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ABSTRACT

ENERGY HARVESTING USING FLEXTENSIONAL PIEZOELECTRIC
ENERGY HARVESTERS IN RESONANCE AND OFF RESONANCE

MODES

Mohamed A. Shabara
Old Dominion University, 2020
Director: Dr. Tian-Bing Xu

Energy harvesting technologies are integrated into various modern devices and systems.

These systems include Artificial Intelligence (AI) systems, Internet of Things (IoT), various

types of energy harvesters are integrated in many engineering applications such as automo-

tive, aerospace and ocean engineering. In order to develop a fully functioning stand-alone

system, it is essential to integrate it with a built in power source such as a battery or a power

generator. Also, in many situations, city power sources might not be available. Therefore,

reliable, renewable and sustainable local power generators are desired. Piezoelectric energy

harvesting (PEH) technologies, which are piezoelectric material-based devices, are one of

the best candidates for this job. Piezoelectric energy harvesters convert mechanical en-

ergy from vibrating or moving objects to electrical energy. These devices have the highest

capability of designing self-powered systems as they are not weather dependent and they

are capable of harvesting both small or large mechanical movements into electrical energy.

The piezoelectric materials are materials that generate electrical charges when mechanical

stress or force is exerted on them. On the other hand, they deform when an electric volt-

age is applied to them. The piezoelectric-based energy harvesters are small and effective

devices that promise future engineering systems to be more intelligent, reliable and environ-

mentally friendly. Designing a piezoelectric device is cumbersome, and it is indispensable

to have a comprehensive understating of many engineering disciplines before delving into

designing a new device or redesigning an existing device. These disciplines include me-

chanical engineering, electrical engineering, materials sciences, and device physics. In this



thesis, comprehensive mathematical and experimental investigations were done for modeling

piezoelectric multi-later stacks and Flextensional Energy Harvesters in resonance and in off-

resonance modes. For the resonance mode, mathematical and variational approaches were

used to modeling a selected piezoelectric multi-layer stack found in the market; the models

are a static model, single degree of freedom model (SDOF), a distributed parameter model

and a finite element model for the resonance mode, a finite element model (using ANSYS)

was used to model a single and a multiple stage Flexteisonal Energy Harvester. To validate

off-resonance results, previously published experimental results were used; however, for the

resonance mode an experiment was carried out to validate the numerical model’s results for

the multi-stage Energy Harvester. As for the single stage Flextensional Energy Harvester,

previously published experimental results were used to validate the finite element model.

The advantages and disadvantages of different models and approaches are compared and

discussed.
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CHAPTER 1

INTRODUCTION

The compelling need for building self-powered systems, aerospace applications, wireless

sensors networks (WSNs) [1], robots, artificial intelligence (AI) systems, etc. lead to the

discovery of many energy harvesting techniques and devices that convert thermal energy

[2, 3] (thermoelectric, pyroelecric, etc), light energy [4] (photovoltaic, etc), chemical energy

and mechanical energy [5, 6, 7, 8] (piezoelectric, triboelectric, etc.) into electrical energy.

However, most of those energy harvesting technologies are weather dependent. Mechanical

energy from vibration is unique in that it is not weather dependent. Shabara et al. [9] carried

out a comprehensvie investigation on the recent designs of piezoelectric energy harvesters

and their corresponding power outputs. 1.

Converting mechanical vibration/motion energy can be accomplished using either piezo-

electric materials [10, 11, 12, 13, 14], electro-magnetic field [15, 16, 17] (ex: RF energy

harvesting) and electrostatic [11, 18]. Among those, the advantage of piezoelectric energy

harvesting is that it can harvest mechanical energy produced by the minimal motion (down

to nano-scale movement). Piezoelectric energy harvesters are often classified into 3 cate-

gories [19] (i) macro-miso scale harvesters [20, 21], (ii) Micro-Electro-Mechanical Systems

or MEMS scale [22, 23, 24, 25] (iii) nano-scale [26, 27, 28] depending on their weight, size,

power output, manufacturing method and application field.

Modern engineering applications such as artificial intelligence (AI) (also called machine

intelligence), which was initially developed in computer science, is the ability of a computer

or a machine to stimulate consistent with traditional responses from humans, given the hu-

man capacity for contemplation, judgment, and intention without human interference. Now,

AI is used broadly in machines that mimic human cognition [29, 30]; the leap forward in

the field of electronic devices, wireless communication and artificial intelligence technologies

resulted in a compelling need to develop more energy efficient and reliable systems. The

advancement in artificial intelligence systems and big data and the replacement of conven-

tional systems [31, 32, 33]. The AI is implemented in animal-inspired robots [34], humanoid

robots [35, 36], internet of things (IoT) [37, 38]. The components of the aforementioned

1Some passages have been quoted verbatim from Shabara et al. [9]
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systems required local power generation for the control systems, actuators, wireless sensors

as well as wireless condition monitoring systems, these power generators must be portable

and miniaturized reach the nano-scale (nanogenerators). One challenge of the practical ap-

plication of AI systems is having reliable and renewable local power sources for the hardware

to make it power independent. That enables the integrated self-powered computer, sensor

network, actuators, and wireless communication of the AI system to act as a sustainable

natural intelligent system in real world. Recently, the developed various energy harvesting

technologies might provide solutions to overcome those challenges.

Arms et al. [39] proposed a smart piezoelectric self-powered wireless sensor that senses

temperature and humidity, a piezoelectric cantilever harvester beam was used to power the

sensor, the microprocessor, the on-board memory and a rechargeable battery. They used

techniques that enabled this device to consume low power that ranged from 90 to 900 µW .

These techniques included using sleep mode between sampling periods, signals that triggers

the device between sample and recording/transmitting the sensor readings average data

instead of the frequency transmitting, etc.

Since 2000s, various attempts and contributions have been performed to maximize the

harvested energy as well as the energy conversion efficiency and practicality of the Piezo-

electric Energy Harvesters (PEH). The prefix of piezoelectric came from the Greek word

piezein which means press or squeeze. This material property was firstly discovered in 1880

by Paul-Jacques Curie in quartz ceramic. The attempts varied from trying to enhance the

transmitted mechanical energy from the source of vibration to the piezoelectric material

or maximizing the produced electric charges, collecting and storing the produced electric

energy, and miniaturizing the PEH size to obtain high specific energy destiny (harvested

energy per harvester volume).

Roundy [40] listed some mechanical vibration sources with their peak acceleration and

vibration frequency that can be the source of excitation for energy harvesting devices. Also,

Sue et al. [41] carried out a comprehensive study on the human body activities and move-

ments that could be used in energy harvesting applications which can be implemented in

humanoid robots.

Abdelkefi [10] reviewed various devices, linear, non-linear, theoretical models and ex-

perimental models in the applications of aeroelastic energy harvesting; the review gave a

thorough investigation of energy harvesting from fluttering energy, vortex induced vibrations

(VIV), galloping in structures using fluttering harvesters, cylindrical energy harvesters, flap-

ping leaf-flap, galloping and wave galloping energy harvesters as well as other harvesters’
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types.

This introductory chapter will be divided into four sections. The first section will review

the piezoelectric materials from the time of their discovery to the past decade’s inventions

and breakthroughs. Then, in the second subsection we will review the three designs of

flexnesional piezoelectric energy harvesters (FPEH); the three reviewed designs are Circular

cymbal, the Circular Diaphragm and “33” mode Piezoelectric Multilayer Stacked Flexten-

sional PEHs.

1.1 PIEZOELECTRIC MATERIALS

Piezoelectric materials belong to a bigger family of materials called ”smart materials”.

Smart materials react to a certain input that is applied on them with a difference it in the

form of stress, electric field, magnetic field, heat or light with an output in the form of

strain, magnetization, charge, current, temperature or light as defined by Uchino [42]. The

electric-mechanical (E-M) energy conversion effect is called piezoelectric effect. Piezoelectric

materials can be further classified into non-organic piezoelectric materials (piezoceraics) and

organic piezoelectric materials (piezopolymers).

French physicists and brothers Jacques and Pierre Curie were the first to discover the

piezoelectric effect in 1880 when they were investigating quartz. Since that time and until

1964, no significant discovery was made. In 1946, Barium Titanite ”BaTiO3” was discov-

ered. Researchers consider it the first manufactured piezocermaic [43, 44]. “BaTiO3” has

two forms, either a ferroelectric or non-ferroelectric form depending on the temperature of

operation. The difference between these two forms is made at the so-called Curie tempera-

ture. The discovery of the Barium Titanate was a breakthrough in the smart materials field

due to its unprecedented high electro-mechanical coupling factor [45] at that time which

opened the door for more piezoelectric discoveries. In 1954, Jaffe et al. [46] discovered the

inorganic perovskite compounds named lead zirconate Titanite ceramics (PZT). Currently,

the coupling factor of the PZT ceramics can reach as high as 75%.

In 1960s, the lead-free PZT ceramics Bismuth Sodium Titanite (BNT) [47], an inorganic

compound that conforms with the perovskite structure, were discovered. The Perovskite

structure is named after the Russian mineralogist L. A. Perovski [48] and is defined as a

crystal that has anion atoms (ions with extra electrons −ve) in the corners (in our case

its Oxygen atoms), and it follows the formula ACX3, where A and B atoms resembles the

cation (ions with lesser electrons −ve) with different sizes, usually A is larger than B ions

[49]. With the beginning of the 21st century further advancements and innovation were done
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in the field of piezoelectric materials that lead to the development KNN, BT, BNT, BFO

based ceramics.

In the past 3 decades, great effort was done by researchers trying to develop piezo-

electric signal crystal materials ”also known as relaxors”. Some examples for relaxors are

Pb(Mg1/3Nb2/3) 1-xT ixO3 (PMN-PT) [50, 51], Pb(In1/2Nb1/2)O3 – Pb(Mg1/3Nb2/3)O3 -

PbT iO3 (PIN-PMN-PT), Pb(Zn1/3Nb2/3)O3-PbT iO3 (PZN-PT), which have significant ad-

vantages over the common piezoelectric ceramic [52]. The electromechanical coupling effects

can be as high as 96% and the piezoelectric ecoefficiency as high as 3500. Since Kawai dis-

covered strong piezoelectric effect in poly(vinylidene fluoride) (PVDF), various piezoelectric

polymeric materials have been developed, such as Poly(vinylidenefluoride-trifluoroethylene)

P(VDF-TrFE) copolymer [52, 53], poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene)

[P(VDF-TrFE-CTFE)] terpolymer [54], odd nylons, polyamides [55], and polymeric com-

posites.

1.2 FLEXTENSIONAL PIEZOELECTRIC HARVESTERS

The first reported flextensional PEH was proposed by Kim et al. [56] at Penn State

University, the flextensional harvesters are known to produce higher power compared to the

other types of harvesters. In this section we focus on 3 types of Flextensioal energy harvesters

namely the circular cymbal, “33” and circular diaphragm mode FEHs. The Flextensional

harvesters are known to produce power outputs of at least 1 order of magnitude higher

compared to other harvesters types.

