facing downward, the 

sensor was connected to a load cell and was further fixed to a micropositioner. A few electronic 

instruments were connected to the sensor for recording the resistance signals of its transducer 

array. The details about the experimental setup and signal acquisition can be found in the 

literature in Section 2.3.1. However, the method for fixing the sample is slightly changed. In 

brief, prior to measuring the CC samples, a Pyrex slide was placed under the sensor. With the 

micropositioner controlling the displacement of the sensor, the sensor was pressed against this 

slide, and the corresponding overall reaction force and the resistance changes were recorded by 

the load cell and the sensor, respectively. The only difference is the tactile sensor used in this 

setup is attached with a built-in probe. The built-in probe of 0.5mm5mm3mm is aligned right 
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over the transducer array and has a 1mm overlap at each side of the transducer array along the 

array length to avoid the edge effect during the probe deformation. The elasticity of the built-in 

probe is the same elasticity of PDMS microstructure to ease the data processing.  

The sensor displacement was the deflection at the top of the probe, which is defined as 

the sensor deflection, zs. Figure 3.7 illustrates the measured relations of the resistance changes, 

R, of the five transducers (1~5) and overall reaction force, F, versus the sensor deflection, zs’. 

Defined as the slope of the overall reaction force versus the sensor deflection, the measured 

sensor stiffness, ks’, was 960Nm-1
.  Since the sensor A used in Chapter 2 is damaged, a sensor B 

with an identical design is chosen for this performance characterization. Sensor A is only used 

for showing the limitation of the sensor without a built-in probe. It won’t affect any measured 

results in the following study. The stiffness mentioned previously, is the equilibrium stiffness of 

the sensor B with a built-in probe. The relations of the resistance changes to the sensor deflection 

were utilized to convert the recorded resistance changes in the CC measurements to the sensor 

deflection. Owing to fabrication variation, the relation of the resistance change versus the sensor 

deflection varied among the transducers, although they were designed identically.  
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 (b)                                                

Figure 3.6. Experimental setup (a) schematic (b) the sensor with a built-in probe aligned on CC.  

 

Figure 3.7. Performance characterization of the tactile sensor with a built-in probe: resistance 

changes, R, of the five transducers (1~5) and overall reaction force, F, as a function of the 

sensor deflection, zs’. 

As shown in Figure 3.5 (a) and (b), the four locations: anterior/posterior surfaces and 

superior/inferior borders, at the same position of CC # 2 and #3 measured using the sensor with a 

built-in probe. To get these locations facing the sensor, a CC specimen was rotated and fixed at 

its two ends with clips. A 2-axis manipulator with a mold holder was placed under the measured 

position of the sample for further securing the sample in place and serving as the supporting 

substrate during measurement. PBS was sprayed on the cartilage surface to maintain its 

hydration during measurement. After the sensor was manually aligned with a CC specimen, a 

custom LabVIEW program was used to carry out a measurement. Only one measurement was 
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conducted at each location of CC #2 and CC #3, since the first measurement was believed to be 

close to their in vivo mechanical behavior as mentioned in the CC#1 measurement in Chapter 2. 

The pre-defined indentation patterns used for these two samples still follow the pattern 

in Figure 2.10. As compared with the testing parameter for CC#1( zstep=100µm , ramp speed 

of &z =1mms-1
 , a hold time of thold=20s and a final indentation depth, zfinal=1mm). The testing 

parameters used for CC #2 and CC#3 were: zstep=80µm, &z =0.2mms-1
, thold=40s, and 

zfinal=1.28mm. The reduction in incremental depth was aimed to increase data points in a 

measurement; the reduction in ramp speed was to match those values commonly used in CC 

measurements in the literature [1]; the increase in hold time helped quantitatively maximize the 

normalized relaxation which is defined in the next section and used to qualify the CC viscosity; 

and the built-in probe increased the linear operation range of the sensor and this allowed the 

increase in final indentation depth.  

A CC sample experienced a step displacement input at each incremental depth and 

underwent stress relaxation over the following hold time. In response to the indentation depth 

input, the outputs were the time-varying deflections of the sensor at the locations of the 

transducer array, or spatially distributed sensor deflection along the transducer array. Thus, the 

originally recorded data on a CC sample were the spatially distributed sensor deflection as a 

function of time, in response to the indentation depth input. 

As mentioned in Section 2.4.1, one of the encountered technical issues for this sensor 

is the fabrication variation, even with the identical design. In order to solve this issue, a PDMS 

block with mixing ratio of 1 to 10 and a dimension of 3mm ×3mm×6mm is used as a standard 

for the sensor calibration. Thus, the variation caused by the fabrication process among the 

different sensors with identical design can be discarded. The measured CC elasticity can be 
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compared and calibrated with the PDMS elasticity, 700kPa to ensure its accuracy. Please note 

that mechanical properties of the CC in the following sections of this dissertation are all being 

tested by the calibrated tactile sensor.  

3.3.3. Data analysis 

 In order to simplify the data analysis, the two springs in a series lumped-element model is 

adopted in this section. As such, according to Figure 3.8 and Equation 3.5, the deflection-depth 

slope at the start of the hold time of each incremental depth is defined as the instant deflection-

depth slope. Then, the instant CC stiffness becomes: 
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 As shown in Figure 3.6 (a), the probe is very small relative to a CC specimen. Then, the 

probe-tissue interaction can be treated as a rectangular flexible flat-ended probe on a semi-

infinite elastic medium. The tissue instant indentation modulus is thus related to the measured 

instant tissue stiffness by [51]:    
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where =0.4 is the Poisson’s ratio of a CC specimen, and a=0.25mm is half of the probe width. 

instantk  (t=0) is the instant stiffness of CC at the start of the hold time. 

 According to Equation 3.12, the instant stress, i-instant, and relaxed stress, i-relaxed, in 
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where A=0.5mm5mm denotes the probe in-plane dimension, and zs’-i-instant and zs’-i-relaxed denote 

the instant and relaxed sensor deflection, respectively. Since the curved shape of the tissue region 

under the probe is mild, it is reasonable to assume the in-plane dimension of the tissue region is 

the same as the probe in-plane dimension. As shown in Figure 3.8(b), we define the normalized 

relaxation as the stress drop, i, normalized to the stress input, i-step, at the ith incremental 

depth:  
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                                   (3.20)                               

The instant indentation modulus and normalized relaxation of the CC segments were 

derived from the recorded data to quantify their elasticity and viscosity, respectively. 

     

                                  (a)                                                                       (b) 

Figure 3.8. Conformal mechanical measurement of costal cartilage at its exterior surface using 

the tactile sensor with a built-in probe (a) definition of the deflection-depth slope (here, 'ẑ = 

instantẑ ) (b) definition of parameters related to normalized relaxation. 

3.3.4. Finite Element Analysis 

3.3.4.1. Finite Element Modeling 

In this section, to investigate how tissue elasticity measured using the indentation-

relaxation method varies with tissue parameters, a finite element model (FEM) is created using 
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COMSOL Multiphysics (Version 5.1, COMSOL Inc., Burlington, MA, USA). In the FEM, the 

tactile sensor is represented by the PDMS microstructure, the Pyrex substrate, and the PDMS 

built-in probe. The built-in probe is aligned on the top center of the PDMS microstructure and 

along the microchannel length. The sensor with a built-in probe is flipped over and aligned at the 

cylindrical CC exterior surface. Below the CC specimen, a steel mold holder is also included in 

the FEM as shown in Figure 3.9. For simplicity, the built-in probe, the PDMS microstructure, 

and the cylindrical CC are assumed to be elastic materials. The bottom surface of the mold 

holder is fixed. The input is the pre-defined indentation depth acting on the Pyrex substrate 

bottom. The output is the top deflection of the probe (z-displacement) at the tissue-probe 

interaction surface.  

With the sensor parameters being fixed in the FEM, the pre-set CC elasticity (Young’s 

modulus) and the CC diameter are varied separately to examine how they affect the deflection-

depth slope, simulatedẑ  and the simulated tissue elasticity, simulatedE , which is considered to be 

equivalent to the measured tissue elasticity instantE  in the experimental measurement. Furthermore, 

since the key parameters of the sensor and built-in probe is determined during the fabrication 

process before the testing, it is critical to see how the compensation coefficient, γ, defined as the 

ratio of pre-set CC elasticity ( setpreE  ) to the simulated CC elasticity ( simulatedE ) by the sensor 

with a built-in probe can be determined by using these particular designed key parameters of the 

tactile sensor. Other than the main geometric dimension of the tactile sensor listed in Table 2.1 

and Table 3.1, the material properties of the simulation are summarized in Table 3.2. There are 

two CC variables, pre-set CC elasticity, setpreE   and CC diameter, hpre-set. To estimate how the 

simulated CC elasticity,
 simulatedE , varies with the CC diameter, hpre-set ,at different pre-set CC 
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elasticity,
 setpreE  , ranging from 100kPa to 7000kPa, the CC diameter, hpre-set, is increased by 

1mm at a time in the range of 3mm-14mm. The in-plane dimension is  

0.5mm ×5mm. 
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Figure 3.9. The z-displacement distributions of the tissue-sensor interaction in the indentation-

relaxation test with a 0.64 mm indentation depth applied on the sensor bottom: (a) 3D view;  

(b) side view of x-z plane. 

Table 3.2 Material properties used in the simulation. 

Parts Parameters Symbols Values Unit 

PDMS 
Microstructure 

Young’s modulus of PDMS Es 700 kPa 

Poisson’s ratio of PDMS νs 0.45 - 

Density of PDMS ρs 1000 kgm-1
 

Height of PDMS hs 1 mm 

Microchannel cross-section wE×hE 0.5×0.08 mm2
 

Pyrex 
substrate 

Young’s modulus of the substrate EPyrex 1560 GPa 

Poisson’s ratio of the substrate νPyrex 0.2 - 

Density of the substrate ρPyrex 2230 kgm-1
 

Height of the substrate hPyrex 1 mm 

Built-in probe 

In-plane dimension A 0.5mm5mm mm2
 

Young’s modulus of probe Ep 700 kPa 

Poisson’s ratio of probe νp 0.45 - 

Density of probe ρp 1000 kgm-1
 

Height of probe hp 3 mm 

Costal 
Cartilage 

Young’s modulus range of CC Et 0.1,0.5—7(increment:0.5) MPa 

Poisson’s ratio of CC νt 0.4 - 

Density of CC ρt 1000 kgm-1
 

Diameter range of CC ht 3-14(increment:1) mm 

Mold holder  
Young’s modulus of mold holder Eholder 530 GPa 

Poisson’s ratio of mold holder νholder 0.31 - 

Density of mold holder ρholder 1560 kgm-1
 

-- Indentation depth zin 0.64 mm 

As shown in Figure 3.9 (a) and (b), the z-displacement distribution of the tissue-sensor 

interaction with an input indentation depth of 0.64mm acting on the exterior surface of the CC 

specimen, a higher deflection is found at the probe surface as compared with the deflection of the 

sensor top and microchannel top. Figure 3.10 (a) shows the simulated tissue strain at the tissue-

sensor interaction surface across x-y plane when a 0.64mm indentation depth is applied on the 

sensor bottom. Figure 3.10 (b) and (c) illustrate the simulated z-displacement distribution of the 

contact surface on the CC exterior surface and the top surface of the five transducer array along 

the microchannel, respectively. It should be noted that the distributed deflection, z-displacement, 

acting on the top of the transducer array translates into the geometrical changes of the 

microchannel and registers as resistance changes. Next, the analytical method discussed in the 
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prior section is used to relate the instant simulated CC stiffness, simulatedk , and the instant 

simulated CC elasticity, simulatedE , of the CC site above the in-plane surface of the probe to the 

deflection slope, which is the probe top deflection versus the indentation depth. The overall 

deflection of the sensor with a built-in probe is represented by the average value of the probe 

deflections above the five transducer pairs. Therefore, the numerical result is the average 

deflection-depth slope, which mimics the deflection-depth slope measured in an experiment, and 

then Equations. 3.17 & 3.18 are respectively used to extract the tissue stiffness and the tissue 

elasticity from the simulated deflection-depth slope.  

 

(a) 
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(b) 

 

(c) 

Figure 3.10. Simulation results of (a) the tissue strain at the tissue-sensor interaction surface 

across x-y plane; the z-displacement distribution with an indentation depth input of 0.64mm 

occurring at (b) the tissue-probe interaction surface on the costal cartilage exterior surface across 

the x-y plane, and (c) top surface of the transducer array below the built-in probe across x-y 

plane. 