Circular Cymbal

Fig. 1: Cymbal harvesters, piezoelectric disk sandwiched between a pair of concaved metal
caps

The Cymbal harvester succeeded in achieving efficiency of 7.8% which was a break

through at that time [62]. The circular Cymbal harvesters, as shown in Fig. (1), are
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TABLE I: A Summary of off Resonance Mode Circular Cymbal PEH

Authors Material Dimensions
(mm)

Power
(mW)

Frequency
(Hz)

Force
(N)

Kim et al. [56] PZT φ = 29; t = 1 53 100 70
Kim et al. [57] PZT φ = 29; t = 1 100 200 70
Uchino and
Ishii [58]

PZT - 10
Layer
Stack

φ = 29; t = 1 53 100 70

Yuan et al. [59] PZT - 10
Layer
Stack

φ = 35; t = 4 2.5 120 8.15

Palosaari et al.
[60]

PZT φ = 35; t = 0.5 0.66 1.19 24.8

(a)
 

 

(b)

Fig. 2: Schematic Of the principle of a cymbal transducer (a)as an actuator, arrows shows
displacement directions, and (b) as an energy harvester [61]
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formed of a piezoelectric disk sandwiched between a pair of concaved metal caps (dome-

shaped). This design amplifies the applied force/displacement and, consequently, the elec-

trical charges. Changing the thickness of the metal caps tunes the harvester to give the

desired response, the amplification factor (M) for this frame can be calculated using Eq.

(1), where the angle (θ) is shown in Fig. (2). Also, electrical charges produced are a com-

bination of both the d31 and the d33 modes which produces more electric charge compared

to the most used harvesters at that time which are based only on the d31 which provides

energy conversion efficiency as low as 10%. The effective piezoelectric constant for a circular

cymbal operating on d31 and the d33 modes is shown in Eq.(2).

M ≈ 1

tan(θ)
(1)

deff = 1 +M | d31
d33

| (2)

In 2005, Deng et al. [63] designed a composite cymbal stack with proof mass. The biggest

difference between that device and the foremost cymbal harvesters is that it used relaxor

piezoeramics which have higher piezoelectric properties. Also, the response frequency of

the inductance of the piezoelectric crystal is tuned to match the mechanical response of the

frame and the proof-mass.

Table (I) gives a brief summary of some of the non-resonance mode circular Cymbal

PEH discussed in the current thesis.

“33” Mode Piezoelectric Multilayer-stacked Flextensional PEHs

The first “33” mode energy harvester was proposed by Cedrat Technoilogies as reported

by Sosnicki et al. [64] as shown in Fig. (3), this harvester was integrated with a force am-

plification frame (FAF); it succeeded in harvesting 50mW with an excitation displacement

of 35µm at 100Hz.

Fig. 3: Pictures of Cedrat APA400M-MD [62]
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.1μmm

– (a)

Metal 
Flextensional 

Frame 

Piezo Plate 

Electrode 

(a) 

(b) 

(c) 

+ 

- 

Fig. 4: Piezoelectric PZT ceramic multilayer–stacked flextensional harvester (PZT-Stacked-
FEH) (a) 2D-diagram of the PZT-Stacked-FEH with applied force, (b) 3D-diagram of the
PZT-Stacked-FH, and (c) the picture of the PZT-Stacked-FEH. [65]

This harvester’s frame was further modified by Liu et al. [66, 67] and Bencheikh et

al. [68]. The modified frame is called buckled-spring-mass (BSM) bistable harvester. It

succeeded in producing 16mW at an acceleration of 3m/s2 at 26.5Hz. Xu et al. [69]

presented a multi-layer PZT-stack that converted 35% of the input energy to electric power

and 70% of the generated electric power to the resistive load, and the mechanical to electrical

energy conversion efficiency reached 35%. The generated power was significantly larger than

the corresponding cantilever type harvesters. Feng et al. [70] proposed new analytical and

first order-numerical models. The results were verified using experimental data, and the

analytical model used the variational approach of Hamilton principle. The proposed model

agreed with the experimental data with high accuracy.

Starner [71] considered walking as one of the most energy consuming activities a human

body performs, and many attempts were made to design shoe harvesters over the past

decades like the harvester designed by Shenck et al. [72], Kymissis et al. [73], Feng et

al. [74, 75], Baghbani et al. [76] and Nathan [77], etc. Kymissis et al. [73] proposed one

of the earliest attempts to harvest energy from a shoe. They proposed three devices that
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can be implemented. The first was a unimorph strip made of piezoelectric composite; the

second was a stave composed of multilayer PVDF foils while the third device was a magnet

based generator which generated higher power than the piezoelectric based harvested which

produced powers of the order of milliwatts; however, it would impair the movement of the

wearer due to its size.

In 2018, Feng et al. [75] carried out numerical (ANSYS) and experimental analysis and

modeled compression “33” mode harvesters with three different assemblies. The assembly is

composed of a number of harvesters sandwiched between two aluminum plates and inserted

in a heel. The assemblies had eight, six and four harvesters respectively tested in walking

speeds of 4km/h, 4.8km/h and 5.6km/h. The assembly with four harvesters only was found

to give the highest power because the applied force per harvester was larger with a maximum

power of 20mW/shoe at the walking speed 5.6km/h; however, using only four harvesters

will expose the FAF high stresses as that frame has stress concentration regions that would

make the harvester break under fatigue load.
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Fig. 5: Time dependent voltage, applied force, and generated energy [65]

In further extension of this work Feng et al. [74] proposed another Finite Element

Analysis model using the ANSYS APDL. Full geometry and quarter geometry models were

compared. The results of the quarter geometry model showed great agreement with the

results of the full geometry model, which proved the applicability of applying the symmetric

boundary conditions to these types of models which significantly reduces the simulation

time. Also, this piezoelectric stack had 300 layers ceramic and 301 electrodes. Each layer



9

has a thickness of 0.1mm and 0.1µmm respectively. This type of geometry, small thickness

geometries, can be so problematic when meshing the bodies. Accordingly, it was proposed to

treat the whole piezoelectric stack as one with piezoelectric charge constant. This effective

piezoelectric charge constant d33 can be calculated as follows

d33 = pd33. (3)

Xu et al. [65] developed a “33” mode PZT multilayer stack-based flextensional har-

vester (PZT-Stacked-FEH). They designed an elastic force amplification frame (FAF) that

would capture mechanical energy with a high energy transition efficiency into the (PZT-

Stacked-FEH). The operation in the “33” mode allowed high mechanical to electrical energy

conversion efficiency and generated more charges. The mechanical energy transmitted to

the PZT-Stacked-FEH due to the FAF is magnified by a factor of 5 which generated 48.6

electrical energy times compared to without the FAF. Also, 26.5 times more electrical power

was generated compared to directly applying a force to the PZT-stack as well as 19% of the

overall mechanical to electrical energy efficiency was obtained. Fig. (5) below demonstrates

a time dependent plot for generated voltage, applied force, and generated energy is shown.

In Fig. (6) a time dependent plot of the level of voltage and stored electrical energy for

6,600 µF capacitor charged by the PZT-Stacked-FEH.

Fig. 6: Level of voltage and Energy Stored [65]

Limitation of energy harvesting from the sole of the shoe can cripple the wearer, the idea

of energy harvesting backpacks became a compelling idea. The relative movement between

the backpack and the person wearing it generates mechanical energy. Several attempts were

made to harvest this energy and convert to useful electrical energy.

Rome et al. [78] used a suspended load backpack arrangement that harvest power of
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7.37 W from the vertical movement at a walking speed of about 6.45 km/hr which is

as much as 300 folds of the maximum shoe generated power at that time. Moreover, the

authors reported that the power generation from a person carrying 29kg load reached 7.5W .

Unfortunately, this arrangement also would impair the movement of the backpack carrier

due to the energy harvester degree of freedom and will lead to increased fatigue.

In 2007, Granstrom et al. [79] proposed harvesting energy from piezoelectric straps made

of PVDF polymers attached to backpack straps. The tested straps had thicknesses of 28µm

and 52µm. One, two, three and four straps connected in parallel or in a series were tested

and simulated. I was shown that the parallel connection produces more power compared to

the series connection, and using one strap only produced more power. Also, it was noticed

that the generated voltage high was compared to the current due to the high impedance

of the PVDF material. It is worth mentioning that their numerical model assumed pure

tension on the harvester and ignored the bending moments.

1.2.1 CIRCULAR DIAPHRAGM PEHS

TABLE II: Brief Summary for Some Diaphragm Piezoelectric Harvesters

Authors Material Dimensions
(mm)

Power
(mW )

Power
Density

(mW/cm3)

Frequency
(Hz)

Palosaari et
al.[80]

PZT-5A φ = 34.5;
t = 0.1905

0.96 6.06 0.96

Mo et al.[81] PZT-5H φ = 25.4;
t = 0.127

0.128 1.99 1

Leinonen et
al.[82]

PZT-5H φ = 35; t = 0.5 0.784 1.63 4

Wang et al.[83] PZT φ = 35; t = 4 8.5 86.58 150
Chen et al. [84] PZT φ = 35; t = 0.5 12 30.56 113

Since the 1900s, the circular diaphragm (or membrane) piezoelectric transducers were

investigated and used in the applications of loudspeakers and recorders, etc. [85, 86]. Most

of the work in the literature focused on the applications of circular diaphragm piezoelectric

devices in actuation applications such as microfluidic, optical applications [87, 88]. Recently

they have been implemented in energy harvesting applications. Diaphragm PEHs are small

in size and capable of working in resonance and off-resonance modes and are capable in

working in low [80, 81, 82] and relatively high [84, 83, 89] frequencies (0.9 ∼ 400Hz).



11

Deterre et al. [90] designed a diaphragm circular harvester that works in low frequency

(2Hz)in fluidic environments (like blood), analytically and experimental studies were pre-

sented. A proposed optimization technique was presented to the extract collected charge by

applying controlled voltage.

In 2014, Palosaari et al. [80] designed a mechanically loaded diaphragm harvester. The

mechanical prestress is applied using a spring, this preload succeeded in increasing the

efficiency of the harvester by 141% compared to the case of without prestress.

The Flextensional Piezoelectric Energy Harvesters are among the best and the most

powerful energy harvesters on the market due to the following reasons:

❼ The Force Amplification Frames (FAF) are capable of greatly magnifying the input

force to the piezoelectric piece. Joel et al. [79] reported one of the heights force

amplification factors α which was 10. Feng et al. [74] used the biogeography-based

optimization (BBO) technique to design a FAF which yields α = 8.5. Xu et al [65]

reported an amplification factor of 5.5.

Unfortunately, while all three works used static loading to calculate the force amplifica-

tion factors “α” there is no universal agreement between FAF designers for calculating

“α”. Joel et al. [79] used the ratio between the deformation of the harvester’s top

area and deformation of the piezoelectric while Feng et al.’s [74] calculation was based

on the ratio between the input to the output forces. Xu et al. [65] used an analytical

method to calculate the value of “α” based on the frame geometry.

❼ FPEHs operate in the 33 mode rather than the “31” mode, the “33” mode produces as

much as twice the generated charge and 3 ∼ 5 times the energy conversion efficiency

compared to the “31” mode harvesters [62].

❼ Instead of using a single bulk piece of piezoelectric material, the stack is composed

of many piezoelectric layers polarized in the “33” direction. Each layer is sandwiched

between two electrode layers. This arrangement provides an equivalent piezoelectric

constant d33 as much as the original piezoelectric constant multiplied by the number

of layers in the stack.
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1.3 ADVANCED PEH CONCEPTS

Since PEHs were first invented, scientists and researchers have been coming up with new

ideas and innovations that improve energy efficiency, increase the amount of harvested en-

ergy from a source, and invented new energy harvesters. Xu et al. [91, 92, 93] invented many

advanced PEH devices, name Hybrid Piezoelectric Harvesting Transducer (HYPEHT). The

HYPEHT proved to be significantly better than a same sized cymbal harvester. In addition,

it received the 2011 Best Energy Harvesting Technology development award. However, the

performance of the invention has not been released yet due to intellectual property issues.

(a)
(b)

(c)

Fig. 7: (a) Diagram of the HYPEHT, (b) Picture of the first prototype HYPEHT (size
35.5 × 18 × 10 mm, weight 40 g) and (c) The harvested power of the HYPEHT over a
Moonie-type piezoelectric harvester [62].

Fig. 8: Multistage Force Amplification Piezoelectric Harvester Transducer (MFAPEHT) [94]

Xu et al. [94] also invented a multistage force amplification piezoelectric harvester trans-

ducer (MFAPEHT) (Fig.8). This harvester has three stack. Each stack is mounted in a

separate force amplification frame (FAF), and all the frames are assembled inside one big
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frame. This arrangement offers huge magnification of the external force and produces a

large effective piezoelectric charge constant as follows

∑

M = M1M2M3...Mn (4)

d33 =
∑

Mqpd33 (5)

They also suggested the implementation of Relaxor piezoelectric single crystal multilayer

stacks for energy harvesting transducers (RPSEHT) to the MFAPEHT. As discussed earlier

in this thesis PMN-PT and PZN-PT relaxors have higher piezoelectric constants (d33 >

1500pC/N) and E-M coupling factors (k33 > 0.88), and they are also suitable in cryogenic

applications.

1.4 PURPOSE

In the past decades many numerical and analytical approaches were developed. However,

none of the published work targeted comparing these approaches to get a quantitative

measure of the difference in accuracy between these models. In the current work, four of

the models were used to model piezoelectric multilayer stacks in off resonance mode. These

addressed models are

❼ Quasi-Static Model,

❼ Single Degree of Freedom Model (SDOF),

❼ Finite Element Analysis (FEA),

❼ A Distributed Parameter Model.

Secondly, a FEA model (using ANSYS) and an experimental setup were developed. The

ANSYS model simulates the Flextensional Piezoelectric Energy Harvesters (FPEHs) in the

resonance mode. Accordingly, a modal and a harmonic modules were used. The ANSYS

model results were validated using mesh dependence. while the experiment results were

used to validate the ANSYS model results.

This thesis is divided into 6 chapters. Chapter (1) gives a brief preview of the piezo-

electric materials from the time quartz was discovered until the discovery of relaxors a few

decades ago. In chapter (2) a detailed derivation for the piezoelectric constitutive laws con-

ducted. Both linear and non-linear governing equations are derived. Chapter (3) focuses
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on mathematical approaches. The chapter starts with an explanation of the quasi-static

model, then the SDOF model and finally describes the ANSYS model (APDL). Chapter (4)

focuses on the variational approach used to derive the equation of motion of the piezoelec-

tric multilayer stacks. A comprehensive derivation for the voltage equation is available in

that chapter. Chapter (5) explains the experimental setup for the resonance mode testing.

Finally, chapter (6) presents the results of the resonance and off-resonance mode models,

which includes the three mathematical models, the analytical model, and the experimental

results.
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CHAPTER 2

CONSTITUTIVE LAWS

Since the 2000s, various attempts and contributions performed to maximize the harvested

energy as well as the energy conversion efficiency and practicality of the Piezoelectric Energy

Harvesters (PEH). The prefix of piezoelectric came from the Greek word piezein which means

press or squeeze, a piezoelectric material is a material that produces electric charge when a

stress/force is applied on it and vice versa. This material property was firstly discovered in

1880 by Paul-Jacques Curie in quartz ceramic [44].

2.1 THEORETICAL FORMULATION

The constitutive equations for piezoelectric continuum were first formulated by the IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control Society in 1966 and were

further revised in 1987 [95]. The governing equation can be described in the index notation

form as follows:

εij = sEijklσkl + dkijEk (6)

Di = dEiklσkl + ǫσikEk (7)

where ε is the strain tensor , sE is the elastic compliance at constant electric field, σ is the

stress tensor, d is the piezoelectric constants tensor, E is the electric field tensor, D is the

electric displacement tensor, ǫσij is the permittivity measured at constant stress and i, j, k &

l can take the values 1, 2 & 3. where the compliance is a 4th rank tensor.

Due to the symmetry of the stress and strain tensors, the notation can be compressed by

eliminating the redundant terms [96] by representing the stress and the strain with single
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column vectors and Eqs. (6) and (7) can be written as follows

εi = sEijTj + dkiEk (8)

Di = dEijσj + ǫσikEk. (9)

The problem with Eqs. (8) and (9) is that they treat the piezoelectric continuum as a

linear medium. Also, they assume pure energy conservation. The first equation describes

the mechanical response while the second describes the electrical response. Also, they fail to

account for the non-linearity that exists in the piezoelectric materials, and these equations

ignore the energy dissipation/damping inside the material [96] whether it is due to elastic

hysteresis [97] or electrical hysteresis [98].

Many attempts were made to account for the piezoelectric ceramics non-linearity. Joshi

[99] drove the linear constitutive equations for piezoceramics then he extended his work in

1991 [100] and drove constitutive laws that accounts for some important non-linearity in

piezoceramics including the non-linear elastic compliance, non-linear dielectric permittivity,

etc.

In a piezoelectric device bounded by a control volume, the electric fields and mechanical

stresses will vary within that control volume and are governed by:

1. The mechanical equilibrium;

2. Strain compatibility equations;

3. Guass’ law, which relates the electric field with the distribution of electric charges;

4. Conservation of charge, electric charges cannot be created nor destroyed;

5. Maxwell’s law, the electric field must be curl-free under quasi-static conditions.
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2.2 LINEAR CONSTITUTIVE EQUATIONS DERIVATION

There are many derivations that can be found in the literature; however, the following

derivations are based on the work done by Joshi [100]. We begin with the equation of the

1st law of thermodynamics

∆U = Q+W (10)

where ∆U is the change in internal energy of a closed system, Q is the heat added and W is

the net work done on the system “−W”. Work can be done either by applying mechanical

force or by applying an electric current to the piezoelectric material.

We also need to define the enthalpy as H = U + pV , where p and V are the pressure

and volumes respectively, so we can write the enthalpy in the form

H = U − σijεij − EiDi (11)

and its total derivative in the form

dH = TdS − εijdσij −DidEi. (12)

Employing the thermodynamic Gibbs Potential to derive constitutive equations which

states

G(p, T ) = H − TS (13)

where G is Gibbs free potential, H is the the enthalpy, T is the temperature and S is

the entropy.
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G(p, T ) = U + pV − TS (14)

where U is the internal energy, p is the pressure and V is the volume. Since the only

work done on the system (control volume)is by a mechanical stress or electric field, we can

write Gibbs law as well as its total differential in the following forms

G = U − σijεij − EiDi − TS (15)

dG = −εijdσij −DidEi − SdT. (16)

We have G = G(σ,E, T ), and we can expanding the total derivative of G using Tailor

series in term

dG =

(

∂G

∂σij

)

E,T

dσij +

(

∂G

∂Ek

)

σ,T

dEk +

(

∂G

∂T

)

σ,E

dT. (17)

Nothing that, we ignored the higher order terms. The subscripts mean that the propriety

of interest is measured when the subscripted properties were constant. Similarly, we can

make the same expansion for εij, Dk and S

dεij =

(

∂εij
∂σkm

)

E,T

dσkm +

(

∂εij
∂Ek

)

σ,T

dEk +

(

∂εij
∂T

)

σ,E

dT (18)

dDk =

(

∂Dk

∂σij

)

E,T

dσij +

(

∂Dk

∂Es

)

σ,T

dEs +

(

∂Dk

∂T

)

σ,E

dT (19)

dS =

(

∂S

∂σij

)

E,T

dσij +

(

∂S

∂Es

)

σ,T

dEs +

(

∂S

∂T

)

σ,E

dT. (20)

Comparing the expressions in Eqs. (16) and (17) (expression by expression) we can reach
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the following conclusion

εij = −
(

∂G

∂σij

)

E,T

Dk = −
(

∂G

∂Ek

)

σ,T

S =

(

∂G

∂T

)

σ,E

.

The generalized Hook’s law at constant temperature and electric field can be written as

sE,T
ijkm =

(

∂εij
∂σkm

)

E,T

. (21)

Uchino [101] defined the strain caused by thermal energy or mechanical stress as thermal

expansion and elastic deformation respectively. He then defined the strain caused by an

electric field as electric-field induced strain which is described as electrostrition. A third

rank tensor is exemplified by piezoelectric charge constants dijk. For the direct piezoelectric

effect its the polarization generated per unit applied stress. For the converse piezoelectric

effect, providing a relation of the induced strain εij with the applied electric field Ei (V/m),

or in the case of direct piezoelectric effect, the induced electric field Dk with the mechanical

stress applied on the material σij is

dTijk =

(

∂εij
∂Ek

)

σ,T

(22)

=

(

∂Dk

∂σij

)

E,T

. (23)

Thermal expansion ”α” is a second rank tensor that is defined as the tendency of the

material to change its shape or geometry or undergo strain as a response of the change

in temperature [102]. Also, it relates the stress tensor with the entropy of the material
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[103, 104]

αE
ij =

(

∂εij
∂T

)

σ,E

(24)

=

(

∂S

∂σij

)

E,T

. (25)

The dielectric permittivity ǫij also known as the dielectric constant is defined as the

dielectric displacement Di per unit electric field Ej [105].

ǫσ,Tij =

(

∂Di

∂Ej

)

σ,T

. (26)

Some materials are known as polar or pyroelectric material, Pyr in Greek means fire.

The coefficient of pyroelectricity is defined as [106]

pσi =

(

∂Di

∂T

)

σ,E

(27)

=

(

∂S

∂Ei

)

σ,T

. (28)

the specific heat is also defined as

cσ,E =
T0

ρ

(

∂S

∂T

)

σ,E

(29)

ρcσ,E

T0

=

(

∂S

∂T

)

σ,E

. (30)
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Now, we can start assembling Eqs. (21), (23) and (24) into Eq.(18), and we get

dεij = sE,T
ijkmdσkm + dTijkdEk + αE

ijdT (31)

Assembling Eqs. (23), (26) and (27) into Eq.(19) we get

dDk = dTijkdσij + ǫσ,Tij dEj + pσi dT. (32)

Similarly, with Eq. (25), (28) and (30) into Eq. (20)

dS = αE
ijdσij + pσi dEi +

ρcσ,E

T0

dT. (33)

Integrating Eqs. (31), (32) and (33) we get

εij = sE,T
ijkmσkm + dTijkEk + αE

ijT (34)

Di = dTijkσij + ǫσ,Tij Ej + pσi ∆T (35)

∆S = αE
ijσij + pσi Ei +

ρcσ,E

T0

∆T. (36)

The constitutive equations above are for a general piezoelectric ceramic. In

an isothermal system (T = constant) will lead us to the required Eqs. (6) and (7)

εij = sE,T
ijkmσkm + dTijkEk (6)

Di = dTijkσij + ǫσ,Tij Ej. (7)
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2.3 NON-LINEAR CONSTITUTIVE EQUATIONS DERIVATION

In the previous section, we viewed the derivation process of the linear piezoelectric con-

stitutive laws. Fig.(9) shows a typical hysteresis curve made by utilizing the converse piezo-

electric effect, i.e, applying electric field until reaching the maximum strain then removing

or reversing the electric field. Fig.(9a) when applying an electric field, a change in strain

occurs (branch A); however, when we remove that electric field the strain does not follow

path A and follows path B instead. In addition to the normal hysteresis curves A and B in

Fig.(9a), when the applied voltage is positive, the butterfly diagram in Fig.(9b) defines the

behavior of the material through AC field cycles of positive and negative operating electric

fields. Negative electric fields produce negative strain along curve C until the depoling field

where the extension suddenly turns positive following the curve D. The process is repeated

along curves EFG when the electric field is made positive again. The “butterfly” diagram

provides a complete characterization of the depoling and repoling process. More information

on the hysteresis curve of polymerization can be found in [107].