3.3.4.2.Numerical Simulation Results and Discussion 
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Figure 3.11(a) illustrates simulated CC elasticity, which is equivalent to the measured 

CC elasticity in the experiment, as a function of the CC diameter at different pre-set CC 

elasticity ranging from 100kPa-7000kPa. It is clear that the simulated CC elasticity goes up 

slightly with CC diameter when the CC diameter is smaller than 6mm. However, when the CC 

diameter is larger than 6mm, the simulated CC elasticity is relatively stable. The probe-tissue 

interaction can be considered as a flat-ended probe on a semi-infinite elastic medium at a large 

CC diameter since the CC diameter is much larger than the height of the built-in probe. However, 

when the CC diameter is close to the probe’s height, this FEM will cause more errors and leads 

to inaccurate simulated CC elasticity. In the other words, when the CC diameter is small and in 

the range of 3mm-6mm, the simulated CC elasticity has larger differences with the pre-set CC 

elasticity. However, when the CC diameter is large and in the range of 6mm-14mm, the 

difference between the simulated and pre-set CC elasticity becomes smaller with the increase of 

CC diameter. The simulation results show that with small CC diameter (ht<6mm), the constraint 

at the bottom surface of the CC sample, equivalent to a rigid substrate, plays an effect on the 

simulated CC elasticity; while with a large CC diameter (ht ≥6mm), the bottom boundary has less 

influence on the simulated CC elasticity, due to its large distance from the sensing-plates. These 

simulated results can also be represented by the compensation coefficient as a function of pre-set 

CC elasticity as shown in Figure 3.11 (b). The compensation coefficient drops at low pre-set CC 

elasticity (Et≤500kPa) and stabilizes at high pre-set CC elasticity (Et >500kPa), no matter how 

the CC diameter varies. When the CC diameter is smaller than 6mm, the compensation 

coefficient is much larger than the one with a larger CC diameter (ht ≥6mm), which leads to the 

same conclusion as Figure 3.11 (a). Overall, the simulated CC elasticity does not vary much with 

the change of the CC diameter. Thus, the numerical results are only used for validating that our 
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sensor is immune to the measured sample thickness. In addition, the values of pre-set CC 

elasticity are almost two times larger than the values of simulated CC elasticity. This is simply 

because the CC is considered as elastic material while the CC is viscoelastic material in real-life. 

Thus, the measured CC elasticity in the experiment does not need to be adjusted according to the 

simulation results.  

Figure 3.11(c) indicates the compensation coefficient as a function of CC diameter at 

different pre-set CC elasticity. As can be seen from the figure, no matter how the pre-set CC 

elasticity varies, there is a strong linear relationship between the CC diameter and the 

compensation coefficient. Although the compensation coefficient is relatively large with a small 

CC diameter and has more errors according to Figure 3.11(a), but overall it does not change 

much with the variation of the CC diameter. 
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(b) 

 

(c) 

Figure 3.11 Simulation results of (a) simulated CC elasticity, which are equivalent to the 

measured CC elasticity, as a function of CC diameter  in the range of 3mm-14mm (100-7000: 

pre-set CC elasticity,kPa), and compensation coefficient,  γ,  as a function of (b) pre-set CC 

elasticity in the range of 100kPa-7000kPa (3-14: CC diameter, mm) at different CC diameters , 

and (c) CC diameter  (ht: 3mm-14mm) at different pre-set CC elasticity (Et: 100kPa-7000kPa). 

(100-7000: pre-set CC elasticity, kPa) 
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3.3.5. Measured Results and Discussion 

3.3.5.1.Conformity to the curved tissue surface 

Figure 3.12 compares the difference in original recorded data between the sensor 

without a built-in probe and the sensor with a built-in probe. By combining these original 

recorded data with the pre-defined indentation depth input, we can get the spatially distributed 

instant and relaxed sensor deflections along the transducer array as a function of the indentation 

depth, as shown in Figure 3.13.   

 

                                        (a)                                                                (b) 

Figure 3.12. Original recorded data in a mechanical measurement: sensor deflection at the 

locations of the five transducers (1~5) as a function of time, in response to the pre-defined 

indentation depth input (a) CC #1 Anterior (b) CC #2 Anterior. (1-5: sensor deflections for first 

measurement at transducer 1-5) 

Figure 3.13 shows the spatially distributed sensor deflection as a function of 

indentation depth of CC #2 at different locations. The corresponding results on CC #3 are 

omitted, due to their similarity. Noticeably, uncertainty in the contact point varies among the 

four measurements. All the measured deflection-depth relations are smooth and the difference in 

sensor deflection among the locations of the transducers is trivial, indicating great conformity of 

the probe to a tissue region, except the relatively large difference in sensor deflection between 
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the fourth transducer and the rest of the transducers at the posterior surface, which was caused by 

its associated interface electronics. The measured results on the posterior surface of CC#2 are 

obtained by excluding the fourth transducer later on. 

 

                                        (a)                                                                    (b)  

 

                                         (c)                                                                  (d) 

Figure 3.13.The spatially distributed sensor deflection as a function of the indentation depth 

measured using the sensor with a built-in probe (solid line: instant values; dashed line: relaxed 

values) (a) anterior surface (b) posterior surface (c) superior border (d) inferior border of CC #2. 

(1-5: sensor deflections for first measurement at transducer 1-5) 
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  In the low indentation range, the probe is not in full contact with the tissue region, 

due to its curved surface, and thus the deflection-depth relation is relatively rough. As the 

indention depth increases, the probe conforms to the curved tissue surface and achieves full 

contact with the tissue region. In the middle indentation range, the contact area remains 

unchanged, and the sensor deflection solely arises from the tissue stiffness.  In the high 

indentation range, the sensor operates beyond its linear range and causes nonlinearity in the 

deflection-depth relation, as shown in Figure 3.13(a). In Figure 3.13(b), (c), and (d), slippage 

gradually happens at the indentation depth of ~0.88mm at the posterior surface, ~1mm at the 

superior border and ~0.8mm at the inferior border of CC #2, respectively, so that the sensor 

deflection starts to diverge among the locations of the transducers.  

The curved tissue surface will affect the spatially distributed sensor deflection to a 

relatively low extent, due to the small contact area. Meanwhile, tilt misalignment between the 

probe and a tissue surface is unavoidable, and translates to either an increasing or decreasing 

trend in the spatially distributed sensor deflection along the transducer array. As such, the spatial 

variation in the sensor deflection is believed to be a combination of curved tissue surface and tilt 

misalignment between the probe and the tissue surface.  As shown in Figure 3.13, the very slight 

spatial variation in the sensor deflection indicates a mild curved tissue surface and a small tilt 

misalignment. 

Uncertainty in contact point can be alleviated by using the measured deflection-depth 

slope. Given conformity and thus constant contact area, the average sensor deflection from the 

five transducers alleviates the measurement errors from tilt misalignment, and therefore is used 

to derive mechanical properties of the CC samples in the following section. According to 

Equation 3.2, the reaction force of a tissue region can be obtained from the average sensor 
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deflection. In summary, the built-in probe is used for achieving the conformity, and the 

transducer array is used for both ensuring the conformity and obtaining the reaction force in a 

measurement. 

3.3.5.2.Measured mechanical properties 

Figure 3.14 shows the average sensor deflection as a function of the indentation depth 

at the four locations of CC #2 and CC #3. As discussed earlier, the sensor deflection is 

determined by the tissue’s mechanical properties only in the middle indentation range. Therefore, 

only the data in the middle indentation range are used for deriving the tissue’s mechanical 

properties.  Due to the variation in contact point misalignment, the middle indentation range used 

for extracting the deflection-depth slope varies among the measurements. The difference in the 

measured deflection-depth slope among the four locations of each sample is quite noticeable. In 

CC #2, the superior border and anterior surface exhibit much higher deflection-depth slopes than 

the posterior border. In CC #3, the inferior border registers the highest deflection-depth slope, 

and the rest of the three locations reveal similar deflection-depth slopes. As shown in Figure 

3.5(b), the superior and inferior borders of CC #3 are more curved than the anterior and posterior 

surfaces, and thus slippage of the probe abruptly happens at these two locations.  

Figure 3.15 illustrates the compression stress as a function of time for the two samples. 

The maximum compressive stress experienced by them is in the range of 0.1MPa ~ 0.4MPa. 

They exhibit stress relaxation behavior at each incremental depth. The stress relaxation behavior 

in Figure 3.15 is further quantified as the normalized relaxation, as shown in Figure 3.16. The 

indentation depth range in the figure is chosen for illustrating valid data only. All the locations of 

the two samples reveal a decreasing trend of the normalized relaxation with the indentation depth 

in the range of 80~240µm and become stabilized in the range of 240µm~480µm, except the 
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inferior border of two samples. As for CC#2, the normalized relaxation at anterior/posterior 

surfaces and superior border exhibit a similar decreasing trend. The normalized relaxation at the 

inferior border is well above those of the rest of the three locations. As to CC#3, the 

anterior/posterior surfaces and superior border also register a similar decreasing trend of the 

normalized relaxation with the indentation depth, while the inferior border registers a much 

lower normalized relaxation than the rest of the three locations.  

 

 (a)                                                 (b)        

Figure 3.14.Sensor deflection versus the indentation depth (solid line: instant values; dashed line: 

relaxed values) (a) CC #2 (b) CC #3. (A: Anterior; P: Posterior; S: Superior; I: Inferior) 
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    (a)                                                            (b) 

Figure 3.15.Compressive stress as a function of time (a) CC #2 (b) CC #3. (A: Anterior; P: 

Posterior; S: Superior; I: Inferior) 

 

          (a)                                                  (b)            

Figure 3.16.Normalized relaxation as a function of the indentation depth (a) CC #2 (b) CC #3 (A: 

anterior, P: posterior, S: superior, I: inferior) 

Table 3.2 summarizes the measured mechanical properties at the four locations of CC 

#2 and CC #3. The table also lists the measurement errors for the measured instant deflection-

depth slopes, the tissue instant stiffness, and the tissue instant indentation modulus. The 

normalized relaxation is the average value over the indentation depth range of 240µm~480µm 

for all the locations. The anterior surface and inferior border are convex, and the posterior 

0

320

640

960

1280

-0.04

0.1

0.24

0.38

0.52

0 160 320 480 640

σ(
M

P
a

)
CC#2

Time(s)

z
in (μ

m
)

0

320

640

960

1280

-0.04

0.03

0.1

0.17

0.24

0 160 320 480 640

σ(
M

P
a

)

CC#3

Time(s)

z
in (μ

m
)

σ

Anterior Posterior Superior Inferior Indentation depth

μ

0%

10%

20%

30%

40%

80 160 240 320 400 480

 E(%)

A P
S I

zin(μm)

CC#2

 E(%)

μ

 

μ
80

 

μ

0%

10%

20%

30%

40%

80 160 240 320 400 480

 E(%)

zin(μm)

CC#3

 

A P
S I

μ



87 

surface and superior border are concave. The measured values are correlated neither to the 

curved shape nor to the tissue height. Overall, the instant indentation modulus and the 

normalized relaxation vary with the locations of each sample. The obtained instant indentation 

modulus of the two samples is in the range of 0.35MPa~0.92MPa, with CC #2 being stiffer than 

CC #3. The biological composition and structure of CC tissues vary among different locations of 

the same cartilage segment and different CC segments for adapting to their local biomechanical 

environments in the ribcage. As such, the difference in measured mechanical properties among 

the four locations of each sample and between the two CC samples from different ribs is 

reasonable.  

No related data can be used for comparing with the values in Table 3.2, since 

mechanical measurements on the exterior surface of human CC, either healthy or PC, have not 

been reported in literature. The study closest to this work is the one conducted by Lau et al[1], 

where the reported instant modulus was roughly 5.2MPa measured on the cross-sections of 

human healthy CC disks from ribs of the upper thoracic region [1]. While the measured results 

on CC disks are dictated by the interior region (higher levels of aggrecan) of CC tissues and are 

associated with low tensile loading in vivo along the cartilage length, our results mainly arise 

from the peripheral region (lower levels of aggrecan) [52] and manifest the biomechanical 

environments for CC growth and assembly in vivo via oxygenation, nutrient and waste exchange.  
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Table 3.3 Measured mechanical properties of CC #2 and CC #3. 