(a) Applied DC voltage to a piezoelectric ceramic(b) Applied AC voltage to a piezoelectric ceramic

Fig. 9: Piezoelectric ceramic hysteresis behavior [108]

In the derivation in the previous section we neglected the higher order terms in Eqs.(18),
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(19) and (20) which resulted in the linear constitutive equations. In our non-linear deriva-

tions we will consider the second-order terms. We start by re-writing Eq.(18) to get the

following formula

dεij =

(

∂εij
∂σkm

)

E,T

dσkm +

(

∂εij
∂Ek

)

σ,T

dEk +

(

∂εij
∂T

)

σ,E

dT

+
1

2

(

∂2εij
∂σsm∂σpq

)

E,T

dσsmdσpq +
1

2

(

∂2εij
∂En∂Er

)

σ,T

dEndEr +
1

2

(

∂2εij
∂T 2

)

σ,E

dTdT

+

(

∂2εij
∂σsm∂Er

)

T

dσsmdEr +

(

∂2εij
∂σpm∂T

)

E

dσpmdT +

(

∂2εij
∂En∂T

)

σ

dEndT. (37)

Similarly Eq.(19) can be written as

dDk =

(

∂Dk

∂σim

)

E,T

dσim +

(

∂Dk

∂En

)

σ,T

dEn +

(

∂Dk

∂T

)

σ,E

dT

+
1

2

(

∂2Dk

∂σim∂σpq

)

E,T

dσimdσpq +
1

2

(

∂2Dk

∂En∂Er

)

σ,T

dEndEr +
1

2

(

∂2Dk

∂T 2

)

σ,E

dTdT

+

(

∂2Dk

∂σim∂En

)

T

dσimdEn +

(

∂2Dk

∂σim∂T

)

E

dσimdT +

(

∂2Dk

∂Em∂T

)

σ

dEmdT. (38)

Also, for Eq.(20):

dS =

(

∂S

∂σim

)

E,T

dσim +

(

∂Dk

∂En

)

σ,T

dEn +

(

∂S

∂T

)

σ,E

dT

+
1

2

(

∂2S

∂σim∂σpq

)

E,T

dσimdσpq +
1

2

(

∂2S

∂En∂Er

)

σ,T

dEndEr +
1

2

(

∂2S

∂T 2

)

σ,E

dTdT

+

(

∂2S

∂σim∂En

)

T

dσimdEn +

(

∂2S

∂σim∂T

)

E

dσimdT +

(

∂2S

∂Em∂T

)

σ

dEmdT. (39)

If we assumed negligible change in temperature the three previous equations become
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dεij =

(

∂εij
∂σkm

)

E

dσkm +

(

∂εij
∂Ek

)

σ

dEk +
1

2

((

∂2εij
∂σim∂σpq

)

E

dσimdσpq

+

(

∂2εij
∂En∂Er

)

σ

dEndEr

)

+

(

∂2εij
∂σsm∂Er

)

T

dσsmdEr. (40)

dDk =

(

∂Dk

∂σim

)

E

dσim +

(

∂Dk

∂En

)

σ

dEn +
1

2

((

∂2Dk

∂σim∂σpq

)

E

dσimdσpq

+

(

∂2Dk

∂En∂Er

)

σ

dEndEr

)

+

(

∂2Dk

∂σim∂En

)

T

dσimdEn. (41)

We have the non-linear compliance coefficient

SE
ijkmpq =

(

∂2εij
∂σkm∂σpq

)

E

. (42)

The non-linear piezoelectric charge constants

dTijnr =

(

∂2εij
∂En∂Er

)

σ

(43)

=

(

∂2Dk

∂σlm∂En

)

T

dσlmdEn. (44)

The non-linear elastostriction coefficients

κijlmn =

(

∂2εij
∂σim∂En

)

(45)

=

(

∂2Dk

∂σlm∂σpq

)

E

. (46)

And finally the non-linear dielectric permittivity
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ǫknr =

(

∂2Dk

∂En∂Er

)

. (47)

Therefore, the differential governing equation becomes

dεij = sEijkmdσkm + dijkdEk +
1

2
SE
ijkmpqdσkmdσpq +

1

2
dijnrdEndEr + κijlmndσlmdEn (48)

dDi = dijkdσjk + ǫindEn +
1

2
κijlmndσjldσmn +

1

2
ǫσinrdEndEr + dilmndσlmdEn. (49)

By integration we finally reach the non-linear governing equations

εij = sEijkmσkm + dijkEk +
1

2
SE
ijkmpqσkmσpq +

1

2
dijnrEnEr + κijlmnσlmEn (50)

Di = dijkσjk + ǫinEn +
1

2
κijlmnσjlσmn +

1

2
ǫσinrEnEr + dilmnσlmEn. (51)

Ceramics are brittle materials, and so as piezoelectric ceramics, they fail in tension at

relatively low values of strain. The stress-strain curve is linear up to failure (parabolic in

other cases); therefore, the non-linear compliance can be neglected, and we can also neglect

the non-linear dielectric constant

The elastostriction coefficients κijlmn are important at high electric fields. If mechanical

stress and electric field are applied together (the material is not allowed to deform freely).

By making use of the symmetry of the stress and the strain tensors as in the previous

section we get the final form of the non-linear constitutive laws:

εi = sEijσj + dikEk +
1

2
dEikmEkEm + κimnσmEn (52)

Di = dijσj + ǫσinEn +
1

2
κijlσjσl + dilmσlEm. (53)
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2.4 CASE STUDY

We have the linear compliance coefficients tensor expressed as follows

sijkm =

































s1111 s1122 s1133 s1123 s1113 s1112

s2222 s2233 s2223 s2213 s2212

s3333 s3323 s3313 s3312

sym. s2323 s2313 s2312

s1313 s1312

s1212

































. (54)

The piezoelectric multilayer stack (shown in Fig. (10)) can be treated as a transversely

isotropic solids/composite materials. A transversely isotropic solid is a material that has

an axis of symmetry. Suppose that we have the axis of symmetry as the x3-axis in the

Cartesian coordinates. We start by noting that the material is also symmetric about the x1

and x2 planes. Starting with applying the symmetry around x1 by employing the improper

orthogonal transformation 1 Qij (the following derivation is from R.Ash [109])

 

𝑥1 
𝑥2 

𝑥3 

Fig. 10: Piezoelectric multi-layer Stack

1Improper means that the transformation results in a non-right hand coordinate system
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Qij =













−1 0 0

0 1 0

0 0 1













(55)

The fourth order tensor transformation follows the following equation.

s′ijkm = QimQjnQkpQmqsmnpq (56)

Upon proceeding in the transformation, we will notice that any element involving any

odd number of subscripts 1 repetitions will yield the improper transformation, accordingly:

s1113 = s1112 = s2213 = s2212 = s3313 = s2313 = s2312 = 0.

∴ s1ijkm =

































s1111 s1122 s1133 s1123 0 0

s2222 s2233 s2223 0 0

s3333 s3323 0 0

sym. s2323 0 0

s1313 s1312

s1212

































. (57)

Similarly, for the symmetry around the x2 plan we employ the following transformation

matrix
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Qij =













1 0 0

0 −1 0

0 0 1













. (58)

Then we gave also s1312, s3323, s1123 and s2223 = 0.

∴ s1−2
ijkm =

































s1111 s1122 s1133 0 0 0

s2222 s2233 0 0 0

s3333 0 0 0

sym. s2323 0 0

s1313 0

s1212

































(59)

We have symmetry about the x3 axis by applying the following transformation matrix

Qij =













cosθ sinθ 0

−sinθ sinθ 0

0 0 1













(60)
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and substituting in S ′
ijkm = QimQjnQkpQmqSmnpq to get the following sets of equations

s1111 = cos4θ.s1111 + cos2θ.sin2θ[2s1122 + 4s1212] + sin4θ.s2222

s2222 = sin4θ.s1111 + cos2θ.sin2θ[2s1122 + 4s1212] + cos4θ.s2222

s1122 = cos4θ.s1122 + sin4θ.s2211 + cos2θ.sin2θ[s1111 + s2222]− 4s1212

s1133 = cos2θ.s1133 + sin2θ.s2233

s1212 = (cos4θ + sin4θ)s1212 + cos2θ.sin2θ[s1111 − 2s1122 − 2s1212 + s2222].

The equations above must be true for all values of θ. By investigating and substituting

these equations together we can reach the following conclusion.

s1111 = s2222

s1133 = s2233

s2323 = s3131

s1212 =
1

2
(s1111 − s1122)

Accordingly, we can write the compliance matrix in the following form

∴ sijkm =

































s1111 s1122 s1133 0 0 0

s1111 s2233 0 0 0

s3333 0 0 0

sym. s2323 0 0

s2323 0

1
2
(s1111 − s1122)

































(61)
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∴ sij =

































s11 s12 s13 0 0 0

s11 s13 0 0 0

s33 0 0 0

sym. s44 0 0

s44 0

1
2
(s11 − s12)

































. (62)

Using similar methods, we can derive the tensors for the dijk and ǫij which is an ortho-

graphic type matrix.
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CHAPTER 3

MATHEMATICAL METHODOLOGIES

In this chapter, we will present a detailed explanation of the mathematical approaches

and experimental setup used in the current work. We will first discuss the Static Model,

then the SDOF model, then the Finite Element Model. This progression in explanation

by disgusting the simplest model to the more difficult ones will allow the reader to the

piezoelectric stack numerical simulations.

These numerical models adopt the assumption that the force affects the piezoelectric

stack in only the “33” direction, and the piezoelectric effect in the other directions will be

ignored. Accordingly, Eqs. (6) and (7) can be reduced as follows.

ε3 = sE33σ3 + d33E3 (63)

D3 = dE33σ3 + ǫσ33E3 (64)

3.1 QUASI-STATIC MODEL

The static model was presented in many papers and textbooks in the literature. In this

work we will be focusing on the model presented by Uchino [101]. Further modifications to

this model were made by Xu et al. [69], but we will not delve to these modifications in the

current work.

The stress is expressed as the ratio between the input force and the normal area as

follows

σ3(t) =
F (t)

A
. (65)
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Using this calculated stress, we can calculate the dielectric displacement using Eq. (66).

D3(t) = d33σ3(t) (66)

The next step will be to calculate the Electric Field Vector by substituting into Eq. (67).

E3(t) =
D3(t)

ǫ
σ(t)
33

(67)

Finally, the applied voltage is calculated using the following equation

V (t) = E3(t)tp. (68)

If we assumed a sinusoidal input force on the piezoelectric stack, the derivative of the

voltage with respect to time can be expressed as

dV (t)

dt
=

2πftpd33Amp

Aǫσ33
cos(2πft). (69)

Accordingly, the open circuit current can be calculated as

i(t) =
dV (t)

dt
Cp (70)

where CP is the stack capacitance

Cp =
pAǫT33
tp

, (71)

and the Generated Energy can be calculated using Eq. (72)

En(t) =
1

2
CpV

2(t). (72)
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3.2 SINGLE DEGREE OF FREEDOM MODEL (SDOF)

The main physical difference between the Static model and the Single Degree of freedom

model is that the SDOF model accounts for the inertia effects. The SDOF is relatively

simple and provides fairly accurate results [9]. In this thesis we will derive the governing

equations for the SDOF model. The SDOF is by far the most implemented model in the

literature [79, 110, 75, 70, 94]. The SDOF model was first presented by Goldfarb et al.

[111] where the piezoelectric multi-layer stack is modeled as a mass-spring-damper system

as shown in Fig. (11a).

The mechanical response of the system to be shown in Fig.(11b) can be written as

Mẍ = −Fp(t) + F (t). (73)

By convention and similar to the quasi-static model in section 3.1, coordinate transfor-

mations are performed so that the 3 direction is aligned with the polarization direction. In

case we are modeling a harvester operated in the “33” mode the other directions are ignored

as discussed previously, and again we use the following well known equations:

S3 = sE33T3 + d33E3 (63)

D3 = dE33T3 + εT33E3 (64)

where Eqs. (63) and (64) ignored the piezoelectric and strain effects in the other direc-

tions.

The SDOF model used on the following simplified constitutive relations is
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S3(t) =
x3

L
σ3 =

F (t)

A
E3 =

V (t)

tp
D3 =

Q3(t)

A
.

Accordingly, Eqs. (63) and (64) can be expressed as

x(t) =
L

Y A
Fp(t) +

d33L

tp
V (t) ⇒ Fp =

Y A

L
x(t)− d33Y A

tpCp

Q(t) (74)

Q(t) = d33pF (t) + CpV (t) (75)

where Cp =
pεσ

33
A

tp
and k = Y A

L
.

By rearranging Eq. (75), we get the following equation.

V (t) =
d33pkx(t)

Cp

+
Q(t)

Cp

(76)
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Applying Newton’s law on the mass-spring system shown in Fig. 11 we get the following

equation

Mẍ+ Fp(t) = F (t). (77)

Accordingly, the mechanical and the electrical responses can be coupled and represented

in the following equations which are the basis for the SDOF model.

Mẍ+ kx(t)− d33kl

tpCp

Q(t) = F (t) (78)

RQ̇(t)− d33pk

Cp

x(t) +
Cp

Q(t)
= 0 (79)

Although the single degree of freedom model is very simple and provides good accuracy,

it assumes that the system is following linear behavior. Also, it assumes that the PZT stack

is homogeneous across all the layers, i.e. the generated voltage and current through out all

the layers is identical “L = pt”. Also SDOF can not produce a whole bode plot diagram;

instead it produces only one peak on it [70, 112].

Among the limitations in Eqs. (78) and (79) is that they assume the piezoelectric

continuum to be linear and also they assume that the process of energy conversion has

100% efficiency. Eq. (78) governs the mechanical response of the system while Eq. (79)

governs the electrical resonance; hence, it fails to account for the non-linearity that exists in

the piezoelectric stack. Also, these equations ignore the energy dissipation/damping inside

the material whether it is due to elastic hysteresis [97] or electrical hysteresis [98] as well as

the presence of electrodes between the stack layers.

Many attempts were made to account for the piezoelectric ceramics non-linearity [113,

114, 115, 116]. Leigh et al. [117] proposed an implicit iterative approach that predicted the

hysteresis in the piezoelectric actuators; however, due to the iterative approach any noise in

the input will be magnified [118]. Also, this approach is not a real-time approach, and it is

not an energy based approach [111].
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If we substituted with the natural frequency ωn =
√

Y A
ML

, Eqs. (78) and (79) can be

rewritten in the following forms

ẍ(t) + ω2
nx(t)− pω2

nd33V (t) =
α

M
F (t) (80)

Q3(t) + pd33Mω2
nx(t) + CpV (t). (81)

Knowing that the voltage can be expressed as V (t) = R
Q̇(t)

, Eq. (81) can be rewritten as

follows

V̇ (t) +
V (t)

RCp

+
pMω2

nd33
Cp

= 0. (82)

Laplace and Fourier transforms can be used to solve Eqs. (80) and (82); however, the

transformation of these two equations to the s-domain or the frequency domain will result

in very large equations, and the chance of making an error is almost unavoidable (even if

the transformation was carried out using software like MATLAB).

An easier way to solve these equations is to use the state space modeling by defining the

state variables as follows

x1 = x (83)

ẋ1 = ẋ (84)

x2 = ẋ1 = ẋ (85)

ẋ2 = ẍ1 = ẍ (86)

x3 = V (87)

ẋ3 = V̇ . (88)
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Substituting the values of the state variables in Eqs. (80) and (82) we get a set of three

equations.

ẋ1 = x2 (89)

ẋ2(t) + ω2
nx1(t)− pω2

nd33x3(t) =
α

M
F (t) (90)

ẋ3(t)+
x3(t)

RCp

+
pMω2

nd33
Cp

= 0 (91)

Equations (89), (90) and (91) can be rearranged as expressed as

ẋ1(t) = x2(t) (92)

ẋ2(t) = −ω2
nx1(t) + pω2

nd33x3(t) +
α

M
F (t) (93)

ẋ3(t) = −x3(t)

RCp

− pMω2
nd33

Cp

. (94)

Defining an equivalent piezoelectric constant for the stack assembly as shown in Eq.

(95),

d33 = pd33. (95)

Substituting Eq. (95) in Eqs (89), (90) and (91) we get

ẋ1(t) = x2(t) (96)

ẋ2(t) = −ω2
nx1(t) + ω2

nd33x3(t) +
α

M
F (t) (97)

ẋ3(t) = −x3(t)

RCp

− Mω2
nd33

Cp

. (98)
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MATLAB’s standard solver for Ordinary Differential Equations (ODE) was used, specif-

ically the ode45. The ode45 utilizes an algorithm that is similar to the Runge-Kutta method

with a variable time step which is more efficient in many cases. The solver’s initial conditions

were set to be zero before starting the solution process.

3.3 FINITE ELEMENT ANALYSIS

Due to the complexity of this method we used the ANSYS APDL to simulate the piezo-

electric stack. ANSYS users, have two choices: either use the ANSYS APDL or the ANSYS

structural workbench. The APDL stands for ANSYS Parametric Design Language. It is

more complicated in terms of drawing the geometry and setting up the mathematical model;

however, it gives more control and insight and provides great understanding of the model

that is being solved.

On the other hand, the ANSYS workbench has a more friendly GUI (Graphical User

Interface). The user can input the parameters and control every aspect in the model the

same as the APDL by using the commands options. However, the ANSYS workbench has

an ACT called “ANSYS Piezo-Electric and MEMS” that can be downloaded for free from

the ANSYS website and added as an extension to the workbench. Using this extension

makes the Piezoelectric effect simulations easy even for beginners.

Three ANSYS models were used; static, transient and harmonic models were tested.

The first model that was implemented was the static model, then the transient model and

finally the harmonic model. The harmonic model is a very tricky model when applying a

voltage boundary condition.

The piezoelectric stack by itself was modeled and different harvester’s geometries were

modeled as well. In this section we will be discussing a whole harvester. Modeling will be

presented as the explanation of a piezoelectric stack modeling as part of the whole ANSYS

modeling process.

To model the stainless steel (Spring Metal) the FAF is modeled using 3D 10 node
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tetrahedral Elements SOLID187 (Fig. (12)) which has degrees of freedom limited only

to the spatial directions. On the other hand, the piezoelectric stack was modeled using

3D 20-Node Coupled-Field Solid SOLID226 Elements (Fig. (13)). These elements have

similar geometry as SOLID186 except that they allow voltage as an additional degree of

freedom. The stack is modeled as one piezoelectric piece rather than sets of separate layers of

piezoelectric and silver electrodes. This allows using bigger mesh elements and significantly

reduces computational time.

To apply the SOLID226 to a specific geometry (the piezoelectric stacks), the following

command is used “ET,MATID, SOLID226, 1001”, where MATID is the material identifi-

cation number, and the number 1001 turns on the keyopt for the volt degree of freedom for

SOLID226.

Fig. 12: SOLID186 Homogeneous Structural Solid Geometry



40

Fig. 13: SOLID226 Element Geometry

After defining the elements types, the material properties are defined. The FAF is defined

normally like any other isotropic materials found in the literature.

Although the piezoelectric materials are anisotropic, we can take advantage of the pres-

ence of multilayers in the stack, and each layer is very thin (as small as 0.1 mm) and the

force is applied only in the “33” direction; therefore, we can neglect the piezoelectric effects

in the other directions. Accordingly, for simplicity we can assume that the piezoelectric

stack is isotropic.

To treat the piezoelectric multi-layer stack as one bulk object we need to use the material

equivalence method which was implemented by Feng et al. [74]. The material equivalence

method assumes the following

Cp = Cp (99)

where Cp and Cp are the capacitance of the piezoelectric bulk and the capacitance of the

multi-layer stack respectively.
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The Capacitance of the stack with layers is expressed as

Cp =
pεσ33A

tp
. (100)

While Capacitance of the piezoelectric bulk is expressed as

Cp =
εσ33A

ptp
(101)

where L = ptp.

From Eqs.(99), (100) and (101) we get

pεσ33A

tp
=

εσ33A

ptp
. (102)

Therefore, we get the equivalent dielectric constant as follows

εσ33 = p2εσ33. (103)

Also, it was shown in section (3.2) that the equivalent piezoelectric charge constant is

expressed as follows

d33 = pd33.

The rest of the piezoelectric parameters can be expressed as

e33 =
d33

2

sE33
(104)

εs33 = εσ33 − (
d33

2

sE33
). (105)

The main parameters used to model the piezoelectric material are the young’s modulus

Y = 1
sE
33

, the equivalent piezoelectric constant d33 and εσ33.
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If the piezoelectric stack is aligned with the z-direction in the ANSYS model, the e33

can be define using the following commands

TB, PIEZ,MATID

tbdata, 9, e33.

While the equivalent dielectric constant can be defined also by the PERZ command as

MP,PERZ,MATID, εs33.

A zero voltage boundary condition was applied to one end of the piezoelectric stack while

the other end was coupled.So that all nodes should have the same instantaneous voltage.

Both piezoelectric stack ends were coupled into two master nodes made to connect the re-

sistor element or a capacitance. CIRCU94 element was used for that purpose. Fig. (14)

shows the ANSYS commands used to define the resistance as well as some of the boundary

conditions.

Fig. 14: contour plot for the maximum deformation by ANSYS at force of magnitude of
100N and frequency of 10Hz
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The piezoelectric matrix in ANSYS is different from the Piezoelectric Matrix in the IEEE

standards as explained below

eIEEE
ij =

































e11 e12 e13

e21 e22 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

e61 e62 e63

































(106)

while according to the ANSYS definition it is expressed as follows

eAPDL
ij =

































e11 e12 e13

e21 e22 e23

e31 e32 e33

e61 e62 e63

e41 e42 e43

e51 e52 e53

































. (107)

For the transient analysis, the direct solver (sparse) is used rather than the default

iterative solver (PCG). This can be done using the APDL command EQSLV, SPARCE. It’s

also important to notice that this sparce solver is applicable only in ANSYS full methods

only.

The ANSYS PCG solver follows an iterative algorithm which offers a good alternative

to more complex sparse direct solvers. These iterative solvers do not require an expensive

matrix factorization of the system assembled matrix, and they always run in memory and do

only minimal I/O. However, iterative solvers use initial guesses that are random in nature,
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but they are chosen to be within an acceptable range of the unknown exact solution. During

this iterative process, which is dependent on matrix properties, failure to converge can occur

in some cases.

On the other hand, the sparse direct solvers (which include the Block Lanczos method,

Gaussian elimination, QR decompositions and the well-known Cholesky method) uses a

direct elimination method for the equations, which is different from the iterative solvers.

The procedure of the direct elimination factorization method requires the factorization of

an initial sparse linear system of equations into a triangular matrix. Then a forward and

backward substitution process is done using this triangular matrix system. The disk space

required for the aforementioned triangular matrix is always more than the space required

for the initial assembly sparse matrix.
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CHAPTER 4

ANALYTICAL APPROACH

The analytical method described here was introduced by Feng et al. [70]. This model can

be considered complicated; however, it provides good accuracy for the piezoelectric stack

modeling. The main advantage of this model over the previous numerical models is that

it does not treat the piezoelectric stack as a homogeneous body; it treats each layer as a

separate component affected by different stress and strain values; therefore, they generate

different voltages.