CC# Parameters Symbol Anterior Posterior Superior Inferior 

CC#2 

Instant deflection-

depth slope 
instantẑ  0.560±0.017 0.399±0.009 0.498±0.024 0.530±0.012 

Instant tissue stiffness kinstant (Nm
-1

) 1224.3±85.2 472.7±17.2 951.4±91.8 1085.3±50.9 

Instant tissue 

indentation modulus 
Einstant  (kPa) 462.2±32.2 178.5±6.5 359.2±34.7 409.7±19.2 

Normalized relaxation  E (%) 13.3% 15.8% 12.9% 33.4% 

Tissue height ht (mm) 7 7 14 14 

Compensation 

coefficient 
γ 1.98 1.98 1.84 1.84 

CC#3 

Instant deflection-

depth slope 
instantẑ  0.463±0.013 0.392±0.011 0.438±0.013 0.546±0.015 

Instant tissue stiffness kinstant (Nm
-1

) 830.0±44.1 618.7±27.5 749.6±40.2 1156.0±72.0 

Instant tissue 

indentation modulus 
Einstant  (kPa) 313.4±16.7 233.6±10.4 283.0±15.2 436.4±27.2 

Normalized relaxation  E (%) 18.1% 20.8% 17.0% 12.4% 

Tissue height ht (mm) 7.5 7.5 14 14 

Compensation 

coefficient 
γ 1.97 1.97 1.84 1.84 

3.4. Conclusion 

In this chapter, a tactile sensor with a built-in probe is utilized to achieve conformal 

mechanical measurement of CC at its exterior surface. Upon pressing the sensor against a 

cartilage exterior surface with a pre-defined indentation pattern, the built-in probe conforms to 

the curved cartilage surface first and then the mechanical properties of the cartilage tissue 

translate to the spatially distributed sensor deflection along the transducer array. The conformity 

to a curved cartilage surface is validated by the spatial variation in the sensor deflection.  

The related theory is established to derive the tissue instant indentation modulus and 

normalized relaxation from the measured deflection-depth slopes of a CC specimen. As a result, 

the relation between the probe, sensor, and tissue is clearer. In summary, The sensor stiffness, ks, 

must be lower than the tissue stiffness, kt  (ks <kt), so that the maximum sensor deflection, zs_max, 

can be tailored to be a little lower than its adjusted maximum linear deflection range, zs_linear-s, 

for keeping the collected data to cover the full linear deflection range of the sensor. The probe 

height, hp, is a tradeoff between accommodation of the highest thickness, t, on a curved tissue 
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surface, and avoidance of buckling (p <hp <hp_buckling). As to CC tissues with their elasticity 

range of 1MPa-7MPa, the highest tissue stiffness is seven times the lowest tissue stiffness. The 

sensor stiffness targeted for the CC in the higher elasticity end will cause the collected data on 

the CC in the lower elasticity end to be located in the lower linear deflection range of the sensor, 

which translates a larger amount of experimental errors. However, the sensor and probe stiffness 

in the lower end will fail to capture the mechanical properties of CC with its elasticity in the 

higher end.  

Then, a numerical study is established to provide a feasible method to examine the 

effects of CC parameters on the measured CC elasticity via this tactile sensor of a built-in probe. 

The FEM analysis results show that the effects of CC parameters on the measured CC elasticity 

are more significant for the CC with small diameter and low pre-set CC elasticity. Thus, the 

numerical results suggest that the indentation-relaxation testing is more reliable in measuring CC 

with larger CC diameter and pre-set CC elasticity. The FEM analysis results also reveal the 

relation between the compensation coefficient and CC diameter. By multiplying this 

compensation coefficient to the instant indentation modulus which is calculated from the 

theoretical model, the true CC elasticity can be obtained. Please note that this compensation 

coefficient is only suitable for this tactile sensor with a 0.5mm×5mm×3mm built-in probe.  

A proof-of-concept experimental study is carried on two human PC CC segments. As 

compared with the measured results of the PC CC by the sensor without a built-in probe, the 

measurements on two human PC CC segments validate the feasibility of a tactile sensor with a 

built-in probe for conformal mechanical measurements of CC at its exterior surface. Based on 

the recorded relation of average sensor deflection to indentation depth of the two samples 

measured using the sensor with a built-in probe, the CC instant indentation modulus and 
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normalized relaxation of the two samples are derived and found to vary significantly among the 

anterior/posterior surfaces and superior/inferior borders at the same position of each sample.   

Overall, in this chapter, the qualitative, numerical and experimental studies of this 

tactile sensor with a built-in probe are thoroughly presented. The performance characterization of 

the tactile sensor with and without a built-in probe is also discussed carefully.  
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CHAPTER 4  

MEASURED MECHANICAL PROPERTIES OF PORCINE COSTAL 

CARTILAGE 

This chapter focuses on determining the mechanical properties at the exterior surface 

of porcine Costal Cartilage (CC) and examines how they vary with their anatomical sites of CC 

in the ribcage via the tactile sensor with a 5mm×0.5mm built-in probe discussed in Chapter 3. 

The tactile sensor used in this chapter is still sensor B.  The sample preparation, results and 

discussions are elaborated in detail. The experimental setup, pre-defined parameters and data 

analysis for indentation pattern are presented in brief.  

4.1. Sample Preparation 

All the CC samples were harvested from right lower ribcage of an 18-month-old 

female pig by a local slaughtering house (Pendulum Fine Meats, Norfolk, VA) within 48 hours 

of slaughter. The samples were stored frozen at -20℃ until testing at which point, they were 

thawed in Ringer solution at 4C for 2 hours first and then soaked in a bath of PBS at room 

temperature for 30 minutes before mechanical testing. The whole CC segments from the 5
th

 to 

12
th

 ribs were dissected at room temperature. All muscles, fat, and perichondrium were removed 

from the ribs, leaving only the cartilage tissue. The samples were stored in PBS throughout the 

sample preparation at room temperature and kept moist throughout the measurement via PBS 

spray. (b) 

Figure 4.1(a) shows the whole 5
th

 ~ 12
th

 CC segments, where the measured locations 

were marked in red or blue. Along the length of a whole CC segment, the locations for 

measurement were 10mm apart for all the CC segments. The anterior surface and posterior 

surface at each location for measurement were tested, since a tissue in vitro loses the capability 
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of full recovery and further testing at the same location gives rise to results quite different from 

the first testing [47]. 

 

(a) 

 

(b) 

Figure 4.1 Pictures of (a) the whole porcine 5
th

 ~ 12
th

 CC segments of right ribcage from an 18-

month-old female pig with the locations for measurement being marked in blue or red at their 

exterior surface and with dash lines in the pictures (b) CC transverse cross-sections (5
th

 CC: 

Location 3)  with the definition of depth and width. 

The geometries of the CC segments were assessed after being soaked in PBS for two 

hours after conformal indentation testing. The transverse cross-section geometry of the CC 

segments at each measured location was assessed as the depth (measured from the anterior 
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surface to posterior surface) and the width (measured from superior border and inferior border), 

as shown in (b) 

Figure 4.1(b). Table 4.1a summarizes the length of the CC segments (from the first 

measured location to the last measured location) and their average width and average depth from 

all the measured locations, and their average depth/width ratio for quantifying their flatness and 

roundness. Table 4.1 (b) shows the depth, width, and the relative depth/width ratio at each 

location for measurement along the length of the CC segments. 

Table 4.1 The geometrical parameters and their values of the whole porcine 5
th

 ~12
th

 CC.  

(a) 

CC segment # Length (mm) Width (mm) Depth (mm) Depth/Width ratio (%) 

5
th

 CC 65.8 14.72±0.49 12.42±1.92 84.4 

6
th

 CC 103.9 12.30±4.63 11.03±0.54 89.7 

7
th

 CC 79.3 12.62±0.70 8.78±0.75 69.6 

8
th

 CC 80.7 12.20±1.23 11.41±2.18 93.5 

9
th

 CC 79.8 9.67±1.20 5.79±0.28 59.9 

10
th

 CC 82.2 8.23±0.79 5.30±1.02 64.4 

11
th

 CC 96.6 6.30±1.03 5.23±0.62 83.0 

12
th

 CC 58.5 6.82±0.49 4.52±0.14 66.3 
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(b) 

CC segment # Geometrical Parameters L#1 L# 2 L# 3 L# 4 L# 5 L# 6 L# 7 L# 8 L#  9 

5
th

 CC 

Width (mm) 15.1 15.2 15.2 14.8 14.3 13.7 -- -- -- 

Depth (mm) 14.3 12.8 12.4 11.8 11.7 11.4 -- -- -- 

Depth/Width ratio (%) 94.7 84.1 81.3 80.0 82.2 83.5 -- -- -- 

6
th

 CC 

Width (mm) 12.3 10.5 12.5 10.3 10.7 16.9 14.0 12.0 9.9 

Depth (mm) 15.1 13.6 12.7 11.6 11.4 11.4 10.6 10.1 11.2 

Depth/Width ratio (%) 108.8 84.0 79.2 66.5 65.4 67.1 75.6 84.2 113.2 

7th CC 

Width (mm) 11.9 12.3 12.5 12.7 13.3 13.1 11.8 -- -- 

Depth (mm) 8.3 9.3 9.5 9.5 8.6 8.3 7.5 -- -- 

Depth/Width ratio (%) 69.5 75.5 76.0 74.8 64.9 63.1 63.7 -- -- 

8
th

 CC 

Width (mm) 13.1 12.6 12.7 12.2 13.4 13.1 9.3 -- -- 

Depth (mm) 9.5 13.5 136 11.6 11.0 9.9 8.8 -- -- 

Depth/Width ratio (%) 73.1 107.1 107.3 95.3 82.1 76.0 95.2 -- -- 

9
th

 CC 

Width (mm) 9.3 10.5 10.7 10.9 10.1 8.7 7.1 -- -- 

Depth (mm) 6.0 5.8 5.8 5.7 5.8 6.1 5.6 -- -- 

Depth/Width ratio (%) 64.4 55.3 54.6 52.3 57.1 69.8 78.1 -- -- 

10
th

 CC 

Width (mm) 8.3 8.1 8.7 9.0 8.8 7.9 6.9 -- -- 

Depth (mm) 6.3 6.0 6.3 5.7 5.1 4.5 4.1 -- -- 

Depth/Width ratio (%) 76.1 74.3 73.0 63.3 58.5 57.1 59.5 -- -- 

11
th

 CC 

Width (mm) 6.7 7.7 7.2 7.3 7.2 6.6 4.9 4.5 -- 

Depth (mm) 5.5 5.9 5.8 5.6 4.8 5.3 5.9 3.9 -- 

Depth/Width ratio (%) 81.6 77.1 80.8 76.8 66.8 80.9 118.8 86.9 -- 

12
th

 CC 

Width (mm) 6.8 7.3 7.3 6.7 6.0 -- -- -- -- 

Depth (mm) 4.6 4.7 4.6 4.5 4.2 -- -- -- -- 

Depth/Width ratio (%) 68.1 64.3 63.4 66.7 69.7 -- -- -- -- 

4.2. Experiment Method 

The experiment setup is exactly the same as the one used in Section 3.3.2. In brief, a 

custom experimental setup was built to conduct conformal indentation testing on the exterior 

surface of the porcine CC segments via a tactile sensor with a 5mm0.5mm built-in probe. A CC 

segment was fixed by grips at its two ends, after rotating it until its anterior surface or posterior 

surface faced upward. A micropositioner was connected to the sensor for controlling its motion.  
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The associated accessories were used to operate the sensor and record its outputs. After visually 

aligning the built-in probe of the sensor with the exterior surface of a CC segment, the position 

and orientation of the sensor were further manually adjusted for improved alignment of the built-

in probe surface with the CC exterior surface, by monitoring the outputs of the sensor. After 

alignment, a cycle of multiple indentation-relaxation steps was exerted on the CC exterior 

surface, and its time-dependent response was captured by the sensor as the time-varying sensor 

deflection, zs(t). A Lab-VIEW program was written to carry out the measurements and record the 

data at a sampling rate of 500Hz.  In the indentation pattern of the testing protocol as elaborated 

in Figure 2.10, the ramp speed, incremental step depth and hold time were  =0.2mms-1
, 

zstep=80µm, and thold=40s, respectively. As such, each indentation step was followed by a 40s 

period of stress relaxation until the final indentation depth of 1.28mm was reached. 

4.3. Data Analysis 

According to the Section 3.3.3 and 3.3.4, instant indentation modulus and normalized 

relaxation of CC can be calculated from Equation 3.23 and 3.20, respectively. In the low 

indentation range, the built-in probe achieved full contact with the tissue region underneath, and 

in the high indentation range, the sensor operated beyond its linear range and caused non-

linearity. As such, only the collected data in the middle indentation range was utilized to derive 

the mechanical properties of the CC segments, as detailed in our previous chapter. Accordingly, 

compressive stress-relaxation curves, in response to the multi-step indentation-relaxation testing 

protocol is presented in Figure 4.2 and indicates the feasibility of using the normalized relaxation 

to quantify the viscosity of CC. 

 z
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Figure 4.2 The measured compressive stress of CC as a function of time, in response to the 

multi-step indentation-relaxation testing protocol with z=80µm,   =0.2mms-1 and thold=40s  

 (a) posterior surface of the 5
th

 CC segment at Location 1 (the stiffest location) (b) anterior 

surface the 9
th

 CC at Location 3 (the softest location). 

4.4. Results 

4.4.1. Geometries   

As illustrated in Figure 4.1(a), because of the large, abrupt curvature at the 

costochondral joint of these segments, the measurements were conducted at the locations away 

from the costochondral joint, except the 5
th

 segment with a straight costochondral joint. The 5
th

 

~7
th

 CC segments are connected to the true ribs. The 5
th

 CC has a larger transverse cross-section 

than the 6
th

 and 7
th

 segments. As compared with the 5
th

 and 6
th

 CC, the 7
th

 CC is relatively flat 

along its length. The 5
th

 and 7
th

 CC exhibit some twist along their length, and the 6
th

 CC is 

relatively straight. The 6
th

 CC is longer than the 5
th

 and 7
th

CC. The 8
th

 ~ 10
th

 CC tissues are 

connected to the false ribs. The 8
th

 CC has a transverse cross-section size similar to the 6
th

 CC. 

There is a sudden geometrical drop in the transverse cross-section from the 8
th

 CC to the 9
th

 CC. 

Note that the 8
th

 CC is the most twisted and roundest one. The 9
th

 CC is the flattest one, followed 

by the 10
th

 segment.  Meanwhile, the 9
th

 and 10
th

 CC segments are relatively straight, as 

compared with the rest. As floating ribs, the 11
th

 and 12
th

 CC both contain a smooth, slight 

curvature without many twists along their length. The 11
th

 CC is much longer but less flat than 
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the 12
th

 CC. Except for the 5
th

 CC, all the rest of the CC, no matter how they are connected with 

true ribs, false ribs, and float ribs all show a flat trend with a decrease of CC segment number, 

respectively. Except for the 8
th

 CC, the transverse cross-section geometry shows a decreasing 

trend with increasing CC number (from the 5
th

 CC to the 12
th

 CC). In addition, within the same 

CC segment, the 6
th

 CC exhibits the large variation in width, and the 5
th

 CC reveals also a large 

variation in depth. The 8
th

 CC reveals large variations in both width and depth. Overall, the 

variation in depth/width ratio is random along the cartilage length for all the CC segments. 

4.4.2. Instant indentation modulus and normalized relaxation  

As shown in Figure 4.3, the first measured location of the 5
th

 CC is close to the 

costochondral joint and exhibits the highest instant indentation modulus at the posterior surface. 

The instant indentation modulus at the posterior surface of the 5
th

 CC varies dramatically along 

the cartilage length and is well above that at its counterpart at the anterior surface, which varies 

slightly along the cartilage length. The instant indentation modulus at both the anterior surface 

and the posterior surface of the 7
th

 CC varies significantly along the cartilage length. The instant 

indentation modulus at the two surfaces of the 8
th

 and 12
th

 CC varies moderately along their 

length. In contrast, the instant indentation modulus at both surfaces of the 6
th

, 9
th

 ~11
th

 CC varies 

slightly along the cartilage length. By comparison with Table 4.1(b), the observed variation in 

instant indentation modulus along the cartilage length does not show any correlation with the 

transverse cross-section geometries. Furthermore, the average instant indentation modulus from 

the two surfaces at the measured locations does not show any trend along the cartilage length.  

Figure 4.4 shows how the normalized relaxation varies with the indentation depth, 

where the measured locations and the CC segments are both arbitrarily chosen for illustration. In 

the low indentation range of 80µm~220µm, the normalized relaxation drops with the indentation 
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depth. In the indentation range of 220µm~640µm, the normalized relaxation at the two surfaces 

becomes stabilized. While the normalized relaxation at the anterior surface is higher than that at 

the posterior surface for the chosen locations of the 7
th

, 9
th

, and 10
th

 CC, the normalized 

relaxation at the two surfaces at the chosen location of the 8
th

 CC is similar.  

 

Figure 4.3 Measured instant indentation modulus at the anterior and posterior surfaces and their 

average at different locations along the cartilage length (from rib to sternum) of the CC segments 

(a) 5
th

 CC (b) 6
th

 CC (c) 7
th

 CC (d) 8
th

 CC(e) 9
th

 CC (f) 10
th

 CC (g) 11
th

 CC (h) 12
th

 CC. 

We further calculate the average normalized relaxation from the two surfaces at each 

measured location at different indentation depths. Figure 4.5 shows how the average normalized 

relaxation at different measured locations varies with the indentation depth, revealing a changing 

trend of the normalized relaxation with the indentation depth similar to the one in Figure 4.4. 

Only the average normalized relaxation at location 7 of 7
th

 CC does not show a decreasing trend 

with the indentation depth in the low indentation range. Because, before the measurement, the 

sensor is deformed by the CC already at location 7 of 7
th

 CC. In the 5
th

, 9
th

, 11
th

 and 12
th

 CC, the 

decreasing trend of normalized relaxation with the indentation depth varies among the measured 

locations in the low indentation range. In contrast, in the 6
th

, 7
th

, 8
th

 and 10
th

 CC, this decreasing 
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trend is similar among the measured locations. The normalized relaxation of the 10
th

 and 11
th

 CC 

exhibits the fastest decreasing trend with the indentation depth, as compared with the others. 

Unlike the average instant indentation modulus, the normalized relaxation does not show a trend 

along the cartilage length.  

 
Figure 4.4 Measured normalized relaxation as a function of the indentation depth (a) 7th CC: 

Location 2 (b) 8th CC: Location 6 (c) 9th CC: Location 2 (d) 10th CC: Location 3. 

  

Figure 4.5 Average normalized relaxation of the anterior and posterior surface at each measured 

location as a function of the indentation depth (a) 5
th

 CC (b) 6
th

 CC (c) 7
th

 CC (d) 8
th

 CC(e) 9
th

 

CC (f) 10
th

 CC (g) 11
th

 CC (h) 12
th

 CC. 

Since the normalized relaxation becomes stabilized in the indentation range of 

220m~640m, the average normalized relaxation from this indentation range is quantified as 
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the normalized relaxation of CC. Figure 4.6 illustrates how the normalized relaxation at the 

anterior and posterior surfaces varies along the cartilage length for the CC segments. Particularly, 

the normalized relaxation at the two surfaces of the 8
th

 ~11
th

 CC fluctuates significantly along the 

cartilage length. The average normalized relaxation from the two surfaces does not show any 

trend along the cartilage length.  

  

Figure 4.6 Measured normalized relaxation along the cartilage length (from rib to sternum) of the 

CC segments (a) 5
th

 CC (b) 6
th

 CC (c) 7
th

 CC (d) 8
th

 CC(e) 9
th

 CC (f) 10
th

 CC(g) 11
th

 CC (h) 12
th

 

CC. 

The instant indentation modulus at the anterior surface of all the measured locations of 

a CC segment is further averaged to represent the instant indentation modulus at the anterior 

surface of the whole CC segment.  The same is calculated for the instant indentation modulus at 

the posterior surface of the whole CC segment. Then, the instant indentation modulus of the 

whole CC segment is the average of the two surfaces. As illustrated in Figure 4.7(a), the instant 

indentation modulus at the anterior and posterior surfaces of a whole CC segment and the instant 

indentation modulus of a whole CC segment vary among the CC segments. The same calculation 

is carried out on the normalized relaxation. As shown in Figure 4.7(b), the normalized relaxation 
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at the two surfaces of a whole CC segment and the normalized relaxation of a whole CC segment 

also vary among the CC segments.  

 

Figure 4.7. (a) Instant indentation modulus at the anterior and posterior surfaces and their 

average of a whole CC segment (b) normalized relaxation at the anterior and posterior surfaces 

and their average of a whole CC segment. 

Table 4.2 summarizes the instant indentation modulus and normalized relaxation at the 

anterior and posterior surfaces and the average of the two surfaces of each whole CC segment. 

Overall, the instant indentation modulus at the posterior surface is higher than that at the anterior 

surface, possibly because of gravitational forces acting on porcine CC.  

Table 4.2 Summary of the measured average instant indentation modulus and average 

normalized relaxation (a) among the atomically sites and (b) along the cartilage length of the CC 

segments at their exterior surface. 

(a) 

CC segment 
Instant indentation modulus(kPa) Normalized relaxation (%) 

Anterior Posterior Average Anterior Posterior Average 

5th CC 236.1 502.0 369.1 24.2 27.0 25.6 

6th CC 244.6 224.1 234.3 24.7 28.3 26.5 

7th CC 215.0 443.8 329.4 33.9 31.5 32.7 

8th CC 146.2 272.6 209.4 42.1 38.8 40.5 

9th CC 132.7 143.6 138.2 30.8 29.0 29.9 

10th CC 183.3 224.0 203.7 31.7 23.1 27.4 

11th CC 193.9 194.1 194.0 33.9 33.7 33.8 

12th CC 164.7 277.1 220.9 34.7 33.5 34.1 
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(b) 

 CC# 5
th

 CC 6
th

 CC 7
th

 CC 8
th

 CC 9
th

 CC 10
th

 CC 11
th

 CC 12
th

 CC 

Einstant 

(kPa) 

1 518.3 187.5 390.3 171.1 176.2 238.0 304.7 317.2 

2 410.2 200.3 394.9 263.4 108.3 233.3 261.9 242.1 

3 320.5 188.4 214.1 264.5 105.6 225.7 169.3 197.8 

4 312.9 219.9 365.2 240.0 143.9 180.7 184.8 172.9 

5 332.5 234.8 247.9 211.0 138.8 187.9 160.7 174.6 

6 320.1 252.6 344.3 166.4 126.1 148.2 176.3 -- 

7 -- 226.9 349.0 149.2 168.4 211.8 105.1 -- 

8 -- 317.7 -- -- -- -- 189.5 -- 

9 -- 280.7 -- -- -- -- -- -- 

Average 369.1 234.3 329.4 209.4 138.2 203.6 194.0 220.9 

 E(%) 

1 23.9 34.6 31.0 48.8 23.2 28.2 22.1 31.6 

2 22.7 25.4 26.3 44.1 33.0 22.4 28.6 33.3 

3 28.4 29.2 37.4 37.7 31.9 26.1 41.3 36.9 

4 30.9 22.2 36.8 37.8 27.5 31.7 36.3 36.0 

5 23.2 23.0 38.3 37.0 34.1 26.4 39.2 32.7 

6 24.3 23.7 27.5 37.4 38.8 32.0 40.9 -- 

7 -- 29.5 31.5 40.3 21.0 24.8 31.6 -- 

8 -- 25.1 -- -- -- -- 30.5 -- 

9 -- 25.7 -- -- -- -- -- -- 

Average 25.6 26.5 32.7 40.5 29.9 27.4 33.8 34.1 

 

In Table 4.2, the three true ribs: the 5
th

 ~ 7
th

 CC, are stiffer than the false and floating 

ribs, but the 5
th

 CC is the stiffest and least viscous CC. The 6
th

 CC is much weaker than the 5
th

 

and 7
th

 CC. The false ribs and the floating ribs exhibit very similar instant indentation modulus, 

except the 9
th

 CC that registers as the softest CC segment. Overall, the anterior surface and the 

posterior surface have similar normalized relaxation, except the 10
th

 CC that exhibits a larger 

difference between the normalized relaxation at its anterior and posterior surfaces. There is no 

significant difference in normalized relaxation among the CC segments. The 8
th

 CC registers as 

the most viscous segment.      