Fig. 15: Piezoelectric multi-layer Stack Schematic [70]

The equations of motion of the piezoelectric stack is derived using the total potential

energy method. The kinetic energy can be expressed as

T =
1

2

∫ L

0

Aρ(
∂u

∂t
)2dx (108)

U =
1

2

∫ L

0

A(σ3S3 − E3D3)dx (109)
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where u(t) is the axial displacement of a certain location on the stack while φ(t) is the

electric potential. The work done by the external force is expressed as

W =

∫ L

0

(Fu−Qφ)dx. (110)

Accordingly, the total energy of the stack can be expressed as

π = T − U +W. (111)

Applying Hamilton’s principle to Eq. (110) we get

δ

∫ t2

t1

πdt = δ

∫ t2

t1

(T − U +W )dt = 0. (112)

Substituting Eqs.(108), (109) and (110) into Eq.(111) we get

∫ t2

t1

{[

1

2

∫ L

0

Aρ(
∂u

∂t
)2dx

]

−
[

(
1

2

∫ L

0

A(σ3S3 − E3D3)dx)

]

+

[
∫ L

0

(Fu−Qφ)dx

]}

dt = 0.

(113)

which can be expressed as

δ

∫ t2

t1

∫ L

0

{

1

2
Aρ(

∂u

∂t
)2 − 1

2
A(σ3S3 − E3D3) + Fu−Qφ

}

dxdt = 0. (114)

Performing the variational operation for Eq. (114) we get

∫ t2

t1

∫ L

0

{

Aρ
∂u

∂t

∂δu

∂t
− AcE33

∂u

∂x

∂δu

∂x

− Ae33
∂δφ

∂x

∂u

∂x
− Ae33

∂φ

∂x

δ∂u

∂x
+ Aεs33

∂φ

∂x

∂δφ

∂x

+ Fδu−Qδφ

}

dxdt = 0. (115)

Knowing that δu at the time t extreme limits (t2 and t1) equals to zero, and by performing
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integration by parts for the first term we get

∫ t2

t1

∫ L

0

{

Aρ
∂u

∂t

∂δu

∂t

}

dxdt =

∫ L

0

[

Aρδu
∂u

∂t

∣

∣

∣

∣

∣

t2

t1

]

dx−
∫ t2

t1

∫ L

0

[

Aρδu
∂2u

∂t2
dxdt

]

dt (116)

= −
∫ t2

t1

∫ L

0

[

Aρδu
∂2u

∂t2
dxdt

]

dt. (117)

Using the same method for the rest of the terms in Eq.(115) we get

∫ t2

t1

∫ L

0

{

(

−Aρ
∂2u

∂t2
+ AcE33

∂2u

∂x2
+ Ae33

∂2φ

∂x2
+ F

)

δu

+

(

Ae33
∂2u

∂x2
− Aεs33

∂2φ

∂x2
−Q

)

δφ
}

dxdt = 0. (118)

Therefore, the two equations of motion can be extracted from Eq.(118):

−Aρ
∂2u

∂t2
+ AcE33

∂2u

∂x2
+ Ae33

∂2φ

∂x2
+ F = 0 (119)

and

Ae33
∂2u

∂x2
− Aεs33

∂2φ

∂x2
−Q = 0. (120)

Since we are dealing with energy harvesting application (not actuation), there are no elec-

tric changers applied on the surface of the piezoelectric stack, which requires thatQ(x, t) = 0.

Therefore, second equation of motion can be written as

e33
∂2u

∂x2
− εs33

∂2φ

∂x2
= 0. (121)

The equation above can be rewritten as

∂2φ

∂x2
=

e33
εs33

∂2u

∂x2
. (122)
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Substituting Eq.(122) into Eq.(119) we get

∂2u

∂t2
+

c

ρA

∂u

∂t
− k

ρ

∂2u

∂x2
= f(x, t) (123)

where

k = cE33 +
e233
εs33

f(x, t) =
F (x, t)

ρA
.

The homogeneous solution for Eq. (123) can be expressed in the following form

u(x, t) = X(x)T (t) (124)

whereX(x) is the mode shape function while T (t) is the system response in the time domain,

which can be rewritten as

u(x, t) = Xn(x)Tn(t) (125)

where Tn and Xn can be expressed as

Tn =
a0 [1− (−1)n]

ρALωn

[

1− ω2
n

ω2
dn

e−ζnωntcos(ωdnt− θn0)

]

(126)

+
∞
∑

m=1

2 [1− (−1)n]

ρAL
{

[

ω2
n − (mω)2

]2
+ (2ζnωnmω)2

}
1

2

[am cos (mωt− θnm) + bmsin(mωt− θnm)]

(127)
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where wn = nπ
L

k
ρ
, ζn = cL

2nπA
√
ρk

and ωdn = ωn

√

1− ζ2n = 1
2ρAL

√

ρk(2nπA)2 − c2L2

Xn = bncos(
nπx

L
). (128)

Noting that the Fourier series was used to express the force as follows

F (t) =
a0
2

+

Nf
∑

m=1

[am cos(mωt) + bm sin(mωt)] (129)

where Nf is the number of harmonic terms and a0, am and bm are the Fourier coefficients.

Therefore, u(x, t) can be written as

u(x, t) =
∞
∑

n=1

Xn(x)Tn(t)

=
∞
∑

m=1

cos(
nπx

L
)
a0 [1− (−1)n]

ρALωn

[

1− ω2
n

ω2
dn

e−ζnωntcos(ωdnt− θn0)

]

+

Nf
∑

m=1

2 [1− (−1)n]

ρAL
{

[

ω2
n − (mω)2

]2
+ (2ζnωnmω)2

}
1

2

(130)

(

am cos (mωt− θnm) + bmsin(mωt− θnm)

)

(131)

where Nf is the number of harmonic terms. We have the strain S3(x, t) expressed as

S3(x, t) =
∂u(x, t)

∂x
=

∂X(x)

∂x
T (t) (132)

by substituting Eq.(130) into Eq.(132) we get

S3(x, t) =
∞
∑

n=1

(−nπ

L
)sin(

nπx

L
)Tn(t). (133)
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Also, the voltage can be analytically obtained from Eq.(134):

ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∫

e
t

RLCp
dS3 (xi)

dt
dt. (134)

Substituting with the value of dS3(xi)
dt

we get

ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∫

e
t

RLCp

∞
∑

n=1

(

−nπ

L

)

sin
(nπx

L

)

Ṫndt. (135)

The equation above can be reorganized and expressed in the form:

ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∞
∑

n=1

(

−nπ

L

)

sin
(nπx

L

)

∫

e
t

RLCp Ṫndt. (136)

We can get the value of Ṫn from Eq.(126).

Ṫn =
a0 [1− (−1)n]

ρALωn

[

− ω2
n

ω2
dn

(

−ζnωne
−ζnωnt cos (ωdnt− θn0) + e−ζnωntωdn sin (ωdnt− θn0)

)

]

+
∞
∑

m=1

2 [1− (−1)n]mω

ρAL
{

[

ω2
n − (mω)2

]2
+ (2ζnωnmω)2

}
1

2

× [−am sin (mωt− θnm) + bm cos(mωt− θnm)] (137)

In order to make the equation smaller assume the following:

Ta =
2 [1− (−1)n]mω

ρAL
{

[

ω2
n − (mω)2

]2
+ (2ζnωnmω)2

}
1

2

(138)

Sn =
(

−nπ

L

)

sin
(nπx

L

)

(139)
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Therefore, the generated voltage can be expressed as:

∴ ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∞
∑

n=1

Sn

∫

e
t

RLCp

{

− ω2
n

ω2
dn

(−ζnωne
−ζnωnt cos (ωdnt− θn0)

+ e−ζnωntωdn sin (ωdnt− θn0))

+
∞
∑

m=1

Ta [−am sin (mωt− θnm) + bm cos (mωt− θnm)]
}

dt (140)

∴ ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∞
∑

n=1

Sn

∫

e
t

RLCp

{

− ω2
n

ω2
dn

{

−ζnωne
−ζnωnt cos (ωdnt− θn0)

+ e−ζnωntωdn sin (ωdnt− θn0)
}

+
∞
∑

m=1

Ta [−am sin (mωt− θnm) + bm sin (mωt− θnm)]
}

dt (141)

∴ ϕ (t) =
Ae33
Cp

e
−t

RLCp

p
∑

i=1

∞
∑

n=1

Sn

∫

(

ϕ3 +
∞
∑

m=1

Tnm [ϕ1 + ϕ2]

)

dt. (142)

Now we divide the integration into three parts to make it simpler:

ϕ1 =

∫

e
t

RLCp ([−am sin (mωt− θnm)])dt (143)

ϕ2 =

∫

e
t

RLCp ([bm cos (mωt− θnm)])dt (144)

ϕ3 =

∫

e
t

RLCp
a0 [1− (−1)n]

ρALωn

{

− ω2
n

ω2
dn

(−ζnωne
−ζnωnt cos (ωdnt− θn0)

+ e−ζnωntωdn sin (ωdnt− θn0))
}

dt. (145)



52

Now performing integration for ϕ1

ϕ1 =

∫

e
t

RLCp ([−am sin (mωt− θnm)])dt. (146)

Integration by parts:

ϕ1 = −RLCpe
t

RLCp am sin (mωt− θnm)+

∫

RLCpe
t

RLCp ammω cos (mωt− θnm)dt+C1 (147)

where C1 is an integration constant.

ϕ1 = −RLCpam

(

e
t

RLCp sin (mωt− θnm)−
∫

e
t

RLCpmω cos (mωt− θnm)dt

)

+ C1 (148)

ϕ1 = −RLCpam
{

e
t

RLCp sin (mωt− θnm)−
{

RLCpmωe
t

RLCp cos (mωt− θnm)

+

∫

RLCp(mω)2e
t

RLCp sin (mωt− θnm)dt+ C2

}}

+ C1. (149)

where C is an new integration constant which combines C1 with the new integration

constant.