4.5. Discussion  

The aim of the present study was to determine the mechanical properties of porcine 

CC at their exterior surface and examine how they vary with their anatomical locations. Owing 

to their curved exterior surface, the conformal indentation was implemented on a whole porcine 

CC segment via a tactile sensor with a built-in probe. As compared with CC strips and CC disks, 
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the structural integrity of CC was retained in our measurements for obtaining their true 

mechanical behavior. To alleviate misalignment errors associated with contact-point uncertainty, 

a multi-step indentation-relaxation testing protocol was used to obtain the time-dependent 

response of CC at multiple indentation depths. Then, the instant indentation modulus and 

normalized relaxation are immune to misalignment errors from contact-point uncertainty and can 

be used for comparison of mechanical properties among different anatomical sites of CC. 

4.5.1. Comparison with the measured mechanical properties of CC in the literature 

Since CC are viscoelastic, the absolute value of their instant indentation modulus 

varies with the ramp speed, hold time and incremental step depth. Therefore, we can only 

qualitatively compare our results with the related data in the literature. Our results are much 

higher than the elasticity of ~ 53.7kPa at the exterior surface of whole embryonic CC from wild-

type mice measured using unconfined compression [53]. This discrepancy can be explained by 

the facts that immature embryonic CC contain about twice the cellularity of mature cartilage and 

the elasticity of CC is species-dependent. Additionally, the embryo is suspended in a sac of 

amniotic fluid and not yet subjected to the rigors of gravity. 

Table 4.3 summarizes the measured elasticity on porcine CC disks and strips, which 

quantify the mechanical properties at the CC interior region along the cartilage length. Note that 

rigid spherical indenters of different diameters and different testing protocols were used for CC 

disk measurements. Overall, the measured elasticity on the CC disks is above 1MPa and is much 

higher than the measured elasticity at the exterior surface of porcine CC in this work. The 

measured tissue-level mechanical properties of porcine CC depend on their structural 

constituents. In CC, chondrocytes occupy ~10% of the volume. Their ECM mainly consists of 

collagen fibril network, negatively charged proteoglycan (mostly aggrecan) and interstitial fluid.  
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Owing to negatively charged proteins associated with aggrecan, osmotic pressure is created in 

the interstitial fluid, putting collagen fibril matrix in tensile load. While collagen fibril network 

primarily provides tensile strength, negatively charged aggrecan provides compressive strength. 

While the measured results on CC disks are dictated by the interior region and are associated 

with low tensile loading in vivo along the cartilage length, our results mainly arise from the 

peripheral region and manifest the biomechanical environments for CC growth and assembly in 

vivo via oxygenation, nutrient, and waste exchange. Higher level aggrecan in the interior region 

is more resistive to compressive loading and thus gives rise to a high measured elasticity. The 

peripheral region near the exterior surface of CC contains lower-level aggrecan and translates to 

a low measured elasticity. 

Table 4.3  Measured mechanical properties of porcine CC reported in the literature. 

Specimen sources 
Sample 

location 
Sample shape 

Sample 

dimension 

(mm) 

Testing techniques Controlled parameters Mechanical Modulus 

4-8 Weeks Porcine 

[25] 
-- 

 

 

 

 

 

h=20 
l=4 

w=1 

Three-point 
bending flexural 

test 

-- EBending=7.06MPa 

28-132 day-old 

female porcine 
(not sexual 

matured)[28] 

-- 

 

h=5 

Indentation testing 

(Spherical indenter 

diameter:3.15mm) 

Peak displacement: 

0.225/0.325/0.425mm 

(4.5%/6.5%/8.5% of h) 
 

Ramp  time: 1.84 ± 0.1s 

Hold time:120s 

Eindentation=5.3MPa 

Young porcine 

[37] 
3rd , 4th  h=3 

Nanoindentation 

testing 
(Spherical  

indenter 

diameter:100μm) 

Peak displacement: 2.0 

or 3.1 μm (6.7% or 
10.3%  of h) 
 

Ramp  speed: 0.2μm/s 
or 2μm/s 
Hold time: 150s 

Eindentation=1-2.4MPa 

Total relaxation:15.8%-

32.1% (17.3% at 0. 

2μms-1 with in 30s hold 

time for an indentation 

depth 2.0 μm, 29.5% at 

2μms-1 within 20s of the 

hold time for an 

indentation depth of 
3.1μm) 

h 

Cuboid stripe 

l 

w 

 
h 

Full Diameter 

Disk
s 
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As shown in Figure 4.2, the highest compressive stress of ~240kPa and the lowest 

compressive stress of ~60kPa of the porcine CC segments are experienced at the posterior 

surface of the 5
th

 CC at location 1 and the anterior surface of the 9
th

 CC at Location 3, 

respectively. This level of stress is well below the average stress of 1-1.5MPa experienced by 

AC during walking [54]. The physiological compressive loading on the exterior surface of CC is 

the pressure in the ribcage and is well below the body weight carried by AC. Thus, low 

compressive stress acting on the exterior surface of CC is expected.  Taken together, low 

compressive properties at the exterior surface is sufficient for CC growth and assembly, but high 

compressive properties at the interior region are necessary for providing structural strength for 

the ribcage. 

4.5.2. Comparison with the measured mechanical properties of CC in the literature 

The peripheral region contains lower-level aggrecan but more interstitial fluid than the 

interior region. Upon low compressive loading, both interstitial fluid and ECM contribute to the 

viscosity. As compressive loading goes up, interstitial fluid flows out, only ECM contributes to 

the viscosity. This explains why the normalized relaxation drops at low indentation depth and 

becomes stabilized at high indentation depth. Shikha Gupta et al.’s study [37] conducted stress 

relaxation measurements of 3mm-thick CC disks from porcine 3rd and 4th ribs with one single 

step depth. In their study, the normalized relaxation is 17.3% at 0.2µms-1 within 30s of the hold 

time of an indentation depth of 2.0μm; and the normalized relaxation is 29.5% at 22µms-1 within 

20s of the hold time for an indentation depth of 3.1μm. A high loading rate translates to a higher 

normalized relaxation. Under the same loading rate, a low indentation depth gives rise to a low 

normalized relaxation. Our measured normalized relaxation is about 25%~40% for porcine 5th ~ 

12
th

 CC segments. Since the testing parameters used in this study are quite different from the 
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above-mentioned study, a quantitative comparison in viscosity cannot be made between the 

exterior surface and the transverse cross-section of porcine CC.    

4.5.3. Variation in measured mechanical properties among the CC segments  

The elasticity of human CC was found to show a decreasing trend along the cartilage 

length from the costochondral joint to the chondrosternal joint [4]. A CC segment can be treated 

as a flexural beam, with its costochondral joint being fixed and its chondrosternal joint being 

guided by the sternum. During thoracic expansion, a CC segment experiences high tensile stress 

but small deformation toward the costochondral joint, but a low tensile stress but large 

deformation toward the chondrosternal joint. Thus, the decreasing trend of the elasticity of CC 

along the cartilage length accommodates respiration. Our measured elasticity of porcine CC 

along the cartilage length at their exterior surface does not capture this trend. CC segments are 

connected to different muscle groups, and different portions of a CC segment along the length 

are exposed to different organs [55]. The connecting muscles and organs along the cartilage 

length expose the CC to different compressive loading. Then, the compressive loading on the 

exterior surface fluctuates along the cartilage length, which explains the relatively random 

variation of measured elasticity at the exterior surface along the cartilage length. 

Overall, our results demonstrate that the posterior surface is stiffer than the anterior 

surface in porcine CC, possibly because gravitational forces of the internal organs acting on the 

posterior surface in quadrupeds. The 9
th

 CC is the softest and the 8
th

 CC is the most viscous 

among the measured CC segments. This is likely because the 8
th

 CC and 9
th

 CC are at the chest-

abdomen transition. As the true ribs, the 5
th

 ~7
th

 CC segments are overall stiffer than the false 

ribs, 8
th

~10
th

 segments, and the floating ribs, 11
th

 and 12
th

 segments. The false ribs and the 

floating ribs have similar elasticity. The anterior and posterior surfaces of the true ribs are 
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connected to the pectoralis major and the transversus thoracic muscles, respectively. In contrast, 

the anterior surface of the false and floating ribs is connected to the flat muscles of the anterior 

abdominal wall, while their posterior surface is connected to the transversus abdominis and the 

diaphragm muscles. Such difference among connecting muscles may explain the variation in 

measured elasticity between the true ribs and the false and floating ribs. Furthermore, a study on 

the ribs of four cadavers [56] found that the mechanical strength varies along the length of the 

ribs and the mechanical strength of the ribs increases from 2
nd

 to 6
th

 and then decreases from 7
th

 

to 12
th

. The changing trend in the ribs is similar to the changing trend in the measured elasticity 

of the porcine CC segments. 

To the best knowledge of the authors, this study is the first of its kind systematic study 

on mechanical properties across different porcine CC segments from the same pig. The observed 

relative difference in measured mechanical properties among different anatomical sites of 

porcine CC is believed to carry physiological implications. The obtained values will vary with 

the testing parameters used in the testing protocol, but are not expected to alter the observations 

on measured mechanical properties of porcine CC of this study.  Finally, the authors 

acknowledge that conclusions based on the porcine CC segments from one pig cannot be 

generalized, as individual variability is highly expected and the absolute values are likely to vary 

among a large pool of samples.  

4.6. Conclusions 

Taken together, in this chapter, a conformal indentation was conducted was to 

determine the mechanical properties at the exterior surface of porcine CC and examine how they 

vary with the anatomical sites of porcine CC in the ribcage. Via a tactile sensor with a 

5mm0.5mm3mm built-in probe, a total of 56 conformal indentation measurements were 
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conducted at the anterior and posterior surfaces of whole porcine 5
th

 -12
th

 CC segments along the 

cartilage length to record their time-dependent response to a multi-step indentation-relaxation 

testing protocol. The instant indentation modulus and normalized relaxation of the CC segments 

were derived from the recorded data to quantify their elasticity and viscosity, respectively.  

Overall, the measured mechanical properties of porcine CC vary with their 

anatomical sites and thus indicate the adaptation of porcine CC to their local biomechanical 

environment in the ribcage. The instant indentation modulus at the CC exterior surface is in the 

range of 130kPa~500kPa, well below that at the CC transverse cross-section which arises from 

higher levels of aggrecan in the interior region over the peripheral region. The normalized 

relaxation at the CC exterior surface is relatively high at low applied stress, but becomes constant 

at high applied stress. The constant normalized relaxation at the CC exterior surface is in the 

range of 25%~40%. The 5
th

 CC is the stiffest and the least viscous among the 5
th

 ~12
th

 segments. 

As true ribs, the 5
th

 ~7
th

 CC are stiffer than the 8
th

 ~12
th

 CC, the false and floating ribs. However, 

the false ribs and the floating ribs have similar elasticity. The 8
th

 CC and the 9
th

 CC are the 

softest and the most viscous, respectively, likely because they are located at the chest-abdomen 

transition. Overall, the posterior surface is stiffer than the anterior surface, possibly due to 

gravitational forces acting on porcine CC. Meanwhile, the measured elasticity and viscosity do 

not show any trend along the cartilage length. The variation in measured mechanical properties 

of among different anatomical sites of porcine CC indicates their adaptation to the local 

biomechanical environments in the ribcage.  
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CHAPTER 5  

MEASURED MECHANICAL PROPERTIES OF HUMAN PECTUS 

CARINATUM COSTAL CARTILAGE 

This purpose of this chapter is to measure the mechanical properties at the exterior 

surface of human PC CC, and determine whether the mechanical properties show a link with the 

anatomic sites and the cartilage length. This study is also carried out via the same tactile sensor 

with a built-in probe. The tactile sensors used in this chapter are sensor B and C with identical 

design. Their equilibrium stiffness with a built-in probe is 960Nm-1
 and 720Nm-1

, respectively. 

The experimental setup, pre-defined parameters, and data analysis are the exact same as the ones 

used in Chapter 4 and will not be further demonstrated in this chapter. The sample preparation, 

results, and discussions are elaborated in detail. 

5.1. Sample Preparation 

Five human CC segments were harvested from ribs of the lower thoracic region 

(7
th

~10
th

 ribs) of a 15yr-old male patient at Children’s Hospital of The King’s Daughters 

(CHKD), Norfolk, VA. The 7
th

~10
th

 rib cartilages were chosen because those cartilages were 

usually removed for PC patients during the clinical surgery. The segments were obtained and 

treated in accordance with all testing and handling procedures approved by the Eastern Virginia 

Medical School (EVMS) Institutional Review Board (IRB). The CC segments were tested at 

room temperature right after they were removed in surgery. Note that intercostal muscles, fat 

and perichondrium were removed from their surface, leaving only the cartilage tissue. The 

cartilage segments were stored in PBS throughout the sample preparation at room temperature 

and kept moist throughout the measurement via PBS spray. As shown in Figure 5.1, 

measurements on a CC segment were conducted on the positions of 6mm apart along its length, 

with the four locations: the anterior/posterior surfaces and superior/inferior borders being 

measured at each position.  
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Table 5.1 summarizes the whole length and the cross-section of the five CC 

segments. As mentioned in Section 4.1, the cross-section of each measured position is 

quantified as the width (superior to inferior) and the depth (anterior to posterior).  The average 

width and the average depth are the average from all the measured positions of a CC segment. 

The width/depth ratio for CC# B-E decreases from rib to sternum along its exterior surface 

length. As to CC# A, from rib to sternum along its exterior surface length, the width/depth ratio 

decreases first and slightly increase. In most cases, the CC width is larger than the CC depth. 

 

Figure 5.1 Pictures and schematics of human PC costal cartilage segments and the locations 

for measurement (a) CC #A (b) CC #B (c) CC #C (d) CC #D (e) CC #E. 

 

  

6mm
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Table 5.1 Key dimensions of tested human PC costal cartilage segments. 

 

CC segment 

# 

Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 
Width/Depth ratio (%) 

Whole CC segment 1* 2* 3* 4* 5* 6* 

A 33.2 12.0±2.0 6.7±1.3 64.0% 50.0% 55.8% 54.5% 57.1% -- 

B 40.1 12.4±1.1 9.6±0.4 86.4% 81.7% 79.2% 76.9% 74.1% 69.2% 

C 24.6 13.0±1.0 10.0±1.0 91.7% 80.0% 74.1% 64.3% -- -- 

D 24.3 13.4±2.6 7.6±0.4 68.2% 60.0% 53.6% 50.0% -- -- 

E 34.8 9.7±0.3 8.5±0.5 94.7% 85.0% 94.4% 85.0% 80.0% -- 

     1*-6* - Means Location 1- Location 6 and Indicates that the measured location along the coastal cartilage length. 

5.2. Results 

 
Figure 5.2 Measured normalized relaxation as a function of indentation depth of CC segment (a) 

CC#A (b) CC#B (c) CC#C (d) CC#D (e) CC#E. (The color coded numbers indicate the 

measured locations) 

As listed in Figure 5.1, CC #E is the roundest and has the smallest cross section; CC 

#A and #D are the flattest; and CC #B and #C are just in between. Figure 5.2 illustrates how the 

average normalized relaxation from the four anatomical sites at the same location varies with 

the indentation depth at the measured locations for the five CC segments. Overall, the average 

normalized relaxation shows a mild decreasing trend with the indentation depth in the 

indentation range of 80~240µm and then becomes stabilized in the indentation range of 
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240~480µm. Thus, the normalized relaxation is calculated as the average from the indentation 

range of 240~480µm. 

5.2.1. Instant indentation modulus shows a link with anatomical sites 

Figure 5.3(a) shows how the measured instant indentation modulus at the four 

anatomical sites and their average value from the four sites at the same location vary along the 

length of each CC segment. In CC #A, the instant indentation modulus fluctuates slightly at the 

anterior and posterior surfaces, but swings drastically at the superior and inferior borders. In  

CC #E, the instant indentation modulus at the anterior surface and inferior borders swing 

dramatically. Owing to a cross cut from the surgery at location 2, the instant indentation 

modulus at its inferior border is missing. In CC #B, #C, and #E, the instant indentation modulus 

swings a lot only at one anatomical site. Overall, the instant indentation modulus at each 

anatomical site varies randomly along the cartilage length, but interestingly the average instant 

indentation modulus at the measured locations does not vary much along the cartilage length for 

all the CC segments. This might indicate that the rest of the anatomical sites at the same location 

adjust themselves to accommodate any change in one anatomical site.   

Figure 5.4 (a) shows how the average instant indentation modulus of each anatomical 

site along the length of each CC segment varies among the four anatomical sites and their 

average value varies among the CC segments. Overall, the variation in average instant 

indentation modulus among the four anatomical sites is significant in all the CC segments. 

However, the instant indentation modulus at the anterior surface is always higher than that at the 

posterior surface. Meanwhile the instant indentation modulus at the superior border shows an 

exact opposite trend as compared with the instant indentation modulus at the anterior/posterior 

surfaces. The instant indentation modulus at the inferior border fluctuates randomly.  
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(a) 

 

(b) 

Figure 5.3 Measured mechanical properties along the length (from rib to sternum) of CC at its 

anterior/posterior surfaces, superior/inferior borders and the average of the four positions (a) 

instant indentation modulus of CC#A-E (b) normalized relaxation of CC#A-E. (A: Anterior; P: 

Posterior; S: Superior; I: Inferior; Average: Average values of four surfaces) 
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Figure 5.4 Measured average viscoelasitc properties of the CC segments at their 

anterior/posterior surfaces, superior/inferior borders and the average of the four positions (a) 

average instant indentation modulus (b) average normalized relaxation. (A: Anterior; P: Posterior; 

S: Superior; I: Inferior; Average: Average values of four surfaces) 

 Table 5.2(a) summarizes the values of the average instant indentation modulus at the 

four anatomical sites and their average values of the five CC segments. Overall, the average 

instant indentation modulus reveals random variations with the four anatomical sites among the 

CC segments. Interestingly, the average instant indentation modulus from the four anatomical 

sites is similar among the CC segments, except CC #E being much softer than the rest of the 

segments.  

Table 5.2 Summary of the average instant indentation modulus and average normalized 

relaxation and their deviation (a) among the atomically sites and (b) along the cartilage length 

of the CC segments at their exterior surface. 

(a) 

Parameters CC# Anterior Posterior Superior Inferior Average 

Einstant 

(kPa) 

A 343.1 172.9 502.0 546.1 391.0 

B 482.9 353.3 324.6 320.1 370.2 

C 391.7 303.2 344.0 519.5 389.6 

D 288.0 240.3 612.4 380.4 380.3 

E 325.5 235.3 236.4 498.9 324.0 

 E(%) 

A 18.0% 18.7% 17.4% 28.2% 20.6% 

B 18.8% 9.7% 17.4% 10.6% 14.1% 

C 16.2% 18.1% 19.9% 17.9% 18.0% 

D 21.0% 24.1% 15.5% 19.7% 20.1% 

E 12.7% 15.4% 22.1% 12.1% 15.6% 
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(b) 

Parameters CC# 1 2 3 4 5 6 Average 

Einstant (kPa) 

A 416.3 352.4 292.6 464.3 429.5 -- 391.0 

B 328.7 516.1 342.6 421.8 323.0 289.2 370.2 

C 477.9 428.2 353.5 298.8 -- -- 389.6 

D 304.9 401.6 321.6 493.1 -- -- 380.3 

E 365.3 396.3 332.9 220.1 279.8 -- 318.9 

 E (%) 

A 21.2 18.8 5.7 21.5 18.6 -- 20.6 

B 18.4 9.6 13.2 13.4 14.0 16.2 15.1 

C 18.3 16.4 16.8 20.6 -- -- 18.0 

D 24.5 17.4 17.1 21.2 -- -- 20.1 

E 14.2 13.9 16.8 13.5 19.8 -- 15.6 

Table 5.2(b) summarizes the values of the average instant indentation modulus at all 

the measured locations for the five CC segments. The instant indentation modulus varies 

randomly along the cartilage length for all the CC segments, except CC #C revealing a 

decreasing trend along the cartilage length.  

5.2.2. Normalized relaxation varies randomly with anatomical locations 

Figure 5.3(b) shows how the normalized relaxation at the four anatomical sites and 

their average from the four anatomical sites varies along the cartilage length in the five PC CC 

segments. Similar to the instant indentation modulus, the normalized relaxation varies randomly 

among the four anatomical sites, and swings drastically at least at one anatomical site. 

Interestingly, the average normalized relaxation from the four anatomical sites does not 

fluctuate much in all the CC segments, except CC #B and #E, indicating that compensation 

might exist among the four anatomical sites at the same location. Figure 5.4(b) shows how the 

average normalized relaxation of each anatomical site varies among the four anatomical sites 

and among the CC segments. Similar to instant indentation modulus, the normalized relaxation 

varies randomly among the four anatomical sites and also among the CC segments. Interestingly, 

CC#B and #E shows a relatively lower value of normalized relaxation as well. 
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Table 5.2 (a) summarizes the normalized relaxation averaged over the cartilage length 

at the four anatomical sites for the five CC segments. The normalized relaxation varies 

randomly among the four anatomical sites. Overall, CC #A, #C and #D exhibit similar viscosity, 

and CC #B and #E reveal a lower viscosity. Table 5.2 (b) summarizes the average normalized 

relaxation at all the measured locations for the five segments. The normalized relaxation does 

not show any trend along the cartilage length for all the segments. Finally, it must be 

emphasized that there is no correlation between the instant indentation modulus and the 

normalized relaxation.  

Table 5.3 (a) quantitatively compares the variation in instant indentation modulus and 

normalized relaxation modulus among the four anatomical sites. There is a significant variation 

in instant indentation modulus among the four sites in CC #A, #D and #E, and a significant 

variation in normalized relaxation among the four sites in CC #B and #E. Note that CC #B and 

#E exhibit low viscosity, but suffer higher viscosity variation across the transverse section. 

Since the significant variation in elasticity and viscosity vary among the CC segments, we might 

conclude that the structure in charge of elasticity is different from the structure in charge of 

viscosity. Table 5.3 (b) quantitatively compares the variation in instant indentation modulus and 

normalized relaxation modulus along the cartilage length. There is a significant variation in 

instant indentation modulus along the cartilage length in CC #B and #E, but this variation is 

much lower than that among the four sites. There is a significant variation in the normalized 

relaxation along the cartilage length in CC #A and #B, and this variation is comparable to that 

among the four sites. Interestingly, CC #A and CC #B are the segments with the highest 

viscosity and the lowest viscosity, respectively. This observation validates the above conclusion 

that the structure in charge of elasticity is different from the structure in charge of viscosity. 
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Taken together, CC #A demonstrates the highest stiffness variation among the four sites and the 

highest viscosity variation along the cartilage length. Finally, CC #C is the only CC segment 

showing no significant variation in elasticity and viscosity among the four sites and along the 

cartilage length. Meanwhile, only CC #C shows a trend of elasticity along the cartilage length. 

Table 5.3 Comparison (a) among the atomically sites and (b) along the cartilage length of the 

CC segments at their exterior surface 

(a) 

Parameters A B C D E 

stiffness variation 373.2 162.8 216.3 372.1 263.6 

absolute stiffness 391.0 370.2 389.6 380.3 324.0 

stiffness variation% 10.80% 9.10% 1.90% 8.60% 10.00% 

viscosity variation 20.6% 14.1% 18.0% 20.1% 15.6% 

absolute viscosity 95.4% 44.0% 55.5% 97.8% 81.4% 

viscosity variation% 52.4% 64.5% 10.6% 42.8% 64.1% 

(b) 

Parameters A B C D E 

stiffness variation 171.7 226.9 179.1 188.2 176.2 

absolute stiffness 391.0 370.2 389.6 380.3 318.9 

stiffness variation% 15.8% 8.8% 4.2% 7.4% 6.3% 

viscosity variation 20.6% 14.1% 18.0% 20.1% 15.6% 

absolute viscosity 43.9% 61.3% 46.0% 49.5% 55.3% 

viscosity variation% 76.7% 62.4% 23.3% 36.8% 40.4% 

5.3. Discussion  

Table 5.4 summarizes the measured values on the mechanical properties of human 

healthy CC and PE CC in the literature. Evidently, the measured values vary with the testing 

parameters and instrument used, other than the ribs and the age of the human subjects. 

Nevertheless, the measured indentation modulus is well above 1MPa. The instant indentation 

modulus we measured here is well below 1MPa. Although the testing parameters, instruments, 

and samples may play a role, the main cause of this difference is believed to be the structural 

difference between the interior region and the peripheral region. As mentioned earlier, the 
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interior region has a high level of aggrecan, which is negatively charged and carries a high 

osmotic pressure. As such, a high compressive strength is expected from the interior region. The 

indentation measurements on CC disks and the compression measurements on CC strips are 

focused just on the interior region. In this work, the indentation measurement was conducted at 

the exterior surface, which has a low level of aggrecan and thus carries a low osmotic pressure. 