ϕ1 = RLCpam
{

−e
t

RLCp sin (mωt− θnm) +RLCpmω e
t

RLCp cos (mωt− θnm)
}

+

∫

am(RLCpmω)2 e
t

RLCp sin (mωt− θnm) dt+ C (150)
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∴

∫

e
t

RLCp ([−am sin (mωt− θnm)])dt−
∫

am(RLCpmω)2 e
t

RLCp sin (mωt− θnm)dt

= RLCpam

(

−e
t

RLCp sin (mωt− θnm) +RLCpmω e
t

RLCp cos (mωt− θnm)
)

+ C (151)

−(1 + (RLCpmω)2)

∫

e
t

RLCp ([am sin (mωt− θnm)])dt

= RLCpam

(

−e
t

RLCp sin (mωt− θnm) +RLCpmω e
t

RLCp cos (mωt− θnm)
)

+ C (152)

ϕ1 =

∫

e
t

RLCp ([am cos (mωt− θnm)])dt (153)

=
RLCpame

t
RLCp (sin (mωt− θnm)−RLCpmω cos (mωt− θnm))

(1 + (RLCpmω)2)
+ C (154)

We have the equation for ϕ expressed as

ϕ2 =

∫

e
t

RLCp ([bm cos (mωt− θnm)])dt. (155)

Now performing integration for to Eq.(155) we get

ϕ2 = bmRLCpe
t

RLCp cos (mωt− θnm) +

∫

bmRLCpmωe
t

RLCp sin (mωt− θnm)dt + C3 (156)

where C3 is an integration constant.
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Eq.(156) can be rewritten as

ϕ2 = bmRLCp

{

e
t

RLCp cos (mωt− θnm) +

∫

mω e
t

RLCp sin (mωt− θnm)dt

}

+ C3 (157)

ϕ2 = bmRLCp

{

e
t

RLCp cos (mωt− θnm) + [mωRLCpe
t

RLCp sin (mωt− θnm)

−
∫

(mω)2 RLCpe
t

RLCp cos (mωt− θnm)dt]
}

+ C3 (158)

∴

∫

e
t

RLCp ([bm cos (mωt− θnm)])dt = bmRLCp

{

e
t

RLCp cos (mωt− θnm)

+

[

mωRLCpe
t

RLCp sin (mωt− θnm)−
∫

(mω)2 RLCpe
t

RLCp cos (mωt− θnm)dt

]

}

+ C3

(159)

∴(1 + (RLCpmω)2)

∫

e
t

RLCp (bm sin (mωt− θnm))dt

= bmRLCp

{

e
t

RLCp cos (mωt− θnm) +mωRLCpe
t

RLCp sin (mωt− θnm)
}

+ C3 (160)

∴ ϕ2 =

∫

e
t

RLCp (bm sin (mωt− θnm))dt

=
bmRLCpe

t
RLCp {cos (mωt− θnm) +mωRLCp sin (mωt− θnm)}

1 + (RLCpmω)2
+ C3. (161)

Now integrating ϕ3
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ϕ3 =

∫

e
t

RLCp
a0 [1− (−1)n]

ρALωn

{

− ω2
n

ω2
dn

(−ζnωne
−ζnωnt cos (ωdnt− θn0)

+ e−ζnωntωdn sin (ωdnt− θn0))
}

dt.

by following the same integration and substitution procedure as for ϕ1 and ϕ2 we get

ϕ3 =
a0 [1− (−1)n]

ρALωn

{

RLCpe
t

RLCp − ω2
n

ω2
dn(

1
RLCp

− ζnωn)

1
( 1

RLCp
−ζnωn)

e
t( 1

RLCp
−ζnωn) cos (ωdnt− θn0) +

{

ωdn

( 1

RLCp
−ζnωn)

2 e
t( 1

RLCp
−ζnωn)

}

1 +

(

ωdn

( 1

RLCp
−ζnωn)

)2

}

+ C. (162)

Combining all the resulting equations, we will finally get the generated voltage equation

ϕ (t) =
Ae33
Cp

e
−t

RLCp

{

p
∑

i=1

∞
∑

n=1

(

−nπ

L

)

sin
(nπx

L

)

{a0 [1− (−1)n]

ρALωn

×
{

RLCpe
t

RLCp − ω2
n

ω2
dn(

1
RLCp

− ζnωn)

×
1

( 1

RLCp
−ζnωn)

e
t( 1

RLCp
−ζnωn) cos (ωdnt− θn0) +

{

ωdn

( 1

RLCp
−ζnωn)

2 e
t( 1

RLCp
−ζnωn)

}

1 +

(

ωdn

( 1

RLCp
−ζnωn)

)2

}

+
∞
∑

m=1

2[1− (−1)n]mω

ρAL
{

[

ω2
n − (mω)2

]2
+ (2ζnωnmω)2

}
1

2

×
{RLCpame

t
RLCp (cos (mωt− θnm) +RLCpmω sin (mωt− θnm))

(1 + (RLCpmω)2)

+
bmRLCpe

t
RLCp {sin (mωt− θnm)−mωRLCp cos (mωt− θnm)}

1 + (RLCpmω)2
}}}

+ C. (163)
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At the initial time t = 0 sec, the piezoelectric stack is under no stress (or strain);

therefore, the generated voltage equals zero ϕ(0) = 0 which makes the integration constant

equal zero, C = 0.

MATLAB was used to solve Eq.(163). It was found that for the summation signs, using

values of n = 2 and m = 1 would be sufficient to produce the required results with almost

no change in the voltage result. Also, from Eq. (134) it can be seen that the generated

voltage ϕ(t) is mainly dependent on the rate of strain taking place inside the material. The

rate of strain is mainly dependent on the the nth forced modal response of the piezoelectric

stack, which are the first two modal resonances (n = 2). Since the force input to the model

is a pure sinusoidal wave, the Fourier coefficient am is the dominant term in (Eq. 163) and

the effect of a0 and bm.

For the open circuit condition (RL → ∞) the voltage equation can be expressed as

ϕ(t) =
Ae33
Cp

∑

S3(xi, t). (164)

Therefore, for a sinusoidal input, Eq. (163) can be reduced as follows

ϕ(t) =
Ae33
Cp

2
∑

n=1

2 [1− (−1)n]

ρAL
{

[ω2
n − ω2]2 + (2ζnωnω)

2}
1

2

[a1 cos (ωt)] . (165)

Noting that the dominant terms in Eq. (163) are the Fourier coefficients a0, am and bm

Also, the electric current can be calculated using the following equation

i(t) = Cp
dϕ(t)

dt
= Ae33

p
∑

i=1

S3(xi, t). (166)

The instant power accordingly can be calculated by substituting the values of the voltage
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from Eq.(163) in Eq.(167).

PR(t) =
ϕ(t)

RL

(167)

where RL is the resistive load value. Noting that in the current work, only the open

circuit case was tested. For an open circuit case the resistance is assumed to be equal 1015.
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CHAPTER 5

EXPERIMENT SETUP

The purpose of the experimental setup is to locate the resonance frequency of the FPEH

as well as specifying the voltage generated at this frequency. Accordingly, a shaker system

was required. This shaker system is capable of generating a sweep function in the range of

the natural frequency of the harvester as well as a vibration magnitude that is compatible

with the harvester that is being tested. The result of the FEA (ANSYS modal and harmonic

models) were verified using the experimental readings.

Another important use for the experimental results is to choose a suitable value for

the damping coefficient for the harvester in the ANSYS. One of the challenges in ANSYS

simulations is that the deformation tends to infinity at the resonance frequency. That

requires defining a suitable damping coefficient for the harvester components or for the

assembly as a whole. There are no analytical or numerical methods found in the literature

that can predict these damping coefficients. The only way to do it is to define it using the

experimental values by tuning the coefficients so that the system response in the ANSYS

model matches the experimental response.

The setup of the experiment is shown in Fig. (16). The PM 100 Electrodynamic Vibra-

tion Exciterwas (shaker) used; this shaker is capable of producing a force output of 100lbs

peak and a maximum displacement of 0.5inch amplitude (peak-peak). The maximum ac-

celeration and frequency this shaker can produce are 100g′s and 7000Hz, respectively for

an unloaded shaker.
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Fig. 16: Dynamic experiment setup of Flextensional Piezoelectric Energy Harvester

On the shaker’s top the harvester was attached using an M3 screw, and a piezoelectric

accelerometer was attached to it as well Fig. (17)
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Fig. 17: Multistage Piezoelectric Energy Harvester and an Accelerometer mounted on the
shaker’s top plate.

5.1 VIBRATION EXCITER MAXIMUM RESPONSE

The maximum allowable shaker acceleration depends on the weight of the load attached

to it, the mass of the fixture base attached on it (where the harvester is mounted), the mass

of the harvester itself, the weight of the screws and the sensing devices as shown in Eq.

(168)

Amax =
FR

WME +WTA +WF

(168)



61

where

Amax = Maximum allowable table acceleration in g’s peak

FR = Rated force of the shaker”100lb”

WME = Weight of the moving element

WTA = Weight of the test article

WF = Weight of the bolts, screws, and sensors.

5.2 VIBRATION EXCITER CONTROL

To operate the shaker, a power amplifier is required. The power amplifier model SL500VCF

was used. This power amplifier can provide power output of 450Wattrms. It can match the

performance of the PM 100 shaker when connected for low impedance.

Fig. 18: Simplified Diagram Connection for the Shaker with the Power Amplifier ”the Cooler
Option Was Not Used in the Experiment”

There are two ways to control the shaker to perform a sweep motion, either to connect

it to a sweep generator (Fig. 19) or to connect it to LABVIEW.
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Fig. 19: Dual Channel Function Generator

As mentioned earlier, the accelerometer was attached to the shaker base using wax. Then

the extension cable of the accelerometer was connected using a BNC connector to a PCB

482C Series 4-Channel Signal Conditioner shown in Fig. (20)

Fig. 20: PCB 482C Series 4-Channel Signal Conditioner

The frequency range applied to the shaker was 20 to 300Hz. The problem with using
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this setup is that when we attempt to apply a sweep function, the shaker output acceleration

increases as the frequency increases. Designing a control algorithm to use the acceleration

reading as a feedback and then adjusting the output of the shaker such that it maintains

fixed acceleration is rather cumbersome. As a result, the experimental results for the voltage

output will be presented in the results chapter as V olts/g′s.
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CHAPTER 6

RESULTS

The results chapter is divided into two sections; the first section discusses off-resonance

mode while the second section will discuss the resonance mode simulation.

6.1 OFF-RESONANCE MODE RESULTS

The force applied on the flextensional piezoelectric harvester’s force amplification frame

was adjusted so that the force exerted on piezoelectric multilayer stack becomes 100N .

Noting that, the amplification factor for the FAF is 4.6. Fig. (21) shows a plot of the

applied force on the stack.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

150

Fig. 21: Amplified force with an amplitude of 100N and frequency 10Hz

The monolithic piezoelectric stack actuator (CeramTech SP505) was used in this study

as a harvester instead. The stack is built using 300 piezoelectric layers of 0.1 mm thickness
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sandwiched between 301 silver electrodes. The total volume of the stack is 7mm× 7mm×

32.40mm, and its density is ρ = 7700kg/m3.

The main parameters used to model the piezoelectric material are the sE33 = 24 ×

10−12m2/N , d33 = 475pC/N and εT33 = 1880.

The comparison between the models will be based on the root mean square values (RMS)

of the voltages output. Since the applied force is sinusoidal in nature and the resulted voltage

will follow a sinusoidal behavior too, we can use Eq. (169).

Vrms =
Vpeak√

2
(169)

6.1.1 QUASI-STATIC MODEL

The voltage output of the static model can be seen in Fig. (22). The maximum voltage

“Vmax = Vpeak” equals 5.824V which yields a root mean square value of Vrms = 4.1182V .

Fig. 22: Static Model Voltage Output
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6.1.2 SINGLE DEGREE OF FREEDOM MODEL

The voltage output of the static model can be seen in Fig. (23). The maximum voltage

“Vmax” equals 3.791V which yields a root mean square value of Vrms = 2.6806V .

Fig. 23: Single Degree of Freedom Model Output Voltage

6.1.3 ANSYS TRANSIENT MODEL

The mesh Dependence Study was performed on the piezoelectric stack as well as the

FPEH in the open circuit condition. In this abstract we present the mesh dependence study

carried on the stack under a randomly chosen sinusoidal force of 100N and frequency of

11Hz. Both piezoelectric elements SOLID226 and SOLID227 were tested. As shown, Fig.

(24) meshes with an element number ranging from 500 elements to 14850 elements were

used and they all gave the same exact result. These 500 elements, minimum threshold was

used in the FPEH simulation as well (transient, modal and harmonic analyses).