Then, the exterior surface exhibits a low compressive strength.  Additionally, the literature 

mentioned that the biomechanical stability of PE CC is weaker than those of healthy CC, which 

also provide another cause of the relatively smaller indentation modulus we obtained.   

In the low indentation range, the normalized relaxation shows a decreasing trend with 

the indentation depth, indicating that the viscosity decreases with the prestress. This is 

reasonable in the sense that, due to prestress, the interstitial fluid in the peripheral region can 

easily flow out of the exterior surface, and thus the viscosity drops. As the indentation depth 

increases, the structure underneath the peripheral region starts to affect the viscosity of the 

peripheral region and then the viscosity becomes stabilized. The measured compressive stress is 

below 0.4MPa, which is well below the average stress of 1-1.5MPa in the knees during walking. 

The physiological compressive loading acting on the exterior surface is the pressure in the 

thoracic cage and is much smaller than the body weight carried by the knees. Then, low 

compressive stress acting on the exterior surface of CC is expected. 
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Table 5.4 Measured mechanical properties of human CC reported in the literature.  

CC 
Age 

(Years) 

Sample 

location 
Sample 

shape 

Sample 

dimension 

(mm) 

Testing 

techniques 

Controlled 

parameters 

Measured 

Mechanical 

Properties 

(MPa) 

PE 

C:3-6 

[17] 
6

th
  

 h=30 

d=8 

Tensile -- 
Strength: 

1.5±0.4 

Compression -- 
Strength: 

1.3±0.2 

Flexural -- 
Strength: 

4.1±1.2 

Healthy 

Tensile -- 
Strength: 

2.3±0.2 

Compression -- 
Strength: 

8.3±1.0 

Flexural -- 
Strength: 

7.6±1.9 

A:37–
86[22] 

6
th

 -9
th

  

h=6 

d=6 
Compression -- 

Modulus: 

103.4±30.1 

Strength: 

7.6±1.8 

 h=50 

l=10 

w=7 

Three-point 

bending flexural 
-- 

Modulus: 

8.8±2.9 

Strength: 

 

C:5–10;  

Ad:11–
17; 

A:18–
25 [3] 

-- 

h=10-15 

l=1.5-2 

w=1.5-2 

Tensile -- 
5.8±2.1 

 

A:37–
86[22] 

6
th

 -9
th

 

 

-- Mirco-hardness -- 38~62 

A:23-77 

[1] 

2
nd

,3
rd

, 

4
th

,6
th
 

h=6 
Indentation  

D=3.15mm 

zin_max=0.425mm  

(7% of h) 

tramp=2.125s 

thold=2min 

5.2 

A:47,49

,53,54, 

57 [27] 

4
th

  h=7 
Indentation  

D= 2mm 

zin_max= 0.25mm 

(4% of h) 

Ramp 

speed:0.5mms-1
 

11.0/10.5/ 

12.6/9.5/ 8.7 

A:32,71 

[29] 
5

th
  h=5 

Indentation  

D=3.15mm 

zin_max=0.5mm 

tramp=2.1s, 

thold=2min 

10 

A:54,62

,31 [4] 
3

rd
 h=7-10 

Nanoindentation  

D=1/5/10μm 

zin_max< 10% of h 

tramp=10s, 25s,  

thold=100-125s 

2.2±1.3 

4.1±1.9 

5.5±2.4 

C- Child; Ad-Adolescent; A-Adult; D-diameter of spherical indenter; zin_max-Peak displacement; tramp-Ramp 

time; thold-Hold time;  

 

h 

Cuboid 

stripe 

l 

w 

h 

Cylinder 

stripe 

d 

 
h 

Full Diameter 

Discs 
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In Chapter 4, there is no dependence between the measured properties with the 

transverse cross-section geometries and curved shapes of the CC segments. As compared with 

the values in  
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Table 5.1 and Table 5.3, the same conclusion can be made. The compressive loading 

at the exterior surface helps to press oxygen and nutrients in the perichondrium into the 

peripheral region. Along the cartilage length, CC take the large tubular structures (from straw-

like structures) running through the cartilage length and thus can bear the tensile loading from 

the thoracic expansion. When it is stretched along the cartilage length, the gap among the straw-

like structures is reduced and then, oxygen and nutrients can get diffused deep into the straw-

like structures in the interior region. Furthermore, the straw-like structures also help to diffuse 

oxygen and nutrients along the cartilage length.  Therefore, no abrupt structural change can be 

expected along the cartilage length.  This will be confirmed in future studies along with 

proteomic analysis to determine any changes in protein composition that may account for 

observed differences measured in this paper. Of particular interest will be the small leucine rich 

proteoglycans that act to ‘zipper’ the collagen strands together. Abnormal ‘zippers’ may account 

for differential structural integrity resulting in different force measurements. 

5.4. Conclusions 

The results of this chapter provide novel data for the mechanical properties at the 

exterior surface of human PC CC. The data shows that the mechanical properties vary 

significantly among the four anatomical sites at the same location. This study reveals significant 

variation in mechanical properties by PC.  Five CC segments from the 7
th

 ~10
th

 ribs are obtained 

from a 15yr-old PC patient. Using a tactile sensor via a testing protocol of multiple indentation-

relaxation steps, four anatomical sites: anterior/posterior surfaces and superior/inferior borders 

are measured at locations of 6mm apart along the length of each CC segment. The instant 

indentation modulus and normalized relaxation are derived from the recorded mechanical 

response to quantify the elasticity and viscosity at each measured site of the CC segments, 
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respectively. The instant indentation modulus and normalized relaxation at the PC CC exterior 

surface are respectively in the range of 98kPa~1173kPa and 5%~25%, well below that at the CC 

transverse cross-section. These human PC CC samples are found to be stiffer and less viscous 

than healthy porcine CC. The normalized relaxation reveals a decreasing trend with the 

indentation depth in the range of 80µm~240µm, but becomes stabilized in the indentation range 

of 240µm~480µm for all the CC segments. Overall, the anterior surface is stiffer than the 

posterior surface, which is opposite to porcine CC and is possibly due to different gravitational 

forces acting on them. For all the CC segments, the instant indentation modulus and normalized 

relaxation both reveal a large, random variation among the four anatomical sites at the same 

location. However, the average instant indentation modulus and average normalized relaxation 

from the four sites at the same location both do not change much along the cartilage length, 

indicating that the rest of the anatomical sites might adjust to accommodate the change at one 

anatomical site. Only the segment #C shows a decreasing trend of instant indentation modulus 

along the cartilage length and exhibits mild variation in elasticity and viscosity among the four 

sites and along the cartilage length. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, the highlights and conclusive remarks of this dissertation are 

presented, and recommendations for the future work are proposed based on the current 

achievement.  

6.1. Major Findings and Important Conclusions 

This dissertation investigated the mechanical properties of CC at their exterior surface 

via conformal indentation testing which is built upon a tactile sensor with a built-in probe for 

distributed-deflection detection. The specific aims were (i) to design a tactile sensor with a built-

in probe for measuring the mechanical properties of CC at their curved surface, (ii) to determine 

the mechanical properties at the exterior surface of porcine CC and examine how they vary with 

the anatomical sites of CC in the ribcage,  and (iii) to measure mechanical properties of different 

anatomical sites at the exterior surface of human PC CC, and determine whether the mechanical 

properties vary with the anatomic sites and along the cartilage length. Three separate sets of 

studies were performed to accomplish the specific aims, including (i) a set of sensor 

performance studies, (ii) an experimental study on porcine CC, and (iii) an experimental study 

on human PC CC. From these studies, we have validated the feasibility of a tactile sensor with a 

built-in probe for mechanical measurements of CC at their curved exterior surface and 

determined mechanical properties of porcine CC and human PC CC, including the instant 

indentation modulus and the normalized relaxation. Both mechanical properties will serve as 

important parameters for learning the structure-function relation of the CC tissues and analyzing 

the pathology of PC.  
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6.1.1. A Set of Sensor Performance Studies 

First of all, before adding a built-in probe to the sensor design, we performed two sets 

of experimental studies on the sensor performance, including sensor characterization study via a 

rigid probe and sensor performance study via a CC measurement. According to the test results, 

the sensor is able to detect distributed normal loads and has the robust feature. However, it fails 

to capture the mechanical behavior of CC with a curved exterior surface and suffers from probe 

misalignment issues. As such, a series of studies, including qualitative analysis, numerical 

simulation and experimental study, are performed on the tactile sensor with a built-in probe to 

find out a solution for capturing the inherent mechanical properties of CC with curved exterior 

surface and reduce the effect of probe misalignment. 

In qualitative analysis, a simple one dimension theoretical model is established to 

derive the tissue stiffness from the known key parameters of the sensor and probe. As a result, 

the relation between the probe, sensor, and tissue is clearer. In summary, The sensor stiffness, ks, 

must be lower than the tissue stiffness, kt  (ks <kt), so that the maximum sensor deflection, zs_max, 

can be tailored to be a little lower than its adjusted maximum linear deflection range, zs_linear-s, 

for keeping the collected data to cover the full linear deflection range of the sensor. The probe 

height, hp, is a tradeoff between accommodation of the highest thickness, t, on a curved tissue 

surface and avoidance of buckling (p <hp <hp_buckling). As to CC tissues with their elasticity 

range of 1MPa-7MPa, the highest tissue stiffness is seven times the lowest tissue stiffness. The 

sensor stiffness targeted for the CC in the higher elasticity end will cause the collected data on 

the CC in the lower elasticity end to be located in the lower linear deflection range of the sensor, 

which translates a larger amount of experimental errors. However, the sensor and probe stiffness 

in the lower end will fail to capture the mechanical properties of CC with its elasticity in the 
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higher end.  

Then a numerical simulation is established to provide a feasible method to examine the 

effects of CC parameters on the simulated CC elasticity (equivalent to the measured CC 

elasticity in the measurement) via this tactile sensor of a built-in probe. The FEM analysis results 

show that the effects of CC parameters on the measured CC elasticity are more significant for the 

CC with a small diameter and a low pre-set CC elasticity. Thus, the numerical results suggest 

that the indentation-relaxation testing is more reliable in measuring CC with larger CC diameter 

and pre-set CC elasticity. The FEM analysis results also reveal the relative linear relationship 

between the CC diameter and the compensation coefficient, which is used for improving the 

measured indentation modulus in the experimental measurement. Please note that this 

compensation coefficient is only suitable for this tactile sensor with a 0.5mm×5mm×3mm built-

in probe.  

Finally, a proof-of-concept experimental study is carried out on two human PC CC 

samples. As compared with the measured results of the PC CC by the sensor without a built-in 

probe, the measurements on two human PC CC samples validate the feasibility of a tactile sensor 

with a built-in probe for conformal mechanical measurements of CC at its exterior surface. 

Based on the recorded relation of sensor deflection to indentation depth of the two samples 

measured using the sensor with a built-in probe, the CC instant indentation modulus and 

normalized relaxation of the two samples are derived and found to vary significantly among the 

anterior/posterior surfaces and superior/inferior borders at the same position of each sample.   

6.1.2. Experimental Study on porcine CC  

By using the tactile sensor with a built-in probe, an indentation-relaxation test was 

conducted at the anterior and posterior surfaces of whole porcine 5
th

 -12
th

 CC segments along the 
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cartilage length to record their time-dependent response to a multi-step indentation-relaxation 

testing protocol. The instant indentation modulus and normalized relaxation of the CC segments 

were derived from the recorded data to quantify their elasticity and viscosity, respectively. In 

sum, the measured mechanical properties of porcine CC vary with their anatomical sites and thus 

indicate the adaptation of porcine CC to their local biomechanical environment in the ribcage. 

The instant indentation modulus at the CC exterior surface is in the range of 130kPa~500kPa, 

well below that at the CC transverse cross-section which arises from higher levels of aggrecan in 

the interior region over the peripheral region. The normalized relaxation at the CC exterior 

surface is relatively high at low applied stress, but becomes constant at high applied stress. The 

constant normalized relaxation at the CC exterior surface is in the range of 25%~40%. The 5
th

 

CC is the stiffest and the least viscous among the 5
th

 ~12
th

 segments. As true ribs, the 5
th

 ~7
th

 CC 

are stiffer than the 8
th

 ~12
th

 CC, the false and floating ribs. However, the false ribs and the 

floating ribs have similar elasticity. The 8
th

 CC and the 9
th

 CC are the softest and the most 

viscous, respectively, likely because they are located at the chest-abdomen transition. The 

posterior surface is stiffer than the anterior surface, possibly due to gravitational forces acting on 

porcine CC. Meanwhile, the measured elasticity and viscosity do not show any trend along the 

cartilage length. The variation in measured mechanical properties of among different anatomical 

sites of porcine CC indicates their adaptation to the local biomechanical environments in the 

ribcage.  