Contour plots for the generated voltage, maximum deformation and von-mises stress

when a force of magnitude 100 and frequency of 10Hz are shown in Figs. (25), (26) and

(27).
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SOLID227 2625 Elements

SOLID227 7964 Elements

SOLID227 110979 Elements

SOLID226 500 Elememts

SOLID226 14850 Elememts

Fig. 24: Piezoelectric Stack Mesh Dependence Study

Fig. 25: Contour plot for the maximum generated voltage by ANSYS at force of magnitude
of 100N and frequency of 10Hz
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Fig. 26: Contour plot for the maximum deformation by ANSYS at force of magnitude of
100N and frequency of 10Hz

Fig. 27: Contour plot for the maximum stress by ANSYS at force of magnitude of 100N
and frequency of 10Hz

The voltage output of the finite element model is presented in Fig. (28). The maximum

voltage “Vmax” equals 6.243V which yields a root mean square value of Vrms = 4.4145V .
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Fig. 28: Single Degree of Freedom Model Output Voltage

6.1.4 THE DISTRIBUTED PARAMETER MODEL ”ANALYTICAL MODEL”

The voltage output of the distributed parameter model can be seen in Fig. (29). The

maximum voltage “Vmax” equals 5.406V which yields a root mean square value of Vrms =

3.8226V .
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Fig. 29: Analytical Model Generated Voltage

6.1.5 TRANSIENT MODELS DISCUSSION

Fig. (30) shows the generated voltage for the quasi static, SDOF, ANSYS and the

distributed parameter models. It can be seen that the experimental results coincides on

the expected voltage of the analytical model (the distributed parameter model). Noting

that the experimental data used was extracted from the same paper which presented this

distributed parameter model [70].

The SDOF model gave the maximum deviation compared to the experimental data.

This is because the SDOF model treats the multilayer stack as one bulk object. Also, the

SDOF model ignores the damping inside the piezoelectric stack caused by the presence of

the electrodes, and it also ignored the strains distribution or the difference in strains between

the piezoelectric layers. The RMS error percentage Erms for this case reached 25.1661%.

The ANSYS model can be enhanced if the effect of the capacitance of the piezoelectric

stack is taken into account. Fig. (31a) shows equivalent circuits for PZT stacks proposed

by Xu et al. [69].



71

Experimetal Results [70]

Analytical Model

Static Model

ANSYS Model

SDOF Model

Fig. 30: The generated voltage for the quasi static, SDOF, ANSYS, the distributed param-
eter models and Experimental Results [70]

(a) Resonance mode (b) Off-Resonance mode

Fig. 31: Equivalent circuit for the PZT-Stack connected with a pure resistive load. The
dash lined rectangle represents the inside of the PZT-Stack [69]

The RESR in Fig. (31) stands for Equivalent Serial Resistive and is expressed as

RESR =
tan(δ)

ωCp

. (170)

Further explanation for the circuits shown in Fig. (31) and the symbols can be found in
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[69].

Experimetal Results [70]

Analytical Model

Static Model

ANSYS Model

SDOF Model

Fig. 32: Generated Voltage for All Models

The ANSYS model, however provided more accurate results compared to the SDOF

model with an RMS error Erms = 15.48.42. This error can be due to the equivalent ca-

pacitance assumption presented by Eq.(99) The finite element model also has discretization

errors caused by the mesh and numerical errors of the solution of the FEA.

Although, the static model is the simplest model, and its equation and coding is ex-

tremely trivial it gave an error less than the SDOF and the FEA models. It takes almost no

computation cost or time. The error was Erms = 7.7330% which is satisfactory compared

to the effort and the complexity of the distributed parameter model.

Table (III) summaries the results for the four models. The second column shows the

peak voltage expected by each model. The third column shows the root mean square voltage

while the last column shows the errors calculated base on the values of the VRMS.
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TABLE III: A Summary of off Resonance Mode Models Result

Model Vmax(V olt) VRMS(V olt) ERMS%
Quasi-Static Model 5.824 4.1182 7.7330%

SDOF Model 3.791 2.6806 25.1661%
ANSYS Model 6.243 4.4145 15.4842%

Analytical Model 5.406 3.8226 0.0%

6.2 RESONANCE MODE MODELS RESULTS

This section will start with presenting the results numerically and experimentally of the

single stage piezoelectric harvester. Then the second subsection will present certain results

from the multistage piezoelectric harvester. Noting that, in this thesis we cannot present

all simulated cases and design modifications due to some restrictions imposed on the author

by the funding agency.

6.2.1 SINGLE STAGE PIEZOELECTRIC ENERGY HARVESTER

The geometry of the piezoelectric stack and the FPEH are illustrated in Fig. (33),

and values of the dimensions are Ws = hs = 7mm, W = h = 8mm, Hfo = 17.5mm,

Hfi = 13.5mm, Ls = 32.4mm and Lfo = 38mm. The material used to manufacture the

stack is 316 Stainless Steel with Modulus of Elasticity E = 193GPa and Poisson’s ratio

ν = 0.27.
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Fig. 33: FPEH Geometry

The full geometry of the stack was modeled. The dimension of the stack is the same as

the stack mounted in the FPEH 7× 7× 32.4mm3.

Fig. (34) shows voltage contour plots for the single stage flextensional piezoelectric

energy harvester loaded with a 500 grams weights and with base excitation of acceleration

1g′s. Fig. (34a) shows the tension cycle while Fig. (34b) shows the compression cycle.
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(a)

(b)

Fig. 34: Contour plots (a) Tension Cycle (b) Compression Cycle

The monolithic piezoelectric stack actuator (CeramTech SP505) was used in this study

as a harvester instead. The stack is built using 300 piezoelectric layers of 0.1 mm thickness

sandwiched between 301 silver electrodes. The total volume of the stack is 7mm× 7mm×

32.40mm and its density is ρ = 7700kg/m3. This is the same piezoelectric multilayer stack

used in the off-resonance mode section.
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Experimetal - 0 grams

Numerical - 0 grams

Experimetal - 10 grams

Numerical - 10 grams

Experimetal - 200 grams

Numerical - 200 grams

Experimetal - 500 grams

Numerical - 500 grams

Fig. 35: Voltage Frequency Response Spectra of the FPEH with 1g Base Excitation Using
Different Proof Masses

6.2.2 MULTI-STAGE FLEXTENSIONAL PIEZOELECTRIC ENERGY HAR-

VESTER

Fig. (36) shows a two stage FPEH, the three multilayer stacks used in that harvester

were mainly designed to serve as an actuator. The piezoelectric stacks are model SM701,

with piezoelectric constant of d33 = 640pC/N , and dielectric constant of εT33 = 3800 and

density of ρ = 7800kg/m3. The force amplification frame was manufactured from 17−4PH

stainless steel.

In this subsection, we will not delve into the detailed geometry of the harvester because

of the restrictions imposed by the company funding this project. Also, not all results will

be presented of the same reason.
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SOLIDWORKS Educational Product. For Instructional Use Only.

Fig. 36: Multi-Stage Flextensional Energy Harvester

The frequency range applied to the shaker was 170 to 250Hz. The problem with using

this setup is that when we attempt to apply a sweep function, at the resonance frequency

the energy is sucked suddenly from the shaker and a sudden decrease in the acceleromoter

reading is observed as shown in Fig.(37a). Due to the complexity of designing a control

algorithm to use the acceleration reading as a feedback and then adjust the output of the

shaker such that it maintains fixed acceleration is rather cumbersome. As a result, the

experimental results for the voltage output of the will be presented in the results chapter as

V olts/g′s. This is done by dividing the results in Fig. (37a) by the results in Fig. (37b).
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(a) (b)

Fig. 37: Experimental Results (a) Accelerometer Feedback (b) Generated Voltage

By applying Fast Fourier Transformation (FFT) to the waveform measured by LAB-

VIEW, the spectrum shown in Fig. (38) in the blue line is observed.

Experimental Results

ANSYS Results

Fig. 38: Multi-Stage Flextensional Energy Harvester

The ANSYS harmonic result is shown in Fig. (38). A damping coefficient of 0.0025 was

found to be suitable for that model. This damping coefficient matched the maximum voltage

peak of the experimental results. Fig. (39) shows the generated voltage at the resonance
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frequency with base excitation of 1g′s at the maximum and minimum deformations of the

harvester; however, the actual harvester was not tested at 1g′s acceleration because the

stress imposed on the second stage frame would be extremely big and would damage the

harvester. The actual experiment was performed at an acceleration of 0.1g′s acceleration.

Fig. 39: Multi-Stage FPEH Generated Voltage at base excitation of 1g′s

6.2.3 HARMONIC MODEL DISCUSSION

Figure (35) is the result for this single stage FPEH model. It can be noticed that

the experimental results are not in good agreement with the simulated result. Could be

differences or flaws in the manufacturing of the actual harvesters due to their extremely

small size and finite fillets which affects greatly the harvester’s natural frequency and force

amplification factor. Also, the assumption of having a piezoelectric bulk object ignores the

damping and the stiffness of the 301 silver electrodes as well as the epoxy used to attach

the piezoelectric stack to the FAF; which introduces errors to the model. More suspected

reasons are mentioned in [119, 91].

For the multistage FPEH, the maximum voltage produced by the harvester in the exper-

iment was 9.65V at a resonance frequency of 202.2Hz, while the maximum voltage produced

by the ANSYS model was 10.03V at a resonance frequency of 218Hz as shown in Fig. (38).

The error in the resonance frequency detection by the ANSYS model can be caused by
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the fact that the fillets and dimensions of the harvester’s frames are extremely small. This

makes the manufacturing process prone to minor errors which lead to a shift in the deviation

of the manufactured harvester compared to the designed one. Also, there can be a mismatch

between the material properties used to manufacture the frame compared to the material

properties specified in the data sheets used in the ANSYS model.

The flextensional piezoelectric energy harvesters have small curvatures and fillets, these

regions are considered stress concentration points. Accordingly, the stresses should be

checked and quantified in these regions before putting these harvesters in service. The

maximum stress produced in in the single stage flextensional piezoelectric energy harvester

is 5.43MPa (as shown in Fig. (40))which is much lower than the yield stress of the material

used in manufacturing the FAF (σyield = 290MPa)

Fig. 40: Von-mises Stress contour plot for the stresses applied on the Single stage FPEH
when loaded with 500 grams at resonance frequency with magnitude 1g′s

Fig. (41) shows the stress distribution on the multistage energy harvester at base ex-

citation of 0.1g′s. It can be seen that the maximum stress occurs in the area of contact

between the first stage and second stage frames.
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Fig. 41: Multi-Stage FPEH stress distribution at base excitation of 0.1g′s
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CHAPTER 7

SUMMARY AND FUTURE WORK

For the resonance mode, the recommended model for simulation is the static model,

as it has the least programming complexity and minimal computational time compared to

the other investigated models. The distributed parameter model gives the most accurate

result with almost zero error. This is because the model accounts for the difference in

strain distribution along the piezoelectric stack compared to the other models. The SDOF

model gave the maximum deviation compared to the experimental data. This is because

the SDOF model treats the multilayer stack as a point mass. Also, the SDOF model ignores

the damping inside the piezoelectric stack caused by the presence of the electrodes, and it

ignored the strains distribution or the difference in strains between the piezoelectric layers.

The finite element model produced a satisfactory result, but the static model produced less

error.

The operation of piezoelectric energy harvesters in resonance mode produces significantly

high voltage compared to the off-resonance mode. However, the design of the resonance

mode harvesters is challenging because of the higher stresses imposed on the frame at such

frequencies. The deviation in the resonance frequency between the ANSYS model and

the experimental reading can be caused by the fact that the fillets and dimensions of the

harvester’s frames are extremely small. This makes the manufacturing process prone to

minor errors which leads to a shift in the deviation of the manufactured harvester compared

to the designed one. Also, there can be a mismatch between the material properties used

to manufacture the frame compared to the material properties specified in the data sheets

used in the ANSYS model.

In the future, this study can be extended to investigate numerical methods (such as the

Transfer Function method) in resonance mode. The performance of the Single Degree of
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Freedom model, the Finite Element model and the Distributed Parameter model have to be

tested for various resistive loads and in resonance mode as well as. Also, an exact replication

of this thesis can be done but for flextensional piezoelectric actuators instead of harvesters.
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