6.1.3. Experimental Study on Human PC CC  

By using the tactile sensor with a built-in probe, we also performed the same 

indentation-relaxation test at the exterior surface of human PC CC for their mechanical 

properties. The results reveal significant variation in mechanical properties of PC CC.  Five CC 
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segments from the 7
th

 ~10
th

 ribs are obtained from a 15yr-old PC patient. The instant indentation 

modulus and normalized relaxation are still derived from the recorded mechanical response to 

quantify the elasticity and viscosity at each measured site of the CC segments, respectively. The 

instant indentation modulus and normalized relaxation at the PC CC exterior surface are in the 

range of 98kPa~1173kPa and 5%~25%, respectively. The instant indentation modulus at the CC 

exterior surface is well below that at the CC transverse cross-section. These human PC CC 

samples are found to be stiffer and less viscous than healthy porcine CC. The normalized 

relaxation reveals a decreasing trend with the indentation depth in the range of 80µm~240µm, 

but becomes stabilized in the indentation range of 240µm~480µm for all the CC segments. 

Overall, the anterior surface is stiffer than the posterior surface, which is opposite to porcine CC 

and is possibly due to different gravitational forces acting on them. For all the CC segments, 

both the instant indentation modulus and normalized relaxation reveal a large, random variation 

among the four anatomical sites at the same location. However, the average instant indentation 

modulus and average normalized relaxation from the four sites at the same location both do not 

change much along the cartilage length, indicating that the rest of the anatomical sites might 

adjust to accommodate the change at one anatomical site. Only the segment #C shows a 

decreasing trend of instant indentation modulus along the cartilage length and exhibits mild 

variation in elasticity and viscosity among the four sites and along the cartilage length. 

To the best knowledge of the author, this dissertation is the first of its kind systematic 

study on mechanical properties across different porcine CC segments from the same pig and 

different human PC CC samples from the one patient. The observed relative difference in 

measured mechanical properties among different anatomical sites of porcine and human CC is 

believed to carry physiological implications. The obtained values will vary with the testing 
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parameters used in the testing protocol, but are not expected to alter the observations on 

measured mechanical properties of porcine and human CC of this dissertation. Finally, the 

author acknowledged that conclusions based on the porcine CC segments from one pig and 

human PC CC samples from one patient cannot be generalized, as individual variability is 

highly expected and the absolute values are likely to vary among a large pool of samples. 

6.2. Future Work 

6.2.1. The Mechanical Properties of Costal Cartilage Transverse Cross-sections 

The measured mechanical properties in this dissertation are from the exterior surface 

of CC, while the mechanical properties discussed in the literature are mainly from the CC cross-

sections.  Meanwhile, different testing methods will lead to the variation in the measured results. 

Thus, it is difficult to compare the measured mechanical properties at CC exterior surface via 

the tactile sensor in this dissertation with the measured mechanical properties at CC cross-

section via micro/nano indentation tests in the literature. If the mechanical properties of CC 

cross-section can also be tested after the measurement on the CC exterior, a better comparison 

can be made among the mechanical properties measured at exterior surface and cross-section via 

a tactile sensor with a built-in probe and the mechanical properties discussed in the literature. 

6.2.2. Numbers of Costal Cartilage Samples 

Since the conclusions based on the porcine CC segments from one pig and human PC 

CC samples from one patient cannot be generalized, as individual variability is highly expected 

and the absolute values are likely to vary among a large pool of samples.  
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6.2.3. Biochemical study on Costal Cartilage 

As discussed in Section 5.3, a biochemical study, such as proteomic analysis can be 

added to determine any changes in protein composition that may account for observed 

differences measured in this dissertation. Of particular interest will be the small leucine rich 

proteoglycans that act to ‘zipper’ the collagen strands together. Abnormal ‘zippers’ may account 

for differential structural integrity resulting in different force measurements and providing a 

better understanding of the CC structure-function relation. 

6.2.4. Future applications of this sensor  

This dissertation validates a new methodology to capture the mechanical properties of 

CC. This testing method can be used to measure the mechanical properties of other materials, 

including both viscoelastic and elastic material, such as biological soft tissues, polymers and 

plastics. Please note the material stiffness is required to be slightly higher than the sensor 

stiffness which can be adjusted by changing the sensor stiffness, such as probe height and probe 

elasticity.  
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APPENDICES A  

LABVIEW PROGRAM FOR INSTRUMENT CONTROL AND  

DATA ACUISITION  

 

Figure A.1 LabVIEW front panel for manually control the micromanipular to apply x-direction, 

y-direction, z-direction displacement with a different ramp speed. 

 

Figure A.2  (continue) 
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Figure A.2  LabVIEW block diagram for manually control the micromanipular to apply x-

direction, y-direction, z-direction displacement with a different ramp speed. 
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(a) 

 

(b) 
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(c) 

Figure A.3  LabVIEW block diagram for (a) automatically control the micromanipular to apply 

x-direction, y-direction, z-direction displacement with a different ramp speed, (b) data collection, 

and (c) automatically screenshot the front panel after data collection. 
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APPENDICES B  

MEASURED MEACHANICAL PROPERTIES OF FIVE HUMAN PC CC 

SEGMENTS AT FOUR ANATOMICAL SITES OF ALL MEASURED 

LOCATIONS 

 
Figure B.1 Measured normalized relaxation as a function of indentation depth of CC #A at (a) 

location 1 (b) location 2(c) location 3(d) location 4 (e) location 5. (Red line: sensor was 

deformed before the measurements) 
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Figure B.2 Measured normalized relaxation as a function of indentation depth of CC #B at (a) 

location 1 (b) location 2(c) location 3(d) location 4 (e) location 5 (f) location 6.( Red line: sensor 

was deformed before the measurements)  
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Figure B.3 Measured normalized relaxation as a function of indentation depth of CC #C at (a) 

location 1 (b) location 2(c) location 3(d) location 4.( Red line: sensor was deformed before the 

measurements)  
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Figure B.4 Measured normalized relaxation as a function of indentation depth of CC #D at (a) 

location 1 (b) location 2(c) location 3(d) location 4.( Red line: sensor was deformed before the 

measurements)  
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Figure B.5 Measured normalized relaxation as a function of indentation depth of CC #E at (a) 

location 1 (b) location 2(c) location 3(d) location 4(e) location 5. 
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Figure B.6  Compressive stress as a function of time of CC # B at Location 3 (a) anterior surface 

(b) posterior surface (c) Superior border (d) inferior border.  
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Table B.1Summary of the measured instant indentation modulus and normalized relaxation 

modulus and their measurement errors along the length of the CC samples at their 

anterior/posterior surfaces, superior/inferior borders and the average of the four positions (a) CC 

#A (b) CC #B (c) CC #C (d) CC #D (e) CC #E. 

(a) 

CC#A Atomically sites 1 2 3 4 5 

Instant 

indentation 

modulus (Mpa) 

Anterior 284.5±12.9 462.2±32.2 469.2±29.4 261.7±21.9 237.9±17.6 

Posterior 182.4±12.5 178.5±6.5 160.2±9.9 209.3±4.5 134.2±4.9 

Superior 557.4±66.9 359.2±34.7 184.8±9.8 480.1±24.9 928.7±113.1 

Inferior 641.0±34.1 409.7±19.2 356.1±23.2 906.2±91.4 417.2±13.4 

Average 416.3±12.5 352.4±6.5 292.6±9.9 464.3±4.5 429.5±4.9 

Normalized 

relaxation (%) 

Anterior 25.6% 13.3% 12.9% 17.7% 20.6% 

Posterior 12.7% 15.8% 25.9% 22.8% 16.2% 

Superior 13.3% 12.9% 26.2% 21.2% 13.5% 

Inferior 33.1% 33.4% 25.7% 24.5% 24.1% 

Average 21.2%±8.6% 18.8%±8.5% 5.7%±3.5% 21.5%±2.5% 18.6%±4.1% 

(b) 

CC#B Atomically sites 1 2 3 4 5 6 

Instant 
indentation 
modulus 
(Mpa) 

Anterior 480.8±10.0 914.4±102.7 607.7±50.2 254.1±11.2 306.7±17.2 333.6±14.3 

Posterior 279.8±7.7 377.6±10.3 219.7±17.2 596.3±70.9 250.7±16.1 395.8±26.2 

Superior 215.4±9.2 462.4±27.9 277.2±5.2 292.5±14.4 460.6±24.3 239.8±9.4 

Inferior 338.7±12.6 310.0±26.1 265.9±16.1 544.4±33.4 274.0±13.7 187.6±7.6 

Average 328.7±7.7 516.1±10.3 342.6±17.2 421.8±70.9 323.0±16.1 289.2±26.2 

Normalized 
relaxation 
(%) 

Anterior 17.7 11.4 11.9 25.0 23.1 23.7 

Posterior 21.3 9.1 7.8 3.7 8.0 8.0 

Superior 24.0 12.9 22.8 17.8 12.3 14.4 

Inferior 10.4 4.8 10.2 7.0 12.6 18.7 

Average 18.4±5.1 9.6%±3.1 13.2±5.8 13.4±8.5 14.0±5.5 16.2±5.8 

(c) 

CC#C Atomically sites 1 2 3 4 

Instant indentation 
modulus (Mpa) 

Anterior 475.6±44.3 524.2±46.1 388.9±28.2 178.0±15.8 

Posterior 310.9±31.3 229.2±21.6 307.2±17.4 365.4±20.6 

Superior 278.7±4.5 399.9±22.4 358.3±26.9 339.2±33.0 

Inferior 846.2±73.1 559.5±51.3 359.5±15.7 312.5±16.1 

Average 477.9±31.3 428.2±21.6 353.5±28.2 298.8±20.6 

Normalized 
relaxation (%) 

Anterior 15.6 12.2 13.4 23.5 

Posterior 14.3 18.9 19.6 19.8 

Superior 31.6 20.5 12.8 14.6 

Inferior 11.6 14.2 21.4 24.6 

Average 18.3±7.8 16.4±3.4 16.8±3.7 20.6±3.9 
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(d) 

CC#D Atomically sites 1 2 3 4 

Instant 
indentation 
modulus (Mpa) 

Anterior 254.7±20.2 262.8±5.6 313.4±16.7 321.3±15.4 

Posterior 195.4±3.1 311.7±16.7 233.6±10.4 220.7±9.1 

Superior 487.1±33.6 404.4±26.7 283.0±15.2 1007.2±80.0 

Inferior 235.6±10.2 592.5±47.2 436.4±27.2 257.1±6.6 

Average 293.2±16.8 392.9±24.0 316.6±17.4 451.6±27.8 

Normalized 
relaxation (%) 

Anterior 20.3 22.7 18.1 22.8 

Posterior 32.5 17.8 20.8 25.2 

Superior 14.0 16.9 17.0 14.1 

Inferior 31.3 12.3 12.4 22.8 

Average 24.5±7.7 17.4±3.7 17.1±3.1 21.2±4.2 

(e) 

CC#E Atomically sites 1 2 3 4 5 

Instant 
indentation 
modulus 
(Mpa) 

Anterior 416.7±25.2 608.4±45.1 221.4±13.0 204.0±10.9 177.2±4.5 

Posterior 268.5±8.3 303.7±11.3 299.1±20.1 171.0±5.9 134.2±6.3 

Superior 218.0±7.0 276.7±14.4 98.1±1.9 211.5±17.8 377.5±2.1 

Inferior 557.9±34.7 -- 713.0±47.2 294.0±23.9 430.5±22.4 

Average 365.3±18.8 396.3±23.6 332.9±20.6 220.1±14.6 279.8±8.8 

Normalized 
relaxation 
(%) 

Anterior 4.6 11.4 12.4 8.9 26.3 

Posterior 15.2 15.2 6.7 20.1 19.6 

Superior 21.1 15.2 40.7 12.3 21.1 

Inferior 15.9 -- 7.6 12.7 12.1 

Average 14.2±6.0 13.9±1.8 16.8±13.9 13.5±4.1 19.8±5.1 
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